1
|
Masrour M, Moeinafshar A, Poopak A, Razi S, Rezaei N. The role of CXC chemokines and receptors in breast cancer. Clin Exp Med 2025; 25:128. [PMID: 40278951 PMCID: PMC12031896 DOI: 10.1007/s10238-025-01662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
CXC chemokines are a class of cytokines possessing chemotactic properties. Studies indicate that CXC chemokines exhibit dysregulation in miscellaneous cancer categories and are significantly associated with the advancement of tumors. Breast cancer is a commonly diagnosed and fatal cancer among the female population. Breast cancer pathogenesis and progression involve various mechanisms, including invasion, metastasis, angiogenesis, and inflammation. Chemokines and their receptors are involved in all of these processes. The CXC chemokine receptors (CXCRs) and their related ligands have attracted considerable attention due to their multifaceted functions in facilitating and controlling tumor proliferation. CXCRs are expressed by both cancer cells and immune cells, and they play a crucial role in regulating the tumor microenvironment and the immune response. This review aims to assess the potential of CXCRs and CXC chemokines as therapeutic targets or biomarkers for personalized therapy. Additionally, it provides an overview of the current understanding of the expression, function, and prognostic relevance of CXCRs in breast cancer. Furthermore, the challenges and potential prospects pertaining to CXCR investigation in breast cancer are deliberated.
Collapse
Affiliation(s)
- Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amirhossein Poopak
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific and Education Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
2
|
Nagar N, Gulati K, Poluri KM. Selection Pressure Regulates the Evolution-Structure-Function Paradigm of Monocyte Chemoattractant Protein Family. J Mol Evol 2025; 93:238-256. [PMID: 39907741 DOI: 10.1007/s00239-025-10235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
Monocyte chemoattractant proteins (MCPs) are involved in monocyte trafficking during severe inflammation by modulating the chemokine-glycosaminoglycan-receptor signaling axis. MCPs comprise a family of four chemokines (CCL2, CCL7, CCL8, and CCL13/12) that exhibit differential expression patterns in mammals, functional diversity, and receptor/glycosaminoglycan (GAG) binding promiscuity. In this context, the evolution-structure-function paradigm of MCP chemokines in mammals was established by assessing phylogeny, functional divergence, selection pressure, and coevolution in correlation with structural and surface characteristics. Comprehensive analyses were performed using an array of evolutionary and structural bioinformatic methods including molecular dynamics simulations. Our findings demonstrate that substitutions in receptor/GAG-interacting residues mediate episodic diversification and functional diversity in MCP chemokines. Additionally, a balanced interplay of selection pressures has driven the functional changes observed among MCP paralogs, with positive selection at various receptor/GAG-binding sites contributing to their promiscuous receptor/GAG interactions. Meanwhile, processes like purifying selection and coevolution maintain the classical chemokine structure and preserve the ancestral functions of MCP chemokines. Overall, this study suggests that selection pressure on sites within the N-terminal region [N-loop and 310-helix] and 40S loop of MCP chemokines alters surface properties to fine-tune the molecular interactions and functional characteristics without altering the overall chemokine structure.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Khushboo Gulati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
3
|
Hofer S, Jenny M, Klein A, Becker K, Parráková L, Überall F, Ganzera M, Fuchs D, Hackl H, Monfort-Lanzas P, Gostner JM. Myrobalan Fruit Extracts Modulate Immunobiochemical Pathways In Vitro. Antioxidants (Basel) 2025; 14:350. [PMID: 40227454 PMCID: PMC11939258 DOI: 10.3390/antiox14030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/15/2025] Open
Abstract
Myrobalan fruits are important ingredients of traditional remedies, such as the Ayurvedic formulation Triphala or the Tibetan formulation Bras bu 3. Myrobalan-containing remedies are described to have positive effects on metabolism, the cardiovascular system, and the immune system. The chemical composition of botanical mixtures can be very complex, and it is often impossible to identify individual compounds as specific active ingredients, which suggests a multi-target mode of action. In this in vitro study, the effect of myrobalan extracts in human cell models was investigated to gain more information about the molecular mechanism of action and to find possible synergistic effects. Direct and indirect antioxidant effects were investigated, and the activation of immunobiochemical metabolic pathways involved in the cellular immune response was examined in cell lines treated with extracts of the fruits of Phyllanthus emblica, Terminalia chebula and Terminalia bellirica, as well as a combination of them. In particular, a synergistic effect on the activation of the endogenous antioxidant defence system was observed with the combined treatment of the three fruit extracts. An integrated transcriptome analysis of cells treated with a combination of fruit extracts confirmed an effect on immune pathways, oxidative stress, and detoxification processes. This study shows the modulation of various signalling pathways and cellular processes that may be part of the multi-target mechanism of individual and combined myrobalan fruit extracts. Although the results are limited to in vitro data, they contribute to a better understanding of how botanical mixtures work and provide hypotheses for further research.
Collapse
Affiliation(s)
- Stefanie Hofer
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Marcel Jenny
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Angela Klein
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Kathrin Becker
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Lucia Parráková
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Florian Überall
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Markus Ganzera
- Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Pablo Monfort-Lanzas
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
- Institute of Bioinformatics, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Johanna M. Gostner
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Saha S, Sano FK, Sharma S, Ganguly M, Mishra S, Dalal A, Akasaka H, Kobayashi TA, Zaidi N, Tiwari D, Roy N, Yadav MK, Banerjee N, Saha S, Mohapatra S, Itoh Y, Chevigné A, Banerjee R, Shihoya W, Nureki O, Shukla AK. Molecular basis of promiscuous chemokine binding and structural mimicry at the C-X-C chemokine receptor, CXCR2. Mol Cell 2025; 85:976-988.e9. [PMID: 39978339 PMCID: PMC7617694 DOI: 10.1016/j.molcel.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/11/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025]
Abstract
Selectivity of natural agonists for their cognate receptors is a hallmark of G-protein-coupled receptors (GPCRs); however, this selectivity often breaks down at the chemokine receptors. Chemokines often display promiscuous binding to chemokine receptors, but the underlying molecular determinants remain mostly elusive. Here, we perform a comprehensive transducer-coupling analysis, testing all known C-X-C chemokines on every C-X-C type chemokine receptor to generate a global fingerprint of the selectivity and promiscuity encoded within this system. Taking lead from this, we determine cryoelectron microscopy (cryo-EM) structures of the most promiscuous receptor, C-X-C chemokine receptor 2 (CXCR2), in complex with several chemokines. These structural snapshots elucidate the details of ligand-receptor interactions, including structural motifs, which are validated using mutagenesis and functional experiments. We also observe that most chemokines position themselves on CXCR2 as a dimer while CXCL6 exhibits a monomeric binding pose. Taken together, our findings provide the molecular basis of chemokine promiscuity at CXCR2 with potential implications for developing therapeutic molecules.
Collapse
Affiliation(s)
- Shirsha Saha
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Saloni Sharma
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manisankar Ganguly
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sudha Mishra
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Annu Dalal
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Hiroaki Akasaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takaaki A Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nashrah Zaidi
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Divyanshu Tiwari
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nabarun Roy
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manish K Yadav
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nilanjana Banerjee
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sayantan Saha
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Samanwita Mohapatra
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Yuzuru Itoh
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ramanuj Banerjee
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Arun K Shukla
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India.
| |
Collapse
|
5
|
Yan K, Zhang Y, Li Y, Tang M, Xu Y, Yan X, Hu J, Wang Y. Immune Response of Silver Pomfret (Pampus argenteus) CC Chemokine Ligand Gene Family to Photobacterium damselae Subsp. Damselae and Nocardia seriolae Infections. JOURNAL OF FISH DISEASES 2025; 48:e14032. [PMID: 39440715 DOI: 10.1111/jfd.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Chemokines play a crucial role in immune responses by facilitating the migration of cells expressing corresponding chemokine receptors along concentration gradients. Photobacterium damselae subsp. Damselae (PDD) and Nocardia seriolae (NS) are known to induce substantial mortality in silver pomfret populations, yet there exists a dearth of research regarding the immune response of CCLs in PDD- or NS-infected silver pomfret. In our investigation, we identified 10 PaCCLs, which include one fish-specific CCL (PaCCL44). Phylogenetic analysis revealed considerable diversity in CCL types and copy numbers among various teleost fishes. Notably, silver pomfret lacks specific CCL genes, with most PaCCLs exhibiting heightened expression levels in immune-related organs such as the spleen and kidney, and some being expressed in mucosal immune-related organs like the skin and gills. Transcriptome analysis conducted on silver pomfret infected with NS and PDD elucidated that the expression changes of PaCCLs primarily manifested in the spleen during the initial stages of NS infection, shifting to the kidney in later stages. Conversely, the expression changes of PaCCLs following PDD infection predominantly occurred in the kidney. In vitro studies using silver pomfret spleen cell lines demonstrated an early peak in PaCCLs expression during infection, followed by gradual decline with NS treatment and rapid diminishment with PDD treatment. These findings suggest that PaCCLs primarily support the innate immunity of silver pomfret, potentially exhibiting chemotactic effects in the early infection stages, such as the synergistic action of PaCCL4 and PaCCL25, and later serving as direct antibacterial agents. NS invasion is characterised by a chronic infection affecting multiple organs, whereas PDD primarily inflicts severe damage to the kidney. PaCCL19a and PaCCL19b are specific to PDD, and their expression levels may decrease in the later stages of infection due to PDD immune escape. These data offer initial insights into understanding the mechanism underlying the innate immune response of the CCL gene family in silver pomfret and provide theoretical underpinnings for fish culture practices.
Collapse
Affiliation(s)
- Kaiheng Yan
- College of Marine Sciences, Ningbo University, Ningbo, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Youyi Zhang
- College of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yuanbo Li
- College of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Mengke Tang
- College of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yifan Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaojun Yan
- College of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jiabao Hu
- College of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yajun Wang
- College of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Zhang BB, Harrison K, Zhong Y, Maxwell JWC, Ford DJ, Calvey LP, So SS, Peterson FC, Volkman BF, Stone MJ, Bhusal RP, Kulkarni SS, Payne RJ. Discovery of Selective Cyclic d-Sulfopeptide Ligands of the Chemokine CCL22 via Mirror-Image mRNA Display with Genetic Reprogramming. J Am Chem Soc 2024; 146:34253-34259. [PMID: 39629944 DOI: 10.1021/jacs.4c12057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Chemokines are small proteins involved in recruiting leukocytes to sites of inflammation via interactions with specific cell surface receptors. CCL22 is a chemokine known to play a critical role in inflammatory diseases such as atopic dermatitis and asthma; inhibition of this chemokine therefore represents an attractive therapeutic strategy. Herein, we describe the discovery of cyclic d-sulfopeptide inhibitors of CCL22 identified through mirror-image mRNA display with genetic reprogramming. Chemical synthesis of mirror-image d-CCL22 enabled screening of a cyclic peptide library comprised of all l-amino acids, with reprogramming of l-sulfotyrosine to mimic the presence of this post-translational modification on native chemokine receptors. Enriched macrocyclic peptides were prepared in their mirror-image d-form and assessed for binding against native l-CCL22. The most potent ligand, a plasma-stable d-cyclic peptide bearing four d-sulfotyrosine residues, exhibited nanomolar affinity for CCL22, high selectivity over other chemokines, and nanomolar inhibition of CCL22 signaling through CCR4. This work highlights the vast potential of mirror-image mRNA display technology for discovering proteolytically stable d-peptide inhibitors of protein-protein interactions relevant across a range of therapeutic indications.
