1
|
Opdam LV, Goetzfried SK, Polanco E, Bonnet S, Pandit A. Design and characterization of porphyrin-based photosensitizing metalloproteins integrated with artificial metalloenzymes for photocatalytic hydrogen production. J Inorg Biochem 2025; 267:112855. [PMID: 39986136 DOI: 10.1016/j.jinorgbio.2025.112855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/28/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
Hydrogen is regarded as a promising alternative to fossil fuels. A desirable method of its generation is via photocatalysis, combining photosensitizers and hydrogen-evolution catalysts in the presence of an electron donor. Inspired by natural photosynthesis, we designed photosensitizing artificial metalloproteins (ArMs) and integrated them with ArM-based catalysts for photocatalytic hydrogen production from water. Metal porphyrins based on protoporphyrin IX (PPIX) were employed as they are naturally abundant and are effective both as photosensitizers and hydrogen-evolution catalysts. Photosensitizing proteins were created by binding zinc (Zn)PPIX or ruthenium (Ru)PPIX to the haem acquisition system A from Pseudomonas aeruginosa (HasAp). The photosensitizer ArMs were combined with cobalt (Co)PPIX-myoglobin (Mb) or free CoPPIX as hydrogen evolution catalysts. We found that free CoPPIX could replace ZnPPIX or RuPPIX in HasAp, forming CoPPIX-HasAp or RuPPIX-CoPPIX-HasAp complexes with enhanced stability compared to CoPPIX-Mb. Photocatalytic hydrogen production was achieved upon irradiation at 435 nm (ZnPPIX) or 385 nm (RuPPIX), using methyl viologen as an electron carrier and triethanolamine as an electron donor. The ZnPPIX-HasAp/CoPPIX-HasAp system remained intact and active for approximately 42 h, while Ru-based systems that were excited by UV light, exhibited signs of protein cleavage upon prolonged irradiation. These results demonstrate the potential of integrating porphyrin-based ArMs for photosensitization and hydrogen evolution, with HasAp providing a robust scaffold for sustained photocatalytic activity.
Collapse
Affiliation(s)
- L V Opdam
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, the Netherlands; Bioénergétique et Ingénierie des Protéines, 13402 Marseille, France
| | - S K Goetzfried
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, the Netherlands; Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - E Polanco
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, the Netherlands
| | - S Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, the Netherlands
| | - A Pandit
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, the Netherlands.
| |
Collapse
|
2
|
Mekuli R, Shoukat M, Dugat-Bony E, Bonnarme P, Landaud S, Swennen D, Hervé V. Iron-based microbial interactions: the role of iron metabolism in the cheese ecosystem. J Bacteriol 2025; 207:e0053924. [PMID: 40237503 DOI: 10.1128/jb.00539-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Iron is involved in various microbial metabolisms and interactions and is an essential micronutrient for most microorganisms. This review focuses on the cheese ecosystem, in which iron is sparse (median concentration of 2.9 mg/kg based on a literature survey) and of limited bioavailability due to the presence of various metal-binding agents in the cheese matrix. Cheese microorganisms overcome this low bioavailability of iron by producing and/or importing ferric iron-specific chelators called siderophores. We introduce these siderophores and their specific transporters, which play a key role in ecological interactions and microbial metabolism. We discuss the impact of iron on all the major taxa (fungi, bacteria, and viruses) and functional groups (starters, ripening microorganisms, and pathogens) present and interacting in cheese, from the community to individual levels. We describe the ways in which cheese-ripening microorganisms use iron and the effects of iron limitation on major metabolic pathways, including the tricarboxylic acid (TCA) cycle and amino-acid biosynthesis. The cheese ecosystem is a relevant in situ model for improving our understanding of iron biochemistry and its putative role in microbe-microbe interactions. Yet, this review highlights critical gaps in our understanding of iron's role in cheese from fundamental ecological and biochemical perspectives to applied microbiology, with broader implications for the quality, safety, and organoleptic properties of cheese.
Collapse
Affiliation(s)
- Rina Mekuli
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Mahtab Shoukat
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Eric Dugat-Bony
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Pascal Bonnarme
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Sophie Landaud
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Dominique Swennen
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Vincent Hervé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| |
Collapse
|
3
|
Kircheva N, Angelova S, García-Iriepa C, Marazzi M, Dudev T. Thermodynamics of the Ga 3+/ Fe 3+ Competition in a Model of the Heme B-Containing Bacterial Catalase Active Center. Inorg Chem 2025; 64:9457-9468. [PMID: 40329694 DOI: 10.1021/acs.inorgchem.4c05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Antibiotic resistance presents an enormous threat to human well-being due to the overconsumption and misuse of these essential drugs in recent years. A novel and intriguing path to overcoming the ever-pressing problem appears in the "Trojan horse" strategy exploiting bacteria's internalization systems and their exceptional capability to scavenge metal ions, iron in particular, from the surrounding media when evading the host organism. A promising candidate in this field is the abiogenic cation gallium─a ferric mimetic species, known to exert diverse effects, with its well-pronounced antibacterial activity attracting the attention of scientists in the past decade. In the study presented herewith, the computational chemistry methods, based on Density Functional Theory (DFT), are utilized in order to differentiate those outer factors contributing to gallium's ability to substitute the native ferric ion in the active site of the enzyme catalase. The characteristics of the surrounding media such as pH and solvent exposure, the composition of the protein shell, the nature of the metal, and different substrate molecules have been taken into account. The obtained results are interpreted in light of the experimentally reported observations and aim to contribute to deciphering this aspect of gallium's mechanism of antibacterial activity.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
- University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Blvd, Sofia 1756, Bulgaria
| | - Cristina García-Iriepa
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Functional Molecular Systems (FuMSys) group, Ctra, Madrid-Barcelona km. 33, 600, Alcalá de Henares, Madrid 28801, Spain
- Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Ctra, Madrid-Barcelona km. 33, 600, Alcalá de Henares, Madrid 28801, Spain
| | - Marco Marazzi
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Functional Molecular Systems (FuMSys) group, Ctra, Madrid-Barcelona km. 33, 600, Alcalá de Henares, Madrid 28801, Spain
- Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Ctra, Madrid-Barcelona km. 33, 600, Alcalá de Henares, Madrid 28801, Spain
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", Sofia 1164, Bulgaria
| |
Collapse
|
4
|
Zhang Y, Kang X, Wu F, Lu Y, Gan Z. The CpxA-CpxR two-component system regulates stress tolerance and virulence of Vibrio alginolyticus. Int J Biol Macromol 2025; 312:144279. [PMID: 40381784 DOI: 10.1016/j.ijbiomac.2025.144279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/29/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
The two-component systems (TCSs) play vital roles in the regulation of a series of biological processes in bacteria, and the CpxA-CpxR is considered as a kind of classical TCSs involved in bacterial envelope stress responses. However, the roles of the CpxA-CpxR are not sufficiently understood in Vibrio alginolyticus, a serious pathogen causing the outbreak of pathogenic diseases vibriosis in marine fishes. In this study, we examined the effect of cpxA and cpxR deletion on typical phenotypes of V. alginolyticus HY9901, and the result showed that deletion of cpxA and cpxR and increased the susceptibility to high salinity, iron limitation, certain antibiotics (kanamycin and midecamycin), but had no effects on growth curve and swarming motility of V. alginolyticus. Besides, deletion of cpxA (not cpxR) decreased biofilm formation of V. alginolyticus. In addition, the stimulation of ΔcpxA and ΔcpxR significantly up-regulated the expression of immune-related genes in grouper spleen (GS) cells compared to WT, and deletion of cpxA and cpxR decreased the bacterial adhesion and intracellular ferrous iron concentration in GS cells, and increased the viability of infected-GS cells. Consistently, deletion of cpxA and cpxR decreased bacterial invasion and intracellular replication in grouper primary macrophages. The present study thus improves the understanding of the functions of the CpxA-CpxR system in gamma proteobacteria, and also provides new insight into the molecular pathogenesis of vibriosis in marine fishes.
Collapse
Affiliation(s)
- Yilin Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Xu Kang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Fan Wu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Yishan Lu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
| | - Zhen Gan
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
| |
Collapse
|
5
|
Brunson DN, Manzer H, Smith AB, Zackular JP, Kitten T, Lemos JA. Characterization of a heme-degrading enzyme that mediates fitness and pathogenicity in Enterococcus faecalis. mBio 2025; 16:e0014625. [PMID: 40214231 PMCID: PMC12077173 DOI: 10.1128/mbio.00146-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/12/2025] [Indexed: 05/15/2025] Open
Abstract
Enterococcus faecalis, a gut commensal, is a leading cause of opportunistic infections. Its virulence is linked to its ability to thrive in hostile environments, which includes host-imposed metal starvation. We recently showed that E. faecalis evades iron starvation using five dedicated transporters that collectively scavenge iron from host tissues. Interestingly, heme, the most abundant source of iron in the human body, supported the growth of a strain lacking all five iron transporters (Δ5Fe). To release iron from heme, many bacterial pathogens utilize heme oxygenase enzymes to degrade the porphyrin ring that coordinates the iron ion of heme. Although E. faecalis lacks these enzymes, bioinformatics revealed a potential ortholog of the anaerobic heme-degrading enzyme anaerobilin synthase, found in Escherichia coli and a few other gram-negative bacteria. Here, we demonstrated that deletion of OG1RF_RS05575 in E. faecalis (ΔRS05575) or in the Δ5Fe background (Δ5FeΔRS05575) led to intracellular heme accumulation and hypersensitivity under anaerobic conditions, suggesting RS05575 encodes an anaerobilin synthase, the first of its kind described in gram-positive bacteria. Additionally, deletion of RS05575, either alone or in the Δ5Fe background, impaired E. faecalis colonization in the mouse gastrointestinal tract and virulence in mouse peritonitis and rabbit infective endocarditis models. These results support the proposal that RS05575 is responsible for the anaerobic degradation of heme and identifies this relatively new enzyme class as a novel factor in bacterial pathogenesis. The findings from this study are likely to have broad implications, as homologues of RS05575 are found in other gram-positive facultative anaerobes. IMPORTANCE Heme is an important nutrient for bacterial pathogens, mainly for its ability to serve as an iron source during infection. While bacteria are known to release iron from heme using enzymes called heme oxygenases, a new family of anaerobic heme-degrading enzymes has been described recently in gram-negative bacteria. Here, we report the first description of anaerobic heme degradation by a gram-positive bacterium, the opportunistic pathogen Enterococcus faecalis, and link activity of this enzyme to their ability to colonize and infect the host. We also show that homologs of this enzyme are found in many gram-positive facultative anaerobes, implying that the ability to degrade heme under anaerobic conditions may be an overlooked fitness and virulence factor of bacterial pathogens.
