1
|
Li M, Wang C, Wang J, Du J, Li G. Breastfeeding and Lung Function of Children: A Systematic Review and Meta-Analysis. J Paediatr Child Health 2025. [PMID: 39807749 DOI: 10.1111/jpc.16771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
AIM To evaluate the associations between breastfeeding and lung function among children without known respiratory diseases and to determine the effects of breastfeeding on spirometry. METHODS A systematic search of PubMed, Embase and Cochrane was performed from their inception to 11 Oct 2023 (PROSPERO identifier: CRD42023471664). Observational studies (cohort or cross-sectional or case-control design) and randomised controlled trials (RCTs) were searched. A random-effects model meta-analysis was used to estimate the effect size if significant heterogeneity was detected (p < 0.05 or I2 > 50%); Otherwise, the fixed-effects model was applied. RESULTS In total, 13 observational studies with 18 152 children were included in the qualitative synthesis, and five studies with 5305 children were included in the meta-analysis. Compared to children who were never breastfed, those who were breastfed had better FEV1 (β: 19.34 mL; 95% CI: 6.05, 32.64; p = 0.004) and PEF (β: 87.50 mL/s; 95% CI: 27.43, 147.58; p = 0.004). A similar trend was observed for FVC (β: 17.45 mL; 95% CI: -0.43, 35.33; p = 0.06). Furthermore, compared to children breastfed for less than three to four months, those breastfed for three to four months or more had better FEV1 (β: 19.86 mL; 95% CI: 4.21, 35.51; p = 0.01), FVC (β: 31.90 mL; 95% CI: 7.87, 55.93; p = 0.009) and PEF (β: 75.68 mL/s; 95% CI: 24.40, 126.97; p = 0.004). CONCLUSION This systematic review and meta-analysis revealed associations between breastfeeding and improved lung function in children aged 6-16 years. Further high-quality evidence is needed.
Collapse
Affiliation(s)
- Ming Li
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Chao Wang
- Institute of Statistics and Information, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Jiamin Wang
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Jing Du
- Institute of Statistics and Information, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Gang Li
- School of Public Health, China Medical University, Shenyang, Liaoning, China
- Institute of Statistics and Information, Beijing Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
2
|
Liu Y, Jia Z, Wang Y, Song Y, Yan L, Zhang C. Exploring the mechanisms of Huangqin Qingfei Decoction on acute lung injury by LC-MS combined network pharmacology analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155979. [PMID: 39208658 DOI: 10.1016/j.phymed.2024.155979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/01/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a respiratory disease characterized by pulmonary inflammation and increased microvascular permeability, resulting in significant mortality and a lack of effective pharmacological treatment. Huangqin Qingfei Decoction (HQQFD), a Traditional Chinese Medicine (TCM) prescription known for its heat-clearing and detoxifying properties, has shown efficacy in treating ALI. However, the underlying mechanisms of HQQFD to against ALI remain to be elucidated. PURPOSE This study aims to discover the mechanisms and the principal bioactive compounds contributing to HQQFD's protective effects in the treatment of ALI. METHODS An ultra-high performance liquid chromatography-Orbitrap high-resolution mass spectrometry (UHPLC-Orbitrap HRMS) method was employed to characterize the chemical profile in HQQFD and xenobiotics (prototypes and metabolites) in rat lung tissue. Based on prototypes identified, a symptom-guided pharmacological networks of ALI were performed. Molecular docking and extensive literature reviews were conducted to validate our findings. RESULTS A total of 105 compounds were identified in HQQFD, and a total of 194 HQQFD-related xenobiotics (30 prototypes and 163 metabolites) were detected in rat lung tissue. Based on prototypes identified in rat lung, a symptom-guided pharmacological networks of ALI were constructed, AKT1, TNF, EGFR, MMP2, GSK3B, STAT3, MAPK8, IL-6, CDK2 and TP53 were finally identified as key targets. Subsequently, 11 compounds with protective and therapeutic activity were selected by molecular docking analysis, including genipin 1-gentiobioside, chrysin-6-C-α-L-arabinoside-8-C-β-d-glucoside, scutellarin, chrysin-6-C-β-d-glucoside-8-C-α-L-arabinoside, 6''-O-[(E)-p-coumaroyl] genipin-gentiobioside, apigenin 7-O-glucoside, baicalin, dihydrobaicalin, wogonoside, crocin I, crocetin. Bioinformatics and literature analysis suggested that, baicalin, wogonoside, genipin 1-gentiobioside and crocetin may be the primary active compounds of HQQFD, potentially targeting GSK3B, MAPK8, IL-6, AKT1 and TNF for HQQFD in addressing ALI. The therapeutic effects of HQQFD may be mediated through the IL-17 and PI3K-AKT signaling pathways. CONCLUSION The predominant components of HQQFD against ALI are baicalein, wogonoside, genipin 1-gentiobiosid and crocetin, with the IL-17 and PI3K-AKT pathways playing crucial roles. This study provides a foundational guide for future research and introduces innovative methods for exploring the mechanisms of other drug combinations or TCM formulas.
Collapse
Affiliation(s)
- Yanping Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhe Jia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yun Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanan Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lin Yan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cun Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Acosta-Plasencia M, Castellano JJ, Díaz T, He Y, Marrades RM, Navarro A. Discovering genes and microRNAs involved in human lung development unveils IGFBP3/miR-34a dynamics and their relevance for alveolar differentiation. Stem Cell Res Ther 2024; 15:263. [PMID: 39183355 PMCID: PMC11346212 DOI: 10.1186/s13287-024-03883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND During pseudoglandular stage of the human lung development the primitive bronchial buds are initially conformed by simple tubules lined by endoderm-derived epithelium surrounded by mesenchyme, which will progressively branch into airways and start to form distal epithelial saculles. For first time alveolar type II (AT2) pneumocytes appears. This study aims to characterize the genes and microRNAs involved in this differentiation process and decipher its role in the starting alveolar differentiation. METHODS Gene and microRNA profiling was performed in human embryonic lungs from 7 to 12 post conception weeks (pcw). Protein expression location of candidate genes were analyzed by immunofluorescense in embryonic lung tissue sections. mRNA/miRNA target pairs were identified using computational approaches and their expression was studied in purified epithelial/mesenchymal cell populations and in isolated tips and stalks from the bronchial tree. Additionally, silencing experiments in human embryonic lung mesenchymal cells and in human embryonic tip-derived lung organoids were performed, as well as organoid differentiation studies. AT2 cell markers were studied by qRT-PCR and by immunofluorescence. The TGFB-β phosphorylated pathways was analyzed with membrane protein arrays. Lung explants were cultured in air/liquid interface with/without peptides. RESULTS We identified 88 differentially expressed genes, including IGFBP3. Although IGFBP3 mRNA was detected in both epithelial and mesenchymal populations, the protein was restricted to the epithelium, indicating post-transcriptional regulation preventing IGFBP3 protein expression in the mesenchyme. MicroRNA profiling identified miR-34a as an IGFBP3 regulator. miR-34a was up-regulated in mesenchymal cells, and its silencing in human embryonic lung mesenchymal cells increased IGFBP3 levels. Additionally, IGFBP3 expression showed a marked downregulation from 7 to 12 pcw, suggesting its involvement in the differentiation process. The differentiation of human tip-derived lung embryonic organoids showed a drastic reduction in IGFBP3, supported by the scRNAseq data. IGFBP3 silencing in organoids activated an alveolar-like differentiation process characterized by stem cell markers downregulation and upregulation of AT2 markers. This process was mediated by TGFβ signalling inhibition and BMP pathway activation. CONCLUSIONS The IGFBP3/miR-34a axis restricts IGFBP3 expression in the embryonic undifferentiated lung epithelium, and the progressive downregulation of IGFBP3 during the pseudoglandular stage is required for alveolar differentiation.
Collapse
Affiliation(s)
- Melissa Acosta-Plasencia
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, Department of Surgery and Medical Specializations, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), c. Casanova 143, 08036, Barcelona, Spain
| | - Joan J Castellano
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, Department of Surgery and Medical Specializations, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), c. Casanova 143, 08036, Barcelona, Spain
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Tania Díaz
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, Department of Surgery and Medical Specializations, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), c. Casanova 143, 08036, Barcelona, Spain
| | - Yangyi He
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, Department of Surgery and Medical Specializations, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), c. Casanova 143, 08036, Barcelona, Spain
- School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Ramón M Marrades
- Thoracic Oncology Unit, Hospital Clínic, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036, Barcelona, Spain
- Department of Pneumology, Institut Clínic Respiratori (ICR), Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, Department of Surgery and Medical Specializations, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), c. Casanova 143, 08036, Barcelona, Spain.
- Thoracic Oncology Unit, Hospital Clínic, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036, Barcelona, Spain.
| |
Collapse
|
4
|
Sui X, Sui Y, Long P, Wang Y, Chen Y, Zhai W, Gao L. Arginase 1 does not affect RNA m6A methylation in mouse fetal lung. Birth Defects Res 2024; 116:e2318. [PMID: 38362594 DOI: 10.1002/bdr2.2318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Arginase 1 (Arg1) encodes a key enzyme that catalyzes the metabolism of arginine to ornithine and urea. In our recent study, we found that knockdown of Arg1 in the lungs of fetal mice induces apoptosis of epithelial cells and dramatically delays initiation of labor. As the most abundant internal mRNA modification, N6 -methyladenosine (m6 A) has been found to play important roles in lung development and cellular differentiation. However, if the knockdown of Arg1 affects the RNA m6A modification in fetal lungs remains unknown. METHODS In the current study, the RNA m6A levels and the expression of RNA m6A related enzymes were validated in 13.0 dpc fetal lungs that Arg1 was knocked down by adeno-associated virus carrying Arg1-shRNA, using western blot, immunofluorescence, and RT-qPCR. RESULTS No statistical differences were found in the expression of methyltransferase, demethylases, and binding proteins in the fetal lungs between AAV-shArg1-injected mice and AAV-2/9-injected mice. Besides, there is no significant change of overall RNA m6A level in fetal lungs from AAV-shArg1-injected mice, compared with that from AAV-2/9-injected mice. CONCLUSIONS These results indicate that arginase 1 does not affect RNA m6A methylation in mouse fetal lung, and the mechanisms other than RNA m6A modification underlying the effects of Arg1 knockdown on the fetal lung development and their interaction with labor initiation need to be further explored.
Collapse
Affiliation(s)
- Xuesong Sui
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Yanyu Sui
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Peihua Long
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Yifei Wang
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Yu Chen
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Wenjia Zhai
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Lu Gao
- Department of Physiology, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
5
|
Papavassiliou KA, Anagnostopoulos N, Papavassiliou AG. Glucocorticoid Receptor Signaling in NSCLC: Mechanistic Aspects and Therapeutic Perspectives. Biomolecules 2023; 13:1286. [PMID: 37759686 PMCID: PMC10526876 DOI: 10.3390/biom13091286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Recent advances in non-small cell lung cancer (NSCLC) biology and the discovery of novel therapeutic targets have led to the development of new pharmacological agents that may improve the clinical outcome of patients with NSCLC. The glucocorticoid receptor (GR) is an evolutionarily conserved protein belonging to the nuclear receptor superfamily of transcription factors and mediates the diverse actions of glucocorticoids in cells. Data suggest that the GR may play a relevant role in the molecular mechanisms of NSCLC tumorigenesis and malignant progression. Additionally, evidence indicates that glucocorticoids may affect the efficacy of standard treatment, including chemotherapy, immune checkpoint inhibitors, and targeted therapy. Furthermore, several findings show that GR expression may probably be associated with NSCLC patient survival. Finally, glucocorticoids may be used as therapeutic agents for the clinical management of NSCLC patients. Here, we briefly review the latest advances on the biological role of GR signaling in NSCLC and discuss the potential use of the GR as a prognostic and predictive biomarker. Importantly, we explore the therapeutic potential of glucocorticoids and the effect of adding such drugs to standard therapies for NSCLC.