Collapse
Affiliation(s)
- Belinda B Zhang
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katriona Harrison
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yichen Zhong
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel J Ford
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam P Calvey
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sean S So
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Protein Foundry, LLC, 662 94th Place, Milwaukee, Wisconsin 53214, United States
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Protein Foundry, LLC, 662 94th Place, Milwaukee, Wisconsin 53214, United States
| | - Martin J Stone
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ram Prasad Bhusal
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Thompson MD, Reiner-Link D, Berghella A, Rana BK, Rovati GE, Capra V, Gorvin CM, Hauser AS. G protein-coupled receptor (GPCR) pharmacogenomics. Crit Rev Clin Lab Sci 2024; 61:641-684. [PMID: 39119983 DOI: 10.1080/10408363.2024.2358304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 05/18/2024] [Indexed: 08/10/2024]
Abstract
The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for in silico analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - David Reiner-Link
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brinda K Rana
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerie Capra
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Zhao KY, Chen GY, Huang H, Jiao XD, Li XP, Zhang J. PoCXCL8, a teleost chemokine, exerts direct bactericidal, chemotactic/phagocytic, and NETs releasing properties, promoting host anti-bacterial immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109874. [PMID: 39241818 DOI: 10.1016/j.fsi.2024.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
As an important CXC chemokine, CXCL8 plays pleiotropic roles in immunological response. In teleost, CXCL8 is involved in cell migration and bacterial invasion. However, the immune antibacterial function of CXCL8 in Japanese flounder (Paralichthys olivaceus) (PoCXCL8) is largely scarce. In this research, we investigated the antibacterial property and leukocyte activation of PoCXCL8. PoCXCL8 consists of 100 amino acid residues, with a conserved chemokine CXC domain. PoCXCL8 was expressed in various tissues, with the highest level in liver and the lowest level in muscle, and sharply induced by V. harveyi or E. tarda in liver, spleen, and head kidney. In vitro, the recombinant PoCXCL8 (rPoCXCL8) could bind to Bacillus subtilis, Edwardsiella tarda, Escherichia coli, Pseudomonas fluorescens, Vibrio anguillarum, Vibrio harveyi, Staphylococcus aureus, and Micrococcus luteus, affect the growth of E. coli, E. tarda, M. luteus, and P. fluorescens, and have a direct bactericidal effect on E. coli and E. tarda. Moreover, rPoCXCL8 was able to bind the outer membranal protein rPilA of E. tarda. In addition, rPoCXCL8 could bind to PBLs, activating the PBLs activity including chemotaxis, proliferation, phagocytosis, reactive oxygen species, acid phosphatase activity. At same time, rPoCXCL8 could induce neutrophil to generate neutrophil extracellular traps (NETs) and promote the expression of inflammatory genes including IL-1β, IL6, MMP13, TNF-α, and NF-κB. In flounder, the presence of rPoCXCL8 could enhance the in vivo resistance to E. tarda in liver, spleen, and head kidney. Moreover, the PoCXCL8-deficient could attenuate the fish defense against E. tarda infection in in spleen and head kidney. In conclusion, these results provided new insights into the antibacterial properties of CXCL8 in P. olivaceus.
Collapse
Affiliation(s)
- Kun-Yu Zhao
- School of Ocean, Yantai University, Yantai, China
| | - Guan-Yu Chen
- School of Ocean, Yantai University, Yantai, China
| | - Hui Huang
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Xu-Dong Jiao
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
9
|
Tufail A, Akkad S, Noble AR, Fascione MA, Signoret N. New insight into a simple high-yielding method for the production of fully folded and functional recombinant human CCL5. Sci Rep 2024; 14:24188. [PMID: 39406925 PMCID: PMC11480376 DOI: 10.1038/s41598-024-75327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Chemokines are proteins important for a range of biological processes from cell-directed migration (chemotaxis) to cell activation and differentiation. Chemokine C-C ligand 5 (CCL5) is an important pro-inflammatory chemokine attracting immune cells towards inflammatory sites through interaction with its receptors CCR1/3/5. Recombinant production of large quantities of CCL5 in Escherichia coli is challenging due to formation of inclusion bodies which necessitates refolding, often leading to low recovery of biologically active protein. To combat this, we have developed a method for CCL5 production that utilises the purification of SUMO tagged CCL5 from E. coli SHuffle cells avoiding the need to reform disulfide bonds through inclusion body purification and yields high quantities of CCL5 (~ 25 mg/L). We demonstrated that the CCL5 produced was fully functional by assessing well-established cellular changes triggered by CCL5 binding to CCR5, including receptor phosphorylation and internalisation, intracellular signalling leading to calcium flux, as well as cell migration. Overall, we demonstrate that the use of solubility tags, SHuffle cells and low pH dialysis constitutes an approach that increases purification yields of active CCL5 with low endotoxin contamination for biological studies.
Collapse
Affiliation(s)
- Afzaal Tufail
- Hull York Medical School, University of York, York, YO10 5DD, UK
| | - Saeed Akkad
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Amanda R Noble
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | | |
Collapse
|
10
|
Zhao KY, Fang Y, Xu RJ, Zhang J, Sun B, Li XP. PoIL8-L, a teleost interleukin-8 like, enhances leukocyte cellular vitality and host defense against bacterial infections in Japanese flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109876. [PMID: 39236861 DOI: 10.1016/j.fsi.2024.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Interleukin-8 (IL-8), a CXC chemokine, exerts pivotal effect on cell migration, inflammatory response, and immune regulation. In this study, we examined the immunological characteristics of an IL-8 like homologue (PoIL8-L) in Japanese flounder (Paralichthys olivaceus). PoIL8-L contains a conserved chemokine CXC domain and 105 amino acid residues. PoIL8-L expression in tissues was constitutive, and significantly regulated by V. havieri or E. tarda infection. In vitro, rPoIL8-L could bind to eight tested bacteria, exhibited bacteriostatic and bactericidal effects against certain bacteria, and could bind to the targeted bacterial Ⅳ pilin protein rPilA of E. tarda. Furthermore, rPoIL8-L could attach to peripheral blood leukocytes, and enhance their immune genes expression, respiratory burst, chemotaxis, proliferation, acid phosphatase activity, and phagocytic activity. Additionally, rPoIL8-L induce neutrophils to extrude neutrophil extracellular traps. In vivo, rPoIL8-L could promote host resistance to E. tarda infection. In summary, these findings provide fresh perspectives on the immunological antibacterial properties of IL-8 in teleost.
Collapse
Affiliation(s)
- Kun-Yu Zhao
- School of Ocean, Yantai University, Yantai, China
| | - Yue Fang
- School of Ocean, Yantai University, Yantai, China
| | | | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China
| | - Bin Sun
- School of Ocean, Fujian Polytechnic Normal University, Fuzhou, China.
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
11
|
Valdés N, Espinoza D, Pareja-Barrueto C, Olate N, Barraza-Rojas F, Benavides-Larenas A, Cortés M, Imarai M. Expression and regulation of the CXCL9-11 chemokines and CXCR3 receptor in Atlantic salmon (Salmo salar). Front Immunol 2024; 15:1455457. [PMID: 39301034 PMCID: PMC11410577 DOI: 10.3389/fimmu.2024.1455457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
Chemokines are cytokines that mediate leukocyte traffic between the lymphoid organs, the bloodstream, and the site of tissue damage, which is essential for an efficient immune response. In particular, the gamma interferon (IFN- γ) inducible chemokines CXCL9, CXCL10, and CXCL11, and their receptor CXCR3, are involved in T cell and macrophage recruitment to the site of infection. The nature and function of these chemokines and their receptor are well-known in mammals, but further research is needed to achieve a similar level of understanding in fish immunity. Thus, in this study, we seek to identify the genes encoding the components of the Atlantic salmon (Salmo salar) CXCL9, CXCL10, CXCL11/CXCR3 axis (CXCL9-11/CXCR3), predict the protein structure from the amino acid sequence, and explore the regulation of gene expression as well as the response of these chemokines and their receptor to viral infections. The cxcl9, cxcl10, cxcl11, and cxcr3 gene sequences were retrieved from the databases, and the phylogenetic analysis was conducted to determine the evolutionary relationships. The study revealed an interesting pattern of clustering and conservation among fish and mammalian species. The salmon chemokine sequences clustered with orthologs from other fish species, while the mammalian sequences formed separate clades. This indicates a divergent evolution of chemokines between mammals and fish, possibly due to different evolutionary pressures. While the structural analysis of the chemokines and the CXCR3 receptor showed the conservation of critical motifs and domains, suggesting preserved functions and stability throughout evolution. Regarding the regulation of gene expression, some components of the CXCL9-11/CXCR3 axis are induced by recombinant gamma interferon (rIFN-γ) and by Infectious pancreatic necrosis virus (IPNV) infection in Atlantic salmon cells. Further studies are needed to explore the role of Atlantic salmon CXCL9-11 chemokines in regulating immune cell migration and endothelial activation, as seen in mammals. To the best of our knowledge, there have been no functional studies of chemokines to understand these effects in Atlantic salmon.
Collapse
Affiliation(s)
- Natalia Valdés
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Daniela Espinoza
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudia Pareja-Barrueto
- Departamento de Hematología y Oncología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Olate
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Barraza-Rojas
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Almendra Benavides-Larenas
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcos Cortés
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
12
|
Li YX, Liu J, Li F. Hinesol attenuates DSS-induced ulcerative colitis through the suppression of Src-mediated NF-κB and chemokine signaling pathway. Cell Biochem Biophys 2024; 82:2747-2757. [PMID: 38976102 DOI: 10.1007/s12013-024-01391-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
As a common inflammatory bowel disease, ulcerative colitis (UC) is featured with inflammation, oxidative damage, and the impairment of intestinal mucosal barrier, which bring threat to patients' quality of live. Hinesol, derived from Atractylodes lancea, is a unique sesquiterpenoid. Our study proposed to survey the effects and mechanism of hinesol in UC. UC mouse model was constructed using dextran sulfate sodium (DSS). Lipopolysaccharide (LPS) was applied for RAW264.7 cells stimulation to construct cell inflammatory model. The changes of disease activity index (DAI), body weight, colon length, and intestinal pathology in mice were analyzed to estimate the severity of colitis. Enzyme-linked immunosorbent assay was applied to check the changes of interleukin (IL)-1β, IL-18, IL-6, and tumor necrosis factor (TNF)-α. The levels of myeloperoxidase (MPO), superoxide dismutase (SOD), glutathione peroxidase (GSH-px), catalase (CAT), and malondialdehyde (MDA) were estimated by corresponding reagent kit. The changes of phosphorylated (p)-NF-κB P65, and p-IκBα, ZO-1, Occludin, Claudin-1, Src, XCL1, CCL2, and CXCL16 protein were examined using western blot. Flow cytometry and cell counting kit-8 assay were utilized for assessment of cell apoptosis and viability. We found that DSS reduced mice body weight, increased DAI, shorten colon length, and led to severe enteric mucosal injury, while hinesol improved the above symptoms induced by DSS. In DSS mice, hinesol raised the levels of ZO-1, Occludin, Claudin-1, SOD, GSH-px, and CAT and decreased the levels of TNF-α, IL-18, IL-1β, IL-6, MPO, and MDA. Additionally, in DSS mice and LPS-stimulated RAW264.7 cells, hinesol inhibited the high expression of Src, XCL1, CCL2, CXCL16, p-NF-κB P65, and p-IκBα. The molecular docking showed that there was a good interaction between hinesol and Src. Moreover, in LPS-stimulated RAW 264.7 cells, Src overexpression partially reversed the inhibition of hinesol on cell apoptosis, pro-inflammatory factors, and oxidative stress. In conclusion, hinesol alleviated DSS-induced colitis, which might have a bearing on the inhibition of Src-mediated NF-κB and chemokine signaling pathway.
