1
|
Westerbeke FHM, Attaye I, Rios‐Morales M, Nieuwdorp M. Glycaemic sugar metabolism and the gut microbiota: past, present and future. FEBS J 2025; 292:1421-1436. [PMID: 39359099 PMCID: PMC11927047 DOI: 10.1111/febs.17293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/02/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Non-communicable diseases (NCDs), such as type 2 diabetes (T2D) and metabolic dysfunction-associated fatty liver disease, have reached epidemic proportions worldwide. The global increase in dietary sugar consumption, which is largely attributed to the production and widespread use of cheap alternatives such as high-fructose corn syrup, is a major driving factor of NCDs. Therefore, a comprehensive understanding of sugar metabolism and its impact on host health is imperative to rise to the challenge of reducing NCDs. Notably, fructose appears to exert more pronounced deleterious effects than glucose, as hepatic fructose metabolism induces de novo lipogenesis and insulin resistance through distinct mechanisms. Furthermore, recent studies have demonstrated an intricate relationship between sugar metabolism and the small intestinal microbiota (SIM). In contrast to the beneficial role of colonic microbiota in complex carbohydrate metabolism, sugar metabolism by the SIM appears to be less beneficial to the host as it can generate toxic metabolites. These fermentation products can serve as a substrate for fatty acid synthesis, imposing negative health effects on the host. Nevertheless, due to the challenging accessibility of the small intestine, our knowledge of the SIM and its involvement in sugar metabolism remains limited. This review presents an overview of the current knowledge in this field along with implications for future research, ultimately offering potential therapeutic avenues for addressing NCDs.
Collapse
Affiliation(s)
- Florine H. M. Westerbeke
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Ilias Attaye
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Melany Rios‐Morales
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| |
Collapse
|
2
|
Köpsel M, Kostka T, Rodriguez-Werner M, Esatbeyoglu T. The influence of fruit juice extracts on glucose intestinal transporters and antioxidant genes in a Caco-2 and HT29-MTX co-culture cell system. Food Funct 2025; 16:1423-1441. [PMID: 39895307 DOI: 10.1039/d4fo03950e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In recent years, the interest of consumers in fruit juice extracts as nutraceuticals has increased. Fruits, especially red berries, contain valuable bioactive compounds such as polyphenols. Polyphenols are often associated with anti-oxidant, anti-inflammatory, anti-diabetic, anti-cancer, cardioprotective and gastroprotective properties. However, the relationship between the various effects of fruit juice extracts and their influence on the permeability of the intestinal barrier, as well as their influence on glucose transport across the intestinal membrane, is not known. Therefore, in the present study, anthocyanins and copigments were obtained from 11 fruit juice extracts by XAD7 column chromatography and characterized their health-promoting effects, as well as their influence on the intestinal membrane. Chokeberry, pomegranate and blueberry extracts showed the highest antioxidant activity, but showed incomplete regeneration of the intestinal membrane upon treatment-induced higher permeability. This may depended on the high anthocyanin level of these extracts. Treatments with gojiberry extract, elderberry extract and the copigment fraction of apple achieved the best suitable regeneration of the intestinal barrier. The transcription of epithelial glucose transporters GLUT1 und GLUT2 as well as for the oxidative stress genes catalase (CAT) and superoxide dismutase (SOD) were most effectively reduced by chokeberry extract. To sum up, fruit juice extracts possess high antioxidant potentials and can reduce the expression of antioxidant enzymes and glucose transporters in colon cells. While the glucose uptake may be reduced, the intestinal permeability is increased, which varies due to the extract composition. Therefore, fruit juice extracts need to be fractionated and characterized in more detail to identify the health-beneficial compounds.
Collapse
Affiliation(s)
- Magdalena Köpsel
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| | - Tina Kostka
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Strasse 52, 67663 Kaiserslautern, Germany.
| | | | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| |
Collapse
|
3
|
Tutas J, Tolve M, Özer-Yildiz E, Ickert L, Klein I, Silverman Q, Liebsch F, Dethloff F, Giavalisco P, Endepols H, Georgomanolis T, Neumaier B, Drzezga A, Schwarz G, Thorens B, Gatto G, Frezza C, Kononenko NL. Autophagy regulator ATG5 preserves cerebellar function by safeguarding its glycolytic activity. Nat Metab 2025; 7:297-320. [PMID: 39815080 PMCID: PMC11860254 DOI: 10.1038/s42255-024-01196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/29/2024] [Indexed: 01/18/2025]
Abstract
Dysfunctions in autophagy, a cellular mechanism for breaking down components within lysosomes, often lead to neurodegeneration. The specific mechanisms underlying neuronal vulnerability due to autophagy dysfunction remain elusive. Here we show that autophagy contributes to cerebellar Purkinje cell (PC) survival by safeguarding their glycolytic activity. Outside the conventional housekeeping role, autophagy is also involved in the ATG5-mediated regulation of glucose transporter 2 (GLUT2) levels during cerebellar maturation. Autophagy-deficient PCs exhibit GLUT2 accumulation on the plasma membrane, along with increased glucose uptake and alterations in glycolysis. We identify lysophosphatidic acid and serine as glycolytic intermediates that trigger PC death and demonstrate that the deletion of GLUT2 in ATG5-deficient mice mitigates PC neurodegeneration and rescues their ataxic gait. Taken together, this work reveals a mechanism for regulating GLUT2 levels in neurons and provides insights into the neuroprotective role of autophagy by controlling glucose homeostasis in the brain.
Collapse
Affiliation(s)
- Janine Tutas
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Marianna Tolve
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ebru Özer-Yildiz
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lotte Ickert
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ines Klein
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Quinn Silverman
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Filip Liebsch
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | | | | | - Heike Endepols
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
| | | | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
| | - Alexander Drzezga
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Molecular Organization of the Brain (INM-2), Jülich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bernard Thorens
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Graziana Gatto
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Christian Frezza
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- CECAD Excellence Center, University of Cologne, Cologne, Germany.
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Barik SK, Sengupta S, Arya R, Kumar S, Kim JJ, Chaurasia R. Dietary Polyphenols as Potential Therapeutic Agents in Type 2 Diabetes Management: Advances and Opportunities. Adv Nutr 2025; 16:100346. [PMID: 39566886 PMCID: PMC11697556 DOI: 10.1016/j.advnut.2024.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024] Open
Abstract
Poor dietary intake or unhealthy lifestyle contributes to various health disorders, including postprandial hyperglycemia, leading to type 2 diabetes mellitus (T2DM). Reduction of postprandial glucose concentrations through diet is a key strategy for preventing and managing T2DM. Thus, it is essential to understand how dietary components affect glycemic regulation. Dietary polyphenols (DPs), such as anthocyanins and other phenolics found in various fruits and vegetables, are often recommended for their potential health benefits, although their systemic effectiveness is subject to ongoing debate. Therefore, this review assesses the current and historical evidence of DPs bioactivities, which regulate crucial metabolic markers to lower postprandial hyperglycemia. Significant bioactivities such as modulation of glucose transporters, activation of AMP kinase, and regulation of incretins are discussed, along with prospects for diet-induced therapeutics to prevent the onset of T2DM.
Collapse
Affiliation(s)
- Sisir Kumar Barik
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom.
| | - Srabasti Sengupta
- Department of Neurosurgery, University of Florida, Gainesville, Florida, 32608, United States
| | - Rakesh Arya
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea
| | - Surendra Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Jong Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea.
| | - Reetika Chaurasia
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06510, United States.
| |
Collapse
|
5
|
Liu Y, Jia Y, Wu Y, Zhang H, Ren F, Zhou S. Review on mechanisms of hypoglycemic effects of compounds from highland barley and potential applications. Food Funct 2024; 15:11365-11382. [PMID: 39495067 DOI: 10.1039/d4fo00940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The rising prevalence of metabolic diseases, such as diabetes and obesity, presents a significant global health challenge. Dietary interventions, with their minimal side effects, hold great promise as effective strategies for blood sugar management. Highland barley (HB) boasts a comprehensive and unique nutritional composition, characterized by high protein, high fiber, high vitamins, low fat, low sugar, and diverse bioactive components. These attributes make it a promising candidate for alleviating high blood sugar. This review explores the mechanisms underlying the glucose-lowering properties of HB, emphasizing its nutritional profile and bioactive constituents. Additionally, it examines the impact of common HB processing techniques on its nutrient composition and highlights its applications in food products. By advancing the understanding of HB's value and mechanisms in diabetes prevention, this review aims to facilitate the development of HB-based foods suitable for diabetic patients.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
6
|
Farazi M, Houghton MJ, Nicolotti L, Murray M, Cardoso BR, Williamson G. Inhibition of human starch digesting enzymes and intestinal glucose transport by walnut polyphenols. Food Res Int 2024; 189:114572. [PMID: 38876610 DOI: 10.1016/j.foodres.2024.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
One approach to controlling type 2 diabetes (T2D) is to lower postprandialglucose spikesby slowing down the digestion of carbohydrates and the absorption of glucose in the small intestine. The consumption of walnuts is associated with a reduced risk of chronic diseases such as T2D, suggested to be partly due to the high content of (poly)phenols. This study evaluated, for the first time, the inhibitory effect of a (poly)phenol-rich walnut extract on human carbohydrate digesting enzymes (salivary and pancreatic α-amylases, brush border sucrase-isomaltase) and on glucose transport across fully differentiated human intestinal Caco-2/TC7 monolayers. The walnut extract was rich in multiple (poly)phenols (70 % w/w) as analysed by Folin-Ciocalteau and by LCMS. It exhibited potent inhibition of both human salivary (IC50: 32.2 ± 2.5 µg walnut (poly)phenols (WP)/mL) and pancreatic (IC50: 56.7 ± 1.7 µg WP/mL) α-amylases, with weaker effects on human sucrase (IC50: 990 ± 20 µg WP/mL), maltase (IC50: 1300 ± 80 µg WP/mL), and isomaltase (IC25: 830 ± 60 µg WP/mL) activities. Selected individual walnut (poly)phenols inhibited human salivary α-amylase in the order: 1,3,4,6-tetragalloylglucose > ellagic acid pentoside > 1,2,6-tri-O-galloyl-β-D-glucopyranose, with no inhibition by ellagic acid, gallic acid and 4-O-methylgallic acid. The (poly)phenol-rich walnut extract also attenuated (up to 59 %) the transfer of 2-deoxy-D-glucose across differentiated Caco-2/TC7 cell monolayers. This is the first report on the effect of (poly)phenol-rich extracts from any commonly-consumed nut kernel on any human starch-digesting enzyme, and suggests a mechanism through which walnut consumption may lower postprandial glucose spikes and contribute to their proposed health benefits.