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (N.A.)
| | - Nektarios Anagnostopoulos
- First Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (N.A.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
6
|
Yu Y, Liu Y, Sui X, Sui Y, Wang Z, Mendelson CR, Gao L. Arginase 1 and L-arginine coordinate fetal lung development and the initiation of labor in mice. EMBO Rep 2023; 24:e56352. [PMID: 37291976 PMCID: PMC10398669 DOI: 10.15252/embr.202256352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Fetal development and parturition are precisely regulated processes that involve continuous crosstalk between the mother and the fetus. Our previous discovery that wild-type mice carrying steroid receptor coactivator (Src)-1 and Src-2 double-deficient fetuses exhibit impaired lung development and delayed labor, which indicates that the signals for parturition emanate from the fetus. In this study, we perform RNA sequencing and targeted metabolomics analyses of the lungs from fetal Src-1/-2 double-knockout mice and find that expression of arginase 1 (Arg1) is significantly decreased, accompanied by increased levels of the Arg1 substrate L-arginine. Knockdown of Arg1 in the lungs of fetal mice induces apoptosis of epithelial cells and dramatically delays initiation of labor. Moreover, treatment of human myometrial smooth muscle cells with L-arginine significantly inhibits spontaneous contractions by attenuating activation of NF-κB and downregulating expression of contraction-associated protein genes. Transcription factors GR and C/EBPβ increase transcription of Arg1 in an Src-1/Src-2-dependent manner. These findings provide new evidence that fetus-derived factors may play dual roles in coordinating fetal lung development and the initiation of labor.
Collapse
Affiliation(s)
- Yaqin Yu
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Yuanyuan Liu
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Xuesong Sui
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Yanyu Sui
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Zhe Wang
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Carole R Mendelson
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of Obstetrics and GynecologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Lu Gao
- Department of PhysiologyNaval Medical UniversityShanghaiChina
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiChina
| |
Collapse
|
7
|
Ren J, Darby JRT, Lock MC, Holman SL, Saini BS, Bradshaw EL, Orgeig S, Perumal SR, Wiese MD, Macgowan CK, Seed M, Morrison JL. Impact of maternal late gestation undernutrition on surfactant maturation, pulmonary blood flow and oxygen delivery measured by magnetic resonance imaging in the sheep fetus. J Physiol 2021; 599:4705-4724. [PMID: 34487347 DOI: 10.1113/jp281292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/01/2021] [Indexed: 11/08/2022] Open
Abstract
Restriction of fetal substrate supply has an adverse effect on surfactant maturation in the lung and thus affects the transition from in utero placental oxygenation to pulmonary ventilation ex utero. The effects on surfactant maturation are mediated by alteration in mechanisms regulating surfactant protein and phospholipid synthesis. This study aimed to determine the effects of late gestation maternal undernutrition (LGUN) and LGUN plus fetal glucose infusion (LGUN+G) compared to Control on surfactant maturation and lung development, and the relationship with pulmonary blood flow and oxygen delivery ( D O 2 ) measured by magnetic resonance imaging (MRI) with molecules that regulate lung development. LGUN from 115 to 140 days' gestation significantly decreased fetal body weight, which was normalized by glucose infusion. LGUN and LGUN+G resulted in decreased fetal plasma glucose concentration, with no change in fetal arterial P O 2 compared to control. There was no effect of LGUN and LGUN+G on the mRNA expression of surfactant proteins (SFTP) and genes regulating surfactant maturation in the fetal lung. However, blood flow in the main pulmonary artery was significantly increased in LGUN, despite no change in blood flow in the left or right pulmonary artery and D O 2 to the fetal lung. There was a negative relationship between left pulmonary artery flow and D O 2 to the left lung with SFTP-B and GLUT1 mRNA expression, while their relationship with VEGFR2 was positive. These results suggest that increased pulmonary blood flow measured by MRI may have an adverse effect on surfactant maturation during fetal lung development. KEY POINTS: Maternal undernutrition during gestation alters fetal lung development by impacting surfactant maturation. However, the direction of change remains controversial. We examined the effects of maternal late gestation maternal undernutrition (LGUN) on maternal and fetal outcomes, signalling pathways involved in fetal lung development, pulmonary haemodynamics and oxygen delivery in sheep using a combination of molecular and magnetic resonance imaging (MRI) techniques. LGUN decreased fetal plasma glucose concentration without affecting arterial P O 2 . Surfactant maturation was not affected; however, main pulmonary artery blood flow was significantly increased in the LGUN fetuses. This is the first study to explore the relationship between in utero MRI measures of pulmonary haemodynamics and lung development. Across all treatment groups, left pulmonary artery blood flow and oxygen delivery were negatively correlated with surfactant protein B mRNA and protein expression in late gestation.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Brahmdeep S Saini
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Emma L Bradshaw
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sandra Orgeig
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sunthara R Perumal
- Preclinical Imaging & Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Michael D Wiese
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Mike Seed
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Kino T, Burd I, Segars JH. Dexamethasone for Severe COVID-19: How Does It Work at Cellular and Molecular Levels? Int J Mol Sci 2021; 22:ijms22136764. [PMID: 34201797 PMCID: PMC8269070 DOI: 10.3390/ijms22136764] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by infection of the severe respiratory syndrome coronavirus-2 (SARS-CoV-2) significantly impacted human society. Recently, the synthetic pure glucocorticoid dexamethasone was identified as an effective compound for treatment of severe COVID-19. However, glucocorticoids are generally harmful for infectious diseases, such as bacterial sepsis and severe influenza pneumonia, which can develop respiratory failure and systemic inflammation similar to COVID-19. This apparent inconsistency suggests the presence of pathologic mechanism(s) unique to COVID-19 that renders this steroid effective. We review plausible mechanisms and advance the hypothesis that SARS-CoV-2 infection is accompanied by infected cell-specific glucocorticoid insensitivity as reported for some other viruses. This alteration in local glucocorticoid actions interferes with undesired glucocorticoid to facilitate viral replication but does not affect desired anti-inflammatory properties in non-infected organs/tissues. We postulate that the virus coincidentally causes glucocorticoid insensitivity in the process of modulating host cell activities for promoting its replication in infected cells. We explore this tenet focusing on SARS-CoV-2-encoding proteins and potential molecular mechanisms supporting this hypothetical glucocorticoid insensitivity unique to COVID-19 but not characteristic of other life-threatening viral diseases, probably due to a difference in specific virally-encoded molecules and host cell activities modulated by them.
Collapse
Affiliation(s)
- Tomoshige Kino
- Laboratory of Molecular and Genomic Endocrinology, Sidra Medicine, Doha 26999, Qatar
- Correspondence: ; Tel.: +974-4003-7566
| | - Irina Burd
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (I.B.); (J.H.S.)
| | - James H. Segars
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (I.B.); (J.H.S.)
| |
Collapse
|
9
|
Johnson DM, Wells MB, Fox R, Lee JS, Loganathan R, Levings D, Bastien A, Slattery M, Andrew DJ. CrebA increases secretory capacity through direct transcriptional regulation of the secretory machinery, a subset of secretory cargo, and other key regulators. Traffic 2021; 21:560-577. [PMID: 32613751 DOI: 10.1111/tra.12753] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022]
Abstract
Specialization of many cells, including the acinar cells of the salivary glands and pancreas, milk-producing cells of mammary glands, mucus-secreting goblet cells, antibody-producing plasma cells, and cells that generate the dense extracellular matrices of bone and cartilage, requires scaling up both secretory machinery and cell-type specific secretory cargo. Using tissue-specific genome-scale analyses, we determine how increases in secretory capacity are coordinated with increases in secretory load in the Drosophila salivary gland (SG), an ideal model for gaining mechanistic insight into the functional specialization of secretory organs. Our findings show that CrebA, a bZIP transcription factor, directly binds genes encoding the core secretory machinery, including protein components of the signal recognition particle and receptor, ER cargo translocators, Cop I and Cop II vesicles, as well as the structural proteins and enzymes of these organelles. CrebA directly binds a subset of SG cargo genes and CrebA binds and boosts expression of Sage, a SG-specific transcription factor essential for cargo expression. To further enhance secretory output, CrebA binds and activates Xbp1 and Tudor-SN. Thus, CrebA directly upregulates the machinery of secretion and additional factors to increase overall secretory capacity in professional secretory cells; concomitant increases in cargo are achieved both directly and indirectly.
Collapse
Affiliation(s)
- Dorothy M Johnson
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael B Wells
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rebecca Fox
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joslynn S Lee
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Rajprasad Loganathan
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Levings
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Abigail Bastien
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Deborah J Andrew
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Repression of transcription by the glucocorticoid receptor: A parsimonious model for the genomics era. J Biol Chem 2021; 296:100687. [PMID: 33891947 PMCID: PMC8141881 DOI: 10.1016/j.jbc.2021.100687] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are potent anti-inflammatory drugs that are used to treat an extraordinary range of human disease, including COVID-19, underscoring the ongoing importance of understanding their molecular mechanisms. Early studies of GR signaling led to broad acceptance of models in which glucocorticoid receptor (GR) monomers tether repressively to inflammatory transcription factors, thus abrogating inflammatory gene expression. However, newer data challenge this core concept and present an exciting opportunity to reframe our understanding of GR signaling. Here, we present an alternate, two-part model for transcriptional repression by glucocorticoids. First, widespread GR-mediated induction of transcription results in rapid, primary repression of inflammatory gene transcription and associated enhancers through competition-based mechanisms. Second, a subset of GR-induced genes, including targets that are regulated in coordination with inflammatory transcription factors such as NF-κB, exerts secondary repressive effects on inflammatory gene expression. Within this framework, emerging data indicate that the gene set regulated through the cooperative convergence of GR and NF-κB signaling is central to the broad clinical effectiveness of glucocorticoids in terminating inflammation and promoting tissue repair.