Collapse
Affiliation(s)
- Yun-Xia Li
- Anorectal Department, The People's Hospital of Huaiyin.Jinan, Jinan, Shandong, 250021, China
| | - Jinzhong Liu
- Anorectal Department, Linqu County People's Hospital, Weifang, Shandong, 262699, China
| | - Fang Li
- Anorectal Department, The People's Hospital of Huaiyin.Jinan, Jinan, Shandong, 250021, China.
| |
Collapse
|
13
|
ten Brink T, Damanik F, Rotmans JI, Moroni L. Unraveling and Harnessing the Immune Response at the Cell-Biomaterial Interface for Tissue Engineering Purposes. Adv Healthc Mater 2024; 13:e2301939. [PMID: 38217464 PMCID: PMC11468937 DOI: 10.1002/adhm.202301939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Biomaterials are defined as "engineered materials" and include a range of natural and synthetic products, designed for their introduction into and interaction with living tissues. Biomaterials are considered prominent tools in regenerative medicine that support the restoration of tissue defects and retain physiologic functionality. Although commonly used in the medical field, these constructs are inherently foreign toward the host and induce an immune response at the material-tissue interface, defined as the foreign body response (FBR). A strong connection between the foreign body response and tissue regeneration is suggested, in which an appropriate amount of immune response and macrophage polarization is necessary to trigger autologous tissue formation. Recent developments in this field have led to the characterization of immunomodulatory traits that optimizes bioactivity, the integration of biomaterials and determines the fate of tissue regeneration. This review addresses a variety of aspects that are involved in steering the inflammatory response, including immune cell interactions, physical characteristics, biochemical cues, and metabolomics. Harnessing the advancing knowledge of the FBR allows for the optimization of biomaterial-based implants, aiming to prevent damage of the implant, improve natural regeneration, and provide the tools for an efficient and successful in vivo implantation.
Collapse
Affiliation(s)
- Tim ten Brink
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Febriyani Damanik
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Joris I. Rotmans
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333ZAThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
14
|
Bahabayi A, Alimu X, Wang G, Gao Y, Chen Y, Zhao J, Lian X, Li Q, Xiong Z, Zhang Z, Wang P, Liu C. VNN2-expressing circulating monocytes exhibit unique functional characteristics and are decreased in patients with primary Sjögren's syndrome. J Autoimmun 2024; 147:103275. [PMID: 38936146 DOI: 10.1016/j.jaut.2024.103275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/09/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE This study aims to elucidate the significance of VNN2 expression in peripheral blood monocytes and its clinical relevance in primary Sjögren's syndrome (pSS). METHODS We investigated VNN2 expression by analyzing single-cell RNA sequencing (scRNA-seq) data from peripheral blood mononuclear cells. Flow cytometry was used to detect and compare VNN2 expression in total monocytes, classical monocytes (cMo), intermediate monocytes (iMo) and non-classical monocytes (ncMo). Additionally, we examined the expression of HLA, ICAM1, CD62L, ITGAM, S100A8, S100A9, CCR2, CCR6, CX3CR1 and CXCR3 in VNN2+ and VNN2- cells. We analyzed the correlation between VNN2 expression and clinical indicators and assessed the clinical utility of VNN2+ monocytes in pSS diagnosis using receiver operating characteristic curves. RESULTS We observed high VNN2 expression in monocytes, with significantly higher levels in CD14++ monocytes compared to ncMo. VNN2+ monocytes exhibited decreased expression of HLA and CD62L and increased expression of ICAM1, ITGAM, S100A8, S100A9, CCR2, CCR6, CX3CR1 and CXCR3 compared to VNN2- monocytes. Although scRNA-seq data showed that VNN2 mRNA was upregulated, cell surface expression of VNN2 was decreased in monocytes from pSS patients compared to healthy controls. The reduced levels of VNN2+ monocyte subpopulations in pSS patients were negatively correlated with anti-ribosome antibody levels and positively correlated with complement 4 levels. Detection of VNN2 expression in monocytes can aid in the auxiliary diagnosis of pSS. CONCLUSION Monocytes expressing cell surface VNN2 are significantly reduced in pSS patients. This suggests a potential role for VNN2 in pSS development and its potential use as a diagnostic marker for pSS.
Collapse
Affiliation(s)
- Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiayidan Alimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Guochong Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yiming Gao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yang Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Junjie Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xinran Lian
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ziqi Xiong
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University Center for Human Disease Genomics, Peking University Health Science Center, Beijing, China.
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
15
|
Luo H, Li L, Han S, Liu T. The role of monocyte/macrophage chemokines in pathogenesis of osteoarthritis: A review. Int J Immunogenet 2024; 51:130-142. [PMID: 38462560 DOI: 10.1111/iji.12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Osteoarthritis (OA) is one of the most common degenerative diseases characterised by joint pain, swelling and decreased mobility, with its main pathological features being articular synovitis, cartilage degeneration and osteophyte formation. Inflammatory cytokines and chemokines secreted by activated immunocytes can trigger various inflammatory and immune responses in articular cartilage and synovium, contributing to the genesis and development of OA. A series of monocyte/macrophage chemokines, including monocyte chemotaxis protein (MCP)-1/CCL2, MCP2/CCL8, macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1β/CCL4, MIP-3α/CCL20, regulated upon activation, normal T-cell expressed and secreted /CCL5, CCL17 and macrophage-derived chemokine/CCL22, was proven to transmit cell signals by binding to G protein-coupled receptors on recipient cell surface, mediating and promoting inflammation in OA joints. However, the underlying mechanism of these chemokines in the pathogenesis of OA remains still elusive. Here, published literature was reviewed, and the function and mechanisms of monocyte/macrophage chemokines in OA pathogenesis were summarised. The symptoms and disease progression of OA were found to be effectively alleviated when the expression of these chemokines is inhibited. Elucidating these mechanisms could contribute to further understand how OA develops and provide potential targets for the early diagnosis of arthritis and drug treatment to delay or even halt OA progression.
Collapse
Affiliation(s)
- Hao Luo
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Linfeng Li
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Song Han
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tao Liu
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
16
|
Liu X, Ji JX, Pang AN, Li L, Nie P, Zhang LQ, Zeng KW, Chen SN. Molecular cloning and functional analyses of C-C motif chemokine ligand 3 (CCL3) in mandarin fish Siniperca chuatsi. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109614. [PMID: 38710342 DOI: 10.1016/j.fsi.2024.109614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Chemokines are critical molecules involved in immune reaction and immune system homeostasis, and some chemokines play a role in antiviral immunity. It is not known if the C-C motif chemokine ligand 3 (CCL3), a member of the CC chemokine family, possesses antiviral properties in fish. In this study, a ccl3 was cloned from the mandarin fish (Siniperca chuatsi), and it has an open reading frame (ORF) of 276 base pairs, which are predicted to encode a 91-amino acid peptide. Mandarin fish CCL3 revealed conserved sequence features with four cysteine residues and closely relationships with the CCL3s from other vertebrates based on the sequence alignment and phylogenetic analysis. The transcripts of ccl3 were notably enriched in immune-related organs, such as spleen and gills in healthy mandarin fish, and the ccl3 was induced in the isolated mandarin fish brain (MFB) cells following infection with infectious spleen and kidney necrosis virus (ISKNV). Moreover, in MFB cells, overexpression of CCL3 induced immune factors, such as IL1β, TNFα, MX, IRF1 and IFNh, and exhibited antiviral activity against ISKNV. This study sheds light on the immune role of CCL3 in immune response of mandarin fish, and its antiviral defense mechanism is of interest for further investigation.
Collapse
Affiliation(s)
- Xiao Liu
- Wuhan Fisheries Science Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei Province, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Jia Xiang Ji
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - An Ning Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Qiang Zhang
- Wuhan Fisheries Science Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei Province, 430070, China
| | - Ke Wei Zeng
- Wuhan Fisheries Science Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei Province, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China.
| |
Collapse
|
17
|
Jiang S, Lin X, Wu L, Wang L, Wu Y, Xu Z, Xu F. Unveiling the structural mechanisms of nonpeptide ligand recognition and activation in human chemokine receptor CCR8. SCIENCE ADVANCES 2024; 10:eadj7500. [PMID: 38306437 PMCID: PMC10836724 DOI: 10.1126/sciadv.adj7500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
The human CC chemokine receptor 8 (CCR8) is an emerging therapeutic target for cancer immunotherapy and autoimmune diseases. Understanding the molecular recognition of CCR8, particularly with nonpeptide ligands, is valuable for drug development. Here, we report three cryo-electron microscopy structures of human CCR8 complexed with Gi trimers in the ligand-free state or activated by nonpeptide agonists LMD-009 and ZK 756326. A conserved Y1.39Y3.32E7.39 motif in the orthosteric binding pocket is shown to play a crucial role in the chemokine and nonpeptide ligand recognition. Structural and functional analyses indicate that the lack of conservation in Y1143.33 and Y1724.64 among the CC chemokine receptors could potentially contribute to the selectivity of the nonpeptide ligand binding to CCR8. These findings present the characterization of the molecular interaction between a nonpeptide agonist and a chemokine receptor, aiding the development of therapeutics targeting related diseases through a structure-based approach.
Collapse
Affiliation(s)
- Shan Jiang
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xi Lin
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Ling Wang
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Ziyi Xu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research Center, Shanghai 201210, China
| |
Collapse
|
18
|
Lekan AA, Weiner LM. The Role of Chemokines in Orchestrating the Immune Response to Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:559. [PMID: 38339310 PMCID: PMC10854906 DOI: 10.3390/cancers16030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Chemokines are small molecules that function as chemotactic factors which regulate the migration, infiltration, and accumulation of immune cells. Here, we comprehensively assess the structural and functional role of chemokines, examine the effects of chemokines that are present in the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME), specifically those produced by cancer cells and stromal components, and evaluate their impact on immune cell trafficking, both in promoting and suppressing anti-tumor responses. We further explore the impact of chemokines on patient outcomes in PDAC and their role in the context of immunotherapy treatments, and review clinical trials that have targeted chemokine receptors and ligands in the treatment of PDAC. Lastly, we highlight potential strategies that can be utilized to harness chemokines in order to increase cytotoxic immune cell infiltration and the anti-tumor effects of immunotherapy.
