1
|
Franco R, Garrigós C, Capó T, Serrano-Marín J, Rivas-Santisteban R, Lillo J. Olfactory receptors in neural regeneration in the central nervous system. Neural Regen Res 2025; 20:2480-2494. [PMID: 39503417 PMCID: PMC11801295 DOI: 10.4103/nrr.nrr-d-24-00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 02/08/2025] Open
Abstract
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell, influencing behaviors from food choices to emotional memories. These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring. The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration, a phenomenon largely absent in the central nervous system. Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system, where damage often results in permanent deficits. Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal cord injuries and neurodegenerative diseases like Alzheimer's disease. Olfactory receptors are found in almost any cell of every organ/tissue of the mammalian body. This ectopic expression provides insights into the chemical structures that can activate olfactory receptors. In addition to odors, olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota. The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms. This review explores the ectopic expression of olfactory receptors and the role they may play in neural regeneration within the central nervous system, with particular attention to compounds that can activate these receptors to initiate regenerative processes. Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CiberNed Network Center for Biomedical Research in Neurodegenerative Diseases, Spanish National Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Claudia Garrigós
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Toni Capó
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Rivas-Santisteban
- CiberNed Network Center for Biomedical Research in Neurodegenerative Diseases, Spanish National Health Institute Carlos III, Madrid, Spain
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, Barcelona, Spain
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CiberNed Network Center for Biomedical Research in Neurodegenerative Diseases, Spanish National Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Glasbauer ND, Sookoian S, Pirola CJ. Identifying molecular pathways of olfactory dysfunction in Parkinson's disease through a systems biology framework. Neuroscience 2025; 577:264-271. [PMID: 40398724 DOI: 10.1016/j.neuroscience.2025.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/23/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
The sense of smell is essential for human perception. Olfactory function declines with increasing age, affecting a substantial portion of the elderly population, and this decline is more pronounced in men. This reduction can be attributed to anatomical and degenerative changes in the brain and olfactory receptors. There is robust clinical evidence indicating an association between olfactory perception decline/deficit (OPD) and major neurodegenerative diseases, with severe deficits observed in Alzheimer's and Parkinson's disease and milder effects noted in other conditions. However, its molecular bases have not yet been identified. Here, we explored the molecular connection between OPD and Parkinson's disease by conducting data-mining, gene enrichment analysis, and examining protein-interaction networks using systems biology approaches. We found pathways associated with both OPD and Parkinson's disease, identifying over 300 relevant genes. These genes belong to biologically relevant gene families, including transporters, kinases, nuclear receptors, transcription factors, and olfactory and other G protein-coupled receptors. Functional enrichment analysis revealed shared biological processes between OPD and Parkinson's disease, such as synaptic signalling and neuroinflammation. Mitochondrial gene enrichment was unique to Parkinson's. Both conditions exhibited a scarcity of associated genes on the Y chromosome but an even distribution on the non-pseudoautosomal region of the X chromosome, potentially explaining sex prevalence differences. In conclusion, our study suggests olfactory testing may help diagnose cognitive decline in neurodegenerative diseases. Further research is needed to understand the connection between OPD, aging, and other diseases and to examine olfactory performance in screening individuals at risk of Parkinson's disease and similar conditions.
Collapse
Affiliation(s)
- Nicolas Daniel Glasbauer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autonoma de Buenos Aires-C1425FQB, Argentina; Systems Biology of Complex Diseases, Centro de Investigacion Translacional en Salud (CENITRES), Universidad Maimónides, Ciudad Autonoma de Buenos Aires-C1405BCK, Argentina; Clinical and Molecular Hepatology, Centro de Investigacion Translacional en Salud (CENITRES), Universidad Maimónides, Ciudad Autonoma de Buenos Aires-C1405BCK, Argentina
| | - Silvia Sookoian
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autonoma de Buenos Aires-C1425FQB, Argentina; Clinical and Molecular Hepatology, Centro de Investigacion Translacional en Salud (CENITRES), Universidad Maimónides, Ciudad Autonoma de Buenos Aires-C1405BCK, Argentina.
| | - Carlos José Pirola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autonoma de Buenos Aires-C1425FQB, Argentina; Systems Biology of Complex Diseases, Centro de Investigacion Translacional en Salud (CENITRES), Universidad Maimónides, Ciudad Autonoma de Buenos Aires-C1405BCK, Argentina.
| |
Collapse
|
3
|
ZHANG W, STELINSKI LL, MOHAMED A, WANG G, TETTAMANTI G, CHEN M, HONG M, DALY EZ, BRUIN J, RENAULT D, KEYHANI NO, ZHAO Q. Unlocking agro-ecosystem sustainability: exploring the bottom-up effects of microbes, plants, and insect herbivores. Integr Zool 2025; 20:465-484. [PMID: 39460505 PMCID: PMC12046491 DOI: 10.1111/1749-4877.12911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Agricultural ecosystem formation and evolution depend on interactions and communication between multiple organisms. Within this context, communication occurs between microbes, plants, and insects, often involving the release and perception of a wide range of chemical cues. Unraveling how this information is coded and interpreted is critical to expanding our understanding of how agricultural ecosystems function in terms of competition and cooperation. Investigations examining dual interactions (e.g. plant-microbe, insect-microbe, and insect-plant) have resolved some basic components of this communication. However, there is a need for systematically examining multitrophic interactions that occur simultaneously between microorganisms, insects, and plants. A more thorough understanding of these multitrophic interactions has been made possible by recent advancements in the study of such ecological interactions, which are based on a variety of contemporary technologies such as artificial intelligence sensors, multi-omics, metabarcoding, and others. Frequently, these developments have led to the discovery of startling examples of each member manipulating the other. Here, we review recent advances in the understanding of bottom-up chemical communication between microorganisms, plants, and insects, and their consequences. We discuss the components of these "chemo-languages" and how they modify outcomes of multi-species interactions across trophic levels. Further, we suggest prospects for translating the current basic understanding of multitrophic interactions into strategies that could be applied in agricultural ecosystems to increase food safety and security.
Collapse
Affiliation(s)
- Wei ZHANG
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyangChina
| | - Lukasz L. STELINSKI
- Entomology and Nematology Department, Citrus Research and Education CenterUniversity of FloridaLake AlfredFloridaUSA
| | - Amr MOHAMED
- Department of Entomology, Faculty of ScienceCairo UniversityGizaEgypt
| | - Guangmin WANG
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyangChina
| | - Gianluca TETTAMANTI
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
- BAT Center‐Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Napoli Federico IINapoliItaly
| | - Moxian CHEN
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyangChina
| | - Mingsheng HONG
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
| | - Ella Z. DALY
- CNRS, ECOBIO (Ecosystems, biodiversity, evolution), UMR 6553University of RennesRennesFrance
| | - Jan BRUIN
- Institute for Biodiversity and Ecosystem Dynamics (IBED), Evolutionary Biology and Population BiologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - David RENAULT
- CNRS, ECOBIO (Ecosystems, biodiversity, evolution), UMR 6553University of RennesRennesFrance
| | - Nemat O. KEYHANI
- Department of Biological SciencesUniversity of IllinoisChicagoIllinoisUSA
| | - Qi ZHAO
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyangChina
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro‐bioengineeringGuizhou UniversityGuiyangChina
| |
Collapse
|
4
|
Aier I, Dubey N, Varadwaj PK. Structural dynamics of olfactory receptors: implications for odorant binding and activation mechanisms. J Biomol Struct Dyn 2025:1-12. [PMID: 40244808 DOI: 10.1080/07391102.2025.2492235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/05/2025] [Indexed: 04/19/2025]
Abstract
Olfaction, an ancient and intricate process, profoundly shapes human innate responses yet remains relatively understudied compared to other sensory modalities. Olfactory receptors (ORs), members of the G protein-coupled receptor (GPCR) family, play a pivotal role in detecting and discriminating a vast array of odorants. This comprehensive study explores the functional roles of five diverse ORs: OR1A1, OR2W1, OR11A1, OR51E1 and OR51E2, through detailed investigations into the differences between their apo and odorant-bound forms. By examining key residues and mutations, the possible molecular mechanisms that underlie the modulation of binding landscapes and the consequent alterations in OR stability were elucidated. The findings revealed dynamic conformational changes in ORs upon odorant binding, characterized by hinging motions and tilting of transmembrane helices. Using residue interaction network analyses, critical residues involved in mediating interactions between ORs and odorants were uncovered, shedding light on the molecular determinants of olfactory perception. By examining changes in binding pocket volume and per-residue energy decomposition, the dynamic nature of OR activation and the influence of mutations on receptor stability and functionality was observed.
Collapse
Affiliation(s)
- Imlimaong Aier
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Nidhi Dubey
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
5
|
Snead AA, Meng F, Largotta N, Winchell KM, Levine BA. Diploid chromosome-level genome assembly and annotation for Lycorma delicatula. Sci Data 2025; 12:579. [PMID: 40188159 PMCID: PMC11972293 DOI: 10.1038/s41597-025-04854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
The spotted lanternfly (Lycorma delicatula) is a planthopper species (Hemiptera: Fulgoridae) native to China but invasive in South Korea, Japan, and the United States where it is a significant threat to agriculture. Genomic resources are critical to both management of this species and understanding the genomic characteristics of successful invaders. We report an annotated, haplotype-phased, chromosome-level genome assembly for the spotted lanternfly using PacBio long-read sequencing, Hi-C technology, and RNA-seq. The 2.2 Gbp genome comprises 13 chromosomes, and whole genome resequencing of eighty-two adults indicated chromosome four as the sex chromosome and a corresponding XO sex-determination system. We identified over 12,000 protein-coding genes and performed functional annotation, facilitating the identification of candidate genes that may hold importance for spotted lanternfly control. The assemblies and annotations were highly complete with over 96% of BUSCO genes complete regardless of the database (i.e., Eukaryota, Arthropoda, Insecta). This reference-quality genome will serve as an important resource for development and optimization of management practices for the spotted lanternfly and invasive species genomics as a whole.
Collapse
Affiliation(s)
- Anthony A Snead
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics & Systems Biology, New York University, New York, NY, USA
| | - Fang Meng
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics & Systems Biology, New York University, New York, NY, USA
| | | | - Kristin M Winchell
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics & Systems Biology, New York University, New York, NY, USA
| | - Brenna A Levine
- Department of Biology, Kean University, Union, New Jersey, USA.