Collapse
|
11
|
Delestrain C, Aissat A, Simon S, Tarze A, Duprat E, Nattes E, Costes B, Delattre V, Finet S, Fanen P, Epaud R. Methylprednisolone pulse treatment improves ProSP-C trafficking in twins with SFTPC mutation: An isoform story? Br J Clin Pharmacol 2021; 87:2361-2373. [PMID: 33179299 DOI: 10.1111/bcp.14645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 11/28/2022] Open
Abstract
Mutations in the gene encoding surfactant protein C (SP-C) cause interstitial lung disease (ILD), and glucocorticosteroid (GC) treatment is the most recognized therapy in children. We aimed to decipher the mechanisms behind successful GC treatment in twins carrying a BRICHOS c.566G > A (p.Cys189Tyr) mutation in the SP-C gene (SFTPC). METHODS: The twins underwent bronchoscopy before and after GC treatment and immunoblotting analysis of SP-C proprotein (proSP-C) and SP-C mature in bronchoalveolar fluid (BALF). Total RNA was extracted and analysed using quantitative real-time PCR assays. In A549 cells, the processing of mutated protein C189Y was studied by immunofluorescence and immunoblotting after heterologous expression of eukaryotic vectors containing wild type or C189Y mutant cDNA. RESULTS: Before treatment, BALF analysis identified an alteration of the proSP-C maturation process. Functional study of C189Y mutation in alveolar A549 cells showed that pro-SP-CC189Y was retained within the endoplasmic reticulum together with ABCA3. After 5 months of GC treatment with clinical benefit, the BALF analysis showed an improvement of proSP-C processing. SFTPC mRNA analysis in twins revealed a decrease in the expression of total SFTPC mRNA and a change in its splicing, leading to the expression of a second shorter proSP-C isoform. In A549 cells, the processing and the stability of this shorter wild-type proSP-C isoform was similar to that of the longer isoform, but the half-life of the mutated shorter isoform was decreased. These results suggest a direct effect of GC on proSP-C metabolism through reducing the SFTPC mRNA level and favouring the expression of a less stable protein isoform.
Collapse
Affiliation(s)
- Céline Delestrain
- Université Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France.,Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, 94000, France.,FHU SENEC, Créteil, France
| | - Abdel Aissat
- Université Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France.,FHU SENEC, Créteil, France.,AP-HP, Hôpital Henri Mondor, Pôle de Biologie-Pathologie, Département de Génétique, Créteil, 94000, France
| | - Stéphanie Simon
- Université Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Agathe Tarze
- Université Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Elodie Duprat
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Elodie Nattes
- Université Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France.,Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, 94000, France.,FHU SENEC, Créteil, France
| | - Bruno Costes
- Université Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France.,FHU SENEC, Créteil, France.,AP-HP, Hôpital Henri Mondor, Pôle de Biologie-Pathologie, Département de Génétique, Créteil, 94000, France
| | - Valérie Delattre
- AP-HP, Hôpital Henri Mondor, Pôle de Biologie-Pathologie, Département de Génétique, Créteil, 94000, France
| | - Stéphanie Finet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Pascale Fanen
- Université Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France.,FHU SENEC, Créteil, France.,AP-HP, Hôpital Henri Mondor, Pôle de Biologie-Pathologie, Département de Génétique, Créteil, 94000, France
| | - Ralph Epaud
- Université Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France.,Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, 94000, France.,FHU SENEC, Créteil, France
| |
Collapse
|
12
|
The role of HOPX in normal tissues and tumor progression. Biosci Rep 2020; 40:221873. [PMID: 31934721 PMCID: PMC6997107 DOI: 10.1042/bsr20191953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
The homeodomain-only protein homeobox (HOPX) as the smallest homeodomain protein, lacks certain conserved residues required for DNA binding. Through our literature search, we reviewed the current understandings of HOPX in normal tissues and tumor progression. HOPX was initially identified as a critical transcription factor in various normal tissues, which interacted with serum response factor (SRF) or other substance to regulate normal physiological function. However, HOPX is at a low expression or methylation level in tumors. These data indicated that HOPX may play a very important role in regulating differentiation phenotype and tumor suppressive function. We predicted the prognosis of HOPX in tumors from TCGA database and discussed the downstream genes of HOPX. To understand how HOPX is involved in the mechanisms between physical and pathological conditions could lead to novel therapeutic strategies for treatment.
Collapse
|
13
|
Chen J, Mishra R, Yu Y, McDonald JG, Eckert KM, Gao L, Mendelson CR. Decreased 11β-hydroxysteroid dehydrogenase 1 in lungs of steroid receptor coactivator (Src)-1/-2 double-deficient fetal mice is caused by impaired glucocorticoid and cytokine signaling. FASEB J 2020; 34:16243-16261. [PMID: 33070362 DOI: 10.1096/fj.202001809r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Our previous research revealed that steroid receptor coactivators (Src)-1 and -2 serve a critical cooperative role in production of parturition signals, surfactant protein A and platelet-activating factor, by the developing mouse fetal lung (MFL). To identify the global landscape of genes in MFL affected by Src-1/-2 double-deficiency, we conducted RNA-seq analysis of lungs from 18.5 days post-coitum (dpc) Src-1-/- /-2-/- (dKO) vs. WT fetuses. One of the genes most highly downregulated (~4.8 fold) in Src-1/-2 dKO fetal lungs encodes 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which catalyzes conversion of inactive 11-dehydrocorticosterone to the glucocorticoid receptor (GR) ligand, corticosterone. Glucocorticoids were reported to upregulate 11β-HSD1 expression in various cell types via induction of C/EBP transcription factors. We observed that C/ebpα and C/ebpβ mRNA and protein were markedly reduced in Src-1/-2 double-deficient (Src-1/-2d/d ) fetal lungs, compared to WT. Moreover, glucocorticoid induction of 11β-hsd1, C/ebpα and C/ebpβ in cultured MFL epithelial cells was prevented by the SRC family inhibitor, SI-2. Cytokines also contribute to the induction of 11β-HSD1. Expression of IL-1β and TNFα, which dramatically increased toward term in lungs of WT fetuses, was markedly reduced in Src-1/-2d/d fetal lungs. Our collective findings suggest that impaired lung development and surfactant synthesis in Src-1/-2d/d fetuses are likely caused, in part, by decreased GR and cytokine induction of C/EBP and NF-κB transcription factors. This results in reduced 11β-HSD1 expression and glucocorticoid signaling within the fetal lung, causing a break in the glucocorticoid-induced positive feedforward loop.
Collapse
Affiliation(s)
- Jingfei Chen
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ritu Mishra
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yaqin Yu
- Department of Physiology, Second Military Medical University, Shanghai, P.R. China
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kaitlyn M Eckert
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lu Gao
- Department of Physiology, Second Military Medical University, Shanghai, P.R. China.,School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Carole R Mendelson
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
14
|
Schmiedl A, Bokel K, Huhn V, Ionescu L, Zscheppang K, Dammann CEL. Bone marrow stem cells accelerate lung maturation and prevent the LPS-induced delay of morphological and functional fetal lung development in the presence of ErbB4. Cell Tissue Res 2020; 380:547-564. [PMID: 32055958 DOI: 10.1007/s00441-019-03145-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/18/2019] [Indexed: 12/28/2022]
Abstract
ErbB4 is a regulator in lung development and disease. Prenatal infection is an important risk factor for the delay of morphologic lung development, while promoting the maturation of the surfactant system. Bone marrow-derived mesenchymal stem cells (BMSCs) have the potential to prevent lung injury. We hypothesized that BMSCs in comparison with hematopoietic control stem cells (HPSCs) minimize the lipopolysaccharide (LPS)-induced lung injury only when functional ErbB4 receptor is present. We injected LPS and/or murine green fluorescent protein-labeled BMSCs or HPSCs into the amniotic cavity of transgenic ErbB4heart mothers at gestational day 17. Fetal lungs were analyzed 24 h later. BMSCs minimized significantly LPS-induced delay in morphological lung maturation consisting of a stereologically measured increase in mesenchyme and septal thickness and a decrease of future airspace and septal surface. This effect was more prominent and significant in the ErbB4heart+/- lungs, suggesting that the presence of functioning ErbB4 signaling is required. BMSC also diminished the LPS induced increase in surfactant protein (Sftp)a mRNA and decrease in Sftpc mRNA is only seen if ErbB4 is present. The reduction of morphological delay of lung development and of levels of immune-modulating Sftp was more pronounced in the presence of the ErbB4 receptor. Thus, ErbB4 may be required for the protective signaling of BMSCs.
Collapse
Affiliation(s)
- Andreas Schmiedl
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center of Lung Research (DZL), Hannover, Germany.
| | - Kyra Bokel
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Verena Huhn
- Department of Pediatric Pulmonology and Neonatology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Lavinia Ionescu
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Katja Zscheppang
- Department of Pediatric Pulmonology and Neonatology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Christiane E L Dammann
- Department of Pediatric Pulmonology and Neonatology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA, USA
- Graduate School for Biomedical Sciences, Tufts University, Boston, MA, USA
| |
Collapse
|
15
|
Double knock-out of Hmga1 and Hipk2 genes causes perinatal death associated to respiratory distress and thyroid abnormalities in mice. Cell Death Dis 2019; 10:747. [PMID: 31582725 PMCID: PMC6776533 DOI: 10.1038/s41419-019-1975-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 12/02/2022]
Abstract
The serine–threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) modulates important cellular functions during development, acting as a signal integrator of a wide variety of stress signals, and as a regulator of transcription factors and cofactors. We have previously demonstrated that HIPK2 binds and phosphorylates High-Mobility Group A1 (HMGA1), an architectural chromatinic protein ubiquitously expressed in embryonic tissues, decreasing its binding affinity to DNA. To better define the functional role of HIPK2 and HMGA1 interaction in vivo, we generated mice in which both genes are disrupted. About 50% of these Hmga1/Hipk2 double knock-out (DKO) mice die within 12 h of life (P1) for respiratory failure. The DKO mice present an altered lung morphology, likely owing to a drastic reduction in the expression of surfactant proteins, that are required for lung development. Consistently, we report that both HMGA1 and HIPK2 proteins positively regulate the transcriptional activity of the genes encoding the surfactant proteins. Moreover, these mice display an altered expression of thyroid differentiation markers, reasonably because of a drastic reduction in the expression of the thyroid-specific transcription factors PAX8 and FOXE1, which we demonstrate here to be positively regulated by HMGA1 and HIPK2. Therefore, these data indicate a critical role of HIPK2/HMGA1 cooperation in lung and thyroid development and function, suggesting the potential involvement of their impairment in the pathogenesis of human lung and thyroid diseases.
Collapse
|
16
|
Ventilation strategies in transition from neonatal respiratory distress to chronic lung disease. Semin Fetal Neonatal Med 2019; 24:101035. [PMID: 31759915 DOI: 10.1016/j.siny.2019.101035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite the advance in neonatal care over the past few decades, preventing preterm infants with respiratory distress syndrome progress to bronchopulmonary dysplasia remained challenging. In this review, we will discuss the respiratory support strategies in preterm infants with RDS evolving into BPD based on the changes in pulmonary mechanics and pathophysiology as well as currently available evidence.