Collapse
Affiliation(s)
- Debra N. Brunson
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Haider Manzer
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alexander B. Smith
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Microbial Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Todd Kitten
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
6
|
Wang YY, Luo BZ, Li CM, Liang JL, Liu Z, Chen WM, Guo JL. Discovery of 3-hydroxypyridin-4(1H)-ones ester of ciprofloxacin as prodrug to combat biofilm-associated Pseudomonas aeruginosa. Eur J Med Chem 2025; 289:117396. [PMID: 40010273 DOI: 10.1016/j.ejmech.2025.117396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
Chronic infections by Pseudomonas aeruginosa (P. aeruginosa) are frequently complicated due to its ability to form biofilm, which also effectively enhance its resistance to antibiotics. Bacteria-specific antibiotic delivery could locally increase drug concentration to break antimicrobial resistance and reduce the drug's peripheral side effects. The standard-of-care drug ciprofloxacin suffers from severe systemic side effects and was therefore chosen for this approach. It has been identified that 3-hydroxypyridin-4(1H)-one as siderophore mimics could be utilized by P. aeruginosa, and reduced bacterial biofilm formation. In this work, ciprofloxacin was conjugated to 3-hydroxypyridin-4(1H)-one by cleavable linkers to yield prodrugs, which were strategically designed and synthesized to function as dual antibacterial and antibiofilm agents against P. aeruginosa. Conjugate 5c was identified and has the best minimum inhibitory concentrations of 1.07 μM against P. aeruginosa PAO1, and reduced 61.7 % of biofilm formation. In addition, 5c destroyed 75.7 % of mature biofilms. Further studies on the uptake mechanisms showed that the bacterial siderophore-dependent iron transport system was involved in the uptake of the conjugates. Conjugate 5c interfered with iron uptake by bacteria, inhibited their motilities and reduced the production of virulence. Furthermore, prodrug 5c reduced toxicity in vivo and in vitro and showed a positive therapeutic effect in the treatment of Caenorhabditis elegans (C. elegans) infected by P. aeruginosa. These results demonstrate that 3-hydroxypyridin-4(1H)-ones-ciprofloxacin prodrugs are potent in the treatment of biofilm-associated drug-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- School of Medicine, Foshan University, Foshan, 528000, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Bao-Zhang Luo
- School of Medicine, Foshan University, Foshan, 528000, PR China
| | - Chang-Ming Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jian-Long Liang
- School of Medicine, Foshan University, Foshan, 528000, PR China
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan, 528000, PR China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Jia-Liang Guo
- School of Medicine, Foshan University, Foshan, 528000, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
7
|
Ikegwuoha NPP, Hanekom T, Booysen E, Jason C, Parker‐Nance S, Davies‐Coleman MT, van Zyl LJ, Trindade M. Fimsbactin Siderophores From a South African Marine Sponge Symbiont, Marinomonas sp. PE14-40. Microb Biotechnol 2025; 18:e70155. [PMID: 40325896 PMCID: PMC12053065 DOI: 10.1111/1751-7915.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
Low iron levels in marine habitats necessitate the production of structurally diverse siderophores by many marine bacterial species for iron acquisition. Siderophores exhibit bioactivities ranging from chelation for iron reduction in hemochromatosis sufferers to antimicrobial activity either in their own right or when coupled to known antibiotics for targeted delivery or for molecular imaging. Thus, marine environments are a sought-after resource for novel siderophores that could have pharmaceutical or industrial application. The fimsbactins A-F (1-6) are mixed catechol-hydroxamate siderophores that have only been reported to be produced by Acinetobacter species with the fimsbactin biosynthetic gene clusters (BGCs) widespread among species within this genus. Here, we identified a putative fimsbactin BGC from an uncharacterized marine isolate, Marinomonas sp. PE14-40. Not only was the gene synteny not conserved when comparing the pathway from Marinomonas sp. PE14-40 to the fimsbactin BGC from Acinetobacter sp., but five of the core biosynthetic genes found in the canonical fimsbactin BGC are located elsewhere on the genome and do not form part of the core cluster in Marinomonas sp. PE14-40, with four of these, fbsBCDL, colocalized. Through ESI-MS/MS analysis of extracts from Marinomonas sp. PE14-40, the known fimsbactin analogues 1 and 6 were identified, as well as two new fimsbactin analogues, 7 and 8, containing a previously unreported L-lysine-derived hydroxamate moiety, N1-acetyl-N1-hydroxycadaverine. Feeding experiments using stable isotope-label L-lysine provided further evidence of the N1-acetyl-N1-hydroxycadaverine moiety in 7 and 8. The study demonstrates functional conservation in seemingly disparate biosynthetic pathways and enzyme promiscuity's role in producing structurally diverse compounds.
Collapse
Affiliation(s)
| | - Thea Hanekom
- Department of BiotechnologyInstitute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western CapeCape TownSouth Africa
| | - Elzaan Booysen
- Department of BiotechnologyInstitute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western CapeCape TownSouth Africa
| | - Corbyn Jason
- Department of BiotechnologyInstitute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western CapeCape TownSouth Africa
| | - Shirley Parker‐Nance
- Department of ZoologyNelson Mandela Metropolitan University, University WayPort ElizabethSouth Africa
- South African Institute for Aquatic Biodiversity (SAIAB)GrahamstownSouth Africa
| | | | - Leonardo Joaquim van Zyl
- Department of BiotechnologyInstitute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western CapeCape TownSouth Africa
| | - Marla Trindade
- Department of BiotechnologyInstitute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western CapeCape TownSouth Africa
| |
Collapse
|
8
|
Marimuthu SCV, Thangamariappan E, Kunjiappan S, Pandian SRK, Sundar K. New insights into iron uptake in Streptococcus mutans: evidence for a role of siderophore-like molecules. Arch Microbiol 2025; 207:96. [PMID: 40111578 DOI: 10.1007/s00203-025-04284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/11/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
Streptococcus mutans, a gram-positive coccus commonly found in the human oral cavity, is the primary causative agent of dental caries as well as infective endocarditis. Bacteria produce potent iron chelators called siderophores to absorb iron. Because, there are few studies on siderophore-mediated iron transport in S. mutans, the current study investigates the presence of such a mechanism in S. mutans GS-5. Deferration of culture medium and different concentrations of 2, 2'-Bipyridyl has been used to simulate iron-restricted conditions. Iron restriction alters the colony morphology and slows bacterial growth. Cross-feeding conditioned medium into an iron-restricted medium promotes bacterial growth, indicating the presence of siderophore-like molecules. This was further confirmed by Chrome Azurol S (CAS) assay and Modified CAS-agar assay. Cśaky's and Arnow's assays detected the presence of hydroxamate and catecholate-type molecules in optimal and iron-restricted conditions, respectively. Further, the siderophore-like molecules were extracted and purified with thin layer chromatography (TLC). TLC elutes were also found to be positive for iron-chelation in CAS-agar assay and aided growth of S. mutans under iron-restricted conditions. LC-MS analysis of culture supernatants under iron-restricted conditions identified iron-binding small molecules, including a catechol structural motif. Computational analysis utilizing KEGG and BLASTp suggested homologues of siderophore biosynthesis and transport proteins, including genes associated with mutanobactin production. These findings indicate a possible siderophore-mediated iron uptake mechanism in S. mutans GS-5, warranting further molecular studies and advanced spectroscopic characterization of this unidentified siderophore. Once confirmed, this mechanism can be used as a potential drug target to control streptococcal infection.
Collapse
Affiliation(s)
- Shakti Chandra Vadhana Marimuthu
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India
| | - Esakkimuthu Thangamariappan
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India
| | - Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India
| | - Krishnan Sundar
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India.
| |
Collapse
|
9
|
Kumar R, Singh A, Srivastava A. Xenosiderophores: bridging the gap in microbial iron acquisition strategies. World J Microbiol Biotechnol 2025; 41:69. [PMID: 39939429 DOI: 10.1007/s11274-025-04287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Microorganisms acquire iron from surrounding environment through specific iron chelators known as siderophores that can be of self-origin or synthesized by neighboring microbes. The latter are termed as xenosiderophores. The acquired iron supports their growth, survival, and pathogenesis. Various microorganisms possess the ability to utilize xenosiderophores, a mechanism popularly termed as 'siderophore piracy' besides synthesizing their own siderophores. This adaptability allows microorganisms to conserve energy by reducing the load of siderogenesis. Owing to the presence of xenosiderophore transport machinery, these microbial systems can be used for targeting antibiotics-siderophore conjugates to control pathogenesis and combat antimicrobial resistance. This review outlines the significance of xenosiderophore utilization for growth, stress management and virulence. Siderogenesis and the molecular mechanism of its uptake by related organisms have been discussed vividly. It focuses on potential applications like disease diagnostics, drug delivery, and combating antibiotic resistance. In brief, this review highlights the importance of xenosiderophores projecting them beyond their role as mere iron chelators.
Collapse
Affiliation(s)
- Ravinsh Kumar
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Ashutosh Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India.
| |
Collapse
|
10
|
Shen X, Guan L, Zhang J, Xue Y, Si L, Zhao Z. Study in the iron uptake mechanism of Pasteurella multocida. Vet Res 2025; 56:41. [PMID: 39948631 PMCID: PMC11827447 DOI: 10.1186/s13567-025-01469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/28/2024] [Indexed: 02/16/2025] Open
Abstract
Pasteurella multocida infects a wide range of animals, causing hemorrhagic septicemia or infectious pneumonia. Iron is an essential nutrient for growth, colonization, and proliferation of P. multocida during infection of the host, and competition for iron ions in the host is a critical link in the pathogenesis of this pathogen. In recent years, there has been significant progress in the study of the iron uptake system of P. multocida, including its occurrence and regulatory mechanisms. In order to provide a systematic theoretical basis for the study of the molecular pathogenesis of the P. multocida iron uptake system, and generate new ideas for the investigation and development of molecular-targeted drugs and subunit vaccines against P. multocida, the mechanisms of iron uptake by transferrin receptors, heme receptors, and siderophores, and the mechanism of expression and regulation of the P. multocida iron uptake system are all described.
Collapse
Affiliation(s)
- Xiangxiang Shen
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Lijun Guan
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Junfeng Zhang
- Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yun Xue
- Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Lifang Si
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhanqin Zhao
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
- Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
11
|
Lee M, Armstrong CM, Smith AT. Characterization of intact FeoB in a lipid bilayer using styrene-maleic acid (SMA) copolymers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184404. [PMID: 39694085 PMCID: PMC11725443 DOI: 10.1016/j.bbamem.2024.184404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/12/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
The acquisition of ferrous iron (Fe2+) is crucial for the survival of many pathogenic bacteria living within acidic and/or anoxic conditions such as Vibrio cholerae, the causative agent of the disease cholera. Bacterial pathogens utilize iron as a cofactor to drive essential metabolic processes, and the primary prokaryotic Fe2+ acquisition mechanism is the ferrous iron transport (Feo) system. In V. cholerae, the Feo system comprises two cytosolic proteins (FeoA, FeoC) and a complex, polytopic transmembrane protein (FeoB) that is regulated by an N-terminal soluble domain (NFeoB) with promiscuous NTPase activity. While the soluble components of the Feo system have been frequently studied, very few reports exist on the intact membrane protein FeoB. Moreover, FeoB has been characterize almost exclusively in detergent micelles that can cause protein misfolding, disrupt protein oligomerization, and even dramatically alter protein function. As many of these characteristics of FeoB remain unclear, there is a critical need to characterize FeoB in a more native-like lipid environment. To address this unmet need, we employ styrene-maleic acid (SMA) copolymers to isolate and to characterize V. cholerae FeoB (VcFeoB) encapsulated by a styrene-maleic acid lipid particle (SMALP). In this work, we describe the development of a workflow for the expression and the purification of VcFeoB in a SMALP. Leveraging mass photometry, we explore the oligomerization of FeoB in a lipid bilayer and show that the VcFeoB-SMALP is mostly monomeric, consistent with our previous oligomerization observations in surfo. Finally, we characterize the NTPase activity of VcFeoB in the SMALP and in a detergent (DDM), revealing higher NTPase activity in the presence of the lipid bilayer. When taken together, this report represents the first characterization of any FeoB in a native-like lipid bilayer and provides a viable approach for the future structural characterization of FeoB.
Collapse
Affiliation(s)
- Mark Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Candice M Armstrong
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
12
|
Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Crit Rev Microbiol 2025; 51:44-83. [PMID: 38425122 DOI: 10.1080/1040841x.2024.2321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Shubhang Jha
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Tanvi Vishwakarma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| |
Collapse
|
13
|
Brunson DN, Manzer H, Smith AB, Zackular JP, Kitten T, Lemos JA. A Novel Heme-Degrading Enzyme that Regulates Heme and Iron Homeostasis and Promotes Virulence in Enterococcus faecalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633879. [PMID: 39896487 PMCID: PMC11785130 DOI: 10.1101/2025.01.20.633879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Enterococcus faecalis, a gut commensal, is a leading cause of opportunistic infections. Its virulence is linked to its ability to thrive in hostile environments, which includes host-imposed metal starvation. We recently showed that E. faecalis evades iron starvation using five dedicated transporters that collectively scavenge iron from host tissues and other iron-deprived conditions. Interestingly, heme, the most abundant source of iron in the human body, supported growth of a strain lacking all five iron transporters (Δ5Fe). To release iron from heme, many bacterial pathogens utilize heme oxygenase enzymes to degrade the porphyrin that coordinates the iron ion of heme. Although E. faecalis lacks these enzymes, bioinformatics revealed a potential ortholog of the anaerobic heme-degrading enzyme anaerobilin synthase, found in Escherichia coli and a few other Gram-negative bacteria. Here, we demonstrated that deletion of OG1RF_RS05575 in E. faecalis (ΔRS05575) or in the Δ5Fe background (Δ5FeΔRS05575) led to intracellular heme accumulation and hypersensitivity under anaerobic conditions, suggesting RS05575 encodes an anaerobilin synthase, the first of its kind described in Gram-positive bacteria. Additionally, deletion of RS05575, either alone or in the Δ5Fe background, impaired E. faecalis colonization in the mouse gastrointestinal tract and virulence in mouse peritonitis and rabbit infective endocarditis models. These results reveal that RS05575 is responsible for anaerobic degradation of heme and identify this relatively new enzyme class as a novel factor in bacterial pathogenesis. Findings from this study are likely to have broad implications, as homologues of RS05575 are found in other Gram-positive facultative anaerobes.