- Chiricahua Desert Museum, Rodeo, New Mexico, USA.
| |
Collapse
|
6
|
Martini X, Stelinski LL. Investigating the role of chemical ecology in plant-pathogen, vector, and secondary consumer interactions and their consequences for integrated pest management. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101307. [PMID: 39615878 DOI: 10.1016/j.cois.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Phytopathogens modify chemical communication between host plants and herbivorous vectors of those pathogens. These chemical cues often attract vectors to sources of inoculum and facilitate the further spread of the pathogens. Recent investigations have demonstrated that secondary consumers also respond to the same pathogen-induced cues that affect the behavior of vectors. Therefore, efforts to manipulate the behavior of natural enemies to improve biological control may yield unpredictable outcomes since coincident volatiles are induced by herbivory and pathogen attacks. We suggest that case-specific analyses of the costs and benefits of these multitrophic interactions are required to translate biological findings into integrated pest management practices.
Collapse
Affiliation(s)
- Xavier Martini
- University of Florida, Entomology and Nematology Department, North Florida Research and Education Center, Quincy, FL, USA.
| | - Lukasz L Stelinski
- University of Florida, Entomology and Nematology Department, Citrus Research and Education Center, Lake Alfred, FL, USA
| |
Collapse
|
7
|
Yang WQ, Ding G, Wang LL, Yin CJ, Wu HY, Zhang HB, Liu QN, Jiang SH, Tang BP, Wang G, Zhang DZ. Genome-Wide Identification and Evolutionary Analysis of Ionotropic Receptors Gene Family: Insights into Olfaction Ability Evolution and Antennal Expression Patterns in Oratosquilla oratoria. Animals (Basel) 2025; 15:852. [PMID: 40150381 PMCID: PMC11939437 DOI: 10.3390/ani15060852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Olfaction plays a crucial role in crustaceans for essential activities such as foraging and predator evasion. Among the components involved in olfactory perception, Ionotropic Receptors (IRs) are particularly important. Oratosquilla oratoria, a perennial crustacean of substantial economic and ecological value, serves as an ideal model for studying olfactory mechanisms. Identifying the IR chemosensory genes in O. oratoria enhances our understanding of its olfactory recognition system. Based on the whole-genome data of O. oratoria, we identified and analyzed 50 members of the IR gene family (OratIRs) through bioinformatics approaches. These genes were classified into subfamilies of co-receptor IRs and tuning IRs. The physicochemical properties of the encoded proteins exhibit marked variability, indicating distinct roles. The motif types and conserved domains among these subfamilies display certain similarities, but their gene structures differ markedly. Furthermore, we found that OratIR25a, OratIR07629, and OratIR14286 are key nodes in protein-protein interaction networks, coordinating organisms' responses to signals like temperature and acids. We utilized fluorescence in situ hybridization (FISH) to find that OratIR75-1 and OratIR8a demonstrated robust expression signals in the antennae of the O. oratoria. These findings lay a foundation for further investigations and elucidate the functional roles of olfactory receptor genes in crustaceans.
Collapse
Affiliation(s)
- Wen-Qi Yang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng 224051, China; (W.-Q.Y.); (L.-L.W.); (C.-J.Y.); (H.-Y.W.); (H.-B.Z.); (Q.-N.L.); (S.-H.J.); (B.-P.T.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Ge Ding
- Chemical and Biological Engineering College, Yancheng Institute of Technology, Yancheng 224003, China;
| | - Lin-Lin Wang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng 224051, China; (W.-Q.Y.); (L.-L.W.); (C.-J.Y.); (H.-Y.W.); (H.-B.Z.); (Q.-N.L.); (S.-H.J.); (B.-P.T.)
| | - Chi-Jie Yin
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng 224051, China; (W.-Q.Y.); (L.-L.W.); (C.-J.Y.); (H.-Y.W.); (H.-B.Z.); (Q.-N.L.); (S.-H.J.); (B.-P.T.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hai-Yue Wu
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng 224051, China; (W.-Q.Y.); (L.-L.W.); (C.-J.Y.); (H.-Y.W.); (H.-B.Z.); (Q.-N.L.); (S.-H.J.); (B.-P.T.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hua-Bin Zhang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng 224051, China; (W.-Q.Y.); (L.-L.W.); (C.-J.Y.); (H.-Y.W.); (H.-B.Z.); (Q.-N.L.); (S.-H.J.); (B.-P.T.)
| | - Qiu-Ning Liu
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng 224051, China; (W.-Q.Y.); (L.-L.W.); (C.-J.Y.); (H.-Y.W.); (H.-B.Z.); (Q.-N.L.); (S.-H.J.); (B.-P.T.)
| | - Sen-Hao Jiang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng 224051, China; (W.-Q.Y.); (L.-L.W.); (C.-J.Y.); (H.-Y.W.); (H.-B.Z.); (Q.-N.L.); (S.-H.J.); (B.-P.T.)
| | - Bo-Ping Tang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng 224051, China; (W.-Q.Y.); (L.-L.W.); (C.-J.Y.); (H.-Y.W.); (H.-B.Z.); (Q.-N.L.); (S.-H.J.); (B.-P.T.)
| | - Gang Wang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng 224051, China; (W.-Q.Y.); (L.-L.W.); (C.-J.Y.); (H.-Y.W.); (H.-B.Z.); (Q.-N.L.); (S.-H.J.); (B.-P.T.)
| | - Dai-Zhen Zhang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng 224051, China; (W.-Q.Y.); (L.-L.W.); (C.-J.Y.); (H.-Y.W.); (H.-B.Z.); (Q.-N.L.); (S.-H.J.); (B.-P.T.)
| |
Collapse
|
8
|
Chen Z, Sun W, Qian Q, Chen Z, Hou Y, Ouyang J. A Self-Adhesive Flexible and Stretchable Compliant Surface Sensor for Real-Time Monitoring of Starch-Based Food Processing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12755-12764. [PMID: 39945466 DOI: 10.1021/acsami.5c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Flexible sensors have attracted great attention because of their important applications in many areas. It is important to monitor the surface of starch-based food during food processing because it can provide key information related to the appearance, texture level, and chewiness of the food. However, there is no report on real-time monitoring of the surface of steamed bread in the literature. Here, we report a self-adhesive and stretchable compliant sensor that can be mounted to the surface of starch-based food and provides real-time signals for the steaming process. The sensors consisting of biocompatible poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), poly(vinyl alcohol) (PVA), tannic acid (TA), and glycerol can be fabricated by solution processing. Because it is stretchable and self-adhesive to the dough surface, it is compliant with the expansion or contraction of the dough during food processing. Its resistance varies with the shape and volume of the dough and thus can be monitored in a real-time manner. This is the first report of a surface sensor that can monitor the steaming process of starch-based food.
Collapse
Affiliation(s)
- Zinuo Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Wen Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
- NUS Research Institute, No. 16 South Huashan Road, Liangjiang New Area, Chongqing 401123, China
| | - Qi Qian
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Zhijun Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Yuxuan Hou
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
- NUS Research Institute, No. 16 South Huashan Road, Liangjiang New Area, Chongqing 401123, China
| |
Collapse
|
9
|
Yan H. Insect olfactory neurons: receptors, development, and function. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101288. [PMID: 39490981 DOI: 10.1016/j.cois.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Insects represent the most diverse group of animals in the world. While the olfactory systems of different species share general principles of organization, they also exhibit a wide range of structural and functional diversity. Scientists have gained tremendous insight into olfactory neural development and function, notably in Drosophila, but also in other insect species (see reviews by Benton, 2022; Robertson, 2019; Yan et al., 2020). In the last few years, new evidence has steadily mounted, for example, the stoichiometry of odorant receptor and co-receptor (OR-Orco) complex. This review aims to highlight the recent progress on four aspects: (1) the structure and function of the OR-Orco complex, (2) chemosensory gene co-expression, (3) diverse neural developmental processes, and (4) the role of genes and neurons in olfactory development and olfactory-mediated behavior.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
10
|
Perrone S, Beretta V, Tataranno ML, Tan S, Shi Z, Scarpa E, Dell'Orto V, Ravenda S, Petrolini C, Brambilla MM, Palanza P, Gitto E, Nonnis-Marzano F. Olfactory testing in infants with perinatal asphyxia: Enhancing encephalopathy risk stratification for future health outcomes. Neurosci Biobehav Rev 2025; 169:106029. [PMID: 39875082 DOI: 10.1016/j.neubiorev.2025.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/07/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Perinatal asphyxia (PA) is a leading cause of neonatal morbidity and mortality, often resulting in long-term neurodevelopmental challenges. Despite advancements in perinatal care, predicting long-term outcomes remains difficult. Early diagnosis is essential for timely interventions to reduce brain injury, with tools such as Magnetic Resonance Imaging, brain ultrasound, and emerging biomarkers playing a possible key role. Olfaction, one of the earliest senses to develop, may provide valuable insights into long-term neurodevelopmental outcomes following PA due to its intricate neural connections with regions responsible for memory, emotion, and homeostasis. Newborns demonstrate early olfactory abilities, such as recognizing maternal odors, which are vital for bonding, feeding, and emotional regulation. These responses are processed by a network of brain regions, including the olfactory bulb (OB), piriform cortex, amygdala, and orbitofrontal cortex. Hypoxic injury to these regions, particularly the OB, may disrupt olfactory processing in infants with PA, potentially affecting their cognitive and social development. Investigating the relationship between olfactory system development and perinatal brain injury could lead to innovative diagnostic and therapeutic approaches. Further research, including clinical and animal studies, is necessary to fully explore the potential of olfactory assessments in predicting outcomes after PA. This educational review explores and discusses the potential of olfaction as a predictor of long-term outcomes and a tool for risk stratification following PA, opening new pathways for interventions and improved care.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy.
| | - Virginia Beretta
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy
| | - Maria Luisa Tataranno
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, the Netherlands
| | - Sidhartha Tan
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhongjie Shi
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Elena Scarpa
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy
| | - Valentina Dell'Orto
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy
| | - Sebastiano Ravenda
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11, Parma 43125, Italy
| | - Chiara Petrolini
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy
| | - Maria Maddalena Brambilla
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy
| | - Paola Palanza
- Unit of Behavioral Biology, Department of Neuroscience, University of Parma, Viale delle Scienze 11/A, Parma 43125, Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina 98125, Italy
| | - Francesco Nonnis-Marzano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11, Parma 43125, Italy
| |
Collapse
|
11
|
Ihara Y, Ijichi C, Nogi Y, Sugiki M, Kodama Y, Ihara S, Shirasu M, Hirokawa T, Touhara K. Predicting human olfactory perception by odorant structure and receptor activation profile. Chem Senses 2025; 50:bjaf002. [PMID: 39888390 DOI: 10.1093/chemse/bjaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Indexed: 02/01/2025] Open
Abstract
Humans possess a remarkable ability to discriminate a wide range of odors with high precision. This process begins with olfactory receptors (ORs) detecting and responding to the molecular structures of odorants. Recent studies have aimed to associate the activity of a single OR to an odor descriptor or predict odor descriptors using 2D molecular representation. However, predicting a limited number of odor descriptors is insufficient to fully understand the widespread and elaborate olfactory perception process. Therefore, we conducted structure-activity relationship analyses for ORs of eugenol, vanillin, and structurally similar compounds, investigating the correlation between molecular structures, OR activity profiles, and perceptual odor similarity. Our results indicated that these structurally similar compounds primarily activated 6 ORs, and the activity profiles of these ORs correlated with their perception. This enabled the development of a prediction model for the eugenol-similarity score from OR activity profiles (coefficient of determination, R2 = 0.687). Furthermore, the molecular structures of odorants were represented as 3D shapes and pharmacophore fingerprints, considering the 3D structural similarities between various odorants with multiple conformations. These 3D shape and pharmacophore fingerprints could also predict the perceptual odor similarity (R2 = 0.514). Finally, we identified key molecular structural features that contributed to predicting sensory similarities between compounds structurally similar to eugenol and vanillin. Our models, which predict odor from OR activity profiles and similarities in the 3D structure of odorants, may aid in understanding olfactory perception by compressing the information from a vast number of odorants into the activity profiles of 400 ORs.