Collapse
Affiliation(s)
| | - Louis M. Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA;
| |
Collapse
|
19
|
Wang J, Ouyang X, Zhu W, Yi Q, Zhong J. The Role of CXCL11 and its Receptors in Cancer: Prospective but Challenging Clinical Targets. Cancer Control 2024; 31:10732748241241162. [PMID: 38533911 DOI: 10.1177/10732748241241162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Chemokine ligand 11 is a member of the CXC chemokine family and exerts its biological function mainly through binding to CXCR3 and CXCR7. The CXCL11 gene is ubiquitously overexpressed in various human malignant tumors; however, its specific mechanisms vary among different cancer types. Recent studies have found that CXCL11 is involved in the activation of multiple oncogenic signaling pathways and is closely related to tumorigenesis, progression, chemotherapy tolerance, immunotherapy efficacy, and poor prognosis. Depending on the specific expression of its receptor subtype, CXCL11 also has a complex 2-fold role in tumours; therefore, directly targeting the structure-function of CXCL11 and its receptors may be a challenging task. In this review, we summarize the biological functions of CXCL11 and its receptors and their roles in various types of malignant tumors and point out the directions for clinical applications.
Collapse
Affiliation(s)
- Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Jinghua Zhong
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| |
Collapse
|
20
|
Zhang M, Lan X, Li X, Lu S. Pharmacologically targeting intracellular allosteric sites of GPCRs for drug discovery. Drug Discov Today 2023; 28:103803. [PMID: 37852356 DOI: 10.1016/j.drudis.2023.103803] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
G-protein-coupled receptors (GPCRs) are a family of cell surface proteins that can sense a variety of extracellular stimuli and mediate multiple signaling transduction pathways involved in human physiology. Recent advances in GPCR structural biology have revealed a relatively conserved intracellular allosteric site in multiple GPCRs, which can be utilized to modulate receptors from the inside. This novel intracellular site partially overlaps with the G-protein and β-arrestin coupling sites, providing a novel avenue for biological intervention. Here, we review evidence available for GPCR structures complexed with intracellular small-molecule allosteric modulators, elucidating drug-target interactions and allosteric mechanisms. Moreover, we highlight the potential of intracellular allosteric modulators in achieving biased signaling, which provides insights into biased allosteric mechanisms.
Collapse
Affiliation(s)
- Mingyang Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaobing Lan
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
| | - Shaoyong Lu
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
21
|
Dragan P, Joshi K, Atzei A, Latek D. Keras/TensorFlow in Drug Design for Immunity Disorders. Int J Mol Sci 2023; 24:15009. [PMID: 37834457 PMCID: PMC10573944 DOI: 10.3390/ijms241915009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Homeostasis of the host immune system is regulated by white blood cells with a variety of cell surface receptors for cytokines. Chemotactic cytokines (chemokines) activate their receptors to evoke the chemotaxis of immune cells in homeostatic migrations or inflammatory conditions towards inflamed tissue or pathogens. Dysregulation of the immune system leading to disorders such as allergies, autoimmune diseases, or cancer requires efficient, fast-acting drugs to minimize the long-term effects of chronic inflammation. Here, we performed structure-based virtual screening (SBVS) assisted by the Keras/TensorFlow neural network (NN) to find novel compound scaffolds acting on three chemokine receptors: CCR2, CCR3, and one CXC receptor, CXCR3. Keras/TensorFlow NN was used here not as a typically used binary classifier but as an efficient multi-class classifier that can discard not only inactive compounds but also low- or medium-activity compounds. Several compounds proposed by SBVS and NN were tested in 100 ns all-atom molecular dynamics simulations to confirm their binding affinity. To improve the basic binding affinity of the compounds, new chemical modifications were proposed. The modified compounds were compared with known antagonists of these three chemokine receptors. Known CXCR3 compounds were among the top predicted compounds; thus, the benefits of using Keras/TensorFlow in drug discovery have been shown in addition to structure-based approaches. Furthermore, we showed that Keras/TensorFlow NN can accurately predict the receptor subtype selectivity of compounds, for which SBVS often fails. We cross-tested chemokine receptor datasets retrieved from ChEMBL and curated datasets for cannabinoid receptors. The NN model trained on the cannabinoid receptor datasets retrieved from ChEMBL was the most accurate in the receptor subtype selectivity prediction. Among NN models trained on the chemokine receptor datasets, the CXCR3 model showed the highest accuracy in differentiating the receptor subtype for a given compound dataset.
Collapse
Affiliation(s)
- Paulina Dragan
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-903 Warsaw, Poland; (P.D.); (A.A.)
| | - Kavita Joshi
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-903 Warsaw, Poland; (P.D.); (A.A.)
| | - Alessandro Atzei
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-903 Warsaw, Poland; (P.D.); (A.A.)
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, SS 554, 09042 Cagliari, Italy
| | - Dorota Latek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-903 Warsaw, Poland; (P.D.); (A.A.)
| |
Collapse
|
22
|
Zhao HQ, Jiang J. Chemokines and receptors in the development and progression of malignant tumors. Cytokine 2023; 170:156335. [PMID: 37591136 DOI: 10.1016/j.cyto.2023.156335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
Cancer cells, endothelial cells, inflammatory cells and various cytokines form a part of the tumor microenvironment (TME). Chemokines constitute the largest family of cytokines, and are mainly secreted by tumor cells and inflammatory cells in the TME. They play an important role in tumor development and progression by promoting tumor growth and metastasis, angiogenesis, and targeting the chemoattraction of inflammatory cells. Currently, some chemokine receptor antagonists are being used in clinical trials as targeted anti-tumor drugs. In this article, we review the roles of chemokines in the development and progression of malignant tumors based on recently published papers, taking into consideration of the new anti-tumor therapeutic strategies targeting chemokines and receptors.
Collapse
Affiliation(s)
- Han-Qing Zhao
- Department of General Surgery (Thyroid Surgery), Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, PR China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, PR China.
| |
Collapse
|
23
|
Witt RN, Nickel KS, Binns JR, Gray AM, Hintz AM, Kofron NF, Steigleder SF, Peterson FC, Veldkamp CT. NMR indicates the N-termini of PSGL1 and CCR7 bind competitively to the chemokine CCL21. Biochem Biophys Rep 2023; 35:101524. [PMID: 37554427 PMCID: PMC10404610 DOI: 10.1016/j.bbrep.2023.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Chemokines are from a family of secreted cytokines that direct the trafficking of immune cells to coordinate immune responses. Chemokines are involved in numerous disease states, including responding to infections, autoimmune disorders, and cancer metastasis. Ther are chemokines, like CCL21, that signal for cellular migration through the activation of G protein-coupled receptors, like CCR7, through interaction with the receptor's extracellular N-terminus, loops, and core of the receptor. CCL21 is involved in routine immune surveillance but can also attract metastasizing cancer cells to lymph nodes. P-selectin glycoprotein ligand 1 (PSGL1) has a role in cellular adhesion during chemotaxis and is a transmembrane signaling molecule. PSGL1 expression enhances chemotactic responses of T cells to CCL21. Here NMR studies indicate the binding sites on CCL21 for the N-termini or PSGL1 and CCR7 overlap, and binding of the N-termini of PSGL1 and CCR7 is competitive.
Collapse
Affiliation(s)
- Robin N. Witt
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI, 53190, USA
| | - Kaileigh S. Nickel
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI, 53190, USA
| | - John R. Binns
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI, 53190, USA
| | - Alexander M. Gray
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI, 53190, USA
| | - Alyssa M. Hintz
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI, 53190, USA
| | - Noah F. Kofron
- Department of Biology, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI, 53190, USA
| | - Steven F. Steigleder
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI, 53190, USA
| | - Francis C. Peterson
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Christopher T. Veldkamp
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI, 53190, USA
| |
Collapse
|
24
|
Bomfim GF, Priviero F, Poole E, Tostes RC, Sinclair JH, Stamou D, Uline MJ, Wills MR, Webb RC. Cytomegalovirus and Cardiovascular Disease: A Hypothetical Role for Viral G-Protein-Coupled Receptors in Hypertension. Am J Hypertens 2023; 36:471-480. [PMID: 37148218 PMCID: PMC10403975 DOI: 10.1093/ajh/hpad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023] Open
Abstract
Cytomegalovirus (CMV) is a member of the β-herpesviruses and is ubiquitous, infecting 50%-99% of the human population depending on ethnic and socioeconomic conditions. CMV establishes lifelong, latent infections in their host. Spontaneous reactivation of CMV is usually asymptomatic, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with several cardiovascular and post-transplant diseases (stroke, atherosclerosis, post-transplant vasculopathy, and hypertension). Herpesviruses, including CMV, encode viral G-protein-coupled receptors (vGPCRs) that alter the host cell by hijacking signaling pathways that play important roles in the viral life cycle and these cardiovascular diseases. In this brief review, we discuss the pharmacology and signaling properties of these vGPCRs, and their contribution to hypertension. Overall, these vGPCRs can be considered attractive targets moving forward in the development of novel hypertensive therapies.
Collapse
Affiliation(s)
- Gisele F Bomfim
- Institute of Health Sciences, Federal University of Mato Grosso, campus Sinop (UFMT), Sinop, MT, Brazil
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, South Carolina, USA
| | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, South Carolina, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, USA
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - Emma Poole
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Rita C Tostes
- Ribeirao Preto Medical School, University of Sao Paulo (FMRP-USP), Ribeirao Preto, SP, Brazil
| | - John H Sinclair
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Mark J Uline
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, South Carolina, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA
| | - Mark R Wills
- Department of Pathology, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - R Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, South Carolina, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, USA
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
25
|
Kaffashi K, Dréau D, Nesmelova IV. Heterodimers Are an Integral Component of Chemokine Signaling Repertoire. Int J Mol Sci 2023; 24:11639. [PMID: 37511398 PMCID: PMC10380872 DOI: 10.3390/ijms241411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Chemokines are a family of signaling proteins that play a crucial role in cell-cell communication, cell migration, and cell trafficking, particularly leukocytes, under both normal and pathological conditions. The oligomerization state of chemokines influences their biological activity. The heterooligomerization occurs when multiple chemokines spatially and temporally co-localize, and it can significantly affect cellular responses. Recently, obligate heterodimers have emerged as tools to investigate the activities and molecular mechanisms of chemokine heterodimers, providing valuable insights into their functional roles. This review focuses on the latest progress in understanding the roles of chemokine heterodimers and their contribution to the functioning of the chemokine network.
Collapse
Affiliation(s)
- Kimia Kaffashi
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
- Department of Physics and Optical Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Didier Dréau
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Irina V Nesmelova
- Department of Physics and Optical Sciences, University of North Carolina, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina, Charlotte, NC 28223, USA
| |
Collapse
|
26
|
Blanchet X, Weber C, von Hundelshausen P. Chemokine Heteromers and Their Impact on Cellular Function-A Conceptual Framework. Int J Mol Sci 2023; 24:10925. [PMID: 37446102 DOI: 10.3390/ijms241310925] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Chemoattractant cytokines or chemokines are proteins involved in numerous biological activities. Their essential role consists of the formation of gradient and (immune) cell recruitment. Chemokine biology and its related signaling system is more complex than simple ligand-receptor interactions. Beside interactions with their cognate and/or atypical chemokine receptors, and glycosaminoglycans (GAGs), chemokines form complexes with themselves as homo-oligomers, heteromers and also with other soluble effector proteins, including the atypical chemokine MIF, carbohydrate-binding proteins (galectins), damage-associated molecular patterns (DAMPs) or with chemokine-binding proteins such as evasins. Likewise, nucleic acids have been described as binding targets for the tetrameric form of CXCL4. The dynamic balance between monomeric and dimeric structures, as well as interactions with GAGs, modulate the concentrations of free chemokines available along with the nature of the gradient. Dimerization of chemokines changes the canonical monomeric fold into two main dimeric structures, namely CC- and CXC-type dimers. Recent studies highlighted that chemokine dimer formation is a frequent event that could occur under pathophysiological conditions. The structural changes dictated by chemokine dimerization confer additional biological activities, e.g., biased signaling. The present review will provide a short overview of the known functionality of chemokines together with the consequences of the interactions engaged by the chemokines with other proteins. Finally, we will present potential therapeutic tools targeting the chemokine multimeric structures that could modulate their biological functions.
