1
|
Aleem AM, Mitchener MM, Kingsley PJ, Rouzer CA, Marnett LJ. Temporal dissociation of COX-2-dependent arachidonic acid and 2-arachidonoylglycerol metabolism in RAW264.7 macrophages. J Lipid Res 2024; 65:100615. [PMID: 39098584 PMCID: PMC11401187 DOI: 10.1016/j.jlr.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Cyclooxygenase-2 converts arachidonic acid to prostaglandins (PGs) and the endocannabinoid, 2-arachidonoylglycerol (2-AG), to PG glyceryl esters (PG-Gs). The physiological function of PG biosynthesis has been extensively studied, but the importance of the more recently discovered PG-G synthetic pathway remains incompletely defined. This disparity is due in part to a lack of knowledge of the physiological conditions under which PG-G biosynthesis occurs. We have discovered that RAW264.7 macrophages stimulated with Kdo2-lipid A (KLA) produce primarily PGs within the first 12 h followed by robust PG-G synthesis between 12 h and 24 h. We suggest that the amount of PG-Gs quantified is less than actually synthesized, because PG-Gs are subject to a significant level of hydrolysis during the time course of synthesis. Inhibition of cytosolic phospholipase A2 by giripladib does not accelerate PG-G synthesis, suggesting the differential time course of PG and PG-G synthesis is not due to the competition between arachidonic acid and 2-AG. The late-phase PG-G formation is accompanied by an increase in the level of 2-AG and a concomitant decrease in 18:0-20:4 diacylglycerol (DAG). Inhibition of DAG lipases by KT-172 decreases the levels of 2-AG and PG-Gs, indicating that the DAG-lipase pathway is involved in delayed 2-AG metabolism/PG-G synthesis. These results demonstrate that physiologically significant levels of PG-Gs are produced by activated RAW264.7 macrophages well after the production of PGs plateaus.
Collapse
Affiliation(s)
- Ansari M Aleem
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michelle M Mitchener
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Philip J Kingsley
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Carol A Rouzer
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lawrence J Marnett
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
2
|
Nakayama S, Yoda E, Yamashita S, Takamatsu Y, Suzuki Y, Kondo Y, Hara S. Knockdown of iPLA 2γ enhances cisplatin-induced apoptosis by increasing ROS-dependent peroxidation of mitochondrial phospholipids in bladder cancer cells. Free Radic Biol Med 2024; 220:301-311. [PMID: 38734266 DOI: 10.1016/j.freeradbiomed.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Cisplatin (CDDP) is a platinum-based drug with anti-cancer activity and is widely used as a standard therapy for bladder cancer. It is well known that CDDP causes cell death by increasing the generation of reactive oxygen species (ROS) and lipid peroxidation, but the mechanism of its anti-cancer effects has not been fully elucidated. There are still some problems such as chemoresistance in CDDP therapy. In the present study, we found the expression of Ca2+-independent phospholipase A2γ (iPLA2γ), which has been reported to regulate cellular redox homeostasis by inhibiting lipid peroxide accumulation, in human bladder cancer tissues. Thus, we investigated the effect of iPLA2γ knockdown on CDDP-induced bladder cancer cell death. As a result, we found that iPLA2γ knockdown significantly enhanced CDDP-induced apoptosis, intracellular and mitochondrial ROS production, cytochrome c release and caspase activation in bladder cancer cells. Moreover, mitochondrial membrane potential was decreased and peroxidation of mitochondrial phospholipids was increased by iPLA2γ knockdown. It was also shown that co-treatment of bromoenol lactone, an iPLA2 inhibitor, increased CDDP-induced apoptosis. These results indicated that iPLA2γ plays an important role in protecting bladder cancer cells from CDDP-induced apoptosis, and that iPLA2γ inhibitors might represent a novel strategy in CDDP-based multi-drug therapy.
Collapse
Affiliation(s)
- Satoko Nakayama
- Department of Urology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Saki Yamashita
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yuka Takamatsu
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yasutomo Suzuki
- Department of Urology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yukihiro Kondo
- Department of Urology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
3
|
Xie Y, Ella KM, Gibbs TC, Yohannan ME, Knoepp SM, Balijepalli P, Meier GP, Meier KE. Characterization of Lysophospholipase D Activity in Mammalian Cell Membranes. Cells 2024; 13:520. [PMID: 38534364 PMCID: PMC10969092 DOI: 10.3390/cells13060520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Lysophosphatidic acid (LPA) is a lipid mediator that binds to G-protein-coupled receptors, eliciting a wide variety of responses in mammalian cells. Lyso-phospholipids generated via phospholipase A2 (PLA2) can be converted to LPA by a lysophospholipase D (lyso-PLD). Secreted lyso-PLDs have been studied in more detail than membrane-localized lyso-PLDs. This study utilized in vitro enzyme assays with fluorescent substrates to examine LPA generation in membranes from multiple mammalian cell lines (PC12, rat pheochromocytoma; A7r5, rat vascular smooth muscle; Rat-1, rat fibroblast; PC-3, human prostate carcinoma; and SKOV-3 and OVCAR-3, human ovarian carcinoma). The results show that membranes contain a lyso-PLD activity that generates LPA from a fluorescent alkyl-lyso-phosphatidylcholine, as well as from naturally occurring acyl-linked lysophospholipids. Membrane lyso-PLD and PLD activities were distinguished by multiple criteria, including lack of effect of PLD2 over-expression on lyso-PLD activity and differential sensitivities to vanadate (PLD inhibitor) and iodate (lyso-PLD inhibitor). Based on several lines of evidence, including siRNA knockdown, membrane lyso-PLD is distinct from autotaxin, a secreted lyso-PLD. PC-3 cells express GDE4 and GDE7, recently described lyso-PLDs that localize to membranes. These findings demonstrate that membrane-associated lyso-D activity, expressed by multiple mammalian cell lines, can contribute to LPA production.
Collapse
Affiliation(s)
- Yuhuan Xie
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Krishna M. Ella
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Terra C. Gibbs
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Marianne E. Yohannan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stewart M. Knoepp
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Pravita Balijepalli
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA;
| | - G. Patrick Meier
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kathryn E. Meier
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA;
| |
Collapse
|
4
|
Agafonova A, Cosentino A, Romano IR, Giurdanella G, D’Angeli F, Giuffrida R, Lo Furno D, Anfuso CD, Mannino G, Lupo G. Molecular Mechanisms and Therapeutic Implications of Human Pericyte-like Adipose-Derived Mesenchymal Stem Cells in an In Vitro Model of Diabetic Retinopathy. Int J Mol Sci 2024; 25:1774. [PMID: 38339053 PMCID: PMC10855418 DOI: 10.3390/ijms25031774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The blood-retinal barrier (BRB) is strongly compromised in diabetic retinopathy (DR) due to the detachment of pericytes (PCs) from retinal microvessels, resulting in increased permeability and impairment of the BRB. Western blots, immunofluorescence and ELISA were performed on adipose mesenchymal stem cells (ASCs) and pericyte-like (P)-ASCs by co-cultured human retinal endothelial cells (HRECs) under hyperglycemic conditions (HG), as a model of DR. Our results demonstrated that: (a) platelet-derived growth factor receptor (PDGFR) and its activated form were more highly expressed in monocultured P-ASCs than in ASCs, and this expression increased when co-cultured with HRECs under high glucose conditions (HG); (b) the transcription factor Nrf2 was more expressed in the cytoplasmic fraction of ASCs and in the P-ASC nuclear fraction, under normal glucose and, even more, under HG conditions; (c) cytosolic phospholipase A2 activity and prostaglandin E2 release, stimulated by HG, were significantly reduced in P-ASCs co-cultured with HRECs; (d) HO-1 protein content was significantly higher in HG-P-ASCs/HRECs than P-ASCs/HRECs; and (e) VEGF-A levels in media from HG-co-cultures were reduced in P-ASCs/HRECs with respect to ASCs/HRECs. The data obtained highlighted the potential of autologous differentiated ASCs in future clinical applications based on cell therapy to counteract the damage induced by DR.
Collapse
Affiliation(s)
- Aleksandra Agafonova
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.A.); (A.C.); (I.R.R.); (R.G.); (G.L.)
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.A.); (A.C.); (I.R.R.); (R.G.); (G.L.)
| | - Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.A.); (A.C.); (I.R.R.); (R.G.); (G.L.)
| | | | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.A.); (A.C.); (I.R.R.); (R.G.); (G.L.)
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.A.); (A.C.); (I.R.R.); (R.G.); (G.L.)
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.A.); (A.C.); (I.R.R.); (R.G.); (G.L.)
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy;
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.A.); (A.C.); (I.R.R.); (R.G.); (G.L.)
