1
|
Thayil R, Parne SR, Ramana CV. 2D MoS 2 for Next-Generation Electronics and Optoelectronics: From Material Properties to Manufacturing Challenges and Future Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412467. [PMID: 40026204 DOI: 10.1002/smll.202412467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/12/2025] [Indexed: 03/04/2025]
Abstract
The emergence of innovative 2D materials represents a significant evolution in materials science, heralding new opportunities for the advancement of information technologies in the era succeeding Moore's law. These materials span various categories, including semi-metallic, semiconductor, and insulating types, showcasing their versatility. The exceptional characteristics of these atomically thin and planar materials herald a new era in the miniaturization of devices. Integrating 2D materials into field-effect transistors (FETs) with sub-nanometer scale gate architectures demonstrates typical switching behaviors, confirming their applicability in integrated circuits. Concurrently, the development of wafer-level and silicon-compatible manufacturing techniques specifically designed for 2D materials and their devices underscores their significant promise in nanoelectronics and nanophotonics. Particularly, Molybdenum disulfide (MoS2) stands out for its direct bandgaps and bound excitons, offering profound implications for advancing nanoelectronics and nanophotonics. This review investigates the intrinsic structure and properties of MoS2, evaluates various methods for wafer-scale synthesis, and examines critical applications in nanoelectronics, such as 2D FETs, photodetectors, and memristors, alongside nanophotonics applications like nano-scale laser sources, exciton-plasmon interaction for advanced sensing applications, and photoluminescence manipulation. Additionally, this review addresses current challenges and future prospects for developing MoS2-based technologies in next-generation nanoelectronic and nanophotonic devices.
Collapse
Affiliation(s)
- Ruchika Thayil
- Department of Applied Sciences, National Institute of Technology Goa, Cuncolim-Goa, 403703, India
| | - Saidi Reddy Parne
- Department of Applied Sciences, National Institute of Technology Goa, Cuncolim-Goa, 403703, India
| | - C V Ramana
- Center for Advanced Materials Research (CMR), University of Texas at El Paso, 500 W University Ave, El Paso, Texas, 79968, USA
- Department of Aerospace and Mechanical Engineering, University of Texas at El Paso, 500 W University Ave, El Paso, Texas, 79968, USA
| |
Collapse
|
2
|
Farkas E, Dóra Kovács K, Szekacs I, Peter B, Lagzi I, Kitahata H, Suematsu NJ, Horvath R. Kinetic monitoring of molecular interactions during surfactant-driven self-propelled droplet motion by high spatial resolution waveguide sensing. J Colloid Interface Sci 2025; 677:352-364. [PMID: 39151228 DOI: 10.1016/j.jcis.2024.07.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
HYPOTHESIS Self-driven actions, like motion, are fundamental characteristics of life. Today, intense research focuses on the kinetics of droplet motion. Quantifying macroscopic motion and exploring the underlying mechanisms are crucial in self-structuring and self-healing materials, advancements in soft robotics, innovations in self-cleaning environmental processes, and progress within the pharmaceutical industry. Usually, the driving forces inducing macroscopic motion act at the molecular scale, making their real-time and high-resolution investigation challenging. Label-free surface sensitive measurements with high lateral resolution could in situ measure both molecular-scale interactions and microscopic motion. EXPERIMENTS We employ surface-sensitive label-free sensors to investigate the kinetic changes in a self-assembled monolayer of the trimethyl(octadecyl)azanium chloride surfactant on a substrate surface during the self-propelled motion of nitrobenzene droplets. The adsorption-desorption of the surfactant at various concentrations, its removal due to the moving organic droplet, and rebuilding mechanisms at droplet-visited areas are all investigated with excellent time, spatial, and surface mass density resolution. FINDINGS We discovered concentration dependent velocity fluctuations, estimated the adsorbed amount of surfactant molecules, and revealed multilayer coverage at high concentrations. The desorption rate of surfactant (18.4 s-1) during the microscopic motion of oil droplets was determined by in situ differentiating between droplet visited and non-visited areas.
Collapse
Affiliation(s)
- Eniko Farkas
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary
| | - Kinga Dóra Kovács
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary; Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary
| | - Beatrix Peter
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary
| | - István Lagzi
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Muegyetem rkp. 3, 1111 Budapest, Hungary; HUN-REN-BME Condensed Matter Physics Research Group, Budapest University of Technology and Economics, Muegyetem rkp. 3, 1111 Budapest, Hungary
| | - Hiroyuki Kitahata
- Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Nobuhiko J Suematsu
- Meiji Institute of Advanced Study of Mathematical Sciences (MIMS), Meiji University, 4-21-1 Nakano, Tokyo 164-8525, Japan; Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano, Tokyo 164-8525, Japan.
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary; Nanobiosensorics Laboratory, Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
3
|
Lin X, Zhu J, Shen J, Zhang Y, Zhu J. Advances in exosome plasmonic sensing: Device integration strategies and AI-aided diagnosis. Biosens Bioelectron 2024; 266:116718. [PMID: 39216205 DOI: 10.1016/j.bios.2024.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/11/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Exosomes, as next-generation biomarkers, has great potential in tracking cancer progression. They face many detection limitations in cancer diagnosis. Plasmonic biosensors have attracted considerable attention at the forefront of exosome detection, due to their label-free, real-time, and high-sensitivity features. Their advantages in multiplex immunoassays of minimal liquid samples establish the leading position in various diagnostic studies. This review delineates the application principles of plasmonic sensing technologies, highlighting the importance of exosomes-based spectrum and image signals in disease diagnostics. It also introduces advancements in miniaturizing plasmonic biosensing platforms of exosomes, which can facilitate point-of-care testing for future healthcare. Nowadays, inspired by the surge of artificial intelligence (AI) for science and technology, more and more AI algorithms are being adopted to process the exosome spectrum and image data from plasmonic detection. Using representative algorithms of machine learning has become a mainstream trend in plasmonic biosensing research for exosome liquid biopsy. Typically, these algorithms process complex exosome datasets efficiently and establish powerful predictive models for precise diagnosis. This review further discusses critical strategies of AI algorithm selection in exosome-based diagnosis. Particularly, we categorize the AI algorithms into the interpretable and uninterpretable groups for exosome plasmonic detection applications. The interpretable AI enhances the transparency and reliability of diagnosis by elucidating the decision-making process, while the uninterpretable AI provides high diagnostic accuracy with robust data processing by a "black-box" working mode. We believe that AI will continue to promote significant progress of exosome plasmonic detection and mobile healthcare in the near future.
Collapse
Affiliation(s)
- Xiangyujie Lin
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Jiaheng Zhu
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Jiaqing Shen
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| | - Jinfeng Zhu
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| |
Collapse
|
4
|
Khakimzhan A, Izri Z, Thompson S, Dmytrenko O, Fischer P, Beisel C, Noireaux V. Cell-free expression with a quartz crystal microbalance enables rapid, dynamic, and label-free characterization of membrane-interacting proteins. Commun Biol 2024; 7:1005. [PMID: 39152195 PMCID: PMC11329788 DOI: 10.1038/s42003-024-06690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Integral and interacting membrane proteins (IIMPs) constitute a vast family of biomolecules that perform essential functions in all forms of life. However, characterizing their interactions with lipid bilayers remains limited due to challenges in purifying and reconstituting IIMPs in vitro or labeling IIMPs without disrupting their function in vivo. Here, we report cell-free transcription-translation in a quartz crystal microbalance with dissipation (TXTL-QCMD) to dynamically characterize interactions between diverse IIMPs and membranes without protein purification or labeling. As part of TXTL-QCMD, IIMPs are synthesized using cell-free transcription-translation (TXTL), and their interactions with supported lipid bilayers are measured using a quartz crystal microbalance with dissipation (QCMD). TXTL-QCMD reconstitutes known IIMP-membrane dependencies, including specific association with prokaryotic or eukaryotic membranes, and the multiple-IIMP dynamical pattern-forming association of the E. coli division-coordinating proteins MinCDE. Applying TXTL-QCMD to the recently discovered Zorya anti-phage system that is unamenable to labeling, we discovered that ZorA and ZorB integrate within the lipids found at the poles of bacteria while ZorE diffuses freely on the non-pole membrane. These efforts establish the potential of TXTL-QCMD to broadly characterize the large diversity of IIMPs.