Collapse
Affiliation(s)
- Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, 80336 Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80636 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80636 Munich, Germany
| |
Collapse
|
27
|
Qi Z, Xu Y, Dong B, Pi X, Zhang Q, Wang D, Wang Z. Molecular characterization, structural and expression analysis of twelve CXC chemokines and eight CXC chemokine receptors in largemouth bass (Micropterus salmoides). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104673. [PMID: 36858298 DOI: 10.1016/j.dci.2023.104673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The chemokine-receptor system plays important roles in the leukocyte trafficking, inflammation, immune cell differentiation, cancer and other biological processes. In the present study, the sequence features, structures and expression patterns of twelve CXC chemokine ligands (CXCL8a.1, CXCL8a.2, CXCL8b.1, CXCL8b.2, CXCL12a, CXCL12b, CXCL13.1, CXCL13.2, CXCL14, CXCL18a, CXCL18b and CXCL19) and eight CXC chemokine receptors (CXCR1, CXCR2, CXCR3.1, CXCR3.2, CXCR3.3, CXCR4a, CXCR4b and CXCR5) of largemouth bass (Micropterus salmoides) were analyzed. All the CXCLs and CXCRs of largemouth bass shared high sequence identities with their teleost counterparts and possessed conserved motifs and structures of CXCLs and CXCRs family. Realtime qPCR revealed that these CXCLs and CXCRs were ubiquitously expressed in all examined tissues, with high expression levels in the immune-related tissues (spleen, head kidney, and gill). Following lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (polyI:C) stimulations, most of these CXCLs and CXCRs were significantly up-regulated in spleen. In addition, the potential interacted molecules of these CXCLs and CXCRs were analyzed by protein-protein interaction network analysis. To the best of our knowledge, this is the first study that in detail analyzes the CXCLs and CXCRs of largemouth bass. Our results provide valuable basis for study the function and mechanism of chemokine-receptor system in largemouth bass.
Collapse
Affiliation(s)
- Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China.
| | - Yang Xu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Biao Dong
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| | - Xiangyu Pi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| | - Qihuan Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| | - Dezhong Wang
- Sheyang Kangyu Aquatic Products Technology Co., Ltd, Yancheng, Jiangsu Province, 224300, China
| | - Zisheng Wang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| |
Collapse
|
28
|
Sîrbe C, Badii M, Crişan TO, Bența G, Grama A, Joosten LAB, Rednic S, Pop TL. Detection of Novel Biomarkers in Pediatric Autoimmune Hepatitis by Proteomic Profiling. Int J Mol Sci 2023; 24:7479. [PMID: 37108648 PMCID: PMC10141667 DOI: 10.3390/ijms24087479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Autoimmune hepatitis (AIH) is characterized by immune-mediated hepatocyte injury resulting in the destruction of liver cells, causing inflammation, liver failure, and fibrosis. Pediatric (AIH) is an autoimmune inflammatory disease that usually requires immunosuppression for an extended period. Frequent relapses after treatment discontinuation demonstrate that current therapies do not control intrahepatic immune processes. This study describes targeted proteomic profiling data in patients with AIH and controls. A total of 92 inflammatory and 92 cardiometabolic plasma markers were assessed for (i) pediatric AIH versus controls, (ii) AIH type 1 versus type 2, (iii) AIH and AIH-autoimmune sclerosing cholangitis overlapping syndrome and (iv) correlations with circulating vitamin D levels in AIH. A total of 16 proteins showed a nominally significant differential abundance in pediatric patients with AIH compared to controls. No clustering of AIH subphenotypes based on all protein data was observed, and no significant correlation of vitamin D levels was observed for the identified proteins. The proteins that showed variable expression include CA1, CA3, GAS6, FCGR2A, 4E-BP1 and CCL19, which may serve as potential biomarkers for patients with AIH. CX3CL1, CXCL10, CCL23, CSF1 and CCL19 showed homology to one another and may be coexpressed in AIH. CXCL10 seems to be the central intermediary link for the listed proteins. These proteins were involved in relevant mechanistic pathways for liver diseases and immune processes in AIH pathogenesis. This is the first report on the proteomic profile of pediatric AIH. The identified markers could potentially lead to new diagnostic and therapeutic tools. Nevertheless, considering the complex pathogenesis of AIH, more extensive studies are warranted to replicate and validate the present study's findings.
Collapse
Affiliation(s)
- Claudia Sîrbe
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.)
- 2nd Pediatric Clinic, Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Medeea Badii
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud University Medical Centre, 6525 XZ Nijmegen, The Netherlands
| | - Tania O. Crişan
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud University Medical Centre, 6525 XZ Nijmegen, The Netherlands
| | - Gabriel Bența
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.)
- 2nd Pediatric Clinic, Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.)
- 2nd Pediatric Clinic, Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud University Medical Centre, 6525 XZ Nijmegen, The Netherlands
| | - Simona Rednic
- Rheumatology Department, Emergency County Hospital Cluj, 400347 Cluj-Napoca, Romania
- Rheumatology Discipline, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.)
- 2nd Pediatric Clinic, Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
29
|
Nakharuthai C, Boonanuntanasarn S, Kaewda J, Manassila P. Isolation of Potential Probiotic Bacillus spp. from the Intestine of Nile Tilapia to Construct Recombinant Probiotic Expressing CC Chemokine and Its Effectiveness on Innate Immune Responses in Nile Tilapia. Animals (Basel) 2023; 13:986. [PMID: 36978530 PMCID: PMC10044694 DOI: 10.3390/ani13060986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
This study aimed to investigate the potential probiotic Bacillus spp. from the intestine of Nile tilapia in order to construct a recombinant probiotic for the enhancement of the Nile tilapia immune response. One hundred bacterial isolates from the intestine of Nile tilapia were characterized for species identification using the 16s ribosomal RNA (rRNA). Only Bacillus isolates with exhibited antagonistic activity were investigated for their biological functions, which included protease-producing capacity, bile salts and pH tolerance, antibiotic susceptibility, and pathogenicity tests. According to the best results, Bacillus isolate B29, as closely related to B. subtilis, was selected to construct a recombinant probiotic for the delivery of CC chemokine protein (pBESOn-CC). The existence of recombinant probiotics was confirmed by Western blotting before the feeding trial. In addition, the CC chemokine mRNA level was quantified in the intestine of fish fed probiotics after 30 days of feeding. Total immunoglobulin, lysozyme activity, alternative complement 50 activity (ACH50), and phagocytic activity of fish fed either wild-type or recombinant probiotics were significantly increased, indicating that probiotics could stimulate the Nile tilapia immune system through different processes. Interestingly, the dietary supplementation of recombinant probiotics has a stronger immune response enhancement than the wild-type strain.
Collapse
Affiliation(s)
- Chatsirin Nakharuthai
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand
| | | | | | | |
Collapse
|
30
|
Cambier S, Gouwy M, Proost P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol 2023; 20:217-251. [PMID: 36725964 PMCID: PMC9890491 DOI: 10.1038/s41423-023-00974-6] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023] Open
Abstract
Chemokines are an indispensable component of our immune system through the regulation of directional migration and activation of leukocytes. CXCL8 is the most potent human neutrophil-attracting chemokine and plays crucial roles in the response to infection and tissue injury. CXCL8 activity inherently depends on interaction with the human CXC chemokine receptors CXCR1 and CXCR2, the atypical chemokine receptor ACKR1, and glycosaminoglycans. Furthermore, (hetero)dimerization and tight regulation of transcription and translation, as well as post-translational modifications further fine-tune the spatial and temporal activity of CXCL8 in the context of inflammatory diseases and cancer. The CXCL8 interaction with receptors and glycosaminoglycans is therefore a promising target for therapy, as illustrated by multiple ongoing clinical trials. CXCL8-mediated neutrophil mobilization to blood is directly opposed by CXCL12, which retains leukocytes in bone marrow. CXCL12 is primarily a homeostatic chemokine that induces migration and activation of hematopoietic progenitor cells, endothelial cells, and several leukocytes through interaction with CXCR4, ACKR1, and ACKR3. Thereby, it is an essential player in the regulation of embryogenesis, hematopoiesis, and angiogenesis. However, CXCL12 can also exert inflammatory functions, as illustrated by its pivotal role in a growing list of pathologies and its synergy with CXCL8 and other chemokines to induce leukocyte chemotaxis. Here, we review the plethora of information on the CXCL8 structure, interaction with receptors and glycosaminoglycans, different levels of activity regulation, role in homeostasis and disease, and therapeutic prospects. Finally, we discuss recent research on CXCL12 biochemistry and biology and its role in pathology and pharmacology.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
31
|
Dragan P, Merski M, Wiśniewski S, Sanmukh SG, Latek D. Chemokine Receptors-Structure-Based Virtual Screening Assisted by Machine Learning. Pharmaceutics 2023; 15:pharmaceutics15020516. [PMID: 36839838 PMCID: PMC9965785 DOI: 10.3390/pharmaceutics15020516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Chemokines modulate the immune response by regulating the migration of immune cells. They are also known to participate in such processes as cell-cell adhesion, allograft rejection, and angiogenesis. Chemokines interact with two different subfamilies of G protein-coupled receptors: conventional chemokine receptors and atypical chemokine receptors. Here, we focused on the former one which has been linked to many inflammatory diseases, including: multiple sclerosis, asthma, nephritis, and rheumatoid arthritis. Available crystal and cryo-EM structures and homology models of six chemokine receptors (CCR1 to CCR6) were described and tested in terms of their usefulness in structure-based drug design. As a result of structure-based virtual screening for CCR2 and CCR3, several new active compounds were proposed. Known inhibitors of CCR1 to CCR6, acquired from ChEMBL, were used as training sets for two machine learning algorithms in ligand-based drug design. Performance of LightGBM was compared with a sequential Keras/TensorFlow model of neural network for these diverse datasets. A combination of structure-based virtual screening with machine learning allowed to propose several active ligands for CCR2 and CCR3 with two distinct compounds predicted as CCR3 actives by all three tested methods: Glide, Keras/TensorFlow NN, and LightGBM. In addition, the performance of these three methods in the prediction of the CCR2/CCR3 receptor subtype selectivity was assessed.
