1
|
Antoniadi M, Bohnet M, Kellenberger S, Vitoratou DI, Fafoula O, Mylona F, Kostaridou S, Palaiologou D, Taliou A, Stratakis CA. Functional properties of the γ-ENaC-A635V mutation in a patient with severe hyponatremia. Hormones (Athens) 2025:10.1007/s42000-025-00637-3. [PMID: 40153144 DOI: 10.1007/s42000-025-00637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/14/2025] [Indexed: 03/30/2025]
Abstract
BACKGROUND Aldosterone plays a critical role in sodium homeostasis by binding to the mineralocorticoid receptor promoting sodium retention. It increases the expression of epithelial sodium channels (ENaC) and sodium-potassium ATPases in the renal distal tubules and collecting ducts. Defects in aldosterone synthesis lead to hyponatremia, hyperkalemia, hyperreninemia, metabolic acidosis, and hypovolemia. PATIENT We present a 7-year-old boy with holoprosencephaly, dysmorphic features, and short stature presenting with persistent hyponatremia since birth and occasional hypokalemia and hyporeninemia. Initial whole exome sequencing (WES) identified a novel in-frame SHH variant, NM_000193.4:c.755_757del (p.Phe252del); possible aldosterone deficiency due to adrenocortical hypoplasia caused by the SHH variant did not fully explain the patient's clinical presentation, prompting further investigation. RESULTS Deep analysis of the WES data revealed a second variant of unknown significance in the SCNN1G gene affecting the γ-ENaC subunit, namely NM_001039.4.1904 C > T (p.Ala635Val), which was previously unreported in association with a clinical phenotype. Electrophysiological studies of the amiloride-sensitive current before and after trypsin exposure showed that the γ-ENaC-A635V mutation reduced the amiloride-sensitive sodium current by approximately 30%. The trypsin experiments suggested a lower channel open probability and a reduced inward sodium current through the ENaC. CONCLUSIONS These findings indicate that the A635 residue participates in channel function, with γ-Α635V leading to decreased sodium reabsorption. This case underscores the importance of reevaluating genetic data to understand complex clinical presentations and identifies a new potential pathogenic variant affecting sodium homeostasis. The case illustrates how genetic variants with contrasting effects on a physiological loop along with functional changes due to development and age may be hard to interpret.
Collapse
Affiliation(s)
- Marita Antoniadi
- Department of Pediatrics, Penteli Children's Hospital, Athens, Greece.
| | - Marc Bohnet
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | | | - Olga Fafoula
- Department of Pediatrics, Penteli Children's Hospital, Athens, Greece
| | - Fani Mylona
- Department of Pediatrics, Penteli Children's Hospital, Athens, Greece
| | | | - Danai Palaiologou
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| | - Anna Taliou
- School of Medicine, National and Kapodistrian University, Athens, Greece
| | - Constantine A Stratakis
- Unit on Hypothalamic and Pituitary Disorders, Eunice Kennedy Shriver National Institute of Child Health, and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Human Genetics & Precision Medicine, IMBB, FORTH, Heraklion, Greece
- Medical Genetics, H. Dunant Hospital, Athens, Greece
- ELPEN Research Institute, Athens, Greece
| |
Collapse
|
2
|
Sure F, Afonso S, Essigke D, Schmidt P, Kalo MZ, Nesterov V, Kißler A, Bertog M, Rinke R, Wittmann S, Broeker KA, Gramberg T, Artunc F, Korbmacher C, Ilyaskin AV. Transmembrane Serine Protease 2 and Proteolytic Activation of the Epithelial Sodium Channel in Mouse Kidney. J Am Soc Nephrol 2025; 36:420-434. [PMID: 39441656 PMCID: PMC11888964 DOI: 10.1681/asn.0000000521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Key Points Proteolytic activation of the epithelial sodium channel (ENaC) was compromised by transmembrane serine protease 2 deficiency in murine cortical collecting duct cells and native mouse kidney. To compensate for impaired ENaC activation, rise in plasma aldosterone in response to low-salt diet was enhanced in Tmprss2 −/− mice. Transmembrane serine protease 2 may be a potential drug target to limit proteolytic ENaC activation in disorders with increased renal ENaC activity. Background The renal epithelial sodium channel (ENaC) is essential for sodium balance and BP control. ENaC undergoes complex proteolytic activation by not yet clearly identified tubular proteases. Here, we examined a potential role of transmembrane serine protease 2 (TMPRSS2). Methods Murine ENaC and TMPRSS2 were (co)expressed in Xenopus laevis oocytes. ENaC cleavage and function were studied in TMPRSS2-deficient murine cortical collecting duct (mCCDcl1) cells and TMPRSS2-knockout (Tmprss2 −/− ) mice. Short-circuit currents (I SC) were measured to assess ENaC-mediated transepithelial sodium transport of mCCDcl1 cells. The mCCDcl1 cell transcriptome was studied using RNA sequencing. The effect of low-sodium diet with or without high potassium were compared in Tmprss2 −/− and wild-type mice using metabolic cages. ENaC-mediated whole-cell currents were recorded from microdissected tubules of Tmprss2 −/− and wild-type mice. Results In oocytes, coexpression of murine TMPRSS2 and ENaC resulted in fully cleaved γ -ENaC and approximately two-fold stimulation of ENaC currents. High baseline expression of TMPRSS2 was detected in mCCDcl1 cells without a stimulatory effect of aldosterone on its function or transcription. TMPRSS2 knockout in mCCDcl1 cells compromised γ -ENaC cleavage and reduced baseline and aldosterone-stimulated I SC, which could be rescued by chymotrypsin. A compensatory transcriptional upregulation of other proteases was not observed. Tmprss2 −/− mice kept on standard diet exhibited no apparent phenotype, but renal γ -ENaC cleavage was altered. In response to a low-salt diet, particularly with high potassium intake, Tmprss2 −/− mice increased plasma aldosterone significantly more than wild-type mice to achieve a similar reduction of renal sodium excretion. Importantly, the stimulatory effect of trypsin on renal tubular ENaC currents was much more pronounced in Tmprss2 −/− mice than that in wild-type mice. This indicated the presence of incompletely cleaved and less active channels at the cell surface of TMPRSS2-deficient tubular epithelial cells. Conclusions TMPRSS2 contributes to proteolytic ENaC activation in mouse kidney in vivo .
Collapse
Affiliation(s)
- Florian Sure
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Sara Afonso
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Daniel Essigke
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| | - Paul Schmidt
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - M. Zaher Kalo
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Viatcheslav Nesterov
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Alicia Kißler
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Marko Bertog
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Ralf Rinke
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Sabine Wittmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Thomas Gramberg
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ferruh Artunc
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| | - Christoph Korbmacher
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Alexandr V. Ilyaskin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| |
Collapse
|
3
|
Nicolescu CR, Lavocat MP, Stephan JL. Nephrotic syndrome and adrenoleukodystrophy in a 5-year-old boy. Pediatr Nephrol 2024; 39:3463-3465. [PMID: 38990330 DOI: 10.1007/s00467-024-06454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Nephrotic syndrome is a common condition characterized by filtration of large amounts of protein, hypoalbuminemia, reduced plasma oncotic pressure, sodium retention, and edema. The mechanism responsible for sodium retention in this condition is still controversial. Two different pathophysiological pathways have been proposed to explain edema formation: activation of neurohumoral effector mechanisms, including the renin-angiotensin-aldosterone system, or abnormal intrinsic/primary renal sodium retention. A 5-year-old boy with X-linked adrenoleukodystrophy presented with bilateral leg swelling, massive proteinuria, and hypoalbuminemia. Minimal change disease was diagnosed. The patient was initially treated with corticosteroids and experienced several relapses. The progression of fractional excretion of sodium correlated with proteinuria and undetectable aldosterone levels. This unusual finding suggests that the mechanism of tubular sodium avidity in this child with mineralocorticoid insufficiency was independent of the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Corina Ramona Nicolescu
- Department of Pediatric Endocrinology and Diabetes, Centre Hospitalier Universitaire Saint-Etienne, Avenue Albert Raimond, Saint-Priest en Jarez, 42270, France.
| | - Marie-Pierre Lavocat
- Department of Pediatric Nephology, Centre Hospitalier Universitaire Saint-Etienne, Avenue Albert Raimond, Saint-Priest en Jarez, 42270, France
| | - Jean-Louis Stephan
- Department of Pediatrics, Centre Hospitalier Universitaire Saint-Etienne, Avenue Albert Raimond, Saint-Priest en Jarez, 42270, France
| |
Collapse
|
4
|
Haywood LMB, Sheahan BJ. A Review of Epithelial Ion Transporters and Their Roles in Equine Infectious Colitis. Vet Sci 2024; 11:480. [PMID: 39453072 PMCID: PMC11512231 DOI: 10.3390/vetsci11100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/26/2024] Open
Abstract
Equine colitis is a devastating disease with a high mortality rate. Infectious pathogens associated with colitis in the adult horse include Clostridioides difficile, Clostridium perfringens, Salmonella spp., Neorickettsia risticii/findlaynesis, and equine coronavirus. Antimicrobial-associated colitis can be associated with the presence of infectious pathogens. Colitis can also be due to non-infectious causes, including non-steroidal anti-inflammatory drug administration, sand ingestion, and infiltrative bowel disease. Current treatments focus on symptomatic treatment (restoring fluid and electrolyte balance, preventing laminitis and sepsis). Intestinal epithelial ion channels are key regulators of electrolyte (especially sodium and chloride) and water movement into the lumen. Dysfunctional ion channels play a key role in the development of diarrhea. Infectious pathogens, including Salmonella spp. and C. difficile, have been shown to regulate ion channels in a variety of ways. In other species, there has been an increased interest in ion channel manipulation as an anti-diarrheal treatment. While targeting ion channels also represents a promising way to manage diarrhea associated with equine colitis, ion channels have not been well studied in the equine colon. This review provides an overview of what is known about colonic ion channels and their known or putative role in specific types of equine colitis due to various pathogens.
Collapse
Affiliation(s)
| | - Breanna J. Sheahan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA;
| |
Collapse
|
5
|
Yang XR, Wen R, Yang N, Zhang TN. Role of sirtuins in sepsis and sepsis-induced organ dysfunction: A review. Int J Biol Macromol 2024; 278:134853. [PMID: 39163955 DOI: 10.1016/j.ijbiomac.2024.134853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis causes a high mortality rate and current treatment focuses on supportive therapies but lacks specific therapeutic targets. Notably, sirtuins (SIRTs) shows potential clinical application in the treatment of sepsis. It has been demonstrated that SIRTs, the nicotinamide adenine dinucleotide+(NAD+)-dependent deacetylases that regulate key signaling pathways in eukaryotes and prokaryotes, are involved in a variety of biological processes. To date, seven mammalian yeast Sir2 homologs have been identified. SIRTs can regulate inflammation, oxidative stress, apoptosis, autophagy, and other pathways that play important roles in sepsis-induced organ dysfunction. However, the existing studies on SIRTs in sepsis are too scattered, and there is no relevant literature to integrate them. This review innovatively summarizes the different mechanisms of SIRTs in sepsis organ dysfunction according to the different systems, and focuses on SIRT agonists, inhibitors, and targeted drugs that have been proved to be effective in the treatment of sepsis, so as to integrate the clinical research and basic research closely. We searched PubMed for all literature related to SIRTs and sepsis since its inception using the following medical subject headings: sirtuins, SIRTs, and sepsis. Data on the mechanisms of SIRTs in sepsis-induced organ damage and their potential as targets for disease treatment were extracted.