Collapse
|
17
|
Thorenoor N, Umstead TM, Zhang X, Phelps DS, Floros J. Survival of Surfactant Protein-A1 and SP-A2 Transgenic Mice After Klebsiella pneumoniae Infection, Exhibits Sex-, Gene-, and Variant Specific Differences; Treatment With Surfactant Protein Improves Survival. Front Immunol 2018; 9:2404. [PMID: 30459763 PMCID: PMC6232836 DOI: 10.3389/fimmu.2018.02404] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/28/2018] [Indexed: 01/23/2023] Open
Abstract
Surfactant protein A (SP-A) is involved in lung innate host defense and surfactant-related functions. The human SFTPA1 and SFTPA2 genes encode SP-A1 and SP-2 proteins, and each gene has been identified with numerous genetic variants. SP-A1 and SP-A2 differentially enhance bacterial phagocytosis. Sex differences have been observed in pulmonary disease and in survival of wild type and SP-A knockout (KO) mice. The impact of human SP-A variants on survival after infection is unknown. In this study, we determined whether SP-A variants differentially affect survival of male and female mice infected with Klebsiella pneumoniae. Transgenic (TG) mice, where each carries a different human (h) SP-A1 (6A2, 6A4), SP-A2 (1A0, 1A3) variant or both variants SP-A1/SP-A2 (6A2/1A0, co-ex), and SP-A- KO, were utilized. The hTG and KO mice were infected intratracheally with K. pneumoniae bacteria, and groups of KO mice were treated with SP-A1 or SP-A2 either prior to and/or at the time of infection and survival for both experimental groups was monitored over 14 days. The binding of purified SP-A1 and SP-A2 proteins to phagocytic and non-phagocytic cells and expression of cell surface proteins in alveolar macrophages (AM) from SP-A1 and SP-A2 mice was examined. We observed gene-, variant-, and sex-specific (except for co-ex) differences with females showing better survival: (a) Gene-specific differences: co-ex = SP-A2 > SP-A1 > KO (both sexes); (b) Variant-specific survival co-ex (6A2/1A0) = 1A0 > 1A3 = 6A2 > 6A4 (both sexes); (c) KO mice treated with SPs (SP-A1 or SP-A2) proteins exhibit significantly (p < 0.05) better survival; (d) SP-A1 and SP-A2 differentially bind to phagocytic, but not to non-phagocytic cells, and AM from SP-A1 and SP-A2 hTG mice exhibit differential expression of cell surface proteins. Our results indicate that sex and SP-A genetics differentially affect survival after infection and that exogenous SP-A1/SP-A2 treatment significantly improves survival. We postulate that the differential SP-A1/SP-A2 binding to the phagocytic cells and the differential expression of cell surface proteins that bind SP-A by AM from SP-A1 and SP-A2 mice play a role in this process. These findings provide insight into the importance of sex and innate immunity genetics in survival following infection.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Todd M Umstead
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Xuesheng Zhang
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - David S Phelps
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Joanna Floros
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics & Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
18
|
Chen QF, Kuang XD, Yuan QF, Hao H, Zhang T, Huang YH, Zhou XY. Lipoxin A 4 attenuates LPS-induced acute lung injury via activation of the ACE2-Ang-(1-7)-Mas axis. Innate Immun 2018; 24:285-296. [PMID: 29969931 PMCID: PMC6830918 DOI: 10.1177/1753425918785008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Previous studies have reported that lipoxin A4 (LXA4) and the angiotensin
I-converting enzyme 2 (ACE2), angiotensin-(1-7) [Ang-(1-7)], and its receptor
Mas [ACE2-Ang-(1-7)-Mas] axis play important protective roles in acute lung
injury (ALI). However, there is still no direct evidence of LXA4-mediated
protection via the ACE2-Ang-(1-7)-Mas axis during ALI. This work was performed
using an LPS-induced ALI mouse model and the data indicated the following.
First, the animal model was established successfully and LXA4 ameliorated
LPS-induced ALI. Second, LXA4 could increase the concentration and activity of
ACE2 and the levels of Ang-(1-7) and Mas markedly. Third, LXA4 decreased the
levels of TNF-α, IL-1β, and reactive oxygen species while increasing IL-10
levels. Fourth, LXA4 inhibited the activation of the NF-κB signal pathway and
repressed the degradation of inhibitor of NF-κB, the phosphorylation of NF-κB,
and the translocation of NF-κB. Finally, and more importantly, BOC-2 (LXA4
receptor inhibitor), MLN-4760 (ACE2 inhibitor), and A779 (Mas receptor
antagonist) were found to reverse all of the effects of LXA4. Our data provide
evidence that LXA4 protects the lung from ALI through regulation of the
ACE2-Ang-(1-7)-Mas axis.
Collapse
Affiliation(s)
- Qiong-Feng Chen
- 1 Department of Pathophysiology, Medical College of Nanchang University, China
| | - Xiao-Dong Kuang
- 2 Department of Pathology, Medical College of Nanchang University, China
| | - Qi-Feng Yuan
- 3 The Second Clinical Medical College, Nanchang University, China
| | - Hua Hao
- 4 Department of Pathology, Second Affiliated Hospital of Nanchang University, China
| | - Ting Zhang
- 1 Department of Pathophysiology, Medical College of Nanchang University, China
| | - Yong-Hong Huang
- 1 Department of Pathophysiology, Medical College of Nanchang University, China.,5 Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, China
| | - Xiao-Yan Zhou
- 1 Department of Pathophysiology, Medical College of Nanchang University, China.,5 Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, China
| |
Collapse
|
19
|
Gong J, Qiu C, Huang D, Zhang Y, Yu S, Zeng C. Integrative functional analysis of super enhancer SNPs for coronary artery disease. J Hum Genet 2018; 63:627-638. [PMID: 29491472 DOI: 10.1038/s10038-018-0422-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/13/2018] [Accepted: 01/29/2018] [Indexed: 12/31/2022]
Abstract
Clinical research in coronary artery disease (CAD) primarily focused on genetic variants located in protein-coding regions. Recently, mutations fall within non-coding regions have been suggested to be essential to the pathogenesis of human complex disease. Super enhancer is a densely spaced cluster of transcriptional enhancers located in non-coding regions, which is critical for regulating cell-type specific gene expression. However, the underlying mechanism of the super enhancer single-nucleotide polymorphisms (SNPs) affecting the risk of CAD remains unclear. By integrating genome-wide association study (GWAS) meta-analysis of CAD and cell/tissue-specific histone modification data set, we identified 366 potential CAD-associated super enhancer SNPs in 67 loci, including 94 SNPs that are involved in regulating chromatin interactive and/or affecting the transcription factors binding affinity. Interestingly, we found 7 novel functional loci (CBFA2T3, ZMIZ1, DIP2B, SCNN1D/ACAP3, TMEM105, CAMK2G, and MAPK1) that CAD-associated super enhancer SNPs were clustered into the same or neighboring super enhancers. Pathway analysis showed a significant enrichment in several well-known signaling and regulatory processes, e.g., cAMP signaling pathway and ErbB signaling pathway, which play a key role in CAD metabolism. Our results highlight the potential functional importance of CAD-associated super enhancer SNPs and provide the targets for further insights on the pathogenesis of CAD.
Collapse
Affiliation(s)
- Juexiao Gong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Chuan Qiu
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Dan Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yiyan Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shengyong Yu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| | - Chunping Zeng
- Department of Endocrinology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Tomlinson MS, Bommarito PA, Martin EM, Smeester L, Fichorova RN, Onderdonk AB, Kuban KCK, O’Shea TM, Fry RC. Microorganisms in the human placenta are associated with altered CpG methylation of immune and inflammation-related genes. PLoS One 2017; 12:e0188664. [PMID: 29240761 PMCID: PMC5730116 DOI: 10.1371/journal.pone.0188664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/10/2017] [Indexed: 12/26/2022] Open
Abstract
Microorganisms in the placenta have been linked to adverse pregnancy outcomes as well as neonatal illness. Inflammation in the placenta has been identified as a contributing factor in this association, but the underlying biological mechanisms are not yet fully understood. The placental epigenome may serve as an intermediate between placental microbes and inflammation, contributing to adverse outcomes in the offspring. In the present study, genome-wide DNA methylation (n = 486,428 CpG sites) of 84 placentas was analyzed in relation to 16 species of placental microorganisms using samples collected from the Extremely Low Gestation Age Newborns (ELGAN) cohort. A total of n = 1,789 CpG sites, corresponding to n = 1,079 genes, displayed differential methylation (q<0.1) in relation to microorganisms. The altered genes encode for proteins that are involved in immune/inflammatory responses, specifically the NF-κB signaling pathway. These data support bacteria-dependent epigenetic patterning in the placenta and provide potential insight into mechanisms that associate the presence of microorganisms in the placenta to pregnancy and neonatal outcomes. This study lays the foundation for investigations of the placental microbiome and its role in placental function.
Collapse
Affiliation(s)
- Martha Scott Tomlinson
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Paige A. Bommarito
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Elizabeth M. Martin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Raina N. Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics and Gynecology, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Andrew B. Onderdonk
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Karl C. K. Kuban
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston, Massachusetts, United States of America
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ding Q, Liu GQ, Zeng YY, Zhu JJ, Liu ZY, Zhang X, Huang JA. Role of IL-17 in LPS-induced acute lung injury: an in vivo study. Oncotarget 2017; 8:93704-93711. [PMID: 29212183 PMCID: PMC5706829 DOI: 10.18632/oncotarget.21474] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/20/2017] [Indexed: 01/20/2023] Open
Abstract
To assess the clinical significance of IL-17 in patients with sepsis-induced acute respiratory distress syndrome (ARDS) and to investigate the effects of IL-17 blocking in a mouse model of acute lung injury (ALI). Significantly increased IL-17 level was found in patients with sepsis-related ARDS compared to healthy controls, whereas significantly increased plasma IL-17 level was also observed in non-survivors compared to that in survivors. According to the data from the mouse ALI model, we found significantly increased IL-17 level in lung tissue lysates, mouse bronchoalveolar lavage fluid (mBALF) and plasma at 6, 12 and 24 h after ALI. Histological analyses revealed that reduced sign of pathological changes and lung injury score in the lungs at 48 h after IL-17 blocking antibody administration. Reduced level of proinflammatory tumor necrosis factor α and increased level of anti-inflammatory factor interleukin-10 were found in both mBALF and plasma. Moreover, IL-17 blocking antibody administration attenuated the expression of RORγt and activity of PI3K-Akt pathway. Increased IL-17 was presented in patients with sepsis-induced ARDS and IL-17 may serve as a biomarker to indicate the severity of ARDS. Moreover, IL-17 antibody administration could relieve the ALI symptom by affecting RORγt level and PI3K pathway.
Collapse
Affiliation(s)
- Qi Ding
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215006, China
| | - Gao-Qin Liu
- Clinical Immunology Laboratory of Jiangsu Province, Suzhou 215006, China
| | - Yuan-Yuan Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jian-Jie Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ze-Yi Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xueguang Zhang
- Clinical Immunology Laboratory of Jiangsu Province, Suzhou 215006, China
| | - Jian-An Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Clinical Immunology Laboratory of Jiangsu Province, Suzhou 215006, China
| |
Collapse
|
22
|
Soo JY, Orgeig S, McGillick EV, Zhang S, McMillen IC, Morrison JL. Normalisation of surfactant protein -A and -B expression in the lungs of low birth weight lambs by 21 days old. PLoS One 2017; 12:e0181185. [PMID: 28949968 PMCID: PMC5614422 DOI: 10.1371/journal.pone.0181185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/27/2017] [Indexed: 11/18/2022] Open
Abstract
Intrauterine growth restriction (IUGR) induced by placental restriction (PR) in the sheep negatively impacts lung and pulmonary surfactant development during fetal life. Using a sheep model of low birth weight (LBW), we found that there was an increase in mRNA expression of surfactant protein (SP)-A, -B and -C in the lung of LBW lambs but no difference in the protein expression of SP-A or -B. LBW also resulted in increased lysosome-associated membrane glycoprotein (LAMP)-3 mRNA expression, which may indicate an increase in either the density of type II Alveolar epithelial cells (AEC) or maturity of type II AECs. Although there was an increase in glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase (11βHSD)-1 mRNA expression in the lung of LBW lambs, we found no change in the protein expression of these factors, suggesting that the increase in SP mRNA expression is not mediated by increased GC signalling in the lung. The increase in SP mRNA expression may, in part, be mediated by persistent alterations in hypoxia signalling as there was an increase in lung HIF-2α mRNA expression in the LBW lamb. The changes in the hypoxia signalling pathway that persist within the lung after birth may be involved in maintaining SP production in the LBW lamb.