Collapse
|
32
|
Advances in chemokines of teleost fish species. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
Disparate Regions of the Human Chemokine CXCL10 Exhibit Broad-Spectrum Antimicrobial Activity against Biodefense and Antibiotic-Resistant Bacterial Pathogens. ACS Infect Dis 2022; 9:122-139. [PMID: 36475632 PMCID: PMC9841529 DOI: 10.1021/acsinfecdis.2c00456] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CXCL10 is a pro-inflammatory chemokine produced by the host in response to microbial infection. In addition to canonical, receptor-dependent actions affecting immune-cell migration and activation, CXCL10 has also been found to directly kill a broad range of pathogenic bacteria. Prior investigations suggest that the bactericidal effects of CXCL10 occur through two distinct pathways that compromise the cell envelope. These observations raise the intriguing notion that CXCL10 features a separable pair of antimicrobial domains. Herein, we affirm this possibility through peptide-based mapping and structure/function analyses, which demonstrate that discrete peptides derived from the N- and C-terminal regions of CXCL10 mediate bacterial killing. The N-terminal derivative, peptide P1, exhibited marked antimicrobial activity against Bacillus anthracis vegetative bacilli and spores, as well as antibiotic-resistant clinical isolates of Klebsiella pneumoniae, Acinetobacter baumannii, Enterococcus faecium, and Staphylococcus aureus, among others. At bactericidal concentrations, peptide P1 had a minimal degree of chemotactic activity, but did not cause red blood cell hemolysis or cytotoxic effects against primary human cells. The C-terminal derivative, peptide P9, exhibited antimicrobial effects, but only against Gram-negative bacteria in low-salt medium─conditions under which the peptide can adopt an α-helical conformation. The introduction of a hydrocarbon staple induced and stabilized α-helicity; accordingly, stapled peptide P9 displayed significantly improved bactericidal effects against both Gram-positive and Gram-negative bacteria in media containing physiologic levels of salt. Together, our findings identify and characterize the antimicrobial regions of CXCL10 and functionalize these novel determinants as discrete peptides with potential therapeutic utility against difficult-to-treat pathogens.
Collapse
|
34
|
Connors JP, Stelzer JW, Garvin PM, Wellington IJ, Solovyova O. The Role of the Innate Immune System in Wear Debris-Induced Inflammatory Peri-Implant Osteolysis in Total Joint Arthroplasty. Bioengineering (Basel) 2022; 9:764. [PMID: 36550970 PMCID: PMC9774505 DOI: 10.3390/bioengineering9120764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Periprosthetic osteolysis remains a leading complication of total hip and knee arthroplasty, often resulting in aseptic loosening of the implant and necessitating revision surgery. Wear-induced particulate debris is the main cause initiating this destructive process. The purpose of this article is to review recent advances in understanding of how wear debris causes osteolysis, and emergent strategies for the avoidance and treatment of this disease. A strong activator of the peri-implant innate immune this debris-induced inflammatory cascade is dictated by macrophage secretion of TNF-α, IL-1, IL-6, and IL-8, and PGE2, leading to peri-implant bone resorption through activation of osteoclasts and inhibition of osteoblasts through several mechanisms, including the RANK/RANKL/OPG pathway. Therapeutic agents against proinflammatory mediators, such as those targeting tumor necrosis factor (TNF), osteoclasts, and sclerostin, have shown promise in reducing peri-implant osteolysis in vitro and in vivo; however, radiographic changes and clinical diagnosis often lag considerably behind the initiation of osteolysis, making timely treatment difficult. Considerable efforts are underway to develop such diagnostic tools, therapies, and identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- John Patrick Connors
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA
| | - John W Stelzer
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA
| | - Patrick M Garvin
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA
| | - Ian J Wellington
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA
| | - Olga Solovyova
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA
| |
Collapse
|
35
|
Yıldırır Y, Özel S, Doyduk D, Kartal Y, Sabuncuoğlu S. Synthesis of Apigenin and Quercetin‐Like Compounds, Molecular Docking Simulation, and Investigation of Their Bioactivity on A549 Cell Lines. ChemistrySelect 2022. [DOI: 10.1002/slct.202203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yılmaz Yıldırır
- Department of Chemistry Faculty of Science Gazi University 06500 Ankara Turkey
| | - Selinay Özel
- Department of Chemistry Faculty of Science Gazi University 06500 Ankara Turkey
| | - Doğukan Doyduk
- Department of Chemistry Faculty of Science Gazi University 06500 Ankara Turkey
| | - Yasemin Kartal
- Department of Physiology Faculty of Medicine Kırklareli University 39000 Kırklareli Turkey
| | - Suna Sabuncuoğlu
- Department of Toxicology Faculty of Pharmacy Hacettepe University Ankara, 06100 Turkey
| |
Collapse
|
36
|
Wang RX, Ji P, Gong Y, Shao ZM, Chen S. SDF-1 expression and tumor-infiltrating lymphocytes identify clinical subtypes of triple-negative breast cancer with different responses to neoadjuvant chemotherapy and survival. Front Immunol 2022; 13:940635. [PMID: 36341391 PMCID: PMC9630559 DOI: 10.3389/fimmu.2022.940635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background In this study, we investigated the prediction and prognostic value of SDF-1 for triple-negative breast cancer (TNBC) patients who underwent neoadjuvant chemotherapy (NAC) following standard radical surgery. Methods A total of 303 TNBC patients were included in this study. The NAC regimen was weekly paclitaxel plus carboplatin (PC) for all patients. SDF-1 and CXCR4 expression were measured at baseline and surgery via enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC), respectively. Correlations between variables and treatment response were studied, and Cox proportional hazards regression analysis was implemented for prognostic evaluation. Results Of the 303 patients, 103 (34.0%) experienced pathological complete response (pCR) after completion of NAC. Serum SDF-1 expression before NAC was significantly correlated with the abundance of TILs. A higher pCR rate was more likely to be observed in patients with lower serum SDF-1 levels before NAC (P=0.001, OR=0.997, 95% CI: 0.996-0.999) and higher levels of TILs (P=0.005). In the multivariate survival model for nonpCR patients, serum SDF-1 expression at surgery served as an independent prognostic value for survival (high level, HR=1.980, 95% CI: 1.170-3.350, low level was used as a reference; P=0.011). Additionally, the predictive and prognostic value of serum SDF-1 expression was significant in patients with high abundance of TILs but not in patients with low abundance of TILs. Conclusions This study contributes to the clarification of the value of serum SDF-1 to predict pCR and survival for TNBC patients who underwent NAC. This new serum marker, together with TILs, might help identify clinical subtypes of TNBC with different treatment responses and survival and play an important role in tailoring and modifying the NAC strategy for advanced TNBCs in the future.
Collapse
Affiliation(s)
- Ruo-Xi Wang
- Department of Breast Surgery, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Ji
- Department of Breast Surgery, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Gong
- Department of Breast Surgery, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Sheng Chen
- Department of Breast Surgery, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Sheng Chen,
| |
Collapse
|
37
|
Shao F, Ci L, Shi J, Fang F, Yan B, Liu X, Yao X, Zhang M, Yang H, Wang Z, Fei J. Bioluminescence imaging of mouse monocyte chemoattractant protein-1 expression in inflammatory processes. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1507-1517. [PMID: 36239355 PMCID: PMC9828394 DOI: 10.3724/abbs.2022143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1) plays a crucial role in various inflammatory diseases. To reveal the impact of MCP-1 during diseases and to develop anti-inflammatory agents, we establish a transgenic mouse line. The firefly luciferase gene is incorporated into the mouse genome and driven by the endogenous MCP-1 promoter. A bioluminescence photographing system is applied to monitor luciferase levels in live mice during inflammation, including lipopolysaccharide-induced sepsis, concanavalin A-induced T cell-dependent liver injury, CCl 4-induced acute hepatitis, and liver fibrosis. The results demonstrate that the luciferase signal induced in inflammatory processes is correlated with endogenous MCP-1 expression in mice. Furthermore, the expressions of MCP-1 and the luciferase gene are dramatically inhibited by administration of the anti-inflammatory drug dexamethasone in a septicemia model. Our results suggest that the transgenic MCP-1-Luc mouse is a useful model to study MCP-1 expression in inflammation and disease and to evaluate the efficiency of anti-inflammatory drugs in vivo.
Collapse
Affiliation(s)
- Fangyang Shao
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China,Institute of BiophysicsChinese Academy of SciencesBeijing100101China,College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Lei Ci
- Shanghai Engineering Research Center for Model OrganismsSMOCShanghai201203China,Correspondence address. Tel: +86-21-65982429; (J.F.) / Tel: +86-21-20791155; (L.C.) @modelorg.com
| | - Jiahao Shi
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Fei Fang
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Bowen Yan
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Xijun Liu
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Xiangyu Yao
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Mengjie Zhang
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Hua Yang
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Zhugang Wang
- Shanghai Engineering Research Center for Model OrganismsSMOCShanghai201203China
| | - Jian Fei
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China,Correspondence address. Tel: +86-21-65982429; (J.F.) / Tel: +86-21-20791155; (L.C.) @modelorg.com
| |
Collapse
|
38
|
Zhang H, Yang K, Chen F, Liu Q, Ni J, Cao W, Hua Y, He F, Liu Z, Li L, Fan G. Role of the CCL2-CCR2 axis in cardiovascular disease: Pathogenesis and clinical implications. Front Immunol 2022; 13:975367. [PMID: 36110847 PMCID: PMC9470149 DOI: 10.3389/fimmu.2022.975367] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The CCL2-CCR2 axis is one of the major chemokine signaling pathways that has received special attention because of its function in the development and progression of cardiovascular disease. Numerous investigations have been performed over the past decades to explore the function of the CCL2-CCR2 signaling axis in cardiovascular disease. Laboratory data on the CCL2-CCR2 axis for cardiovascular disease have shown satisfactory outcomes, yet its clinical translation remains challenging. In this article, we describe the mechanisms of action of the CCL2-CCR2 axis in the development and evolution of cardiovascular diseases including heart failure, atherosclerosis and coronary atherosclerotic heart disease, hypertension and myocardial disease. Laboratory and clinical data on the use of the CCL2-CCR2 pathway as a targeted therapy for cardiovascular diseases are summarized. The potential of the CCL2-CCR2 axis in the treatment of cardiovascular diseases is explored.