| |
Collapse
|
5
|
Endesh N, Chuntharpursat‐Bon E, Revill C, Yuldasheva NY, Futers TS, Parsonage G, Humphreys N, Adamson A, Morley LC, Cubbon RM, Prasad KR, Foster R, Lichtenstein L, Beech DJ. Independent endothelial functions of PIEZO1 and TRPV4 in hepatic portal vein and predominance of PIEZO1 in mechanical and osmotic stress. Liver Int 2023; 43:2026-2038. [PMID: 37349903 PMCID: PMC10946873 DOI: 10.1111/liv.15646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND & AIMS PIEZO1 and TRPV4 are mechanically and osmotically regulated calcium-permeable channels. The aim of this study was to determine the relevance and relationship of these channels in the contractile tone of the hepatic portal vein, which experiences mechanical and osmotic variations as it delivers blood to the liver from the intestines, gallbladder, pancreas and spleen. METHODS Wall tension was measured in freshly dissected portal veins from adult male mice, which were genetically unmodified or modified for either a non-disruptive tag in native PIEZO1 or endothelial-specific PIEZO1 deletion. Pharmacological agents were used to activate or inhibit PIEZO1, TRPV4 and associated pathways, including Yoda1 and Yoda2 for PIEZO1 and GSK1016790A for TRPV4 agonism, respectively. RESULTS PIEZO1 activation leads to nitric oxide synthase- and endothelium-dependent relaxation of the portal vein. TRPV4 activation causes contraction, which is also endothelium-dependent but independent of nitric oxide synthase. The TRPV4-mediated contraction is suppressed by inhibitors of phospholipase A2 and cyclooxygenases and mimicked by prostaglandin E2 , suggesting mediation by arachidonic acid metabolism. TRPV4 antagonism inhibits the effect of agonising TRPV4 but not PIEZO1. Increased wall stretch and hypo-osmolality inhibit TRPV4 responses while lacking effects on or amplifying PIEZO1 responses. CONCLUSIONS The portal vein contains independently functioning PIEZO1 channels and TRPV4 channels in the endothelium, the pharmacological activation of which leads to opposing effects of vessel relaxation (PIEZO1) and contraction (TRPV4). In mechanical and osmotic strain, the PIEZO1 mechanism dominates. Modulators of these channels could present important new opportunities for manipulating liver perfusion and regeneration in disease and surgical procedures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Neil Humphreys
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Antony Adamson
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | | | | | - K. Raj Prasad
- Department of Hepatobiliary and Transplant SurgerySt James's University HospitalLeedsUK
| | | | | | | |
Collapse
|
6
|
Jayachandra K, Gowda MDM, Rudresha GV, Manjuprasanna VN, Urs AP, Nandana MB, Bharatha M, Jameel NM, Vishwanath BS. Inhibition of sPLA 2 enzyme activity by cell-permeable antioxidant EUK-8 and downregulation of p38, Akt, and p65 signals induced by sPLA 2 in inflammatory mouse paw edema model. J Cell Biochem 2023; 124:294-307. [PMID: 36585945 DOI: 10.1002/jcb.30366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/24/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
The arachidonic acid (AA) metabolic pathway, plays a vital role in the production of eicosanoids by the action of pro-inflammatory secretory phospholipase A2 (PLA2 ). Release of eicosanoids is known to be involved in many inflammatory diseases. Identification of the inhibitory molecules of this AA pathway enzyme along with the regulation of intracellular signaling cascades may be a finer choice to develop as a powerful anti-inflammatory drug. In this regard, we have screened few cell-permeable antioxidant molecules Tempo, Mito-TEMPO, N,N'-Bis(salicylideneamino)ethane-manganese(II) (EUK)-134, and EUK-8 against pro-inflammatory sPLA2 s. Among these, we found EUK-8 is a potent inhibitor with its IC50 value ranges 0.7-2.0 µM for sPLA2 s isolated from different sources. Furthermore, docking studies confirm the strong binding of EUK-8 towards sPLA2 . In vivo effect of EUK-8 was studied in HSF-sPLA2 -induced edema in mouse paw model. In addition to neutralizing the edema, EUK-8 significantly reduces the phosphorylation level of inflammatory proteins such as p38 member of MAPK pathway, Akt, and p65 along with the suppression of pro-inflammatory cytokine (interleukin-6) and chemokine (CXCL1) in edematous tissue. This shows that EUK-8 not only inhibits the sPLA2 activity, it also plays an important role in the regulation of sPLA2 -induced cell signaling cascades. Apart from the sPLA2 inhibition, we also examine the regulatory actions of EUK-8 with other downstream enzymes of AA pathway such as 5-LOX assay in human polymorphonuclear leukocytes (PMNs) and COX-2 expression in carrageenan-λ induced paw edema. Here EUK-8 significantly inhibits 5-LOX enzyme activity and downregulates COX-2 expression. These data indicate that EUK-8 found to be a promising multitargeted inhibitory molecule toward inflammatory pathway. In conclusion, mitochondrial targeted antioxidant EUK-8 is not only the powerful antioxidant, also a potent anti-inflammatory molecule and may be a choice of molecule for pharmacological applications.
Collapse
Affiliation(s)
- Krishnegowda Jayachandra
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - M D Milan Gowda
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Gotravalli V Rudresha
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Amog P Urs
- Comprehensive Cancer Centre, The Ohio State University, Columbus, Ohio, USA
| | | | - Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Noor Mohamed Jameel
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| |
Collapse
|
7
|
Suzuki H, Noguchi T, Matsugu N, Suzuki A, Kimura S, Onishi M, Kosaka M, Miyazato P, Morita E, Ebina H. Safety and immunogenicity of parvovirus B19 virus-like particle vaccine lacking phospholipase A2 activity. Vaccine 2022; 40:6100-6106. [PMID: 36114131 DOI: 10.1016/j.vaccine.2022.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/14/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Parvovirus B19 (B19) belongs to the Erythroparvovirus genus and is known to cause the fifth disease in children. Primary infection of pregnant women is associated with a high risk of hydrops fetalis and stillbirth due to severe fetal anemia. Virus-like particle (VLP) vaccine candidates for B19 have been developed, although none have been approved so far. The B19 phospholipase A2 domain (B19 PLA2), located in the VP1 unique region, is believed to be associated with adverse inflammatory reactions, and previous effective attempts to improve this vaccine modality inserted a mutation to impair the PLA2 activity of VLPs. In this study, we designed VLPs with a deletion mutant of PLA2 (⊿PLA2 B19 VLP), devoid of PLA2 activity, and confirmed their immunogenicity and safe use in vivo. These results were supported by the lack of histological inflammatory reactions at the site of immunization or the production of IL-6 in ⊿PLA2 B19 VLP-immunized mice, that were observed in mice immunized with B19 VLPs. CD4+ T cells from mice vaccinated with VLPs and B19-seropositive human samples were not activated by B19 PLA2 stimulation, suggesting that the B19 PLA2 domain does not constitute a major CD4+ T cell epitope. Most importantly, the ⊿PLA2 B19 VLPs induced neutralizing antibodies against B19, in levels similar to those found in B19-seropositive human samples, indicating that they could be used as a safe and effective vaccine candidate against B19.
Collapse
Affiliation(s)
- Hidehiko Suzuki
- Virus vaccine group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Takafumi Noguchi
- Virus vaccine group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Noriko Matsugu
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Akio Suzuki
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Sakika Kimura
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Misa Onishi
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Mitsuyo Kosaka
- Virus vaccine group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Paola Miyazato
- Virus vaccine group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Hirotaka Ebina
- Virus vaccine group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan; Virus vaccine group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
8
|
Whalin JG, Liu L, Rankin SA, Zhang W, Richards MP. Color stability and lipid oxidation in pork sausage as affected by rosemary extract and phospholipase A
2
: A possible role for depletion of neutral lipid hydroperoxides. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James G. Whalin
- Department of Animal and Dairy Science, Meat Science and Animal Biologics Discovery Program University of Wisconsin‐Madison Madison Wisconsin USA
| | - Ling Liu
- Department of Animal and Dairy Science, Meat Science and Animal Biologics Discovery Program University of Wisconsin‐Madison Madison Wisconsin USA
| | - Scott A. Rankin
- Department of Food Science University of Wisconsin‐Madison Madison Wisconsin USA
| | - Wenjing Zhang
- Department of Animal and Dairy Science, Meat Science and Animal Biologics Discovery Program University of Wisconsin‐Madison Madison Wisconsin USA
| | - Mark P. Richards
- Department of Animal and Dairy Science, Meat Science and Animal Biologics Discovery Program University of Wisconsin‐Madison Madison Wisconsin USA
| |
Collapse
|
9
|
Tian XY, Xing JW, Zheng QQ, Gao PF. 919 Syrup Alleviates Postpartum Depression by Modulating the Structure and Metabolism of Gut Microbes and Affecting the Function of the Hippocampal GABA/Glutamate System. Front Cell Infect Microbiol 2021; 11:694443. [PMID: 34490139 PMCID: PMC8417790 DOI: 10.3389/fcimb.2021.694443] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022] Open
Abstract
Postpartum depression (PPD) is a mental disorder that affects pregnant women around the world, with serious consequences for mothers, families, and children. Its pathogenesis remains unclear, and medications for treating PPD that can be used during lactation remain to be identified. 919 syrup (919 TJ) is a Chinese herbal medicine that has been shown to be beneficial in the treatment of postpartum depression in both clinical and experimental studies. The mechanism of action of 919 TJ is unclear. 919 syrup is ingested orally, making the potential interaction between the drug and the gut microbiome impossible to ignore. We therefore hypothesized that 919 syrup could improve the symptoms of postpartum depression by affecting the structure and function of the intestinal flora, thereby altering hippocampal metabolism. We compared changes in hippocampal metabolism, fecal metabolism, and intestinal microflora of control BALB/c mice, mice with induced untreated PPD, and mice with induced PPD treated with 919 TJ, and found that 4-aminobutyric acid (GABA) in the hippocampus corresponded with PPD behaviors. Based on changes in GABA levels, multiple key gut bacterial species (Mucispirillum schaedleri, Bifidobacterium pseudolongum, Desulfovibrio piger, Alloprevotella tannerae, Bacteroides sp.2.1.33B and Prevotella sp. CAG:755) were associated with PPD. Metabolic markers that may represent the function of the intestinal microbiota in mice with PPD were identified (Met-Arg, urocanic acid, thioetheramide-PC, L-pipecolic acid, and linoleoyl ethanolamide). The relationship between these factors is not a simple one-to-one correspondence, but more likely a network of staggered functions. We therefore believe that the composition and function of the entire intestinal flora should be emphasized in research studying the gut and PPD, rather than changes in the abundance of individual bacterial species. The introduction of this concept of “GutBalance” may help clarify the relationship between gut bacteria and systemic disease.
Collapse
Affiliation(s)
- Xin-Yun Tian
- Department of Traditional Chinese Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jing-Wei Xing
- Department of Traditional Chinese Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Qiao-Qi Zheng
- Department of Traditional Chinese Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Peng-Fei Gao
- Department of Traditional Chinese Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
10
|
Amunugama K, Pike DP, Ford DA. The lipid biology of sepsis. J Lipid Res 2021; 62:100090. [PMID: 34087197 PMCID: PMC8243525 DOI: 10.1016/j.jlr.2021.100090] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Sepsis, defined as the dysregulated immune response to an infection leading to organ dysfunction, is one of the leading causes of mortality around the globe. Despite the significant progress in delineating the underlying mechanisms of sepsis pathogenesis, there are currently no effective treatments or specific diagnostic biomarkers in the clinical setting. The perturbation of cell signaling mechanisms, inadequate inflammation resolution, and energy imbalance, all of which are altered during sepsis, are also known to lead to defective lipid metabolism. The use of lipids as biomarkers with high specificity and sensitivity may aid in early diagnosis and guide clinical decision making. In addition, identifying the link between specific lipid signatures and their role in sepsis pathology may lead to novel therapeutics. In this review, we discuss the recent evidence on dysregulated lipid metabolism both in experimental and human sepsis focused on bioactive lipids, fatty acids, and cholesterol as well as the enzymes regulating their levels during sepsis. We highlight not only their potential roles in sepsis pathogenesis but also the possibility of using these respective lipid compounds as diagnostic and prognostic biomarkers of sepsis.