Collapse
Affiliation(s)
- Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Sandra Orgeig
- Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Erin Victoria McGillick
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
- Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
23
|
Chen YD, Liu JY, Lu YM, Zhu HT, Tang W, Wang QX, Lu HY. Functional roles of C/EBPα and SUMO‑modification in lung development. Int J Mol Med 2017; 40:1037-1046. [PMID: 28902364 PMCID: PMC5593452 DOI: 10.3892/ijmm.2017.3111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/25/2017] [Indexed: 11/06/2022] Open
Abstract
CCAAT enhancer binding protein alpha (C/EBPα) is a transcription factor regulating the core aspects of cell growth and differentiation. The present study investigated the level and functional role of C/EBPα during the development of the rat lung. C/EBPα protein exhibits a dynamic expression pattern. The correlation between the expression of C/EBPα protein and the content of glycogen during lung maturation was analyzed to understand the function of C/EBPα in lung differentiation. The high expression of C/EBPα coincides with the reduction of glycogen in the fetal lung. In addition, the authors identified that changes in the level of C/EBPα are associated with the secretion of pulmonary surfactant. C/EBPα is modified by small ubiquitin-related modifier (SUMO) post-translationally. The results of double immunofluorescence staining and immunoprecipitation demonstrated that SUMO-modified C/EBPα was present in the lung. The sumoylated C/EBPα gradually decreased during lung differentiation and was negatively correlated with pulmonary surfactant secretion, thereby suggesting that the SUMO modification may participate in C/EBPα-mediated lung growth and differentiation. These results indicated that C/EBPα played a role in lung development and provided the insight into the mechanism underlying SUMO-modification.
Collapse
Affiliation(s)
- Yuan-Dong Chen
- Dean's Office, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jiang-Yan Liu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yan-Min Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Hai-Tao Zhu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Wei Tang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Qiu-Xia Wang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Hong-Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
24
|
Takahashi T, Zimmer J, Friedmacher F, Puri P. Follistatin-like 1 expression is decreased in the alveolar epithelium of hypoplastic rat lungs with nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 2017; 52:706-709. [PMID: 28188034 DOI: 10.1016/j.jpedsurg.2017.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/23/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND/PURPOSE Pulmonary hypoplasia (PH), characterized by incomplete alveolar development, remains a major therapeutic challenge associated with congenital diaphragmatic hernia (CDH). Follistatin-like 1 (Fstl1) is a crucial regulator of alveolar formation and maturation, which is strongly expressed in distal airway epithelium. Fstl1-deficient mice exhibit reduced airspaces, impaired alveolar epithelial cell differentiation, and insufficient production of surfactant proteins similar to PH in human CDH. We hypothesized that pulmonary Fstl1 expression is decreased during alveolarization in the nitrofen-induced CDH model. METHODS Timed-pregnant rats received nitrofen or vehicle on gestational day 9 (D9). Fetal lungs were harvested on D18 and D21 and divided into control-/nitrofen-exposed specimens. Alveolarization was assessed using morphometric analysis techniques. Pulmonary gene expression of Fstl1 was determined by qRT-PCR. Immunofluorescence-double-staining for Fstl1 and alveolar epithelial marker surfactant protein C (SP-C) was performed to evaluate protein expression/localization. RESULTS Radial alveolar count was significantly reduced in hypoplastic lungs of nitrofen-exposed fetuses with significant down regulation of Fstl1 mRNA expression on D18 and D21 compared to controls. Confocal-laser-scanning-microscopy revealed strikingly diminished Fstl1 immunofluorescence and SP-C expression in distal alveolar epithelium of nitrofen-exposed fetuses with CDH-associated PH on D18 and D21 compared to controls. CONCLUSIONS Decreased expression of Fstl1 in alveolar epithelium may disrupt alveolarization and pulmonary surfactant production, thus contributing to the development of PH in the nitrofen-induced CDH model. LEVEL OF EVIDENCE 2b (Centre for Evidence-Based Medicine, Oxford).
Collapse
Affiliation(s)
- Toshiaki Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Gate 5, Dublin 12, Dublin, Ireland
| | - Julia Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Gate 5, Dublin 12, Dublin, Ireland
| | - Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Gate 5, Dublin 12, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Gate 5, Dublin 12, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin, 4, Dublin, Ireland.
| |
Collapse
|
25
|
McGillick EV, Orgeig S, Giussani DA, Morrison JL. Chronic hypoxaemia as a molecular regulator of fetal lung development: implications for risk of respiratory complications at birth. Paediatr Respir Rev 2017; 21:3-10. [PMID: 27692868 DOI: 10.1016/j.prrv.2016.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/16/2016] [Indexed: 01/03/2023]
Abstract
Exposure to altered intrauterine conditions during pregnancy influences both fetal growth and organ development. Chronic fetal hypoxaemia is a common pregnancy complication associated with intrauterine growth restriction (IUGR) that may influence the risk of infants experiencing respiratory complications at birth. There are a variety of signalling pathways that contribute to normal fetal lung development at the molecular level. The specific molecular effects of chronic hypoxaemia associated with IUGR on lung development are likely to be dependent on the specific aetiology (maternal, placental and/or fetal factors) that can alter hormone concentrations, oxygen and nutrient transport to the fetus. This review discusses molecular pathways that may contribute to altered fetal lung maturation following exposure to chronic hypoxaemia. Importantly, these studies highlight that the heterogeneity in respiratory outcomes at birth in this obstetric subpopulation are likely determined by the timing, severity and duration of chronic hypoxaemia encountered by the fetus during pregnancy.
Collapse
Affiliation(s)
- Erin V McGillick
- Early Origins of Adult Health Research Group; Molecular and Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.
| | - Sandra Orgeig
- Molecular and Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridgeshire, United Kingdom.
| | | |
Collapse
|
26
|
The MicroRNA 29 Family Promotes Type II Cell Differentiation in Developing Lung. Mol Cell Biol 2016; 36:2141. [PMID: 27215389 DOI: 10.1128/mcb.00096-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/16/2016] [Indexed: 12/16/2022] Open
Abstract
Lung alveolar type II cells uniquely synthesize surfactant, a developmentally regulated lipoprotein that is essential for breathing. Expression of the gene (SFTPA) encoding the major surfactant protein, SP-A, in midgestation human fetal lung (HFL) is dramatically induced by cyclic AMP (cAMP). cAMP induction of SP-A expression is repressed by transforming growth factor β (TGF-β) and by hypoxia. In this study, we found that expression of the microRNA 29 (miR-29) family was significantly upregulated in epithelial cells isolated from mouse fetal lung during late gestation and in epithelial cells isolated from HFL explants during type II cell differentiation in culture. miR-29 expression in cultured HFL epithelial cells was increased by cAMP and inhibited by hypoxia, whereas the miR-29 target, TGF-β2, was coordinately decreased. Knockdown of the miR-29 family in cultured HFL type II cells blocked cAMP-induced SP-A expression and accumulation of surfactant-containing lamellar bodies, suggesting their physiological relevance. This occurred through derepression of TGF-β signaling. Notably, cAMP increased binding of endogenous thyroid transcription factor 1 (TTF-1/Nkx2.1) to the miR-29ab1 promoter in HFL type II cells, and TTF-1 increased miR-29ab1 promoter-driven luciferase activity in cotransfection assays. Together, these findings identify miR-29 family members as TTF-1-driven mediators of SP-A expression and type II cell differentiation through repression of TGF-β signaling.
Collapse
|
27
|
Antony N, McDougall AR, Mantamadiotis T, Cole TJ, Bird AD. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms. Sci Rep 2016; 6:25569. [PMID: 27150575 PMCID: PMC4858709 DOI: 10.1038/srep25569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/20/2016] [Indexed: 02/06/2023] Open
Abstract
During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1(-/-) mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1(-/-) mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1(-/-) mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development.
Collapse
Affiliation(s)
- N. Antony
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia
| | - A. R. McDougall
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia
- The Hudson Institute of Medical Research, Clayton, 3168, Victoria, Australia
| | - T. Mantamadiotis
- Department of Pathology, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - T. J. Cole
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia
| | - A. D. Bird
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia
| |
Collapse
|
28
|
Orgeig S, Morrison JL, Daniels CB. Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments. Compr Physiol 2015; 6:363-422. [PMID: 26756637 DOI: 10.1002/cphy.c150003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surfactant lipids and proteins form a surface active film at the air-liquid interface of internal gas exchange organs, including swim bladders and lungs. The system is uniquely positioned to meet both the physical challenges associated with a dynamically changing internal air-liquid interface, and the environmental challenges associated with the foreign pathogens and particles to which the internal surface is exposed. Lungs range from simple, transparent, bag-like units to complex, multilobed, compartmentalized structures. Despite this anatomical variability, the surfactant system is remarkably conserved. Here, we discuss the evolutionary origin of the surfactant system, which likely predates lungs. We describe the evolution of surfactant structure and function in invertebrates and vertebrates. We focus on changes in lipid and protein composition and surfactant function from its antiadhesive and innate immune to its alveolar stability and structural integrity functions. We discuss the biochemical, hormonal, autonomic, and mechanical factors that regulate normal surfactant secretion in mature animals. We present an analysis of the ontogeny of surfactant development among the vertebrates and the contribution of different regulatory mechanisms that control this development. We also discuss environmental (oxygen), hormonal and biochemical (glucocorticoids and glucose) and pollutant (maternal smoking, alcohol, and common "recreational" drugs) effects that impact surfactant development. On the adult surfactant system, we focus on environmental variables including temperature, pressure, and hypoxia that have shaped its evolution and we discuss the resultant biochemical, biophysical, and cellular adaptations. Finally, we discuss the effect of major modern gaseous and particulate pollutants on the lung and surfactant system.
Collapse
Affiliation(s)
- Sandra Orgeig
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Christopher B Daniels
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
29
|
Gerber AN. Glucocorticoids and the Lung. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215999 DOI: 10.1007/978-1-4939-2895-8_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lung is a major clinical target of glucocorticoid-based therapeutics, and GR signaling has broad effects on respiratory physiology and inflammation. During lung development, expression of GR in the mesenchyme is required for normal terminal alveolar epithelial differentiation. Prenatal administration of exogenous glucocorticoids (GCs) to prevent neonatal respiratory distress syndrome, however, promotes alveolar maturation and accelerates surfactant expression in a manner consistent with direct effects on the developing alveolar epithelium. Likewise, cell autonomous effects of GCs in regulating gene expression and phenotype of the airway epithelium and airway smooth muscle have been demonstrated to control important therapeutic effects of GCs in treating asthma and chronic obstructive pulmonary disease. Here, mechanisms and consequences of GR signaling in the developing lung and in treating obstructive lung disease are reviewed, with a focus on direct effects of GR signaling on alveolar differentiation, surfactant expression, and airway epithelial and smooth muscle pathophysiology.