Collapse
Affiliation(s)
- Yusuke Ihara
- Institute of Food Sciences and Technologies, AJINOMOTO CO., INC., Kawasaki, Kanagawa 210-8681, Japan
| | - Chiori Ijichi
- Institute of Food Sciences and Technologies, AJINOMOTO CO., INC., Kawasaki, Kanagawa 210-8681, Japan
| | - Yasuko Nogi
- Institute of Food Sciences and Technologies, AJINOMOTO CO., INC., Kawasaki, Kanagawa 210-8681, Japan
| | - Masayuki Sugiki
- Research Institute for Bioscience Products and Fine Chemicals, AJINOMOTO CO., INC., Kawasaki, Kanagawa 210-8681, Japan
| | - Yuko Kodama
- Institute of Food Sciences and Technologies, AJINOMOTO CO., INC., Kawasaki, Kanagawa 210-8681, Japan
| | - Sayoko Ihara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mika Shirasu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
12
|
Mi T, Sheng C, Lee CK, Nguyen P, Zhang YV. Harnessing Insect Chemosensory and Mechanosensory Receptors Involved in Feeding for Precision Pest Management. Life (Basel) 2025; 15:110. [PMID: 39860050 PMCID: PMC11766477 DOI: 10.3390/life15010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Chemosensation and mechanosensation are vital to insects' survival and behavior, shaping critical physiological processes such as feeding, metabolism, mating, and reproduction. During feeding, insects rely on diverse chemosensory and mechanosensory receptors to distinguish between nutritious and harmful substances, enabling them to select suitable food sources while avoiding toxins. These receptors are distributed across various body parts, allowing insects to detect environmental cues about food quality and adjust their behaviors accordingly. A deeper understanding of insect sensory physiology, especially during feeding, not only enhances our knowledge of insect biology but also offers significant opportunities for practical applications. This review highlights recent advancements in research on feeding-related sensory receptors, covering a wide range of insect species, from the model organism Drosophila melanogaster to agricultural and human pests. Additionally, this review examines the potential of targeting insect sensory receptors for precision pest control. Disrupting behaviors such as feeding and reproduction emerges as a promising strategy for pest management. By interfering with these essential behaviors, we can effectively control pest populations while minimizing environmental impacts and promoting ecological balance.
Collapse
Affiliation(s)
- Tingwei Mi
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
| | - Chengwang Sheng
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
- Department of Pesticide Science, Anhui Agricultural University, Hefei 230036, China
| | - Cassidy Kylene Lee
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
| | - Peter Nguyen
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Yali V. Zhang
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
- Department of Physiology, The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Comte A, Fiorucci S, Jacquin-Joly E. Combining Machine Learning and Electrophysiology for Insect Odorant Receptor Studies. Methods Mol Biol 2025; 2915:101-116. [PMID: 40249485 DOI: 10.1007/978-1-0716-4466-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Insects rely on olfaction in many aspects of their life, and odorant receptors are key proteins in this process. Whereas a plethora of insect odorant receptor sequences is available, most of them are still orphan or uncompletely characterized, since their functional studies are usually limited by restricted odorant panels. With joint approaches that combine computational methods like machine learning and electrophysiology measurements, researchers can expand the chemical space of insect odorant receptors and speed up the discovery of new active ligands. This chapter details the methodology for setting up a quantitative structure-activity relationship (QSAR) predictive model for identifying odorant receptor agonists and for conducting single sensillum recordings to validate the predictions.
Collapse
Affiliation(s)
- Arthur Comte
- INRAE, Sorbonne Université, CNRS, IRD, Université Paris Cité, Université Paris-Est Créteil Val de Marne, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris) , Versailles, France
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, Nice, France
| | | | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, Université Paris Cité, Université Paris-Est Créteil Val de Marne, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris) , Versailles, France.
| |
Collapse
|
14
|
Broillet-Olivier E, Wenger Y, Gilliand N, Cadas H, Sabatasso S, Broillet MC, Brechbühl J. Development of an rpS6-Based Ex Vivo Assay for the Analysis of Neuronal Activity in Mouse and Human Olfactory Systems. Int J Mol Sci 2024; 25:13173. [PMID: 39684883 DOI: 10.3390/ijms252313173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Olfactory sensitivity to odorant molecules is a complex biological function influenced by both endogenous factors, such as genetic background and physiological state, and exogenous factors, such as environmental conditions. In animals, this vital ability is mediated by olfactory sensory neurons (OSNs), which are distributed across several specialized olfactory subsystems depending on the species. Using the phosphorylation of the ribosomal protein S6 (rpS6) in OSNs following sensory stimulation, we developed an ex vivo assay allowing the simultaneous conditioning and odorant stimulation of different mouse olfactory subsystems, including the main olfactory epithelium, the vomeronasal organ, and the Grueneberg ganglion. This approach enabled us to observe odorant-induced neuronal activity within the different olfactory subsystems and to demonstrate the impact of environmental conditioning, such as temperature variations, on olfactory sensitivity, specifically in the Grueneberg ganglion. We further applied our rpS6-based assay to the human olfactory system and demonstrated its feasibility. Our findings show that analyzing rpS6 signal intensity is a robust and highly reproducible indicator of neuronal activity across various olfactory systems, while avoiding stress and some experimental limitations associated with in vivo exposure. The potential extension of this assay to other conditioning paradigms and olfactory systems, as well as its application to other animal species, including human olfactory diagnostics, is also discussed.
Collapse
Affiliation(s)
- Emma Broillet-Olivier
- Faculty of Medicine Hradec Králové, Charles University, 500 00 Hradec Králové, Czech Republic
| | - Yaëlle Wenger
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| | - Noah Gilliand
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| | - Hugues Cadas
- Faculty of Biology and Medicine, University of Lausanne, Bugnon 9, CH-1005 Lausanne, Switzerland
- Faculty Unit of Anatomy and Morphology, University Center of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Vulliette 4, CH-1000 Lausanne, Switzerland
| | - Sara Sabatasso
- Faculty of Biology and Medicine, University of Lausanne, Bugnon 9, CH-1005 Lausanne, Switzerland
- Faculty Unit of Anatomy and Morphology, University Center of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Vulliette 4, CH-1000 Lausanne, Switzerland
| | - Marie-Christine Broillet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| | - Julien Brechbühl
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| |
Collapse
|
15
|
Mercado E, Zhuo J. Do rodents smell with sound? Neurosci Biobehav Rev 2024; 167:105908. [PMID: 39343078 DOI: 10.1016/j.neubiorev.2024.105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Chemosensation via olfaction is a critical process underlying social interactions in many different species. Past studies of olfaction in mammals often have focused on its mechanisms in isolation from other systems, limiting the generalizability of findings from olfactory research to perceptual processes in other modalities. Studies of chemical communication, in particular, have progressed independently of research on vocal behavior and acoustic communication. Those bioacousticians who have considered how sound production and reception might interact with olfaction often portray odors as cues to the kinds of vocalizations that might be functionally useful. In the olfaction literature, vocalizations are rarely mentioned. Here, we propose that ultrasonic vocalizations may affect what rodents smell by altering the deposition of inhaled particles and that rodents coordinate active sniffing with sound production specifically to enhance reception of pheromones. In this scenario, rodent vocalizations may contribute to a unique mode of active olfactory sensing, in addition to whatever roles they serve as social signals. Consideration of this hypothesis highlights the perceptual advantages that parallel coordination of multiple sensorimotor processes may provide to individuals exploring novel situations and environments, especially those involving dynamic social interactions.
Collapse
Affiliation(s)
- Eduardo Mercado
- University at Buffalo, The State University of New York, USA.
| | | |
Collapse
|
16
|
Yang J, Mo BT, Li GC, Huang LQ, Guo H, Wang CZ. Identification and functional characterization of chemosensory genes in olfactory and taste organs of Spodoptera litura (Lepidoptera: Noctuidae). INSECT SCIENCE 2024; 31:1721-1742. [PMID: 38485691 DOI: 10.1111/1744-7917.13350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 12/12/2024]
Abstract
The tobacco cutworm Spodoptera litura is one of the most destructive polyphagous crop pests. Olfaction and taste play a crucial role in its host plant selection and sexual communication, but the expression profile of chemosensory genes remains unclear. In this study, we identified 185 chemosensory genes from 7 organs in S. litura by transcriptome sequencing, of which 72 genes were published for the first time, including 27 odorant receptors (ORs), 26 gustatory receptors (GRs), 1 ionotropic receptor (IR), 16 odorant-binding proteins (OBPs), and 2 chemosensory proteins (CSPs). Phylogenetic analyses revealed that ORs, IRs, OBPs, and sensory neuron membrane proteins (SNMPs) were mainly expressed in antennae and sequence-conserved among Noctuidae species. The most differentially expressed genes (DEGs) between sexes were ORs and OBPs, and no DEGs were found in GRs. GR transcripts were enriched in proboscis, and the expression of sugar receptors was the highest. Carbon dioxide receptors, sugar receptor-SliuGR6, and bitter GRs-SlituGR43 and SlituGR66 had higher sequence identities between Noctuidae species. CSPs were broadly expressed in various organs, and SlituCSP13 was a DEG in adult antennae. The functional analysis in the Drosophila OR67d expression system found that SlituOR50, a receptor highly expressed in female antennae, is selectively tuned to farnesyl acetate. The results provide a solid foundation for understanding the molecular mechanisms by which chemosensory genes operate to elicit behavioral responses in polyphagous insects.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Bao-Tong Mo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Zhong S, Su L, Xu M, Loke D, Yu B, Zhang Y, Zhao R. Recent Advances in Artificial Sensory Neurons: Biological Fundamentals, Devices, Applications, and Challenges. NANO-MICRO LETTERS 2024; 17:61. [PMID: 39537845 PMCID: PMC11561216 DOI: 10.1007/s40820-024-01550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024]
Abstract
Spike-based neural networks, which use spikes or action potentials to represent information, have gained a lot of attention because of their high energy efficiency and low power consumption. To fully leverage its advantages, converting the external analog signals to spikes is an essential prerequisite. Conventional approaches including analog-to-digital converters or ring oscillators, and sensors suffer from high power and area costs. Recent efforts are devoted to constructing artificial sensory neurons based on emerging devices inspired by the biological sensory system. They can simultaneously perform sensing and spike conversion, overcoming the deficiencies of traditional sensory systems. This review summarizes and benchmarks the recent progress of artificial sensory neurons. It starts with the presentation of various mechanisms of biological signal transduction, followed by the systematic introduction of the emerging devices employed for artificial sensory neurons. Furthermore, the implementations with different perceptual capabilities are briefly outlined and the key metrics and potential applications are also provided. Finally, we highlight the challenges and perspectives for the future development of artificial sensory neurons.