Collapse
Affiliation(s)
- Xin-Ru Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
6
|
Nickerson AJ, Sheng S, Cox NA, Szekely KG, Marciszyn AL, Lam T, Chen J, Gingras S, Kashlan OB, Kirabo A, Hughey RP, Ray EC, Kleyman TR. Loss of the alpha subunit distal furin cleavage site blunts ENaC activation following Na + restriction. J Physiol 2024; 602:4309-4326. [PMID: 39196791 PMCID: PMC11384278 DOI: 10.1113/jp286559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/30/2024] Open
Abstract
Epithelial Na+ channels (ENaCs) are activated by proteolysis of the α and γ subunits at specific sites flanking embedded inhibitory tracts. To examine the role of α subunit proteolysis in channel activation in vivo, we generated mice lacking the distal furin cleavage site in the α subunit (αF2M mice). On a normal Na+ control diet, no differences in ENaC protein abundance in kidney or distal colon were noted between wild-type (WT) and αF2M mice. Patch-clamp analyses revealed similar levels of ENaC activity in kidney tubules, while no physiologically relevant differences in blood chemistry or aldosterone levels were detected. Male αF2M mice did exhibit diminished ENaC activity in the distal colon, as measured by amiloride-sensitive short-circuit current (ISC). Following dietary Na+ restriction, WT and αF2M mice had similar natriuretic and colonic ISC responses to amiloride. However, single-channel activity was significantly lower in kidney tubules from Na+-restricted αF2M mice compared with WT littermates. ENaC α and γ subunit expression in kidney and distal colon were also enhanced in Na+-restricted αF2M vs. WT mice, in association with higher aldosterone levels. These data provide evidence that disrupting α subunit proteolysis impairs ENaC activity in vivo, requiring compensation in response to Na+ restriction. KEY POINTS: The epithelial Na+ channel (ENaC) is activated by proteolytic cleavage in vitro, but key questions regarding the role of ENaC proteolysis in terms of whole-animal physiology remain to be addressed. We studied the in vivo importance of this mechanism by generating a mouse model with a genetic disruption to a key cleavage site in the ENaC's α subunit (αF2M mice). We found that αF2M mice did not exhibit a physiologically relevant phenotype under normal dietary conditions, but have impaired ENaC activation (channel open probability) in the kidney during salt restriction. ENaC function at the organ level was preserved in salt-restricted αF2M mice, but this was associated with higher aldosterone levels and increased expression of ENaC subunits, suggesting compensation was required to maintain homeostasis. These results provide the first evidence that ENaC α subunit proteolysis is a key regulator of channel activity in vivo.
Collapse
Affiliation(s)
- Andrew J Nickerson
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shaohu Sheng
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Natalie A Cox
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kennedy G Szekely
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Allison L Marciszyn
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tracey Lam
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jingxin Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ossama B Kashlan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rebecca P Hughey
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evan C Ray
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Shi S, Frindt G, Whelan SCM, Palmer LG. Control of ENaC ubiquitination. Am J Physiol Renal Physiol 2024; 327:F265-F276. [PMID: 38867672 PMCID: PMC11444504 DOI: 10.1152/ajprenal.00037.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Ubiquitination influences the expression of the epithelial Na+ channel (ENaC). We assessed the mechanisms of selective ubiquitination of the mature, cleaved form of γENaC in both native rodent kidneys and Fisher rat thyroid (FRT) cells expressing the channel heterologously. In both models, singly cleaved and fully cleaved γENaCs were strongly ubiquitinated, implying that the second cleavage releasing an inhibitory peptide was not essential for the process. To see whether location of the protein in or near the apical membrane rather than cleavage per se influences ubiquitination, we studied mutants of γENaC in which cleavage sites are abolished. These subunits were ubiquitinated only when coexpressed with α- and βENaC, facilitating trafficking through the Golgi apparatus. To test whether reaching the apical surface is necessary we performed in situ surface biotinylation and measured ENaC ubiquitination in the apical membrane of rat kidney. Ubiquitination of cleaved γENaC was similar in whole kidney and surface fractions, implying that both apical and subapical channels could be modified. In FRT cells, inhibiting clathrin-mediated endocytosis with Dyngo-4a increased both total and ubiquitinated γENaC at the cell surface. Finally, we tested the idea that increased intracellular Na+ could stimulate ubiquitination. Administration of amiloride to block Na+ entry through the channels did not affect ubiquitination of γENaC in either FRT cells or the rat kidney. However, presumed large increases in cellular Na+ produced by monensin in FRT cells or acute Na+ repletion in rats increased ubiquitination and decreased overall ENaC expression.NEW & NOTEWORTHY We have explored the mechanisms underlying the ubiquitination of the γ subunit of epithelial Na+ channel (ENaC), a process believed to control channel internalization and degradation. We previously reported that the mature, cleaved form of the subunit is selectively ubiquitinated. Here we show that this specificity arises not from the cleavage state of the protein but from its location in the cell. We also show that under some conditions, increased intracellular Na+ can stimulate ENaC ubiquitination.
Collapse
Affiliation(s)
- Shujie Shi
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Gustavo Frindt
- Department of Physiology and Biophysics, Weill-Cornell Medicine, New York, New York, United States
| | - Sarah Christine M Whelan
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Lawrence G Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medicine, New York, New York, United States
| |
Collapse
|
8
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. Int J Mol Sci 2024; 25:7553. [PMID: 39062796 PMCID: PMC11277036 DOI: 10.3390/ijms25147553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g., transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g., angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa between the release and action of proteases versus regulation by anti-proteases, which contributes to the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we describe the most important proteases that are affected in COVID-19, and how their overactivation affects the three main physiological systems in which they participate: the complement system and the kinin-kallikrein system (KKS), which both form part of the contact system of innate immunity, and the renin-angiotensin-aldosterone system (RAAS). We aim to elucidate the pathophysiological bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review, titled "Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions", we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of aprotinin as an antiviral drug.
Collapse
Affiliation(s)
- Juan Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
9
|
Houser A, Baconguis I. Structural Insights into Subunit-Dependent Functional Regulation in Epithelial Sodium Channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595834. [PMID: 38853903 PMCID: PMC11160588 DOI: 10.1101/2024.05.28.595834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Epithelial sodium channels (ENaC) play a crucial role in Na + reabsorption in mammals. To date, four subunits have been identified-α, β, γ, and δ-believed to form different heteromeric complexes. Currently, only the structure of the αβγ complex is known. To understand how these channels form with varying subunit compositions and define the contribution of each subunit to distinct properties, we co-expressed human δ, β, and γ. Using single-particle cryo-electron microscopy, we observed three distinct ENaC complexes. The structures unveil a pattern in which β and γ positions are conserved among the different complexes while the α position in αβγ trimer is occupied by either δ or another β. The presence of δ induces structural rearrangements in the γ subunit explaining the differences in channel activity observed between αβγ and δβγ channels. These structures define the mechanism by which ENaC subunit composition tunes ENaC function.
Collapse
|
10
|
Magaña-Ávila GR, Moreno E, Plata C, Carbajal-Contreras H, Murillo-de-Ozores AR, García-Ávila K, Vázquez N, Syed M, Wysocki J, Batlle D, Gamba G, Castañeda-Bueno M. Effect of SARS-CoV-2 S protein on the proteolytic cleavage of the epithelial Na+ channel ENaC. PLoS One 2024; 19:e0302436. [PMID: 38662786 PMCID: PMC11045049 DOI: 10.1371/journal.pone.0302436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Severe cases of COVID-19 are characterized by development of acute respiratory distress syndrome (ARDS). Water accumulation in the lungs is thought to occur as consequence of an exaggerated inflammatory response. A possible mechanism could involve decreased activity of the epithelial Na+ channel, ENaC, expressed in type II pneumocytes. Reduced transepithelial Na+ reabsorption could contribute to lung edema due to reduced alveolar fluid clearance. This hypothesis is based on the observation of the presence of a novel furin cleavage site in the S protein of SARS-CoV-2 that is identical to the furin cleavage site present in the alpha subunit of ENaC. Proteolytic processing of αENaC by furin-like proteases is essential for channel activity. Thus, competition between S protein and αENaC for furin-mediated cleavage in SARS-CoV-2-infected cells may negatively affect channel activity. Here we present experimental evidence showing that coexpression of the S protein with ENaC in a cellular model reduces channel activity. In addition, we show that bidirectional competition for cleavage by furin-like proteases occurs between 〈ENaC and S protein. In transgenic mice sensitive to lethal SARS-CoV-2, however, a significant decrease in gamma ENaC expression was not observed by immunostaining of lungs infected as shown by SARS-CoV2 nucleoprotein staining.
Collapse
Affiliation(s)
- Germán Ricardo Magaña-Ávila
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Erika Moreno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Consuelo Plata
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, PECEM (MD/PhD), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adrian Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kevin García-Ávila
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma Vázquez
- Instituto de Investigaciones Biomédicas, Molecular Physiology Unit, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Syed
- Department of Medicine, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Jan Wysocki
- Department of Medicine, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Daniel Batlle
- Department of Medicine, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, PECEM (MD/PhD), Universidad Nacional Autónoma de México, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Molecular Physiology Unit, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
11
|
Sure F, Einsiedel J, Gmeiner P, Duchstein P, Zahn D, Korbmacher C, Ilyaskin AV. The small molecule activator S3969 stimulates the epithelial sodium channel by interacting with a specific binding pocket in the channel's β-subunit. J Biol Chem 2024; 300:105785. [PMID: 38401845 PMCID: PMC11065748 DOI: 10.1016/j.jbc.2024.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
The epithelial sodium channel (ENaC) is essential for mediating sodium absorption in several epithelia. Its impaired function leads to severe disorders, including pseudohypoaldosteronism type 1 and respiratory distress. Therefore, pharmacological ENaC activators have potential therapeutic implications. Previously, a small molecule ENaC activator (S3969) was developed. So far, little is known about molecular mechanisms involved in S3969-mediated ENaC stimulation. Here, we identified an S3969-binding site in human ENaC by combining structure-based simulations with molecular biological methods and electrophysiological measurements of ENaC heterologously expressed in Xenopus laevis oocytes. We confirmed a previous observation that the extracellular loop of β-ENaC is essential for ENaC stimulation by S3969. Molecular dynamics simulations predicted critical residues in the thumb domain of β-ENaC (Arg388, Phe391, and Tyr406) that coordinate S3969 within a binding site localized at the β-γ-subunit interface. Importantly, mutating each of these residues reduced (R388H; R388A) or nearly abolished (F391G; Y406A) the S3969-mediated ENaC activation. Molecular dynamics simulations also suggested that S3969-mediated ENaC stimulation involved a movement of the α5 helix of the thumb domain of β-ENaC away from the palm domain of γ-ENaC. Consistent with this, the introduction of two cysteine residues (βR437C - γS298C) to form a disulfide bridge connecting these two domains prevented ENaC stimulation by S3969 unless the disulfide bond was reduced by DTT. Finally, we demonstrated that S3969 stimulated ENaC endogenously expressed in cultured human airway epithelial cells (H441). These new findings may lead to novel (patho-)physiological and therapeutic concepts for disorders associated with altered ENaC function.
Collapse
Affiliation(s)
- Florian Sure
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Duchstein
- Theoretical Chemistry/Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Zahn
- Theoretical Chemistry/Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
12
|
Ortmann LA, Nandi S, Li YL, Zheng H, Patel KP. Activation of renal epithelial Na + channels (ENaC) in infants with congenital heart disease. Front Pediatr 2024; 12:1338672. [PMID: 38379911 PMCID: PMC10876900 DOI: 10.3389/fped.2024.1338672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction This study was designed to measure the concentration and activity of urinary proteases that activate renal epithelial sodium channel (ENaC) mediated Na+ transport in infants with congenital heart disease, a potential mechanism for fluid retention. Methods Urine samples from infants undergoing cardiac surgery were collected at three time points: T1) pre-operatively, T2) 6-8 h after surgery, and T3) 24 h after diuretics. Urine was collected from five heathy infant controls. The urine was tested for four proteases and whole-cell patch-clamp testing was conducted in renal collecting duct M-1 cells to test whether patient urine increased Na+ currents consistent with ENaC activation. Results Heavy chain of plasminogen, furin, and prostasin were significantly higher in cardiac patients prior to surgery compared to controls. There was no difference in most proteases before and after surgery. Urine from cardiac patients produced a significantly greater increase in Na+ inward currents compared to healthy controls. Conclusion Urine from infants with congenital heart disease is richer in proteases and has the potential to increase activation of ENaC in the nephron to enhance Na+ reabsorption, which may lead to fluid retention in this population.