Collapse
Affiliation(s)
- Anthony N Gerber
- Department of Medicine, National Jewish Health, University of Colorado, Denver, 1400 Jackson Street, Room K621b, Denver, CO, 80206, USA,
| |
Collapse
|
30
|
Hijazi A, Guan H, Cernea M, Yang K. Prenatal exposure to bisphenol A disrupts mouse fetal lung development. FASEB J 2015; 29:4968-77. [DOI: 10.1096/fj.15-270942] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/13/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Ayten Hijazi
- Department of Obstetrics and Gynaecology and Department of Physiology and PharmacologyChildren's Health Research Institute and Lawson Health Research InstituteWestern UniversityLondonOntarioCanada
| | - Haiyan Guan
- Department of Obstetrics and Gynaecology and Department of Physiology and PharmacologyChildren's Health Research Institute and Lawson Health Research InstituteWestern UniversityLondonOntarioCanada
| | - Maria Cernea
- Department of Obstetrics and Gynaecology and Department of Physiology and PharmacologyChildren's Health Research Institute and Lawson Health Research InstituteWestern UniversityLondonOntarioCanada
| | - Kaiping Yang
- Department of Obstetrics and Gynaecology and Department of Physiology and PharmacologyChildren's Health Research Institute and Lawson Health Research InstituteWestern UniversityLondonOntarioCanada
| |
Collapse
|
31
|
Domm W, Misra RS, O'Reilly MA. Affect of Early Life Oxygen Exposure on Proper Lung Development and Response to Respiratory Viral Infections. Front Med (Lausanne) 2015; 2:55. [PMID: 26322310 PMCID: PMC4530667 DOI: 10.3389/fmed.2015.00055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022] Open
Abstract
Children born preterm often exhibit reduced lung function and increased severity of response to respiratory viruses, suggesting that premature birth has compromised proper development of the respiratory epithelium and innate immune defenses. Increasing evidence suggests that premature birth promotes aberrant lung development likely due to the neonatal oxygen transition occurring before pulmonary development has matured. Given that preterm infants are born at a point of time where their immune system is also still developing, early life oxygen exposure may also be disrupting proper development of innate immunity. Here, we review current literature in hopes of stimulating research that enhances understanding of how the oxygen environment at birth influences lung development and host defense. This knowledge may help identify those children at risk for disease and ideally culminate in the development of novel therapies that improve their health.
Collapse
Affiliation(s)
- William Domm
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA ; Department of Environmental Medicine, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA
| | - Ravi S Misra
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA ; Department of Environmental Medicine, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA
| |
Collapse
|
32
|
Abstract
INTRODUCTION Esophageal atresia and tracheoesophageal fistula (EA-TEF) survivors suffer respiratory morbidity of unclear pathogenesis. Defective lung morphogenesis has been described in the rat model. This study examined fetal lung growth and maturity in rats and patients with EA-TEF. METHODS Pregnant rats received either adriamycin or vehicle. Control and adriamycin-exposed lungs, with and without EA-TEF, were weighed and processed for RT-PCR, DNA quantification, immunofluorescence and immunoblot analysis of TTF1, VEGF, Sp-B, and α-sma. Twenty human lungs were also processed for immunofluorescence and Alcian-blue staining. RESULTS Lungs from fetuses with EA-TEF (E21) showed decreased total DNA; FGF7 and TTF1 mRNA expressions were upregulated at E15 and E18, respectively. Protein expression and immunofluorescent distribution of maturity markers were similar. Lungs from stillborns with EA-TEF showed decreased epithelial expression of Sp-B and VEGF whereas those from newborns tended to have less Sp-B and more VEGF and mucous glands. DISCUSSION The lungs of rats with EA-TEF were hypoplastic but achieved near-normal maturity. Stillborns with EA-TEF exhibited an apparently disturbed differentiation of the airway epithelium. Newborns with EA-TEF demonstrated subtle differences in the expression of differentiation markers, and increased number of mucous glands that could influence postnatal respiratory adaptation and explain some respiratory symptoms of EA-TEF survivors.
Collapse
Affiliation(s)
- Ana Catarina Fragoso
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain; Department of Congenital Malformations, INGEMM and IdiPaz Research Laboratory, Madrid, Spain; Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Leopoldo Martinez
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain; Department of Congenital Malformations, INGEMM and IdiPaz Research Laboratory, Madrid, Spain
| | | | - Juan A Tovar
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain; Department of Congenital Malformations, INGEMM and IdiPaz Research Laboratory, Madrid, Spain
| |
Collapse
|
33
|
Orgeig S, McGillick EV, Botting KJ, Zhang S, McMillen IC, Morrison JL. Increased lung prolyl hydroxylase and decreased glucocorticoid receptor are related to decreased surfactant protein in the growth-restricted sheep fetus. Am J Physiol Lung Cell Mol Physiol 2015; 309:L84-97. [PMID: 25934670 DOI: 10.1152/ajplung.00275.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/24/2015] [Indexed: 11/22/2022] Open
Abstract
Experimental placental restriction (PR) by carunclectomy in fetal sheep results in intrauterine growth restriction (IUGR), chronic hypoxemia, increased plasma cortisol, and decreased lung surfactant protein (SP) expression. The mechanisms responsible for decreased SP expression are unknown but may involve decreased glucocorticoid (GC) action or changes in hypoxia signaling. Endometrial caruncles were removed from nonpregnant ewes to induce PR. Lungs were collected from control and PR fetuses at 130-135 (n = 19) and 139-145 (n = 28) days of gestation. qRT-PCR and Western blotting were used to quantify lung mRNA and protein expression, respectively, of molecular regulators and downstream targets of the GC and hypoxia-signaling pathways. We confirmed a decrease in SP-A, -B, and -C, but not SP-D, mRNA expression in PR fetuses at both ages. There was a net downregulation of GC signaling with a reduction in GC receptor (GR)-α and -β protein expression and a decrease in the cofactor, GATA-6. GC-responsive genes including transforming growth factor-β1, IL-1β, and β2-adrenergic receptor were not stimulated. Prolyl hydroxylase domain (PHD)2 mRNA and protein and PHD3 mRNA expression increased with a concomitant increase in hypoxia-inducible factor-1α (HIF-1α) and HIF-1β mRNA expression. There was an increase in mRNA expression of several, but not all, hypoxia-responsive genes. Hence, both GC and hypoxia signaling may contribute to reduced SP expression. Although acute hypoxia normally inactivates PHDs, chronic hypoxemia in the PR fetus increased PHD abundance, which normally prevents HIF signaling. This may represent a mechanism by which chronic hypoxemia contributes to the decrease in SP production in the IUGR fetal lung.
Collapse
Affiliation(s)
- Sandra Orgeig
- Molecular and Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Erin V McGillick
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; Molecular and Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia;
| |
Collapse
|
34
|
Xiang C, Wang J, Kou X, Chen X, Qin Z, Jiang Y, Sun C, Xu J, Tan W, Jin L, Lin D, He F, Wang H. Pulmonary expression of CYP2A13 and ABCB1 is regulated by FOXA2, and their genetic interaction is associated with lung cancer. FASEB J 2015; 29:1986-98. [PMID: 25667220 DOI: 10.1096/fj.14-264580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/24/2014] [Indexed: 01/04/2023]
Abstract
Inhaled xenobiotics such as tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone are mainly metabolized by phase I oxidase cytochrome P450, family 2, subfamily A, polypeptide 13 (CYP2A13), phase II conjugate UDP glucuronosyltransferase 2 family, polypeptide B17 (UGT2B17), and phase III transporter ATP-binding cassette, subfamily B (MDR/TAP), member 1 (ABCB1), with genetic polymorphisms implicated in lung cancer. Their genetic interaction and pulmonary expression regulation are largely unknown. We analyzed joint association for CYP2A13 and ABCB1 polymorphisms in 2 independent lung cancer case populations (669 and 566 patients) and 1 common control population (749 subjects), and characterized the trans-acting function of the lung development-related transcription factor forkhead box A2 (FOXA2). We undertook FOXA2 overexpression and down-regulation in lung epithelial cell lines, analyzed functional impact on the transactivation of CYP2A13, UGT2B17, and ABCB1, and measured correlation for their expressions in lung tissues. We found a substantial reduction in cancer risk (OR 0.39; 95% CI 0.25-0.61; Pinteraction = 0.029) associated with combined genotypes for CYP2A13 R257C and a functionary regulatory variant in the cis element of ABCB1 synergistically targeted by GATA binding protein 6 and FOXA2. Genetic manipulation of FOXA2 consistently influenced its binding to and transactivation of the promoters of CYP2A13, UGT2B17, and ABCB1, whose mRNA and protein expressions were all consistently correlated with those of FOXA2 in both tumorous and normal lung tissues. We therefore establish FOXA2 as a core transcriptional modulator for pulmonary xenobiotic metabolic pathways and uncover an etiologically relevant interaction between CYP2A13 and ABCB1, furthering our understanding of expression and function of the xenobiotic metabolism system.
Collapse
Affiliation(s)
- Chan Xiang
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jiucun Wang
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaochen Kou
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiabin Chen
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhaoyu Qin
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yan Jiang
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chang Sun
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jibin Xu
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen Tan
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Li Jin
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Dongxin Lin
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fuchu He
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Haijian Wang
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
35
|
Bird AD, McDougall ARA, Seow B, Hooper SB, Cole TJ. Glucocorticoid regulation of lung development: lessons learned from conditional GR knockout mice. Mol Endocrinol 2014; 29:158-71. [PMID: 25535891 DOI: 10.1210/me.2014-1362] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoid (GC) steroid hormones have well-characterized roles in the regulation of systemic homeostasis, yet less understood is their known role in utero to mature the developing respiratory system in preparation for birth. During late gestation, endogenously produced GCs thin the interstitial tissue of the lung, causing the vasculature and future airspaces to come into close alignment, allowing for efficient gas exchange at birth. More potent synthetic GCs are also used worldwide to reduce the severity of respiratory distress suffered by preterm infants; however, their clinical benefits are somewhat offset by potential detrimental long-term effects on health and development. Here, we review the recent literature studying both global and conditional gene-targeted respiratory mouse models of either GC deficiency or glucocorticoid receptor ablation. Although some discrepancies exist between these transgenic mouse strains, these models have revealed specific roles for GCs in particular tissue compartments of the developing lung and identify the mesenchyme as the critical site for glucocorticoid receptor-mediated lung maturation, particularly for the inhibition of cell proliferation and epithelial cell differentiation. Specific mesenchymal and epithelial cell-expressed gene targets that may potentially mediate the effect of GCs have also been identified in these studies and imply a GC-regulated system of cross talk between compartments during lung development. A better understanding of the specific roles of GCs in specific cell types and compartments of the fetal lung will allow the development of a new generation of selective GC ligands, enabling better therapeutic treatments with fewer side effects for lung immaturity at birth in preterm infants.