Collapse
Affiliation(s)
- Shuai Zhong
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China.
| | - Lirou Su
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China
| | - Mingkun Xu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China
| | - Desmond Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Bin Yu
- College of Integrated Circuits, Zhejiang University, Hangzhou, 3112000, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, People's Republic of China
| | - Yishu Zhang
- College of Integrated Circuits, Zhejiang University, Hangzhou, 3112000, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, People's Republic of China.
| | - Rong Zhao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, People's Republic of China
- Center for Brain-Inspired Computing Research, Tsinghua University, Beijing, 100084, People's Republic of China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
18
|
Saad MZH, Ryan V WG, Edwards CA, Szymanski BN, Marri AR, Jerow LG, McCullumsmith R, Bamber BA. Olfactory combinatorial coding supports risk-reward decision making in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599745. [PMID: 39484578 PMCID: PMC11526860 DOI: 10.1101/2024.06.19.599745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Olfactory-driven behaviors are essential for animal survival, but mechanisms for decoding olfactory inputs remain poorly understood. We have used whole-network Ca ++ imaging to study olfactory coding in Caenorhabditis elegans. We show that the odorant 1-octanol is encoded combinatorially in the periphery as both an attractant and a repellant. These inputs are integrated centrally, and their relative strengths determine the sensitivity and valence of the behavioral response through modulation of locomotory reversals and speed. The balance of these pathways also dictates the activity of the locomotory command interneurons, which control locomotory reversals. This balance serves as a regulatory node for response modulation, allowing C. elegans to weigh opportunities and hazards in its environment when formulating behavioral responses. Thus, an odorant can be encoded simultaneously as inputs of opposite valence, focusing attention on the integration of these inputs in determining perception, response, and plasticity.
Collapse
|
19
|
Guo S, Liu P, Tang Y, Chen J, Zhang T, Liu H. Identification and expression profiles of olfactory-related genes in the antennal transcriptome of Graphosoma rubrolineatum (Hemiptera: Pentatomidae). PLoS One 2024; 19:e0306986. [PMID: 39106289 DOI: 10.1371/journal.pone.0306986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 08/09/2024] Open
Abstract
Graphosoma rubrolineatum (Hemiptera: Pentatomidae) is an important pest of vegetables and herbs (e.g., Umbelliferae and Cruciferae) in China, Siberia, Korea, and Japan. Insects are highly dependent on their olfactory system to detect odorants. However, no molecular-mediated olfactory genes in G. rubrolineatum have yet been identified. In this study, we first established the antennal transcriptome of G. rubrolineatum and identified 189 candidate olfactory genes, including 31 odorant-binding proteins (OBPs), 15 chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs),94 odorant receptors (ORs), 23 ionotropic receptors (IRs), and 22 gustatory receptors (GRs). Additionally, phylogenetic trees were constructed for olfactory genes between G. rubrolineatum and other hemipteran insects. We also detected the expression profiles of ten OBPs, five CSPs, two SNMPs, five ORs, four IRs, and four GRs by real-time quantitative PCR. The results revealed that most genes (GrubOBP1/11/31, GrubCSP3/8, GrubSNMP1a/1b, GrubOrco/OR9/11/13, GrubGR1/4/22, GrubIR25/75h/76b/GluR1) were highly expressed in the antennae, GrubOBP13/31 and GrubCSP4/11/12 were highly expressed in the legs, while GrubOBP20 and GrubGR19 were highly expressed in the wings. Our results will enrich the gene inventory of G. rubrolineatum and provide further insight into the molecular chemosensory mechanisms of G. rubrolineatum.
Collapse
Affiliation(s)
- Shibao Guo
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Panjing Liu
- Plant Protection Institute, HAAFS/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding, P. R. China
- IPM Innovation Center of Hebei Province/International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China
| | - Yin Tang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Junhua Chen
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Tao Zhang
- Plant Protection Institute, HAAFS/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding, P. R. China
- IPM Innovation Center of Hebei Province/International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China
| | - Hongmin Liu
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, China
| |
Collapse
|
20
|
Wulff JP, Hickner PV, Watson DW, Denning SS, Belikoff EJ, Scott MJ. Antennal transcriptome analysis reveals sensory receptors potentially associated with host detection in the livestock pest Lucilia cuprina. Parasit Vectors 2024; 17:308. [PMID: 39026238 PMCID: PMC11256703 DOI: 10.1186/s13071-024-06391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Lucilia cuprina (Wiedemann, 1830) (Diptera: Calliphoridae) is the main causative agent of flystrike of sheep in Australia and New Zealand. Female flies lay eggs in an open wound or natural orifice, and the developing larvae eat the host's tissues, a condition called myiasis. To improve our understanding of host-seeking behavior, we quantified gene expression in male and female antennae based on their behavior. METHODS A spatial olfactometer was used to evaluate the olfactory response of L. cuprina mated males and gravid females to fresh or rotting beef. Antennal RNA-Seq analysis was used to identify sensory receptors differentially expressed between groups. RESULTS Lucilia cuprina females were more attracted to rotten compared to fresh beef (> fivefold increase). However, males and some females did not respond to either type of beef. RNA-Seq analysis was performed on antennae dissected from attracted females, non-attracted females and males. Transcripts encoding sensory receptors from 11 gene families were identified above a threshold (≥ 5 transcript per million) including 49 ATP-binding cassette transporters (ABCs), two ammonium transporters (AMTs), 37 odorant receptors (ORs), 16 ionotropic receptors (IRs), 5 gustatory receptors (GRs), 22 odorant-binding proteins (OBPs), 9 CD36-sensory neuron membrane proteins (CD36/SNMPs), 4 chemosensory proteins (CSPs), 4 myeloid lipid-recognition (ML) and Niemann-Pick C2 disease proteins (ML/NPC2), 2 pickpocket receptors (PPKs) and 3 transient receptor potential channels (TRPs). Differential expression analyses identified sex-biased sensory receptors. CONCLUSIONS We identified sensory receptors that were differentially expressed between the antennae of both sexes and hence may be associated with host detection by female flies. The most promising for future investigations were as follows: an odorant receptor (LcupOR46) which is female-biased in L. cuprina and Cochliomyia hominivorax Coquerel, 1858; an ABC transporter (ABC G23.1) that was the sole sensory receptor upregulated in the antennae of females attracted to rotting beef compared to non-attracted females; a female-biased ammonia transporter (AMT_Rh50), which was previously associated with ammonium detection in Drosophila melanogaster Meigen, 1830. This is the first report suggesting a possible role for ABC transporters in L. cuprina olfaction and potentially in other insects.
Collapse
Affiliation(s)
- Juan P Wulff
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Paul V Hickner
- United States Department of Agriculture, Agricultural Research Service, Knipling-Bushland U.S. Livestock Insects Research Laboratory, 2700 Fredericksburg Road, Kerrville, TX, 78028-9184, USA
| | - David W Watson
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Steven S Denning
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Esther J Belikoff
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
21
|
Wang Y, Qiu L, Wang B, Guan Z, Dong Z, Zhang J, Cao S, Yang L, Wang B, Gong Z, Zhang L, Ma W, Liu Z, Zhang D, Wang G, Yin P. Structural basis for odorant recognition of the insect odorant receptor OR-Orco heterocomplex. Science 2024; 384:1453-1460. [PMID: 38870272 DOI: 10.1126/science.adn6881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Insects detect and discriminate a diverse array of chemicals using odorant receptors (ORs), which are ligand-gated ion channels comprising a divergent odorant-sensing OR and a conserved odorant receptor co-receptor (Orco). In this work, we report structures of the ApOR5-Orco heterocomplex from the pea aphid Acyrthosiphon pisum alone and bound to its known activating ligand, geranyl acetate. In these structures, three ApOrco subunits serve as scaffold components that cannot bind the ligand and remain relatively unchanged. Upon ligand binding, the pore-forming helix S7b of ApOR5 shifts outward from the central pore axis, causing an asymmetrical pore opening for ion influx. Our study provides insights into odorant recognition and channel gating of the OR-Orco heterocomplex and offers structural resources to support development of innovative insecticides and repellents for pest control.
Collapse
Affiliation(s)
- Yidong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Song Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lulu Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhou Gong
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
22
|
Sieriebriennikov B, Sieber KR, Kolumba O, Mlejnek J, Jafari S, Yan H. Orco-dependent survival of odorant receptor neurons in ants. SCIENCE ADVANCES 2024; 10:eadk9000. [PMID: 38848359 PMCID: PMC11160473 DOI: 10.1126/sciadv.adk9000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Olfaction is essential for complex social behavior in insects. To discriminate complex social cues, ants evolved an expanded number of odorant receptor (Or) genes. Mutations in the obligate odorant co-receptor gene orco lead to the loss of ~80% of the antennal lobe glomeruli in the jumping ant Harpegnathos saltator. However, the cellular mechanism remains unclear. Here, we demonstrate massive apoptosis of odorant receptor neurons (ORNs) in the mid to late stages of pupal development, possibly due to ER stress in the absence of Orco. Further bulk and single-nucleus transcriptome analysis shows that, although most orco-expressing ORNs die in orco mutants, a small proportion of them survive: They express ionotropic receptor (Ir) genes that form IR complexes. In addition, we found that some Or genes are expressed in mechanosensory neurons and nonneuronal cells, possibly due to leaky regulation from nearby non-Or genes. Our findings provide a comprehensive overview of ORN development and Or expression in H. saltator.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department of Biology, New York University, New York, NY 10003, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
| | - Olena Kolumba
- Department of Biology, New York University, New York, NY 10003, USA
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jakub Mlejnek
- Department of Biology, New York University, New York, NY 10003, USA
| | - Shadi Jafari
- Department of Biology, New York University, New York, NY 10003, USA
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
23
|
Dibattista M, Pifferi S, Hernandez-Clavijo A, Menini A. The physiological roles of anoctamin2/TMEM16B and anoctamin1/TMEM16A in chemical senses. Cell Calcium 2024; 120:102889. [PMID: 38677213 DOI: 10.1016/j.ceca.2024.102889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Chemical senses allow animals to detect and discriminate a vast array of molecules. The olfactory system is responsible of the detection of small volatile molecules, while water dissolved molecules are detected by taste buds in the oral cavity. Moreover, many animals respond to signaling molecules such as pheromones and other semiochemicals through the vomeronasal organ. The peripheral organs dedicated to chemical detection convert chemical signals into perceivable information through the employment of diverse receptor types and the activation of multiple ion channels. Two ion channels, TMEM16B, also known as anoctamin2 (ANO2) and TMEM16A, or anoctamin1 (ANO1), encoding for Ca2+-activated Cl¯ channels, have been recently described playing critical roles in various cell types. This review aims to discuss the main properties of TMEM16A and TMEM16B-mediated currents and their physiological roles in chemical senses. In olfactory sensory neurons, TMEM16B contributes to amplify the odorant response, to modulate firing, response kinetics and adaptation. TMEM16A and TMEM16B shape the pattern of action potentials in vomeronasal sensory neurons increasing the interspike interval. In type I taste bud cells, TMEM16A is activated during paracrine signaling mediated by ATP. This review aims to shed light on the regulation of diverse signaling mechanisms and neuronal excitability mediated by Ca-activated Cl¯ channels, hinting at potential new roles for TMEM16A and TMEM16B in the chemical senses.