Collapse
Affiliation(s)
- Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ziane Izri
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Seth Thompson
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Oleg Dmytrenko
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Patrick Fischer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Chase Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080, Würzburg, Germany
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Wang Y, Zhou Y, Qi L, Wang Y, Sun L, Cai M, Fan Q, Zhang L. Visualizing Single-Molecule Protein Conformational Transitions and Free Energy Landscape. Anal Chem 2024; 96:12006-12011. [PMID: 38993005 DOI: 10.1021/acs.analchem.4c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Monitoring the conformational dynamics of individual proteins is essential to understand the relationship between structure and function in molecular regulatory mechanisms. However, the fast dynamics of single proteins remain poorly understood. Here, we construct a single-molecule sensing platform by introducing plasmonic imaging of single nanoparticles to sense and report the protein conformational changes at the single-molecule level. Tracking the fluctuations of individual nanoparticles with high resolution, we detect and characterize distinct conformational states of molecular chaperone heat shock protein 90 (Hsp90). We also explore the conformational changes of Hsp90 in situ under different nucleotide conditions. Analysis of the conformational fluctuations between the open and closed states of single Hsp90 provides important information on free energy profiles, effective spring constants, and multiphase behaviors. This method offers a strategy to visualize the conformational changes of single proteins in real-time and provides insights into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Yang Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Liting Qi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Yamin Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Le Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Miaomiao Cai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Lei Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| |
Collapse
|
6
|
Zhou X, Chieng A, Wang S. Label-Free Optical Imaging of Nanoscale Single Entities. ACS Sens 2024; 9:543-554. [PMID: 38346398 PMCID: PMC10990724 DOI: 10.1021/acssensors.3c02526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The advancement of optical microscopy technologies has achieved imaging of nanoscale objects, including nanomaterials, virions, organelles, and biological molecules, at the single entity level. Recently developed plasmonic and scattering based optical microscopy technologies have enabled label-free imaging of single entities with high spatial and temporal resolutions. These label-free methods eliminate the complexity of sample labeling and minimize the perturbation of the analyte native state. Additionally, these imaging-based methods can noninvasively probe the dynamics and functions of single entities with sufficient throughput for heterogeneity analysis. This perspective will review label-free single entity imaging technologies and discuss their principles, applications, and key challenges.
Collapse
Affiliation(s)
- Xinyu Zhou
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Andy Chieng
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
7
|
Xiao K, Li J, Zhang H, Jiang H, Zhao W. Dynamically Adjusting Borophene-Based Plasmon-Induced Transparency in a Polymer-Separated Hybrid System for Broadband-Tunable Sensing. Polymers (Basel) 2023; 15:3060. [PMID: 37514448 PMCID: PMC10386136 DOI: 10.3390/polym15143060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Borophene, an emerging two-dimensional (2D) material platform, is capable of supporting highly confined plasmonic modes in the visible and near-infrared wavebands. This provides a novel building block for light manipulation at the deep subwavelength scale, thus making it well-suited for designing ultracompact optical devices. Here, we theoretically explore a borophene-based plasmonic hybrid system comprising a continuous borophene monolayer (CBM) and sodium nanostrip gratings (SNGs), separated by a polymer spacer layer. In such a structure, a dynamically tunable plasmon-induced transparency (PIT) effect can be achieved by strongly coupling dark and bright plasmonic modes, while actively controlling borophene. Here, the bright mode is generated through the localized plasmon resonance of SNGs when directly excited by TM-polarized incident light. Meanwhile, the dark mode corresponds to a propagating borophene surface plasmon (BSP) mode in the CBM waveguide, which cannot be directly excited, but requires phase matching with the assistance of SNGs. The thickness of the polymer layer has a significant impact on the coupling strength of the two modes. Owing to the BSP mode, highly sensitive to variations in the ambient refractive index (RI), this borophene-based hybrid system exhibits a good RI-sensing performance (643.8 nm/RIU) associated with a wide range of dynamically adjustable wavebands (1420-2150 nm) by tuning the electron density of borophene. This work offers a novel concept for designing active plasmonic sensors dependent on electrically gating borophene, which has promising applications in next-generation point-of-care (PoC) biomedical diagnostic techniques.
Collapse
Affiliation(s)
- Kunpeng Xiao
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Junming Li
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hui Zhang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Huan Jiang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiren Zhao
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
MATSUI M, ORIKASA Y, UCHIYAMA T, NISHI N, MIYAHARA Y, OTOYAMA M, TSUDA T. Electrochemical In Situ/<i>operando</i> Spectroscopy and Microscopy Part 1: Fundamentals. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-66093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Yuki ORIKASA
- Department of Applied Chemistry, Ritsumeikan University
| | - Tomoki UCHIYAMA
- Department of Interdisciplinary Environment, Kyoto University
| | - Naoya NISHI
- Department of Energy and Hydrocarbon Chemistry, Kyoto University
| | - Yuto MIYAHARA
- Department of Energy and Hydrocarbon Chemistry, Kyoto University
| | - Misae OTOYAMA
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST)
| | | |
Collapse
|
9
|
Charlesworth K, van Heijst N, Maxwell A, Baylis B, Grossutti M, Leitch JJ, Dutcher JR. Binding Affinity of Concanavalin A to Native and Acid-Hydrolyzed Phytoglycogen Nanoparticles. Biomacromolecules 2022; 23:4778-4785. [PMID: 36252236 DOI: 10.1021/acs.biomac.2c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phytoglycogen (PG) is a polysaccharide produced in the kernels of sweet corn as soft, highly branched, compact nanoparticles. Its tree-like or dendritic architecture, combined with a high-safety profile, makes PG nanoparticles attractive for use in biological applications, many of which rely on the association or binding of small biomolecules. We have developed a methodology to functionalize surface plasmon resonance (SPR) sensor surfaces with PG nanoparticles, and we demonstrate the utility of the PG-functionalized SPR sensor by measuring the binding affinity of the tetrameric concanavalin A (ConA) protein to both native PG nanoparticles and smaller, softer acid-hydrolyzed PG nanoparticles. We measure comparable values of the equilibrium association constant K for native and acid-hydrolyzed PG, with a slightly smaller value for the acid-hydrolyzed particles that we attribute to unfavorable lateral interactions between the tetrameric subunits of ConA due to the increase in surface curvature of the smaller acid-hydrolyzed PG particles. We also use infrared reflection-absorption spectroscopy (IRRAS) to show that ConA maintains a large fraction of its native conformation, and thus its bioactivity, upon binding to PG, representing an important step toward the realization of PG as a novel bioactive delivery vehicle.
Collapse
Affiliation(s)
| | | | - Aidan Maxwell
- Department of Physics, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
| | - Benjamin Baylis
- Department of Physics, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
| | - Michael Grossutti
- Department of Physics, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
| | - J Jay Leitch
- Department of Physics, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
| | - John R Dutcher
- Department of Physics, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
| |
Collapse
|
10
|
A review of optical methods for ultrasensitive detection and characterization of nanoparticles in liquid media with a focus on the wide field surface plasmon microscopy. Anal Chim Acta 2022; 1204:339633. [DOI: 10.1016/j.aca.2022.339633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022]
|
11
|
Di Rocco G, Battistuzzi G, Borsari M, Bortolotti CA, Ranieri A, Sola M. The enthalpic and entropic terms of the reduction potential of metalloproteins: Determinants and interplay. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Sohrabi F, Saeidifard S, Ghasemi M, Asadishad T, Hamidi SM, Hosseini SM. Role of plasmonics in detection of deadliest viruses: a review. EUROPEAN PHYSICAL JOURNAL PLUS 2021; 136:675. [PMID: 34178567 PMCID: PMC8214556 DOI: 10.1140/epjp/s13360-021-01657-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/08/2021] [Indexed: 05/09/2023]
Abstract
Viruses have threatened animal and human lives since a long time ago all over the world. Some of these tiny particles have caused disastrous pandemics that killed a large number of people with subsequent economic downturns. In addition, the quarantine situation itself encounters the challenges like the deficiency in the online educational system, psychiatric problems and poor international relations. Although viruses have a rather simple protein structure, they have structural heterogeneity with a high tendency to mutation that impedes their study. On top of the breadth of such worldwide worrying issues, there are profound scientific gaps, and several unanswered questions, like lack of vaccines or antivirals to combat these pathogens. Various detection techniques like the nucleic acid test, immunoassay, and microscopy have been developed; however, there is a tradeoff between their advantages and disadvantages like safety in sample collecting, invasiveness, sensitivity, response time, etc. One of the highly resolved techniques that can provide early-stage detection with fast experiment duration is plasmonics. This optical technique has the capability to detect viral proteins and genomes at the early stage via highly sensitive interaction between the biological target and the plasmonic chip. The efficiency of this technique could be proved using commercialized techniques like reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) techniques. In this study, we aim to review the role of plasmonic technique in the detection of 11 deadliest viruses besides 2 common genital viruses for the human being. This is a rapidly moving topic of research, and a review article that encompasses the current findings may be useful for guiding strategies to deal with the pandemics. By investigating the potential aspects of this technique, we hope that this study could open new avenues toward the application of point-of-care techniques for virus detection at early stage that may inhibit the progressively hygienic threats.