Collapse
Affiliation(s)
- Kaushalya Amunugama
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel P Pike
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Papadopoulos S, Kazepidou E, Antonelou MH, Leondaritis G, Tsapinou A, Koulouras VP, Avgeropoulos A, Nakos G, Lekka ME. Secretory Phospholipase A 2-IIA Protein and mRNA Pools in Extracellular Vesicles of Bronchoalveolar Lavage Fluid from Patients with Early Acute Respiratory Distress Syndrome: A New Perception in the Dissemination of Inflammation? Pharmaceuticals (Basel) 2020; 13:ph13110415. [PMID: 33238426 PMCID: PMC7700412 DOI: 10.3390/ph13110415] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023] Open
Abstract
Secretory phospholipase-IIA A2 (sPLA2-IIA) is expressed in a variety of cell types under inflammatory conditions. Its presence in the bronchoalveolar lavage (BAL) fluid of patients with acute respiratory distress syndrome (ARDS) is associated with the severity of the injury. Exosomal type extracellular vesicles, (EVs), are recognized to perform intercellular communication. They may alter the immune status of recipient target cells through cargo shuttling. In this work, we characterized the exosomal type EVs isolated from BAL fluid of patients with early and late ARDS as compared to control/non-ARDS patients, through morphological (confocal and electron microscopy) and biochemical (dynamic light scattering, qRT-PCR, immunoblotting) approaches. We provide evidence for the presence of an sPLA2-IIA-carrying EV pool that coprecipitates with exosomes in the BAL fluid of patients with ARDS. PLA2G2A mRNA was present in all the samples, although more prominently expressed in early ARDS. However, the protein was found only in EVs from early phase ARDS. Under both forms, sPLA2-IIA might be involved in inflammatory responses of recipient lung cells during ARDS. The perception of the association of sPLA2-IIA to the early diagnosis of ARDS or even with a mechanism of development and propagation of lung inflammation can help in the adoption of appropriate and innovative therapeutic strategies.
Collapse
Affiliation(s)
- Stylianos Papadopoulos
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece; (S.P.); (E.K.); (A.T.)
| | - Eleftheria Kazepidou
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece; (S.P.); (E.K.); (A.T.)
| | - Marianna H. Antonelou
- Section of Cell Biology & Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis, 15784 Athens, Greece;
| | - George Leondaritis
- Laboratory of Pharmacology, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece;
| | - Alexia Tsapinou
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece; (S.P.); (E.K.); (A.T.)
| | - Vasilios P. Koulouras
- Department of Intensive Care Medicine, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (V.P.K.); (G.N.)
| | | | - George Nakos
- Department of Intensive Care Medicine, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (V.P.K.); (G.N.)
| | - Marilena E. Lekka
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece; (S.P.); (E.K.); (A.T.)
- Correspondence: ; Tel.: +30-6972247374
| |
Collapse
|
12
|
Hu SB, Zou Q, Lv X, Zhou RL, Niu X, Weng C, Chen F, Fan YW, Deng ZY, Li J. 9t18:1 and 11t18:1 activate the MAPK pathway to regulate the expression of PLA2 and cause inflammation in HUVECs. Food Funct 2020; 11:649-661. [PMID: 31895396 DOI: 10.1039/c9fo01982k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
trans fatty acids (TFAs) have been reported to promote vascular diseases mainly by promoting apoptosis and inflammation of vascular endothelial cells. However, it has been reported in recent years that elaidic acid (9t18:1) and vaccenic acid (11t18:1) may have different effects on vascular health. This study investigated the effects of 9t18:1 and 11t18:1 on human umbilical vein endothelial cell (HUVEC) function and the possible mechanism of inflammation by analyzing the changes in the phospholipid composition and the relationship between phospholipase A2 (PLA2) and MAPK pathway. Here we found that the effect of 11t18:1 on cell viability, membrane damage and cellular inflammation was significantly lower than that of 9t18:1 (p < 0.05). And 9t18:1 and 11t18:1 had different effects on phospholipid composition. Both 9t18:1 and 11t18:1 significantly increased the protein expression of PLA2. Moreover, the MAPK pathway regulated the expression of PLA2, inflammatory cytokines and cyclooxygenase-2 (COX-2) and the secretion of prostaglandin E2 (PGE2) in HUVECs induced by 9t18:1 and 11t18:1. In conclusion, 9t18:1 and 11t18:1 activated the MAPK pathway which regulated the expression of PLA2 to cause inflammation in HUVECs.
Collapse
Affiliation(s)
- Sheng-Ben Hu
- State Key Lab of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Peng Z, Chang Y, Fan J, Ji W, Su C. Phospholipase A2 superfamily in cancer. Cancer Lett 2020; 497:165-177. [PMID: 33080311 DOI: 10.1016/j.canlet.2020.10.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Phospholipase A2 enzymes (PLA2s) comprise a superfamily that is generally divided into six subfamilies known as cytosolic PLA2s (cPLA2s), calcium-independent PLA2s (iPLA2s), secreted PLA2s (sPLA2s), lysosomal PLA2s, platelet-activating factor (PAF) acetylhydrolases, and adipose specific PLA2s. Each subfamily consists of several isozymes that possess PLA2 activity. The first three PLA2 subfamilies play important roles in inflammation-related diseases and cancer. In this review, the roles of well-studied enzymes sPLA2-IIA, cPLA2α and iPLA2β in carcinogenesis and cancer development were discussed. sPLA2-IIA seems to play conflicting roles and can act as a tumor suppressor or a tumor promoter according to the cancer type, but cPLA2α and iPLA2β play protumorigenic role in most cancers. The mechanisms of PLA2-mediated signal transduction and crosstalk between cancer cells and endothelial cells in the tumor microenvironment are described. Moreover, the mechanisms by which PLA2s mediate lipid reprogramming and glycerophospholipid remodeling in cancer cells are illustrated. PLA2s as the upstream regulators of the arachidonic acid cascade are generally high expressed and activated in various cancers. Therefore, they can be considered as potential pharmacological targets and biomarkers in cancer. The detailed information summarized in this review may aid in understanding the roles of PLA2s in cancer, and provide new clues for the development of novel agents and strategies for tumor prevention and treatment.
Collapse
Affiliation(s)
- Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Yanxin Chang
- Department of Biliary Tract Surgery IV, Eastern Hepatobiliary Surgical Hospital, Navy Military Medical University, Shanghai, 200438, China.
| | - Jianhui Fan
- Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, 350025, Fujian Province, China.
| | - Weidan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
14
|
Giurdanella G, Lupo G, Gennuso F, Conti F, Furno DL, Mannino G, Anfuso CD, Drago F, Salomone S, Bucolo C. Activation of the VEGF-A/ERK/PLA2 Axis Mediates Early Retinal Endothelial Cell Damage Induced by High Glucose: New Insight from an In Vitro Model of Diabetic Retinopathy. Int J Mol Sci 2020; 21:7528. [PMID: 33065984 PMCID: PMC7589177 DOI: 10.3390/ijms21207528] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 12/18/2022] Open
Abstract
Early blood retinal barrier (BRB) dysfunction induced by hyperglycemia was related to increased pro-inflammatory activity of phospholipase A2 (PLA2) and the upregulation of vascular endothelial growth factor A (VEGF-A). Here, we tested the role of VEGF-A in high glucose (HG)-induced damage of human retinal endothelial cells (HRECs) mediated by Ca++-dependent (cPLA2) and Ca++-independent (iPLA2) PLA2s. HRECs were treated with normal glucose (5 mM, NG) or high glucose (25 mM, HG) for 48 h with or without the VEGF-trap Aflibercept (Afl, 40 µg/mL), the cPLA2 inhibitor arachidonoyl trifluoromethyl ketone (AACOCF3; 15 µM), the iPLA2 inhibitor bromoenol lactone (BEL; 5 µM), or VEGF-A (80 ng/mL). Both Afl and AACOCF3 prevented HG-induced damage (MTT and LDH release), impairment of angiogenic potential (tube-formation), and expression of VEGF-A mRNA. Furthermore, Afl counteracted HG-induced increase of phospho-ERK and phospho-cPLA2 (immunoblot). VEGF-A in HG-medium increased glucose toxicity, through upregulation of phospho-ERK, phospho-cPLA2, and iPLA2 (about 55%, 45%, and 50%, respectively); immunocytochemistry confirmed the activation of these proteins. cPLA2 knockdown by siRNA entirely prevented cell damage induced by HG or by HG plus VEGF-A, while iPLA2 knockdown produced a milder protective effect. These data indicate that VEGF-A mediates the early glucose-induced damage in retinal endothelium through the involvement of ERK1/2/PLA2 axis activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, via S.Sofia 97, 95123 Catania, Italy; (G.G.); (G.L.); (F.G.); (F.C.); (D.L.F.); (G.M.); (C.D.A.); (F.D.); (C.B.)
| | | |
Collapse
|
15
|
De Vita S, Terracciano S, Bruno I, Chini MG. From Natural Compounds to Bioactive Molecules through NMR and
In Silico
Methodologies. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Simona De Vita
- Department of Pharmacy University of Salerno Via Giovanni Paolo II, n°132 84084 Fisciano (SA) Italy
| | - Stefania Terracciano
- Department of Pharmacy University of Salerno Via Giovanni Paolo II, n°132 84084 Fisciano (SA) Italy
| | - Ines Bruno
- Department of Pharmacy University of Salerno Via Giovanni Paolo II, n°132 84084 Fisciano (SA) Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory University of Molise C.da Fonte Lappone‐ 86090 Pesche (IS) Italy
| |
Collapse
|
16
|
Khalid Z, Almaghrabi O. Mutational analysis on predicting the impact of high-risk SNPs in human secretary phospholipase A2 receptor (PLA2R1). Sci Rep 2020; 10:11750. [PMID: 32678193 PMCID: PMC7366643 DOI: 10.1038/s41598-020-68696-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/24/2020] [Indexed: 11/09/2022] Open
Abstract
PLA2R1 is a transmembrane glycoprotein that acts as an endogenous ligand which stimulates the processes including cell proliferation and cell migration. The SNPs in PLA2R1 is associated with idiopathic membranous nephropathy which is an autoimmune kidney disorder. The present study aimed to explore the structure-function analysis of high risk SNPs in PLA2R1 by using 12 different computational tools. First the functional annotation of SNPs were carried out by sequence based tools which were further subjected to evolutionary conservation analysis. Those SNPs which were predicted as deleterious in both categories were further considered for structure based analysis. The resultant SNPs were C1096S, C545S, C664S, F1257L, F734S, I1174T, I1114T, P177S, P384S, W1198G, W1328G, W692C, W692L, W962R, Y499H. One functional domain of PLA2R1 is already modelled in PDB (6JLI), the full 3D structure of the protein was predicted using I-TASSER homology modelling tool. The stability analysis, structure superimposition, RMSD calculation and docking studies were carried out. The structural analysis predicted four mutations F734S, F1246L, I1174T, W1198G as damaging to the structure of the protein. All these mutations are occurring at the conserved region of CTL domain hence are more likely to abolish the function of the protein. Up to the best of our knowledge, this is the first study that provides in-depth and in-silico analysis of deleterious mutations on structure and function of PLA2R1.