Collapse
Affiliation(s)
- Laura A. Ortmann
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shyam Nandi
- Department of Integrative and Cellular Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yu-long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hong Zheng
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Kaushik P. Patel
- Department of Integrative and Cellular Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
13
|
Nickerson AJ, Mutchler SM, Sheng S, Cox NA, Ray EC, Kashlan OB, Carattino MD, Marciszyn AL, Winfrey A, Gingras S, Kirabo A, Hughey RP, Kleyman TR. Mice lacking γENaC palmitoylation sites maintain benzamil-sensitive Na+ transport despite reduced channel activity. JCI Insight 2023; 8:e172051. [PMID: 37707951 PMCID: PMC10721255 DOI: 10.1172/jci.insight.172051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Epithelial Na+ channels (ENaCs) control extracellular fluid volume by facilitating Na+ absorption across transporting epithelia. In vitro studies showed that Cys-palmitoylation of the γENaC subunit is a major regulator of channel activity. We tested whether γ subunit palmitoylation sites are necessary for channel function in vivo by generating mice lacking the palmitoylated cysteines (γC33A,C41A) using CRISPR/Cas9 technology. ENaCs in dissected kidney tubules from γC33A,C41A mice had reduced open probability compared with wild-type (WT) littermates maintained on either standard or Na+-deficient diets. Male mutant mice also had higher aldosterone levels than WT littermates following Na+ restriction. However, γC33A,C41A mice did not have reduced amiloride-sensitive Na+ currents in the distal colon or benzamil-induced natriuresis compared to WT mice. We identified a second, larger conductance cation channel in the distal nephron with biophysical properties distinct from ENaC. The activity of this channel was higher in Na+-restricted γC33A,C41A versus WT mice and was blocked by benzamil, providing a possible compensatory mechanism for reduced prototypic ENaC function. We conclude that γ subunit palmitoylation sites are required for prototypic ENaC activity in vivo but are not necessary for amiloride/benzamil-sensitive Na+ transport in the distal nephron or colon.
Collapse
Affiliation(s)
| | | | | | | | | | - Ossama B. Kashlan
- Department of Medicine
- Department of Computational and Systems Biology
| | | | | | | | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Thomas R. Kleyman
- Department of Medicine
- Department of Cell Biology, and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Ghosh A, Coakley RD, Alexis NE, Tarran R. Vaping-Induced Proteolysis Causes Airway Surface Dehydration. Int J Mol Sci 2023; 24:15348. [PMID: 37895029 PMCID: PMC10607227 DOI: 10.3390/ijms242015348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Proteases such as neutrophil elastase cleave and activate the epithelial sodium channel (ENaC), causing airway dehydration. Our current study explores the impact of increased protease levels in vapers' airways on ENaC activity and airway dehydration. Human bronchial epithelial cultures (HBECs) were exposed to bronchoalveolar lavage fluid (BALF) from non-smokers, smokers and vapers. Airway surface liquid (ASL) height was measured by confocal microscopy as a marker of hydration. ENaC cleavage was measured by Western blotting. Human peripheral blood neutrophils were treated with a menthol-flavored e-liquid (Juul), and the resulting secretions were added to HBECs. BALF from smokers and vapers significantly and equally increased ENaC activity and decreased ASL height. The ASL height decrease was attenuated by protease inhibitors. Non-smokers' BALF had no effect on ENaC or ASL height. BALF from smokers and vapers, but not non-smokers, induced ENaC cleavage. E-liquid-treated neutrophil secretions cleaved ENaC and decreased ASL height. Our study demonstrated that elevated protease levels in vapers' airways have functional significance since they can activate ENaC, resulting in airway dehydration. Lung dehydration contributes to diseases like cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD) and asthma. Thus, our data predict that vaping, like smoking, will cause airway surface dehydration that likely leads to lung disease.
Collapse
Affiliation(s)
- Arunava Ghosh
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Raymond D. Coakley
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Neil E. Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Robert Tarran
- Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA
| |
Collapse
|
15
|
Guidone D, Buccirossi M, Scudieri P, Genovese M, Sarnataro S, De Cegli R, Cresta F, Terlizzi V, Planelles G, Crambert G, Sermet I, Galietta LJ. Airway surface hyperviscosity and defective mucociliary transport by IL-17/TNF-α are corrected by β-adrenergic stimulus. JCI Insight 2022; 7:164944. [PMID: 36219481 DOI: 10.1172/jci.insight.164944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 12/15/2022] Open
Abstract
The fluid covering the surface of airway epithelia represents a first barrier against pathogens. The chemical and physical properties of the airway surface fluid are controlled by the activity of ion channels and transporters. In cystic fibrosis (CF), loss of CFTR chloride channel function causes airway surface dehydration, bacterial infection, and inflammation. We investigated the effects of IL-17A plus TNF-α, 2 cytokines with relevant roles in CF and other chronic lung diseases. Transcriptome analysis revealed a profound change with upregulation of several genes involved in ion transport, antibacterial defense, and neutrophil recruitment. At the functional level, bronchial epithelia treated in vitro with the cytokine combination showed upregulation of ENaC channel, ATP12A proton pump, ADRB2 β-adrenergic receptor, and SLC26A4 anion exchanger. The overall result of IL-17A/TNF-α treatment was hyperviscosity of the airway surface, as demonstrated by fluorescence recovery after photobleaching (FRAP) experiments. Importantly, stimulation with a β-adrenergic agonist switched airway surface to a low-viscosity state in non-CF but not in CF epithelia. Our study suggests that CF lung disease is sustained by a vicious cycle in which epithelia cannot exit from the hyperviscous state, thus perpetuating the proinflammatory airway surface condition.
Collapse
Affiliation(s)
- Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Paolo Scudieri
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Sergio Sarnataro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Federico Cresta
- Centro Fibrosi Cistica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Vito Terlizzi
- Meyer Children's Hospital, Cystic Fibrosis Regional Reference Center, Department of Paediatric Medicine, Firenze, Italy
| | - Gabrielle Planelles
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France.,CNRS EMR 8228, Paris, France
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France.,CNRS EMR 8228, Paris, France
| | | | - Luis Jv Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Translational Medical Sciences (DISMET), University of Napoli "Federico II", Napoli, Italy
| |
Collapse
|
16
|
Brown EF, Mitaera T, Fronius M. COVID-19 and Liquid Homeostasis in the Lung—A Perspective through the Epithelial Sodium Channel (ENaC) Lens. Cells 2022; 11:cells11111801. [PMID: 35681496 PMCID: PMC9180030 DOI: 10.3390/cells11111801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 01/26/2023] Open
Abstract
Infections with a new corona virus in 2019 lead to the definition of a new disease known as Corona Virus Disease 2019 (COVID-19). The sever cases of COVID-19 and the main cause of death due to virus infection are attributed to respiratory distress. This is associated with the formation of pulmonary oedema that impairs blood oxygenation and hypoxemia as main symptoms of respiratory distress. An important player for the maintenance of a defined liquid environment in lungs needed for normal lung function is the epithelial sodium channel (ENaC). The present article reviews the implications of SARS-CoV-2 infections from the perspective of impaired function of ENaC. The rationale for this perspective is derived from the recognition that viral spike protein and ENaC share a common proteolytic cleavage site. This cleavage site is utilized by the protease furin, that is essential for ENaC activity. Furin cleavage of spike ‘activates’ the virus protein to enable binding to host cell membrane receptors and initiate cell infection. Based on the importance of proteolytic cleavage for ENaC function and activation of spike, it seems feasible to assume that virus infections are associated with impaired ENaC activity. This is further supported by symptoms of COVID-19 that are reminiscent of impaired ENaC function in the respiratory tract.
Collapse
Affiliation(s)
- Emily F. Brown
- Department of Physiology, University of Otago, Dunedin 9054, New Zealand; (E.F.B.); (T.M.)
- HeartOtago, University of Otago, Dunedin, New Zealand
| | - Tamapuretu Mitaera
- Department of Physiology, University of Otago, Dunedin 9054, New Zealand; (E.F.B.); (T.M.)
- HeartOtago, University of Otago, Dunedin, New Zealand
| | - Martin Fronius
- Department of Physiology, University of Otago, Dunedin 9054, New Zealand; (E.F.B.); (T.M.)
- HeartOtago, University of Otago, Dunedin, New Zealand
- Healthy Hearts for Aotearoa New Zealand, Centre of Research Excellence, New Zealand
- Maurice Wilkins Centre for Molecular Discovery, Centre of Research Excellence, New Zealand
- Correspondence: ; Tel.: +64-3-471-6081
| |
Collapse
|
17
|
Kristensen M, Fenton RA, Poulsen SB. Dissecting the Effects of Aldosterone and Hypokalemia on the Epithelial Na + Channel and the NaCl Cotransporter. Front Physiol 2022; 13:800055. [PMID: 35557966 PMCID: PMC9086401 DOI: 10.3389/fphys.2022.800055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Primary hyperaldosteronism (PA) is characterized by aldosterone excess and hypertension. This may be linked to increased renal Na+ reabsorption via the epithelial Na+ channel (ENaC) and the NaCl cotransporter (NCC). The majority of PA patients have normal plasma K+ levels, but a subset of cases are associated with hypokalemia. High NCC levels observed in long-term studies with aldosterone-infused rodents have been attributed to direct effects of aldosterone. Aldosterone can also increase active phosphorylated NCC (pT58-NCC) acutely. However, direct effects of aldosterone on NCC have been contested by recent studies indicating that it is rather an indirect effect of hypokalemia. We therefore set out to determine isolated long-term aldosterone and K+ effects on ENaC and NCC using various in vivo and ex vivo approaches. In mice, aldosterone-induced hypokalemia was prevented by simultaneous amiloride infusion, coupled to increased cleavage of α- and γENaC but no effect on NCC. Regression analyses of in vivo data showed a positive correlation between aldosterone/K+ and αENaC but a negative correlation with NCC and pT58-NCC. Ex vivo, exposure of kidney tubules for 21 h to aldosterone increased cleavage of αENaC and γENaC, but no effects were observed on NCC or pT58-NCC. Exposure of tubules to low K+ media reduced αENaC but increased NCC and pT58-NCC. As hypokalemia can enhance cell proliferation markers in the distal convoluted tubule (DCT), we hypothesized that aldosterone infusion would increase proliferating cell nuclear antigen (PCNA) expression. Infusion of aldosterone in mice for 6 days greatly increased PCNA expression in the DCT. Collectively, in vivo and ex vivo data suggest that both aldosterone and K+ can increase ENaC directly. In contrast, the observed increase in abundance and phosphorylation of NCC in aldosterone-infused mice is likely an indirect effect of enhanced ENaC-mediated K+ secretion and subsequent hypokalemia. Thus, it is possible that NCC may only be increased in PA when the condition is associated with hypokalemia.
Collapse
Affiliation(s)
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Diakov A, Nesterov V, Dahlmann A, Korbmacher C. Two adjacent phosphorylation sites in the C-terminus of the channel's α-subunit have opposing effects on epithelial sodium channel (ENaC) activity. Pflugers Arch 2022; 474:681-697. [PMID: 35525869 PMCID: PMC9192390 DOI: 10.1007/s00424-022-02693-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023]
Abstract
How phosphorylation of the epithelial sodium channel (ENaC) contributes to its regulation is incompletely understood. Previously, we demonstrated that in outside-out patches ENaC activation by serum- and glucocorticoid-inducible kinase isoform 1 (SGK1) was abolished by mutating a serine residue in a putative SGK1 consensus motif RXRXX(S/T) in the channel’s α-subunit (S621 in rat). Interestingly, this serine residue is followed by a highly conserved proline residue rather than by a hydrophobic amino acid thought to be required for a functional SGK1 consensus motif according to invitro data. This suggests that this serine residue is a potential phosphorylation site for the dual-specificity tyrosine phosphorylated and regulated kinase 2 (DYRK2), a prototypical proline-directed kinase. Its phosphorylation may prime a highly conserved preceding serine residue (S617 in rat) to be phosphorylated by glycogen synthase kinase 3 β (GSK3β). Therefore, we investigated the effect of DYRK2 on ENaC activity in outside-out patches of Xenopus laevis oocytes heterologously expressing rat ENaC. DYRK2 included in the pipette solution significantly increased ENaC activity. In contrast, GSK3β had an inhibitory effect. Replacing S621 in αENaC with alanine (S621A) abolished the effects of both kinases. A S617A mutation reduced the inhibitory effect of GKS3β but did not prevent ENaC activation by DYRK2. Our findings suggest that phosphorylation of S621 activates ENaC and primes S617 for subsequent phosphorylation by GSK3β resulting in channel inhibition. In proof-of-concept experiments, we demonstrated that DYRK2 can also stimulate ENaC currents in microdissected mouse distal nephron, whereas GSK3β inhibits the currents.