Collapse
Affiliation(s)
- Foozieh Sohrabi
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Daneshju Boulevard, 1983969411 Tehran, Iran
| | - Sajede Saeidifard
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Daneshju Boulevard, 1983969411 Tehran, Iran
| | - Masih Ghasemi
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Daneshju Boulevard, 1983969411 Tehran, Iran
| | - Tannaz Asadishad
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Daneshju Boulevard, 1983969411 Tehran, Iran
| | - Seyedeh Mehri Hamidi
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Daneshju Boulevard, 1983969411 Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Evin, Tehran, Iran
| |
Collapse
|
13
|
Abstract
The precise measurement of thermodynamic and kinetic properties for biomolecules provides the detailed information for a multitude of applications in biochemistry, biosensing, and health care. However, sensitivity in characterizing the thermodynamic binding affinity down to a single molecule, such as the Gibbs free energy ([Formula: see text]), enthalpy ([Formula: see text]), and entropy ([Formula: see text]), has not materialized. Here, we develop a nanoparticle-based technique to probe the energetic contributions of single-molecule binding events, which introduces a focused laser of optical tweezer to an optical path of plasmonic imaging to accumulate and monitor the transient local heating. This single-molecule calorimeter uncovers the complex nature of molecular interactions and binding characterizations, which can be employed to identify the thermodynamic equilibrium state and determine the energetic components and complete thermodynamic profile of the free energy landscape. This sensing platform promises a breakthrough in measuring thermal effect at the single-molecule level and provides a thorough description of biomolecular specific interactions.
Collapse
|
14
|
Virmani D, Bylinkin A, Dolado I, Janzen E, Edgar JH, Hillenbrand R. Amplitude- and Phase-Resolved Infrared Nanoimaging and Nanospectroscopy of Polaritons in a Liquid Environment. NANO LETTERS 2021; 21:1360-1367. [PMID: 33511844 DOI: 10.1021/acs.nanolett.0c04108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polaritons allow for strong light-matter coupling and for highly sensitive analysis of (bio)chemical substances and processes. Nanoimaging of the polaritons' evanescent fields is critically important for experimental mode identification and field confinement studies. Here we describe two setups for polariton nanoimaging and spectroscopy in liquid. We first demonstrate the mapping of localized plasmon polaritons in metal antennas with a transflection infrared scattering-type scanning near-field optical microscope (s-SNOM), where the tip acts as a near-field scattering probe. We then demonstrate a total internal reflection (TIR)-based setup, where the tip is both launching and probing ultraconfined polaritons in van der Waals materials (here phonon polaritons in hexagonal boron nitride flakes), laying the foundation for s-SNOM-based polariton interferometry in liquid. Our results promise manifold applications, for example, in situ studies of strong coupling between polaritons and molecular vibrations or chemical reactions at the bare or functionalized surfaces of polaritonic materials.
Collapse
Affiliation(s)
- Divya Virmani
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain
| | - Andrei Bylinkin
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain
| | - Irene Dolado
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain
| | - Eli Janzen
- Kansas State University, Tim Taylor Department of Chemical Engineering, Durland Hall, Manhattan, Kansas 66506, United States
| | - James H Edgar
- Kansas State University, Tim Taylor Department of Chemical Engineering, Durland Hall, Manhattan, Kansas 66506, United States
| | - Rainer Hillenbrand
- CIC nanoGUNE BRTA and Department of Electricity and Electronics, UPV/EHU, Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
15
|
Kittle J, Levin J, Levin N. Water Content of Polyelectrolyte Multilayer Films Measured by Quartz Crystal Microbalance and Deuterium Oxide Exchange. SENSORS 2021; 21:s21030771. [PMID: 33498836 PMCID: PMC7866239 DOI: 10.3390/s21030771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 01/15/2023]
Abstract
Water content of natural and synthetic, thin, polymer films is of considerable interest to a variety of fields because it governs properties such as ion conductivity, rigidity, porosity, and mechanical strength. Measuring thin film water content typically requires either complicated and expensive instrumentation or use of multiple instrumental techniques. However, because a quartz crystal microbalance (QCM) is sensitive to changes in mass and viscosity, deuterated solvent exchange has emerged as a simple, single-instrument, in situ method to quantify thin film water content. Relatively few studies, though, have employed this technique to measure water content of polyelectrolyte multilayers formed by layer-by-layer (LbL) assembly. In this work, poly (allyl amine) (PAH) and poly (styrene sulfonate) (PSS) films of up to nine layers were formed and the water content for each layer was measured via QCM with deuterium oxide exchange. The well-characterized nature of PAH/PSS films facilitated comparisons of the technique used in this work to other instrumental methods. Water content results showed good agreement with the literature and good precision for hydrated films thicker than 20 nm. Collectively, this work highlights the utility, repeatability, and limitations of this deuterated exchange technique in measuring the solvent content of thin films.
Collapse
|
16
|
Yuan H, Xu M, Yao J. SERS Studies on the Electrochemical and SPR Synergistic Catalytic Interfacial Reaction of 4-Chlorothiophenol. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21080405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Chin LK, Son T, Hong JS, Liu AQ, Skog J, Castro CM, Weissleder R, Lee H, Im H. Plasmonic Sensors for Extracellular Vesicle Analysis: From Scientific Development to Translational Research. ACS NANO 2020; 14:14528-14548. [PMID: 33119256 PMCID: PMC8423498 DOI: 10.1021/acsnano.0c07581] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Extracellular vesicles (EVs), actively shed from a variety of neoplastic and host cells, are abundant in blood and carry molecular markers from parental cells. For these reasons, EVs have gained much interest as biomarkers of disease. Among a number of different analytical methods that have been developed, surface plasmon resonance (SPR) stands out as one of the ideal techniques given its sensitivity, robustness, and ability to miniaturize. In this Review, we compare different SPR platforms for EV analysis, including conventional SPR, nanoplasmonic sensors, surface-enhanced Raman spectroscopy, and plasmonic-enhanced fluorescence. We discuss different surface chemistries used to capture targeted EVs and molecularly profile their proteins and RNAs. We also highlight these plasmonic platforms' clinical applications, including cancers, neurodegenerative diseases, and cardiovascular diseases. Finally, we discuss the future perspective of plasmonic sensing for EVs and their potentials for commercialization and clinical translation.
Collapse
Affiliation(s)
- Lip Ket Chin
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Taehwang Son
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jae-Sang Hong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ai-Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Johan Skog
- Exosome Diagnostics, a Bio-techne brand, Waltham, MA 02451, USA
| | - Cesar M. Castro
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
18
|
Ferhan AR, Yoon BK, Jeon WY, Cho NJ. Biologically interfaced nanoplasmonic sensors. NANOSCALE ADVANCES 2020; 2:3103-3114. [PMID: 36134263 PMCID: PMC9418064 DOI: 10.1039/d0na00279h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/26/2020] [Indexed: 05/30/2023]
Abstract
Understanding biointerfacial processes is crucial in various fields across fundamental and applied biology, but performing quantitative studies via conventional characterization techniques remains challenging due to instrumentation as well as analytical complexities and limitations. In order to accelerate translational research and address current challenges in healthcare and medicine, there is an outstanding need to develop surface-sensitive technologies with advanced measurement capabilities. Along this line, nanoplasmonic sensing has emerged as a powerful tool to quantitatively study biointerfacial processes owing to its high spatial resolution at the nanoscale. Consequently, the development of robust biological interfacing strategies becomes imperative to maximize its characterization potential. This review will highlight and discuss the critical role of biological interfacing within the context of constructing nanoplasmonic sensing platforms for biointerfacial science applications. Apart from paving the way for the development of highly surface-sensitive characterization tools that will spur fundamental biological interaction studies and improve the overall understanding of biological processes, the basic principles behind biointerfacing strategies presented in this review are also applicable to other fields that involve an interface between an inorganic material and a biological system.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
- School of Chemical Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Won-Yong Jeon
- School of Chemical Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| |
Collapse
|
19
|
Da Browski M, Dai Y, Petek H. Ultrafast Photoemission Electron Microscopy: Imaging Plasmons in Space and Time. Chem Rev 2020; 120:6247-6287. [PMID: 32530607 DOI: 10.1021/acs.chemrev.0c00146] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plasmonics is a rapidly growing field spanning research and applications across chemistry, physics, optics, energy harvesting, and medicine. Ultrafast photoemission electron microscopy (PEEM) has demonstrated unprecedented power in the characterization of surface plasmons and other electronic excitations, as it uniquely combines the requisite spatial and temporal resolution, making it ideally suited for 3D space and time coherent imaging of the dynamical plasmonic phenomena on the nanofemto scale. The ability to visualize plasmonic fields evolving at the local speed of light on subwavelength scale with optical phase resolution illuminates old phenomena and opens new directions for growth of plasmonics research. In this review, we guide the reader thorough experimental description of PEEM as a characterization tool for both surface plasmon polaritons and localized plasmons and summarize the exciting progress it has opened by the ultrafast imaging of plasmonic phenomena on the nanofemto scale.