Collapse
Affiliation(s)
- Zoya Khalid
- Computational Biology Research Lab, Department of Computer Science, National University of Computing and Emerging Sciences, NUCES-FAST, Islamabad, Pakistan.
| | - Omar Almaghrabi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Zhang Q, Fang RH, Gao W, Zhang L. A Biomimetic Nanoparticle to “Lure and Kill” Phospholipase A2. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qiangzhe Zhang
- Department of NanoEngineering Chemical Engineering Program, and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Ronnie H. Fang
- Department of NanoEngineering Chemical Engineering Program, and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Weiwei Gao
- Department of NanoEngineering Chemical Engineering Program, and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Liangfang Zhang
- Department of NanoEngineering Chemical Engineering Program, and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
18
|
Zhang Q, Fang RH, Gao W, Zhang L. A Biomimetic Nanoparticle to "Lure and Kill" Phospholipase A2. Angew Chem Int Ed Engl 2020; 59:10461-10465. [PMID: 32203634 DOI: 10.1002/anie.202002782] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Indexed: 12/15/2022]
Abstract
Inhibition of phospholipase A2 (PLA2) has long been considered for treating various diseases associated with an elevated PLA2 activity. However, safe and effective PLA2 inhibitors remain unavailable. Herein, we report a biomimetic nanoparticle design that enables a "lure and kill" mechanism designed for PLA2 inhibition (denoted "L&K-NP"). The L&K-NPs are made of polymeric cores wrapped with modified red blood cell membrane with two inserted key components: melittin and oleyloxyethyl phosphorylcholine (OOPC). Melittin acts as a PLA2 attractant that works together with the membrane lipids to "lure" in-coming PLA2 for attack. Meanwhile, OOPC acts as inhibitor that "kills" PLA2 upon enzymatic attack. Both compounds are integrated into the L&K-NP structure, which voids toxicity associated with free molecules. In the study, L&K-NPs effectively inhibit PLA2-induced hemolysis. In mice administered with a lethal dose of venomous PLA2, L&K-NPs also inhibit hemolysis and confer a significant survival benefit. Furthermore, L&K-NPs show no obvious toxicity in mice. and the design provides a platform technology for a safe and effective anti-PLA2 approach.
Collapse
Affiliation(s)
- Qiangzhe Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
19
|
Tilvi S, Khan S, Majik MS. γ-Hydroxybutenolide Containing Marine Natural Products and Their Synthesis: A Review. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191021122810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:γ-Hydroxybutenolides (γ-HB) is an important structural core found in many bioactive marine natural products (MNPS). The γ-HB core containing NPS served as an inspiration to medicinal chemists to undertake designing of the new synthetic strategies to construct γ-HB core. Subsequently, it further results in the development of novel physiological and therapeutic agents. The most notable example includes manoalides, cacospongionolides, petrosaspongioide M and dysidiolide from marine sponges possessing anti-inflammatory properties. γ-HB containing MNPS were known to possess various pharmacological properties such as antimicrobial (acantholide B), cytotoxic (acantholide A-E, spongianolide A), inhibitors of secretory phospholipase A2 (cladocorans A and B), BACE inhibitors (ianthellidone G), etc. Moreover, the γ-HB moiety was explored as antifouling agents as well. Owing to their numerous biological activities and attractive molecular structures, there are lots of advances in the synthetic methodology of these compounds. This review gives the account on isolation and biological studies of MNPS with γ-HB skeleton as a core unit. Furthermore, the synthesis of selective γ-HB containing bioactive MNPS like manoalide, secomanoalide, cacospongionolides, luffarielloide and dysidiolide were highlighted in the article.
Collapse
Affiliation(s)
- Supriya Tilvi
- Bio-Organic Chemistry Laboratory, Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Safia Khan
- Bio-Organic Chemistry Laboratory, Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Mahesh S. Majik
- Department of Chemistry, Dnyanprassarak Mandal’s College and Research Center, Assagao, Goa, India
| |
Collapse
|
20
|
Zaworra M, Nauen R. New approaches to old problems: Removal of phospholipase A 2 results in highly active microsomal membranes from the honey bee, Apis mellifera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:68-76. [PMID: 31685199 DOI: 10.1016/j.pestbp.2019.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Over the last 50 years numerous studies were published by insect toxicologists using native microsomal membrane preparations in order to investigate in vitro cytochrome P450-(P450) mediated oxidative metabolism of xenobiotics, including insecticides. Whereas the preparation of active microsomal membranes from many pest insect species is straightforward, their isolation from honey bees, Apis mellifera (Hymenoptera: Apidae) remained difficult, if not impossible, due to the presence of a yet unidentified endogenous inhibitory factor released during abdominal gut membrane isolation. Thus hampering in vitro toxicological studies on microsomal oxidative phase 1 metabolism of xenobiotics, including compounds of ecotoxicological concern. The use of microsomal membranes rather than individually expressed P450s offers advantages and allows to develop a better understanding of phase 1 driven metabolic fate of foreign compounds. Here we biochemically investigated the problems associated with the isolation of active honey bee microsomes and developed a method resulting in highly active native microsomal preparations from adult female worker abdomens. This was achieved by removal of the abdominal venom gland sting complex prior to microsomal membrane preparation. Molecular sieve chromatography of the venom sac content leads to the identification of phospholipase A2 as the enzyme responsible for the immediate inhibition of cytochrome P450 activity in microsomal preparations. The substrate specificity of functional honey bee microsomes was investigated with different fluorogenic substrates, and revealed a strong preference for coumarin over resorufin derivatives. Furthermore we were able to demonstrate the metabolism of insecticides by honey bee microsomes using an approach coupled to LC-MS/MS analysis of hydroxylated metabolites. Our work provides access to a new and simple in vitro tool to study honey bee phase 1 metabolism of xenobiotics utilising the entire range of microsomal cytochrome P450s.
Collapse
Affiliation(s)
- Marion Zaworra
- Bayer AG, Crop Science Division, R&D, Alfred Nobel Str. 50, D-40789 Monheim, Germany; University of Bonn, INRES, Molecular Phytomedicine, Karlrobert-Kreiten-Str. 13, D-53115 Bonn, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel Str. 50, D-40789 Monheim, Germany.
| |
Collapse
|
21
|
Kaur M, Dubey A, Khatri M, Sehrawat S. Secretory PLA2 specific single domain antibody neutralizes Russell viper venom induced cellular and organismal toxicity. Toxicon 2019; 172:15-18. [PMID: 31689425 DOI: 10.1016/j.toxicon.2019.10.240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/28/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
Despite continued destruction of human lives by snakebites, appreciable improvements in immunotherapies have not been made. We selected and characterized venom-specific single domain antibodies (sdAbs) from a constructed phage display library of camelid variable region of heavy chain of the heavy chain antibodies (VHHs). Secretory phospholipase A2-specific sdAbs neutralized venom-induced toxicity in vitro and in vivo. Such monoclonal sdAbs could serve as an alternative to help manage snakebites to save lives.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81 SAS Nagar Knowledge City, PO Manauli, 140306, Mohali, Punjab, India
| | - Abhishek Dubey
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81 SAS Nagar Knowledge City, PO Manauli, 140306, Mohali, Punjab, India
| | - Madhu Khatri
- University Institute of Engineering and Technology, Panjab University Chandigarh, 160014, India
| | - Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81 SAS Nagar Knowledge City, PO Manauli, 140306, Mohali, Punjab, India.
| |
Collapse
|
22
|
Christerson U, Keita ÅV, Winberg ME, Söderholm JD, Gustafson-Svärd C. Possible Involvement of Intracellular Calcium-Independent Phospholipase A 2 in the Release of Secretory Phospholipases from Mast Cells-Increased Expression in Ileal Mast Cells of Crohn's Disease. Cells 2019; 8:672. [PMID: 31277247 PMCID: PMC6678282 DOI: 10.3390/cells8070672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022] Open
Abstract
Increased activity of secretory phospholipases A2 (sPLA2) type-II was previously observed in ileum of Crohn's disease (CD). Our aims were to explore the involvement of calcium-independent (i)PLA2β in the release of sPLA2s from the human mast cell (MC) line (HMC-1) and investigate expressions of cytosolic (c)PLA2α, iPLA2β, sPLA2-IIA and sPLA2-V in MCs of CD ileum. The release of sPLA2 was investigated in HMC-1 by immunocytochemistry and ELISA. The expression intensities of PLA2s in mucosal MCs, and the proportion of PLA2-positive MCs, were investigated in normal ileum and in ileum from patients with CD by immunohistochemistry. The calcium ionophore-stimulated release of sPLA2-IIA and sPLA2-V from HMC-1 was reduced by the iPLA2-inhibitor bromoenol lactone. All four PLA2s were detectable in mucosal MCs, both in normal ileum and in CD, but the proportion of iPLA2β-containing mucosal MCs and the expression intensity of sPLA2-IIA was increased in CD. Results indicate that iPLA2β is involved in the secretion of sPLA2s from HMC-1, and suggest that iPLA2β-mediated release of sPLA2 from intestinal MCs may contribute to CD pathophysiology. Ex vivo studies on isolated mucosal mast cells are however needed to clarify the precise role of MC PLA2s in the inflammatory processes of CD.
Collapse
Affiliation(s)
- Ulrika Christerson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 391 82 Kalmar, Sweden
| | - Åsa V Keita
- Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics & Oncology, Linköping University, 581 85 Linköping, Sweden
| | - Martin E Winberg
- Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics & Oncology, Linköping University, 581 85 Linköping, Sweden
| | - Johan D Söderholm
- Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics & Oncology, Linköping University, 581 85 Linköping, Sweden
- Department of Surgery, County Council of Östergötland, 581 85 Linköping, Sweden
| | - Christina Gustafson-Svärd
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 391 82 Kalmar, Sweden
| |
Collapse
|
23
|
Akingbade OES, Gibson C, Kalaria RN, Mukaetova-Ladinska EB. Platelets: Peripheral Biomarkers of Dementia? J Alzheimers Dis 2019; 63:1235-1259. [PMID: 29843245 DOI: 10.3233/jad-180181] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dementia continues to be the most burdening neurocognitive disorder, having a negative impact on the lives of millions. The search for biomarkers to improve the clinical diagnosis of dementia is ongoing, with the focus on effective use of readily accessible peripheral markers. In this review, we concentrate on platelets as biomarkers of dementia and analyze their potential as easily-accessible clinical biomarkers for various subtypes of dementia. Current platelet protein biomarkers that have been investigated for their clinical utility in the diagnosis of dementia, in particular Alzheimer's disease, include amyloid-β protein precursor (AβPP), the AβPP secretases (BACE1 and ADAM10), α-synuclein, tau protein, serotonin, cholesterol, phospholipases, clusterin, IgG, surface receptors, MAO-B, and coated platelets. Few of them, i.e., platelet tau, AβPP (particularly with regards to coated platelets) and secreted ADAM10 and BACE1 show the most promise to be taken forward into clinical setting to diagnose dementia. Aside from protein biomarkers, changes in factors such as mean platelet volume have the potential to play a very specific role in both the dementia diagnosis and prognosis. This review raises a number of research questions for consideration before application of the above biomarkers to routine clinical setting. It is without doubt that there is a need for more clarification on the effects of dementia on platelet morphology and protein content before these changes can be clinically applied as dementia biomarkers and explored further in differentiating distinct dementia subtypes.