Collapse
Affiliation(s)
- Alexei Diakov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstr, 6, 91054, Erlangen, Germany
| | - Viatcheslav Nesterov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstr, 6, 91054, Erlangen, Germany
| | - Anke Dahlmann
- Medizinische Klinik 4 - Nephrologie und Hypertensiologie, Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstr, 6, 91054, Erlangen, Germany.
| |
Collapse
|
19
|
Sure F, Bertog M, Afonso S, Diakov A, Rinke R, Madej MG, Wittmann S, Gramberg T, Korbmacher C, Ilyaskin AV. Transmembrane serine protease 2 (TMPRSS2) proteolytically activates the epithelial sodium channel (ENaC) by cleaving the channel's γ-subunit. J Biol Chem 2022; 298:102004. [PMID: 35504352 PMCID: PMC9163703 DOI: 10.1016/j.jbc.2022.102004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
The epithelial sodium channel (ENaC) is a heterotrimer consisting of α-, β-, and γ-subunits. Channel activation requires proteolytic release of inhibitory tracts from the extracellular domains of α-ENaC and γ-ENaC; however, the proteases involved in the removal of the γ-inhibitory tract remain unclear. In several epithelial tissues, ENaC is coexpressed with the transmembrane serine protease 2 (TMPRSS2). Here, we explored the effect of human TMPRSS2 on human αβγ-ENaC heterologously expressed in Xenopus laevis oocytes. We found that coexpression of TMPRSS2 stimulated ENaC-mediated whole-cell currents by approximately threefold, likely because of an increase in average channel open probability. Furthermore, TMPRSS2-dependent ENaC stimulation was not observed using a catalytically inactive TMPRSS2 mutant and was associated with fully cleaved γ-ENaC in the intracellular and cell surface protein fractions. This stimulatory effect of TMPRSS2 on ENaC was partially preserved when inhibiting its proteolytic activity at the cell surface using aprotinin but was abolished when the γ-inhibitory tract remained attached to its binding site following introduction of two cysteine residues (S155C–Q426C) to form a disulfide bridge. In addition, computer simulations and site-directed mutagenesis experiments indicated that TMPRSS2 can cleave γ-ENaC at sites both proximal and distal to the γ-inhibitory tract. This suggests a dual role of TMPRSS2 in the proteolytic release of the γ-inhibitory tract. Finally, we demonstrated that TMPRSS2 knockdown in cultured human airway epithelial cells (H441) reduced baseline proteolytic activation of endogenously expressed ENaC. Thus, we conclude that TMPRSS2 is likely to contribute to proteolytic ENaC activation in epithelial tissues in vivo.
Collapse
Affiliation(s)
- Florian Sure
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Marko Bertog
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Sara Afonso
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Alexei Diakov
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Ralf Rinke
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - M Gregor Madej
- Department of Biophysics II/Structural Biology, University of Regensburg, Regensburg, Germany
| | - Sabine Wittmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Thomas Gramberg
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Christoph Korbmacher
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany.
| | - Alexandr V Ilyaskin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| |
Collapse
|
20
|
Kota P. Sustained inhibition of ENaC in CF: Potential RNA-based therapies for mutation-agnostic treatment. Curr Opin Pharmacol 2022; 64:102209. [PMID: 35483215 DOI: 10.1016/j.coph.2022.102209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Abstract
Disruption of the equilibrium between ion secretion and absorption processes by the airway epithelium is central to many muco-obstructive lung diseases including cystic fibrosis (CF). Besides correction of defective folding and function of CFTR, inhibition of amiloride-sensitive epithelia sodium channels (ENaC) has emerged as a bona fide therapeutic strategy to improve mucociliary clearance in patients with CF. The short half-life of amiloride-based ENaC blockers and hyperosmotic therapies have led to the development of novel RNA-based interventions for targeted and sustained reduction of ENaC expression and function in preclinical models of CF. This review summarizes the recent advances in RNA therapeutics targeting ENaC for mutation-agnostic treatment of CF.
Collapse
Affiliation(s)
- Pradeep Kota
- Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Essigke D, Bohnert BN, Janessa A, Wörn M, Omage K, Kalbacher H, Birkenfeld AL, Bugge TH, Szabo R, Artunc F. Sodium retention in nephrotic syndrome is independent of the activation of the membrane-anchored serine protease prostasin (CAP1/PRSS8) and its enzymatic activity. Pflugers Arch 2022; 474:613-624. [PMID: 35312839 PMCID: PMC9117342 DOI: 10.1007/s00424-022-02682-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
Experimental nephrotic syndrome leads to activation of the epithelial sodium channel (ENaC) by proteolysis and promotes renal sodium retention. The membrane-anchored serine protease prostasin (CAP1/PRSS8) is expressed in the distal nephron and participates in proteolytic ENaC regulation by serving as a scaffold for other serine proteases. However, it is unknown whether prostasin is also involved in ENaC-mediated sodium retention of experimental nephrotic syndrome. In this study, we used genetically modified knock-in mice with Prss8 mutations abolishing its proteolytic activity (Prss8-S238A) or prostasin activation (Prss8-R44Q) to investigate the development of sodium retention in doxorubicin-induced nephrotic syndrome. Healthy Prss8-S238A and Prss8-R44Q mice had normal ENaC activity as reflected by the natriuretic response to the ENaC blocker triamterene. After doxorubicin injection, all genotypes developed similar proteinuria. In all genotypes, urinary prostasin excretion increased while renal expression was not altered. In nephrotic mice of all genotypes, triamterene response was similarly increased, consistent with ENaC activation. As a consequence, urinary sodium excretion dropped in all genotypes and mice similarly gained body weight by + 25 ± 3% in Prss8-wt, + 20 ± 2% in Prss8-S238A and + 28 ± 3% in Prss8-R44Q mice (p = 0.16). In Western blots, expression of fully cleaved α- and γ-ENaC was similarly increased in nephrotic mice of all genotypes. In conclusion, proteolytic ENaC activation and sodium retention in experimental nephrotic syndrome are independent of the activation of prostasin and its enzymatic activity and are consistent with the action of aberrantly filtered serine proteases or proteasuria.
Collapse
Affiliation(s)
- Daniel Essigke
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tuebingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD) at the University Tübingen, Tuebingen, Germany
| | - Bernhard N Bohnert
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tuebingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD) at the University Tübingen, Tuebingen, Germany
| | - Andrea Janessa
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tuebingen, Germany
| | - Matthias Wörn
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tuebingen, Germany
| | - Kingsley Omage
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tuebingen, Germany
| | | | - Andreas L Birkenfeld
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tuebingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD) at the University Tübingen, Tuebingen, Germany
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - Roman Szabo
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - Ferruh Artunc
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tuebingen, Germany.
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tuebingen, Germany.
- German Center for Diabetes Research (DZD) at the University Tübingen, Tuebingen, Germany.
| |
Collapse
|
22
|
Abstract
Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.
Collapse
Affiliation(s)
- Essam
Eldin A. Osman
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Alnawaz Rehemtulla
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Keely SJ, Urso A, Ilyaskin AV, Korbmacher C, Bunnett NW, Poole DP, Carbone SE. Contributions of bile acids to gastrointestinal physiology as receptor agonists and modifiers of ion channels. Am J Physiol Gastrointest Liver Physiol 2022; 322:G201-G222. [PMID: 34755536 PMCID: PMC8782647 DOI: 10.1152/ajpgi.00125.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Bile acids (BAs) are known to be important regulators of intestinal motility and epithelial fluid and electrolyte transport. Over the past two decades, significant advances in identifying and characterizing the receptors, transporters, and ion channels targeted by BAs have led to exciting new insights into the molecular mechanisms involved in these processes. Our appreciation of BAs, their receptors, and BA-modulated ion channels as potential targets for the development of new approaches to treat intestinal motility and transport disorders is increasing. In the current review, we aim to summarize recent advances in our knowledge of the different BA receptors and BA-modulated ion channels present in the gastrointestinal system. We discuss how they regulate motility and epithelial transport, their roles in pathogenesis, and their therapeutic potential in a range of gastrointestinal diseases.
Collapse
Affiliation(s)
- Stephen J Keely
- Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Andreacarola Urso
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Pharmacology, Columbia University, New York, New York
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Bavaria, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Bavaria, Germany
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, New York
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, New York
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council, Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council, Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Pearce D, Manis AD, Nesterov V, Korbmacher C. Regulation of distal tubule sodium transport: mechanisms and roles in homeostasis and pathophysiology. Pflugers Arch 2022; 474:869-884. [PMID: 35895103 PMCID: PMC9338908 DOI: 10.1007/s00424-022-02732-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Regulated Na+ transport in the distal nephron is of fundamental importance to fluid and electrolyte homeostasis. Further upstream, Na+ is the principal driver of secondary active transport of numerous organic and inorganic solutes. In the distal nephron, Na+ continues to play a central role in controlling the body levels and concentrations of a more select group of ions, including K+, Ca++, Mg++, Cl-, and HCO3-, as well as water. Also, of paramount importance are transport mechanisms aimed at controlling the total level of Na+ itself in the body, as well as its concentrations in intracellular and extracellular compartments. Over the last several decades, the transporters involved in moving Na+ in the distal nephron, and directly or indirectly coupling its movement to that of other ions have been identified, and their interrelationships brought into focus. Just as importantly, the signaling systems and their components-kinases, ubiquitin ligases, phosphatases, transcription factors, and others-have also been identified and many of their actions elucidated. This review will touch on selected aspects of ion transport regulation, and its impact on fluid and electrolyte homeostasis. A particular focus will be on emerging evidence for site-specific regulation of the epithelial sodium channel (ENaC) and its role in both Na+ and K+ homeostasis. In this context, the critical regulatory roles of aldosterone, the mineralocorticoid receptor (MR), and the kinases SGK1 and mTORC2 will be highlighted. This includes a discussion of the newly established concept that local K+ concentrations are involved in the reciprocal regulation of Na+-Cl- cotransporter (NCC) and ENaC activity to adjust renal K+ secretion to dietary intake.
Collapse
Affiliation(s)
- David Pearce
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA USA
| | - Anna D. Manis
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA USA
| | - Viatcheslav Nesterov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, Erlangen, Germany
| |
Collapse
|
25
|
Tsilosani A, Gao C, Zhang W. Aldosterone-Regulated Sodium Transport and Blood Pressure. Front Physiol 2022; 13:770375. [PMID: 35197862 PMCID: PMC8859437 DOI: 10.3389/fphys.2022.770375] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aldosterone is a major mineralocorticoid steroid hormone secreted by glomerulosa cells in the adrenal cortex. It regulates a variety of physiological responses including those to oxidative stress, inflammation, fluid disruption, and abnormal blood pressure through its actions on various tissues including the kidney, heart, and the central nervous system. Aldosterone synthesis is primarily regulated by angiotensin II, K+ concentration, and adrenocorticotrophic hormone. Elevated serum aldosterone levels increase blood pressure largely by increasing Na+ re-absorption in the kidney through regulating transcription and activity of the epithelial sodium channel (ENaC). This review focuses on the signaling pathways involved in aldosterone synthesis and its effects on Na+ reabsorption through ENaC.