Collapse
Affiliation(s)
- Maciej Da Browski
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, Devon EX4 4QL, U.K
| | - Yanan Dai
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Hrvoje Petek
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
20
|
Lambert AS, Valiulis SN, Malinick AS, Tanabe I, Cheng Q. Plasmonic Biosensing with Aluminum Thin Films under the Kretschmann Configuration. Anal Chem 2020; 92:8654-8659. [PMID: 32525300 DOI: 10.1021/acs.analchem.0c01631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aluminum has recently attracted considerable interest as a plasmonic material due to its unique optical properties, but most work has been limited to nanostructures. We report here SPR biosensing with aluminum thin-films using the standard Kretschmann configuration that has previously been dominated by gold films. Electron-beam physical vapor deposition (EBPVD)-prepared Al films oxidize in air to form a nanofilm of Al2O3, yielding robust stability for sensing applications in buffered solutions. FDTD simulations revealed a sharp plasmonic dip in the visible range that enables measurement of both angular shift and reflection intensity change at a fixed angle. Bulk and surface tests indicated that Al films exhibited superb sensitivity performance in both categories. Compared to Au, the Al/Al2O3 layer showed a marked effect of suppressing nonspecific binding from proteins in human serum. Further characterization indicated that Al film demonstrated a higher sensitivity and a wider working range than Au films when used for SPR imaging analysis. Combined with its economic and manufacturing benefits, the Al thin-film has the potential to become a highly advantageous plasmonic substrate to meet a wide range of biosensing needs in SPR configurations.
Collapse
Affiliation(s)
- Alexander S Lambert
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Santino N Valiulis
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Alexander S Malinick
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ichiro Tanabe
- Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
21
|
Li Y, Yuan Y, Peng X, Song J, Liu J, Qu J. An ultrasensitive Fano resonance biosensor using two dimensional hexagonal boron nitride nanosheets: theoretical analysis. RSC Adv 2019; 9:29805-29812. [PMID: 35531540 PMCID: PMC9071978 DOI: 10.1039/c9ra05125b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/16/2019] [Indexed: 01/23/2023] Open
Abstract
This study proposed a novel Fano resonance (FR) biosensor with ultrahigh detection sensitivity by integrating two dimensional (2D) hexagonal boron nitride (h-BN) nanosheets with a plasmonic silver film–silicon hybrid nanostructure. Owing to its ultralow-loss in surface plasmon polaritons (SPPs), 2D h-BN nanosheets can act as a planar photon waveguide (PWG) for generating energy level splitting. Notably, both asymmetric FR sharp lines and plasmon induced transparency (PIT) can be produced by modulating the coupling strength between the planar PWG mode provided by h-BN nanosheets and the surface plasmon polariton (SPP) mode in the silver film–silicon hybrid nanostructure. Compared with conventional phase-modulation SPR biosensors, our proposed configuration based on Fano resonance can produce ultrahigh reflectivity of 0.934 and overcome the limitation of quasi-darkness reflectivity which is difficult for further phase extraction. More importantly, our proposed FR configuration can provide a promising phase detection sensitivity as high as 3.13 × 106 degree per RIU (refractive index unit, RIU), which is enhanced by almost 100 times compared with conventional phase-modulation SPR biosensors. In addition, our proposed configuration has also shown the characteristics of multiple-order Fano resonances, largely depending on the partial coupling between the SPP mode and the different-order PWG mode. Our proposed FR biosensor can provide a highly promising candidate for designing a multiple-order FR platform for performing ultrasensitive detection. This paper proposed an ultrasensitive FR biosensor with multiple-order characteristics using two dimensional hexagonal boron nitride nanosheets in the visible region.![]()
Collapse
Affiliation(s)
- Yongping Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 People's Republic of China .,College of Physical Science and Technology, Guangxi Normal University Guilin 541004 People's Republic of China
| | - Yufeng Yuan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 People's Republic of China
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 People's Republic of China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 People's Republic of China
| | - Junxian Liu
- College of Physical Science and Technology, Guangxi Normal University Guilin 541004 People's Republic of China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 People's Republic of China
| |
Collapse
|
22
|
Wang H, Tang Z, Wang Y, Ma G, Tao N. Probing Single Molecule Binding and Free Energy Profile with Plasmonic Imaging of Nanoparticles. J Am Chem Soc 2019; 141:16071-16078. [DOI: 10.1021/jacs.9b08405] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhuodong Tang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Guangzhong Ma
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Nongjian Tao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
23
|
Plasmonic nanostructure-based bioimaging and detection techniques at the single-cell level. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Moon G, Son T, Lee H, Kim D. Deep Learning Approach for Enhanced Detection of Surface Plasmon Scattering. Anal Chem 2019; 91:9538-9545. [PMID: 31287294 DOI: 10.1021/acs.analchem.9b00683] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A deep learning approach has been taken to improve detection characteristics of surface plasmon microscopy (SPM) of light scattering. Deep learning based on the convolutional neural network algorithm was used to estimate the effect of scattering parameters, mainly the number of scatterers. The improvement was assessed on a quantitative basis by applying the approach to SPM images formed by coherent interference of scatterers. It was found that deep learning significantly improves the accuracy over conventional detection: the enhancement in the accuracy was shown to be significantly higher by almost 6 times and useful for scattering by polydisperse mixtures. This suggests that deep learning can be used to find scattering objects effectively in the noisy environment. Furthermore, deep learning can be extended directly to label-free molecular detection assays and provide considerably improved detection in imaging and microscopy techniques.
Collapse
Affiliation(s)
- Gwiyeong Moon
- School of Electrical and Electronic Engineering Yonsei University , Seoul , Korea , 120-749
| | - Taehwang Son
- School of Electrical and Electronic Engineering Yonsei University , Seoul , Korea , 120-749
| | - Hongki Lee
- School of Electrical and Electronic Engineering Yonsei University , Seoul , Korea , 120-749
| | - Donghyun Kim
- School of Electrical and Electronic Engineering Yonsei University , Seoul , Korea , 120-749
| |
Collapse
|
25
|
Jones RR, Hooper DC, Zhang L, Wolverson D, Valev VK. Raman Techniques: Fundamentals and Frontiers. NANOSCALE RESEARCH LETTERS 2019; 14:231. [PMID: 31300945 PMCID: PMC6626094 DOI: 10.1186/s11671-019-3039-2] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/03/2019] [Indexed: 05/19/2023]
Abstract
Driven by applications in chemical sensing, biological imaging and material characterisation, Raman spectroscopies are attracting growing interest from a variety of scientific disciplines. The Raman effect originates from the inelastic scattering of light, and it can directly probe vibration/rotational-vibration states in molecules and materials. Despite numerous advantages over infrared spectroscopy, spontaneous Raman scattering is very weak, and consequently, a variety of enhanced Raman spectroscopic techniques have emerged. These techniques include stimulated Raman scattering and coherent anti-Stokes Raman scattering, as well as surface- and tip-enhanced Raman scattering spectroscopies. The present review provides the reader with an understanding of the fundamental physics that govern the Raman effect and its advantages, limitations and applications. The review also highlights the key experimental considerations for implementing the main experimental Raman spectroscopic techniques. The relevant data analysis methods and some of the most recent advances related to the Raman effect are finally presented. This review constitutes a practical introduction to the science of Raman spectroscopy; it also highlights recent and promising directions of future research developments.