Collapse
Affiliation(s)
- Debra N. Brunson
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Hader Manzer
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alexander B. Smith
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Microbial Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Todd Kitten
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| |
Collapse
|
14
|
Colautti J, Kelly SD, Whitney JC. Specialized killing across the domains of life by the type VI secretion systems of Pseudomonas aeruginosa. Biochem J 2025; 482:1-15. [PMID: 39774785 DOI: 10.1042/bcj20230240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Type VI secretion systems (T6SSs) are widespread bacterial protein secretion machines that inject toxic effector proteins into nearby cells, thus facilitating both bacterial competition and virulence. Pseudomonas aeruginosa encodes three evolutionarily distinct T6SSs that each export a unique repertoire of effectors. Owing to its genetic tractability, P. aeruginosa has served as a model organism for molecular studies of the T6SS. However, P. aeruginosa is also an opportunistic pathogen and ubiquitous environmental organism that thrives in a wide range of habitats. Consequently, studies of its T6SSs have provided insight into the role these systems play in the diverse lifestyles of this species. In this review, we discuss recent advances in understanding the regulation and toxin repertoire of each of the three P. aeruginosa T6SSs. We argue that these T6SSs serve distinct physiological functions; whereas one system is a dedicated defensive weapon for interbacterial antagonism, the other two T6SSs appear to function primarily during infection. We find support for this model in examining the signalling pathways that control the expression of each T6SS and co-ordinate the activity of these systems with other P. aeruginosa behaviours. Furthermore, we discuss the effector repertoires of each T6SS and connect the mechanisms by which these effectors kill target cells to the ecological conditions under which their respective systems are activated. Understanding the T6SSs of P. aeruginosa in the context of this organism's diverse lifestyles will provide insight into the physiological roles these secretion systems play in this remarkably adaptable bacterium.
Collapse
Affiliation(s)
- Jake Colautti
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Steven D Kelly
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
15
|
Schalk IJ. Bacterial siderophores: diversity, uptake pathways and applications. Nat Rev Microbiol 2025; 23:24-40. [PMID: 39251840 DOI: 10.1038/s41579-024-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 09/11/2024]
Abstract
Iron is an essential nutrient for the growth, survival and virulence of almost all bacteria. To access iron, many bacteria produce siderophores, molecules with a high affinity for iron. Research has highlighted substantial diversity in the chemical structure of siderophores produced by bacteria, as well as remarkable variety in the molecular mechanisms involved in strategies for acquiring iron through these molecules. The metal-chelating properties of siderophores, characterized by their high affinity for iron and ability to chelate numerous other metals (albeit with lower affinity compared with iron), have also generated interest in diverse fields. Siderophores find applications in the environment, such as in bioremediation and agriculture, in which emerging and innovative strategies are being developed to address pollution and enhance nutrient availability for plants. Moreover, in medicine, siderophores could be used as a tool for novel antimicrobial therapies and medical imaging, as well as in haemochromatosis, thalassemia or cancer treatments. This Review offers insights into the diversity of siderophores, highlighting their potential applications in environmental and medical contexts.
Collapse
|
16
|
Liu C, Han Y, Ma Q. Structural analysis of the siderophore-interacting protein from Vibrio anguillarum and its implications in classification of Vibrio homologs. Biochem Biophys Res Commun 2024; 739:150979. [PMID: 39549339 DOI: 10.1016/j.bbrc.2024.150979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Bacteria secrete siderophores to sequester the scarce iron in the environments, then the iron is transported into the cell in a siderophore-complexed form, which can be released by siderophore-interacting protein (SIP). Vibrio species comprise an array of serious pathogens, whose iron releasing process by SIP remains poorly understood. Herein, we report the high-resolution (1.2 Å) structure of Vibrio anguillarum SIP (VaSIP) in complex with FAD, representing the first structure of Vibrio SIP. VaSIP consists of a FAD-bound β-barrel domain and a Rossmann-fold domain connected by a linker, like other subgroup I SIPs. FAD is bound to the inter-domain cavity by aromatic stacking and hydrogen bonding interactions. Structural comparison indicated a modified NAD(P)H-binding motif (DxTA-EVL-GE) for subgroup I SIPs. The putative siderophore-binding pocket of VaSIP contains three lysines to form the basic triad to bind siderophore. Phylogenetic analysis shows Vibrio SIPs are mainly divided into two clades, represented by VaSIP and Vibrio cholerae ViuB, respectively. Interestingly, the two clades adopt distinct siderophore-binding basic triads, suggesting functional divergence among Vibrio SIPs. Our results shed light on the structural and phylogenetic characteristics of Vibrio SIPs, providing molecular basis for understanding Vibrio iron metabolism and designing anti-Vibrio drugs.
Collapse
Affiliation(s)
- Changshui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Yu Han
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qingjun Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Sergunin A, Vávra J, Pašek D, Shimizu T, Martínková M. Multiple roles for iron in microbial physiology: Bacterial oxygen sensing by heme-based sensors. Adv Microb Physiol 2024; 86:257-329. [PMID: 40404271 DOI: 10.1016/bs.ampbs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Bacterial oxygen sensing embodies a fascinating interplay between evolutionary pressures and physiological adaptations to varying oxygen levels. Throughout Earth's history, the composition of the atmosphere has undergone significant changes, from anoxic conditions to the gradual accumulation of oxygen. In response, microbial life has evolved diverse strategies to cope with these shifting oxygen levels, ranging from anaerobic metabolism to oxygen-dependent pathways crucial for energy production and cellular processes typical for eukaryotic, multicellular organisms. Of particular interest is the role of iron in bacterial oxygen sensing systems, which play pivotal roles in adaptation to changing oxygen levels. Only free iron, heme-iron, and non-heme iron directly sense oxygen. These iron-containing proteins, such as heme-containing sensors and iron-sulfur cluster proteins, regulate the expression of genes and activity of enzymes involved in oxidative stress defence, virulence, and biofilm formation, highlighting their significance in bacterial pathogenesis and environmental adaptation. Special attention in the review is paid to the mechanisms of oxygen detection and signal transduction from heme-containing sensing to functional domains in the case of bacterial heme-based oxygen sensors.
Collapse
Affiliation(s)
- Artur Sergunin
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov), Prague, Czech Republic
| | - Jakub Vávra
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov), Prague, Czech Republic; National Radiation Protection Institute, Bartoskova, Prague, Czech Republic
| | - Dominik Pašek
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov), Prague, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov), Prague, Czech Republic
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov), Prague, Czech Republic.
| |
Collapse
|
18
|
Shankar G, Akhter Y. Stealing survival: Iron acquisition strategies of Mycobacteriumtuberculosis. Biochimie 2024; 227:37-60. [PMID: 38901792 DOI: 10.1016/j.biochi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), faces iron scarcity within the host due to immune defenses. This review explores the importance of iron for Mtb and its strategies to overcome iron restriction. We discuss how the host limits iron as an innate immune response and how Mtb utilizes various iron acquisition systems, particularly the siderophore-mediated pathway. The review illustrates the structure and biosynthesis of mycobactin, a key siderophore in Mtb, and the regulation of its production. We explore the potential of targeting siderophore biosynthesis and uptake as a novel therapeutic approach for TB. Finally, we summarize current knowledge on Mtb's iron acquisition and highlight promising directions for future research to exploit this pathway for developing new TB interventions.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| |
Collapse
|
19
|
Xie TQ, Yan X, Yan JH, Yu YJ, Liu XH, Feng J, Liu CJ, Zhang XZ. Construction of Iron-Scavenging Hydrogel via Thiol-Ene Click Chemistry for Antibiotic-Free Treatment of Bacterial Wound Infection. Adv Healthc Mater 2024; 13:e2401118. [PMID: 38979865 DOI: 10.1002/adhm.202401118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Bacteria, especially drug-resistant strains, can quickly cause wound infections, leading to delayed healing and fatal risk in clinics. With the growing need for alternative antibacterial approaches that rely less on antibiotics or eliminate their use altogether, a novel antibacterial hydrogel named Ovtgel is developed. Ovtgel is formulated by chemically crosslinking thiol-modified ovotransferrin (Ovt), a member of the transferrin family found in egg white, with olefin-modified agarose through thiol-ene click chemistry. Ovt is designed to sequester ferric ions essential for bacterial survival and protect wound tissues from damages caused by the reactive oxygen species (ROS) generated in Fenton reactions. Experimental data have shown that Ovtgel significantly enhances wound healing by inhibiting bacterial growth and shielding tissues from ROS-induced harms. Unlike traditional antibiotics, Ovtgel targets essential trace elements required for bacterial survival in the host environment, preventing the development of drug resistance in pathogenic bacteria. Ovtgel exhibits excellent biocompatibility due to the homology of Ovt to mammalian transferrin. This hydrogel has the potential to serve as an effective antibiotic-free solution for combating bacterial infections.
Collapse
Affiliation(s)
- Tian-Qiu Xie
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiao Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jian-Hua Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yun-Jian Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chuan-Jun Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
20
|
Miao ZY, Zhang XY, Long HZ, Lin J, Chen WM. Hybrids of 3-Hydroxypyridin-4(1 H)-ones and Long-Chain 4-Aminoquinolines as Potent Biofilm Inhibitors of Pseudomonas aeruginosa Potentiate Tobramycin and Polymyxin B Activity. J Med Chem 2024; 67:16835-16857. [PMID: 39287005 DOI: 10.1021/acs.jmedchem.4c01760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The biofilm formation of Pseudomonas aeruginosa involves multiple complex regulatory pathways; thus, blocking a single pathway is unlikely to achieve the desired antibiofilm efficacy. Herein, a series of hybrids of 3-hydroxypyridin-4(1H)-ones and long-chain 4-aminoquinolines were synthesized as biofilm inhibitors against P. aeruginosa based on a multipathway antibiofilm strategy. Comprehensive structure-activity relationship studies identified compound 30b as the most valuable antagonist, which significantly inhibited P. aeruginosa biofilm formation (IC50 = 5.8 μM) and various virulence phenotypes. Mechanistic studies revealed that 30b not only targets the three quorum sensing systems but also strongly induces iron deficiency signals in P. aeruginosa. Furthermore, 30b demonstrated a favorable in vitro and in vivo safety profile. Moreover, 30b specifically enhanced the antibacterial activity of tobramycin and polymyxin B in in vitro and in vivo combination therapy. Overall, these results highlight the potential of 30b as a novel anti-infective candidate for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Zhi-Ying Miao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Xiao-Yi Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Hao-Zhong Long
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Jing Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Wei-Min Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| |
Collapse
|
21
|
de Assis ASJ, Pegoraro GM, Duarte ICS, Delforno TP. Gallium: a decisive "Trojan Horse" against microorganisms. Antonie Van Leeuwenhoek 2024; 118:3. [PMID: 39269546 DOI: 10.1007/s10482-024-02015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Controlling multidrug-resistant microorganisms (MRM) has a long history with the extensive and inappropriate use of antibiotics. At the cost of these drugs being scarce, new possibilities have to be explored to inhibit the growth of microorganisms. Thus, metallic compounds have shown to be promising as a viable alternative to contain pathogens resistant to conventional antimicrobials. Gallium (Ga3+) can be highlighted, which is an antimicrobial agent capable of disrupting the essential activities of microorganisms, such as metabolism, cellular respiration and DNA synthesis. It was observed that this occurs due to the similar properties between Ga3+ and iron (Fe3+), which is a fundamental ion for the correct functioning of bacterial activities. The mimetic effect performed by Ga3+ prevents iron transporters from distinguishing both ions and results in the substitution of Fe3+ for Ga3+ and in adverse metabolic disturbances in rapidly growing cells. This review focuses on analyzing the development of research involving Ga3+, elucidating the intracellular incorporation of the "Trojan Horse", summarizing the mechanism of interaction between gallium and iron and comparing the most recent and broad-spectrum studies using gallium-based compounds with antimicrobial scope.