Collapse
Affiliation(s)
- Akaki Tsilosani
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Chao Gao
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Wenzheng Zhang
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
26
|
Artunc F, Bohnert BN, Schneider JC, Staudner T, Sure F, Ilyaskin AV, Wörn M, Essigke D, Janessa A, Nielsen NV, Birkenfeld AL, Etscheid M, Haerteis S, Korbmacher C, Kanse SM. Proteolytic activation of the epithelial sodium channel (ENaC) by factor VII activating protease (FSAP) and its relevance for sodium retention in nephrotic mice. Pflugers Arch 2021; 474:217-229. [PMID: 34870751 PMCID: PMC8766372 DOI: 10.1007/s00424-021-02639-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Proteolytic activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases is thought to contribute to renal sodium retention in nephrotic syndrome. However, the identity of the responsible proteases remains elusive. This study evaluated factor VII activating protease (FSAP) as a candidate in this context. We analyzed FSAP in the urine of patients with nephrotic syndrome and nephrotic mice and investigated its ability to activate human ENaC expressed in Xenopus laevis oocytes. Moreover, we studied sodium retention in FSAP-deficient mice (Habp2−/−) with experimental nephrotic syndrome induced by doxorubicin. In urine samples from nephrotic humans, high concentrations of FSAP were detected both as zymogen and in its active state. Recombinant serine protease domain of FSAP stimulated ENaC-mediated whole-cell currents in a time- and concentration-dependent manner. Mutating the putative prostasin cleavage site in γ-ENaC (γRKRK178AAAA) prevented channel stimulation by the serine protease domain of FSAP. In a mouse model for nephrotic syndrome, active FSAP was present in nephrotic urine of Habp2+/+ but not of Habp2−/− mice. However, Habp2−/− mice were not protected from sodium retention compared to nephrotic Habp2+/+ mice. Western blot analysis revealed that in nephrotic Habp2−/− mice, proteolytic cleavage of α- and γ-ENaC was similar to that in nephrotic Habp2+/+ animals. In conclusion, active FSAP is excreted in the urine of nephrotic patients and mice and activates ENaC in vitro involving the putative prostasin cleavage site of γ-ENaC. However, endogenous FSAP is not essential for sodium retention in nephrotic mice.
Collapse
Affiliation(s)
- Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany. .,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany. .,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany.
| | - Bernhard N Bohnert
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany
| | - Jonas C Schneider
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany
| | - Tobias Staudner
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Sure
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Wörn
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany
| | - Daniel Essigke
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany
| | - Andrea Janessa
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany
| | - Nis V Nielsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Andreas L Birkenfeld
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany
| | | | - Silke Haerteis
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Institute of Anatomy, University of Regensburg, Regensburg, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sandip M Kanse
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Bohnert BN, Essigke D, Janessa A, Schneider JC, Wörn M, Kalo MZ, Xiao M, Kong L, Omage K, Hennenlotter J, Amend B, Birkenfeld AL, Artunc F. Experimental nephrotic syndrome leads to proteolytic activation of the epithelial Na + channel in the mouse kidney. Am J Physiol Renal Physiol 2021; 321:F480-F493. [PMID: 34423678 DOI: 10.1152/ajprenal.00199.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteolytic activation of the renal epithelial Na+ channel (ENaC) involves cleavage events in its α- and γ-subunits and is thought to mediate Na+ retention in nephrotic syndrome (NS). However, the detection of proteolytically processed ENaC in kidney tissue from nephrotic mice has been elusive so far. We used a refined Western blot technique to reliably discriminate full-length α-ENaC and γ-ENaC and their cleavage products after proteolysis at their proximal and distal cleavage sites (designated from the NH2-terminus), respectively. Proteolytic ENaC activation was investigated in kidneys from mice with experimental NS induced by doxorubicin or inducible podocin deficiency with or without treatment with the serine protease inhibitor aprotinin. Nephrotic mice developed Na+ retention and increased expression of fragments of α-ENaC and γ-ENaC cleaved at both the proximal cleavage site and, more prominently, the distal cleavage site, respectively. Treatment with aprotinin but not with the mineralocorticoid receptor antagonist canrenoate prevented Na+ retention and upregulation of the cleavage products in nephrotic mice. Increased expression of cleavage products of α-ENaC and γ-ENaC was similarly found in healthy mice treated with a low-salt diet, sensitive to mineralocorticoid receptor blockade. In human nephrectomy specimens, γ-ENaC was found in the full-length form and predominantly cleaved at its distal cleavage site. In conclusion, murine experimental NS leads to aprotinin-sensitive proteolytic activation of ENaC at both proximal and, more prominently, distal cleavage sites of its α- and γ-subunit, most likely by urinary serine protease activity or proteasuria.NEW & NOTEWORTHY This study demonstrates that murine experimental nephrotic syndrome leads to aprotinin-sensitive proteolytic activation of the epithelial Na+ channel at both the α- and γ-subunit, most likely by urinary serine protease activity or proteasuria.
Collapse
Affiliation(s)
- Bernhard N Bohnert
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University Tübingen, Tübingen, Germany.,German Center for Diabetes Research, University Tübingen, Tübingen, Germany
| | - Daniel Essigke
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Andrea Janessa
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Jonas C Schneider
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Matthias Wörn
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - M Zaher Kalo
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Mengyun Xiao
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Lingsi Kong
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Kingsley Omage
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tübingen, Tübingen, Germany
| | - Bastian Amend
- Department of Urology, University Hospital Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University Tübingen, Tübingen, Germany.,German Center for Diabetes Research, University Tübingen, Tübingen, Germany
| | - Ferruh Artunc
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University Tübingen, Tübingen, Germany.,German Center for Diabetes Research, University Tübingen, Tübingen, Germany
| |
Collapse
|
28
|
Shmygol A, Brosens JJ. Proteinase Activated Receptors Mediate the Trypsin-Induced Ca 2 + Signaling in Human Uterine Epithelial Cells. Front Cell Dev Biol 2021; 9:709902. [PMID: 34434932 PMCID: PMC8381647 DOI: 10.3389/fcell.2021.709902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Embryo implantation is a complex and tightly regulated process. In humans, uterine luminal epithelium functions as a biosensor gauging the embryo quality and transmitting this information to the underlying endometrial stromal cells. This quality control ensures that only high quality embryos are implanted, while aberrant ones are rejected. The mechanisms of the embryo-uterine mucosa crosstalk remain incompletely understood. Trypsin, a serine protease secreted by the blastocyst, has been implicated in the cross-signaling. Here we address the mechanisms by which trypsin triggers the intracellular calcium signaling in uterine epithelium. We found that protease-activated G-protein coupled receptors are the main mechanism mediating the effects of trypsin in human uterine epithelium. In addition, trypsin activates the epithelial sodium channels thus increasing the intracellular Na+ concentration and promoting Ca2+ entry on the reverse mode of the sodium/calcium exchanger.
Collapse
Affiliation(s)
- Anatoliy Shmygol
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jan J Brosens
- Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Miscarriage Research Centre, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| |
Collapse
|
29
|
Raghav PK, Kalyanaraman K, Kumar D. Human cell receptors: potential drug targets to combat COVID-19. Amino Acids 2021; 53:813-842. [PMID: 33950300 PMCID: PMC8097256 DOI: 10.1007/s00726-021-02991-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/21/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19). The World Health Organization (WHO) has announced that COVID-19 is a pandemic having a higher spread rate rather than the mortality. Identification of a potential approach or therapy against COVID-19 is still under consideration. Therefore, it is essential to have an insight into SARS-CoV-2, its interacting partner, and domains for an effective treatment. The present study is divided into three main categories, including SARS-CoV-2 prominent receptor and its expression levels, other interacting partners, and their binding domains. The first section focuses primarily on coronaviruses' general aspects (SARS-CoV-2, SARS-CoV, and the Middle East Respiratory Syndrome Coronaviruses (MERS-CoV)) their structures, similarities, and mode of infections. The second section discusses the host receptors which includes the human targets of coronaviruses like dipeptidyl peptidase 4 (DPP4), CD147, CD209L, Angiotensin-Converting Enzyme 2 (ACE2), and other miscellaneous targets (type-II transmembrane serine proteases (TTSPs), furin, trypsin, cathepsins, thermolysin, elastase, phosphatidylinositol 3-phosphate 5-kinase, two-pore segment channel, and epithelium sodium channel C-α subunit). The human cell receptor, ACE2 plays an essential role in the Renin-Angiotensin system (RAS) pathway and COVID-19. Thus, this section also discusses the ACE2 expression and risk of COVID-19 infectivity in various organs and tissues such as the liver, lungs, intestine, heart, and reproductive system in the human body. Absence of ACE2 protein expression in immune cells could be used for limiting the SARS-CoV-2 infection. The third section covers the current available approaches for COVID-19 treatment. Overall, this review focuses on the critical role of human cell receptors involved in coronavirus pathogenesis, which would likely be used in designing target-specific drugs to combat COVID-19.
Collapse
Affiliation(s)
| | - Keerthana Kalyanaraman
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Dinesh Kumar
- ICMR-National Institute of Cancer Prevention & Research, Noida, 201301, India.
| |
Collapse
|
30
|
Essigke D, Ilyaskin AV, Wörn M, Bohnert BN, Xiao M, Daniel C, Amann K, Birkenfeld AL, Szabo R, Bugge TH, Korbmacher C, Artunc F. Zymogen-locked mutant prostasin (Prss8) leads to incomplete proteolytic activation of the epithelial sodium channel (ENaC) and severely compromises triamterene tolerance in mice. Acta Physiol (Oxf) 2021; 232:e13640. [PMID: 33650216 DOI: 10.1111/apha.13640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
AIM The serine protease prostasin (Prss8) is expressed in the distal tubule and stimulates proteolytic activation of the epithelial sodium channel (ENaC) in co-expression experiments in vitro. The aim of this study was to explore the role of prostasin in proteolytic ENaC activation in the kidney in vivo. METHODS We used genetically modified knockin mice carrying a Prss8 mutation abolishing proteolytic activity (Prss8-S238A) or a mutation leading to a zymogen-locked state (Prss8-R44Q). Mice were challenged with low sodium diet and diuretics. Regulation of ENaC activity by Prss8-S238A and Prss8-R44Q was studied in vitro using the Xenopus laevis oocyte expression system. RESULTS Co-expression of murine ENaC with Prss8-wt or Prss8-S238A in oocytes caused maximal proteolytic ENaC activation, whereas ENaC was activated only partially in oocytes co-expressing Prss8-R44Q. This was paralleled by a reduced proteolytic activity at the cell surface of Prss8-R44Q expressing oocytes. Sodium conservation under low sodium diet was preserved in Prss8-S238A and Prss8-R44Q mice but with higher plasma aldosterone concentrations in Prss8-R44Q mice. Treatment with the ENaC inhibitor triamterene over four days was tolerated in Prss8-wt and Prss8-S238A mice, whereas Prss8-R44Q mice developed salt wasting and severe weight loss associated with hyperkalemia and acidosis consistent with impaired ENaC function and renal failure. CONCLUSION Unlike proteolytically inactive Prss8-S238A, zymogen-locked Prss8-R44Q produces incomplete proteolytic ENaC activation in vitro and causes a severe renal phenotype in mice treated with the ENaC inhibitor triamterene. This indicates that Prss8 plays a role in proteolytic ENaC activation and renal function independent of its proteolytic activity.