Collapse
Affiliation(s)
- A Daniel Bird
- Department of Biochemistry and Molecular Biology (A.D.B., A.R.A.M., B.S., T.J.C.), Monash University, Clayton, 3800, Victoria, Australia; and The Ritchie Centre (A.R.A.M., B.S., S.B.H.), Monash Institute of Medical Research, Clayton, 3168, Victoria, Australia
| | | | | | | | | |
Collapse
|
36
|
Li Q, Wang HY, Chepelev I, Zhu Q, Wei G, Zhao K, Wang RF. Stage-dependent and locus-specific role of histone demethylase Jumonji D3 (JMJD3) in the embryonic stages of lung development. PLoS Genet 2014; 10:e1004524. [PMID: 25079229 PMCID: PMC4117460 DOI: 10.1371/journal.pgen.1004524] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Histone demethylases have emerged as important players in developmental processes. Jumonji domain containing-3 (Jmjd3) has been identified as a key histone demethylase that plays a critical role in the regulation of gene expression; however, the in vivo function of Jmjd3 in embryonic development remains largely unknown. To this end, we generated Jmjd3 global and conditional knockout mice. Global deletion of Jmjd3 induces perinatal lethality associated with defective lung development. Tissue and stage-specific deletion revealed that Jmjd3 is dispensable in the later stage of embryonic lung development. Jmjd3 ablation downregulates the expression of genes critical for lung development and function, including AQP-5 and SP-B. Jmjd3-mediated alterations in gene expression are associated with locus-specific changes in the methylation status of H3K27 and H3K4. Furthermore, Jmjd3 is recruited to the SP-B promoter through interactions with the transcription factor Nkx2.1 and the epigenetic protein Brg1. Taken together, these findings demonstrate that Jmjd3 plays a stage-dependent and locus-specific role in the mouse lung development. Our study provides molecular insights into the mechanisms by which Jmjd3 regulates target gene expression in the embryonic stages of lung development.
Collapse
Affiliation(s)
- Qingtian Li
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Helen Y. Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Iouri Chepelev
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Qingyuan Zhu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Gang Wei
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Keji Zhao
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Lock M, McGillick EV, Orgeig S, McMillen IC, Morrison JL. Regulation of fetal lung development in response to maternal overnutrition. Clin Exp Pharmacol Physiol 2014; 40:803-16. [PMID: 24033542 DOI: 10.1111/1440-1681.12166] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/18/2013] [Accepted: 09/03/2013] [Indexed: 12/30/2022]
Abstract
With the worldwide obesity epidemic, the proportion of women entering pregnancy overweight or obese has increased significantly in recent years. Babies born to obese women are at an increased risk of respiratory complications at birth and in childhood. In addition to maternal diabetes, there are a number of metabolic changes that the fetus of an overnourished mother experiences in utero that may modulate lung development and represent the mechanisms underlying the increased risk of respiratory complications. Herein we highlight a series of factors associated with the intrauterine environment of an overnourished mother that may impact on fetal lung development and lead to an increased risk of complications at birth or in postnatal life.
Collapse
Affiliation(s)
- Mitchell Lock
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | | | | | | | | |
Collapse
|
38
|
Ma F, Yang Y, Zhang CY. Ultrasensitive Detection of Transcription Factors Using Transcription-Mediated Isothermally Exponential Amplification-Induced Chemiluminescence. Anal Chem 2014; 86:6006-11. [DOI: 10.1021/ac5017369] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fei Ma
- Single-Molecule Detection
and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Yong Yang
- Single-Molecule Detection
and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Chun-yang Zhang
- Single-Molecule Detection
and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| |
Collapse
|
39
|
Li W, Lin CY, Shang C, Han P, Xiong Y, Lin CJ, Yang J, Selleri L, Chang CP. Pbx1 activates Fgf10 in the mesenchyme of developing lungs. Genesis 2014; 52:399-407. [PMID: 24591256 DOI: 10.1002/dvg.22764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 01/19/2023]
Abstract
Insufficiency of surfactants is a core factor in respiratory distress syndrome, which causes apnea and neonatal death, particularly in preterm infants. Surfactant proteins are secreted by alveolar type II cells in the lung epithelium, the differentiation of which is regulated by Fgf10 elaborated by the adjacent mesenchyme. However, the molecular regulation of mesenchymal Fgf10 during lung development has not been fully understood. Here, we show that Pbx1, a homeodomain transcription factor, is required in the lung mesenchyme for the expression of Fgf10. Mouse embryos lacking Pbx1 in the lung mesenchyme show compact terminal saccules and perinatal lethality with failure of postnatal alveolar expansion. Mutant embryos had severely reduced expression of Fgf10 and surfactant genes (Spa, Spb, Spc, and Spd) that are essential for alveolar expansion for gas exchange at birth. Molecularly, Pbx1 directly binds to the Fgf10 promoter and cooperates with Meis and Hox proteins to transcriptionally activate Fgf10. Our results thus show how Pbx1 controls Fgf10 in the developing lung.
Collapse
Affiliation(s)
- Wei Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Genotype-phenotype correlation in Chinese patients with pulmonary mixed type adenocarcinoma: Relationship between histologic subtypes, TITF-1/SP-A expressions and EGFR mutations. Pathol Res Pract 2013; 210:176-81. [PMID: 24370340 DOI: 10.1016/j.prp.2013.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 10/12/2013] [Accepted: 11/27/2013] [Indexed: 02/07/2023]
Abstract
This study aimed to explore the association between adenocarcinoma-related morphological and molecular characteristics and EGFR mutations in Chinese lung adenocarcinomas. A total of 139 consecutively resected pulmonary adenocarcinoma patients were screened for EGFR mutations by the amplification refractory mutation system assay. For the resected specimens, histologic subtypes were sub-classified using either the 2004 WHO classification or the 2011 IASLC/ATS/ERS classification. Meanwhile, TITF-1 (thyroid transcription factor 1) and SP-A (surfactant-associated protein A) immunohistochemistry staining was also detected. The results were correlated with EGFR mutations and clinicopathological features mentioned above. Both sub-classification methods reflected differences in frequencies of EGFR mutations in lung adenocarcinoma subtypes. In summary, mixed non-mucinous bronchioloalveolar carcinoma (BAC) or papillary components and papillary predominant adenocarcinoma showed a higher frequency of EGFR mutations than mucinous BAC components; Also, EGFR mutations were significantly more common in tumors with TITF-1 or SP-A expressions than in those without (p=0.002, p=0.026), especially the sensitivity of TITF-1 (96.9%) and the negative predictive value of TITF-1 (88.2%). Our data further showed significant genotype-phenotype correlations between EGFR mutations and adenocarcinoma-related morphological and molecular characteristics, and patients with special histologic and IHC staining features might have higher EGFR mutation rates. In addition, this study, for the first time, indicated the significant relationship between SPA IHC and EGFR mutations, which needed confirmation by further research.
Collapse
|
41
|
McGillick EV, Orgeig S, McMillen IC, Morrison JL. The fetal sheep lung does not respond to cortisol infusion during the late canalicular phase of development. Physiol Rep 2013; 1:e00130. [PMID: 24400136 PMCID: PMC3871449 DOI: 10.1002/phy2.130] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 11/12/2022] Open
Abstract
The prepartum surge in plasma cortisol concentrations in humans and sheep promotes fetal lung and surfactant system maturation in the support of air breathing after birth. This physiological process has been used to enhance lung maturation in the preterm fetus using maternal administration of betamethasone in the clinical setting in fetuses as young as 24 weeks gestation (term = 40 weeks). Here, we have investigated the impact of fetal intravenous cortisol infusion during the canalicular phase of lung development (from 109- to 116-days gestation, term = 150 ± 3 days) on the expression of genes regulating glucocorticoid (GC) activity, lung liquid reabsorption, and surfactant maturation in the very preterm sheep fetus and compared this to their expression near term. Cortisol infusion had no impact on mRNA expression of the corticosteroid receptors (GC receptor and mineralocorticoid receptor) or HSD11B-2, however, there was increased expression of HSD11B-1 in the fetal lung. Despite this, cortisol infusion had no effect on the expression of genes involved in lung sodium (epithelial sodium channel -α, -β, or -γ subunits and sodium–potassium ATPase-β1 subunit) or water (aquaporin 1, 3, and 5) reabsorption when compared to the level of expression during exposure to the normal prepartum cortisol surge. Furthermore, in comparison to late gestation, cortisol infusion does not increase mRNA expression of surfactant proteins (SFTP-A, -B, and -C) or the number of SFTP-B-positive cells present in the alveolar epithelium, the cells that produce pulmonary surfactant. These data suggest that there may be an age before which the lung is unable to respond biochemically to an increase in fetal plasma cortisol concentrations.
Collapse
Affiliation(s)
- Erin V McGillick
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, Australia, 5001 ; Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, Australia, 5001
| | - Sandra Orgeig
- Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, Australia, 5001
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, Australia, 5001
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, Australia, 5001
| |
Collapse
|
42
|
Pulmonary FGF-18 gene expression is downregulated during the canalicular-saccular stages in nitrofen-induced hypoplastic lungs. Pediatr Surg Int 2013; 29:1199-203. [PMID: 23979401 DOI: 10.1007/s00383-013-3387-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Pulmonary hypoplasia (PH) associated with congenital diaphragmatic hernia (CDH) represents one of the major challenges in neonatal intensive care. However, the molecular pathogenesis of PH is still poorly understood. In developing fetal lungs, fibroblast growth factor 18 (FGF-18) plays a crucial role in distal airway maturation. FGF-18 knockouts show smaller lung sizes with reduced alveolar spaces and thicker interstitial mesenchymal compartments, highlighting its important function for fetal lung growth and differentiation. We hypothesized that pulmonary FGF-18 gene expression is downregulated during late gestation in nitrofen-induced hypoplastic lungs. METHODS Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetuses were harvested on D18 and D21, and lungs were divided into three groups: controls, hypoplastic lungs without CDH [CDH(-)], and hypoplastic lungs with CDH [CDH(+)] (n = 24 at each time-point). Pulmonary FGF-18 gene expression levels were analyzed by qRT-PCR. Immunohistochemistry was performed to investigate FGF-18 protein expression/distribution. RESULTS Relative mRNA levels of pulmonary FGF-18 gene expression were significantly decreased in CDH(-) and CDH(+) on D18 and D21 compared to controls (p < 0.05 and p < 0.01, respectively). Immunoreactivity of FGF-18 was markedly diminished in mesenchymal cells surrounding the airway epithelium on D18 and D21 compared to controls. CONCLUSION Downregulation of FGF-18 gene expression in nitrofen-induced hypoplastic lungs suggests that decreased FGF-18 expression during the canalicular-saccular stages may interfere with saccular-alveolar differentiation and distal airway maturation resulting in PH.