Collapse
Affiliation(s)
- Amanda Stefanie Jabur de Assis
- Center of Science and Technology for Sustainability (CCTS), Laboratory of Applied Microbiology, Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, km 110, Itinga,, Sorocaba, SP, 18052-780, Brazil.
| | - Guilherme Manassés Pegoraro
- Center of Science and Technology for Sustainability (CCTS), Laboratory of Applied Microbiology, Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, km 110, Itinga,, Sorocaba, SP, 18052-780, Brazil
| | - Iolanda Cristina Silveira Duarte
- Center of Human and Biological Sciences (CCHB), Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, km 110, Sorocaba, SP, Brazil
| | | |
Collapse
|
22
|
Hesse E, Luján AM, O'Brien S, Newbury A, McAvoy T, Soria Pascual J, Bayer F, Hodgson DJ, Buckling A. Parallel ecological and evolutionary responses to selection in a natural bacterial community. Proc Natl Acad Sci U S A 2024; 121:e2403577121. [PMID: 39190353 PMCID: PMC11388356 DOI: 10.1073/pnas.2403577121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Evolution can occur over ecological timescales, suggesting a potentially important role for rapid evolution in shaping community trait distributions. However, evidence of concordant eco-evolutionary dynamics often comes from in vitro studies of highly simplified communities, and measures of ecological and evolutionary dynamics are rarely directly comparable. Here, we quantified how ecological species sorting and rapid evolution simultaneously shape community trait distributions by tracking within- and between-species changes in a key trait in a complex bacterial community. We focused on the production of siderophores; bacteria use these costly secreted metabolites to scavenge poorly soluble iron and to detoxify environments polluted with toxic nonferrous metals. We found that responses to copper-imposed selection within and between species were ultimately the same-intermediate siderophore levels were favored-and occurred over similar timescales. Despite being a social trait, this level of siderophore production was selected regardless of whether species evolved in isolation or in a community context. Our study suggests that evolutionary selection can play a pivotal role in shaping community trait distributions within natural, highly complex, bacterial communities. Furthermore, trait evolution may not always be qualitatively affected by interactions with other community members.
Collapse
Affiliation(s)
- Elze Hesse
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Adela M Luján
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Católica de Córdoba, Córdoba X5016DHK, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba (UCC), Córdoba X5004ASK, Argentina
| | - Siobhan O'Brien
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Arthur Newbury
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Terence McAvoy
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Jesica Soria Pascual
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Florian Bayer
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - David J Hodgson
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Angus Buckling
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
23
|
Choi KM, Kim KH, Kang G, Woo WS, Sohn MY, Son HJ, Park CI. Ferredoxin: A novel antimicrobial peptide derived from the black scraper (Thamnaconus modestus). FISH & SHELLFISH IMMUNOLOGY 2024; 152:109796. [PMID: 39074519 DOI: 10.1016/j.fsi.2024.109796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 07/31/2024]
Abstract
Ferredoxin (FDX) is a highly conserved iron-sulfur protein that participates in redox reactions and plays an important role as an electron transport protein in biological processes. However, its function in marine fish remains unclear. We identified two ferrodoxin proteins, FDX1 and FDX2, from black scraper (Thamnaconus modestus) to confirm their genetic structures and expression profiles and to investigate their antimicrobial activity properties by fabricating them with antimicrobial peptides based on sequences. The two TmFDXs mRNAs were most abundant in peripheral blood leukocytes of healthy T. modestus. After artificial infection with Vibrio anguillarum, a major pathogen of T. modestus, TmFDX1 mRNA was significantly upregulated in the gills, heart, intestines, kidneys, liver, and spleen, but was consistently downregulated in the brain. The expression levels of TmFDX2 mRNA were significantly upregulated in the heart, intestines, kidneys, liver, and spleen; however, no significant changes in expression were observed in the brain or gills. Based on the 2Fe-2S ferredoxin-type iron-sulfur-binding domain sequence, two peptides (pFDX1 and pFDX2) were synthesized. The bactericidal effect, biofilm formation inhibition, and gDNA-binding activity of these peptides were investigated. These findings highlight the potential as a natural peptide candidate for TmFDXs.
Collapse
Affiliation(s)
- Kwang-Min Choi
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, Republic of Korea; Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Kyung-Ho Kim
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Gyoungsik Kang
- Department of Aquatic Life Medicine, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Won-Sik Woo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Min-Young Sohn
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Ha-Jeong Son
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
24
|
Luo VC, Peczuh MW. Location, Location, Location: Establishing Design Principles for New Antibacterials from Ferric Siderophore Transport Systems. Molecules 2024; 29:3889. [PMID: 39202968 PMCID: PMC11357680 DOI: 10.3390/molecules29163889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
This review strives to assemble a set of molecular design principles that enables the delivery of antibiotic warheads to Gram-negative bacterial targets (ESKAPE pathogens) using iron-chelating siderophores, known as the Trojan Horse strategy for antibiotic development. Principles are derived along two main lines. First, archetypical siderophores and their conjugates are used as case studies for native iron transport. They enable the consideration of the correspondence of iron transport and antibacterial target location. The second line of study charts the rationale behind the clinical antibiotic cefiderocol. It illustrates the potential versatility for the design of new Trojan Horse-based antibiotics. Themes such as matching the warhead to a location where the siderophore delivers its cargo (i.e., periplasm vs. cytoplasm), whether or not a cleavable linker is required, and the relevance of cheaters to the effectiveness and selectivity of new conjugates will be explored. The effort to articulate rules has identified gaps in the current understanding of iron transport pathways and suggests directions for new investigations.
Collapse
Affiliation(s)
| | - Mark W. Peczuh
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, CT 06269, USA;
| |
Collapse
|
25
|
Liu M, Zou J, Li H, Zhou Y, Lv Q, Cheng Q, Liu J, Wang L, Wang Z. Orally administrated liquid metal agents for inflammation-targeted alleviation of inflammatory bowel diseases. SCIENCE ADVANCES 2024; 10:eadn1745. [PMID: 38996026 PMCID: PMC11244529 DOI: 10.1126/sciadv.adn1745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Rapid drug clearance and off-target effects of therapeutic drugs can induce low bioavailability and systemic side effects and gravely restrict the therapeutic effects of inflammatory bowel diseases (IBDs). Here, we propose an amplifying targeting strategy based on orally administered gallium (Ga)-based liquid metal (LM) nano-agents to efficiently eliminate reactive oxygen and nitrogen species (RONS) and modulate the dysregulated microbiome for remission of IBDs. Taking advantage of the favorable adhesive activity and coordination ability of polyphenol structure, epigallocatechin gallate (EGCG) is applied to encapsulate LM to construct the formulations (LM-EGCG). After adhering to the inflamed tissue, EGCG not only eliminates RONS but also captures the dissociated Ga to form EGCG-Ga complexes for enhancive accumulation. The detained composites protect the intestinal barrier and modulate gut microbiota for restoring the disordered enteral microenvironment, thereby relieving IBDs. Unexpectedly, LM-EGCG markedly decreases the Escherichia_Shigella populations while augmenting the abundance of Akkermansia and Bifidobacterium, resulting in favorable therapeutic effects against the dextran sulfate sodium-induced colitis.
Collapse
Affiliation(s)
- Miaodeng Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Jinhui Zou
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heli Li
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunfan Zhou
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiying Lv
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Qian Cheng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Jia Liu
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Zheng Wang
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
26
|
Erban T, Sopko B. Understanding bacterial pathogen diversity: A proteogenomic analysis and use of an array of genome assemblies to identify novel virulence factors of the honey bee bacterial pathogen Paenibacillus larvae. Proteomics 2024; 24:e2300280. [PMID: 38742951 DOI: 10.1002/pmic.202300280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
Mass spectrometry proteomics data are typically evaluated against publicly available annotated sequences, but the proteogenomics approach is a useful alternative. A single genome is commonly utilized in custom proteomic and proteogenomic data analysis. We pose the question of whether utilizing numerous different genome assemblies in a search database would be beneficial. We reanalyzed raw data from the exoprotein fraction of four reference Enterobacterial Repetitive Intergenic Consensus (ERIC) I-IV genotypes of the honey bee bacterial pathogen Paenibacillus larvae and evaluated them against three reference databases (from NCBI-protein, RefSeq, and UniProt) together with an array of protein sequences generated by six-frame direct translation of 15 genome assemblies from GenBank. The wide search yielded 453 protein hits/groups, which UpSet analysis categorized into 50 groups based on the success of protein identification by the 18 database components. Nine hits that were not identified by a unique peptide were not considered for marker selection, which discarded the only protein that was not identified by the reference databases. We propose that the variability in successful identifications between genome assemblies is useful for marker mining. The results suggest that various strains of P. larvae can exhibit specific traits that set them apart from the established genotypes ERIC I-V.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Bruno Sopko
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| |
Collapse
|
27
|
Kircheva N, Dobrev S, Petkova V, Yocheva L, Angelova S, Dudev T. In Silico Analysis of the Ga 3+/Fe 3+ Competition for Binding the Iron-Scavenging Siderophores of P. aeruginosa-Implementation of Three Gallium-Based Complexes in the "Trojan Horse" Antibacterial Strategy. Biomolecules 2024; 14:487. [PMID: 38672503 PMCID: PMC11048449 DOI: 10.3390/biom14040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The emergence of multidrug-resistant (MDR) microorganisms combined with the ever-draining antibiotic pipeline poses a disturbing and immensely growing public health challenge that requires a multidisciplinary approach and the application of novel therapies aimed at unconventional targets and/or applying innovative drug formulations. Hence, bacterial iron acquisition systems and bacterial Fe2+/3+-containing enzymes have been identified as a plausible target of great potential. The intriguing "Trojan horse" approach deprives microorganisms from the essential iron. Recently, gallium's potential in medicine as an iron mimicry species has attracted vast attention. Different Ga3+ formulations exhibit diverse effects upon entering the cell and thus supposedly have multiple targets. The aim of the current study is to specifically distinguish characteristics of great significance in regard to the initial gallium-based complex, allowing the alien cation to effectively compete with the native ferric ion for binding the siderophores pyochelin and pyoverdine secreted by the bacterium P. aeruginosa. Therefore, three gallium-based formulations were taken into consideration: the first-generation gallium nitrate, Ga(NO3)3, metabolized to Ga3+-hydrated forms, the second-generation gallium maltolate (tris(3-hydroxy-2-methyl-4-pyronato)gallium), and the experimentally proven Ga carrier in the bloodstream-the protein transferrin. We employed a reliable in silico approach based on DFT computations in order to understand the underlying biochemical processes that govern the Ga3+/Fe3+ rivalry for binding the two bacterial siderophores.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.D.); (V.P.); (S.A.)
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.D.); (V.P.); (S.A.)
| | - Vladislava Petkova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.D.); (V.P.); (S.A.)
| | - Lyubima Yocheva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.D.); (V.P.); (S.A.)