Collapse
Affiliation(s)
- Daniel Essigke
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
| | - Alexandr V. Ilyaskin
- Institute of Cellular and Molecular Physiology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Matthias Wörn
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
| | - Bernhard N. Bohnert
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tuebingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tuebingen Germany
| | - Mengyun Xiao
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
| | - Christoph Daniel
- Institute of Pathology Department of Nephropathology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Kerstin Amann
- Institute of Pathology Department of Nephropathology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Andreas L. Birkenfeld
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tuebingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tuebingen Germany
| | - Roman Szabo
- Proteases and Tissue Remodeling Section National Institute of Dental and Craniofacial ResearchNational Institutes of Health Bethesda MD USA
| | - Thomas H. Bugge
- Proteases and Tissue Remodeling Section National Institute of Dental and Craniofacial ResearchNational Institutes of Health Bethesda MD USA
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Ferruh Artunc
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tuebingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tuebingen Germany
| |
Collapse
|
31
|
Ilyaskin AV, Korbmacher C, Diakov A. Inhibition of the epithelial sodium channel (ENaC) by connexin 30 involves stimulation of clathrin-mediated endocytosis. J Biol Chem 2021; 296:100404. [PMID: 33577799 PMCID: PMC7973139 DOI: 10.1016/j.jbc.2021.100404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/16/2023] Open
Abstract
Mice lacking connexin 30 (Cx30) display increased epithelial sodium channel (ENaC) activity in the distal nephron and develop salt-sensitive hypertension. This indicates a functional link between Cx30 and ENaC, which remains incompletely understood. Here, we explore the effect of Cx30 on ENaC function using the Xenopus laevis oocyte expression system. Coexpression of human Cx30 with human αβγENaC significantly reduced ENaC-mediated whole-cell currents. The size of the inhibitory effect on ENaC depended on the expression level of Cx30 and required Cx30 ion channel activity. ENaC inhibition by Cx30 was mainly due to reduced cell surface ENaC expression resulting from enhanced ENaC retrieval without discernible effects on proteolytic channel activation and single-channel properties. ENaC retrieval from the cell surface involves the interaction of the ubiquitin ligase Nedd4-2 with PPPxY-motifs in the C-termini of ENaC. Truncating the C- termini of β- or γENaC significantly reduced the inhibitory effect of Cx30 on ENaC. In contrast, mutating the prolines belonging to the PPPxY-motif in γENaC or coexpressing a dominant-negative Xenopus Nedd4 (xNedd4-CS) did not significantly alter ENaC inhibition by Cx30. Importantly, the inhibitory effect of Cx30 on ENaC was significantly reduced by Pitstop-2, an inhibitor of clathrin-mediated endocytosis, or by mutating putative clathrin adaptor protein 2 (AP-2) recognition motifs (YxxФ) in the C termini of β- or γ-ENaC. In conclusion, our findings suggest that Cx30 inhibits ENaC by promoting channel retrieval from the plasma membrane via clathrin-dependent endocytosis. Lack of this inhibition may contribute to increased ENaC activity and salt-sensitive hypertension in mice with Cx30 deficiency.
Collapse
Affiliation(s)
- Alexandr V Ilyaskin
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Alexei Diakov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
32
|
Frindt G, Shi S, Kleyman TR, Palmer LG. Cleavage state of γENaC in mouse and rat kidneys. Am J Physiol Renal Physiol 2021; 320:F485-F491. [PMID: 33522411 DOI: 10.1152/ajprenal.00536.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extracellular proteases can activate the epithelial Na channel (ENaC) by cleavage of the γ subunit. Here, we investigated the cleavage state of the channel in the kidneys of mice and rats on a low-salt diet. We identified the cleaved species of channels expressed in Fisher rat thyroid cells by coexpressing the apical membrane-bound protease channel-activating protease 1 (CAP1; prostasin). To compare the peptides produced in the heterologous system with those in the mouse kidney, we treated both lysates with PNGaseF to remove N-linked glycosylation. The apparent molecular mass of the smallest COOH-terminal fragment of γENaC (52 kDa) was indistinguishable from that of the CAP1-induced species in Fisher rat thyroid cells. Similar cleaved peptides were observed in total and cell surface fractions of the rat kidney. This outcome suggests that most of the subunits at the surface have been processed by extracellular proteases. This was confirmed using nonreducing gels, in which the NH2- and COOH-terminal fragments of γENaC are linked by a disulfide bond. Under these conditions, the major cleaved form in the rat kidney had an apparent molecular mass of 56 kDa, ∼4 kDa lower than that of the full-length form, consistent with excision of a short peptide by two proteolytic events. We conclude that the most abundant γENaC species in the apical membrane of rat and mouse kidneys on a low-Na diet is the twice-cleaved, presumably activated form.NEW & NOTEWORTHY We have identified the major aldosterone-dependent cleaved form of the epithelial Na channel (ENaC) γ subunit in the kidney as a twice-cleaved peptide. This form appears to be identical in size with a subunit cleaved in vitro by the extracellular protease channel-activating protease 1 (prostasin). In the absence of reducing agents, it has an overall molecular mass less than that of the intact subunit, consistent with the excision of an inhibitory domain.
Collapse
Affiliation(s)
- Gustavo Frindt
- Department of Physiology and Biophysics, Weill Cornell School of Medicine, New York, New York
| | - Shujie Shi
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lawrence G Palmer
- Department of Physiology and Biophysics, Weill Cornell School of Medicine, New York, New York
| |
Collapse
|
33
|
Gentzsch M, Rossier BC. A Pathophysiological Model for COVID-19: Critical Importance of Transepithelial Sodium Transport upon Airway Infection. FUNCTION 2020; 1:zqaa024. [PMID: 33201937 PMCID: PMC7662147 DOI: 10.1093/function/zqaa024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 01/06/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic remains a serious public health problem and will continue to be until effective drugs and/or vaccines are available. The rational development of drugs critically depends on our understanding of disease mechanisms, that is, the physiology and pathophysiology underlying the function of the organ targeted by the virus. Since the beginning of the pandemic, tireless efforts around the globe have led to numerous publications on the virus, its receptor, its entry into the cell, its cytopathic effects, and how it triggers innate and native immunity but the role of apical sodium transport mediated by the epithelial sodium channel (ENaC) during the early phases of the infection in the airways has received little attention. We propose a pathophysiological model that defines the possible role of ENaC in this process.
Collapse
Affiliation(s)
- Martina Gentzsch
- Department of Cell Biology and Physiology, Marsico Lung Institute, University of North Carolina, Chapel Hill, USA
- Department of Pediatric Pulmonology, Marsico Lung Institute, University of North Carolina, Chapel Hill, USA
| | - Bernard C Rossier
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The main goal of this article is to discuss the role of the epithelial sodium channel (ENaC) in extracellular fluid and blood pressure regulation. RECENT FINDINGS Besides its role in sodium handling in the kidney, recent studies have found that ENaC expressed in other cells including immune cells can influence blood pressure via extra-renal mechanisms. Dendritic cells (DCs) are activated and contribute to salt-sensitive hypertension in an ENaC-dependent manner. We discuss recent studies on how ENaC is regulated in both the kidney and other sites including the vascular smooth muscles, endothelial cells, and immune cells. We also discuss how this extra-renal ENaC can play a role in salt-sensitive hypertension and its promise as a novel therapeutic target. The role of ENaC in blood pressure regulation in the kidney has been well studied. Recent human gene sequencing efforts have identified thousands of variants among the genes encoding ENaC, and research efforts to determine if these variants and their expression in extra-renal tissue play a role in hypertension will advance our understanding of the pathogenesis of ENaC-mediated cardiovascular disease and lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Ashley L Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN, 37232, USA
| | - Justin P Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN, 37232, USA
| | - Thomas R Kleyman
- Departments of Medicine, Cell Biology, Pharmacology, and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN, 37232, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
35
|
Albuquerque PLMM, Paiva JHHGL, Martins AMC, Meneses GC, da Silva GB, Buckley N, Daher EDF. Clinical assessment and pathophysiology of Bothrops venom-related acute kidney injury: a scoping review. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190076. [PMID: 32704246 PMCID: PMC7359628 DOI: 10.1590/1678-9199-jvatitd-2019-0076] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Bothrops are one of the most common medically important snakes found in Latin America. Its venom is predominantly hemotoxic and proteolytic, which means that local lesion (edema and redness) and hemorrhagic symptoms are recurrent in envenoming by this snake. Although hemorrhage is usually the major cause of death, snakebite-related acute kidney injury is another potentially fatal clinical complication that may lead to chronic kidney disease. The present review highlights the main studies on Bothrops venom-related acute kidney injury, including observational, cross-sectional, case-control and cohort human studies available up to December 2019. The following descriptors were used according to Medical Subject Headings (MeSH): on Medline/Pubmed and Google Scholar "acute kidney injury" or "kidney disease" and "Bothrops"; on Lilacs and SciELO "kidney disease" or "acute kidney injury" and "Bothrops". Newcastle-Ottawa quality assessment scale was used to appraise the quality of the cross-sectional and cohort studies included. The selection of more severe patients who looked for health care units and tertiary centers is a risk of bias. Due to the methodological heterogeneity of the studies, a critical analysis of the results was performed based on the hypothesis that the design of the included studies influences the incidence of acute kidney injury. Fifteen human studies (total participants 4624) were included according to stablished criteria. The coagulation abnormalities (hemorrhagic symptoms, abnormal fibrinogen and activated partial thromboplastin time) were associated with acute kidney injury in the most recent studies reported. The findings observed in this review provide up-to-date evidence about the acute kidney injury pathogenesis following Bothrops syndrome. Studies pointed out that coagulation abnormalities comprise the major pathway for acute kidney injury development. This review may improve patient management by primary healthcare providers, allowing earlier diagnosis and treatment of Bothrops venom-related acute kidney injury.
Collapse
Affiliation(s)
- Polianna Lemos Moura Moreira Albuquerque
- University of Fortaleza (Unifor), Fortaleza, Ceará, Brazil
- Toxicological Information and Assistance Center, Instituto Doutor Jose Frota Hospital, Fortaleza, Ceará, Brazil
| | | | - Alice Maria Costa Martins
- Graduate Program in Pharmaceutical Sciences, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | | | - Geraldo Bezerra da Silva
- Public Health and Medical Sciences Graduate Programs, School of Medicine, University of Fortaleza, Fortaleza, Ceará, Brazil
| | | | | |
Collapse
|
36
|
Ji HL, Zhao R, Matalon S, Matthay MA. Elevated Plasmin(ogen) as a Common Risk Factor for COVID-19 Susceptibility. Physiol Rev 2020; 100:1065-1075. [PMID: 32216698 PMCID: PMC7191627 DOI: 10.1152/physrev.00013.2020] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
Patients with hypertension, diabetes, coronary heart disease, cerebrovascular illness, chronic obstructive pulmonary disease, and kidney dysfunction have worse clinical outcomes when infected with SARS-CoV-2, for unknown reasons. The purpose of this review is to summarize the evidence for the existence of elevated plasmin(ogen) in COVID-19 patients with these comorbid conditions. Plasmin, and other proteases, may cleave a newly inserted furin site in the S protein of SARS-CoV-2, extracellularly, which increases its infectivity and virulence. Hyperfibrinolysis associated with plasmin leads to elevated D-dimer in severe patients. The plasmin(ogen) system may prove a promising therapeutic target for combating COVID-19.