Collapse
|
43
|
Hahn WH, Chang JY, Lee KS, Bae CW. Decreased expression of surfactant protein genes is associated with an increased expression of Forkhead box M1 gene in the fetal lung tissues of premature rabbits. Yonsei Med J 2013; 54:1422-9. [PMID: 24142647 PMCID: PMC3809867 DOI: 10.3349/ymj.2013.54.6.1422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Recently, Forkhead box M1 (FoxM1) was reported to be correlated with lung maturation and expression of surfactant proteins (SPs) in mice models. However, no study has been conducted in rabbit lungs despite their high homology with human lungs. Thus, we attempted to investigate serial changes in the expressions of FoxM1 and SP-A/B throughout lung maturation in rabbit fetuses. MATERIALS AND METHODS Pregnant New Zealand White rabbits were grouped according to gestational age from 5 days before to 2 days after the day of expected full term delivery (F5, F4, F3, F2, F1, F0, P1, and P2). A total of 64 fetuses were enrolled after Cesarean sections. The expressions of mRNA and proteins of FoxM1 and SP-A/B in fetal lung tissue were tested by quantitative reverse-transcriptase real-time PCR and Western blot. Furthermore, their correlations were analyzed. RESULTS The mRNA expression of SP-A/B showed an increasing tendency positively correlated with gestational age, while the expression of FoxM1 mRNA and protein decreased from F5 to F0. A significant negative correlation was found between the expression levels of FoxM1 and SP-A/B (SP-A: R=-0.517, p=0.001; SP-B: R=-0.615, p<0.001). CONCLUSION Preterm rabbits demonstrated high expression of FoxM1 mRNA and protein in the lungs compared to full term rabbits. Also, the expression of SP-A/B was inversely related with serial changes in FoxM1 expression. This is the first report to suggest an association between FoxM1 and expression of SP-A/B and lung maturation in preterm rabbits.
Collapse
Affiliation(s)
- Won-Ho Hahn
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, 892 Dongnam-ro, Gangdong-gu, Seoul 134-727, Korea.
| | | | | | | |
Collapse
|
44
|
Marx J, Naudé H, Pretorius E. The Effects of Hypo- and Hypervitaminosis a and Its Involvement in Foetal Nervous System Development and Post-Natal Sensorimotor Functioning – A Review. ACTA ACUST UNITED AC 2013. [DOI: 10.1179/096979506799103677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
45
|
Abstract
Supplemental oxygen is often used as a life-saving therapy in the treatment of preterm infants. However, its protracted use can lead to the development of bronchopulmonary dysplasia (BPD), and more recently, has been associated with adversely affecting the general health of children and adolescents who were born preterm. Efforts to understand how exposure to excess oxygen can disrupt lung development have historically focused on the interplay between oxidative stress and antioxidant defense mechanisms. However, there has been a growing appreciation for how changes in gene-environment interactions occurring during critically important periods of organ development can profoundly affect human health and disease later in life. Here, we review the concept that oxygen is an environmental stressor that may play an important role at birth to control normal lung development via its interactions with genes and cells. Understanding how changes in the oxygen environment have the potential to alter the developmental programing of the lung, such that it now proceeds along a different developmental trajectory, could lead to novel therapies in the prevention and treatment of respiratory diseases, such as BPD.
Collapse
Affiliation(s)
- Bradley W. Buczynski
- Department of Environmental Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester NY 14642,Address Correspondence to: Bradley W. Buczynski, M.S., Department of Environmental Medicine, Box EHSC, The University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, Tel: (585) 273-4831, . Michael A. O’Reilly, Ph.D., Department of Pediatrics, Box 850, The University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, Tel: (585) 275-5948, Fax: (585) 756-7780,
| | - Echezona T. Maduekwe
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester NY 14642
| | - Michael A. O’Reilly
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester NY 14642,Address Correspondence to: Bradley W. Buczynski, M.S., Department of Environmental Medicine, Box EHSC, The University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, Tel: (585) 273-4831, . Michael A. O’Reilly, Ph.D., Department of Pediatrics, Box 850, The University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, Tel: (585) 275-5948, Fax: (585) 756-7780,
| |
Collapse
|
46
|
Cass AN, Servetnick MD, McCune AR. Expression of a lung developmental cassette in the adult and developing zebrafish swimbladder. Evol Dev 2013; 15:119-32. [DOI: 10.1111/ede.12022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Amanda N. Cass
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca, NY; 14853; USA
| | - Marc D. Servetnick
- Science and Technology Program; University of Washington; Bothell, WA; 98011; USA
| | - Amy R. McCune
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca, NY; 14853; USA
| |
Collapse
|
47
|
Lipopolysaccharide-induced expression of surfactant proteins A1 and A2 in human renal tubular epithelial cells. JOURNAL OF INFLAMMATION-LONDON 2013; 10:2. [PMID: 23311887 PMCID: PMC3691655 DOI: 10.1186/1476-9255-10-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/31/2012] [Indexed: 11/10/2022]
Abstract
Background Surfactant protein A (SP-A), encoded by two functional genes, SP-A1 and SP-A2, is essential for the inflammatory process and host defence in the lungs. Recent studies have demonstrated the extrapulmonary expression of SP-A. Similar to the lungs, the kidneys are organs exposed to external pathogens. The present study evaluated the expression and location of SP-A in the kidneys. The effect of lipopolysaccharide (LPS) on the expression of SP-A subtypes was also studied in renal tubular epithelial (HK-2) cells. Methods Immunohistochemical staining was performed using polyclonal antibody against SP-A. RT-PCR was also performed using mRNA from normal human renal tissues and HK-2 cells. The expressions of the SP-A1 and SP-A2 genes were determined by PCR-based RFLP analysis, gene-specific amplification, and direct sequencing of RT-PCR products. Western blot was conducted to analyse the SP-A protein. HK-2 cells were treated with LPS at various concentrations (0, 0.1, 1, 2, 5, and 10 μg/mL) for 8 h and at 5 μg/mL at various time points (0, 2, 4, 8, 16, and 24 h). The LPS-induced expressions of SP-A1 and SP-A2 mRNA and protein were analysed by RT-PCR and Western blot. Results SP-A was localised in the renal tubular epithelial cells in the proximal and distal convoluted tubules. SP-A1 and SP-A2 mRNA and protein were expressed in HK-2 cells and human renal tissues, which were significantly increased in time- and dose-dependent manners after LPS treatment (P < 0.05). Conclusions Human renal tubular epithelial cells can express both SP-A1 and SP-A2 genes, which may play important roles in the inflammatory modulation of the kidney.
Collapse
|
48
|
Synergistic effect of caffeine and glucocorticoids on expression of surfactant protein B (SP-B) mRNA. PLoS One 2012; 7:e51575. [PMID: 23272120 PMCID: PMC3522739 DOI: 10.1371/journal.pone.0051575] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/01/2012] [Indexed: 11/19/2022] Open
Abstract
Administration of glucocorticoids and caffeine is a common therapeutic intervention in the neonatal period, but possible interactions between these substances are still unclear. The present study investigated the effect of caffeine and different glucocorticoids on expression of surfactant protein (SP)-B, crucial for the physiological function of pulmonary surfactant. We measured expression levels of SP-B, various SP-B transcription factors including erythroblastic leukemia viral oncogene homolog 4 (ErbB4) and thyroid transcription factor-1 (TTF-1), as well as the glucocorticoid receptor (GR) after administering different doses of glucocorticoids, caffeine, cAMP, or the phosphodiesterase-4 inhibitor rolipram in the human airway epithelial cell line NCI-H441. Administration of dexamethasone (1 µM) or caffeine (5 mM) stimulated SP-B mRNA expression with a maximal of 38.8±11.1-fold and 5.2±1.4-fold increase, respectively. Synergistic induction was achieved after co-administration of dexamethasone (1 mM) in combination with caffeine (10 mM) (206±59.7-fold increase, p<0.0001) or cAMP (1 mM) (213±111-fold increase, p = 0.0108). SP-B mRNA was synergistically induced also by administration of caffeine with hydrocortisone (87.9±39.0), prednisolone (154±66.8), and betamethasone (123±6.4). Rolipram also induced SP-B mRNA (64.9±21.0-fold increase). We detected a higher expression of ErbB4 and GR mRNA (7.0- and 1.7-fold increase, respectively), whereas TTF-1, Jun B, c-Jun, SP1, SP3, and HNF-3α mRNA expression was predominantly unchanged. In accordance with mRNA data, mature SP-B was induced significantly by dexamethasone with caffeine (13.8±9.0-fold increase, p = 0.0134). We found a synergistic upregulation of SP-B mRNA expression induced by co-administration of various glucocorticoids and caffeine, achieved by accumulation of intracellular cAMP. This effect was mediated by a caffeine-dependent phosphodiesterase inhibition and by upregulation of both ErbB4 and the GR. These results suggested that caffeine is able to induce the expression of SP-transcription factors and affects the signaling pathways of glucocorticoids, amplifying their effects. Co-administration of caffeine and corticosteroids may therefore be of benefit in surfactant homeostasis.
Collapse
|
49
|
Antenatal steroids and the IUGR fetus: are exposure and physiological effects on the lung and cardiovascular system the same as in normally grown fetuses? J Pregnancy 2012; 2012:839656. [PMID: 23227338 PMCID: PMC3512319 DOI: 10.1155/2012/839656] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/06/2012] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids are administered to pregnant women at risk of preterm labour to promote fetal lung surfactant maturation. Intrauterine growth restriction (IUGR) is associated with an increased risk of preterm labour. Hence, IUGR babies may be exposed to antenatal glucocorticoids. The ability of the placenta or blood brain barrier to remove glucocorticoids from the fetal compartment or the brain is compromised in the IUGR fetus, which may have implications for lung, brain, and heart development. There is conflicting evidence on the effect of exogenous glucocorticoids on surfactant protein expression in different animal models of IUGR. Furthermore, the IUGR fetus undergoes significant cardiovascular adaptations, including altered blood pressure regulation, which is in conflict with glucocorticoid-induced alterations in blood pressure and flow. Hence, antenatal glucocorticoid therapy in the IUGR fetus may compromise regulation of cardiovascular development. The role of cortisol in cardiomyocyte development is not clear with conflicting evidence in different species and models of IUGR. Further studies are required to study the effects of antenatal glucocorticoids on lung, brain, and heart development in the IUGR fetus. Of specific interest are the aetiology of IUGR and the resultant degree, duration, and severity of hypoxemia.
Collapse
|
50
|
Abstract
PRMT5 (protein arginine methyltransferase 5) is an enzyme that catalyses transfer of methyl groups from S-adenosyl methionine to the arginine residues of histones or non-histone proteins and is involved in a variety of cellular processes. Although it is highly expressed in some tumours, its direct role in cancer growth has not been fully investigated. In the present study, in human lung tissue samples we found that PRMT5 was highly expressed in lung cancer cells, whereas its expression was not detectable in benign lung tissues. Silencing PRMT5 expression strongly inhibited proliferation of lung adenocarcinoma A549 cells in tissue culture, and silencing PRMT5 expression in A549 cells also abolished growth of lung A549 xenografts in mice. In vitro and in vivo studies showed that the cell growth arrest induced by loss of PRMT5 expression was partially attributable to down-regulation of fibroblast growth factor receptor signalling. These results suggest that PRMT5 and its methyltransferase activity is essential for proliferation of lung cancer cells and may serve as a novel target for the treatment of lung cancer.
Collapse
|