Collapse
Affiliation(s)
- Oluwatomi E S Akingbade
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK.,School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Claire Gibson
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Raj N Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Elizabeta B Mukaetova-Ladinska
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK.,Evington Centre, Leicester General Hospital, Leicester, UK
| |
Collapse
|
24
|
Vogel H, Kamitz A, Hallahan N, Lebek S, Schallschmidt T, Jonas W, Jähnert M, Gottmann P, Zellner L, Kanzleiter T, Damen M, Altenhofen D, Burkhardt R, Renner S, Dahlhoff M, Wolf E, Müller TD, Blüher M, Joost HG, Chadt A, Al-Hasani H, Schürmann A. A collective diabetes cross in combination with a computational framework to dissect the genetics of human obesity and Type 2 diabetes. Hum Mol Genet 2019; 27:3099-3112. [PMID: 29893858 PMCID: PMC6097155 DOI: 10.1093/hmg/ddy217] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
To explore the genetic determinants of obesity and Type 2 diabetes (T2D), the German Center for Diabetes Research (DZD) conducted crossbreedings of the obese and diabetes-prone New Zealand Obese mouse strain with four different lean strains (B6, DBA, C3H, 129P2) that vary in their susceptibility to develop T2D. Genome-wide linkage analyses localized more than 290 quantitative trait loci (QTL) for obesity, 190 QTL for diabetes-related traits and 100 QTL for plasma metabolites in the outcross populations. A computational framework was developed that allowed to refine critical regions and to nominate a small number of candidate genes by integrating reciprocal haplotype mapping and transcriptome data. The efficiency of the complex procedure was demonstrated for one obesity QTL. The genomic interval of 35 Mb with 502 annotated candidate genes was narrowed down to six candidates. Accordingly, congenic mice retained the obesity phenotype owing to an interval that contains three of the six candidate genes. Among these the phospholipase PLA2G4A exhibited an elevated expression in adipose tissue of obese human subjects and is therefore a critical regulator of the obesity locus. Together, our broad and complex approach demonstrates that combined- and comparative-cross analysis exhibits improved mapping resolution and represents a valid tool for the identification of disease genes.
Collapse
Affiliation(s)
- Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Anne Kamitz
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Nicole Hallahan
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Sandra Lebek
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Tanja Schallschmidt
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Lisa Zellner
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Timo Kanzleiter
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Mareike Damen
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Delsi Altenhofen
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Ralph Burkhardt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig D-04303, Germany
| | - Simone Renner
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, D-81377 Munich, Germany
| | - Maik Dahlhoff
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, D-81377 Munich, Germany
| | - Eckhard Wolf
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, D-81377 Munich, Germany
| | - Timo D Müller
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich D-80333, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig D-04103, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Alexandra Chadt
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal D-14558, Germany
| |
Collapse
|
25
|
Varone A, Mariggiò S, Patheja M, Maione V, Varriale A, Vessichelli M, Spano D, Formiggini F, Lo Monte M, Brancati N, Frucci M, Del Vecchio P, D'Auria S, Flagiello A, Iannuzzi C, Luini A, Pucci P, Banci L, Valente C, Corda D. A signalling cascade involving receptor-activated phospholipase A 2, glycerophosphoinositol 4-phosphate, Shp1 and Src in the activation of cell motility. Cell Commun Signal 2019; 17:20. [PMID: 30823936 PMCID: PMC6396489 DOI: 10.1186/s12964-019-0329-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 12/28/2022] Open
Abstract
Background Shp1, a tyrosine-phosphatase-1 containing the Src-homology 2 (SH2) domain, is involved in inflammatory and immune reactions, where it regulates diverse signalling pathways, usually by limiting cell responses through dephosphorylation of target molecules. Moreover, Shp1 regulates actin dynamics. One Shp1 target is Src, which controls many cellular functions including actin dynamics. Src has been previously shown to be activated by a signalling cascade initiated by the cytosolic-phospholipase A2 (cPLA2) metabolite glycerophosphoinositol 4-phosphate (GroPIns4P), which enhances actin polymerisation and motility. While the signalling cascade downstream Src has been fully defined, the mechanism by which GroPIns4P activates Src remains unknown. Methods Affinity chromatography, mass spectrometry and co-immunoprecipitation studies were employed to identify the GroPIns4P-interactors; among these Shp1 was selected for further analysis. The specific Shp1 residues interacting with GroPIns4P were revealed by NMR and validated by site-directed mutagenesis and biophysical methods such as circular dichroism, isothermal calorimetry, fluorescence spectroscopy, surface plasmon resonance and computational modelling. Morphological and motility assays were performed in NIH3T3 fibroblasts. Results We find that Shp1 is the direct cellular target of GroPIns4P. GroPIns4P directly binds to the Shp1-SH2 domain region (with the crucial residues being Ser 118, Arg 138 and Ser 140) and thereby promotes the association between Shp1 and Src, and the dephosphorylation of the Src-inhibitory phosphotyrosine in position 530, resulting in Src activation. As a consequence, fibroblast cells exposed to GroPIns4P show significantly enhanced wound healing capability, indicating that GroPIns4P has a stimulatory role to activate fibroblast migration. GroPIns4P is produced by cPLA2 upon stimulation by diverse receptors, including the EGF receptor. Indeed, endogenously-produced GroPIns4P was shown to mediate the EGF-induced cell motility. Conclusions This study identifies a so-far undescribed mechanism of Shp1/Src modulation that promotes cell motility and that is dependent on the cPLA2 metabolite GroPIns4P. We show that GroPIns4P is required for EGF-induced fibroblast migration and that it is part of a cPLA2/GroPIns4P/Shp1/Src cascade that might have broad implications for studies of immune-inflammatory response and cancer. ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0329-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessia Varone
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Manpreet Patheja
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Vincenzo Maione
- Magnetic Resonance Centre (CERM), University of Florence, 50019, Sesto Fiorentino, Italy
| | - Antonio Varriale
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.,Institute of Food Science, National Research Council, Via Roma 64, 83100, Avellino, Italy
| | - Mariangela Vessichelli
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Daniela Spano
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Fabio Formiggini
- Italian Institute of Technology, Centre for Advanced Biomaterials for Health Care at CRIB, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Matteo Lo Monte
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Nadia Brancati
- Institute of High Performance Computing and Networking, National Research Council, Via P. Castellino 111, 80131, Naples, Italy
| | - Maria Frucci
- Institute of High Performance Computing and Networking, National Research Council, Via P. Castellino 111, 80131, Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Sabato D'Auria
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.,Institute of Food Science, National Research Council, Via Roma 64, 83100, Avellino, Italy
| | - Angela Flagiello
- CEINGE Advanced Biotechnology, Via G. Salvatore 486, 80145, Naples, Italy
| | - Clara Iannuzzi
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.,Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. de Crecchio 7, 80138, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Piero Pucci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy.,CEINGE Advanced Biotechnology, Via G. Salvatore 486, 80145, Naples, Italy
| | - Lucia Banci
- Magnetic Resonance Centre (CERM), University of Florence, 50019, Sesto Fiorentino, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.
| |
Collapse
|
26
|
Elgazar AA, Knany HR, Ali MS. Insights on the molecular mechanism of anti-inflammatory effect of formula from Islamic traditional medicine: An in-silico study. J Tradit Complement Med 2018; 9:353-363. [PMID: 31453132 PMCID: PMC6702150 DOI: 10.1016/j.jtcme.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/09/2023] Open
Abstract
Background and aim Traditional medicine is an important source for drug discovery. However, many challenges face the scientific community to develop novel drugs from it. To investigate the rationale behind the medical legacy of centuries of precious knowledge from traditional medicine, we aimed at performing virtual screening to identify potential leads from the middle-age textbook, The Canon of Medicine. Experimental procedure A database of chemical constituents of plants mentioned within the book was built and docked against different molecular targets associated with inflammation such as phospholipase A2, p38 alpha mitogen activated protein kinase, cyclooxygenase-2 and leukotriene B4 dehydrogenase, after that literature survey was done to determine the consistency of traditional uses and molecular docking results with the current knowledge obtained from previous studies and reports. Results and conclusion The in-silico study revealed the ability of several chemical constituents, in the plants under investigation, to bind effectively to different targets associated with inflammation, which was consistent with previous reports, indicating that Islamic traditional medicine can be considered as a reliable promising source for developing new anti-inflammatory agents with low toxicity and minimal side effects.
Collapse
Affiliation(s)
- Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Egypt
| | - Hamada Ramadan Knany
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Egypt
| | - Mohammed Soliman Ali
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Egypt
| |
Collapse
|
27
|
Pazderka CW, Oliver B, Murray M, Rawling T. Omega-3 Polyunsaturated Fatty Acid Derived Lipid Mediators and their Application in Drug Discovery. Curr Med Chem 2018; 27:1670-1689. [PMID: 30259807 DOI: 10.2174/0929867325666180927100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022]
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play crucial and often opposing regulatory roles in health and in pathological conditions. n-3 and n-6 PUFA undergo biotransformation to parallel series of lipid mediators that are potent modulators of many cellular processes. A wide range of biological actions have been attributed to lipid mediators derived from n-6 PUFA, and these mediators have served as lead compounds in the development of numerous clinically approved drugs, including latanoprost (Xalatan: Pfizer), which is listed on the WHO Model List of Essential Medicines. n-3 PUFA-derived mediators have received less attention, in part because early studies suggested that n-3 PUFA act simply as competitive substrates for biotransformation enzymes and decrease the formation of n-6 PUFA-derived lipid mediators. However, more recent studies suggest that n-3 PUFA-derived mediators are biologically important in their own right. It is now emerging that many n-3 PUFA-derived lipid mediators have potent and diverse activities that are distinct from their n-6 counterparts. These findings provide new opportunities for drug discovery. Herein, we review the biosynthesis of n-3 PUFA-derived lipid mediators and highlight their biological actions that may be exploited for drug development. Lastly, we provide examples of medicinal chemistry research that has utilized n-3 PUFA-derived lipid mediators as novel lead compounds in drug design.