Collapse
Affiliation(s)
- Mena Farazi
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168 Australia
| | - Michael J Houghton
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168 Australia
| | - Luca Nicolotti
- The Australian Wine Research Institute, Adelaide, SA 5064, Australia; Metabolomics Australia, The Australian Wine Research Institute, Adelaide, SA 5064, Australia
| | - Margaret Murray
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Department of Health Sciences and Biostatistics, Swinburne University of Technology, John St, Hawthorn, VIC 3122, Australia
| | - Barbara R Cardoso
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168 Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168 Australia.
| |
Collapse
|
7
|
Fox EA, Serlin HK. Gaps in our understanding of how vagal afferents to the small intestinal mucosa detect luminal stimuli. Am J Physiol Regul Integr Comp Physiol 2024; 327:R173-R187. [PMID: 38860288 DOI: 10.1152/ajpregu.00252.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Vagal afferents to the gastrointestinal tract are crucial for the regulation of food intake, signaling negative feedback that contributes to satiation and positive feedback that produces appetition and reward. Vagal afferents to the small intestinal mucosa contribute to this regulation by sensing luminal stimuli and reporting this information to the brain. These afferents respond to mechanical, chemical, thermal, pH, and osmolar stimuli, as well as to bacterial products and immunogens. Surprisingly, little is known about how these stimuli are transduced by vagal mucosal afferents or how their transduction is organized among these afferents' terminals. Furthermore, the effects of stimulus concentration ranges or physiological stimuli on vagal activity have not been examined for some of these stimuli. Also, detection of luminal stimuli has rarely been examined in rodents, which are most frequently used for studying small intestinal innervation. Here we review what is known about stimulus detection by vagal mucosal afferents and illustrate the complexity of this detection using nutrients as an exemplar. The accepted model proposes that nutrients bind to taste receptors on enteroendocrine cells (EECs), which excite them, causing the release of hormones that stimulate vagal mucosal afferents. However, evidence reviewed here suggests that although this model accounts for many aspects of vagal signaling about nutrients, it cannot account for all aspects. A major goal of this review is therefore to evaluate what is known about nutrient absorption and detection and, based on this evaluation, identify candidate mucosal cells and structures that could cooperate with EECs and vagal mucosal afferents in stimulus detection.
Collapse
Affiliation(s)
- Edward A Fox
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, United States
| | - Hannah K Serlin
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, United States
| |
Collapse
|
8
|
Ribeiro KS, Karmakar E, Park C, Garg R, Kung GP, Kadakia I, Gopianand JS, Arun T, Kisselev O, Gnana-Prakasam JP. Iron Regulates Cellular Proliferation by Enhancing the Expression of Glucose Transporter GLUT3 in the Liver. Cells 2024; 13:1147. [PMID: 38994998 PMCID: PMC11240476 DOI: 10.3390/cells13131147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Iron is often accumulated in the liver during pathological conditions such as cirrhosis and cancer. Elevated expression of glucose transporters GLUT1 and GLUT3 is associated with reduced overall survival in patients with hepatocellular carcinoma. However, it is not known whether iron can regulate glucose transporters and contribute to tumor proliferation. In the present study, we found that treatment of human liver cell line HepG2 with ferric ammonium citrate (FAC) resulted in a significant upregulation of GLUT3 mRNA and protein in a dose-dependent manner. Similarly, iron accumulation in mice fed with high dietary iron as well as in mice injected intraperitoneally with iron dextran enhanced the GLUT3 expression drastically in the liver. We demonstrated that iron-induced hepatic GLUT3 upregulation is mediated by the LKB1/AMPK/CREB1 pathway, and this activation was reversed when treated with iron chelator deferiprone. In addition, inhibition of GLUT3 using siRNA prevented iron-mediated increase in the expression of cell cycle markers and cellular hyperproliferation. Furthermore, exogenous sodium beta-hydroxybutyrate treatment prevented iron-mediated hepatic GLUT3 activation both in vitro and in vivo. Together, these results underscore the importance of iron, AMPK, CREB1 and GLUT3 pathways in cell proliferation and highlight the therapeutic potential of sodium beta-hydroxybutyrate in hepatocellular carcinoma with high GLUT3 expression.
Collapse
|
9
|
Hansen J, Jain AR, Nenov P, Robinson PN, Iyengar R. From transcriptomics to digital twins of organ function. Front Cell Dev Biol 2024; 12:1240384. [PMID: 38989060 PMCID: PMC11234175 DOI: 10.3389/fcell.2024.1240384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 05/30/2024] [Indexed: 07/12/2024] Open
Abstract
Cell level functions underlie tissue and organ physiology. Gene expression patterns offer extensive views of the pathways and processes within and between cells. Single cell transcriptomics provides detailed information on gene expression within cells, cell types, subtypes and their relative proportions in organs. Functional pathways can be scalably connected to physiological functions at the cell and organ levels. Integrating experimentally obtained gene expression patterns with prior knowledge of pathway interactions enables identification of networks underlying whole cell functions such as growth, contractility, and secretion. These pathways can be computationally modeled using differential equations to simulate cell and organ physiological dynamics regulated by gene expression changes. Such computational systems can be thought of as parts of digital twins of organs. Digital twins, at the core, need computational models that represent in detail and simulate how dynamics of pathways and networks give rise to whole cell level physiological functions. Integration of transcriptomic responses and numerical simulations could simulate and predict whole cell functional outputs from transcriptomic data. We developed a computational pipeline that integrates gene expression timelines and systems of coupled differential equations to generate cell-type selective dynamical models. We tested our integrative algorithm on the eicosanoid biosynthesis network in macrophages. Converting transcriptomic changes to a dynamical model allowed us to predict dynamics of prostaglandin and thromboxane synthesis and secretion by macrophages that matched published lipidomics data obtained in the same experiments. Integration of cell-level system biology simulations with genomic and clinical data using a knowledge graph framework will allow us to create explicit predictive models that mechanistically link genomic determinants to organ function. Such integration requires a multi-domain ontological framework to connect genomic determinants to gene expression and cell pathways and functions to organ level phenotypes in healthy and diseased states. These integrated scalable models of tissues and organs as accurate digital twins predict health and disease states for precision medicine.
Collapse
Affiliation(s)
- Jens Hansen
- Department of Pharmacological Science and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Abhinav R Jain
- Department of Pharmacological Science and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Philip Nenov
- Department of Pharmacological Science and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter N Robinson
- Berlin Institute of Health at Charité Rahel Hirsch Center for Translational Medicine, Berlin, Germany
| | - Ravi Iyengar
- Department of Pharmacological Science and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Jaquez-Durán G, Arellano-Ortiz AL. Western diet components that increase intestinal permeability with implications on health. INT J VITAM NUTR RES 2024; 94:405-421. [PMID: 38009780 DOI: 10.1024/0300-9831/a000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Intestinal permeability is a physiological property that allows necessary molecules to enter the organism. This property is regulated by tight junction proteins located between intestinal epithelial cells. However, various factors can increase intestinal permeability (IIP), including diet. Specific components in the Western diet (WD), such as monosaccharides, fat, gluten, salt, alcohol, and additives, can affect the tight junctions between enterocytes, leading to increased permeability. This review explains how these components promote IIP and outlines their potential implications for health. In addition, we describe how a reduction in WD consumption may help improve dietary treatment of diseases associated with IIP. Research has shown that some of these components can cause changes in the gut microbiota, leading to dysbiosis, which can promote greater intestinal permeability and displacement of endotoxins into the bloodstream. These endotoxins include lipopolysaccharides derived from gram-negative bacteria, and their presence has been associated with various diseases, such as autoimmune, neurological, and metabolic diseases like diabetes and cardiovascular disease. Therefore, nutrition professionals should promote the reduction of WD consumption and consider the inclusion of healthy diet components as part of the nutritional treatment for diseases associated with increased intestinal permeability.
Collapse
Affiliation(s)
- Gilberto Jaquez-Durán
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| | - Ana Lidia Arellano-Ortiz
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| |
Collapse
|
11
|
Shi Q, Xu L, Cai L, Deng S, Qi X. Sucralose regulates postprandial blood glucose in mice through intestinal sweet taste receptors Tas1r2/Tas1r3. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2233-2244. [PMID: 37938171 DOI: 10.1002/jsfa.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Non-nutritive sweeteners (such as sucralose) bind to sweet receptors Tas1r2/Tas1r3 on intestinal endocrine L cells after diets to upregulate blood glucose. However, the mechanism by which sucralose regulates postprandial blood glucose (PBG) has not been clarified to date. We hypothesized that the gut sweet taste receptor was one of the targets for sucralose to regulate PBG. The aim of this study was to examine the effect of sucralose on PBG based on the gut sweet taste receptor signaling pathway and to explore the mechanism. Therefore, we examined PBG, genes, and proteins associated with the gut sweet receptor pathway in sucralose-exposed mice. RESULTS The results showed that after 12 weeks of sucralose exposure the PBG of mice increased significantly, and the expression of intestinal sweet taste receptors increased correspondingly. Within the concentration range of this experiment, a significant increase of PBG was observed in mice fed on sucralose with a concentration equal to or higher than 0.33 g L-1 . CONCLUSION Long-term consumption of sucralose may increase body weight and the risk of elevated PBG, resulting in overexpression of sweetness receptors and glucose transporters. The mechanism of these effects might be the result of non-nutritive sweeteners binding to sweetness receptors Tas1r2/Tas1r3 in gut endocrine cells and upregulating Slc5a1 and Slc2a2. But we cannot rule out that the rise in PBG is the result of a combination of sweet receptors and gut microbes. Therefore, the effect of gut microbes on PBG needs to be studied further. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qing Shi
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, China
| | - Lei Xu
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, China
| | - Lei Cai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Shaoping Deng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiangyang Qi
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
12
|
Ke Z, Lu Z, Li Q, Tong W. Intestinal glucose excretion: A potential mechanism for glycemic control. Metabolism 2024; 152:155743. [PMID: 38007149 DOI: 10.1016/j.metabol.2023.155743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The gut has been increasingly recognized in recent years as a pivotal organ in the maintenance of glucose homeostasis. Specifically, the profound and enduring improvement in glucose metabolism achieved through metabolic surgery to modify the anatomy of the gut has prompted scholars to acknowledge that the most effective strategy for treating type 2 diabetes mellitus (T2DM) involves the gut. The mechanisms underlying the regulation of glucose metabolism by the gut encompass gut hormones, bile acids, intestinal gluconeogenesis, gut microbiota, and signaling interactions between the gut and other organs (liver, brain, adipose, etc.). Recent studies have also revealed a novel phenomenon of glucose lowering through the gut: metabolic surgery and metformin promote the excretion of glucose from the circulation into the intestinal lumen by enterocytes. However, there is still limited understanding regarding the underlying mechanisms of intestinal glucose excretion and its contribution to glycemic control. This article reviews current research on intestinal glucose excretion while focusing on its role in T2DM management as well as potential mechanisms.
Collapse
Affiliation(s)
- Zhigang Ke
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Qing Li
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Weidong Tong
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
13
|
Klip A, De Bock K, Bilan PJ, Richter EA. Transcellular Barriers to Glucose Delivery in the Body. Annu Rev Physiol 2024; 86:149-173. [PMID: 38345907 DOI: 10.1146/annurev-physiol-042022-031657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Glucose is the universal fuel of most mammalian cells, and it is largely replenished through dietary intake. Glucose availability to tissues is paramount for the maintenance of homeostatic energetics and, hence, supply should match demand by the consuming organs. In its journey through the body, glucose encounters cellular barriers for transit at the levels of the absorbing intestinal epithelial wall, the renal epithelium mediating glucose reabsorption, and the tight capillary endothelia (especially in the brain). Glucose transiting through these cellular barriers must escape degradation to ensure optimal glucose delivery to the bloodstream or tissues. The liver, which stores glycogen and generates glucose de novo, must similarly be able to release it intact to the circulation. We present the most up-to-date knowledge on glucose handling by the gut, liver, brain endothelium, and kidney, and discuss underlying molecular mechanisms and open questions. Diseases associated with defects in glucose delivery and homeostasis are also briefly addressed. We propose that the universal problem of sparing glucose from catabolism in favor of translocation across the barriers posed by epithelia and endothelia is resolved through common mechanisms involving glucose transfer to the endoplasmic reticulum, from where glucose exits the cells via unconventional cellular mechanisms.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Erik A Richter
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Homer KA, Cross MR, Helms ER. Peak Week Carbohydrate Manipulation Practices in Physique Athletes: A Narrative Review. SPORTS MEDICINE - OPEN 2024; 10:8. [PMID: 38218750 PMCID: PMC10787737 DOI: 10.1186/s40798-024-00674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Physique athletes are ranked by a panel of judges against the judging criteria of the corresponding division. To enhance on-stage presentation and performance, competitors in certain categories (i.e. bodybuilding and classic physique) achieve extreme muscle size and definition aided by implementing acute "peaking protocols" in the days before competition. Such practices can involve manipulating nutrition and training variables to increase intramuscular glycogen and water while minimising the thickness of the subcutaneous layer. Carbohydrate manipulation is a prevalent strategy utilised to plausibly induce muscle glycogen supercompensation and subsequently increase muscle size. The relationship between carbohydrate intake and muscle glycogen saturation was first examined in endurance event performance and similar strategies have been adopted by physique athletes despite the distinct physiological dissimilarities and aims between the sports. OBJECTIVES The aim of this narrative review is to (1) critically examine and appraise the existing scientific literature relating to carbohydrate manipulation practices in physique athletes prior to competition; (2) identify research gaps and provide direction for future studies; and (3) provide broad practical applications based on the findings and physiological reasoning for coaches and competitors. FINDINGS The findings of this review indicate that carbohydrate manipulation practices are prevalent amongst physique athletes despite a paucity of experimental evidence demonstrating the efficacy of such strategies on physique performance. Competitors have also been observed to manipulate water and electrolytes in conjunction with carbohydrate predicated on speculative physiological mechanisms which may be detrimental for performance. CONCLUSIONS Further experimental evidence which closely replicates the nutritional and training practices of physique athletes during peak week is required to make conclusions on the efficacy of carbohydrate manipulation strategies. Quasi-experimental designs may be a feasible alternative to randomised controlled trials to examine such strategies due to the difficulty in recruiting the population of interest. Finally, we recommend that coaches and competitors manipulate as few variables as possible, and experiment with different magnitudes of carbohydrate loads in advance of competition if implementing a peaking strategy.