Collapse
Affiliation(s)
- Robin R. Jones
- Turbomachinery Research Centre, University of Bath, Bath, BA2 7AY UK
| | - David C. Hooper
- Centre for Photonics and Photonic Materials, University of Bath, Bath, BA2 7AY UK
- Centre for Nanoscience and Nanotechnology, University of Bath, Bath, BA2 7AY UK
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China
| | - Daniel Wolverson
- Centre for Photonics and Photonic Materials, University of Bath, Bath, BA2 7AY UK
- Centre for Nanoscience and Nanotechnology, University of Bath, Bath, BA2 7AY UK
| | - Ventsislav K. Valev
- Centre for Photonics and Photonic Materials, University of Bath, Bath, BA2 7AY UK
- Centre for Nanoscience and Nanotechnology, University of Bath, Bath, BA2 7AY UK
| |
Collapse
|
26
|
Allsop TDP, Neal R, Wang C, Nagel DA, Hine AV, Culverhouse P, Ania Castañón JD, Webb DJ, Scarano S, Minunni M. An ultra-sensitive aptasensor on optical fibre for the direct detection of bisphenol A. Biosens Bioelectron 2019; 135:102-110. [PMID: 31004920 DOI: 10.1016/j.bios.2019.02.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 12/14/2022]
Abstract
We present a plasmonic biosensor capable of detecting the presence of bisphenol A in ultra-low concentrations, yielding a wavelength shift of 0.15 ± 0.01 nm in response to a solution of 1 fM concentration with limit of detection of 330 ± 70 aM The biosensing device consists of an array of gold nano-antennae with a total length of 2.3 cm that generate coupled localised surface plasmons (cLSPs) and is covalently modified with an aptamer specific for bisphenol A recognition. The array of nano-antennae is fabricated on a lapped section of standard telecommunication optical fibre, allowing for potential multiplexing and its use in remote sensing applications. These results have been achieved without the use of enhancement techniques and therefore the approach allows the direct detection of bisphenol A, a low molecular weight (228 Da) target usually detectable only by indirect detection strategies. Its detection at such levels is a significant step forward in measuring small molecules at ultra-low concentrations. Furthermore, this new sensing platform paves the way for the development of portable systems for in-situ agricultural measurements capable of retrieving data on a substance of very high concern at ultra-low concentrations.
Collapse
Affiliation(s)
- Thomas D P Allsop
- Non-linear Dynamics and Fiber Optics, Instituto de Óptica "Daza de Valdés" (IO-CSIC), Calle de Serrano, 121, 28006 Madrid, Spain; Aston Institute of Photonic Technologies, Aston University, Aston Triangle, Birmingham B47ET, UK.
| | - Ronald Neal
- Dept of Maths and Computing, Faculty of Science and Technology, University of Plymouth, Plymouth PL4 8AA, UK
| | - Changle Wang
- Aston Institute of Photonic Technologies, Aston University, Aston Triangle, Birmingham B47ET, UK.
| | - David A Nagel
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Anna V Hine
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Philip Culverhouse
- Dept of Maths and Computing, Faculty of Science and Technology, University of Plymouth, Plymouth PL4 8AA, UK
| | - Juan D Ania Castañón
- Non-linear Dynamics and Fiber Optics, Instituto de Óptica "Daza de Valdés" (IO-CSIC), Calle de Serrano, 121, 28006 Madrid, Spain
| | - David J Webb
- Aston Institute of Photonic Technologies, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Simona Scarano
- Dipartimento di Chimica "Ugo Schiff" and CSGI, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Maria Minunni
- Dipartimento di Chimica "Ugo Schiff" and CSGI, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
27
|
Avenas Q, Moreau J, Costella M, Maalaoui A, Souifi A, Charette P, Marchalot J, Frénéa-Robin M, Canva M. Performance improvement of plasmonic sensors using a combination of AC electrokinetic effects for (bio)target capture. Electrophoresis 2019; 40:1426-1435. [PMID: 30786069 DOI: 10.1002/elps.201800436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/15/2019] [Accepted: 02/04/2019] [Indexed: 11/11/2022]
Abstract
Analytes concentration techniques are being developed with the appealing expectation to boost the performance of biosensors. One promising method lies in the use of electrokinetic forces. We present hereafter a new design for a microstructured plasmonic sensor which is obtained by conventional microfabrication techniques, and which can easily be adapted on a classical surface plasmon resonance imaging (SPRI) system without further significant modification. Dielectrophoretic trapping and electro-osmotic displacement of the targets in the scanned fluid are performed through interdigitated 200 μm wide gold electrodes that also act as the SPR-sensing substrate. We demonstrate the efficiency of our device's collection capabilities for objects of different sizes (200 nm and 1 μm PS beads, as well as 5-10 μm yeast cells). SPRI is relevant for the spatial analysis of the mass accumulation at the electrode surface. We demonstrate that our device overcomes the diffusion limit encountered in classical SPR sensors thanks to rapid collection capabilities (<1 min) and we show a consequent improvement of the detection limit, by a factor >300. This study of an original device combining SPRI and electrokinetic forces paves the way to the development of fully integrated active plasmonic sensors with direct applications in life sciences, electrochemistry, environmental monitoring and agri-food industry.
Collapse
Affiliation(s)
- Quentin Avenas
- Laboratoire Nanotechnologies et Nanosystèmes, LN2, CNRS - Université de Sherbrooke - INSA Lyon, Sherbrooke, Canada.,Institut des Nanotechnologies de Lyon, CNRS - INSA Lyon - Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Julien Moreau
- Laboratoire Charles Fabry, CNRS - Institut d'Optique Graduate School, Université Paris Saclay, Palaiseau, France
| | - Marion Costella
- Laboratoire Nanotechnologies et Nanosystèmes, LN2, CNRS - Université de Sherbrooke - INSA Lyon, Sherbrooke, Canada.,AMPERE, CNRS - Université de Lyon - École Centrale Lyon - INSA Lyon - Université Claude Bernard Lyon 1 , Ecully, France
| | - Arbi Maalaoui
- Laboratoire Nanotechnologies et Nanosystèmes, LN2, CNRS - Université de Sherbrooke - INSA Lyon, Sherbrooke, Canada.,AMPERE, CNRS - Université de Lyon - École Centrale Lyon - INSA Lyon - Université Claude Bernard Lyon 1 , Ecully, France
| | - Abdelkader Souifi
- Institut des Nanotechnologies de Lyon, CNRS - INSA Lyon - Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Paul Charette
- Laboratoire Nanotechnologies et Nanosystèmes, LN2, CNRS - Université de Sherbrooke - INSA Lyon, Sherbrooke, Canada
| | - Julien Marchalot
- AMPERE, CNRS - Université de Lyon - École Centrale Lyon - INSA Lyon - Université Claude Bernard Lyon 1 , Ecully, France
| | - Marie Frénéa-Robin
- AMPERE, CNRS - Université de Lyon - École Centrale Lyon - INSA Lyon - Université Claude Bernard Lyon 1 , Ecully, France
| | - Michael Canva
- Laboratoire Nanotechnologies et Nanosystèmes, LN2, CNRS - Université de Sherbrooke - INSA Lyon, Sherbrooke, Canada.,Laboratoire Charles Fabry, CNRS - Institut d'Optique Graduate School, Université Paris Saclay, Palaiseau, France
| |
Collapse
|
28
|
Forato F, Talebzadeh S, Rousseau N, Mevellec JY, Bujoli B, Knight DA, Queffélec C, Humbert B. Functionalized core–shell Ag@TiO2 nanoparticles for enhanced Raman spectroscopy: a sensitive detection method for Cu(ii) ions. Phys Chem Chem Phys 2019; 21:3066-3072. [DOI: 10.1039/c8cp07504b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A shell-isolated nanoparticle enhanced surface Raman technique for detection of copper(ii).
Collapse
Affiliation(s)
- Florian Forato
- Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM)
- Université de Nantes
- CNRS
- UMR 6230
- 44322 Nantes Cedex 3
| | - Somayeh Talebzadeh
- Department of Biomedical and Chemical Engineering and Sciences
- Florida Institute of Technology
- Melbourne
- USA
| | - Nicolas Rousseau
- Institut des Matériaux Jean Rouxel
- CNRS-Université de Nantes
- 44322 Nantes Cedex 3
- France
| | - Jean-Yves Mevellec
- Institut des Matériaux Jean Rouxel
- CNRS-Université de Nantes
- 44322 Nantes Cedex 3
- France
| | - Bruno Bujoli
- Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM)
- Université de Nantes
- CNRS
- UMR 6230
- 44322 Nantes Cedex 3
| | - D. Andrew Knight
- Department of Biomedical and Chemical Engineering and Sciences
- Florida Institute of Technology
- Melbourne
- USA
| | - Clémence Queffélec
- Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM)
- Université de Nantes
- CNRS
- UMR 6230
- 44322 Nantes Cedex 3
| | - Bernard Humbert
- Institut des Matériaux Jean Rouxel
- CNRS-Université de Nantes
- 44322 Nantes Cedex 3
- France
| |
Collapse
|
29
|
de Oliveira Noman L, Sant'Ana AC. The control of the adsorption of bovine serum albumin on mercaptan-modified gold thin films investigated by SERS spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:119-124. [PMID: 29920414 DOI: 10.1016/j.saa.2018.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Nanostructured gold thin films were built from deposition of colloidal gold nanoparticles on silanized glass slides, and used to study the adsorption of bovine serum albumin (BSA) after chemical treatment of gold surface with the mercaptans 2-mercaptoethanol, 3-mercaptoproprionic acid, 1,3-propanedithiol and 1-propanethiol. Surface-enhanced Raman scattering (SERS) spectroscopy was used for investigating the chemical interactions of BSA with the modified gold surfaces. In the presence of the surface modifier 2-mercaptoethanol, a promoter of hydrogen bonds, the stable interactions among BSA and gold surfaces led to high reproducibility of the SERS spectral pattern in the most monitored points of the mapped surface. The vibrational assignment endorsed the assumption that lysine residue, majority present in the molecular structure, were the principal anchor site of BSA involved in the interactions with 2-mercaptoethanol-modified gold surface.