Collapse
Affiliation(s)
- Curtis W Pazderka
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Brian Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Michael Murray
- Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
28
|
Shin M, Ware TB, Lee HC, Hsu KL. Lipid-metabolizing serine hydrolases in the mammalian central nervous system: endocannabinoids and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:907-921. [PMID: 30905349 DOI: 10.1016/j.bbalip.2018.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
Abstract
The metabolic serine hydrolases hydrolyze ester, amide, or thioester bonds found in broad small molecule substrates using a conserved activated serine nucleophile. The mammalian central nervous system (CNS) express a diverse repertoire of serine hydrolases that act as (phospho)lipases or lipid amidases to regulate lipid metabolism and signaling vital for normal neurocognitive function and CNS integrity. Advances in genomic DNA sequencing have provided evidence for the role of these lipid-metabolizing serine hydrolases in neurologic, psychiatric, and neurodegenerative disorders. This review briefly summarizes recent progress in understanding the biochemical and (patho)physiological roles of these lipid-metabolizing serine hydrolases in the mammalian CNS with a focus on serine hydrolases involved in the endocannabinoid system. The development and application of specific inhibitors for an individual serine hydrolase, if available, are also described. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- Myungsun Shin
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - Timothy B Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - Hyeon-Cheol Lee
- Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States; Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, United States.
| |
Collapse
|
29
|
Yang H, Suh DH, Kim DH, Jung ES, Liu KH, Lee CH, Park CY. Metabolomic and lipidomic analysis of the effect of pioglitazone on hepatic steatosis in a rat model of obese Type 2 diabetes. Br J Pharmacol 2018; 175:3610-3625. [PMID: 29968381 PMCID: PMC6086983 DOI: 10.1111/bph.14434] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Thiazolidinediones, acting as PPAR-γ ligands, reduce hepatic steatosis in humans and animals. However, the underlying mechanism of this action remains unclear. The purpose of this study was to investigate changes in hepatic metabolites and lipids in response to treatment with the thiazolidinedione pioglitazone in an animal model of obese Type 2 diabetes. EXPERIMENTAL APPROACH Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats were orally administered either vehicle (control) or pioglitazone (30 mg·kg-1 ) and fed a high-fat diet (60% kcal fat) for 12 weeks. Hepatic metabolites were analysed via metabolomic and lipidomic analyses. Gene expression and PLA2 activity were analysed in livers from pioglitazone-treated and control rats. KEY RESULTS OLETF rats that received pioglitazone showed decreased fat accumulation and improvement of lipid profiles in the liver compared to control rats. Pioglitazone treatment significantly altered levels of hepatic metabolites, including free fatty acids, lysophosphatidylcholines and phosphatidylcholines, in the liver. In addition, pioglitazone significantly reduced the expression of genes involved in hepatic de novo lipogenesis and fatty acid uptake and transport, whereas genes related to fatty acid oxidation were up-regulated. Gene expression and enzyme activity of PLA2 , which hydrolyzes phosphatidylcholines to release lysophosphatidylcholines and free fatty acids, were significantly decreased in the livers of pioglitazone-treated rats compared to control rats. CONCLUSIONS AND IMPLICATIONS Our results present evidence for the ameliorative effect of pioglitazone on hepatic steatosis, largely due to the regulation of lipid metabolism, including fatty acids, lysophosphatidylcholines, phosphatidylcholines and related gene-expression patterns.
Collapse
Affiliation(s)
- Hyekyung Yang
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Dae Hee Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eun Sung Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Kwang-Hyeon Liu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Cheol-Young Park
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
30
|
Phospholipases during membrane dynamics in malaria parasites. Int J Med Microbiol 2017; 308:129-141. [PMID: 28988696 DOI: 10.1016/j.ijmm.2017.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
Plasmodium parasites, the causative agents of malaria, display a well-regulated lipid metabolism required to ensure their survival in the human host as well as in the mosquito vector. The fine-tuning of lipid metabolic pathways is particularly important for the parasites during the rapid erythrocytic infection cycles, and thus enzymes involved in lipid metabolic processes represent prime targets for malaria chemotherapeutics. While plasmodial enzymes involved in lipid synthesis and acquisition have been studied in the past, to date not much is known about the roles of phospholipases for proliferation and transmission of the malaria parasite. These phospholipid-hydrolyzing esterases are crucial for membrane dynamics during host cell infection and egress by the parasite as well as for replication and cell signaling, and thus they are considered important virulence factors. In this review, we provide a comprehensive bioinformatic analysis of plasmodial phospholipases identified to date. We further summarize previous findings on the lipid metabolism of Plasmodium, highlight the roles of phospholipases during parasite life-cycle progression, and discuss the plasmodial phospholipases as potential targets for malaria therapy.
Collapse
|
31
|
One-pot, four-component synthesis of spiroindoloquinazoline derivatives as phospholipase inhibitors. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Torres-Carro R, Isla MI, Thomas-Valdes S, Jiménez-Aspee F, Schmeda-Hirschmann G, Alberto MR. Inhibition of pro-inflammatory enzymes by medicinal plants from the Argentinean highlands (Puna). JOURNAL OF ETHNOPHARMACOLOGY 2017; 205:57-68. [PMID: 28433637 DOI: 10.1016/j.jep.2017.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Human groups in the Argentinean Andes highlands (Puna) selected native plants as anti-inflammatory agents. The indications of use are mainly to relieve pain, as infusions, ethanolic extracts or plasters. AIM OF THE STUDY The objective of the study was to assess the effect of hydroalcoholic extracts from native highland plants as anti-inflammatory agents according to the traditional indications of use. The chemical profile of the three most active species was analyzed by HPLC-ESI-MS to get an insight into the constituents and the effects observed according to the ethnopharmacological information. MATERIALS AND METHODS Hydroalcoholic extracts from 13 Argentinean Puna plants used as anti-inflammatory were evaluated as inhibitors of the pro-inflammatory enzymes phospholipase A2 (sPLA2), lipoxygenase (LOX), hyaluronidase, and for their capacity to stabilize red blood cells membrane. In addition, the extracts were evaluated to determine their reducing power, iron chelating capacity and ABTS•+ radical scavenging effect. The chemical profiles of the most active species were analyzed by HPLC-ESI-MS. RESULTS Among the species investigated, Ephedra multiflora was the most active as LOX inhibitor (IC50:132µg/mL), by reducing the non-heme iron group and by scavenging radicals. The IC50 values of the reference compounds caffeic acid and naproxen were 57.0 and 14.0µg/mL, respectively. Parastrephia lucida showed the highest sPLA2 inhibitory effect (63% of inhibition at 200µg/mL). Under the same experimental conditions, the IC50 of the reference compound acetylsalicylic acid was 65±1µg/mL. Tessaria absinthioides exhibited the best inhibition towards hyaluronidase with an IC50 of 93.2±4.3µg/mL. Under the same experimental conditions, the reference compounds quercetin and indomethacin presented IC50 values of 340.0±17.0 and 502.0±10.0µg/mL, respectively. Among the most active species, 13 compounds were tentatively identified by HPLC-ESI-MS in E. multiflora and P. lucida, and 12 compounds in T. absinthioides. The constituents included caffeoyl- and feruloylquinic acid derivatives, flavonoids, simple phenolics and sesquiterpene glycosides. CONCLUSIONS Six out of the 13 species investigated showed a moderate to strong effect towards the enzyme sPLA2 (>40% inhibition at 200µg/mL) while three species presented a strong activity against LOX with IC50<250µg/mL and three were very active against hyaluronidase. Most of the crude drug extracts were able to stabilize the red blood cells membrane, preventing their lysis. The compounds identified in the extracts explain, at least in part, the activity found in the samples. The effect observed for the most active species supports their traditional use as anti-inflammatory agents. However, more studies should be undertaken to disclose the potential of the Puna plants as anti-inflammatory crude drugs.
Collapse
Affiliation(s)
- Romina Torres-Carro
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV, CONICET-UNT), San Lorenzo 1469, 4000 San Miguel de Tucumán, Argentina
| | - María Inés Isla
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV, CONICET-UNT), San Lorenzo 1469, 4000 San Miguel de Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000 San Miguel de Tucumán, Argentina
| | - Samanta Thomas-Valdes
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, 3460000 Talca, Chile
| | - Felipe Jiménez-Aspee
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, 3460000 Talca, Chile
| | - Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, 3460000 Talca, Chile
| | - María Rosa Alberto
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV, CONICET-UNT), San Lorenzo 1469, 4000 San Miguel de Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000 San Miguel de Tucumán, Argentina.
| |
Collapse
|
33
|
McNamara RK, Szeszko PR, Smesny S, Ikuta T, DeRosse P, Vaz FM, Milleit B, Hipler UC, Wiegand C, Hesse J, Amminger GP, Malhotra AK, Peters BD. Polyunsaturated fatty acid biostatus, phospholipase A 2 activity and brain white matter microstructure across adolescence. Neuroscience 2016; 343:423-433. [PMID: 27998778 DOI: 10.1016/j.neuroscience.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/21/2016] [Accepted: 12/03/2016] [Indexed: 12/29/2022]
Abstract
Adolescence is a period of major brain white matter (WM) changes, and membrane lipid metabolism likely plays a critical role in brain WM myelination. Long-chain polyunsaturated fatty acids (LC-PUFAs) are essential components of cell membranes including oligodendrocytes, and LC-PUFA release and turnover in membranes is regulated by phospholipase A2 enzymes. To investigate the role of membrane lipid metabolism in healthy WM myelination across adolescence, the present study examined the relationship between membrane LC-PUFA biostatus, phospholipase A2 activity, and brain WM microstructure in healthy subjects aged 9-20years (n=30). Diffusion tensor imaging (DTI) was performed to measure average fractional anisotropy (FA) and diffusivity (indices sensitive to WM myelination) of nine major cerebral WM tracts. Blood samples were collected to measure erythrocyte membrane fatty acid concentrations and plasma intracellular phospholipase A2 activity (inPLA2). Plasma inPLA2 activity showed a significant U-curved association with WM radial diffusivity, and an inverted U-curved association with WM FA, independent of age. A significant positive linear correlation was observed between docosahexaenoic acid concentration and axial diffusivity in the corpus callosum. These findings suggest that there may be optimal physiological inPLA2 activity levels associated with healthy WM myelination in late childhood and adolescence. Myelination may be mediated by cleavage of docosahexaenoic acid from membrane phospholipids by inPLA2. These findings have implications for our understanding of the role of LC-PUFA homeostasis in myelin-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA.
| | - Philip R Szeszko
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY 11004, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | - Stefan Smesny
- Department of Psychiatry, University Hospital Jena, D-07743 Jena, Germany.
| | - Toshikazu Ikuta
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY 11004, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | - Pamela DeRosse
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY 11004, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands.
| | - Berko Milleit
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany.
| | - Uta-Christina Hipler
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany.
| | - Cornelia Wiegand
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany.
| | - Jana Hesse
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany.
| | - G Paul Amminger
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville VIC 3052, Australia.
| | - Anil K Malhotra
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY 11004, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | - Bart D Peters
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY 11004, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| |
Collapse
|
34
|
Translationally Controlled Tumor Protein Stimulates Dopamine Release from PC12 Cells via Ca 2+-Independent Phospholipase A₂ Pathways. Int J Mol Sci 2016; 17:ijms17101774. [PMID: 27783042 PMCID: PMC5085798 DOI: 10.3390/ijms17101774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 11/17/2022] Open
Abstract
The translationally controlled tumor protein (TCTP), initially identified as a tumor- and growth-related protein, is also known as a histamine-releasing factor (HRF). TCTP is widely distributed in the neuronal systems, but its function is largely uncharacterized. Here, we report a novel function of TCTP in the neurotransmitter release from a neurosecretory, pheochromocytoma (PC12) cells. Treatment with recombinant TCTP (rTCTP) enhanced both basal and depolarization (50 mM KCl)-evoked [³H]dopamine release in concentration- and time-dependent manners. Interestingly, even though rTCTP induced the increase in intracellular calcium levels ([Ca2+]i), the rTCTP-driven effect on dopamine release was mediated by a Ca2+-independent pathway, as evidenced by the fact that Ca2+-modulating agents such as Ca2+ chelators and a voltage-gated L-type Ca2+-channel blocker did not produce any changes in rTCTP-evoked dopamine release. In a study to investigate the involvement of phospholipase A₂ (PLA₂) in rTCTP-induced dopamine release, the inhibitor for Ca2+-independent PLA₂ (iPLA₂) produced a significant inhibitory effect on rTCTP-induced dopamine release, whereas this release was not significantly inhibited by Ca2+-dependent cytosolic PLA₂ (cPLA₂) and secretory PLA₂ (sPLA₂) inhibitors. We found that rTCTP-induced dopamine release from neuronal PC12 cells was modulated by a Ca2+-independent mechanism that involved PLA₂ in the process, suggesting the regulatory role of TCTP in the neuronal functions.