Collapse
Affiliation(s)
- Kai A Homer
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632, New Zealand.
| | - Matt R Cross
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632, New Zealand
| | - Eric R Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632, New Zealand
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
15
|
Williamson G, Clifford MN. A critical examination of human data for the biological activity of quercetin and its phase-2 conjugates. Crit Rev Food Sci Nutr 2024; 65:1669-1705. [PMID: 38189312 DOI: 10.1080/10408398.2023.2299329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
This critical review examines evidence for beneficial effects of quercetin phase-2 conjugates from clinical intervention studies, volunteer feeding trials, and in vitro work. Plasma concentrations of quercetin-3-O-glucuronide (Q3G) and 3'-methylquercetin-3-O-glucuronide (3'MQ3G) after supplementation may produce beneficial effects in macrophages and endothelial cells, respectively, especially if endogenous deglucuronidation occurs, and lower blood uric acid concentration via quercetin-3'-O-sulfate (Q3'S). Unsupplemented diets produce much lower concentrations (<50 nmol/l) rarely investigated in vitro. At 10 nmol/l, Q3'S and Q3G stimulate or suppress, respectively, angiogenesis in endothelial cells. Statistically significant effects have been reported at 100 nmol/l in breast cancer cells (Q3G), primary neuron cultures (Q3G), lymphocytes (Q3G and3'MQ3G) and HUVECs (QG/QS mixture), but it is unclear whether these translate to a health benefit in vivo. More sensitive and more precise methods to measure clinically significant endpoints are required before a conclusion can be drawn regarding effects at normal dietary concentrations. Future requirements include better understanding of inter-individual and temporal variation in plasma quercetin phase-2 conjugates, their mechanisms of action including deglucuronidation and desulfation both in vitro and in vivo, tissue accumulation and washout, as well as potential for synergy or antagonism with other quercetin metabolites and metabolites of other dietary phytochemicals.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Michael N Clifford
- Department of Nutrition, Dietetics and Food, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
16
|
Tang X, Zeng Y, Xiong K, Li M. The inflammatory injury of porcine small intestinal epithelial cells induced by deoxynivalenol is related to the decrease in glucose transport. J Anim Sci 2024; 102:skae107. [PMID: 38619320 PMCID: PMC11069187 DOI: 10.1093/jas/skae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/13/2024] [Indexed: 04/16/2024] Open
Abstract
The present study aimed to investigate the effects of deoxynivalenol (DON) stimulation on inflammatory injury and the expression of the glucose transporters sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter protein 2 (GLU2) in porcine small intestinal epithelial cells (IPEC-J2). Additionally, the study aimed to provide initial insights into the connection between the expression of glucose transporters and the inflammatory injury of IPEC-J2 cells. DON concentration and DON treatment time were determined using the CCK‑8 assay. Accordingly, 1.0 µg/mL DON and treatment for 24 h were chosen for subsequent experiments. Then IPEC-J2 cells were treated without DON (CON, N = 6) or with 1 μg/mL DON (DON, N = 6). Lactate dehydrogenase (LDH) content, apoptosis rate, and proinflammatory cytokines including interleukin (IL)-1β, Il-6, and tumor necrosis factor α (TNF-α) were measured. Additionally, the expression of AMP-activated protein kinase α1 (AMPK-α1), the content of glucose, intestinal alkaline phosphatase (AKP), and sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) activity, and the expression of SGLT1 and GLU2 of IPEC-J2 cells were also analyzed. The results showed that DON exposure significantly increased LDH release and apoptosis rate of IPEC-J2 cells. Stimulation with DON resulted in significant cellular inflammatory damage, as evidenced by a significant increase in proinflammatory cytokines (IL-1β, IL-6, and TNF-α). Additionally, DON caused damage to the glucose absorption capacity of IPEC-J2 cells, indicated by decreased levels of glucose content, AKP activity, Na+/K+-ATPase activity, AMPK-α1 protein expression, and SGLT1 expression. Correlation analysis revealed that glucose absorption capacity was negatively correlated with cell inflammatory cytokines. Based on the findings of this study, it can be preliminarily concluded that the cell inflammatory damage caused by DON may be associated with decreased glucose absorption.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 5500025, China
| | - Yan Zeng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550025, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 5500025, China
| | - Meijun Li
- College of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China
| |
Collapse
|
17
|
Waizumi R, Hirayama C, Tomita S, Iizuka T, Kuwazaki S, Jouraku A, Tsubota T, Yokoi K, Yamamoto K, Sezutsu H. A major endogenous glycoside hydrolase mediating quercetin uptake in Bombyx mori. PLoS Genet 2024; 20:e1011118. [PMID: 38232119 PMCID: PMC10824415 DOI: 10.1371/journal.pgen.1011118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/29/2024] [Accepted: 12/28/2023] [Indexed: 01/19/2024] Open
Abstract
Quercetin is a common plant flavonoid which is involved in herbivore-plant interactions. Mulberry silkworms (domestic silkworm, Bombyx mori, and wild silkworm, Bombyx mandarina) take up quercetin from mulberry leaves and accumulate the metabolites in the cocoon, thereby improving its protective properties. Here we identified a glycoside hydrolase, named glycoside hydrolase family 1 group G 5 (GH1G5), which is expressed in the midgut and is involved in quercetin metabolism in the domestic silkworm. Our results suggest that this enzyme mediates quercetin uptake by deglycosylating the three primary quercetin glycosides present in mulberry leaf: rutin, quercetin-3-O-malonylglucoside, and quercetin-3-O-glucoside. Despite being located in an unstable genomic region that has undergone frequent structural changes in the evolution of Lepidoptera, GH1G5 has retained its hydrolytic activity, suggesting quercetin uptake has adaptive significance for mulberry silkworms. GH1G5 is also important in breeding: defective mutations which result in discoloration of the cocoon and increased silk yield are homozygously conserved in 27 of the 32 Japanese white-cocoon domestic silkworm strains and 12 of the 30 Chinese ones we investigated.
Collapse
Affiliation(s)
- Ryusei Waizumi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Chikara Hirayama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Shuichiro Tomita
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Tetsuya Iizuka
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Seigo Kuwazaki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takuya Tsubota
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kakeru Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kimiko Yamamoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
18
|
Staltner R, Burger K, Baumann A, Bergheim I. Fructose: a modulator of intestinal barrier function and hepatic health? Eur J Nutr 2023; 62:3113-3124. [PMID: 37596353 PMCID: PMC10611622 DOI: 10.1007/s00394-023-03232-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
PURPOSE Consumption of fructose has repeatedly been discussed to be a key factor in the development of health disturbances such as hypertension, diabetes type 2, and non-alcoholic fatty liver disease. Despite intense research efforts, the question if and how high dietary fructose intake interferes with human health has not yet been fully answered. RESULTS Studies suggest that besides its insulin-independent metabolism dietary fructose may also impact intestinal homeostasis and barrier function. Indeed, it has been suggested by the results of human and animal as well as in vitro studies that fructose enriched diets may alter intestinal microbiota composition. Furthermore, studies have also shown that both acute and chronic intake of fructose may lead to an increased formation of nitric oxide and a loss of tight junction proteins in small intestinal tissue. These alterations have been related to an increased translocation of pathogen-associated molecular patterns (PAMPs) like bacterial endotoxin and an induction of dependent signaling cascades in the liver but also other tissues. CONCLUSION In the present narrative review, results of studies assessing the effects of fructose on intestinal barrier function and their impact on the development of health disturbances with a particular focus on the liver are summarized and discussed.
Collapse
Affiliation(s)
- Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria.
| |
Collapse
|
19
|
Subramaniam M, Loewen ME. Review: A species comparison of the kinetic homogeneous and heterogeneous organization of sodium-dependent glucose transport systems along the intestine. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111492. [PMID: 37536429 DOI: 10.1016/j.cbpa.2023.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The targeted use of carbohydrates by feed and food industries to create balanced and cost-effective diets has generated a tremendous amount of research in carbohydrate digestion and absorption in different species. Specifically, this research has led us to a larger observation that identified different organizations of intestinal sodium-dependent glucose absorption across species, which has not been previously collated and reviewed. Thus, this review will compare the kinetic segregation of sodium-dependent glucose transport across the intestine of different species, which we have termed either homogeneous or heterogeneous systems. For instance, the pig follows a heterogeneous system of sodium-dependent glucose transport with a high-affinity, super-low-capacity (Ha/sLc) in the jejunum, and a high-affinity, super-high-capacity (Ha/sHc) in the ileum. This is achieved by multiple sodium-dependent glucose transporters contributing to each segment. In contrast, tilapia have a homogenous system characterized by high-affinity, high-capacity (Ha/Hc) throughout the intestine. Additionally, we are the first to report glucose transporter patterns across species presented from vertebrates to invertebrates. Finally, other kinetic transport systems are briefly covered to illustrate possible contributions/modulations to sodium-dependent glucose transporter organization. Overall, we present a new perspective on the organization of glucose absorption along the intestinal tract.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
20
|
Liu M, Shen J, Zhu X, Ju T, Willing BP, Wu X, Lu Q, Liu R. Peanut skin procyanidins reduce intestinal glucose transport protein expression, regulate serum metabolites and ameliorate hyperglycemia in diabetic mice. Food Res Int 2023; 173:113471. [PMID: 37803795 DOI: 10.1016/j.foodres.2023.113471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
One of diabetic characteristics is the postprandial hyperglycemia. Inhibiting glucose uptake may be beneficial for controlling postprandial blood glucose levels and regulating the glucose metabolism Peanut skin procyanidins (PSP) have shown a potential for lowering blood glucose; however, the underlying mechanism through which PSP regulate glucose metabolism remains unknown. In the current study, we investigated the effect of PSP on intestinal glucose transporters and serum metabolites using a mouse model of diabetic mice. Results showed that PSP improved glucose tolerance and systemic insulin sensitivity, which coincided with decreased expression of sodium-glucose cotransporter 1 and glucose transporter 2 in the intestinal epithelium induced by an activation of the phospholipase C β2/protein kinase C signaling pathway. Moreover, untargeted metabolomic analysis of serum samples revealed that PSP altered arachidonic acid, sphingolipid, glycerophospholipid, bile acids, and arginine metabolic pathways. The study provides new insight into the anti-diabetic mechanism of PSP and a basis for further research.