- University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| |
Collapse
|
28
|
Chakkour M, Hammoud Z, Farhat S, El Roz A, Ezzeddine Z, Ghssein G. Overview of Proteus mirabilis pathogenicity and virulence. Insights into the role of metals. Front Microbiol 2024; 15:1383618. [PMID: 38646633 PMCID: PMC11026637 DOI: 10.3389/fmicb.2024.1383618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
Proteus mirabilis is a Gram-negative bacterium with exclusive molecular and biological features. It is a versatile pathogen acclaimed for its distinct urease production, swarming behavior, and rapid multicellular activity. Clinically, P. mirabilis is a frequent pathogen of the human urinary system where it causes urinary tract infections (UTIs) and catheter-associated urinary tract infections (CAUTIs). This review explores the epidemiology, risk factors, clinical manifestations, and treatment of P. mirabilis infections, emphasizing its association with UTIs. The bacterium's genome analysis revealed the presence of resistance genes against commonly used antibiotics, an antibiotic-resistant phenotype that poses a serious clinical challenge. Particularly, the emergence of extended-spectrum β-lactamases (ESBLs) and carbapenemases resistant P. mirabilis strains. On a molecular level, P. mirabilis possesses a wide array of virulence factors including the production of fimbriae, urease, hemolysins, metallophores, and biofilm formation. This review thoroughly tackles a substantial gap in understanding the role of metallophores in shaping the virulence factors of P. mirabilis virulence. Siderophores, iron metal chelating and transporting metallophores, particularly contribute to the complex pathogenic strategies, displaying a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Mohamed Chakkour
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Zeinab Hammoud
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Solay Farhat
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Ali El Roz
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde, Lebanon
| | - Zeinab Ezzeddine
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde, Lebanon
| | - Ghassan Ghssein
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde, Lebanon
| |
Collapse
|
29
|
Tanabe T, Mitome H, Miyamoto K, Akira K, Tsujibo H, Tomoo K, Nagaoka K, Funahashi T. Analysis of the vibrioferrin biosynthetic pathway of Vibrio parahaemolyticus. Biometals 2024; 37:507-517. [PMID: 38133869 DOI: 10.1007/s10534-023-00566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023]
Abstract
Siderophores are small-molecule iron chelators produced by many microorganisms that capture and uptake iron from the natural environment and host. Their biosynthesis in microorganisms is generally performed using non-ribosomal peptide synthetase (NRPS) or NRPS-independent siderophore (NIS) enzymes. Vibrio parahaemolyticus secretes its cognate siderophore vibrioferrin under iron-starvation conditions. Vibrioferrin is a dehydrated condensate composed of α-ketoglutarate, L-alanine, aminoethanol, and citrate, and pvsA (the gene encoding the ATP-grasp enzyme), pvsB (the gene encoding the NIS enzyme), pvsD (the gene encoding the NIS enzyme), and pvsE (the gene encoding decarboxylase) are engaged in its biosynthesis. Here, we elucidated the biosynthetic pathway of vibrioferrin through in vitro enzymatic reactions using recombinant PvsA, PvsB, PvsD, and PvsE proteins. We also found that PvsD condenses L-serine and citrate to generate O-citrylserine, and that PvsE decarboxylates O-citrylserine to form O-citrylaminoethanol. In addition, we showed that O-citrylaminoethanol is converted to alanyl-O-citrylaminoethanol by amidification with L-Ala by PvsA and that alanyl-O-citrylaminoethanol is then converted to vibrioferrin by amidification with α-ketoglutarate by PvsB.
Collapse
Affiliation(s)
- Tomotaka Tanabe
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan.
| | - Hidemichi Mitome
- Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Katsushiro Miyamoto
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Kazuki Akira
- Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Hiroshi Tsujibo
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Koji Tomoo
- Department of Physical Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Kenjiro Nagaoka
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Tatsuya Funahashi
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| |
Collapse
|
30
|
Kalalah AA, Koenig SSK, Bono JL, Bosilevac JM, Eppinger M. Pathogenomes and virulence profiles of representative big six non-O157 serogroup Shiga toxin-producing Escherichia coli. Front Microbiol 2024; 15:1364026. [PMID: 38562479 PMCID: PMC10982417 DOI: 10.3389/fmicb.2024.1364026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) of non-O157:H7 serotypes are responsible for global and widespread human food-borne disease. Among these serogroups, O26, O45, O103, O111, O121, and O145 account for the majority of clinical infections and are colloquially referred to as the "Big Six." The "Big Six" strain panel we sequenced and analyzed in this study are reference type cultures comprised of six strains representing each of the non-O157 STEC serogroups curated and distributed by the American Type Culture Collection (ATCC) as a resource to the research community under panel number ATCC MP-9. The application of long- and short-read hybrid sequencing yielded closed chromosomes and a total of 14 plasmids of diverse functions. Through high-resolution comparative phylogenomics, we cataloged the shared and strain-specific virulence and resistance gene content and established the close relationship of serogroup O26 and O103 strains featuring flagellar H-type 11. Virulence phenotyping revealed statistically significant differences in the Stx-production capabilities that we found to be correlated to the strain's individual stx-status. Among the carried Stx1a, Stx2a, and Stx2d phages, the Stx2a phage is by far the most responsive upon RecA-mediated phage mobilization, and in consequence, stx2a + isolates produced the highest-level of toxin in this panel. The availability of high-quality closed genomes for this "Big Six" reference set, including carried plasmids, along with the recorded genomic virulence profiles and Stx-production phenotypes will provide a valuable foundation to further explore the plasticity in evolutionary trajectories in these emerging non-O157 STEC lineages, which are major culprits of human food-borne disease.
Collapse
Affiliation(s)
- Anwar A. Kalalah
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - James L. Bono
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| |
Collapse
|
31
|
Xi W, Zhang X, Zhu X, Wang J, Xue H, Pan H. Distribution patterns and influential factors of pathogenic bacteria in freshwater aquaculture sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16028-16047. [PMID: 38308166 DOI: 10.1007/s11356-024-31897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Pathogenic bacteria, the major causative agents of aquaculture diseases, are a serious impediment to the aquaculture industry. However, the bioinformatics of pathogenic bacteria and virulence factors (VFs) in sediments, an important component of freshwater aquaculture ecosystems, are not well characterized. In this study, 20 sediment samples were collected from fish pond sediments (FPS), shrimp field sediments (SFS), fish pond sediment control (FPSC), and shrimp field sediment control (SFSC). Molecular biological information was obtained on a total of 173 pathogenic bacteria, 1093 virulence factors (VFs), and 8475 mobile genetic elements (MGEs) from these samples. The results indicated that (1) aquaculture patterns and sediment characteristics can affect the distribution of pathogenic bacteria. According to the results of the Kruskal-Wallis H test, except for Mycobacterium gilvum, there were significant differences (P < 0.05) among the four sediment types in the average abundance of major pathogenic bacteria (top 30 in abundance), and the average abundance of major pathogenic bacteria in the four sediment types followed the following pattern: FPS > SFS > FPSC > SFSC. (2) Pathogenic bacteria are able to implement a variety of complex pathogenic mechanisms such as adhesion, invasion, immune evasion, and metabolic regulation in the host because they carry a variety of VFs such as type IV pili, HSI-I, Alginate, Colibactin, and Capsule. According to the primary classification of the Virulence Factor Database (VFDB), the abundance of VFs in all four types of sediments showed the following pattern: offensive VFs > non-specific VFs > defensive VFs > regulation of virulence-related genes. (3) Total organic carbon (TOC), total phosphorus (TP), available phosphorus (AP), nitrite, and nitrate were mostly only weakly positively correlated with the major pathogenic bacteria and could promote the growth of pathogenic bacteria to some extent, whereas ammonia was significantly positively correlated with most of the major pathogenic bacteria and could play an important role in promoting the growth and reproduction of pathogenic bacteria. (4) Meanwhile, there was also a significant positive correlation between CAZyme genes and major pathogenic bacteria (0.62 ≤ R ≤ 0.89, P < 0.05). This suggests that these pathogenic bacteria could be the main carriers of CAZyme genes and, to some extent, gained a higher level of metabolic activity by degrading organic matter in the sediments to maintain their competitive advantage. (5) Worryingly, the results of correlation analyses indicated that MGEs in aquaculture sediments could play an important role in the spread of VFs (R = 0.82, P < 0.01), and in particular, plasmids (R = 0.75, P < 0.01) and integrative and conjugative elements (ICEs, R = 0.65, P < 0.05) could be these major vectors of VFs. The results of this study contribute to a comprehensive understanding of the health of freshwater aquaculture sediments and provide a scientific basis for aquaculture management and conservation.
Collapse
Affiliation(s)
- Wenxiang Xi
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Xun Zhang
- China Coal Mine Construction Group Co., LTD, Hefei, 230071, Anhui, China
| | - Xianbin Zhu
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Jiaming Wang
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Han Xue
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Hongzhong Pan
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China.
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China.
| |
Collapse
|
32
|
Chen B, Wang Y, Xie F, Liu H, Dai H. Identification of siderophores blocking infection of Pseudomonas aeruginosa from Kitasatospora sp. LS1784. J Antibiot (Tokyo) 2024; 77:4-12. [PMID: 37950064 DOI: 10.1038/s41429-023-00675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Siderophores are low-molecular-mass, high-affinity chelators of Fe3+ ions that are critical for the survival of bacteria in ferric deficient environment. Exogenous siderophores are potential bacteriostat by disrupting the iron-uptake process of pathogens. In our previous work to discover siderophores, strain LS1784 was previously predicted to produce new catecholate-type siderophores by genome analysis but no compounds were obtained. In this work, we reclassified train LS1784 as Kitasatospora sp. LS1784 according to the genome phylogenetic analysis. Then guided by CAS colorimetric assay and molecular network analysis, four catecholate-type siderophores were isolated from the ethyl acetate extract of LS1784 which were coincident with the initial prediction. Notably, compounds 2 and 3 were reported for the first time. Following activity screening, compound 3 showed sufficient anti-Pseudomonas aeruginosa-infection activity in Caenorhabditis elegans infection models, whereas all compounds exhibited no antimicrobial activity. These results indicated that compound 3 can enhance the survival of P. aeruginosa infecting C. elegans by reducing the virulence of P. aeruginosa rather than killing P. aeruginosa, which aligns with our previous findings. Moreover, these findings highlight the effectiveness of comprehensive approaches, including genome mining, CAS (Chromeazurol S) testing, and molecular network (MN) analysis, in identifying potential siderophores, thereby expanding the siderophores arsenal in bacteria for the development of anti-infective drugs.
Collapse
Affiliation(s)
- Baosong Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichenxi Road, Chaoyang District, Beijing, 100101, China
| | - Yue Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feng Xie
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichenxi Road, Chaoyang District, Beijing, 100101, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichenxi Road, Chaoyang District, Beijing, 100101, China.
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichenxi Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
33
|
Miyamoto K. [New Drug Discovery Targeting Iron in Bacterial Infectious Diseases]. YAKUGAKU ZASSHI 2024; 144:633-641. [PMID: 38825472 DOI: 10.1248/yakushi.23-00197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Iron is necessary for all living organisms, and bacteria that cause infections in human hosts also need ferrous ions for their growth and proliferation. In the human body, most ferric ions (Fe3+) are tightly bound to iron-binding proteins such as hemoglobin, transferrin, lactoferrin, and ferritin. Pathogenic bacteria express highly specific iron uptake systems, including siderophores and specific receptors. Most bacteria secrete siderophores, which are low-molecular weight metal-chelating agents, to capture Fe3+ outside cell. Siderophores are mainly classified as either catecholate or hydroxamate. Vibrio vulnificus, a Gram-negative pathogenic bacterium, is responsible for serious infections in humans and requires iron for growth. A clinical isolate, V. vulnificus M2799, secretes a catecholate siderophore, vulnibactin, that captures ferric ions from the environment. In our study, we generated deletion mutants of the genes encoding proteins involved in the vulnibactin mediated iron-utilization system, such as ferric-vulnibactin receptor protein (VuuA), periplasmic ferric-vulnibactin binding protein (FatB), ferric-vulnibactin reductase (VuuB), and isochorismate synthase (ICS). ICS and VuuA are required under low-iron conditions for ferric-utilization in M2799, but the alternative proteins FatB and VuuB can function as a periplasmic binding protein and a ferric-chelate reductase, respectively. VatD, which functions as ferric-hydroxamate siderophores periplasmic binding protein, was shown to participate in the ferric-vulnibactin uptake system in the absence of FatB. Furthermore, the ferric-hydroxamate siderophore reductase IutB was observed to participate in ferric-vulnibactin reduction in the absence of VuuB. We propose that ferric-siderophore periplasmic binding proteins and ferric-chelate reductases represent potential targets for drug discovery in the context of infectious diseases.