Collapse
Affiliation(s)
- Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas; Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas; Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas; Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas; Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| | - Sadis Matalon
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas; Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas; Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| | - Michael A Matthay
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas; Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas; Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| |
Collapse
|
37
|
Chaiyabutr N, Chanhome L, Vasaruchapong T, Laoungbua P, Khow O, Rungsipipat A, Sitprija V. The pathophysiological effects of Russell's viper ( Daboia siamensis) venom and its fractions in the isolated perfused rabbit kidney model: A potential role for platelet activating factor. Toxicon X 2020; 7:100046. [PMID: 32875291 PMCID: PMC7452022 DOI: 10.1016/j.toxcx.2020.100046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
The pathophysiological effects of Russell's viper venom (RVV) and its fractions, including phospholipase A2 (RvPLA2), metalloprotease (RvMP), L-amino acid oxidase (RvLAAO), and phosphodiesterase (RvPDE) on renal functions were investigated using the isolated perfused rabbit kidney (IPK) model. Moreover, whether their effects on renal alterations were promoted by platelet activating factor (PAF) was tested using the PAF receptor antagonist, WEB 2086. There was a marked reduction in the perfusion pressure (PP) and renal vascular resistance (RVR) 10 min after RVV administration (1.0 mg/100 ml of perfusate), thereafter both PP and RVR gradually increased and approached the control level within 90 min. These effects were abolished by pretreatment with WEB2086 (2 μg/μl). Administration with RvPLA2 (280 μg/ml), RvMP (280 μg/ml), or RvLAAO (135 μg/ml) alone increased both the PP and RVR, whereas RvPDE (100 μg/ml) reduced both the PP and RVR. Pretreatment with WEB 2086 completely abolished the effects induced by RvMP, but not the other fractions. The RVV also caused a marked decrease in the glomerular filtration rate (GFR), urinary flow rate (UF), and osmolar clearance (Cosm), and these effects were not inhibited by pretreatment with WEB2086. Each RVV fraction also increased, to varying extents, the GFR, UF, and Cosm, and these effects induced by RvPLA2 or RvMP, but not the other fractions, were completely blocked by WEB 2086. Changes in percent filtered Na+ and K+ excreted in the IPK by RVV, RvPDE, and RvMP were abolished by pretreatment with WEB 2086. Histological evaluation profiled mainly tubulonephrosis in the treated kidney. These results reveal that the alterations in renal functions induced by RVV and its fractions are due to the synergistic action of the different components of snake venom, instead of the action of a single component. The effects of RVV and its fractions in rabbit IPK are mediated at least in part by PAF.
Collapse
Affiliation(s)
- Narongsak Chaiyabutr
- Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Lawan Chanhome
- Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Taksa Vasaruchapong
- Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Panithi Laoungbua
- Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Orawan Khow
- Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Anudep Rungsipipat
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Visith Sitprija
- Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
38
|
Anand P, Puranik A, Aravamudan M, Venkatakrishnan AJ, Soundararajan V. SARS-CoV-2 strategically mimics proteolytic activation of human ENaC. eLife 2020; 9:58603. [PMID: 32452762 PMCID: PMC7343387 DOI: 10.7554/elife.58603] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Molecular mimicry is an evolutionary strategy adopted by viruses to exploit the host cellular machinery. We report that SARS-CoV-2 has evolved a unique S1/S2 cleavage site, absent in any previous coronavirus sequenced, resulting in the striking mimicry of an identical FURIN-cleavable peptide on the human epithelial sodium channel α-subunit (ENaC-α). Genetic alteration of ENaC-α causes aldosterone dysregulation in patients, highlighting that the FURIN site is critical for activation of ENaC. Single cell RNA-seq from 66 studies shows significant overlap between expression of ENaC-α and the viral receptor ACE2 in cell types linked to the cardiovascular-renal-pulmonary pathophysiology of COVID-19. Triangulating this cellular characterization with cleavage signatures of 178 proteases highlights proteolytic degeneracy wired into the SARS-CoV-2 lifecycle. Evolution of SARS-CoV-2 into a global pandemic may be driven in part by its targeted mimicry of ENaC-α, a protein critical for the homeostasis of airway surface liquid, whose misregulation is associated with respiratory conditions. Viruses hijack the cellular machinery of humans to infect their cells and multiply. The virus causing the global COVID-19 pandemic, SARS-CoV-2, is no exception. Identifying which proteins in human cells the virus co-opts is crucial for developing new ways to diagnose, prevent and treat COVID-19 infections. SARS-CoV-2 is covered in spike-shaped proteins, which the virus uses to gain entry into cells. First, the spikes bind to a protein called ACE2, which is found on the cells that line the respiratory tract and lungs. SARS-CoV-2 then exploits enzymes called proteases to cut, or cleave, its spikes at a specific site which allows the virus to infiltrate the host cell. Proteases identify which proteins to target based on the sequence of amino acids – the building blocks of proteins – at the cleavage site. However, it remained unclear which human proteases SARS-CoV-2 co-opts and whether its cut site is similar to human proteins. Now, Anand et al. show that the spike proteins on SARS-CoV-2 may have the same sequence of amino acids at its cut site as a human epithelial channel protein called ENaC-α. This channel is important for maintaining the balance of salt and water in many organs including the lungs. Further analyses showed that ENaC-α is often found in the same types of human lung and respiratory tract cells as ACE2. This suggests that SARS-CoV-2 may use the same proteases that cut ENaC-α to get inside human respiratory cells. It is possible that by hijacking the cutting mechanism for ENaC-α, SARS-CoV-2 interferes with the balance of salt and water in the lungs of COVID-19 patients. This may help explain why the virus causes severe respiratory symptoms. However, more studies are needed to confirm that the proteases that cut ENaC-α also cut the spike proteins on SARS-CoV-2, and how this affects the respiratory health of COVID-19 patients.
Collapse
|
39
|
Zhao R, Ali G, Nie HG, Chang Y, Bhattarai D, Su X, Zhao X, Matthay MA, Ji HL. Plasmin improves blood-gas barrier function in oedematous lungs by cleaving epithelial sodium channels. Br J Pharmacol 2020; 177:3091-3106. [PMID: 32133621 DOI: 10.1111/bph.15038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Lung oedema in association with suppressed fibrinolysis is a hallmark of lung injury. Here, we have tested whether plasmin cleaves epithelial sodium channels (ENaC) to resolve lung oedema fluid. EXPERIMENTAL APPROACH Human lungs and airway acid-instilled mice were used for analysing fluid resolution. In silico prediction, mutagenesis, Xenopus oocytes, immunoblotting, voltage clamp, mass spectrometry, and protein docking were combined for identifying plasmin cleavage sites. KEY RESULTS Plasmin improved lung fluid resolution in both human lungs ex vivo and injured mice. Plasmin activated αβγENaC channels in oocytes in a time-dependent manner. Deletion of four consensus proteolysis tracts (αΔ432-444, γΔ131-138, γΔ178-193, and γΔ410-422) eliminated plasmin-induced activation significantly. Further, immunoblotting assays identified 7 cleavage sites (K126, R135, K136, R153, K168, R178, K179) for plasmin to trim both furin-cleaved C-terminal fragments and full-length human γENaC proteins. In addition, 9 new sites (R122, R137, R138, K150, K170, R172, R180, K181, K189) in synthesized peptides were found to be cleaved by plasmin. These cleavage sites were located in the finger and the thumb, particularly the GRIP domain of human ENaC 3D model composed of two proteolytic centres for plasmin. Novel uncleaved sites beyond the GRIP domain in both α and γ subunits were identified to interrupt the plasmin cleavage-induced conformational change in ENaC channel complexes. Additionally, plasmin could regulate ENaC activity via the G protein signal. CONCLUSION AND IMPLICATIONS Plasmin can cleave ENaC to improve blood-gas exchange by resolving oedema fluid and could be a potent therapy for oedematous lungs.
Collapse
Affiliation(s)
- Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas
| | - Gibran Ali
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas
| | - Hong-Guang Nie
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas.,College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Yongchang Chang
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | - Deepa Bhattarai
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas
| | - Xuefeng Su
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Michael A Matthay
- Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas.,Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas
| |
Collapse
|
40
|
Effects of syntaxins 2, 3, and 4 on rat and human epithelial sodium channel (ENaC) in Xenopus laevis oocytes. Pflugers Arch 2020; 472:461-471. [PMID: 32221667 PMCID: PMC7165155 DOI: 10.1007/s00424-020-02365-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 01/20/2023]
Abstract
Syntaxins are SNARE proteins and may play a role in epithelial sodium channel (ENaC) trafficking. The aim of the present study was to investigate the effects of syntaxin 2 (STX2), syntaxin 3 (STX3), and syntaxin 4 (STX4) on rat (rENaC) and human ENaC (hENaC). Co-expression of rENaC and STX3 or STX4 in Xenopus laevis oocytes increased amiloride-sensitive whole-cell currents (ΔIami) on average by 50% and 135%, respectively, compared to oocytes expressing rENaC alone. In contrast, STX2 had no significant effect on rENaC. Similar to its effect on rENaC, STX3 stimulated hENaC by 48%. In contrast, STX2 and STX4 inhibited hENaC by 51% and 44%, respectively. Using rENaC carrying a FLAG tag in the extracellular loop of the β-subunit, we demonstrated that the stimulatory effects of STX3 and STX4 on ΔIami were associated with an increased expression of the channel at the cell surface. Co-expression of STX3 or STX4 did not significantly alter the degree of proteolytic channel activation by chymotrypsin. STX3 had no effect on the inhibition of rENaC by brefeldin A, and the stimulatory effect of STX3 was preserved in the presence of dominant negative Rab11. This indicates that the stimulatory effect of STX3 is not mediated by inhibiting channel retrieval or by stimulating fusion of recycling endosomes. Our results suggest that the effects of syntaxins on ENaC are isoform and species dependent. Furthermore, our results demonstrate that STX3 increases ENaC expression at the cell surface, probably by enhancing insertion of vesicles carrying newly synthesized channels.
Collapse
|
41
|
Frindt G, Bertog M, Korbmacher C, Palmer LG. Ubiquitination of renal ENaC subunits in vivo. Am J Physiol Renal Physiol 2020; 318:F1113-F1121. [PMID: 32174140 DOI: 10.1152/ajprenal.00609.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ubiquitination of the epithelial Na+ channel (ENaC) in epithelial cells may influence trafficking and hormonal regulation of the channels. We assessed ENaC ubiquitination (ub-ENaC) in mouse and rat kidneys using affinity beads to capture ubiquitinated proteins from tissue homogenates and Western blot analysis with anti-ENaC antibodies. Ub-αENaC was observed primarily as a series of proteins of apparent molecular mass of 40-70 kDa, consistent with the addition of variable numbers of ubiquitin molecules primarily to the NH2-terminal cleaved fragment (~30 kDa) of the subunit. No significant Ub-βENaC was detected, indicating that ubiquitination of this subunit is minimal. For γENaC, the protein eluted from the affinity beads had the same apparent molecular mass as the cleaved COOH-terminal fragment of the subunit (~65 kDa). This suggests that the ubiquitinated NH2 terminus remains attached to the COOH-terminal moiety during isolation through disulfide bonds. Consistent with this, under nonreducing conditions, eluates contained material with increased molecular mass (90-150 kDa). In mice with a Liddle syndrome mutation (β566X) deleting a putative binding site for the ubiquitin ligase neural precursor cell expressed developmentally downregulated 4-2, the amount of ub-γENaC was reduced as expected. To assess aldosterone dependence of ubiquitination, we fed rats either control or low-Na+ diets for 7 days before kidney harvest. Na+ depletion increased the amounts of ub-αENaC and ub-γENaC by three- to fivefold, probably reflecting increased amounts of fully cleaved ENaC. We conclude that ubiquitination occurs after complete proteolytic processing of the subunits, contributing to retrieval and/or disposal of channels expressed at the cell surface. Diminished ubiquitination does not appear to be a major factor in aldosterone-dependent ENaC upregulation.
Collapse
Affiliation(s)
- Gustavo Frindt
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York
| | - Marko Bertog
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lawrence G Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York
| |
Collapse
|
42
|
Kleyman TR, Eaton DC. Regulating ENaC's gate. Am J Physiol Cell Physiol 2020; 318:C150-C162. [PMID: 31721612 PMCID: PMC6985836 DOI: 10.1152/ajpcell.00418.2019] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Epithelial Na+ channels (ENaCs) are members of a family of cation channels that function as sensors of the extracellular environment. ENaCs are activated by specific proteases in the biosynthetic pathway and at the cell surface and remove embedded inhibitory tracts, which allows channels to transition to higher open-probability states. Resolved structures of ENaC and an acid-sensing ion channel revealed highly organized extracellular regions. Within the periphery of ENaC subunits are unique domains formed by antiparallel β-strands containing the inhibitory tracts and protease cleavage sites. ENaCs are inhibited by Na+ binding to specific extracellular site(s), which promotes channel transition to a lower open-probability state. Specific inositol phospholipids and channel modification by Cys-palmitoylation enhance channel open probability. How these regulatory factors interact in a concerted manner to influence channel open probability is an important question that has not been resolved. These various factors are reviewed, and the impact of specific factors on human disorders is discussed.