Collapse
Affiliation(s)
- Min Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Jinxin Shen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Xiaoling Zhu
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430070, China
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Xin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430000, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430000, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
21
|
Gao Z, Xie M, Gui S, He M, Lu Y, Wang L, Chen J, Smagghe G, Gershenzon J, Cheng D. Differences in rectal amino acid levels determine bacteria-originated sex pheromone specificity in two closely related flies. THE ISME JOURNAL 2023; 17:1741-1750. [PMID: 37550382 PMCID: PMC10504272 DOI: 10.1038/s41396-023-01488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Sex pheromones are widely used by insects as a reproductive isolating mechanism to attract conspecifics and repel heterospecifics. Although researchers have obtained extensive knowledge about sex pheromones, little is known about the differentiation mechanism of sex pheromones in closely related species. Using Bactrocera dorsalis and Bactrocera cucurbitae as the study model, we investigated how the male-borne sex pheromones are different. The results demonstrated that both 2,3,5-trimethylpyrazine (TMP) and 2,3,5,6-tetramethylpyrazine (TTMP) were sex pheromones produced by rectal Bacillus in the two flies. However, the TMP/TTMP ratios were reversed, indicating sex pheromone specificity in the two flies. Bacterial fermentation results showed that different threonine and glycine levels were responsible for the preference of rectal Bacillus to produce TMP or TTMP. Accordingly, threonine (glycine) levels and the expression of the threonine and glycine coding genes were significantly different between B. dorsalis and B. cucurbitae. In vivo assays confirmed that increased rectal glycine and threonine levels by amino acid feeding could significantly decrease the TMP/TTMP ratios and result in significantly decreased mating abilities in the studied flies. Meanwhile, decreased rectal glycine and threonine levels due to RNAi of the glycine and threonine coding genes was found to significantly increase the TMP/TTMP ratios and result in significantly decreased mating abilities. The study contributes to the new insight that insects and their symbionts can jointly regulate sex pheromone specificity in insects, and in turn, this helps us to better understand how the evolution of chemical communication affects speciation.
Collapse
Affiliation(s)
- Zijie Gao
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Mingxue Xie
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Shiyu Gui
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Muyang He
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Luoluo Wang
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Jingyuan Chen
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Molecular and Cellular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, 1050, Belgium
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Daifeng Cheng
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China.
| |
Collapse
|
22
|
Dong Y, Li W, Yin J. The intestinal-hepatic axis: a comprehensive review on fructose metabolism and its association with mortality and chronic metabolic diseases. Crit Rev Food Sci Nutr 2023; 64:12473-12486. [PMID: 37671898 DOI: 10.1080/10408398.2023.2253468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Fructose is a common ingredient of food industry in the form of sucrose and high fructose corn sirup (HFCS). Due to its unique metabolic properties, excessive intake of fructose has been linked to various diseases, including obesity, nonalcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), chronic renal insufficiency, and even increase the risk of death. Interestingly, although high fructose intake may induce gout, it does not cause hyperuricemia, and the underlying molecular mechanisms remain debated. While previous studies focused on the liver as the primary site of fructose metabolism, recent evidence has suggested a crucial role for the intestine-hepatic axis in fructose metabolism. Low dose fructose is mainly metabolized in the small intestine. Only when the intake exceeds the intestine's metabolic capacity fructose spills over to be metabolized in the liver. High fructose diets also have a significant impact on the diversity of the gut microbiota, leading to alterations in the metabolic byproducts produced by these gut bacteria and thereby inducing endotoxemia. This paper provides a comprehensive review of the epidemiological and pathological studies conducted in recent years, describing the metabolic differences between fructose and glucose and the possible mechanisms underlying the link between excessive fructose intake and chronic metabolic diseases.
Collapse
Affiliation(s)
- Yiling Dong
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Wen Li
- Department of Endocrinology and Metabolism, Haikou Orthopedics and Diabetes Hospital of Shanghai Sixth People's Hospital, Haikou, China
| | - Jun Yin
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Eighth People's Hospital, Shanghai, China
| |
Collapse
|
23
|
Wang Z, Lipshutz A, Liu ZL, Trzeciak AJ, Miranda IC, Martínez de la Torre C, Schild T, Lazarov T, Rojas WS, Saavedra PHV, Romero-Pichardo JE, Baako A, Geissmann F, Faraco G, Gan L, Etchegaray JI, Lucas CD, Parkhurst CN, Zeng MY, Keshari KR, Perry JSA. Early life high fructose exposure disrupts microglia function and impedes neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553242. [PMID: 37645894 PMCID: PMC10462086 DOI: 10.1101/2023.08.14.553242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Despite the success of fructose as a low-cost food additive, recent epidemiological evidence suggests that high fructose consumption by pregnant mothers or during adolescence is associated with disrupted neurodevelopment 1-7 . An essential step in appropriate mammalian neurodevelopment is the synaptic pruning and elimination of newly-formed neurons by microglia, the central nervous system's (CNS) resident professional phagocyte 8-10 . Whether early life high fructose consumption affects microglia function and if this directly impacts neurodevelopment remains unknown. Here, we show that both offspring born to dams fed a high fructose diet and neonates exposed to high fructose exhibit decreased microglial density, increased uncleared apoptotic cells, and decreased synaptic pruning in vivo . Importantly, deletion of the high affinity fructose transporter SLC2A5 (GLUT5) in neonates completely reversed microglia dysfunction, suggesting that high fructose directly affects neonatal development. Mechanistically, we found that high fructose treatment of both mouse and human microglia suppresses synaptic pruning and phagocytosis capacity which is fully reversed in GLUT5-deficient microglia. Using a combination of in vivo and in vitro nuclear magnetic resonance- and mass spectrometry-based fructose tracing, we found that high fructose drives significant GLUT5-dependent fructose uptake and catabolism, rewiring microglia metabolism towards a hypo-phagocytic state. Importantly, mice exposed to high fructose as neonates exhibited cognitive defects and developed anxiety-like behavior which were rescued in GLUT5-deficient animals. Our findings provide a mechanistic explanation for the epidemiological observation that early life high fructose exposure is associated with increased prevalence of adolescent anxiety disorders.
Collapse
|
24
|
Golovinskaia O, Wang CK. The hypoglycemic potential of phenolics from functional foods and their mechanisms. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Shiraki A, Oyama JI, Shimizu T, Node K. Linagliptin exacerbates heart failure due to energy deficiency via downregulation of glucose utilization and absorption in a mouse model. Eur J Pharmacol 2023; 948:175673. [PMID: 36965743 DOI: 10.1016/j.ejphar.2023.175673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Use of dipeptidyl peptidase-4 (DPP4) inhibitor in some clinical trials might have caused heart failure (HF), leading to increased hospitalizations. The aim of the present study was to determine whether linagliptin has any effect on chronic dilated HF, and its underlying mechanisms. Physiologic and pathologic studies were conducted on heart/muscle-specific manganese superoxide dismutase-deficient mice, which exhibited dilated cardiomyopathy, and were randomized to receive a low dose (1 mg/kg, HF-L group) or high dose (10 mg/kg, HF-H group) mixed with food, or normal food (HF group), for 8 weeks. Linagliptin increased mortality and heart/body weight ratio in mice with HF. Cardiac contractility and fibrosis worsened, whereas hepatic glycogen content and individual carbohydrate consumption decreased significantly in the HF-H group, when compared with the HF control group. Therefore, we performed a complementary experiment by supplementing glucose to the mice treated with high-dose linagliptin (HF-HG group). Adequate glucose supplementation reduced heart/body weight ratio and cardiac fibrosis, and improved cardiac contractility, without changing mortality. Following oral administration of 13C glucose, the respiratory 13C decreased in the HF-H and HF-HG groups, when compared with that in the HF group; the fecal 13C increased, suggesting that linagliptin inhibited glucose absorbance in the intestine. In addition, the expression of GLUT2, a glucose transporter was downregulated in the small intestine. Linagliptin treatment exacerbated HF, which increased mortality, cardiac function, and fibrosis. DPP4 inhibitors might boost cardiac cachexia and exacerbate HF, at least in part, through the modification of glucose utilization and absorption.
Collapse
Affiliation(s)
- Aya Shiraki
- Department of Cardiovascular Medicine, Saga University, Japan.
| | - Jun-Ichi Oyama
- Department of Cardiovascular Medicine, Saga University, Japan
| | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Japan
| |
Collapse
|
26
|
Overduin TS, Wardill HR, Young RL, Page AJ, Gatford KL. Active glucose transport varies by small intestinal region and oestrous cycle stage in mice. Exp Physiol 2023; 108:865-873. [PMID: 37022128 PMCID: PMC10988461 DOI: 10.1113/ep091040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/28/2023] [Indexed: 04/07/2023]
Abstract
NEW FINDINGS What is the central question of this study? Body mass and food intake change during the female ovarian cycle: does glucose transport by the small intestine also vary? What is the main finding and its importance? We have optimised Ussing chamber methodology to measure region-specific active glucose transport in the small intestine of adult C57BL/6 mice. Our study provides the first evidence that jejunal active glucose transport changes during the oestrous cycle in mice, and is higher at pro-oestrus than oestrus. These results demonstrate adaptation in active glucose uptake, concurrent with previously reported changes in food intake. ABSTRACT Food intake changes across the ovarian cycle in rodents and humans, with a nadir during the pre-ovulatory phase and a peak during the luteal phase. However, it is unknown whether the rate of intestinal glucose absorption also changes. We therefore mounted small intestinal sections from C57BL/6 female mice (8-9 weeks old) in Ussing chambers and measured active ex vivo glucose transport via the change in short-circuit current (∆Isc ) induced by glucose. Tissue viability was confirmed by a positive ∆Isc response to 100 µM carbachol following each experiment. Active glucose transport, assessed after addition of 5, 10, 25 or 45 mM d-glucose to the mucosal chamber, was highest at 45 mM glucose in the distal jejunum compared to duodenum and ileum (P < 0.01). Incubation with the sodium-glucose cotransporter 1 (SGLT1) inhibitor phlorizin reduced active glucose transport in a dose-dependent manner in all regions (P < 0.01). Active glucose uptake induced by addition of 45 mM glucose to the mucosal chamber in the absence or presence of phlorizin was assessed in jejunum at each oestrous cycle stage (n = 9-10 mice per stage). Overall, active glucose uptake was lower at oestrus compared to pro-oestrus (P = 0.025). This study establishes an ex vivo method to measure region-specific glucose transport in the mouse small intestine. Our results provide the first direct evidence that SGLT1-mediated glucose transport in the jejunum changes across the ovarian cycle. The mechanisms underlying these adaptations in nutrient absorption remain to be elucidated.