Collapse
Affiliation(s)
- Katsushiro Miyamoto
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| |
Collapse
|
34
|
Timofeeva AM, Galyamova MR, Sedykh SE. Plant Growth-Promoting Soil Bacteria: Nitrogen Fixation, Phosphate Solubilization, Siderophore Production, and Other Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:4074. [PMID: 38140401 PMCID: PMC10748132 DOI: 10.3390/plants12244074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
This review covers the literature data on plant growth-promoting bacteria in soil, which can fix atmospheric nitrogen, solubilize phosphates, produce and secrete siderophores, and may exhibit several different behaviors simultaneously. We discuss perspectives for creating bacterial consortia and introducing them into the soil to increase crop productivity in agrosystems. The application of rhizosphere bacteria-which are capable of fixing nitrogen, solubilizing organic and inorganic phosphates, and secreting siderophores, as well as their consortia-has been demonstrated to meet the objectives of sustainable agriculture, such as increasing soil fertility and crop yields. The combining of plant growth-promoting bacteria with mineral fertilizers is a crucial trend that allows for a reduction in fertilizer use and is beneficial for crop production.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Maria R. Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
35
|
Srivastava NK, Mukherjee S, Mishra VN. One advantageous reflection of iron metabolism in context of normal physiology and pathological phases. Clin Nutr ESPEN 2023; 58:277-294. [PMID: 38057018 DOI: 10.1016/j.clnesp.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/05/2023] [Accepted: 10/09/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE (BACKGROUND) The presented review is an updating of Iron metabolism in context of normal physiology and pathological phases. Iron is one of the vital elements in humans and associated into proteins as a component of heme (e.g. hemoglobin, myoglobin, cytochromes proteins, myeloperoxidase, nitric oxide synthetases), iron sulfur clusters (e.g. respiratory complexes I-III, coenzyme Q10, mitochondrial aconitase, DNA primase), or other functional groups (e.g. hypoxia inducible factor prolyl hydroxylases). All these entire iron-containing proteins ar e needed for vital cellular and organismal functions together with oxygen transport, mitochondrial respiration, intermediary and xenobiotic metabolism, nucleic acid replication and repair, host defense, and cell signaling. METHODS (METABOLIC STRATEGIES) Cells have developed metabolic strategies to import and employ iron safely. Regulatory process of iron uptake, storage, intracellular trafficking and utilization is vital for the maintenance of cellular iron homeostasis. Cellular iron utilization and intracellular iron trafficking pathways are not well established and very little knowledge about this. The predominant organs, which are associated in the metabolism of iron, are intestine, liver, bone marrow and spleen. Iron is conserved, recycled and stored. The reduced bioavailability of iron in humans has developed extremely efficient mechanisms for iron conservation. Prominently, the losses of iron cannot considerably enhance through physiologic mechanisms, even if iron intake and stores become excessive. Loss of iron is balanced or maintained from dietary sources. RESULTS (OUTCOMES) Numerous physiological abnormalities are associated with impaired iron metabolism. These abnormalities are appeared in the form of several diseases. There are duodenal ulcer, inflammatory bowel disease, sideroblastic anaemia, congenital dyserythropoietic anemias and low-grade myelodysplastic syndromes. Hereditary hemochromatosis and anaemia are two chronic diseases, which are responsible for disturbing the iron metabolism in various tissues, including the spleen and the intestine. Impairment in hepatic hepcidin synthesis is responsible for chronic liver disease, which is grounding from alcoholism or viral hepatitis. This condition directs to iron overload that can cause further hepatic damage. Iron has important role in several infectious diseases are tuberculosis, malaria trypanosomatid diseases and acquired immunodeficiency syndrome (AIDS). Iron is also associated with Systemic lupus erythematosus [SLE], cancer, Alzheimer's disease (AD) and post-traumatic epilepsy. CONCLUSION Recently, numerous research studies are gradually more dedicated in the field of iron metabolism, but a number of burning questions are still waiting for answer. Cellular iron utilization and intracellular iron trafficking pathways are not well established and very little knowledge about this. Increased information of the physiology of iron homeostasis will support considerate of the pathology of iron disorders and also make available the support to advance treatment.
Collapse
Affiliation(s)
- Niraj Kumar Srivastava
- School of Sciences (SOS), Indira Gandhi National Open University (IGNOU), New Delhi, 110068, India.
| | | | - Vijaya Nath Mishra
- Department of Neurology, Institute of Medical Sciences (IMS), Banaras Hindu University (BHU), Varanasi, 221005, UP, India
| |
Collapse
|
36
|
Rodríguez-Pedrouzo A, Cisneros-Sureda J, Martínez-Matamoros D, Rey-Varela D, Balado M, Rodríguez J, Lemos ML, Folgueira M, Jiménez C. Detection of Aeromonas salmonicida subsp. salmonicida infection in zebrafish by labelling bacteria with GFP and a fluorescent probe based on the siderophore amonabactin. Microb Pathog 2023; 185:106394. [PMID: 37858632 DOI: 10.1016/j.micpath.2023.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Zebrafish (Danio rerio) is an excellent model to study bacterial infections in fish and their treatment. We used zebrafish as a model of infection for Aeromonas salmonicida subsp. salmonicida (hereinafter A. salmonicida), the causative agent of fish furunculosis. The infection process of A. salmonicida was studied by immersion of zebrafish larvae in 2 different doses of the bacteria and the fish mortality was monitored for three days. The bacterium caused a high mortality (65 %) in zebrafish larvae only when they were exposed to a high bacterial concentration (107 bacterial cells/mL). To evaluate the use of fluorescence microscopy to follow A. salmonicida infection in vivo, two different fluorescent strains generated by labeling an A. salmonicida strain with either, the green fluorescent protein (GFP), or with a previously reported siderophore amonabactin-sulforhodamine B conjugate (AMB-SRB), were used. The distribution of both labeled bacterial strains in the larvae tissues was evaluated by conventional and confocal fluorescence microscopy. The fluorescent signal showed a greater intensity with the GFP-labeled bacteria, so it could be observed using conventional fluorescence microscopy. Since the AMB-SRB labeled bacteria showed a weaker signal, the larvae were imaged using a laser scanning confocal microscope after 48 h of exposure to the bacteria. Both fluorescent signals were mainly observed in the larvae digestive tract, suggesting that this is the main colonization route of zebrafish for waterborne A. salmonicida. This is the first report of the use of a siderophore-fluorophore conjugate to study a bacterial infection in fish. The use of a siderophore-fluorophore conjugate has the advantage that it is a specific marker and that does not require genetic manipulation of the bacteria.
Collapse
Affiliation(s)
- A Rodríguez-Pedrouzo
- CICA - Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - J Cisneros-Sureda
- CICA - Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - D Martínez-Matamoros
- CICA - Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - D Rey-Varela
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M Balado
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - J Rodríguez
- CICA - Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain.
| | - M L Lemos
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - M Folgueira
- CICA - Centro Interdisciplinar de Química e Bioloxía e Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain.
| | - C Jiménez
- CICA - Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain.
| |
Collapse
|
37
|
Hubert T, Madec M, Schalk IJ. Experimental and computational methods to highlight behavioural variations in TonB-dependent transporter expression in Pseudomonas aeruginosa versus siderophore concentration. Sci Rep 2023; 13:20015. [PMID: 37974013 PMCID: PMC10654771 DOI: 10.1038/s41598-023-46585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Iron is a key nutrient for bacterial growth. The source can be either heme or siderophore-Fe complexes. Siderophores are small molecules synthesized by bacteria to scavenge iron from the bacterial environment. The pathogen Pseudomonas aeruginosa can express at least 15 different iron uptake pathways and all but one involve a TonB-dependent transporter (TBDT) for the uptake of iron across the outer membrane. Little is known about how bacteria modulate and adapt the expression of their different iron import pathways according to their environment. Here, we have developed fluorescent reporters between the promoter region of genes encoding a TBDT and the fluorescent reporter mCherry. With these constructs, we can follow the expression of TBDTs under different growth conditions. Mathematical modelling of the data obtained showed the transcription and expression of the gene encoding the TBDT PfeA to have a sigmoidal shape, whereas it was logarithmic for the TBDT gene foxA. Maximum transcription for pfeA was reached in the presence of 3 µM enterobactin, the siderophore recognized by PfeA, whereas the maximum was not reached for foxA with 100 µM nocardamine, the siderophore of FoxA.
Collapse
Affiliation(s)
- Thibaut Hubert
- CNRS, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
- ICube Laboratory, CNRS, UMR 7357, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
| | - Morgan Madec
- ICube Laboratory, CNRS, UMR 7357, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France.
| | - Isabelle J Schalk
- CNRS, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France.
| |
Collapse
|
38
|
Pijuan J, Moreno DF, Yahya G, Moisa M, Ul Haq I, Krukiewicz K, Mosbah R, Metwally K, Cavalu S. Regulatory and pathogenic mechanisms in response to iron deficiency and excess in fungi. Microb Biotechnol 2023; 16:2053-2071. [PMID: 37804207 PMCID: PMC10616654 DOI: 10.1111/1751-7915.14346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
Iron is an essential element for all eukaryote organisms because of its redox properties, which are important for many biological processes such as DNA synthesis, mitochondrial respiration, oxygen transport, lipid, and carbon metabolism. For this reason, living organisms have developed different strategies and mechanisms to optimally regulate iron acquisition, transport, storage, and uptake in different environmental responses. Moreover, iron plays an essential role during microbial infections. Saccharomyces cerevisiae has been of key importance for decrypting iron homeostasis and regulation mechanisms in eukaryotes. Specifically, the transcription factors Aft1/Aft2 and Yap5 regulate the expression of genes to control iron metabolism in response to its deficiency or excess, adapting to the cell's iron requirements and its availability in the environment. We also review which iron-related virulence factors have the most common fungal human pathogens (Aspergillus fumigatus, Cryptococcus neoformans, and Candida albicans). These factors are essential for adaptation in different host niches during pathogenesis, including different fungal-specific iron-uptake mechanisms. While being necessary for virulence, they provide hope for developing novel antifungal treatments, which are currently scarce and usually toxic for patients. In this review, we provide a compilation of the current knowledge about the metabolic response to iron deficiency and excess in fungi.