Collapse
Affiliation(s)
- Michele Dibattista
- Department of Translational Biomedicine and Neuroscience, University of Bari A. Moro, 70121 Bari, Italy
| | - Simone Pifferi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy.
| | - Andres Hernandez-Clavijo
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy.
| |
Collapse
|
24
|
Chidambara Thanu V, Jabeen A, Ranganathan S. iBio-GATS-A Semi-Automated Workflow for Structural Modelling of Insect Odorant Receptors. Int J Mol Sci 2024; 25:3055. [PMID: 38474300 DOI: 10.3390/ijms25053055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Insects utilize seven transmembrane (7TM) odorant receptor (iOR) proteins, with an inverted topology compared to G-protein coupled receptors (GPCRs), to detect chemical cues in the environment. For pest biocontrol, chemical attractants are used to trap insect pests. However, with the influx of invasive insect pests, novel odorants are urgently needed, specifically designed to match 3D iOR structures. Experimental structural determination of these membrane receptors remains challenging and only four experimental iOR structures from two evolutionarily distant organisms have been solved. Template-based modelling (TBM) is a complementary approach, to generate model structures, selecting templates based on sequence identity. As the iOR family is highly divergent, a different template selection approach than sequence identity is needed. Bio-GATS template selection for GPCRs, based on hydrophobicity correspondence, has been morphed into iBio-GATS, for template selection from available experimental iOR structures. This easy-to-use semi-automated workflow has been extended to generate high-quality models from any iOR sequence from the selected template, using Python and shell scripting. This workflow was successfully validated on Apocrypta bakeri Orco and Machilis hrabei OR5 structures. iBio-GATS models generated for the fruit fly iOR, OR59b and Orco, yielded functional ligand binding results concordant with experimental mutagenesis findings, compared to AlphaFold2 models.
Collapse
Affiliation(s)
| | - Amara Jabeen
- Applied Biosciences, Macquarie University, Sydney 2109, Australia
| | | |
Collapse
|
25
|
Lizana P, Mutis A, Palma-Millanao R, González-González A, Ceballos R, Quiroz A, Bardehle L, Hidalgo A, Torres F, Romero-López A, Venthur H. Comparative transcriptomic analysis of chemoreceptors in two sympatric scarab beetles, Hylamorpha elegans and Brachysternus prasinus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101174. [PMID: 38096641 DOI: 10.1016/j.cbd.2023.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/15/2024]
Abstract
Chemoreception through odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs) represents the functions of key proteins in the chemical ecology of insects. Recent studies have identified chemoreceptors in coleopterans, facilitating the evolutionary analysis of not only ORs but also IRs and GRs. Thus, Cerambycidae, Tenebrionidae and Curculionidae have received increased attention. However, knowledge of the chemoreceptors from Scarabaeidae is still limited, particularly for those that are sympatric. Considering the roles of chemoreceptors, this analysis could shed light on evolutionary processes in the context of sympatry. Therefore, the aim of this study was to identify and compare the repertoires of ORs, GRs and IRs between two sympatric scarab beetles, Hylamorpha elegans and Brachysternus prasinus. Here, construction of the antennal transcriptomes of both scarab beetle species and analyses of their phylogeny, molecular evolution and relative expression were performed. Thus, 119 new candidate chemoreceptors were identified for the first time, including 17 transcripts for B. prasinus (1 GR, 3 IRs and 13 ORs) and 102 for H. elegans (22 GRs, 14 IRs and 66 ORs). Orthologs between the two scarab beetle species were found, revealing specific expansions as well as absence in some clades. Purifying selection appears to have occurred on H. elegans and B. prasinus ORs. Further efforts will be focused on target identification to characterize kairomone and/or pheromone receptors.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Rubén Palma-Millanao
- Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco, Chile
| | - Angélica González-González
- Laboratorio de Interacciones Insecto-Planta, Instituto de Ciencias Biológicas, Universidad de Talca, Casilla 747, Talca, Chile
| | - Ricardo Ceballos
- Laboratorio de Ecología Química, Centro Tecnológico de Control Biológico, Instituto de Investigaciones Agropecuarias (INIA)-Quilamapu, Chillán, Chile
| | - Andrés Quiroz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Leonardo Bardehle
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile
| | - Alejandro Hidalgo
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Fernanda Torres
- Carrera de Química y Farmacia, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Angel Romero-López
- Laboratorio de Infoquímicos y Otros Productos Bióticos, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Herbert Venthur
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
26
|
Kawai F. Somatic ion channels and action potentials in olfactory receptor cells and vomeronasal receptor cells. J Neurophysiol 2024; 131:455-471. [PMID: 38264787 DOI: 10.1152/jn.00137.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Olfactory receptor cells are primary sensory neurons that catch odor molecules in the olfactory system, and vomeronasal receptor cells catch pheromones in the vomeronasal system. When odor or pheromone molecules bind to receptor proteins expressed on the membrane of the olfactory cilia or vomeronasal microvilli, receptor potentials are generated in their receptor cells. This initial excitation is transmitted to the soma via dendrites, and action potentials are generated in the soma and/or axon and transmitted to the central nervous system. Thus, olfactory and vomeronasal receptor cells play an important role in converting chemical signals into electrical signals. In this review, the electrophysiological characteristics of ion channels in the somatic membrane of olfactory receptor cells and vomeronasal receptor cells in various species are described and the differences between the action potential dynamics of olfactory receptor cells and vomeronasal receptor cells are compared.
Collapse
Affiliation(s)
- Fusao Kawai
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
27
|
Xu H, Gao Y, Hassan A, Liu Y, Zhao X, Huang Q. Neuroregulation of foraging behavior mediated by the olfactory co-receptor Orco in termites. Int J Biol Macromol 2024; 262:129639. [PMID: 38331075 DOI: 10.1016/j.ijbiomac.2024.129639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
Olfaction is critical for survival because it allows animals to look for food and detect pheromonal cues. Neuropeptides modulate olfaction and behaviors in insects. While how the neuroregulation of olfactory recognition affects foraging behavior in termites is still unclear. Here, we analyzed the change after silencing the olfactory co-receptor gene (Orco) and the neuropeptide Y gene (NPY), and then investigated the impact of olfactory recognition on foraging behavior in Odontotermes formosanus under different predation pressures. The knockdown of Orco resulted in the reduced Orco protein expression in antennae and the decreased EAG response to trail pheromones. In addition, NPY silencing led to the damaged ability of olfactory response through downregulating Orco expression. Both dsOrco- and dsNPY-injected worker termites showed significantly reduced walking activity and foraging success. Additionally, we found that 0.1 pg/cm trail pheromone and nestmate soldiers could provide social buffering to relieve the adverse effect of predator ants on foraging behavior in worker termites with the normal ability of olfactory recognition. Our orthogonal experiments further verified that Orco/NPY genes are essential in manipulating termite olfactory recognition during foraging under different predation pressures, suggesting that the neuroregulation of olfactory recognition plays a crucial role in regulating termite foraging behavior.
Collapse
Affiliation(s)
- Huan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan'an University, Yan'an 716000, Shaanxi, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yongyong Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan'an University, Yan'an 716000, Shaanxi, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yutong Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xincheng Zhao
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, Henan, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
28
|
Ma D, Hu M, Yang X, Liu Q, Ye F, Cai W, Wang Y, Xu X, Chang S, Wang R, Yang W, Ye S, Su N, Fan M, Xu H, Guo J. Structural basis for sugar perception by Drosophila gustatory receptors. Science 2024; 383:eadj2609. [PMID: 38305684 DOI: 10.1126/science.adj2609] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Insects rely on a family of seven transmembrane proteins called gustatory receptors (GRs) to encode different taste modalities, such as sweet and bitter. We report structures of Drosophila sweet taste receptors GR43a and GR64a in the apo and sugar-bound states. Both GRs form tetrameric sugar-gated cation channels composed of one central pore domain (PD) and four peripheral ligand-binding domains (LBDs). Whereas GR43a is specifically activated by the monosaccharide fructose that binds to a narrow pocket in LBDs, disaccharides sucrose and maltose selectively activate GR64a by binding to a larger and flatter pocket in LBDs. Sugar binding to LBDs induces local conformational changes, which are subsequently transferred to the PD to cause channel opening. Our studies reveal a structural basis for sugar recognition and activation of GRs.