Collapse
Affiliation(s)
- T. Sebastian Overduin
- School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Lifelong Health ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| | - Hannah R. Wardill
- School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| | - Richard L. Young
- Lifelong Health ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Amanda J. Page
- School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Lifelong Health ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| | - Kathryn L. Gatford
- School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Lifelong Health ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| |
Collapse
|
27
|
Bellachioma L, Morresi C, Albacete A, Martínez-Melgarejo PA, Ferretti G, Giorgini G, Galeazzi R, Damiani E, Bacchetti T. Insights on the Hypoglycemic Potential of Crocus sativus Tepal Polyphenols: An In Vitro and In Silico Study. Int J Mol Sci 2023; 24:ijms24119213. [PMID: 37298165 DOI: 10.3390/ijms24119213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Post-prandial hyperglycemia typical of diabetes mellitus could be alleviated using plant-derived compounds such as polyphenols, which could influence the activities of enzymes involved in carbohydrate digestion and of intestinal glucose transporters. Here, we report on the potential anti-hyperglycemic effect of Crocus sativus tepals compared to stigmas, within the framework of valorizing these by-products of the saffron industry, since the anti-diabetic properties of saffron are well-known, but not those of its tepals. In vitro assays showed that tepal extracts (TE) had a greater inhibitory action than stigma extracts (SE) on α-amylase activity (IC50: TE = 0.60 ± 0.09 mg/mL; SE = 1.10 ± 0.08 mg/mL; acarbose = 0.051 ± 0.07) and on glucose absorption in Caco-2 differentiated cells (TE = 1.20 ± 0.02 mg/mL; SE = 2.30 ± 0.02 mg/mL; phlorizin = 0.23 ± 0.01). Virtual screening performed with principal compounds from stigma and tepals of C. sativus and human pancreatic α-amylase, glucose transporter 2 (GLUT2) and sodium glucose co-transporter-1 (SGLT1) were validated via molecular docking, e.g., for human pancreatic α-amylase, epicatechin 3-o-gallate and catechin-3-o-gallate were the best scored ligands from tepals (-9.5 kcal/mol and -9.4 kcal/mol, respectively), while sesamin and episesamin were the best scored ones from stigmas (-10.1 kcal/mol). Overall, the results point to the potential of C. sativus tepal extracts in the prevention/management of diabetes, likely due to the rich pool of phytocompounds characterized using high-resolution mass spectrometry, some of which are capable of binding and interacting with proteins involved in starch digestion and intestinal glucose transport.
Collapse
Affiliation(s)
- Luisa Bellachioma
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alfonso Albacete
- Centro de Edafología y Biología Aplicada del Segura, Agencia Estatal Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | - Purificación A Martínez-Melgarejo
- Centro de Edafología y Biología Aplicada del Segura, Agencia Estatal Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | - Gianna Ferretti
- Department of Clinical Science and Odontostomatology, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giorgia Giorgini
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
28
|
Dengler F, Hammon HM, Liermann W, Görs S, Bachmann L, Helm C, Ulrich R, Delling C. Cryptosporidium parvumcompetes with the intestinal epithelial cells for glucose and impairs systemic glucose supply in neonatal calves. Vet Res 2023; 54:40. [PMID: 37138353 PMCID: PMC10156424 DOI: 10.1186/s13567-023-01172-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/10/2023] [Indexed: 05/05/2023] Open
Abstract
Cryptosporidiosis is one of the main causes of diarrhea in children and young livestock. The interaction of the parasite with the intestinal host cells has not been characterized thoroughly yet but may be affected by the nutritional demand of the parasite. Hence, we aimed to investigate the impact of C. parvum infection on glucose metabolism in neonatal calves. Therefore, N = 5 neonatal calves were infected with C. parvum on the first day of life, whereas a control group was not (N = 5). The calves were monitored clinically for one week, and glucose absorption, turnover and oxidation were assessed using stable isotope labelled glucose. The transepithelial transport of glucose was measured using the Ussing chamber technique. Glucose transporters were quantified on gene and protein expression level using RT-qPCR and Western blot in the jejunum epithelium and brush border membrane preparations. Plasma glucose concentration and oral glucose absorption were decreased despite an increased electrogenic phlorizin sensitive transepithelial transport of glucose in infected calves. No difference in the gene or protein abundance of glucose transporters, but an enrichment of glucose transporter 2 in the brush border was observed in the infected calves. Furthermore, the mRNA for enzymes of the glycolysis pathway was increased indicating enhanced glucose oxidation in the infected gut. In summary, C. parvum infection modulates intestinal epithelial glucose absorption and metabolism. We assume that the metabolic competition of the parasite for glucose causes the host cells to upregulate their uptake mechanisms and metabolic machinery to compensate for the energy losses.
Collapse
Affiliation(s)
- Franziska Dengler
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, Austria.
- Institute of Veterinary Physiology, Leipzig University, An den Tierkliniken 7, Leipzig, Germany.
| | - Harald M Hammon
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, Dummerstorf, Germany
| | - Wendy Liermann
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, Dummerstorf, Germany
| | - Solvig Görs
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, Dummerstorf, Germany
| | - Lisa Bachmann
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, Dummerstorf, Germany
- Faculty of Agriculture and Food Science, University of Applied Science Neubrandenburg, Brodaer Strasse 2, Neubrandenburg, Germany
| | - Christiane Helm
- Institute of Veterinary Pathology, Leipzig University, An den Tierkliniken 33-37, Leipzig, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Leipzig University, An den Tierkliniken 33-37, Leipzig, Germany
| | - Cora Delling
- Institute of Parasitology, Leipzig University, An den Tierkliniken 35, Leipzig, Germany
| |
Collapse
|
29
|
Meneses JAM, de Sá OAAL, Ramirez-Zamudio GD, Nascimento KB, Gionbelli TRS, Luz MH, Ladeira MM, Casagrande DR, Gionbelli MP. Heat stress promotes adaptive physiological responses and alters mrna expression of ruminal epithelium markers in Bos taurus indicus cattle fed low- or high-energy diets. J Therm Biol 2023; 114:103562. [PMID: 37344024 DOI: 10.1016/j.jtherbio.2023.103562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 06/23/2023]
Abstract
This research aimed to evaluate the impact of temperature and energy status on the thermal indices, physiological parameters, and ruminal papilla mRNA expression levels of Zebu beef heifers (Bos taurus indicus). In this trial, we used six ruminal-cannulated Nellore females. The experimental design was a 6 × 6 Latin square, with six treatments and six periods. The research used a 2 × 2 + 2 factorial scheme. The arrangement comprised: two thermal conditions [thermoneutrality (TN; 21.6 °C) or heat stress (HS, 34 °C)]; two dietary energy levels (low or high-energy); and two additional treatments, with heifers exposed to the TN, but pair-fed with females exposed to HS (PFTN). For our purposes, body temperature, heart and respiratory rates were measured and the relative mRNA expression was quantified using the PCR-RT technique. Compared to TN or PFTN, the HS increased the body temperature measurements in the morning and evening (p ≤ 0.04). Heart rate was 22% greater for heifers under HS than for TN (p < 0.01) and 13% higher for those under HS than PFTN (p = 0.03) in the morning. Respiratory rates increased with HS exposure compared to TN or PFTN (p < 0.01). Heifers submitted to HS and fed low-energy diets had and tended to have lower caspase 3 (CASP3, p <i=></i> 0.001) and sodium-glucose cotransporter type 1 (SGLT1; p = 0.17) mRNA expressions, respectively. Heat-stressed heifers fed low-energy diets also increased the putative anion transporter (PAT1; p ≤ 0.01) mRNA expressions by 60%. Heifers under HS-fed high-energy diets had greater kallikrein-related peptidase (KLK) 9 expressions (p = 0.02), while KLK10 (p = 0.11) tended to be up-regulated in heifers in TN-fed a low-energy diets. In conclusion, heat stress down-regulated the mRNA expression of rumen markers related to short-chain fatty acids transport and pH modulation.
Collapse
Affiliation(s)
- Javier A M Meneses
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil; Department of Medicine Veterinary and Animal Science, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Cartagena, Bolivar, 130001, Colombia.
| | - Olavo A A L de Sá
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil; De Heus industry, Rio Claro, SP, 13505-600, Brazil.
| | | | - Karolina B Nascimento
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil.
| | - Tathyane R S Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil.
| | - Matheus H Luz
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil.
| | - Márcio M Ladeira
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil.
| | - Daniel R Casagrande
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil.
| | - Mateus P Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil.
| |
Collapse
|
30
|
Sandle GI, Herod MR, Fontana J, Lippiat JD, Stockley PG. Is intestinal transport dysfunctional in COVID-19-related diarrhea? Am J Physiol Gastrointest Liver Physiol 2023; 324:G415-G418. [PMID: 36976797 PMCID: PMC10281778 DOI: 10.1152/ajpgi.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Diarrhea, often severe, is a recognized and frequently early symptom during acute COVID-19 infection and may persist or develop for the first time in patients with long-COVID, with socioeconomic consequences. Diarrheal mechanisms in these cases are poorly understood. There is evidence for disruption of intestinal epithelial barrier function and also for changes in the gut microbiome, which is critical for gut immunity and metabolism. Whether the SARS-CoV-2 virus has adverse effects on intestinal transport proteins is unclear. However, the ability of the virus to inhibit expression and activity of an aldosterone-regulated epithelial sodium (Na+) channel (ENaC) present in human distal colon, which is responsible for Na+ and water salvage, points to possible disruption of other intestinal transport proteins during COVID-19 infection. In this Perspective, we develop this idea by highlighting possible intestinal transport protein targets for the SARS-CoV-2 virus and discussing how their interactions might be explored in the laboratory.
Collapse
Affiliation(s)
- Geoffrey I Sandle
- Leeds Institute for Medical Research at St. James's, St. James's University Hospital, Leeds, United Kingdom
| | - Morgan R Herod
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Juan Fontana
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Jonathan D Lippiat
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
31
|
Conway JR, Warren SC, Lee YK, McCulloch AT, Magenau A, Lee V, Metcalf XL, Stoehr J, Haigh K, Abdulkhalek L, Guaman CS, Reed DA, Murphy KJ, Pereira BA, Mélénec P, Chambers C, Latham SL, Lenthall H, Deenick EK, Ma Y, Phan T, Lim E, Joshua AM, Walters S, Grey ST, Shi YC, Zhang L, Herzog H, Croucher DR, Philp A, Scheele CL, Herrmann D, Sansom OJ, Morton JP, Papa A, Haigh JJ, Nobis M, Timpson P. Monitoring AKT activity and targeting in live tissue and disease contexts using a real-time Akt-FRET biosensor mouse. SCIENCE ADVANCES 2023; 9:eadf9063. [PMID: 37126544 PMCID: PMC10132756 DOI: 10.1126/sciadv.adf9063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Aberrant AKT activation occurs in a number of cancers, metabolic syndrome, and immune disorders, making it an important target for the treatment of many diseases. To monitor spatial and temporal AKT activity in a live setting, we generated an Akt-FRET biosensor mouse that allows longitudinal assessment of AKT activity using intravital imaging in conjunction with image stabilization and optical window technology. We demonstrate the sensitivity of the Akt-FRET biosensor mouse using various cancer models and verify its suitability to monitor response to drug targeting in spheroid and organotypic models. We also show that the dynamics of AKT activation can be monitored in real time in diverse tissues, including in individual islets of the pancreas, in the brown and white adipose tissue, and in the skeletal muscle. Thus, the Akt-FRET biosensor mouse provides an important tool to study AKT dynamics in live tissue contexts and has broad preclinical applications.