Collapse
Affiliation(s)
- Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, and Departments of Cell Biology and of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Douglas C Eaton
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
43
|
Zachar R, Mikkelsen MK, Skjødt K, Marcussen N, Zamani R, Jensen BL, Svenningsen P. The epithelial Na+ channel α- and γ-subunits are cleaved at predicted furin-cleavage sites, glycosylated and membrane associated in human kidney. Pflugers Arch 2019; 471:1383-1396. [DOI: 10.1007/s00424-019-02321-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 01/28/2023]
|
44
|
Li Q, Fung E. Multifaceted Functions of Epithelial Na + Channel in Modulating Blood Pressure. Hypertension 2019; 73:273-281. [PMID: 30580685 DOI: 10.1161/hypertensionaha.118.12330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qi Li
- From the Division of Cardiology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (Q.L., E.F.).,Laboratory for Heart Failure and Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Hong Kong SAR (Q.L., E.F.)
| | - Erik Fung
- From the Division of Cardiology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (Q.L., E.F.).,Gerald Choa Cardiac Research Centre, Faculty of Medicine, The Chinese University of Hong Kong (E.F.).,Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong (E.F.).,Laboratory for Heart Failure and Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Hong Kong SAR (Q.L., E.F.)
| |
Collapse
|
45
|
Wu M, Liang C, Yu X, Song B, Yue Q, Zhai Y, Linck V, Cai Y, Niu N, Yang X, Zhang B, Wang Q, Zou L, Zhang S, Thai TL, Ma J, Sutliff RL, Zhang Z, Ma H. Lovastatin attenuates hypertension induced by renal tubule-specific knockout of ATP-binding cassette transporter A1, by inhibiting epithelial sodium channels. Br J Pharmacol 2019; 176:3695-3711. [PMID: 31222723 PMCID: PMC6715779 DOI: 10.1111/bph.14775] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 05/12/2019] [Accepted: 06/08/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE We have shown that cholesterol is synthesized in the principal cells of renal cortical collecting ducts (CCD) and stimulates the epithelial sodium channels (ENaC). Here we have determined whether lovastatin, a cholesterol synthesis inhibitor, can antagonize the hypertension induced by activated ENaC, following deletion of the cholesterol transporter (ATP-binding cassette transporter A1; ABCA1). EXPERIMENTAL APPROACH We selectively deleted ABCA1 in the principal cells of mouse CCD and used the cell-attached patch-clamp technique to record ENaC activity. Western blot and immunofluorescence staining were used to evaluate protein expression levels. Systolic BP was measured with the tail-cuff method. KEY RESULTS Specific deletion of ABCA1 elevated BP and ENaC single-channel activity in the principal cells of CCD in mice. These effects were antagonized by lovastatin. ABCA1 deletion elevated intracellular cholesterol levels, which was accompanied by elevated ROS, increased expression of serum/glucocorticoid regulated kinase 1 (Sgk1), phosphorylated neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) and furin, along with shorten the primary cilium, and reduced ATP levels in urine. CONCLUSIONS AND IMPLICATIONS These data suggest that specific deletion of ABCA1 in principal cells increases BP by stimulating ENaC channels via a cholesterol-dependent pathway which induces several secondary responses associated with oxidative stress, activated Sgk1/Nedd4-2, increased furin expression, and reduced cilium-mediated release of ATP. As ABCA1 can be blocked by cyclosporine A, these results suggest further investigation of the possible use of statins to treat CsA-induced hypertension.
Collapse
Affiliation(s)
- Ming‐Ming Wu
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| | - Chen Liang
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
| | - Xiao‐Di Yu
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
| | - Bin‐Lin Song
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| | - Qiang Yue
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| | - Yu‐Jia Zhai
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| | - Valerie Linck
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| | - Yong‐Xu Cai
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
| | - Na Niu
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
| | - Xu Yang
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
| | - Bao‐Long Zhang
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
| | - Qiu‐Shi Wang
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
| | - Li Zou
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| | - Shuai Zhang
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| | - Tiffany L. Thai
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| | - Jing Ma
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineAtlanta Veterans Affairs Medical CenterDecaturGeorgia
| | - Roy L. Sutliff
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineAtlanta Veterans Affairs Medical CenterDecaturGeorgia
| | - Zhi‐Ren Zhang
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
| | - He‐Ping Ma
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| |
Collapse
|
46
|
Olivença DV, Fonseca LL, Voit EO, Pinto FR. Thickness of the airway surface liquid layer in the lung is affected in cystic fibrosis by compromised synergistic regulation of the ENaC ion channel. J R Soc Interface 2019; 16:20190187. [PMID: 31455163 DOI: 10.1098/rsif.2019.0187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The lung epithelium is lined with a layer of airway surface liquid (ASL) that is crucial for healthy lung function. ASL thickness is controlled by two ion channels: epithelium sodium channel (ENaC) and cystic fibrosis (CF) transmembrane conductance regulator (CFTR). Here, we present a minimal mathematical model of ENaC, CFTR and ASL regulation that sheds light on the control of ENaC by the short palate lung and nasal epithelial clone 1 (SPLUNC1) protein and by phosphatidylinositol 4,5-biphosphate (PI(4,5)P2). The model, despite its simplicity, yields a good fit to experimental observations and is an effective tool for exploring the interplay between ENaC, CFTR and ASL. Steady-state data and dynamic information constrain the model's parameters without ambiguities. Testing the hypothesis that PI(4,5)P2 protects ENaC from ubiquitination suggests that this protection does not improve the model results and that the control of the ENaC opening probability by PI(4,5)P2 is sufficient to explain all available data. The model analysis further demonstrates that ASL at the steady state is sensitive to small changes in PI(4,5)P2 abundance, particularly in CF conditions, which suggests that manipulation of phosphoinositide metabolism may promote therapeutic benefits for CF patients.
Collapse
Affiliation(s)
- Daniel V Olivença
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Francisco R Pinto
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
47
|
Artunc F, Wörn M, Schork A, Bohnert BN. Proteasuria-The impact of active urinary proteases on sodium retention in nephrotic syndrome. Acta Physiol (Oxf) 2019; 225:e13249. [PMID: 30597733 DOI: 10.1111/apha.13249] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
Abstract
Sodium retention and extracellular volume expansion are typical features of patients with nephrotic syndrome. In recent years, from in vitro data, endoluminal activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases has been proposed as an underlying mechanism. Recently, this concept was supported in vivo in nephrotic mice that were protected from proteolytic ENaC activation and sodium retention by the use of aprotinin for the pharmacological inhibition of urinary serine protease activity. These and other findings from studies in both rodents and humans highlight the impact of active proteases in the urine, or proteasuria, on ENaC-mediated sodium retention and edema formation in nephrotic syndrome. Targeting proteasuria could become a therapeutic approach to treat patients with nephrotic syndrome. However, pathophysiologically relevant proteases remain to be identified. In this review, we introduce the concept of proteasuria to explain tubular sodium avidity and conclude that proteasuria can be considered as a key mechanism of sodium retention in patients with nephrotic syndrome.
Collapse
Affiliation(s)
- Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| | - Matthias Wörn
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
| | - Anja Schork
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| | - Bernhard N. Bohnert
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| |
Collapse
|
48
|
Abstract
With-no-lysine (WNK) kinases regulate renal sodium-chloride cotransporter (NCC) to maintain body sodium and potassium homeostasis. Gain-of-function mutations of WNK1 and WNK4 in humans lead to a Mendelian hypertensive and hyperkalemic disease pseudohypoaldosteronism type II (PHAII). X-ray crystal structure and in vitro studies reveal chloride ion (Cl-) binds to a hydrophobic pocket within the kinase domain of WNKs to inhibit its activity. The mechanism is thought to be important for physiological regulation of NCC by extracellular potassium. To test the hypothesis that WNK4 senses the intracellular concentration of Cl- physiologically, we generated knockin mice carrying Cl--insensitive mutant WNK4. These mice displayed hypertension, hyperkalemia, hyperactive NCC, and other features fully recapitulating human and mouse models of PHAII caused by gain-of-function WNK4. Lowering plasma potassium levels by dietary potassium restriction increased NCC activity in wild-type, but not in knockin, mice. NCC activity in knockin mice can be further enhanced by the administration of norepinephrine, a known activator of NCC. Raising plasma potassium by oral gavage of potassium inactivated NCC within 1 hour in wild-type mice, but had no effect in knockin mice. The results provide compelling support for the notion that WNK4 is a bona fide physiological intracellular Cl- sensor and that Cl- regulation of WNK4 underlies the mechanism of regulation of NCC by extracellular potassium.
Collapse
|
49
|
Sharma S, Hanukoglu I. Mapping the sites of localization of epithelial sodium channel (ENaC) and CFTR in segments of the mammalian epididymis. J Mol Histol 2019; 50:141-154. [PMID: 30659401 DOI: 10.1007/s10735-019-09813-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023]
Abstract
The sperm produced in the seminiferous tubules pass through the rete testis, efferent ducts, and epididymis. The epididymis has three distinct regions known as caput, corpus, and cauda. The transit through the epididymis is an essential process in sperm maturation. The lumen of each epididymal region has a unique fluid composition regulated by many ion channels and transporters in the epithelial cells. The objective of this study was to map the sites of localization of ion channels ENaC and CFTR along the length of the mouse and rat epididymis using confocal microscopic imaging. The integrity of the fine structure of the tissues was verified by fluorescent phalloidin staining of actin filaments visualized by high-resolution confocal microscopy. The 2D and 3D images showed preservation of the stereocilia. Based on these images we determined morphometric parameters of the epithelial cells and ducts. ENaC and CFTR immunofluorescence appeared almost continuously on the apical membrane of caput and in smooth muscle myoid cells. In cauda, CFTR expression was observed continuously in long stretches of epithelium interrupted by clusters of cells that showed no CFTR expression. Similar patterns of localization were observed in both mouse and rat samples. Mutations in the CFTR gene are known to result in male infertility. Based on the widespread presence of ENaC along the epididymis we suggest that mutations in ENaC subunits may also be associated with male infertility. The diverse phenotypes associated with CFTR mutations may be due to malfunction of CFTR at specific subcellular locations in the male reproductive system.
Collapse
Affiliation(s)
- Sachin Sharma
- Laboratory of Cell Biology, Ariel University, 40700, Ariel, Israel
| | - Israel Hanukoglu
- Laboratory of Cell Biology, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
50
|
Gupta S, Pepper RJ, Ashman N, Walsh SB. Nephrotic Syndrome: Oedema Formation and Its Treatment With Diuretics. Front Physiol 2019; 9:1868. [PMID: 30697163 PMCID: PMC6341062 DOI: 10.3389/fphys.2018.01868] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023] Open
Abstract
Oedema is a defining element of the nephrotic syndrome. Its' management varies considerably between clinicians, with no national or international clinical guidelines, and hence variable outcomes. Oedema may have serious sequelae such as immobility, skin breakdown and local or systemic infection. Treatment of nephrotic oedema is often of limited efficacy, with frequent side-effects and interactions with other pharmacotherapy. Here, we describe the current paradigms of oedema in nephrosis, including insights into emerging mechanisms such as the role of the abnormal activation of the epithelial sodium channel in the collecting duct. We then discuss the physiological basis for traditional and novel therapies for the treatment of nephrotic oedema. Despite being the cardinal symptom of nephrosis, few clinical studies guide clinicians to the rational use of therapy. This is reflected in the scarcity of publications in this field; it is time to undertake new clinical trials to direct clinical practice.
Collapse
Affiliation(s)
- Sanjana Gupta
- UCL Centre for Nephrology, University College London, London, United Kingdom.,Renal Unit, The Royal London Hospital, Bart's Health NHS Trust, London, United Kingdom
| | - Ruth J Pepper
- UCL Centre for Nephrology, University College London, London, United Kingdom
| | - Neil Ashman
- Renal Unit, The Royal London Hospital, Bart's Health NHS Trust, London, United Kingdom
| | - Stephen B Walsh
- UCL Centre for Nephrology, University College London, London, United Kingdom
| |
Collapse
|