Collapse
Affiliation(s)
- Demin Ma
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310058, China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou 311121, China
| | - Xiaotong Yang
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310058, China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou 311121, China
| | - Qiang Liu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310058, China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou 311121, China
| | - Fan Ye
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Weijie Cai
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310058, China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou 311121, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ximing Xu
- Marine Biomedical Institute of Qingdao, School of Pharmacy and Medicine, Ocean University of China, Qingdao, Shandong 266100, China
| | - Shenghai Chang
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruiying Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Nannan Su
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Minrui Fan
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310058, China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou 311121, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
29
|
Wang Y, Wu J, Gong Y, Wang H, Wu T, Liu R, Sui W, Zhang M. Peanut oil odor enhances the immunomodulatory effect on immunosuppressed mice by regulating the cAMP signaling pathway via the brain-spleen axis. Food Funct 2024; 15:1994-2007. [PMID: 38288526 DOI: 10.1039/d3fo03629d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The role of sniffing relative to immune function has attracted considerable attention. The present study investigated the immunomodulatory effects of peanut oil odor on cyclophosphamide (CTX)-induced immunosuppressed mice. The subset of mice subjected to prolonged (8 h) sniffing peanut oil odor (PL) demonstrated significantly elevated levels of agouti-related peptide, neuropeptide Y, and glutamate (p < 0.05), whereas it significantly down-regulated the level of γ-aminobutyric acid in the brain (p < 0.05). Furthermore, immunohistochemistry results indicated significantly increased expression of mGluR1/5 and decreased expression of GABABR in the hippocampus and hypothalamus (p < 0.05) of the PL group. Additionally, the PL group had significantly up-regulated expression levels of cAMP, Epac, Rap1, ERK1/2 and PKA (p < 0.05) and remarkably increased phosphorylation of CREB in the cAMP signaling pathway (p < 0.05), which influenced the central nervous system. Moreover, compared with CTX-induced mice, the percentages of peripheral blood T lymphocytes (CD3+CD4+ and CD3+CD8+) and the levels of splenic cytokines (IL-2, IL-4, and TNF-α) were significantly increased following PL treatment (p < 0.05). The PL group also showed significantly up-regulated expression levels of cAMP, p-p65, and p-IκBα in the spleen (p < 0.05) by western blot analysis. In summary, PL intervention significantly up-regulated the expression levels of cAMP in the brain (p < 0.05), with subsequent transfer of cAMP to the spleen which promoted phosphorylation of p65 and IκBα. This series of events enhanced the immunity of mice, which confirmed the regulatory effect of PL on the cAMP signaling pathway, thereby enhancing immune function via the brain-spleen axis.
Collapse
Affiliation(s)
- Yijin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jianfu Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ying Gong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Huiting Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China
| |
Collapse
|
30
|
Wulff JP, Traverso LM, Latorre-Estivalis JM, Segura DF, Lanzavecchia SB. Identification of candidate genes associated with host-seeking behavior in the parasitoid wasp Diachasmimorpha longicaudata. BMC Genomics 2024; 25:147. [PMID: 38321385 PMCID: PMC10848486 DOI: 10.1186/s12864-024-10034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Diachasmimorpha longicaudata is a hymenopteran fruit fly endoparasitoid. Females of this species find their hosts for oviposition by using complex sensorial mechanisms in response to physical and chemical stimuli associated with the host and host habitat. Ecological and behavioral aspects related to host-seeking behavior for oviposition have been extensively studied in D. longicaudata, including the identification of volatile organic compounds acting as attractants to females. In this sense, molecular mechanisms of chemoreception have been explored in this species, including a preliminary characterization of odorant-binding proteins (OBPs), chemosensory proteins (CSPs) and odorant receptors (ORs), among other proteins. Functional assays on OBP and CSP have been conducted as a first approach to identify molecular mechanisms associated with the female host-seeking behavior for oviposition. The aims of the present study were to identify the D. longicaudata sensory gene repertoire expressed in the antenna of sexually mature and mated individuals of both sexes, and subsequently, characterize transcripts differentially expressed in the antennae of females to identify candidate genes associated with the female host-seeking behavior for oviposition. RESULTS A total of 33,745 predicted protein-coding sequences were obtained from a de novo antennal transcriptome assembly. Ten sensory-related gene families were annotated as follows: 222 ORs, 44 ionotropic receptors (IRs), 25 gustatory receptors (GRs), 9 CSPs, 13 OBPs, 2 ammonium transporters (AMTs), 8 pickpocket (PPKs) receptors, 16 transient receptor potential (TRP) channels, 12 CD36/SNMPs and 3 Niemann-Pick type C2 like proteins (NPC2-like). The differential expression analysis revealed 237 and 151 transcripts up- and downregulated, respectively, between the female and male antennae. Ninety-seven differentially expressed transcripts corresponded to sensory-related genes including 88 transcripts being upregulated (87 ORs and one TRP) and nine downregulated (six ORs, two CSPs and one OBP) in females compared to males. CONCLUSIONS The sensory gene repertoire of D. longicaudata was similar to that of other taxonomically related parasitoid wasps. We identified a high number of ORs upregulated in the female antenna. These results may indicate that this gene family has a central role in the chemoreception of sexually mature females during the search for hosts and host habitats for reproductive purposes.
Collapse
Affiliation(s)
- Juan P Wulff
- Entomology and Plant Pathology, NCSU, Raleigh, NC, USA.
| | - Lucila M Traverso
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Bs As, Argentina
| | - Jose M Latorre-Estivalis
- Laboratorio de Insectos Sociales, Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, Universidad de Buenos Aires - CONICET, Bs As, Buenos Aires, Argentina
| | - Diego F Segura
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv-IABIMO (CONICET), Hurlingham, Bs As, Argentina
- Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Bs As, Argentina
| | - Silvia B Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv-IABIMO (CONICET), Hurlingham, Bs As, Argentina
| |
Collapse
|
31
|
Li F, Tian J, Di Z, Qu C, Fu Y, Yang S, Luo C. Orco mediates olfactory behavior and oviposition in the whitefly Bemisia tabaci. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105773. [PMID: 38458680 DOI: 10.1016/j.pestbp.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 03/10/2024]
Abstract
Chemical signals play a central role in mediating insect feeding and reproductive behavior, and serve as the primary drivers of the insect-plant interactions. The detection of chemical signals, particularly host plant volatiles, relies heavily on the insect's complex olfactory system. The Bemisia tabaci cryptic species complex is a group of globally important whitefly pests of agricultural and ornamental crops that have a wide range of host plants, but the molecular mechanism of their host plant recognition is not yet clear. In this study, the odorant coreceptor gene of the Whitefly MEAM1 cryptic species (BtOrco) was cloned. The coding sequence of BtOrco was 1413 bp in length, with seven transmembrane structural domains, and it was expressed primarily in the heads of both male and female adult whiteflies, rather than in other tissues. Knockdown of BtOrco using transgenic plant-mediated RNAi technology significantly inhibited the foraging behavior of whiteflies. This inhibition was manifested as a reduced percentage of whiteflies responding to the host plant and a prolonged foraging period. Moreover, there was a substantial suppression of egg-laying activity among adult female whiteflies. These results indicate that BtOrco has the potential to be used as a target for the design of novel active compounds for the development of environmentally friendly whitefly control strategies.
Collapse
Affiliation(s)
- Fengqi Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, PR China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Jiahui Tian
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Zhongjuan Di
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Shiyong Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, China.
| | - Chen Luo
- College of Plant Protection, Yangzhou University, Yangzhou 225009, PR China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China.
| |
Collapse
|
32
|
Dias BG. Legacies of salient environmental experiences-insights from chemosensation. Chem Senses 2024; 49:bjae002. [PMID: 38219073 PMCID: PMC10825851 DOI: 10.1093/chemse/bjae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 01/15/2024] Open
Abstract
Evidence for parental environments profoundly influencing the physiology, biology, and neurobiology of future generations has been accumulating in the literature. Recent efforts to understand this phenomenon and its underlying mechanisms have sought to use species like rodents and insects to model multi-generational legacies of parental experiences like stress and nutritional exposures. From these studies, we have come to appreciate that parental exposure to salient environmental experiences impacts the cadence of brain development, hormonal responses to stress, and the expression of genes that govern cellular responses to stress in offspring. Recent studies using chemosensory exposure have emerged as a powerful tool to shed new light on how future generations come to be influenced by environments to which parents are exposed. With a specific focus on studies that have leveraged such use of salient chemosensory experiences, this review synthesizes our current understanding of the concept, causes, and consequences of the inheritance of chemosensory legacies by future generations and how this field of inquiry informs the larger picture of how parental experiences can influence offspring biology.
Collapse
Affiliation(s)
- Brian G Dias
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, CA, United States
- Division of Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
33
|
Mo BT, Guo H, Li GC, Cao LL, Gong XL, Huang LQ, Wang CZ. Discovery of Insect Attractants Based on the Functional Analyses of Female-Biased Odorant Receptors and Their Orthologs in Two Closely Related Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19408-19421. [PMID: 38039319 DOI: 10.1021/acs.jafc.3c05368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Olfaction plays an instrumental role in host plant selection by phytophagous insects. Helicoverpa assulta and Helicoverpa armigera are two closely related moth species with different host plant ranges. In this study, we first comparatively analyzed the function of 11 female-biased odorant receptors (ORs) and their orthologs in the two species by the Drosophila T1 neuron expression system and then examined the electroantennography responses of the two species to the most effective OR ligands. Behavioral assays using a Y-tube olfactometer indicate that guaiene, the primary ligand of HassOR21-2 and HarmOR21-2, only attracts the females, while benzyl acetone, the main ligand of HassOR35 and HarmOR35, attracts both sexes of the two species. Oviposition preference experiments further confirm that guaiene and benzyl acetone are potent oviposition attractants for the mated females of both species. These findings deepen our understanding of the olfactory coding mechanisms of host plant selection in herbivorous insects and provide valuable attractants for managing pest populations.
Collapse
Affiliation(s)
- Bao-Tong Mo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin-Lin Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin-Lin Gong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
34
|
Zhang C, Tang B, Tan H, Wang X, Dai W. The Orco gene involved in recognition of host plant volatiles and sex pheromone in the chive maggot Bradysia odoriphaga. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105709. [PMID: 38072517 DOI: 10.1016/j.pestbp.2023.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
The insect olfactory recognition system plays a crucial role in the feeding and reproductive behaviors of insects. The odorant receptor co-receptor (Orco), as an obligatory chaperone, is critical for odorant recognition by way of forming heteromeric complexes with conventional odorant receptors (ORs). To investigate the biological functions of Orco in perceiving host plant volatiles and sex pheromone, the Orco gene was identified from the chive maggot Bradysia odoriphaga transcriptome data. Multiple sequence alignment reveals that BodoOrco exhibits an extremely high sequence identity with Orcos from other dipteran insects. The expression of BodoOrco is significantly higher in adults than in larvae and pupae, and the BodoOrco gene is primarily expressed in the antennae of both sexes. Furthermore, the Y-tube assay indicated that knockdown of BodoOrco leads to significant reductions in B. odoriphaga adults' response to all tested host plant volatiles. The dsOrco-treated unmated male adults show less attraction to unmated females and responded slowly compared with dsGFP control group. These results indicated that BodoOrco is involved in recognition of sex pheromone and host plant volatiles in B. odoriphaga and has the potential to be used as a target for the design of novel active compounds for developing ecofriendly pest control strategies.