Collapse
Affiliation(s)
- James R. W. Conway
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Sean C. Warren
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Young-Kyung Lee
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Andrew T. McCulloch
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Randwick Clinical Campus, Sydney, NSW, Australia
| | - Astrid Magenau
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Victoria Lee
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Xanthe L. Metcalf
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Janett Stoehr
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Katharina Haigh
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | - Lea Abdulkhalek
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Cristian S. Guaman
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Daniel A. Reed
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kendelle J. Murphy
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Brooke A. Pereira
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Pauline Mélénec
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Cecilia Chambers
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Sharissa L. Latham
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Helen Lenthall
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Yuanqing Ma
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Tri Phan
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Anthony M. Joshua
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Stacey Walters
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
| | - Shane T. Grey
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Yan-Chuan Shi
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Lei Zhang
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - David R. Croucher
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Andy Philp
- School of Clinical Medicine, Randwick Clinical Campus, UNSW Sydney, Centre for Healthy Ageing, Centenary Institute, Missenden Road, Sydney, NSW 2050, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Colinda L.G.J. Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - David Herrmann
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Jennifer P. Morton
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Antonella Papa
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Jody J. Haigh
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | - Max Nobis
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
- Intravital Imaging Expertise Center, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Paul Timpson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| |
Collapse
|
32
|
Liang L, Saunders C, Sanossian N. Food, gut barrier dysfunction, and related diseases: A new target for future individualized disease prevention and management. Food Sci Nutr 2023; 11:1671-1704. [PMID: 37051344 PMCID: PMC10084985 DOI: 10.1002/fsn3.3229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 03/09/2023] Open
Abstract
Dysfunction of gut barrier is known as "leaky gut" or increased intestinal permeability. Numerous recent scientific evidences showed the association between gut dysfunction and multiple gastrointestinal tract (GI) and non-GI diseases. Research also demonstrated that food plays a crucial role to cause or remedy gut dysfunction related to diseases. We reviewed recent articles from electronic databases, mainly PubMed. The data were based on animal models, cell models, and human research in vivo and in vitro models. In this comprehensive review, our aim focused on the relationship between dietary factors, intestinal permeability dysfunction, and related diseases. This review synthesizes currently available literature and is discussed in three parts: (a) the mechanism of gut barrier and function, (b) food and dietary supplements that may promote gut health, and food or medication that may alter gut function, and (c) a table that organizes the synthesized information by general mechanisms for diseases related to leaky gut/intestinal permeability and associated dietary influences. With future research, dietary intervention could be a new target for individualized disease prevention and management.
Collapse
Affiliation(s)
- Linda Liang
- University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Nerses Sanossian
- Department of NeurologyMedical School of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
33
|
Hyun YJ, Park SY, Kim JY. The effect of fermented rice germ extracts on the inhibition of glucose uptake in the gastrointestinal tract in vitro and in vivo. Food Sci Biotechnol 2023; 32:371-379. [PMID: 36778085 PMCID: PMC9905455 DOI: 10.1007/s10068-022-01198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
This study aimed to evaluate the effect of fermented rice germ extracts on the inhibition of glucose uptake in the gastrointestinal (GI) tract. Samples were prepared by extracting rice germ fermented with Lactobacillus plantarum with 30% ethanol (RG_30E) or 50% ethanol (RG_50E). Ferulic acid was determined as the active component in the samples. RG_30E significantly inhibited glucose uptake and mRNA expression of GLUT2 and SGLT1 to a larger extent than RG_50E in Caco-2 cells. A single oral administration was performed on C57BL/6 mice to confirm which substrate (glucose, sucrose, or maltose) the sample inhibited absorption of, improving postprandial blood glucose elevation. As a result, RG_30E resulted in significantly lower blood glucose levels and AUC after glucose and sucrose administration. Therefore, fermented rice germ extracted with 30% ethanol regulates glucose uptake through glucose transporters and can be expected to alleviate postprandial hyperglycemia in the GI tract. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01198-6.
Collapse
Affiliation(s)
- Ye Ji Hyun
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Soo-yeon Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
34
|
Zhang B, Pan H, Chen Z, Yin T, Zheng M, Cai L. Twin-bioengine self-adaptive micro/nanorobots using enzyme actuation and macrophage relay for gastrointestinal inflammation therapy. SCIENCE ADVANCES 2023; 9:eadc8978. [PMID: 36812317 PMCID: PMC9946363 DOI: 10.1126/sciadv.adc8978] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/26/2023] [Indexed: 05/28/2023]
Abstract
A wide array of biocompatible micro/nanorobots are designed for targeted drug delivery and precision therapy largely depending on their self-adaptive ability overcoming complex barriers in vivo. Here, we report a twin-bioengine yeast micro/nanorobot (TBY-robot) with self-propelling and self-adaptive capabilities that can autonomously navigate to inflamed sites for gastrointestinal inflammation therapy via enzyme-macrophage switching (EMS). Asymmetrical TBY-robots effectively penetrated the mucus barrier and notably enhanced their intestinal retention using a dual enzyme-driven engine toward enteral glucose gradient. Thereafter, the TBY-robot was transferred to Peyer's patch, where the enzyme-driven engine switched in situ to macrophage bioengine and was subsequently relayed to inflamed sites along a chemokine gradient. Encouragingly, EMS-based delivery increased drug accumulation at the diseased site by approximately 1000-fold, markedly attenuating inflammation and ameliorating disease pathology in mouse models of colitis and gastric ulcers. These self-adaptive TBY-robots represent a safe and promising strategy for the precision treatment of gastrointestinal inflammation and other inflammatory diseases.
Collapse
Affiliation(s)
- Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Ting Yin
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Yang J, van Dijk TH, Koehorst M, Havinga R, de Boer JF, Kuipers F, van Zutphen T. Intestinal Farnesoid X Receptor Modulates Duodenal Surface Area but Does Not Control Glucose Absorption in Mice. Int J Mol Sci 2023; 24:ijms24044132. [PMID: 36835544 PMCID: PMC9961586 DOI: 10.3390/ijms24044132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Bile acids facilitate the intestinal absorption of dietary lipids and act as signalling molecules in the maintenance of metabolic homeostasis. Farnesoid X receptor (FXR) is a bile acid-responsive nuclear receptor involved in bile acid metabolism, as well as lipid and glucose homeostasis. Several studies have suggested a role of FXR in the control of genes regulating intestinal glucose handling. We applied a novel dual-label glucose kinetic approach in intestine-specific FXR-/- mice (iFXR-KO) to directly assess the role of intestinal FXR in glucose absorption. Although iFXR-KO mice showed decreased duodenal expression of hexokinase 1 (Hk1) under obesogenic conditions, the assessment of glucose fluxes in these mice did not show a role for intestinal FXR in glucose absorption. FXR activation with the specific agonist GS3972 induced Hk1, yet the glucose absorption rate remained unaffected. FXR activation increased the duodenal villus length in mice treated with GS3972, while stem cell proliferation remained unaffected. Accordingly, iFXR-KO mice on either chow, short or long-term HFD feeding displayed a shorter villus length in the duodenum compared to wild-type mice. These findings indicate that delayed glucose absorption reported in whole-body FXR-/- mice is not due to the absence of intestinal FXR. Yet, intestinal FXR does have a role in the small intestinal surface area.
Collapse
Affiliation(s)
- Jiufang Yang
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Theo H. van Dijk
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Martijn Koehorst
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Rick Havinga
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
- Correspondence: (F.K.); (T.v.Z.); Tel.: +31-58-288-2132 (F.K.)
| | - Tim van Zutphen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
- Faculty Campus Fryslân, University of Groningen, 8911CE Leeuwarden, The Netherlands
- Correspondence: (F.K.); (T.v.Z.); Tel.: +31-58-288-2132 (F.K.)
| |
Collapse
|
36
|
Begemann K, Heyde I, Witt P, Inderhees J, Leinweber B, Koch CE, Jöhren O, Oelkrug R, Liskiewicz A, Müller TD, Oster H. Rest phase snacking increases energy resorption and weight gain in male mice. Mol Metab 2023; 69:101691. [PMID: 36746332 PMCID: PMC9950950 DOI: 10.1016/j.molmet.2023.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Snacking, i.e., the intake of small amounts of palatable food items, is a common behavior in modern societies, promoting overeating and obesity. Shifting food intake into the daily rest phase disrupts circadian rhythms and is also known to stimulate weight gain. We therefore hypothesized that chronic snacking in the inactive phase may promote body weight gain and that this effect is based on disruption of circadian clocks. METHODS Male mice were fed a daily chocolate snack either during their rest or their active phase and body weight development and metabolic parameters were investigated. Snacking experiments were repeated in constant darkness and in clock-deficient mutant mice to examine the role of external and internal time cues in mediating the metabolic effects of snacking. RESULTS Chronic snacking in the rest phase increased body weight gain and disrupted metabolic circadian rhythms in energy expenditure, body temperature, and locomotor activity. Additionally, these rest phase snacking mice assimilated more energy during the inactive phase. Body weight remained increased in rest phase snacking wildtype mice in constant darkness as well as in clock-deficient mutant mice under a regular light-dark cycle compared to mice snacking in the active phase. Weight gain effects were abolished in clock-deficient mice in constant darkness. CONCLUSIONS Our data suggest that mistimed snacking increases energy resorption and promotes body weight gain. This effect requires a functional circadian clock at least under constant darkness conditions.
Collapse
Affiliation(s)
- Kimberly Begemann
- Institute of Neurobiology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Center of Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| | - Isabel Heyde
- Institute of Neurobiology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany,Center of Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Pia Witt
- Institute of Neurobiology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany,Center of Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Julica Inderhees
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany,Bioanalytic Core Facility, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Brinja Leinweber
- Institute of Neurobiology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany,Center of Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Christiane E. Koch
- Institute of Neurobiology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany,Center of Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Olaf Jöhren
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany,Bioanalytic Core Facility, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Rebecca Oelkrug
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany,Institute for Endocrinology and Diabetes, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany,Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Timo D. Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Center of Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
37
|
Paulussen F, Kulkarni CP, Stolz F, Lescrinier E, De Graeve S, Lambin S, Marchand A, Chaltin P, In't Veld P, Mebis J, Tavernier J, Van Dijck P, Luyten W, Thevelein JM. The β2-adrenergic receptor in the apical membrane of intestinal enterocytes senses sugars to stimulate glucose uptake from the gut. Front Cell Dev Biol 2023; 10:1041930. [PMID: 36699012 PMCID: PMC9869975 DOI: 10.3389/fcell.2022.1041930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
The presence of sugar in the gut causes induction of SGLT1, the sodium/glucose cotransporter in intestinal epithelial cells (enterocytes), and this is accompanied by stimulation of sugar absorption. Sugar sensing was suggested to involve a G-protein coupled receptor and cAMP - protein kinase A signalling, but the sugar receptor has remained unknown. We show strong expression and co-localization with SGLT1 of the β2-adrenergic receptor (β 2-AR) at the enterocyte apical membrane and reveal its role in stimulating glucose uptake from the gut by the sodium/glucose-linked transporter, SGLT1. Upon heterologous expression in different reporter systems, the β 2-AR responds to multiple sugars in the mM range, consistent with estimated gut sugar levels after a meal. Most adrenergic receptor antagonists inhibit sugar signaling, while some differentially inhibit epinephrine and sugar responses. However, sugars did not inhibit binding of I125-cyanopindolol, a β 2-AR antagonist, to the ligand-binding site in cell-free membrane preparations. This suggests different but interdependent binding sites. Glucose uptake into everted sacs from rat intestine was stimulated by epinephrine and sugars in a β 2-AR-dependent manner. STD-NMR confirmed direct physical binding of glucose to the β 2-AR. Oral administration of glucose with a non-bioavailable β 2-AR antagonist lowered the subsequent increase in blood glucose levels, confirming a role for enterocyte apical β 2-ARs in stimulating gut glucose uptake, and suggesting enterocyte β 2-AR as novel drug target in diabetic and obese patients. Future work will have to reveal how glucose sensing by enterocytes and neuroendocrine cells is connected, and whether β 2-ARs mediate glucose sensing also in other tissues.