Collapse
Affiliation(s)
- Lucas de Oliveira Noman
- Laboratório de Nanoestruturas Plasmônicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Antonio Carlos Sant'Ana
- Laboratório de Nanoestruturas Plasmônicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|
30
|
Abstract
We firstly, in this review, introduce the optical properties of plasmonic metals, and then focus on introducing the unique optical properties of the noble metal–metal-oxide hybrid system by revealing the physical mechanism of plasmon–exciton interaction, which was confirmed by theoretical calculations and experimental investigations. With this noble metal–metal-oxide hybrid system, plasmonic nanostructure–semiconductor exciton coupling interactions for interface catalysis has been analyzed in detail. This review can provide a deeper understanding of the physical mechanism of exciton–plasmon interactions in surface catalysis reactions.
Collapse
|
31
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
32
|
Kenison JP, Fast A, Matthews BM, Corn RM, Potma EO. Particle sensing with confined optical field enhanced fluorescence emission (Cofefe). OPTICS EXPRESS 2018; 26:12959-12969. [PMID: 29801330 PMCID: PMC6005675 DOI: 10.1364/oe.26.012959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
We describe the development and performance of a new type of optical sensor suitable for registering the binding/dissociation of nanoscopic particles near a gold sensing surface. The method shares similarities with surface plasmon resonance microscopy but uses a completely different optical signature for reading out binding events. This new optical read-out mechanism, which we call confined optical field enhanced fluorescence emission (Cofefe), uses pulsed surface plasmon polariton fields at the gold/liquid interface that give rise to confined optical fields upon binding of the target particle to the gold surface. The confined near-fields are sufficient to induce two-photon absorption in the gold sensor surface near the binding site. Subsequent radiative recombination of the electron-hole pairs in the gold produces fluorescence emission, which can be captured by a camera in the far-field. Bound nanoparticles show up as bright confined spots against a dark background on the camera. We show that the Cofefe sensor is capable of detecting gold and silicon nanoparticles, as well as polymer nanospheres and sub-μm lipid droplets in a label-free manner with average illumination powers of less than 10 μW/μm2.
Collapse
|
33
|
Yang W, Liu C, Chen Y. Stability of Polydopamine Coatings on Gold Substrates Inspected by Surface Plasmon Resonance Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3565-3571. [PMID: 29505722 DOI: 10.1021/acs.langmuir.7b03143] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polydopamine (PDA)-based surface modification has been used in a variety of fields. However, a vague impression on the stability of PDA still exists due to a lack of systematic studies. To ascertain the issue and make better use of this surface modification method, a technique of surface plasmon resonance imaging (SPRi) was exploited to study the stability of PDA coated on gold surface. The results showed that PDA-coating stability was largely dependent on the pH of aqueous solutions, giving detachment ratios up to 66% and 80% at pH 1.0 and pH 14.0, respectively. However, increasing the ionic strength of aqueous solutions could reduce the detachment of PDA in strong acid and strong alkali conditions. Besides, organic solvents also made a difference on the PDA-coating stability. Among the tested 10 kinds of organic solvents, including n-hexane, toluene, ethyl ether, tetrahydrofuran, ethyl acetate, isopropanol, acetone, acetonitrile, dimethylformamide (DMF), and dimethyl sulfoxide (DMSO), DMSO caused the most serious detachment of PDA, up to 56%, followed by DMF with a detachment ratio of 31%. Ultrasonication caused less than 10% detachment of the coated PDA. It should be mentioned that the PDA coatings deposited on gold surface were not detached completely in all the test conditions, even at pH 14.0 (ca. 20% PDA retained). In alkaline conditions, detachment competes with further polymerization, which gave a slight increase of the SPRi signals at pH 9.0-11.0. Based on the obtained information about PDA-coating stability, thickness-controllable and alkali-resistant PDA coatings were prepared. Moreover, the alkali-resistant PDA coatings remained reactive to biomolecules, supporting further functionalization of PDA coatings.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chanjuan Liu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yi Chen
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing National Laboratory for Molecular Sciences , Beijing 100190 , China
| |
Collapse
|
34
|
Ahmed SM, Bond AM, Martin LL. Voltammetric, Spectroscopic, and Microscopic Investigation of the Oxidation of Solid and Solution Phases of Tetrathiafulvalene (TTF) to (TTF)
2
MO
4
(M=Mo, W). ChemElectroChem 2018. [DOI: 10.1002/celc.201700463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shaimaa M. Ahmed
- School of Chemistry Monash University Clayton, Victoria 3800 Australia
| | - Alan M. Bond
- School of Chemistry Monash University Clayton, Victoria 3800 Australia
| | | |
Collapse
|
35
|
Yuan L, Li M, Yuan T, Fang Y, Wang W. In operando imaging of self-catalyzed formaldehyde burst in methanol oxidation reactions under open circuit conditions. Chem Sci 2018; 9:3318-3323. [PMID: 29780461 PMCID: PMC5932601 DOI: 10.1039/c7sc05347a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/26/2018] [Indexed: 01/11/2023] Open
Abstract
A wave-like HCHO burst is in situ observed during electro-oxidation of methanol on Pt under open circuit conditions by SPR imaging.
We employ a surface plasmon resonance imaging (SPRi) technique to monitor the in operando process of formaldehyde (HCHO) production during methanol oxidation with high spatial and temporal resolutions. While common wisdom suggests HCHO is generated as an intermediate during continuous electron transfer towards CO2, we find that the majority of HCHO is produced via self-catalyzed chemical and electrochemical reactions under open-circuit conditions, which lead to an unprecedented HCHO burst immediately after withdrawal of external potential. Because open-circuit conditions better represent the operating environments of practical direct methanol fuel cells (DMFCs), this work uncovers a hidden pathway of HCHO accumulation by adopting a quantitative and in operando SPRi technique for the first time. These theoretical and technical advances are anticipated to help the fundamental understanding of the comprehensive mechanism of methanol oxidation with implications for improving the performance of DMFCs.
Collapse
Affiliation(s)
- Liang Yuan
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China .
| | - Meng Li
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China .
| | - Tinglian Yuan
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China .
| | - Yimin Fang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China .
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China .
| |
Collapse
|
36
|
Premaratne G, Al Mubarak ZH, Senavirathna L, Liu L, Krishnan S. Measuring Ultra-low Levels of Nucleotide Biomarkers Using Quartz Crystal Microbalance and SPR Microarray Imaging Methods: A Comparative Analysis. SENSORS AND ACTUATORS. B, CHEMICAL 2017; 253:368-375. [PMID: 29200660 PMCID: PMC5703433 DOI: 10.1016/j.snb.2017.06.138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Circulating serum nucleotide biomarkers are useful indicators for early diagnosis of cancer, respiratory illnesses, and other deadly diseases. In this work, we compared detection performances of a quartz crystal microbalance (QCM), which is a mass sensor, with that of a surface plasmon resonance (SPR) microarray for an oligonucleotide mimic of a microRNA-21 biomarker. A surface immobilized capture oligonucleotide probe was used to hybridize with the target oligonucleotide (i.e., the microRNA-21 mimic) to facilitate selective detection. To obtain ultra-low femtomolar (fM) detection sensitivity, gold nanoparticles (50 nm) were conjugated with the target oligonucleotide. We achieved detection limits of 28and 47 fM for the target oligonucleotide by the QCM and SPRi microarray, respectively. We also conducted sample recovery studies and performed matrix effect analysis. Although the QCM had a lower detection limit, the microarray approach offered better throughput for analysis of up to 16 samples. We confirmed that the designed assay was selective for the target oligonucleotide and did not show signals for the control oligonucleotide with five mismatch sites relative to the target sequence. Combination of the QCM and microarray methods that utilize the same assay chemistry on gold are useful for overcoming clinical sample matrix effects and achieving ultra-low detection of small nucleotide biomarkers with quantitative insights.