Collapse
Affiliation(s)
- Chunni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Bowen Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haoyu Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinxiang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
35
|
Buchinger TJ, Li W. Chemical communication and its role in sexual selection across Animalia. Commun Biol 2023; 6:1178. [PMID: 37985853 PMCID: PMC10662023 DOI: 10.1038/s42003-023-05572-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
Sexual selection has been studied as a major evolutionary driver of animal diversity for roughly 50 years. Much evidence indicates that competition for mates favors elaborate signaling traits. However, this evidence comes primarily from a few taxa, leaving sexual selection as a salient evolutionary force across Animalia largely untested. Here, we reviewed the evidence for sexual selection on communication across all animal phyla, classes, and orders with emphasis on chemoreception, the only sense shared across lifeforms. An exhaustive literature review documented evidence for sexual selection on chemosensory traits in 10 of 34 animal phyla and indications of sexual selection on chemosensory traits in an additional 13 phyla. Potential targets of sexual selection include structures and processes involved in production, delivery, and detection of chemical signals. Our review suggests sexual selection plays a widespread role in the evolution of communication and highlights the need for research that better reflects animal diversity.
Collapse
Affiliation(s)
- Tyler J Buchinger
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
- Biology Department, Albion College, Albion, MI, USA.
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
36
|
Hoffmann A, Couzin-Fuchs E. Active smelling in the American cockroach. J Exp Biol 2023; 226:jeb245337. [PMID: 37750327 PMCID: PMC10651109 DOI: 10.1242/jeb.245337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
Motion plays an essential role in sensory acquisition. From changing the position in which information can be acquired to fine-scale probing and active sensing, animals actively control the way they interact with the environment. In olfaction, movement impacts the time and location of odour sampling as well as the flow of odour molecules around the olfactory organs. Employing a detailed spatiotemporal analysis, we investigated how insect antennae interact with the olfactory environment in a species with a well-studied olfactory system - the American cockroach. Cockroaches were tested in a wind-tunnel setup during the presentation of odours with different attractivity levels: colony extract, butanol and linalool. Our analysis revealed significant changes in antennal kinematics when odours were presented, including a shift towards the stream position, an increase in vertical movement and high-frequency local oscillations. Nevertheless, the antennal shifting occurred predominantly in a single antenna while the overall range covered by both antennae was maintained throughout. These findings hold true for both static and moving stimuli and were more pronounced for attractive odours. Furthermore, we found that upon odour encounter, there was an increase in the occurrence of high-frequency antennal sweeps and vertical strokes, which were shown to impact the olfactory environment's statistics directly. Our study lays out a tractable system for exploring the tight coupling between sensing and movement, in which antennal sweeps, in parallel to mammalian sniffing, are actively involved in facilitating odour capture and transport, generating odour intermittency in environments with low air movement where cockroaches dwell.
Collapse
Affiliation(s)
- Antoine Hoffmann
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- IMPRS for Quantitative Behaviour, Ecology and Evolution, 78315 Radolfzell, Germany
| | - Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
37
|
Scott AM, Johnson NS, Siefkes MJ, Li W. Synergistic behavioral antagonists of a sex pheromone reduce reproduction of invasive sea lamprey. iScience 2023; 26:107744. [PMID: 37810212 PMCID: PMC10550721 DOI: 10.1016/j.isci.2023.107744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Sex pheromones impart maximal attraction when their components are present at optimal ratios that confer balanced olfactory inputs in potential mates. Altering ratios or adding pheromone analogs to optimal mixtures may disrupt balanced olfactory antagonism and result in reduced attraction, however, tests in natural populations are lacking. We tested this hypothesis in sea lamprey (Petromyzon marinus), a fish whose male sex pheromone attracts females when two critical components, 3-keto petromyzonol sulfate (3kPZS) and petromyzonol sulfate (PZS), are present at certain ratios. Here, we report a pheromone analog, petromyzonol tetrasulfate (3sPZS), reduced female attraction to 3kPZS but not to PZS. 3sPZS mixed with additional PZS synergistically disrupted female attraction to the male pheromone and reduced spawning by 97% in a high-density population. Our results provide evidence of balanced olfactory antagonism in a vertebrate and establish a tactic to disrupt spawning of sea lamprey, a destructive invader of the Laurentian Great Lakes.
Collapse
Affiliation(s)
- Anne M. Scott
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Nicholas S. Johnson
- U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, Millersburg, MI 49759, USA
| | | | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
38
|
Fernandez MP, Trannoy S, Certel SJ. Fighting Flies: Quantifying and Analyzing Drosophila Aggression. Cold Spring Harb Protoc 2023; 2023:618-627. [PMID: 37019610 DOI: 10.1101/pdb.top107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Aggression is an innate behavior that likely evolved in the framework of defending or obtaining resources. This complex social behavior is influenced by genetic, environmental, and internal factors. Drosophila melanogaster remains an effective and exciting model organism with which to unravel the mechanistic basis of aggression due to its small but sophisticated brain, an impressive array of neurogenetic tools, and robust stereotypical behavioral patterns. The investigations of many laboratories have led to the identification of external and internal state factors that promote aggression, sex differences in the patterns and outcome of aggression, and neurotransmitters that regulate aggression.
Collapse
Affiliation(s)
- Maria P Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027, USA
| | - Severine Trannoy
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Sarah J Certel
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|
39
|
Kooverjee BB, Soma P, van der Nest MA, Scholtz MM, Neser FWC. Copy Number Variation Discovery in South African Nguni-Sired and Bonsmara-Sired Crossbred Cattle. Animals (Basel) 2023; 13:2513. [PMID: 37570321 PMCID: PMC10417447 DOI: 10.3390/ani13152513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Crossbreeding forms part of Climate-Smart beef production and is one of the strategies to mitigate the effects of climate change. Two Nguni-sired and three Bonsmara-sired crossbred animals underwent whole genome sequencing. Following quality control and file preparation, the sequence data were investigated for genome-wide copy number variation (CNV) using the panelcn.MOPS tool. A total of 355 CNVs were identified in the crossbreds, of which 274 were unique in Bonsmara-sired crossbreds and 81 unique in the Nguni-sired crossbreds. Genes that differed in copy number in both crossbreds included genes related to growth (SCRN2, LOC109572916) and fertility-related factors (RPS28, LOC1098562432, LOC109570037). Genes that were present only in the Bonsmara-sired crossbreds included genes relating to lipid metabolism (MAF1), olfaction (LOC109569114), body size (HES7), immunity (LOC10957335, LOC109877039) and disease (DMBT1). Genes that were present only in the Nguni-sired crossbreds included genes relating to ketosis (HMBOX1) and amino acid transport (LOC109572916). Results of this study indicate that Nguni and Bonsmara cattle can be utilized in crossbreeding programs as they may enhance the presence of economically important traits associated with both breeds. This will produce crossbred animals that are good meat producers, grow faster, have high fertility, strong immunity and a better chance of producing in South Africa's harsh climate conditions. Ultimately, this study provides new genetic insights into the adaptability of Nguni and Bonsmara crossbred cattle.
Collapse
Affiliation(s)
| | - Pranisha Soma
- Animal Production, Agricultural Research Council, Pretoria 0062, South Africa;
| | - Magrieta A. van der Nest
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa;
| | - Michiel M. Scholtz
- Animal Production, Agricultural Research Council, Pretoria 0062, South Africa;
- Department of Animal Science, University of the Free State, Bloemfontein 9300, South Africa;
| | - Frederick W. C. Neser
- Department of Animal Science, University of the Free State, Bloemfontein 9300, South Africa;
| |
Collapse
|
40
|
Zhang BY, Li FQ, Qu C, Dewer Y, Fu YJ, Luo C. Identification and Expression Profiles of Candidate Sex Pheromone Biosynthesis Genes by the Transcriptome Analysis of Sex Pheromone Glands in Spodoptera litura and Spodoptera exigua. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7009-7019. [PMID: 37126455 DOI: 10.1021/acs.jafc.3c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Like many insects, females of the Noctuid moth Spodoptera litura and Spodoptera exigua release chemical signals to attract males from a long distance for successful mating. In this study, 98 and 86 genes related to the sex pheromone biosynthesis of S. litura and S. exigua were identified. The tissue expression profiles of highly expressed genes in sex pheromone glands (PGs) were further examined by real-time quantitative polymerase chain reaction. The results displayed that only SlitDes5 and SexiDes5 gene were specifically and significantly overexpressed in the PGs of S. litura and S. exigua. The functional study of SlitDes5 gene showed that RNA interference reduced its expression level by 49.42%. In addition, the content of the sex pheromones of S. litura, Z9E11-14:OAc, Z9E12-14:OAc, E11-14:OAc, and Z9-14:OAc, decreased by 41.98% on average. Our findings provide a basis for better understanding the key genes that affect the biosynthesis of sex pheromones and for determining potential gene targets for pest control strategies.
Collapse
Affiliation(s)
- Bi-Yun Zhang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Feng-Qi Li
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki 12618, Egypt
| | - Yue-Jun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
41
|
Chowdanayaka R, Basappa RN. Mating behaviour and mating signalling modalities in Drosophila nasuta. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
42
|
Liu XY, Yan R, Chen SJ, Zhang JL, Xu HJ. Orco mutagenesis causes deficiencies in olfactory sensitivity and fertility in the migratory brown planthopper, Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2023; 79:1030-1039. [PMID: 36354196 DOI: 10.1002/ps.7286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/29/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The migratory brown planthopper (BPH), Nilaparvata lugens (Hemiptera: Delphacidae), is the most destructive pest affecting rice plants in Asia and feeds exclusively on rice. Studies have investigated the olfactory response of BPHs to the major rice volatile compounds in rice. The insect olfactory co-receptor (Orco) is a crucial component of the olfactory system and is essential for odorant detection. Functional analysis of the Orco gene in BPHs would aid in the identification of their host preference. RESULTS We identified the BPH Orco homologue (NlOrco) by Blast searching the BPH transcriptome with the Drosophila Orco gene sequence. Spatiotemporal analysis indicated that NlOrco is first expressed in the later egg stage, and is expressed mainly in the antennae in adult females. A NlOrco-knockout line (NlOrco-/- ) was generated through clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated mutagenesis. The NlOrco-/- mutants showed no response to rice volatile compounds and consequently no host-plant preference. In addition, NlOrco-/- mutants exhibited extended nymphal duration and impaired fecundity compared with wild-type BPHs. CONCLUSION Our findings indicated that BPHs exhibit strong olfactory responses to major rice volatile compounds and suggest that NlOrco is required for the maximal fitness of BPHs. Our results may facilitate the identification of potential target genes or chemical compounds for BPH control applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Yang Liu
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ru Yan
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sun-Jie Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin-Li Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hai-Jun Xu
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Zhan HX, Li L, Li FQ, Zang LS. Identification and Comparative Expression Profiles of Candidate Olfactory Receptors in the Transcriptomes of the Important Egg Parasitoid Wasp Anastatus japonicus Ashmead (Hymenoptera: Eupelmidae). PLANTS (BASEL, SWITZERLAND) 2023; 12:915. [PMID: 36840263 PMCID: PMC9962093 DOI: 10.3390/plants12040915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Anastatus japonicus Ashmead is an egg parasitoid wasp important for the biological control of fruit crop pests. The olfaction of parasitoids is crucial to searching for host pests in fruit crops. In this study, we sequenced and analyzed the antennal and abdominal transcriptomes of A. japonicus to better understand the olfactory mechanisms in this species. A total of 201 putative olfactory receptor genes were identified, including 184 odorant receptors (ORs) and 17 ionotropic receptors (IRs). Then, we assayed the tissue-specific and sex-biased expression profiles of those genes based on the transcriptional levels. In total, 165 ORs and 15 IRs had upregulated expression in the antennae. The expression levels of 133 ORs, including odorant receptor co-receptor (AjapORco), and 10 IRs, including AjapIR8a, were significantly different between the female and male antennae. Our results provide valuable information for further studies on the molecular mechanisms of the olfactory system in A. japonicus.