Collapse
Affiliation(s)
- Frederik Paulussen
- 1Center for Microbiology, VIB, Leuven-Heverlee, Belgium,2Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Chetan P. Kulkarni
- 1Center for Microbiology, VIB, Leuven-Heverlee, Belgium,3Functional Genomics and Proteomics Research Unit, Department of Biology, KU Leuven, Leuven, Belgium
| | - Frank Stolz
- 1Center for Microbiology, VIB, Leuven-Heverlee, Belgium,2Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Eveline Lescrinier
- 4Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Stijn De Graeve
- 1Center for Microbiology, VIB, Leuven-Heverlee, Belgium,2Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Suzan Lambin
- 1Center for Microbiology, VIB, Leuven-Heverlee, Belgium,2Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | | | | | - Peter In't Veld
- 6Department of Pathology, Free University of Brussels, Brussels, Belgium
| | - Joseph Mebis
- 7Department of Pathology, KU Leuven, Flanders, Belgium
| | - Jan Tavernier
- 8Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium,9Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Patrick Van Dijck
- 1Center for Microbiology, VIB, Leuven-Heverlee, Belgium,2Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Walter Luyten
- 3Functional Genomics and Proteomics Research Unit, Department of Biology, KU Leuven, Leuven, Belgium
| | - Johan M. Thevelein
- 1Center for Microbiology, VIB, Leuven-Heverlee, Belgium,2Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium,10NovelYeast bv, Bio-Incubator BIO4, Gaston Geenslaan 3, Leuven-Heverlee,, Belgium,*Correspondence: Johan M. Thevelein,
| |
Collapse
|
38
|
Low-protein diets for broilers: Current knowledge and potential strategies to improve performance and health, and to reduce environmental impact. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Keles U, Ow JR, Kuentzel KB, Zhao LN, Kaldis P. Liver-derived metabolites as signaling molecules in fatty liver disease. Cell Mol Life Sci 2022; 80:4. [PMID: 36477411 PMCID: PMC9729146 DOI: 10.1007/s00018-022-04658-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
Excessive fat accumulation in the liver has become a major health threat worldwide. Unresolved fat deposition in the liver can go undetected until it develops into fatty liver disease, followed by steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Lipid deposition in the liver is governed by complex communication, primarily between metabolic organs. This can be mediated by hormones, organokines, and also, as has been more recently discovered, metabolites. Although how metabolites from peripheral organs affect the liver is well documented, the effect of metabolic players released from the liver during the development of fatty liver disease or associated comorbidities needs further attention. Here we focus on interorgan crosstalk based on metabolites released from the liver and how these molecules act as signaling molecules in peripheral tissues. Due to the liver's specific role, we are covering lipid and bile mechanism-derived metabolites. We also discuss the high sucrose intake associated with uric acid release from the liver. Excessive fat deposition in the liver during fatty liver disease development reflects disrupted metabolic processes. As a response, the liver secretes a variety of signaling molecules as well as metabolites which act as a footprint of the metabolic disruption. In the coming years, the reciprocal exchange of metabolites between the liver and other metabolic organs will gain further importance and will help to better understand the development of fatty liver disease and associated diseases.
Collapse
Affiliation(s)
- Umur Keles
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Katharina Barbara Kuentzel
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Li Na Zhao
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Philipp Kaldis
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden. .,Lund University Diabetes Centre (LUDC), Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden.
| |
Collapse
|
40
|
Barber E, Houghton MJ, Visvanathan R, Williamson G. Measuring key human carbohydrate digestive enzyme activities using high-performance anion-exchange chromatography with pulsed amperometric detection. Nat Protoc 2022; 17:2882-2919. [PMID: 36180531 DOI: 10.1038/s41596-022-00736-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Carbohydrate digestion in the mammalian gastrointestinal tract is catalyzed by α-amylases and α-glucosidases to produce monosaccharides for absorption. Inhibition of these enzymes is the major activity of the drugs acarbose and miglitol, which are used to manage diabetes. Furthermore, delaying carbohydrate digestion via inhibition of α-amylases and α-glucosidases is an effective strategy to blunt blood glucose spikes, a major risk factor for developing metabolic diseases. Here, we present an in vitro protocol developed to accurately and specifically assess the activity of α-amylases and α-glucosidases, including sucrase, maltase and isomaltase. The assay is especially suitable for measuring inhibition by compounds, drugs and extracts, with minimal interference from impurities or endogenous components, because the substrates and digestive products in the enzyme activity assays are quantified directly by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD). Multiple enzyme sources can be used, but here we present the protocol using commercially available human α-amylase to assess starch hydrolysis with maltoheptaose as the substrate, and with brush border sucrase-isomaltase (with maltase, sucrase and isomaltase activities) derived from differentiated human intestinal Caco-2(/TC7) cells to assess hydrolysis of disaccharides. The wet-lab assay takes ~2-5 h depending on the number of samples, and the HPAE-PAD analysis takes 35 min per sample. A full dataset therefore takes 1-3 d and allows detection of subtle changes in enzyme activity with high sensitivity and reliability.
Collapse
Affiliation(s)
- Elizabeth Barber
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, Notting Hill, Victoria, Australia
| | - Michael J Houghton
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, Notting Hill, Victoria, Australia
| | - Rizliya Visvanathan
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, Notting Hill, Victoria, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, Notting Hill, Victoria, Australia.
| |
Collapse
|
41
|
Williamson G. Effects of Polyphenols on Glucose-Induced Metabolic Changes in Healthy Human Subjects and on Glucose Transporters. Mol Nutr Food Res 2022; 66:e2101113. [PMID: 35315210 PMCID: PMC9788283 DOI: 10.1002/mnfr.202101113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Indexed: 12/30/2022]
Abstract
Dietary polyphenols interact with glucose transporters in the small intestine and modulate glucose uptake after food or beverage consumption. This review assesses the transporter interaction in vitro and how this translates to an effect in healthy volunteers consuming glucose. As examples, the apple polyphenol phlorizin inhibits sodium-glucose linked transporter-1; in the intestinal lumen, it is converted to phloretin, a strong inhibitor of glucose transporter-2 (GLUT2), by the brush border digestive enzyme lactase. Consequently, an apple extract rich in phlorizin attenuates blood glucose and insulin in healthy volunteers after a glucose challenge. On the other hand, the olive phenolic, oleuropein, inhibits GLUT2, but the strength of the inhibition is not enough to modulate blood glucose after a glucose challenge in healthy volunteers. Multiple metabolic effects and oxidative stresses after glucose consumption include insulin, incretin hormones, fatty acids, amino acids, and protein markers. However, apart from acute postprandial effects on glucose, insulin, and some incretin hormones, very little is known about the acute effects of polyphenols on these glucose-induced secondary effects. In summary, attenuation of the effect of a glucose challenge in vivo is only observed when polyphenols are strong inhibitors of glucose transporters.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health SciencesMonash UniversityBASE Facility, 264 Ferntree Gully RoadNotting HillVIC 3168Australia
| |
Collapse
|
42
|
Manzoor MF, Arif Z, Kabir A, Mehmood I, Munir D, Razzaq A, Ali A, Goksen G, Coşier V, Ahmad N, Ali M, Rusu A. Oxidative stress and metabolic diseases: Relevance and therapeutic strategies. Front Nutr 2022; 9:994309. [PMID: 36324618 PMCID: PMC9621294 DOI: 10.3389/fnut.2022.994309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Metabolic syndrome (MS) is a prominent cause of death worldwide, posing a threat to the global economy and public health. A mechanism that causes the oxidation of low-density lipoproteins (LDL) is associated with metabolic abnormalities. Various processes are involved in oxidative stress (OS) of lipoprotein. Although the concept of the syndrome has been fiercely debated, this confluence of risk factors is associated with a higher chance of acquiring type 2 diabetes mellitus (T2DM) and atherosclerosis. Insulin resistance has been found to play a significant role in the progression of these metabolism-associated conditions. It causes lipid profile abnormalities, including greater sensitivity to lipid peroxidation, contributing to the increased prevalence of T2DM and atherosclerosis. This review aims to cover the most recent scientific developments in dietary OS, the consequence of metabolic disorders, and their most significant clinical manifestations (T2DM and atherosclerosis). It will also emphasize the effects of dietary approaches in alleviating OS in MS.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zaira Arif
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Asifa Kabir
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Iqra Mehmood
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Danial Munir
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Aqsa Razzaq
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Viorica Coşier
- Genetics and Genetic Engineering Department, Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Nazir Ahmad
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Pakistan
- *Correspondence: Nazir Ahmad
| | - Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Murtaza Ali
| | - Alexandru Rusu
- Genetics and Genetic Engineering Department, Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Alexandru Rusu
| |
Collapse
|
43
|
Jiang X, Yan N, Deng D, Yan C. Structural aspects of the glucose and monocarboxylate transporters involved in the Warburg effect. IUBMB Life 2022; 74:1180-1199. [PMID: 36082803 DOI: 10.1002/iub.2668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Cancer cells shift their glucose catabolism from aerobic respiration to lactic fermentation even in the presence of oxygen, and this is known as the "Warburg effect". To accommodate the high glucose demands and to avoid lactate accumulation, the expression levels of human glucose transporters (GLUTs) and human monocarboxylate transporters (MCTs) are elevated to maintain metabolic homeostasis. Therefore, inhibition of GLUTs and/or MCTs provides potential therapeutic strategies for cancer treatment. Here, we summarize recent advances in the structural characterization of GLUTs and MCTs, providing a comprehensive understanding of their transport and inhibition mechanisms to facilitate further development of anticancer therapies.
Collapse
Affiliation(s)
- Xin Jiang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
44
|
Han D, Zhen H, Liu X, Zulewska J, Yang Z. Organelle 16S rRNA amplicon sequencing enables profiling of active gut microbiota in murine model. Appl Microbiol Biotechnol 2022; 106:5715-5728. [PMID: 35896837 DOI: 10.1007/s00253-022-12083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/02/2022]
Abstract
High-throughput sequencing of ribosomal RNA (rRNA) amplicons has served as a cornerstone in microbiome studies. Despite crucial implication of organelle 16S rRNA measurements to host gut microbial activities, genomic DNA (gDNA) was overwhelmingly targeted for amplicon sequencings. Although gDNA could be a reliable resource for gene existing validation, little information is revealed in regard to the activity of microorganisms owing to the limited changes gDNA undertaken in inactive, dormant, and dead bacteria. We applied both rRNA- and gDNA-derived sequencings on mouse cecal contents. Respective experimental designs were verified to be suitable for nucleic acid (NA) purification. Via benchmarking, mainstream 16S rRNA hypervariable region targets and reference databases were proven adequate for respective amplicon sequencing study. In phylogenetic studies, significant microbial composition differences were observed between two methods. Desulfovibrio spp. (an important group of anaerobic gut microorganisms that has caused analytical difficulties), Pediococcus spp., and Proteobacteria were drastically lower as represented by gDNA-derived compositions, while microbes like Firmicutes were higher as represented by gDNA-derived microbiome compositions. Also, using PICRUSt2 as an example, we illustrated that rRNA-derived sequencing might be more suitable for microbiome function predictions since pathways like sugar metabolism were lower as represented by rRNA-derived results. The findings of this study demonstrated that rRNA-derived amplicon sequencing could improve identification capability of specific gut microorganisms and might be more suitable for in silico microbiome function predictions. Therefore, rRNA-derived amplicon sequencings, preferably coupled with gDNA-derived ones, could be used as a capable tool to unveil active microbial components in host gut. KEY POINTS: • Conventional pipelines were adequate for the respective amplicon sequencing study • Groups, such as Desulfovibrio spp., were differently represented by two methods • Comparative amplicon sequencings could be useful in host active microbiota studies.