Collapse
Affiliation(s)
- Gayan Premaratne
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Zainab H Al Mubarak
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lakmini Senavirathna
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lin Liu
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sadagopan Krishnan
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
37
|
Kang S, Lehman SE, Schulmerich MV, Le AP, Lee TW, Gray SK, Bhargava R, Nuzzo RG. Refractive index sensing and surface-enhanced Raman spectroscopy using silver-gold layered bimetallic plasmonic crystals. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:2492-2503. [PMID: 29234585 PMCID: PMC5704757 DOI: 10.3762/bjnano.8.249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
Herein we describe the fabrication and characterization of Ag and Au bimetallic plasmonic crystals as a system that exhibits improved capabilities for quantitative, bulk refractive index (RI) sensing and surface-enhanced Raman spectroscopy (SERS) as compared to monometallic plasmonic crystals of similar form. The sensing optics, which are bimetallic plasmonic crystals consisting of sequential nanoscale layers of Ag coated by Au, are chemically stable and useful for quantitative, multispectral, refractive index and spectroscopic chemical sensing. Compared to previously reported homometallic devices, the results presented herein illustrate improvements in performance that stem from the distinctive plasmonic features and strong localized electric fields produced by the Ag and Au layers, which are optimized in terms of metal thickness and geometric features. Finite-difference time-domain (FDTD) simulations theoretically verify the nature of the multimode plasmonic resonances generated by the devices and allow for a better understanding of the enhancements in multispectral refractive index and SERS-based sensing. Taken together, these results demonstrate a robust and potentially useful new platform for chemical/spectroscopic sensing.
Collapse
Affiliation(s)
- Somi Kang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sean E Lehman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Matthew V Schulmerich
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - An-Phong Le
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Tae-woo Lee
- Chemistry Division and Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Ave., Lemont, Illinois 60439, USA
| | - Stephen K Gray
- Chemistry Division and Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Ave., Lemont, Illinois 60439, USA
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ralph G Nuzzo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
38
|
Yuan L, Tao N, Wang W. Plasmonic Imaging of Electrochemical Impedance. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:183-200. [PMID: 28301751 DOI: 10.1146/annurev-anchem-061516-045150] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electrochemical impedance spectroscopy (EIS) measures the frequency spectrum of an electrochemical interface to resist an alternating current. This method allows label-free and noninvasive studies on interfacial adsorption and molecular interactions and has applications in biosensing and drug screening. Although powerful, traditional EIS lacks spatial resolution or imaging capability, hindering the study of heterogeneous electrochemical processes on electrodes. We have recently developed a plasmonics-based electrochemical impedance technique to image local electrochemical impedance with a submicron spatial resolution and a submillisecond temporal resolution. In this review, we provide a systematic description of the theory, instrumentation, and data analysis of this technique. To illustrate its present and future applications, we further describe several selected samples analyzed with this method, including protein microarrays, two-dimensional materials, and single cells. We conclude by summarizing the technique's unique features and discussing the remaining challenges and new directions of its application.
Collapse
Affiliation(s)
- Liang Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China ;
| | - Nongjian Tao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China ;
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China ;
| |
Collapse
|
39
|
Liu A, Wang G, Wang F, Zhang Y. Gold nanostructures with near-infrared plasmonic resonance: Synthesis and surface functionalization. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.12.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Forato F, Talebzadeh S, Bujoli B, Queffélec C, Trammell SA, Knight DA. Core-Shell Ag@TiO2Nanocomposites for Low-Power Blue Laser Enhanced Copper(I) Catalyzed Ullmann Coupling. ChemistrySelect 2017. [DOI: 10.1002/slct.201601788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Florian Forato
- Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM); Université de Nantes, CNRS, UMR 6230, 2; rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Somayeh Talebzadeh
- Chemistry Department; Florida Institute of Technology; 150 West University Boulevard Melbourne, Florida 32901 USA
| | - Bruno Bujoli
- Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM); Université de Nantes, CNRS, UMR 6230, 2; rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Clémence Queffélec
- Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM); Université de Nantes, CNRS, UMR 6230, 2; rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Scott A. Trammell
- Center for Bio/Molecular Science and Engineering, Code 6900; US Naval Research Laboratory; 4555 Overlook Avenue SW Washington, DC 20375 USA
| | - D. Andrew Knight
- Chemistry Department; Florida Institute of Technology; 150 West University Boulevard Melbourne, Florida 32901 USA
| |
Collapse
|
41
|
Calcium-independent binding of human C-reactive protein to lysophosphatidylcholine in supported planar phospholipid monolayers. Acta Biomater 2017; 48:206-214. [PMID: 27815167 DOI: 10.1016/j.actbio.2016.10.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/06/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
Abstract
Details describing the molecular dynamics of inflammation biomarker human C-reactive protein (CRP) on plasma membranes containing bioactive lipid lysophosphatidylcholine (LPC) remain elusive. Here, we measured the binding kinetics of CRP to supported phospholipid monolayers deposited on an alkanethiol self-assembled monolayer on a planar gold substrate using surface plasmon resonance. Surprisingly, CRP binding to supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/LPC monolayers was calcium-independent although CRP binding to supported POPC monolayers was calcium-dependent. Binding inhibition assays indicate a specific interaction between CRP and the glycerophosphate group in LPC in the absence of calcium ions. Binding experiments on supported POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) monolayers further validated calcium-independent binding of CRP through the glycerophosphate moiety. Docking analysis predicted a new binding site for LPC in the absence of calcium ions, which is located on the opposite side of the known binding site for PC of cyclic pentameric CRP. These results using model plasma membranes should aid our understanding of the activation dynamics of CRP in altered local microenvironments of inflammation and infection. STATEMENT OF SIGNIFICANCE C-reactive protein (CRP), a major acute-phase pentraxin, binds to plasma membranes through the multivalent contacts with zwitterionic phosphorylcholine groups for activating classical complement systems. However, the interaction of CRP with phosphorylcholine-based biomaterials is unknown due to the lack of our understanding on the activation mechanism of CRP in altered local microenvironments. This paper reports the novel calcium-independent interaction of CRP to bioactive phospholipid lysophosphatidylcholine (LPC) in supported phospholipids monolayers as determined using SPR. Binding inhibition experiments indicate exposure of glycerophosphate moiety of LPC is responsible for the calcium-free interaction. Our study may explode the established concept that CRP requires calcium for binding to LPC on damaged cell membranes or biomaterials.
Collapse
|
42
|
Allsop T, Mou C, Neal R, Mariani S, Nagel D, Tombelli S, Poole A, Kalli K, Hine A, Webb DJ, Culverhouse P, Mascini M, Minunni M, Bennion I. Real-time kinetic binding studies at attomolar concentrations in solution phase using a single-stage opto-biosensing platform based upon infrared surface plasmons. OPTICS EXPRESS 2017; 25:39-58. [PMID: 28085810 DOI: 10.1364/oe.25.000039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we present a new generic opto-bio-sensing platform combining immobilised aptamers on an infrared plasmonic sensing device generated by nano-structured thin film that demonstrates amongst the highest index spectral sensitivities of any optical fibre sensor yielding on average 3.4 × 104 nm/RIU in the aqueous index regime (with a figure of merit of 330) This offers a single stage, solution phase, atto-molar detection capability, whilst delivering real-time data for kinetic studies in water-based chemistry. The sensing platform is based upon optical fibre and has the potential to be multiplexed and used in remote sensing applications. As an example of the highly versatile capabilities of aptamer based detection using our platform, purified thrombin is detected down to 50 attomolar concentration using a volume of 1mm3 of solution without the use of any form of enhancement technique. Moreover, the device can detect nanomolar levels of thrombin in a flow cell, in the presence of 4.5% w/v albumin solution. These results are important, covering all concentrations in the human thrombin generation curve, including the problematic initial phase. Finally, selectivity is confirmed using complementary and non-complementary DNA sequences that yield performances similar to those obtained with thrombin.
Collapse
|
43
|
Ren X, Cao E, Lin W, Song Y, Liang W, Wang J. Recent advances in surface plasmon-driven catalytic reactions. RSC Adv 2017. [DOI: 10.1039/c7ra05346k] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Surface plasmons, the free electrons' collective oscillations, have been used in the signal detection and analysis of target molecules, where the local surface plasmon resonance (LSPR) can produce a huge EM field, thus enhancing the SERS signal.