Collapse
|
44
|
Ning X, Huang C, Dong C, Jin J, Qiao X, Guo J, Qian W, Cao F, Wan F. RNAi verifications on olfactory defects of an essential biocontrol agent Agasicles hygrophila (Coleoptera: Chrysomelidae) regarding mating and host allocation. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1104962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Alligator weed Alternanthera philoxeroides is a perennial, worldwide pernicious weed. The beetle Agasicles hygrophila is considered to be a classical biological agent used to control A. philoxeroides. In the insect peripheral olfactory system, the odorant receptor co-receptor (ORco) plays an important function in the perception of odors in insects. However, the function of ORco in the mating and host-finding behaviors of A. hygrophila remains unclear. In this study, we characterized the odorant receptor co-receptor of A. hygrophila (AhygOrco). Real-time quantitative PCR (qRT–PCR) showed that AhygOrco was predominantly expressed in the antennae of both male and female adults, and the difference between male and female antennae was not significant. The RNA interference (RNAi) results showed that compared to the control, the injection of AhygOrco dsRNA strongly reduced the expression of AhygOrco by 90% in male beetles and 89% in female beetles. The mate-seeking and feeding behavior of AhygOrco-silenced beetles were significantly inhibited. Male adults were significantly less successful in finding a mate compared to the control group. Furthermore, host allocation abilities toward A. philoxeroides of both adults were significantly repressed. These results indicated that AhygOrco is associated with A. hygrophila feeding and mate-seeking and that inhibition of AhygOrco expression is one of the causes of reduced host and mate recognition in A. hygrophila. Meanwhile, the study provides support for exploring gene functions based on RNAi.
Collapse
|
45
|
Komini A, Kokka I, Vlachakis D, Chrousos GP, Kanaka-Gantenbein C, Bacopoulou F. A Systematic Review on the Adult Alpha Brainwave Activity After Essential Oil Inhalation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1425:545-553. [PMID: 37581828 DOI: 10.1007/978-3-031-31986-0_53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Aroma extracts from plant species have been utilized since ancient times for a variety of discomforting circumstances. Aromatherapy is a recognized complementary therapeutic treatment performed in various ways such as massage or dermal application, with its main uses involving relaxation, pain relief, and stress management. Several studies have outlined that inhalation of fragrance may influence the brain function since their components can cross the blood-brain barrier and interact with central nervous system receptors. The aim of this review was to systematically present findings regarding alpha brain wave activity reported exclusively by electroencephalography. The study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The PubMed and Scopus databases were screened for relevant papers, based on specific eligibility criteria. The final step of the process resulted in 13 studies published between 1998 and 2021, using different essential oils. Most of the studies revealed the increase of alpha brainwave activity post-essential oil inhalation. Given the proven positive outcomes of increased alpha wave activity on several domains such as cognitive performance and better mental state, further research on the impact of essential oil inhalation is warranted.
Collapse
Affiliation(s)
- Asimina Komini
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioulia Kokka
- Outpatient Specialty Clinic for Obsessive Compulsive and Related Disorders, First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Kanaka-Gantenbein
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Flora Bacopoulou
- Center for Adolescent Medicine, and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece.
| |
Collapse
|
46
|
Tesileanu T, Piasini E, Balasubramanian V. Efficient processing of natural scenes in visual cortex. Front Cell Neurosci 2022; 16:1006703. [PMID: 36545653 PMCID: PMC9760692 DOI: 10.3389/fncel.2022.1006703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Neural circuits in the periphery of the visual, auditory, and olfactory systems are believed to use limited resources efficiently to represent sensory information by adapting to the statistical structure of the natural environment. This "efficient coding" principle has been used to explain many aspects of early visual circuits including the distribution of photoreceptors, the mosaic geometry and center-surround structure of retinal receptive fields, the excess OFF pathways relative to ON pathways, saccade statistics, and the structure of simple cell receptive fields in V1. We know less about the extent to which such adaptations may occur in deeper areas of cortex beyond V1. We thus review recent developments showing that the perception of visual textures, which depends on processing in V2 and beyond in mammals, is adapted in rats and humans to the multi-point statistics of luminance in natural scenes. These results suggest that central circuits in the visual brain are adapted for seeing key aspects of natural scenes. We conclude by discussing how adaptation to natural temporal statistics may aid in learning and representing visual objects, and propose two challenges for the future: (1) explaining the distribution of shape sensitivity in the ventral visual stream from the statistics of object shape in natural images, and (2) explaining cell types of the vertebrate retina in terms of feature detectors that are adapted to the spatio-temporal structures of natural stimuli. We also discuss how new methods based on machine learning may complement the normative, principles-based approach to theoretical neuroscience.
Collapse
Affiliation(s)
- Tiberiu Tesileanu
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, United States
| | - Eugenio Piasini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Vijay Balasubramanian
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, PA, United States
- Santa Fe Institute, Santa Fe, NM, United States
| |
Collapse
|
47
|
Han W, Wu Y, Zeng L, Zhao S. Building the Chordata Olfactory Receptor Database using more than 400,000 receptors annotated by Genome2OR. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2539-2551. [PMID: 35696018 DOI: 10.1007/s11427-021-2081-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 06/15/2023]
Abstract
Olfactory receptors are poorly annotated for most genome-sequenced chordates. To address this deficiency, we developed a nhmmer-based olfactory receptor annotation tool Genome2OR ( https://github.com/ToHanwei/Genome2OR.git ), and used it to process 1,695 sequenced chordate genomes in the NCBI Assembly database as of January, 2021. In total, 765,248 olfactory receptor genes were annotated, with 404,426 functional genes and 360,822 pseudogenes, which represents a four-fold increase in the number of annotated olfactory receptors. Based on the annotation data, we built a database called Chordata Olfactory Receptor Database (CORD, https://cord.ihuman.shanghaitech.edu.cn ) for archiving, analysing and disseminating the data. Beyond the primary data, we offer derivative information, including pictures of species, cross references to public databases, structural models, sequence similarity networks and sequence profiles in the CORD. Furthermore, we did brief analyses on these receptors, including building a huge protein sequence similarity network covering all receptors in the database, and clustering them into 20 communities, classifying the 20 communities into three categories based on their presences/absences in ray-finned fish and/or lobe-finned fish. We infer that olfactory receptors should have unique activation and desensitization mechanisms by analysing their sequences and structural models. We believe the CORD can benefit the researchers and the general public who are interested in olfaction.
Collapse
Affiliation(s)
- Wei Han
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Liting Zeng
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
48
|
Ai S, Zhang Y, Chen Y, Zhang T, Zhong G, Yi X. Insect-Microorganism Interaction Has Implicates on Insect Olfactory Systems. INSECTS 2022; 13:1094. [PMID: 36555004 PMCID: PMC9787996 DOI: 10.3390/insects13121094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Olfaction plays an essential role in various insect behaviors, including habitat selection, access to food, avoidance of predators, inter-species communication, aggregation, and reproduction. The olfactory process involves integrating multiple signals from external conditions and internal physiological states, including living environments, age, physiological conditions, and circadian rhythms. As microorganisms and insects form tight interactions, the behaviors of insects are constantly challenged by versatile microorganisms via olfactory cues. To better understand the microbial influences on insect behaviors via olfactory cues, this paper summarizes three different ways in which microorganisms modulate insect behaviors. Here, we deciphered three interesting aspects of microorganisms-contributed olfaction: (1) How do volatiles emitted by microorganisms affect the behaviors of insects? (2) How do microorganisms reshape the behaviors of insects by inducing changes in the synthesis of host volatiles? (3) How do symbiotic microorganisms act on insects by modulating behaviors?
Collapse
Affiliation(s)
- Shupei Ai
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yuhua Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyao Chen
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
49
|
Vandroux P, Li Z, Capoduro R, François MC, Renou M, Montagné N, Jacquin-Joly E. Activation of pheromone-sensitive olfactory neurons by plant volatiles in the moth Agrotis ipsilon does not occur at the level of the pheromone receptor protein. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1035252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In moths, mate finding relies on female-emitted sex pheromones that the males have to decipher within a complex environmental odorant background. Previous studies have shown that interactions of both sex pheromones and plant volatiles can occur in the peripheral olfactory system, and that some plant volatiles can activate the pheromone-specific detection pathway. In the noctuid moth Agrotis ipsilon, plant volatiles such as heptanal activate the receptor neurons tuned to the pheromone component (Z)7-12:OAc. However, the underlying mechanisms remain totally unknown. Following the general rule that states that one olfactory receptor neuron usually expresses only one type of receptor protein, a logic explanation would be that the receptor protein expressed in (Z)7-12:OAc-sensitive neurons recognizes both pheromone and plant volatiles. To test this hypothesis, we first annotated odorant receptor genes in the genome of A. ipsilon and we identified a candidate receptor putatively tuned to (Z)7-12:OAc, named AipsOR3. Then, we expressed it in Drosophila olfactory neurons and determined its response spectrum to a large panel of pheromone compounds and plant volatiles. Unexpectedly, the receptor protein AipsOR3 appeared to be very specific to (Z)7-12:OAc and was not activated by any of the plant volatiles tested, including heptanal. We also found that (Z)7-12:OAc responses of Drosophila neurons expressing AipsOR3 were not affected by a background of heptanal. As the Drosophila olfactory sensilla that house neurons in which AipsOR3 was expressed contain other olfactory proteins – such as odorant-binding proteins – that may influence its selectivity, we also expressed AipsOR3 in Xenopus oocytes and confirmed its specificity and the lack of activation by plant volatiles. Altogether, our results suggest that a still unknown second odorant receptor protein tuned to heptanal and other plant volatiles is expressed in the (Z)7-12:OAc-sensitive neurons of A. ipsilon.
Collapse
|
50
|
Xing T, Yan H, Sun K, Wang Y, Wang X, Zhao Q. Honeycomb: An open-source distributed system for smart buildings. PATTERNS 2022; 3:100605. [DOI: 10.1016/j.patter.2022.100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/17/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022]
|