Collapse
Affiliation(s)
- Jordi Pijuan
- Laboratory of Neurogenetics and Molecular MedicineInstitut de Recerca Sant Joan de DéuBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIIIMadridSpain
| | - David F. Moreno
- Department of Molecular Cellular and Developmental BiologyYale UniversityNew HavenConnecticutUSA
- Systems Biology InstituteYale UniversityWest HavenConnecticutUSA
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of PharmacyZagazig UniversityAl SharqiaEgypt
| | - Mihaela Moisa
- Faculty of Medicine and PharmacyUniversity of OradeaOradeaRomania
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Polymers TechnologySilesian University of TechnologyGliwicePoland
- Programa de Pós‐graduação em Inovação TecnológicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Polymers TechnologySilesian University of TechnologyGliwicePoland
- Centre for Organic and Nanohybrid ElectronicsSilesian University of TechnologyGliwicePoland
| | - Rasha Mosbah
- Infection Control UnitHospitals of Zagazig UniversityZagazigEgypt
| | - Kamel Metwally
- Department of Medicinal Chemistry, Faculty of PharmacyUniversity of TabukTabukSaudi Arabia
- Department of Pharmaceutical Medicinal Chemistry, Faculty of PharmacyZagazig UniversityZagazigEgypt
| | - Simona Cavalu
- Faculty of Medicine and PharmacyUniversity of OradeaOradeaRomania
| |
Collapse
|
39
|
Takemura C, Senuma W, Tsuzuki M, Terazawa Y, Inoue K, Sato M, Kiba A, Ohnishi K, Kai K, Hikichi Y. The transcription regulator ChpA affects the global transcriptome including quorum sensing-dependent genes in Ralstonia pseudosolanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2023; 24:1370-1384. [PMID: 37452484 PMCID: PMC10576176 DOI: 10.1111/mpp.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
The gram-negative plant-pathogenic β-proteobacterium Ralstonia pseudosolanacearum strain OE1-1 produces methyl 3-hydroxymyristate as a quorum sensing (QS) signal through methyltransferase PhcB and senses the chemical via the sensor histidine kinase PhcS. This leads to activation of the LysR family transcription regulator PhcA, which regulates the genes (QS-dependent genes) responsible for QS-dependent phenotypes, including virulence. The transcription regulator ChpA, which possesses a response regulator receiver domain and also a hybrid sensor histidine kinase/response regulator phosphore-acceptor domain but lacks a DNA-binding domain, is reportedly involved in QS-dependent biofilm formation and virulence of R. pseudosolanacearum strain GMI1000. To explore the function of ChpA in QS of OE1-1, we generated a chpA-deletion mutant (ΔchpA) and revealed that the chpA deletion leads to significantly altered QS-dependent phenotypes. Furthermore, ΔchpA exhibited a loss in its infectivity in xylem vessels of tomato plant roots, losing virulence on tomato plants, similar to the phcA-deletion mutant (ΔphcA). Transcriptome analysis showed that the transcript levels of phcB, phcQ, phcR, and phcA in ΔchpA were comparable to those in OE1-1. However, the transcript levels of 89.9% and 88.9% of positively and negatively QS-dependent genes, respectively, were significantly altered in ΔchpA compared with OE1-1. Furthermore, the transcript levels of these genes in ΔchpA were positively correlated with those in ΔphcA. Together, our results suggest that ChpA is involved in the regulation of these QS-dependent genes, thereby contributing to the behaviour in host plant roots and virulence of OE1-1.
Collapse
Affiliation(s)
- Chika Takemura
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Kochi Prefectural Agriculture Research CenterNankokuJapan
| | - Wakana Senuma
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Central Research Institute, Ishihara Sangyo Kaisha, Ltd.KusatsuJapan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Yuki Terazawa
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Kumamoto Experimental Station, Sumika Agrotech Co., Ltd.KikuchiJapan
| | - Kanako Inoue
- Research Center for Ultra‐High Voltage Electron MicroscopyOsaka UniversityIbarakiJapan
- Present address:
Division of Biological Sciences Plant Immunity, Nara Institute of Science and TechnologyIkomaJapan
| | - Masanao Sato
- Graduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Akinori Kiba
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kenji Kai
- Graduate School of AgricultureOsaka Metropolitan UniversitySakaiJapan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| |
Collapse
|
40
|
Kutsuna R, Miyoshi-Akiyama T, Muramatsu Y, Hamada M, Tomida J, Kikuchi K, Kawamura Y. Siderophore-producing Pantoea ferrattrahens sp. nov. isolated from a clinical specimen and Pantoea ferramans sp. nov. isolated from soil at the bottom of a pond. Microbiol Immunol 2023; 67:480-489. [PMID: 37740512 DOI: 10.1111/1348-0421.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 09/24/2023]
Abstract
Two Gram-negative facultative anaerobes were isolated from a sepsis patient with pancreatic cancer (strain PAGU 2156T ) and soil at the bottom of a pond (strain PAGU 2198T ), respectively. These two strains formed haloes around the colonies on chrome azurol S agar plates, indicating the production of siderophores. Two isolates assigned to the genus Pantoea based on the 16S rRNA gene were differentiated from established species by using polymorphic taxonomies. Phylogenetic analysis using four housekeeping genes (gyrB, rpoB, atpD, and infB) showed that strain PAGU 2156T is closely related to Pantoea cypripedii LMG 2657T (89.9%) or Pantoea septica LMG 5345T (95.7%). Meanwhile, strain PAGU 2198T formed a single clade with Pantoea rodasii DSM 26611T (93.6%) and Pantoea rwandensis DSM 105076T (93.3%). The average nucleotide identity values obtained from the draft genome assembly showed ≤90.2% between strain PAGU 2156T and closely related species and ≤81.5% between strain PAGU 2198T and closely related species. Based on various phenotypes, biochemical properties, and whole-cell fatty acid composition compared with related species, it was concluded that each strain should be classified as a new species of the genus Pantoea. In this manuscript, Pantoea ferrattrahens sp. nov. and Pantoea ferramans sp. nov. with strain PAGU 2156T (=NBRC 115930T = CCUG 76757T ) and strain PAGU 2198T (=NBRC 114265T = CCUG 75151T ) are proposed as each type strain.
Collapse
Affiliation(s)
- Ryo Kutsuna
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku, Japan
| | - Yuki Muramatsu
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), Kisarazu, Japan
| | - Moriyuki Hamada
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), Kisarazu, Japan
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Ken Kikuchi
- Department of Infectious Diseases, Tokyo Women's Medical University, Shinjuku, Japan
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
41
|
Alamri H, Chen G, Huang SD. Development of Biocompatible Ga 2(HPO 4) 3 Nanoparticles as an Antimicrobial Agent with Improved Ga Resistance Development Profile against Pseudomonas aeruginosa. Antibiotics (Basel) 2023; 12:1578. [PMID: 37998780 PMCID: PMC10668710 DOI: 10.3390/antibiotics12111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 11/25/2023] Open
Abstract
Ga(III) can mimic Fe(III) in the biological system due to its similarities in charge and ionic radius to those of Fe(III) and can exhibit antimicrobial activity by disrupting the acquisition and metabolism of Fe in bacterial cells. For example, Ga(NO3)3 has been proven to be effective in treating chronic lung infections by Pseudomonas aeruginosa (P. aeruginosa) in cystic fibrosis patients in a recent phase II clinical trial. However, Ga(NO3)3 is an ionic compound that can hydrolyze to form insoluble hydroxides at physiological pH, which not only reduces its bioavailability but also causes potential renal toxicity when it is used as a systemic drug. Although complexion with suitable chelating agents has offered a varying degree of success in alleviating the hydrolysis of Ga(III), the use of nanotechnology to deliver this metallic ion should constitute an ultimate solution to all the above-mentioned problems. Thus far, the development of Ga-based nanomaterials as metalloantibiotics is an underexploited area of research. We have developed two different synthetic routes for the preparation of biocompatible Ga2(HPO4)3 NPs and shown that both the PVP- or PEG-coated Ga2(HPO4)3 NPs exhibit potent antimicrobial activity against P. aeruginosa. More importantly, such polymer-coated NPs do not show any sign of Ga-resistant phenotype development after 30 passes, in sharp contrast to Ga(NO3)3, which can rapidly develop Ga-resistant phenotypes of P. aeruginosa, indicating the potential of using Ga2(HPO4)3 NPs a new antimicrobial agent in place of Ga(NO3)3.
Collapse
Affiliation(s)
- Huda Alamri
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA;
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Guanyu Chen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA;
| | - Songping D. Huang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA;
| |
Collapse
|
42
|
Ullah I, Lang M. Key players in the regulation of iron homeostasis at the host-pathogen interface. Front Immunol 2023; 14:1279826. [PMID: 37942316 PMCID: PMC10627961 DOI: 10.3389/fimmu.2023.1279826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Iron plays a crucial role in the biochemistry and development of nearly all living organisms. Iron starvation of pathogens during infection is a striking feature utilized by a host to quell infection. In mammals and some other animals, iron is essentially obtained from diet and recycled from erythrocytes. Free iron is cytotoxic and is readily available to invading pathogens. During infection, most pathogens utilize host iron for their survival. Therefore, to ensure limited free iron, the host's natural system denies this metal in a process termed nutritional immunity. In this fierce battle for iron, hosts win over some pathogens, but others have evolved mechanisms to overdrive the host barriers. Production of siderophores, heme iron thievery, and direct binding of transferrin and lactoferrin to bacterial receptors are some of the pathogens' successful strategies which are highlighted in this review. The intricate interplay between hosts and pathogens in iron alteration systems is crucial for understanding host defense mechanisms and pathogen virulence. This review aims to elucidate the current understanding of host and pathogen iron alteration systems and propose future research directions to enhance our knowledge in this field.
Collapse
Affiliation(s)
- Inam Ullah
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
43
|
Prigent I, Mullon C. The molding of intraspecific trait variation by selection under ecological inheritance. Evolution 2023; 77:2144-2161. [PMID: 37459126 DOI: 10.1093/evolut/qpad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 10/05/2023]
Abstract
Organisms continuously modify their environment, often impacting the fitness of future conspecifics due to ecological inheritance. When this inheritance is biased toward kin, selection favors modifications that increase the fitness of downstream individuals. How such selection shapes trait variation within populations remains poorly understood. Using mathematical modelling, we investigate the coevolution of multiple traits in a group-structured population when these traits affect the group environment, which is then bequeathed to future generations. We examine when such coevolution favors polymorphism as well as the resulting associations among traits. We find in particular that two traits become associated when one trait affects the environment while the other influences the likelihood that future kin experience this environment. To illustrate this, we model the coevolution of (a) the attack rate on a local renewable resource, which deteriorates environmental conditions, with (b) dispersal between groups, which reduces the likelihood that kin suffers from such deterioration. We show this often leads to the emergence of two highly differentiated morphs: one that readily disperses and depletes local resources, and another that maintains these resources and tends to remain philopatric. More broadly, we suggest that ecological inheritance can contribute to phenotypic diversity and lead to complex polymorphism.
Collapse
Affiliation(s)
- Iris Prigent
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Charles Mullon
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Mansouri M, Sadeghpoor M, Jahangiri A, Ghaini MH, Rasooli I. Enhanced immunoprotection against Acinetobacter baumannii infection: Synergistic effects of Bap and BauA in a murine model. Immunol Lett 2023; 262:18-26. [PMID: 37652189 DOI: 10.1016/j.imlet.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND The rise of multi-drug resistant Acinetobacter baumannii poses a grave threat to hospital settings, resulting in increased mortality rates and garnering global attention. The formation of biofilms facilitated by biofilm-associated protein (Bap) and the iron absorption capabilities mediated by Baumannii acinetobactin utilization A (BauA) contribute to the persistence and survival of multidrug-resistant strains. In this study, we aimed to investigate the potential of disrupting the function of BauA and Bap simultaneously as a strategy for controlling A. baumannii. METHODS Recombinant Bap and BauA were expressed, purified, and subcutaneously administered individually and in combination to BALB/c mice. Subsequently, mice were intraperitoneally challenged with A. baumannii, and the bacterial load and tissue damage in the spleen, lung, and liver were assessed. Serum samples were evaluated to determine antibody titers in surviving mice. RESULTS Specific IgG antibodies were significantly increased. A combination of the antigens resulted in enhanced titer of specific IgGs in comparison to either BauA or Bap alone. The antibodies remained stable over a seven-month period. The combination of Bap and BauA exhibited superior immunoprotection against A. baumannii infection compared to individual administration, resulting in a further reduction in bacterial load in the liver, spleen, and lungs. The histopathological analysis demonstrated successful protection of the tissues against A. baumannii-induced damage upon administration of the two immunogens. CONCLUSIONS The combination of Bap and BauA has the potential to target a broader range of A. baumannii strains, including those expressing either Bap or BauA, thereby increasing its efficacy against a diverse array of strains.