Collapse
|
35
|
Madsen JJ, Fristrup P, Peters GH. Theoretical Assessment of Fluorinated Phospholipids in the Design of Liposomal Drug-Delivery Systems. J Phys Chem B 2016; 120:9661-71. [DOI: 10.1021/acs.jpcb.6b07206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jesper J. Madsen
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Fristrup
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Günther H. Peters
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
36
|
Slater DM, Zervou S, Thornton S. Prostaglandins and Prostanoid Receptors in Human Pregnancy and Parturition. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760200900302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Donna M. Slater
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | | - Steven Thornton
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
37
|
Joshi V, Venkatesha SH, Ramakrishnan C, Nanjaraj Urs AN, Hiremath V, Moudgil KD, Velmurugan D, Vishwanath BS. Celastrol modulates inflammation through inhibition of the catalytic activity of mediators of arachidonic acid pathway: Secretory phospholipase A 2 group IIA, 5-lipoxygenase and cyclooxygenase-2. Pharmacol Res 2016; 113:265-275. [PMID: 27597642 DOI: 10.1016/j.phrs.2016.08.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/10/2016] [Accepted: 08/21/2016] [Indexed: 12/28/2022]
Abstract
Elevated production of arachidonic acid (AA)-derived pro-inflammatory eicosanoids due to the concerted action of secretory phospholipase A2 group IIA (sPLA2IIA), 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) is a common feature of many inflammatory disorders. Hence, modulation of the bioactivity of these 3 enzymes is an important strategy to control inflammation. However, the failure of drugs specific for an individual enzyme (sPLA2IIA-, 5-LOX- or COX-2) and the success of 5-LOX/COX-2 dual inhibitors in effectively controlling inflammation in clinical trials prompted us to evaluate a common inhibitor for sPLA2IIA, 5-LOX and COX-2 enzymes. Celastrol, a quinone methide triterpene, was selected in this regard through molecular docking studies. We provide the first evidence for celastrol's ability to inhibit the catalytic activity of sPLA2IIA, 5-LOX and COX-2 enzymes. Celastrol significantly inhibited the catalytic activity of sPLA2IIA (IC50=6μM) in vitro, which is independent of substrate and calcium concentration. In addition, celastrol inhibited the catalytic activities of 5-LOX (IC50=5μM) and COX-2 (IC50=20μM) in vitro; sPLA2IIA-induced edema and carrageenan-induced edema in mice; and lipopolysaccharide-stimulated production of PGE2 in human neutrophils. Thus, celastrol modulates inflammatory responses by targeting multiple enzymes of AA pathway.
Collapse
Affiliation(s)
- Vikram Joshi
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Shivaprasad H Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Chandrasekaran Ramakrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | | | - Vilas Hiremath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | | |
Collapse
|
38
|
Choi H, Ku SK, Bae JS. Inhibitory Effect of Three Diketopiperazines from Marine-derived Bacteria on Secretory Group IIA Phospholipase A2. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diketopiperazines, natural products found in bacteria, fungi, marine sponges, gorgonian and red algae, are cyclic dipeptides possessing relatively simple and rigid structures with chiral nature and various side chains. The compounds in this structure class have been known to possess diverse bioactivities including antibiotic activity, anti-cancer activity, neuroprotective activity, and anti-inflammatory activity. The expression of secretory group IIA phospholipase A2 (sPLA2-IIA) is enhanced by development of inflammatory disorders. Aim of this study is to determine the effects of diketopiperazines on the secretion and activity of sPLA2-IIA by lipopolysaccharide (LPS) in human umbilical vein endothelial cells (HUVECs). To do this, sPLA2-IIA expression was induced in the LPS-stimulated HUVECs and mice to evaluate the effect of diketopiperazines. Results showed that diketopiperazines remarkably suppressed the LPS-mediated protein expression and activity of sPLA2-IIA via inhibition of phosphorylation of cytosolic phospholipase A2 (cPLA2) and extracellular signal-regulated kinase (ERK) 1/2. These results demonstrated that diketopiperazines might play an important role in the modulation of sPLA2-IIA expression and activity in response to the inflammatory diseases.
Collapse
Affiliation(s)
- Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
39
|
Dennis EA. Liberating Chiral Lipid Mediators, Inflammatory Enzymes, and LIPID MAPS from Biological Grease. J Biol Chem 2016; 291:24431-24448. [PMID: 27555328 DOI: 10.1074/jbc.x116.723791] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In 1970, it was well accepted that the central role of lipids was in energy storage and metabolism, and it was assumed that amphipathic lipids simply served a passive structural role as the backbone of biological membranes. As a result, the scientific community was focused on nucleic acids, proteins, and carbohydrates as information-containing molecules. It took considerable effort until scientists accepted that lipids also "encode" specific and unique biological information and play a central role in cell signaling. Along with this realization came the recognition that the enzymes that act on lipid substrates residing in or on membranes and micelles must also have important signaling roles, spurring curiosity into their potentially unique modes of action differing from those acting on water-soluble substrates. This led to the creation of the concept of "surface dilution kinetics" for describing the mechanism of enzymes acting on lipid substrates, as well as the demonstration that lipid enzymes such as phospholipase A2 (PLA2) contain allosteric activator sites for specific phospholipids as well as for membranes. As our understanding of phospholipases advanced, so did the understanding that many of the lipids released by these enzymes are chiral information-containing signaling molecules; for example, PLA2 regulates the generation of precursors for the biosynthesis of eicosanoids and other bioactive lipid mediators of inflammation and resolution underlying disease progression. The creation of the LIPID MAPS initiative in 2003 and the ensuing development of the lipidomics field have revealed that lipid metabolites are central to human metabolism. Today lipids are recognized as key mediators of health and disease as we enter a new era of biomarkers and personalized medicine. This article is my personal "reflection" on these scientific advances.
Collapse
Affiliation(s)
- Edward A Dennis
- From the Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093-0601.
| |
Collapse
|
40
|
Peña L, Meana C, Astudillo AM, Lordén G, Valdearcos M, Sato H, Murakami M, Balsinde J, Balboa MA. Critical role for cytosolic group IVA phospholipase A2 in early adipocyte differentiation and obesity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1083-1095. [PMID: 27317983 DOI: 10.1016/j.bbalip.2016.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/02/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
Adipogenesis is the process of differentiation of immature mesenchymal stem cells into adipocytes. Elucidation of the mechanisms that regulate adipocyte differentiation is key for the development of novel therapies for the control of obesity and related comorbidities. Cytosolic group IVA phospholipase A2 (cPLA2α) is the pivotal enzyme in receptor-mediated arachidonic acid (AA) mobilization and attendant eicosanoid production. Using primary multipotent cells and cell lines predetermined to become adipocytes, we show here that cPLA2α displays a proadipogenic function that occurs very early in the adipogenic process. Interestingly, cPLA2α levels decrease during adipogenesis, but cPLA2α-deficient preadipocytes exhibit a reduced capacity to differentiate into adipocytes, which affects early and terminal adipogenic transcription factors. Additionally, the absence of the phospholipase alters proliferation and cell-cycle progression that takes place during adipogenesis. Preconditioning of preadipocytes with AA increases the adipogenic capacity of these cells. Moreover, animals deficient in cPLA2α show resistance to obesity when fed a high fat diet that parallels changes in the expression of adipogenic transcription factors of the adipose tissue. Collectively, these results show that preadipocyte cPLA2α activation is a hitherto unrecognized factor for adipogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Lucía Peña
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Gema Lordén
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Martín Valdearcos
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Hiroyasu Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
41
|
Jung B, Kim J, Bae JS. Dabrafenib, as a Novel Insight into Drug Repositioning Against Secretory Group IIa Phospholipase A2. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.415.421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Tang B, Chow JYC, Dong TX, Yang SM, Lu DS, Carethers JM, Dong H. Calcium sensing receptor suppresses human pancreatic tumorigenesis through a novel NCX1/Ca(2+)/β-catenin signaling pathway. Cancer Lett 2016; 377:44-54. [PMID: 27108064 DOI: 10.1016/j.canlet.2016.04.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/09/2016] [Accepted: 04/17/2016] [Indexed: 02/07/2023]
Abstract
The calcium sensing receptor (CaSR) is functionally expressed in normal human pancreases, but its pathological role in pancreatic tumorigenesis is currently unknown. We sought to investigate the role of CaSR in pancreatic cancer (PC) and the underlying molecular mechanisms. We revealed that the expression of CaSR was consistently downregulated in the primary cancer tissues from PC patients, which was correlated with tumor size, differentiation and poor survival of the patients. CaSR activation markedly suppressed pancreatic tumorigenesis in vitro and in vivo likely through the Ca(2+) entry mode of Na(+)/Ca(2+) exchanger 1 (NCX1) to induce Ca(2+) entry into PC cells. Moreover, NCX1-mediated Ca(2+) entry resulted in Ca(2+)-dependent inhibition of β-catenin signaling in PC cells, eventually leading to the inhibition of pancreatic tumorigenesis. Collectively, we demonstrate for the first time that CaSR exerts a suppressive function in pancreatic tumorigenesis through a novel NCX1/Ca(2+)/β-catenin signaling pathway. Targeting this specific signaling pathway could be a potential therapeutic strategy for PC.