Collapse
Affiliation(s)
- Xin Ren
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science
| | - En Cao
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science
| | - Weihua Lin
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science
- School of Mathematics and Physics
- University of Science and Technology Beijing
- Beijing
- P. R. China
| | - Yuzhi Song
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- China
| | - Wejie Liang
- Beijing National Laboratory for Condensed Matter Physics
- Institute of Physics
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Jingang Wang
- Department of Physics
- Liaoning University
- Shenyang 110036
- P. R. China
| |
Collapse
|
44
|
Wang L, Cheng J, Wang S, Zhang X, Cai, X. Screening of inhibitors of Taenia solium glycogen synthase Kinase-3β. RSC Adv 2017. [DOI: 10.1039/c7ra05873j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A flow chart of the screening of lead compounds.
Collapse
Affiliation(s)
- Li Wang
- College of Veterinary Medicine
- Jilin University
- Changchun 130062
- China
- State Key Laboratory of Veterinary Etiological Biology
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Shuai Wang
- State Key Laboratory of Veterinary Etiological Biology
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou 730046
- China
| | - Xichen Zhang
- College of Veterinary Medicine
- Jilin University
- Changchun 130062
- China
| | - Xuepeng Cai,
- College of Veterinary Medicine
- Jilin University
- Changchun 130062
- China
- State Key Laboratory of Veterinary Etiological Biology
| |
Collapse
|
45
|
Scherbahn V, Nizamov S, Mirsky VM. Plasmonic detection and visualization of directed adsorption of charged single nanoparticles to patterned surfaces. Mikrochim Acta 2016; 183:2837-2845. [PMID: 27795582 PMCID: PMC5061841 DOI: 10.1007/s00604-016-1956-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/15/2016] [Indexed: 01/09/2023]
Abstract
It has recently been shown that surface plasmon microscopy (SPM) allows single nanoparticles (NPs) on sensor surfaces to be detected and analyzed. The authors have applied this technique to study the adsorption of single metallic and plastic NPs. Binding of gold NPs (40, 60 and 100 nm in size) and of 100 nm polystyrene NPs to gold surfaces modified by differently ω-functionalized alkyl thiols was studied first. Self-assembled monolayers (SAM) with varying terminal functions including amino, carboxy, oligo(ethylene glycol), methyl, or trimethylammonium groups were deposited on gold films to form surfaces possessing different charge and hydrophobicity. The affinity of NPs to these surfaces depends strongly on the type of coating. SAMs terminated with trimethylammonium groups and carboxy group display highly different affinity and therefore were preferred when creating patterned charged surfaces. Citrate-stabilized gold NPs and sulfate-terminated polystyrene NPs were used as negatively charged NPs, while branched polyethylenimine-coated silver NPs were used as positively charged NPs. It is shown that the charged patterned areas on the gold films are capable of selectively adsorbing oppositely charged NPs that can be detected and analyzed with an ~1 ng⋅mL−1 detection limit. Self-assembled monolayers of ω-functionalized alkyl thiols were deposited on a gold layer of a patterned sensor array. The charge-selective binding of single nanoparticles to such surfaces was registered by wide-field surface plasmon microscopy. ![]()
Collapse
Affiliation(s)
- Vitali Scherbahn
- Nanobiotechnology - Institute of Biotechnology, Brandenburgische Technische Universität Cottbus - Senftenberg, 01968 Senftenberg, Germany
| | - Shavkat Nizamov
- Nanobiotechnology - Institute of Biotechnology, Brandenburgische Technische Universität Cottbus - Senftenberg, 01968 Senftenberg, Germany
| | - Vladimir M Mirsky
- Nanobiotechnology - Institute of Biotechnology, Brandenburgische Technische Universität Cottbus - Senftenberg, 01968 Senftenberg, Germany
| |
Collapse
|
46
|
Ansari MH, Hassan S, Qurashi A, Khanday FA. Microfluidic-integrated DNA nanobiosensors. Biosens Bioelectron 2016; 85:247-260. [DOI: 10.1016/j.bios.2016.05.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 11/28/2022]
|
47
|
Kim I, Moon JS, Oh JW. Recent advances in M13 bacteriophage-based optical sensing applications. NANO CONVERGENCE 2016; 3:27. [PMID: 28191437 PMCID: PMC5271159 DOI: 10.1186/s40580-016-0087-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/07/2016] [Indexed: 05/03/2023]
Abstract
Recently, M13 bacteriophage has started to be widely used as a functional nanomaterial for various electrical, chemical, or optical applications, such as battery components, photovoltaic cells, sensors, and optics. In addition, the use of M13 bacteriophage has expanded into novel research, such as exciton transporting. In these applications, the versatility of M13 phage is a result of its nontoxic, self-assembling, and specific binding properties. For these reasons, M13 phage is the most powerful candidate as a receptor for transducing chemical or optical phenomena of various analytes into electrical or optical signal. In this review, we will overview the recent progress in optical sensing applications of M13 phage. The structural and functional characters of M13 phage will be described and the recent results in optical sensing application using fluorescence, surface plasmon resonance, Förster resonance energy transfer, and surface enhanced Raman scattering will be outlined.
Collapse
Affiliation(s)
- Inhong Kim
- Research Center for Energy Convergence Technology, Pusan National University, Busan, 46241 Republic of Korea
| | - Jong-Sik Moon
- BK21 Plus Division of Nano Convergence Technology, Pusan National University, Busan, 46241 Republic of Korea
| | - Jin-Woo Oh
- Research Center for Energy Convergence Technology, Pusan National University, Busan, 46241 Republic of Korea
- BK21 Plus Division of Nano Convergence Technology, Pusan National University, Busan, 46241 Republic of Korea
- Department of Nanoenergy Engineering, Pusan National University, Busan, 46241 Republic of Korea
| |
Collapse
|
48
|
Guo X, Deng Y, Zhu C, Cai J, Zhu X, Landry JP, Zheng F, Cheng X, Fei Y. Characterization of protein expression levels with label-free detected reverse phase protein arrays. Anal Biochem 2016; 509:67-72. [PMID: 27372609 DOI: 10.1016/j.ab.2016.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 01/12/2023]
Abstract
In reverse-phase protein arrays (RPPA), one immobilizes complex samples (e.g., cellular lysate, tissue lysate or serum etc.) on solid supports and performs parallel reactions of antibodies with immobilized protein targets from the complex samples. In this work, we describe a label-free detection of RPPA that enables quantification of RPPA data and thus facilitates comparison of studies performed on different samples and on different solid supports. We applied this detection platform to characterization of phosphoserine aminotransferase (PSAT) expression levels in Acanthamoeba lysates treated with artemether and the results were confirmed by Western blot studies.
Collapse
Affiliation(s)
- Xuexue Guo
- Department of Optical Science and Engineering, Shanghai Engineering Research Center for Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, 200433, China
| | - Yihong Deng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenggang Zhu
- Department of Optical Science and Engineering, Shanghai Engineering Research Center for Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, 200433, China
| | - Junlong Cai
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiangdong Zhu
- Department of Physics, University of California, Davis, CA, 95616, USA
| | - James P Landry
- Department of Physics, University of California, Davis, CA, 95616, USA
| | - Fengyun Zheng
- Institutes of Biomedical Science, Fudan University, Shanghai, 200032, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center for Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, 200433, China.
| |
Collapse
|
49
|
Parracino M, Pellacani P, Colpo P, Ceccone G, Valsesia A, Rossi F, Manso Silvan M. Biofouling Properties of Nitroxide-Modified Amorphous Carbon Surfaces. ACS Biomater Sci Eng 2016; 2:1976-1982. [DOI: 10.1021/acsbiomaterials.6b00381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Paola Pellacani
- Departamento
de Física Aplicada and Instituto Nicolás Cabrera, C/Francisco
Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pascal Colpo
- Joint
Research Center, European Commission, Via Enrico Fermi, 21020 Ispra, Varese, Italy
| | - Giacomo Ceccone
- Joint
Research Center, European Commission, Via Enrico Fermi, 21020 Ispra, Varese, Italy
| | - Andrea Valsesia
- Joint
Research Center, European Commission, Via Enrico Fermi, 21020 Ispra, Varese, Italy
| | - François Rossi
- Joint
Research Center, European Commission, Via Enrico Fermi, 21020 Ispra, Varese, Italy
| | - Miguel Manso Silvan
- Departamento
de Física Aplicada and Instituto Nicolás Cabrera, C/Francisco
Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
50
|
Molecular Plasmonics: From Molecular-Scale Measurements and Control to Applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1021/bk-2016-1224.ch002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
|