Collapse
Affiliation(s)
| | | | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems biology and poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran; Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| |
Collapse
|
45
|
Taya T, Teruyama F, Gojo S. Host-directed therapy for bacterial infections -Modulation of the phagolysosome pathway. Front Immunol 2023; 14:1227467. [PMID: 37841276 PMCID: PMC10570837 DOI: 10.3389/fimmu.2023.1227467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Bacterial infections still impose a significant burden on humanity, even though antimicrobial agents have long since been developed. In addition to individual severe infections, the f fatality rate of sepsis remains high, and the threat of antimicrobial-resistant bacteria grows with time, putting us at inferiority. Although tremendous resources have been devoted to the development of antimicrobial agents, we have yet to recover from the lost ground we have been driven into. Looking back at the evolution of treatment for cancer, which, like infectious diseases, has the similarity that host immunity eliminates the lesion, the development of drugs to eliminate the tumor itself has shifted from a single-minded focus on drug development to the establishment of a treatment strategy in which the de-suppression of host immunity is another pillar of treatment. In infectious diseases, on the other hand, the development of therapies that strengthen and support the immune system has only just begun. Among innate immunity, the first line of defense that bacteria encounter after invading the host, the molecular mechanisms of the phagolysosome pathway, which begins with phagocytosis to fusion with lysosome, have been elucidated in detail. Bacteria have a large number of strategies to escape and survive the pathway. Although the full picture is still unfathomable, the molecular mechanisms have been elucidated for some of them, providing sufficient clues for intervention. In this article, we review the host defense mechanisms and bacterial evasion mechanisms and discuss the possibility of host-directed therapy for bacterial infection by intervening in the phagolysosome pathway.
Collapse
Affiliation(s)
- Toshihiko Taya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumiya Teruyama
- Pharmacology Research Department, Tokyo New Drug Research Laboratories, Kowa Company, Ltd., Tokyo, Japan
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
46
|
Olshvang E, Fritsch S, Scholtyssek OC, Schalk IJ, Metzler-Nolte N. Vectorization via Siderophores Increases Antibacterial Activity of K(RW) 3 Peptides against Pseudomonas aeruginosa. Chemistry 2023; 29:e202300364. [PMID: 37541431 DOI: 10.1002/chem.202300364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 08/06/2023]
Abstract
A series of new conjugates comprised from a small synthetic antimicrobial peptide (AMP) and a siderophore-type vector component was designed and tested for activity on P. aeruginosa PAO1 and several genetically modified strains. As AMP, the well-established arginine-tryptophane combination K(RW)3 (P1) was chosen with an added lysine for siderophore attachment. This peptide is easy to prepare, modify, and possesses good anti-bacterial activity. On the vector part, we examined several moieties: (i) the natural siderophore deferoxamine (DFO); (ii) bidentate iron chelators based on the hydroxamate building block (4 a-c) ; (iii) the non-siderophore chelators deferasirox (DFX) and deferiprone-carboxylate (DFP-COOH). All conjugates were prepared by solid phase synthesis techniques and fully characterized by HPLC and mass spectrometry (including HR-MS). 55 Fe uptake assays indicate a receptor-mediated uptake for 4 a-c, DFP-COOH and DFO, which is dependent on the outer membrane transporter FoxA in the case of DFO. All conjugates showed increased antibacterial activity against P. aeruginosa compared to the parent peptide P1 alone when investigated in iron-depleted medium. MIC values were as low as 2 μM (for P1-DFP) on wild type P. aeruginosa. The activity of P1-DFO and P1-DFP was even better on genetically mutated strains unable to produce siderophores (down to 0.5 μM). Although the DFX vector on its own was not able to transport iron inside the bacterial cell as shown by 55 Fe uptake studies, the P1-DFX conjugate had excellent antibacterial activity compared to P1 (2 μM, and as low as 0.25 μM on a receptor-deficient strain unable to produce siderophores), suggesting that the conjugates were indeed recognized and internalized by an (unknown) transporter. Control experiments with an equimolar mixture of P1 and DFX confirm that the observed activity is intrinsic to vectorization. This work thus demonstrates the power of linking small AMPs covalently to siderophores for a new class of Trojan Horse antibiotics, with P1-DFP and P1-DFX being the most potent conjugates.
Collapse
Affiliation(s)
- Evgenia Olshvang
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Sarah Fritsch
- UMR7242, ESBS, University of Strasbourg, 67413, Illkirch, Strasbourg, France
- UMR7242, ESBS, CNRS, 67413, Illkirch, Strasbourg, France
| | - Oliver C Scholtyssek
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Isabelle J Schalk
- UMR7242, ESBS, University of Strasbourg, 67413, Illkirch, Strasbourg, France
- UMR7242, ESBS, CNRS, 67413, Illkirch, Strasbourg, France
| | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
47
|
Avendaño-Herrera R, Saldarriaga-Córdoba M, Echeverría-Bugueño M, Irgang R. In vitro phenotypic evidence for the utilization of iron from different sources and siderophores production in the fish pathogen Tenacibaculum dicentrarchi. JOURNAL OF FISH DISEASES 2023; 46:1001-1012. [PMID: 37309564 DOI: 10.1111/jfd.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
Iron uptake during infection is an essential pathogenicity factor of several bacteria, including Tenacibaculum dicentrarchi, an emerging pathogen for salmonid and red conger eel (Genypterus chilensis) farms in Chile. Iron-related protein families were recently found in eight T. dicentrarchi genomes, but biological studies have not yet confirmed functions. The investigation reported herein clearly demonstrated for the first time that T. dicentrarchi possesses different systems for iron acquisition-one involving the synthesis of siderophores and another allowing for the utilization of heme groups. Using 38 isolates of T. dicentrarchi and the type strain CECT 7612T , all strains grew in the presence of the chelating agent 2.2'-dipyridyl (from 50 to 150 μM) and produced siderophores on chrome azurol S plates. Furthermore, 37 of the 38 T. dicentrarchi isolates used at least four of the five iron sources (i.e. ammonium iron citrate, ferrous sulfate, iron chloride hexahydrate, haemoglobin and/or hemin) when added to iron-deficient media, although the cell yield was less when using hemin. Twelve isolates grew in the presence of hemin, and 10 of them used only 100 μM. Under iron-supplemented or iron-restricted conditions, whole cells of three isolates and the type strain showed at least one membrane protein induced in iron-limiting conditions (c.a. 37.9 kDa), regardless of the isolation host. All phenotypic results were confirmed by in-silico genomic T. dicentrarchi analysis. Future studies will aim to establish a relationship between iron uptake ability and virulence in T. dicentrarchi through in vivo assays.
Collapse
Affiliation(s)
- Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Mónica Saldarriaga-Córdoba
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Macarena Echeverría-Bugueño
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Rute Irgang
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| |
Collapse
|
48
|
Blagodarov SV, Zheltukhina GA, Nebolsin VE. Iron metabolism in the cell as a target in the development of potential antimicrobial and antiviral agents. BIOMEDITSINSKAIA KHIMIIA 2023; 69:199-218. [PMID: 37705481 DOI: 10.18097/pbmc20236904199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The search and creation of innovative antimicrobial drugs, acting against resistant and multiresistant strains of bacteria and fungi, are one of the most important tasks of modern bioorganic chemistry and pharmaceuticals. Since iron is essential for the vital activity of almost all organisms, including mammals and bacteria, the proteins involved in its metabolism can serve as potential targets in the development of new promising antimicrobial agents. Such targets include endogenous mammalian biomolecules, heme oxygenases, siderophores, protein 24p3, as well as bacterial heme oxygenases and siderophores. Other proteins that are responsible for the delivery of iron to cells and its balance between bacteria and the host organism also attract certain particular interest. The review summarizes data on the development of inhibitors and inducers (activators) of heme oxygenases, selective for mammals and bacteria, and considers the characteristic features of their mechanisms of action and structure. Based on the reviewed literature data, it was concluded that the use of hemin, the most powerful hemooxygenase inducer, and its derivatives as potential antimicrobial and antiviral agents, in particular against COVID-19 and other dangerous infections, would be a promising approach. In this case, an important role is attributed to the products of hemin degradation formed by heme oxygenases in vitro and in vivo. Certain attention has been paid to the data on the antimicrobial action of iron-free protoporphyrinates, namely complexes with Co, Ga, Zn, Mn, their advantages and disadvantages compared to hemin. Modification of the well-known antibiotic ceftazidime with a siderophore molecule increased its effectiveness against resistant bacteria.
Collapse
Affiliation(s)
- S V Blagodarov
- MIREA - Russian Technological University (MITHT), Moscow, Russia; LLC "Pharmenterprises", Moscow, Russia
| | - G A Zheltukhina
- MIREA - Russian Technological University (MITHT), Moscow, Russia; LLC "Pharmenterprises", Moscow, Russia
| | | |
Collapse
|
49
|
Debeljak P, Bayer B, Sun Y, Herndl GJ, Obernosterer I. Seasonal patterns in microbial carbon and iron transporter expression in the Southern Ocean. MICROBIOME 2023; 11:187. [PMID: 37596690 PMCID: PMC10439609 DOI: 10.1186/s40168-023-01600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/16/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Heterotrophic microbes in the Southern Ocean are challenged by the double constraint of low concentrations of organic carbon (C) and iron (Fe). These essential elements are tightly coupled in cellular processes; however, the prokaryotic requirements of C and Fe under varying environmental settings remain poorly studied. Here, we used a combination of metatranscriptomics and metaproteomics to identify prokaryotic membrane transporters for organic substrates and Fe in naturally iron-fertilized and high-nutrient, low-chlorophyll waters of the Southern Ocean during spring and late summer. RESULTS Pronounced differences in membrane transporter profiles between seasons were observed at both sites, both at the transcript and protein level. When specific compound classes were considered, the two approaches revealed different patterns. At the transcript level, seasonal patterns were only observed for subsets of genes belonging to each transporter category. At the protein level, membrane transporters of organic compounds were relatively more abundant in spring as compared to summer, while the opposite pattern was observed for Fe transporters. These observations suggest an enhanced requirement for organic C in early spring and for Fe in late summer. Mapping transcripts and proteins to 50 metagenomic-assembled genomes revealed distinct taxon-specific seasonal differences pointing to potentially opportunistic clades, such as Pseudomonadales and Nitrincolaceae, and groups with a more restricted repertoire of expressed transporters, such as Alphaproteobacteria and Flavobacteriaceae. CONCLUSION The combined investigations of C and Fe membrane transporters suggest seasonal changes in the microbial requirements of these elements under different productivity regimes. The taxon-specific acquisition strategies of different forms of C and Fe illustrate how diverse microbes could shape transcript and protein expression profiles at the community level at different seasons. Our results on the C- and Fe-related metabolic capabilities of microbial taxa provide new insights into their potential role in the cycling of C and Fe under varying nutrient regimes in the Southern Ocean. Video Abstract.
Collapse
Affiliation(s)
- Pavla Debeljak
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, Sorbonne Université, Banyuls/Mer, F-66650, France.
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria.
- SupBiotech, Villejuif, France.
| | - Barbara Bayer
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria
| | - Ying Sun
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, Sorbonne Université, Banyuls/Mer, F-66650, France
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria
- Department of Marine Microbiology and Biogeochemistry, NIOZ (Royal Netherlands Institute for Sea Research), Den Burg, 1790 AB, The Netherlands
- Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria
| | - Ingrid Obernosterer
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, Sorbonne Université, Banyuls/Mer, F-66650, France
| |
Collapse
|
50
|
Pike VL, Stevens EJ, Griffin AS, King KC. Within- and between-host dynamics of producer and non-producer pathogens. Parasitology 2023; 150:805-812. [PMID: 37394480 PMCID: PMC10478067 DOI: 10.1017/s0031182023000586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 07/04/2023]
Abstract
For infections to be maintained in a population, pathogens must compete to colonize hosts and transmit between them. We use an experimental approach to investigate within-and-between host dynamics using the pathogen Pseudomonas aeruginosa and the animal host Caenorhabditis elegans. Within-host interactions can involve the production of goods that are beneficial to all pathogens in the local environment but susceptible to exploitation by non-producers. We exposed the nematode host to ‘producer’ and two ‘non-producer’ bacterial strains (specifically for siderophore production and quorum sensing), in single infections and coinfections, to investigate within-host colonization. Subsequently, we introduced infected nematodes to pathogen-naive populations to allow natural transmission between hosts. We find that producer pathogens are consistently better at colonizing hosts and transmitting between them than non-producers during coinfection and single infection. Non-producers were poor at colonizing hosts and between-host transmission, even when coinfecting with producers. Understanding pathogen dynamics across these multiple levels will ultimately help us predict and control the spread of infections, as well as contribute to explanations for the persistence of cooperative genotypes in natural populations.
Collapse
Affiliation(s)
| | | | | | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|