Collapse
Affiliation(s)
- Dong Han
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Food Bioengineering, (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongmin Zhen
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xiaoyan Liu
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Justyna Zulewska
- Department of Dairy Science and Quality Management, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Zhennai Yang
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China.
| |
Collapse
|
45
|
Peixoto JAB, Andrade N, Machado S, Costa ASG, Puga H, Oliveira MBPP, Martel F, Alves RC. Valorizing Coffee Silverskin Based on Its Phytochemicals and Antidiabetic Potential: From Lab to a Pilot Scale. Foods 2022; 11:1671. [PMID: 35741869 PMCID: PMC9222947 DOI: 10.3390/foods11121671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023] Open
Abstract
This study investigates the possibility of valorizing coffee silverskin through the recovery of its bioactive compounds using a sustainable extraction method that could be industrially applied. For that, aqueous extracts were prepared using ultrasonic-assisted extraction (laboratorial scale) and, for comparison, a scale-up of the process was developed using the Multi-frequency Multimode Modulated technology. A concentration procedure at the pilot scale was also tested. The three types of extracts obtained were characterized regarding caffeine and chlorogenic acids contents, and the effects on intestinal glucose and fructose uptake (including sugar transporters expression) in human intestinal epithelial (Caco-2) cells were ascertained. The phytochemical contents of the extracts prepared at the laboratory and pilot scale were comparable (caffeine: 27.7 vs. 29.6 mg/g freeze-dried extract; 3-, 4-, and 5-caffeoylquinic acids: 0.19 vs. 0.31, 0.15 vs. 0.42, and 1.04 vs. 1.98 mg/g, respectively; 4- and 5- feruloylquinic acids: 0.39 vs. 0.43 and 1.05 vs. 1.32 mg/g, respectively). Slight differences were noticed according to the extracts preparation steps, but in general, all the extracts promoted significant inhibitions of [1,2-3H(N)]-deoxy-D-glucose and 14C-D-fructose uptake, which resulted mainly from a decrease on the facilitative glucose transporter 2 (GLUT2) and sodium-glucose linked transporter 1 (SGLT1) genes expression but not on the expression of the facilitative glucose transporter 5 (GLUT5) gene. Moreover, a synergistic effect of caffeine and 5-caffeoylquinic acid on sugars uptake was found. The results clearly show that the Multi-frequency Multimode Modulated technology is a viable option to be applied at an industrial level to recover bioactive components from silverskin and obtain extracts with antidiabetic potential that could be used to develop functional food products or dietary supplements.
Collapse
Affiliation(s)
- Juliana A. Barreto Peixoto
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| | - Nelson Andrade
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Susana Machado
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| | - Anabela S. G. Costa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| | - Helder Puga
- CMEMS-UMinho, Department of Mechanical Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal;
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| |
Collapse
|
46
|
Zapater JL, Wicksteed B, Layden BT. Enterocyte HKDC1 Modulates Intestinal Glucose Absorption in Male Mice Fed a High-fat Diet. Endocrinology 2022; 163:6569855. [PMID: 35435980 PMCID: PMC9078327 DOI: 10.1210/endocr/bqac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/24/2022]
Abstract
Hexokinase domain containing protein-1, or HKDC1, is a widely expressed hexokinase that is genetically associated with elevated 2-hour gestational blood glucose levels during an oral glucose tolerance test, suggesting a role for HKDC1 in postprandial glucose regulation during pregnancy. Our earlier studies utilizing mice containing global HKDC1 knockdown, as well as hepatic HKDC1 overexpression and knockout, indicated that HKDC1 is important for whole-body glucose homeostasis in aging and pregnancy, through modulation of glucose tolerance, peripheral tissue glucose utilization, and hepatic energy storage. However, our knowledge of the precise role(s) of HKDC1 in regulating postprandial glucose homeostasis under normal and diabetic conditions is lacking. Since the intestine is the main entry portal for dietary glucose, here we have developed an intestine-specific HKDC1 knockout mouse model, HKDC1Int-/-, to determine the in vivo role of intestinal HKDC1 in regulating glucose homeostasis. While no overt glycemic phenotype was observed, aged HKDC1Int-/- mice fed a high-fat diet exhibited an increased glucose excursion following an oral glucose load compared with mice expressing intestinal HKDC1. This finding resulted from glucose entry via the intestinal epithelium and is not due to differences in insulin levels, enterocyte glucose utilization, or reduction in peripheral skeletal muscle glucose uptake. Assessment of intestinal glucose transporters in high-fat diet-fed HKDC1Int-/- mice suggested increased apical GLUT2 expression in the fasting state. Taken together, our results indicate that intestinal HKDC1 contributes to the modulation of postprandial dietary glucose transport across the intestinal epithelium under conditions of enhanced metabolic stress, such as high-fat diet.
Collapse
Affiliation(s)
- Joseph L Zapater
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Medical Research Service, Chicago, IL 60612, USA
| | - Barton Wicksteed
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Brian T Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Medical Research Service, Chicago, IL 60612, USA
- Correspondence: Brian T. Layden, MD, PhD, 835 South Wolcott Avenue, Suite 625E (M/C 640), Chicago, IL, 60612, USA.
| |
Collapse
|
47
|
Tang X, Xiong K. Epidermal growth factor activates EGFR/AMPK signalling to up-regulate the expression of SGLT1 and GLUT2 to promote intestinal glucose absorption in lipopolysaccharide challenged IPEC-J2 cells and piglets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2073832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| |
Collapse
|
48
|
Moonwiriyakit A, Pathomthongtaweechai N, Steinhagen PR, Chantawichitwong P, Satianrapapong W, Pongkorpsakol P. Tight junctions: from molecules to gastrointestinal diseases. Tissue Barriers 2022; 11:2077620. [PMID: 35621376 PMCID: PMC10161963 DOI: 10.1080/21688370.2022.2077620] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Intestinal epithelium functions as a tissue barrier to prevent interaction between the internal compartment and the external milieu. Intestinal barrier function also determines epithelial polarity for the absorption of nutrients and the secretion of waste products. These vital functions require strong integrity of tight junction proteins. In fact, intestinal tight junctions that seal the paracellular space can restrict mucosal-to-serosal transport of hostile luminal contents. Tight junctions can form both an absolute barrier and a paracellular ion channel. Although defective tight junctions potentially lead to compromised intestinal barrier and the development and progression of gastrointestinal (GI) diseases, no FDA-approved therapies that recover the epithelial tight junction barrier are currently available in clinical practice. Here, we discuss the impacts and regulatory mechanisms of tight junction disruption in the gut and related diseases. We also provide an overview of potential therapeutic targets to restore the epithelial tight junction barrier in the GI tract.
Collapse
Affiliation(s)
- Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Peter R Steinhagen
- Department of Hepatology and Gastroenterology, Charité Medical School, Berlin, Germany
| | | | | | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
49
|
Liu Y, Han X, Cai M, Jin S, Yan Z, Lu H, Chen Q. Jianpi Qinghua Fomula alleviates insulin resistance via restraining of MAPK pathway to suppress inflammation of the small intestine in DIO mice. BMC Complement Med Ther 2022; 22:129. [PMID: 35534842 PMCID: PMC9088054 DOI: 10.1186/s12906-022-03595-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Jianpi Qinghua Fomula (JPQHF), a clinically proven prescription,has been applied to cure insulin resistance(IR) and type 2 diabetes (T2DM) for more than 20 years. Here, we will unravel the underlying molecular mechanisms relevant to the therapeutic actions of JPQHF. Methods High-fat(HF)diet-induced obesity(DIO)mouse were established in our research, along with insulin resistance. After the administration of JPQHF 5 or 6 weeks, the parameters of the glucose and lipid metabolism were measured. Flow cytometry and Luminex were utilized to assess the inflammation in small intestine,whilst Western blot was used to determine the relative expression levels of the MAPK pathway-related proteins. The glucose and lipid transporter of small intestine was assessed by immunofluorescence and ELISA, and the expression of insulin signaling pathway was detected by Western blot. Results The metabolic phenotypes of DIO mouse were ameliorated after 6-week oral administration of JPQHF; Meanwhile,JPQHF downregulated levels of IL-1β,IL-6, TNF-α and IFN-γ but upregulated the ratio of M2/M1 macrophages in the small intestine. The elevated expressions of p-P38 MAPK/P38 MAPK、p-JNK/JNK and p-ERK1/2/ERK1/2 were reversed by JPQHF. Moreover, JPQHF enhanced expression of PI3K,p-AKT/AKT, p-IRS1/ IRS1, p-IRS2/ IRS2 and apoB48 in small intestine, and facilitated the translocation of GLUT2 to the basal side of small intestine epithelial cells. Conclusion JPQHF alleviates insulin resistance in DIO mice, and this effect may be associated with its restraining of inflammation of small intestine via attenuating MAPK pathway, and then diminishes small intestinal glucose and lipid absorption. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03595-0.
Collapse
Affiliation(s)
- Yahua Liu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xu Han
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjie Cai
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shenyi Jin
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zihui Yan
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao Lu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qingguang Chen
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
50
|
Elebring E, Wallenius V, Casselbrant A, Docherty NG, le Roux CW, Marschall HU, Fändriks L. A Fatty Diet Induces a Jejunal Ketogenesis Which Inhibits Local SGLT1-Based Glucose Transport via an Acetylation Mechanism—Results from a Randomized Cross-Over Study between Iso-Caloric High-Fat versus High-Carbohydrate Diets in Healthy Volunteers. Nutrients 2022; 14:nu14091961. [PMID: 35565929 PMCID: PMC9100393 DOI: 10.3390/nu14091961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/27/2022] Open
Abstract
Background and aims: Insights into the nature of gut adaptation after different diets enhance the understanding of how food modifications can be used to treat type 2 diabetes and obesity. The aim was to understand how diets, enriched in fat or carbohydrates, affect glucose absorption in the human healthy jejunum, and what mechanisms are involved. Methods: Fifteen healthy subjects received, in randomised order and a crossover study design, two weeks of iso-caloric high-fat diet (HFD) and high-carbohydrate diet (HCD). Following each dietary period, jejunal mucosa samples were retrieved and assessed for protein expression using immunofluorescence and western blotting. Functional characterisation of epithelial glucose transport was assessed ex vivo using Ussing chambers. Regulation of SGLT1 through histone acetylation was studied in vitro in Caco-2 and human jejunal enteroid monolayer cultures. Results: HFD, compared to HCD, decreased jejunal Ussing chamber epithelial glucose transport and the expression of apical transporters for glucose (SGLT1) and fructose (GLUT5), while expression of the basolateral glucose transporter GLUT2 was increased. HFD also increased protein expression of the ketogenesis rate-limiting enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS2) and decreased the acetylation of histone 3 at lysine 9 (H3K9ac). Studies in Caco-2 and human jejunal enteroid monolayer cultures indicated a ketogenesis-induced activation of sirtuins, in turn decreasing SGLT1 expression. Conclusion: Jejunal glucose absorption is decreased by a fat-enriched diet, via a ketogenesis-induced alteration of histone acetylation responsible for the silencing of SGLT1 transcription. The work relates to a secondary outcome in ClinicalTrials.gov (NCT02088853).
Collapse
Affiliation(s)
- Erik Elebring
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, University of Gothenburg, SE41345 Gothenburg, Sweden; (E.E.); (V.W.); (A.C.)
| | - Ville Wallenius
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, University of Gothenburg, SE41345 Gothenburg, Sweden; (E.E.); (V.W.); (A.C.)
- Department of Surgery, Sahlgrenska University Hospital, SE41345 Gothenburg, Sweden
| | - Anna Casselbrant
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, University of Gothenburg, SE41345 Gothenburg, Sweden; (E.E.); (V.W.); (A.C.)
| | - Neil G. Docherty
- Metabolic Medicine, School of Medicine, Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (N.G.D.); (C.W.l.R.)
| | - Carel W. le Roux
- Metabolic Medicine, School of Medicine, Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (N.G.D.); (C.W.l.R.)
| | - Hanns-Ulrich Marschall
- Institute of Medicine, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, SE41345 Gothenburg, Sweden;
- Department of Medicine, Sahlgrenska University Hospital, SE41345 Gothenburg, Sweden
| | - Lars Fändriks
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, University of Gothenburg, SE41345 Gothenburg, Sweden; (E.E.); (V.W.); (A.C.)
- Department of Surgery, Sahlgrenska University Hospital, SE41345 Gothenburg, Sweden
- Correspondence: ; Tel.: +46-313424123
| |
Collapse
|