Collapse
Affiliation(s)
- Haixia Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Ke Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qianqian Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jingyu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Weilong Cao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng He
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, China
| | - Zhihao Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lan Li, ; Guanwei Fan,
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, China
- *Correspondence: Lan Li, ; Guanwei Fan,
| |
Collapse
|
39
|
Yousefi M, Ahmadifar M, Mohammadzadeh S, Kalhor N, Esfahani DE, Bagheri A, Mashhadizadeh N, Moghadam MS, Ahmadifar E. Individual and combined effects of the dietary Spirulina platensis and Bacillus licheniformis supplementation on growth performance, antioxidant capacity, innate immunity, relative gene expression and resistance of goldfish, Carassius auratus to Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1070-1078. [PMID: 35830944 DOI: 10.1016/j.fsi.2022.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the individual and combined effects of the dietary Spirulina platensis (SP) and probiotic bacterium Bacillus licheniformis (BL) on the growth performance, immune responses, and disease resistance in goldfish (Carassius auratus). A total of 216 fish (3.39 ± 0.24 g) were randomly distributed in 12 tanks with 18 fish per tank (4 treatments with 3 replications) and fed with diets containing 0% S. platensis and B. licheniformis (T0), 108 CFU/g B. licheniformis (T1), 2.5% S. platensis (T2), and 108 CFU/g B. licheniformis + 2.5% S. platensis (T3(. There were no significant differences in growth parameters. The alternative complement pathway (ACH50) and lysozyme activity were significantly increased in T2 and T3 treatments. No marked differences were observed in total immunoglobulin and protease activity among treatments (P > 0.05). The relative expression of IGF-1 was not affected by experimental diets (P > 0.05). Ghrelin gene showed significantly higher mRNA levels in fish fed with SP and BL (P < 0.05). The relative expression of catalase (CAT), and glutathione reductase (GSR) significantly increased in fish fed with the SP and BL (P < 0.05). No marked difference in glutathione peroxidase (GPX) gene expression was seen between the treatments (P > 0.05). The mRNA levels of lysozyme, IL6, IL-1β, TGF, and TNF2 transcription were higher in fish fed with SP and BL (P < 0.05). No notable difference was observed in TNF1 and IL10 gene expression between treatments (P > 0.05). Moreover, the result of the challenge test with A. hydrophila showed that goldfish fed with SP and BL had a lower mortality rate than the control. In conclusion, the supplementation of SP and BL can be used as feed additives to enhance disease resistance against A. hydrophila infection by stimulating the immune system in goldfish.
Collapse
Affiliation(s)
- Morteza Yousefi
- Department of Veterinary Medicine, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St, 117198, Moscow, Russian Federation.
| | - Mehdi Ahmadifar
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Sedigheh Mohammadzadeh
- Graduated from Fisheries Department, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Naser Kalhor
- Department of Mesanchymal Stem Cell, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Delaram Eslimi Esfahani
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Azadeh Bagheri
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nika Mashhadizadeh
- Department of Biology, Collage of Science, University of Science and Culture, ACECR, Tehran Branch, Iran
| | - Mohsen Shahriari Moghadam
- Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol, Zabol, Iran
| | - Ehsan Ahmadifar
- Department of Fisheries, Faculty of Natural Resources, University of Zabol, Zabol, Iran.
| |
Collapse
|
40
|
Messeha SS, Zarmouh NO, Antonie L, Soliman KFA. Sanguinarine Inhibition of TNF-α-Induced CCL2, IKBKE/NF-κB/ERK1/2 Signaling Pathway, and Cell Migration in Human Triple-Negative Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23158329. [PMID: 35955463 PMCID: PMC9368383 DOI: 10.3390/ijms23158329] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis is a process that drives breast cancer (BC) progression and metastasis, which is linked to the altered inflammatory process, particularly in triple-negative breast cancer (TNBC). In targeting inflammatory angiogenesis, natural compounds are a promising option for managing BC. Thus, this study was designed to determine the natural alkaloid sanguinarine (SANG) potential for its antiangiogenic and antimetastatic properties in triple-negative breast cancer (TNBC) cells. The cytotoxic effect of SANG was examined in MDA-MB-231 and MDA-MB-468 cell models at a low molecular level. In this study, SANG remarkably inhibited the inflammatory mediator chemokine CCL2 in MDA-MB-231 and MDA-MB-468 cells. Furthermore, qRT-PCR confirmed with Western analysis studies showed that mRNA CCL2 repression was concurrent with reducing its main regulator IKBKE and NF-κB signaling pathway proteins in both TNBC cell lines. The total ERK1/2 protein was inhibited in the more responsive MDA-MB-231 cells. SANG exhibited a higher potential to inhibit cell migration in MDA-MB-231 cells compared to MDA-MB-468 cells. Data obtained in this study suggest a unique antiangiogenic and antimetastatic effect of SANG in the MDA-MB-231 cell model. These effects are related to the compound’s ability to inhibit the angiogenic CCL2 and impact the ERK1/2 pathway. Therefore, SANG use may be recommended as a component of the therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Samia S. Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (L.A.)
| | - Najla O. Zarmouh
- Faculty of Medical Technology-Misrata, Libyan Ministry of Technical & Vocational Education, Misrata LY72, Libya;
| | - Lovely Antonie
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (L.A.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (L.A.)
- Correspondence: ; Tel./Fax: +1-850-599-3306
| |
Collapse
|
41
|
Xu J, Li JQ, Chen QL, Shestakova EA, Misyurin VA, Pokrovsky VS, Tchevkina EM, Chen HB, Song H, Zhang JY. Advances in Research on the Effects and Mechanisms of Chemokines and Their Receptors in Cancer. Front Pharmacol 2022; 13:920779. [PMID: 35770088 PMCID: PMC9235028 DOI: 10.3389/fphar.2022.920779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 01/10/2023] Open
Abstract
Cancer is a common and intractable disease that seriously affects quality of life of patients and imposes heavy economic burden on families and the entire society. Current medications and intervention strategies for cancer have respective shortcomings. In recent years, it has been increasingly spotlighted that chemokines and their receptors play vital roles in the pathophysiology of cancer. Chemokines are a class of structurally similar short-chain secreted proteins that initiate intracellular signaling pathways through the activation of corresponding G protein-coupled receptors and participate in physiological and pathological processes such as cell migration and proliferation. Studies have shown that chemokines and their receptors have close relationships with cancer epigenetic regulation, growth, progression, invasion, metastasis, and angiogenesis. Chemokines and their receptors may also serve as potential targets for cancer treatment. We herein summarize recent research progresses on anti-tumor effects and mechanisms of chemokines and their receptors, suggesting avenues for future studies. Perspectives for upcoming explorations, such as development of multi-targeted chemokine-based anti-tumor drugs, are also discussed in the present review.
Collapse
Affiliation(s)
- Jing Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jing-quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Qi-lei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Elena A. Shestakova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vsevolod A. Misyurin
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vadim S. Pokrovsky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Biochemistry, People’s Friendship University, Moscow, Russia
| | - Elena M. Tchevkina
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Hu-biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jian-ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
42
|
Li H, Wu M, Zhao X. Role of chemokine systems in cancer and inflammatory diseases. MedComm (Beijing) 2022; 3:e147. [PMID: 35702353 PMCID: PMC9175564 DOI: 10.1002/mco2.147] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a large family of small secreted proteins that have fundamental roles in organ development, normal physiology, and immune responses upon binding to their corresponding receptors. The primary functions of chemokines are to coordinate and recruit immune cells to and from tissues and to participate in regulating interactions between immune cells. In addition to the generally recognized antimicrobial immunity, the chemokine/chemokine receptor axis also exerts a tumorigenic function in many different cancer models and is involved in the formation of immunosuppressive and protective tumor microenvironment (TME), making them potential prognostic markers for various hematologic and solid tumors. In fact, apart from its vital role in tumors, almost all inflammatory diseases involve chemokines and their receptors in one way or another. Modulating the expression of chemokines and/or their corresponding receptors on tumor cells or immune cells provides the basis for the exploitation of new drugs for clinical evaluation in the treatment of related diseases. Here, we summarize recent advances of chemokine systems in protumor and antitumor immune responses and discuss the prevailing understanding of how the chemokine system operates in inflammatory diseases. In this review, we also emphatically highlight the complexity of the chemokine system and explore its potential to guide the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| |
Collapse
|
43
|
Yang X, Wu Y, Zhang P, Chen G, Cao Z, Ao J, Sun Y, Zhou Y. CC chemokine 1 protein from Cromileptes altivelis (CaCC1) promotes antimicrobial immune defense. FISH & SHELLFISH IMMUNOLOGY 2022; 123:102-112. [PMID: 35240293 DOI: 10.1016/j.fsi.2022.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Chemokines are a family of small signaling proteins that are secreted by various cells. In addition to their roles in immune surveillance, localization of antigen, and lymphocyte trafficking for the maintenance of homeostasis, chemokines also function in induce immune cell migration under pathological conditions. In the present study, a novel CC chemokine gene (CaCC1) from humpback grouper (Cromileptes altivelis) was cloned and characterized. CaCC1 comprised a 435 bp open reading frame encoding 144 amino acid residues. The putative molecular weight of CaCC1 protein was 15 kDa CaCC1 contains four characteristic cysteines that are conserved in other known CC chemokines. CaCC1 also shares 11.64%-90.28% identity with other teleost and mammal CC chemokines. Phylogenetic analysis revealed that CaCC1 is most closely related to Epinephelus coioides EcCC1, both of which are in a fish-specific CC chemokine clade. CaCC1 was constitutively expressed in all examined C. altivelis tissues, with high expression levels in skin, heart, liver, and intestine. Vibrio harveyi stimulation up-regulated CaCC1 expression levels in liver, spleen, and head-kidney. Functional analyses revealed that the recombinant protein (rCaCC1) could induce the migration of head-kidney lymphocytes from C. altivelis. Moreover, rCaCC1 significantly enhanced phagocytosis in head-kidney macrophages from C. altivelis. In addition, rCaCC1 exhibited antimicrobial activities against Staphylococcus aureus, Edwardsiella tarda, and V. harveyi. In vivo, CaCC1 overexpression improved bacterial clearance in V. harveyi infected fish. Conversely, CaCC1 knockdown resulted in a significant decrease of bacterial clearance. These results demonstrate the important roles that CaCC1 plays in homeostasis and in inflammatory response to bacterial infection.
Collapse
Affiliation(s)
- Xiaoyu Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Ying Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Panpan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Guisen Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| |
Collapse
|
44
|
Lewandowski EM, Kroeck KG, Jacobs LM, Fenske TG, Witt RN, Hintz AM, Ramsden ER, Zhang X, Peterson F, Volkman BF, Veldkamp CT, Chen Y. Structural Insights into Molecular Recognition by Human Chemokine CCL19. Biochemistry 2022; 61:311-318. [PMID: 35156805 PMCID: PMC9254573 DOI: 10.1021/acs.biochem.1c00759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human chemokines CCL19 and CCL21 bind to the G protein-coupled receptor (GPCR) CCR7 and play an important role in the trafficking of immune cells as well as cancer metastasis. Conserved binding sites for sulfotyrosine residues on the receptor contribute significantly to the chemokine/GPCR interaction and have been shown to provide promising targets for new drug-discovery efforts to disrupt the chemokine/GPCR interaction and, consequently, tumor metastasis. Here, we report the first X-ray crystal structure of a truncated CCL19 (residues 7-70) at 2.50 Å resolution, revealing molecular details crucial for protein-protein interactions. Although the overall structure is similar to the previously determined NMR model, there are important variations, particularly near the N terminus and the so-called 30's and 40's loops. Computational analysis using the FTMap server indicates the potential importance of these areas in ligand binding and the differences in binding hotspots compared to CCL21. NMR titration experiments using a CCR7-derived peptide (residues 5-11, TDDYIGD) further demonstrate potential receptor recognition sites, such as those near the C terminus and 40's loop, which consist of both positively charged and hydrophobic residues that may be important for receptor binding. Taken together, the X-ray, NMR, and computational analysis herein provide insights into the overall structure and molecular features of CCL19 and enables investigation into this chemokine's function and inhibitor development.