Collapse
Affiliation(s)
- Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jimmy Y C Chow
- Department of Medicine, University of California, San Diego, CA, USA
| | - Tobias Xiao Dong
- Department of Medicine, University of California, San Diego, CA, USA
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - De-Sheng Lu
- Cancer Research Center, Shenzhen University, Shenzhen, China
| | - John M Carethers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
43
|
Joshi V, Umashankara M, Ramakrishnan C, Nanjaraj Urs AN, Suvilesh KN, Velmurugan D, Rangappa KS, Vishwanath BS. Dimethyl ester of bilirubin exhibits anti-inflammatory activity through inhibition of secretory phospholipase A2, lipoxygenase and cyclooxygenase. Arch Biochem Biophys 2016; 598:28-39. [PMID: 27060751 DOI: 10.1016/j.abb.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 12/18/2022]
Abstract
Overproduction of arachidonic acid (AA) mediated by secretory phospholipase A2 group IIA (sPLA2IIA) is a hallmark of many inflammatory disorders. AA is subsequently converted into pro-inflammatory eicosanoids through 5-lipoxygenase (5-LOX) and cyclooxygenase-1/2 (COX-1/2) activities. Hence, inhibition of sPLA2IIA, 5-LOX and COX-1/2 activities is critical in regulating inflammation. We have previously reported unconjugated bilirubin (UCB), an endogenous antioxidant, as sPLA2IIA inhibitor. However, lipophilic UCB gets conjugated in liver with glucuronic acid into hydrophilic conjugated bilirubin (CB). Since hydrophobicity is pre-requisite for sPLA2IIA inhibition, conjugation reduces the efficacy of UCB. In this regard, UCB was chemically modified and derivatives were evaluated for sPLA2IIA, 5-LOX and COX-1/2 inhibition. Among the derivatives, BD1 (dimethyl ester of bilirubin) exhibited ∼ 3 fold greater inhibitory potency towards sPLA2IIA compared to UCB. Both UCB and BD1 inhibited human 5-LOX and COX-2 activities; however only BD1 inhibited AA induced platelet aggregation. Molecular docking studies demonstrated BD1 as better inhibitor of aforesaid enzymes than UCB and other endogenous antioxidants. These data suggest that BD1 exhibits strong anti-inflammatory activity through inhibition of AA cascade enzymes which is of great therapeutic importance.
Collapse
Affiliation(s)
- Vikram Joshi
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - M Umashankara
- Department of Chemistry, Karnataka State Open University, Mukthagangotri, Mysuru, Karnataka, India
| | - Chandrasekaran Ramakrishnan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | | | - Kanve Nagaraj Suvilesh
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India; Bioinformatics Infrastructure Facility, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
44
|
Dai SX, Li WX, Li GH, Huang JF. Proteome-wide prediction of targets for aspirin: new insight into the molecular mechanism of aspirin. PeerJ 2016; 4:e1791. [PMID: 26989626 PMCID: PMC4793309 DOI: 10.7717/peerj.1791] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/20/2016] [Indexed: 12/31/2022] Open
Abstract
Besides its anti-inflammatory, analgesic and anti-pyretic properties, aspirin is used for the prevention of cardiovascular disease and various types of cancer. The multiple activities of aspirin likely involve several molecular targets and pathways rather than a single target. Therefore, systematic identification of these targets of aspirin can help us understand the underlying mechanisms of the activities. In this study, we identified 23 putative targets of aspirin in the human proteome by using binding pocket similarity detecting tool combination with molecular docking, free energy calculation and pathway analysis. These targets have diverse folds and are derived from different protein family. However, they have similar aspirin-binding pockets. The binding free energy with aspirin for newly identified targets is comparable to that for the primary targets. Pathway analysis revealed that the targets were enriched in several pathways such as vascular endothelial growth factor (VEGF) signaling, Fc epsilon RI signaling and arachidonic acid metabolism, which are strongly involved in inflammation, cardiovascular disease and cancer. Therefore, the predicted target profile of aspirin suggests a new explanation for the disease prevention ability of aspirin. Our findings provide a new insight of aspirin and its efficacy of disease prevention in a systematic and global view.
Collapse
Affiliation(s)
- Shao-Xing Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Xing Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Institute of Health Sciences, Anhui University, Hefei, Anhui, China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Fei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Kunming, Yunnan, China
- Collaborative Innovation Center for Natural Products and Biological Drugs of Yunnan, Kunming, Yunnan, China
| |
Collapse
|
45
|
DHANANJAYA BHADRAPURALAKKAPPA, SHIVALINGAIAH SUDHARSHAN. The anti-inflammatory activity of standard aqueous stem bark extract of Mangifera indica L. as evident in inhibition of Group IA sPLA2. ACTA ACUST UNITED AC 2016; 88:197-209. [DOI: 10.1590/0001-3765201620140574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/03/2015] [Indexed: 12/22/2022]
Abstract
ABSTRACT The standard aqueous stem bark extract is consumed as herbal drink and used in the pharmaceutical formulations to treat patients suffering from various disease conditions in Cuba. This study was carried out to evaluate the modulatory effect of standard aqueous bark extract of M. indica on Group IA sPLA2. M. indica extract, dose dependently inhibited the GIA sPLA2 (NN-XIa-PLA2) activity with an IC50 value 8.1 µg/ml. M. indica extract effectively inhibited the indirect hemolytic activity up to 98% at ~40 µg/ml concentration and at various concentrations (0-50 µg/ml), it dose dependently inhibited the edema formation. When examined as a function of increased substrate and calcium concentration, there was no relieve of inhibitory effect on the GIA sPLA2. Furthermore, the inhibition was irreversible as evidenced from binding studies. It is observed that the aqueous extract ofM. indica effectively inhibits sPLA2 and it is associated inflammatory activities, which substantiate their anti-inflammatory properties. The mode of inhibition could be due to direct interaction of components present in the extract, with sPLA2 enzyme. Further studies on understanding the principal constituents, responsible for the anti-inflammatory activity would be interesting to develop this into potent anti-inflammatory agent.
Collapse
|
46
|
Ku SK, Bae JS. Inhibitory Effect of FXa on Secretory Group IIA Phospholipase A2. Inflammation 2016; 38:987-94. [PMID: 25399323 DOI: 10.1007/s10753-014-0062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
It is well known that the expression level of secretory group IIA phospholipase A2 (sPLA2-IIA) is elevated in inflammatory diseases and lipopolysaccharide (LPS) upregulates the expression of sPLA2-IIA in human umbilical vein endothelial cells (HUVECs). Activated factor X (FXa) is an important enzyme in the coagulation cascade responsible for thrombin generation, and it influences cell signaling in various cell types by activating protease-activated receptors (PARs). Here, FX or FXa was examined for its effects on the expression and activity of sPLA2-IIA in HUVECs and mouse. Prior treatment of cells or mouse with FXa inhibited LPS-induced expression and activity of sPLA2-IIA via interacting with FXa receptor (effective cell protease receptor-1, EPR-1). And FXa suppressed the activation of cytosolic phospholipase A2 (cPLA2) and extracellular signal-regulated kinase (ERK) 1/2 by LPS. Therefore, these results suggest that FXa may inhibit LPS-mediated expression of sPLA2-IIA by suppression of cPLA2 and ERK 1/2.
Collapse
Affiliation(s)
- Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, 712-715, Republic of Korea
| | | |
Collapse
|
47
|
Schwierz N, Krysiak S, Hugel T, Zacharias M. Mechanism of Reversible Peptide-Bilayer Attachment: Combined Simulation and Experimental Single-Molecule Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:810-821. [PMID: 26717083 DOI: 10.1021/acs.langmuir.5b03435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The binding of peptides and proteins to lipid membrane surfaces is of fundamental importance for many membrane-mediated cellular processes. Using closely matched molecular dynamics simulations and atomic force microscopy experiments, we study the force-induced desorption of single peptide chains from phospholipid bilayers to gain microscopic insight into the mechanism of reversible attachment. This approach allows quantification of desorption forces and decomposition of peptide-membrane interactions into energetic and entropic contributions. In both simulations and experiments, the desorption forces of peptides with charged and polar side chains are much smaller than those for hydrophobic peptides. The adsorption of charged/polar peptides to the membrane surface is disfavored by the energetic components, requires breaking of hydrogen bonds involving the peptides, and is favored only slightly by entropy. By contrast, the stronger adsorption of hydrophobic peptides is favored both by energy and by entropy and the desorption forces increase with increasing side-chain hydrophobicity. Interestingly, the calculated net adsorption free energies per residue correlate with experimental results of single residues, indicating that side-chain free energy contributions are largely additive. This observation can help in the design of peptides with tailored adsorption properties and in the estimation of membrane binding properties of peripheral membrane proteins.
Collapse
Affiliation(s)
- Nadine Schwierz
- Chemistry Department, University of California , Berkeley, California 94720, United States
| | | | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg , 79104 Freiburg, Germany
| | | |
Collapse
|
48
|
Ku SK, Yang EJ, Kang H, Jung B, Bae JS. Inhibitory effect of polyozellin on secretory group IIA phospholipase A2. Arch Pharm Res 2015; 39:271-278. [PMID: 26659873 DOI: 10.1007/s12272-015-0694-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
The expression of secretory group IIA phospholipase A2 (sPLA2-IIA) is enhanced by development of inflammatory disorders. In this study, sPLA2-IIA expression was induced in the lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells and mice to evaluate the effect of polyozellin. Polyozellin, a major constituent of a Korea edible mushroom Polyozellus multiplex, has been known to exhibit the biological activities such as anti-oxidative and anti-inflammatory effects. Polyozellin remarkably suppressed the LPS-mediated protein expression and activity of sPLA2-IIA via inhibition of phosphorylation of cytosolic phospholipase A2 and extracellular signal-regulated kinase 1/2. These results demonstrated that polyozellin might play an important role in the modulation of sPLA2-IIA expression and activity in response to the inflammatory diseases.
Collapse
Affiliation(s)
- Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Hanny University, Gyeongsan, 712-715, South Korea
| | - Eun-Ju Yang
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | - Hyejin Kang
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Hanny University, Gyeongsan, 712-715, South Korea
| | - Byeongjin Jung
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Hanny University, Gyeongsan, 712-715, South Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea.
| |
Collapse
|
49
|
Wang H, Zhang L, Shi G. Secretory expression of a phospholipase A2 from Lactobacillus casei DSM20011 in Kluyveromyces lactis. J Biosci Bioeng 2015; 120:601-7. [DOI: 10.1016/j.jbiosc.2015.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 03/09/2015] [Accepted: 03/31/2015] [Indexed: 11/29/2022]
|
50
|
First complete genome of an Ambidensovirus; Cherax quadricarinatus densovirus, from freshwater crayfish Cherax quadricarinatus. Mar Genomics 2015; 24 Pt 3:305-12. [DOI: 10.1016/j.margen.2015.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 11/18/2022]
|