Collapse
Affiliation(s)
- Eric M. Lewandowski
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, United States
| | - Kyle G. Kroeck
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, United States
| | - Lian M.C. Jacobs
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, United States
| | - Tyler G. Fenske
- Department of Biochemistry and Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Robin N. Witt
- Department of Chemistry, University of Wisconsin Whitewater, Whitewater, Wisconsin 53190, United States
| | - Alyssa M. Hintz
- Department of Chemistry, University of Wisconsin Whitewater, Whitewater, Wisconsin 53190, United States
| | - Elizabeth R. Ramsden
- Department of Chemistry, University of Wisconsin Whitewater, Whitewater, Wisconsin 53190, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, United States
| | - Francis Peterson
- Department of Biochemistry and Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brian F. Volkman
- Department of Biochemistry and Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States,Corresponding authors: Brian F. Volkman, , Christopher T. Veldkamp, , Yu Chen,
| | - Christopher T. Veldkamp
- Department of Chemistry, University of Wisconsin Whitewater, Whitewater, Wisconsin 53190, United States,Corresponding authors: Brian F. Volkman, , Christopher T. Veldkamp, , Yu Chen,
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, United States,Corresponding authors: Brian F. Volkman, , Christopher T. Veldkamp, , Yu Chen,
| |
Collapse
|
45
|
She S, Ren L, Chen P, Wang M, Chen D, Wang Y, Chen H. Functional Roles of Chemokine Receptor CCR2 and Its Ligands in Liver Disease. Front Immunol 2022; 13:812431. [PMID: 35281057 PMCID: PMC8913720 DOI: 10.3389/fimmu.2022.812431] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a family of cytokines that orchestrate the migration and positioning of immune cells within tissues and are critical for the function of the immune system. CCR2 participates in liver pathology, including acute liver injury, chronic hepatitis, fibrosis/cirrhosis, and tumor progression, by mediating the recruitment of immune cells to inflammation and tumor sites. Although a variety of chemokines have been well studied in various diseases, there is no comprehensive review presenting the roles of all known chemokine ligands of CCR2 (CCL2, CCL7, CCL8, CCL12, CCL13, CCL16, and PSMP) in liver disease, and this review aims to fill this gap. The introduction of each chemokine includes its discovery, its corresponding chemotactic receptors, physiological functions and roles in inflammation and tumors, and its impact on different immune cell subgroups.
Collapse
Affiliation(s)
- Shaoping She
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Liying Ren
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Pu Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Dongbo Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Hongsong Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
- *Correspondence: Hongsong Chen,
| |
Collapse
|
46
|
Gao J, Wu L, Zhao Y, Hong Q, Feng Z, Chen X. Cxcl10 deficiency attenuates renal interstitial fibrosis through regulating epithelial-to-mesenchymal transition. Exp Cell Res 2022; 410:112965. [PMID: 34896075 DOI: 10.1016/j.yexcr.2021.112965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/03/2021] [Accepted: 12/04/2021] [Indexed: 11/28/2022]
Abstract
IFN-γ-inducible protein 10 (IP-10, CXCL10) has been widely demonstrated to be involved in multiple kidney pathological processes. However, the role of CXCL10 in renal fibrosis remains unclear. In this study, Cxcl10-deficient (Cxcl10-/-) mice were used to generate the unilateral ureteral obstruction (UUO) model. The level of renal fibrosis and inflammatory cell infiltration was examined in vivo and the effects of CXCL10 on EMT process of HK-2 cells was investigated in vitro. We observed that the injury degree of renal tissue and the collagen deposition levels were lighter and the expression of α-SMA, collagen I and fibronectin was significantly reduced in Cxcl10-/- mice, while the expression of E-cadherin was increased. However, interstitial F4/80-positive macrophages and CD4-positive T lymphocytes were unaffected by knockout of Cxcl10. Furthermore, IFN-γ or CXCL10 stimulation could obviously promote the expression of α-SMA, collagen I, fibronectin and reduce the expression of E-cadherin in HK-2 cells, which could be inhibited by transfection of Cxcl10-siRNA. Our findings suggested Cxcl10 knockout could reduce renal dysfunction and inhibit renal fibrosis through regulating EMT process of renal tubular epithelial cells in murine UUO model. These results may provide a novel insight into the mechanism and a potential therapy target of renal fibrosis.
Collapse
Affiliation(s)
- Jie Gao
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China; Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwu Road 324, Jinan, 250021, China
| | - Lingling Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China
| | - Yinghua Zhao
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China
| | - Zhe Feng
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China.
| |
Collapse
|
47
|
Heinzmann ACA, Coenen DM, Vajen T, Cosemans JMEM, Koenen RR. Combined Antiplatelet Therapy Reduces the Proinflammatory Properties of Activated Platelets. TH OPEN 2021; 5:e533-e542. [PMID: 34901735 PMCID: PMC8651446 DOI: 10.1055/a-1682-3415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
The cause of atherothrombosis is rupture or erosion of atherosclerotic lesions, leading to an increased risk of myocardial infarction or stroke. Here, platelet activation plays a major role, leading to the release of bioactive molecules, for example, chemokines and coagulation factors, and to platelet clot formation. Several antiplatelet therapies have been developed for secondary prevention of cardiovascular events, in which anticoagulant drugs are often combined. Besides playing a role in hemostasis, platelets are also involved in inflammation. However, it is unclear whether current antiplatelet therapies also affect platelet immune functions. In this study, the possible anti-inflammatory effects of antiplatelet medications on chemokine release were investigated using enzyme-linked immunosorbent assay and on the chemotaxis of THP-1 cells toward platelet releasates. We found that antiplatelet medication acetylsalicylic acid (ASA) led to reduced chemokine (CC motif) ligand 5 (CCL5) and chemokine (CXC motif) ligand 4 (CXCL4) release from platelets, while leukocyte chemotaxis was not affected. Depending on the agonist, α
IIb
β
3
and P2Y
12
inhibitors also affected CCL5 or CXCL4 release. The combination of ASA with a P2Y
12
inhibitor or a phosphodiesterase (PDE) inhibitor did not lead to an additive reduction in CCL5 or CXCL4 release. Interestingly, these combinations did reduce leukocyte chemotaxis. This study provides evidence that combined therapy of ASA and a P2Y
12
or PDE3 inhibitor can decrease the inflammatory leukocyte recruiting potential of the releasate of activated platelets.
Collapse
Affiliation(s)
- Alexandra C A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Daniëlle M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.,Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Tanja Vajen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.,Cardiovascular Research Laboratory, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
48
|
Indoxyl Sulfate Elevated Lnc-SLC15A1-1 Upregulating CXCL10/CXCL8 Expression in High-Glucose Endothelial Cells by Sponging MicroRNAs. Toxins (Basel) 2021; 13:toxins13120873. [PMID: 34941711 PMCID: PMC8709190 DOI: 10.3390/toxins13120873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 11/28/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality in diabetes mellitus (DM). Immunomodulatory dysfunction is a primary feature of DM, and the emergence of chronic kidney disease (CKD) in DM abruptly increases CVD mortality compared with DM alone. Endothelial injury and the accumulation of uremic toxins in the blood of DM/CKD patients are known mechanisms for the pathogenesis of CVD. However, the molecular factors that cause this disproportional increase in CVD in the DM/CKD population are still unknown. Since long non-protein-coding RNAs (lncRNAs) play an important role in regulating multiple cellular functions, we used human endothelial cells treated with high glucose to mimic DM and with the uremic toxin indoxyl sulfate (IS) to mimic the endothelial injury associated with CKD. Differentially expressed lncRNAs in these conditions were analyzed by RNA sequencing. We discovered that lnc-SLC15A1-1 expression was significantly increased upon IS treatment in comparison with high glucose alone, and then cascaded the signal of chemokines CXCL10 and CXCL8 via sponging miR-27b, miR-297, and miR-150b. This novel pathway might be responsible for the endothelial inflammation implicated in augmenting CVD in DM/CKD and could be a therapeutic target with future clinical applications.
Collapse
|
49
|
Mursalin MH, Coburn PS, Miller FC, Livingston ET, Astley R, Callegan MC. C-X-C Chemokines Influence Intraocular Inflammation During Bacillus Endophthalmitis. Invest Ophthalmol Vis Sci 2021; 62:14. [PMID: 34784411 PMCID: PMC8606850 DOI: 10.1167/iovs.62.14.14] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose The purpose of this study was to explore the C-X-C chemokines CXCL2 and CXCL10 as potential anti-inflammatory targets for Bacillus endophthalmitis. Methods Bacillus endophthalmitis was induced in C57BL/6J, CXCL2−/−, and CXCL10−/− mice. At specific times postinfection, eyes were analyzed for Bacillus, retinal function, and inflammation. The efficacies of intravitreal anti-CXCL2 and anti-CXCL10 with or without gatifloxacin in B. cereus endophthalmitis were also assessed using the same techniques. Results Despite similar Bacillus growth in eyes of C57BL/6J, CXCL2−/−, and CXCL10−/− mice, retinal function retention was greater in eyes of CXCL2−/− and CXCL10−/− mice compared to that of C57BL/6J mice. Neutrophil migration into eyes of CXCL2−/− and CXCL10−/− mice was reduced to a greater degree compared to that of eyes of C57BL/6J mice. Infected CXCL2−/− and CXCL10−/− mouse eyes had significantly less inflammation compared to that of C57BL/6J eyes. Retinal structures in infected eyes of CXCL2−/− mice were preserved for a longer time than in CXCL10−/− eyes. Compared to untreated eyes, there was less inflammation and significant retention of retinal function in eyes treated with anti-CXCL2 and anti-CXCL10 with or without gatifloxacin. Conclusions For Bacillus endophthalmitis, the absence of CXCL2 or CXCL10 in mice resulted in retained retinal function and less inflammation. The absence of CXCL2 led to a better clinical outcome than the absence of CXCL10. The use of anti-CXCL2 and anti-CXCL10 limited inflammation during B. cereus endophthalmitis. These results highlight the utility of CXCL2 and CXCL10 as potential targets for anti-inflammatory therapy that can be tested in conjunction with antibiotics for improving treating Bacillus endophthalmitis.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Phillip S Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Frederick C Miller
- Department of Cell Biology and Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Erin T Livingston
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Roger Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Michelle C Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
50
|
Liu Y, Xia H, Xia G, Lin S, Guo L, Liu Y. The effect of an isoquinoline alkaloid on treatment of periodontitis by regulating the neutrophils chemotaxis. J Leukoc Biol 2021; 110:475-484. [PMID: 34184309 DOI: 10.1002/jlb.3ma0321-736r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophil plays a critical role in the progression of periodontitis. In general, its chemotaxis and activation are benefit for the host defense of bacterial infection and inflammation. However, previous studies have reported that the hyperactive and reactive neutrophils appear to be one of the reasons for tissue destruction in periodontitis tissues. In this study, we investigated an isoquinoline alkaloid Litcubanine A (LA), which from the Traditional Chinese medicinal plant, Litsea cubeba. We found LA showed significant activity in inhibiting neutrophils chemotaxis in the zebrafish yolk sac microinjection model in vivo and in mouse neutrophils in vitro. Further investigation proved that LA could inhibit the expression levels of neutrophil respiratory burst-related and inflammation-related genes CYBB and NCF2, as well as inhibit the activation of MAPK signaling pathway. Moreover, using LA, we successfully achieved the effect of reducing periodontitis bone loss by regulating neutrophil chemotaxis and related functions in a mouse ligature-induced periodontitis model.
Collapse
Affiliation(s)
- Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|