1
|
Lamme TD, Smit MJ, Schafer CT. Signal termination of the chemokine receptor CCR9 is governed by an arrestin-independent phosphorylation mechanism. J Biol Chem 2025; 301:108462. [PMID: 40154615 DOI: 10.1016/j.jbc.2025.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
The C-C chemokine receptor type 9 (CCR9) coordinates immune cell migration from the thymus to the small intestine along gradients of the chemokine CCL25. Receptor dysregulation is associated with a variety of inflammatory bowel diseases such as Crohn's and ulcerative colitis, whereas aberrant CCR9 overexpression correlates with tumor metastasis. Despite being an attractive therapeutic target, attempts to clinically antagonize CCR9 have been unsuccessful. This highlights the need for a deeper understanding of its specific regulatory mechanisms and signaling pathways. CCR9 is a G protein-coupled receptor (GPCR) and activates Gi and Gq pathways. Unexpectedly, live-cell bioluminescence resonance energy transfer assays reveal only limited G protein activation, and signaling is rapidly terminated. Truncating the receptor C terminus significantly enhanced G protein coupling, highlighting a regulatory role of this domain. Signal suppression was not because of canonical arrestin-coordinated desensitization. Rather, removal of GPCR kinase phosphorylation led to sustained and robust G protein activation by CCR9. Using site-directed mutagenesis, we identified specific phosphorylation motifs that attenuate G protein coupling. Receptor internalization did not correlate with G protein activation capabilities. Instead, CCR9 phosphorylation disrupted the interaction of G protein heterotrimers with the receptor. This interference may lead to rapid loss of productive coupling and downstream signaling as phosphorylation would effectively render the receptor incapable of G protein coupling. An arrestin-independent, phosphorylation-driven deactivation mechanism could complement arrestin-dependent regulation of other GPCRs and have consequences for therapeutically targeting these receptors.
Collapse
Affiliation(s)
- Thomas D Lamme
- Faculty of Science, Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martine J Smit
- Faculty of Science, Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christopher T Schafer
- Faculty of Science, Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
He X, Yan T, Song Z, Xiang L, Xiang J, Yang Y, Ren K, Bu J, Xu X, Li Z, Guo X, Lin B, Zhou Q, Lin G, Gu F. Correcting a patient-specific Rhodopsin mutation with adenine base editor in a mouse model. Mol Ther 2025:S1525-0016(25)00195-9. [PMID: 40119518 DOI: 10.1016/j.ymthe.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/05/2025] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
Genome editing offers a great promise to treating human genetic diseases. To assess genome-editing-mediated therapeutic effects in vivo, an animal model is indispensable. The genomic disparities between mice and humans often impede the direct clinical application of genome-editing-mediated treatments using conventional mouse models. Thus, the generation of a mouse model with a humanized genomic segment containing a patient-specific mutation is highly sought after for translational research. In this study, we successfully developed a knockin mouse model for autosomal-dominant retinitis pigmentosa (adRP), designated as hT17M knockin, which incorporates a 75-nucleotide DNA segment with the T17M mutation (Rhodopsin-c.C50T; p.T17M). This model demonstrated significant reductions in electroretinogram amplitudes and exhibited disruptions in retinal structure. Subsequently, we administered an adeno-associated virus vectors carrying an adenine base editor (ABE) and a single-guide RNA specifically targeting the T17M mutation, achieving a peak correction rate of 39.7% at the RNA level and significantly improving retinal function in ABE-injected mice. These findings underscore that the hT17M knockin mouse model recapitulates the clinical features of adRP patients and exhibits therapeutic effects with ABE-mediated treatments. It offers a promising avenue for the development of gene-editing therapies for RP.
Collapse
Affiliation(s)
- Xiaoxue He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, Hunan 410081, China; School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Tong Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Zongming Song
- Henan Eye Hospital, Henan Eye Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Lue Xiang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Jiayang Xiang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Yeqin Yang
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Kaiqun Ren
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, Hunan 410081, China
| | - Jicheng Bu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410006, China
| | - Xilin Xu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, Hunan 410081, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410006, China
| | - Zhuo Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410006, China
| | - Xiaowei Guo
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, Hunan 410081, China
| | - Bin Lin
- School of Optometry, Hong Kong Polytechnic University, Hong Kong HJ502, China
| | - Qinghua Zhou
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410006, China
| | - Feng Gu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, Hunan 410081, China; School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China; Guangxiu Hospital Affiliated with Hunan Normal University (Hunan Guangxiu Hospital), Changsha, Hunan 410119, China.
| |
Collapse
|
3
|
Manian KV, Ludwig CH, Zhao Y, Abell N, Yang X, Root DE, Albert ML, Comander J. A comprehensive map of missense trafficking variants in rhodopsin and their response to pharmacologic correction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640335. [PMID: 40093169 PMCID: PMC11908143 DOI: 10.1101/2025.02.27.640335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Rhodopsin (RHO) missense variants are a leading cause of autosomal dominant retinitis pigmentosa (adRP), a progressive retinal degeneration with no currently approved therapies. Interpreting the pathogenicity of the growing number of identified RHO variants is a major clinical challenge, and understanding their disease mechanisms is essential for developing effective therapies. Here, we present a high-resolution map of RHO missense variant trafficking using two complementary deep mutational scanning (DMS) approaches based on a surface abundance immunoassay and a membrane proximity assay. We generated a comprehensive dataset encompassing all 6,612 possible single-residue missense variants, revealing a strong correlation between the two methods. Over 700 variants were identified with pathogenic trafficking scores, significantly expanding the number of RHO variants with functional evidence supporting pathogenicity. We demonstrate a high concordance between the trafficking scores and ClinVar pathogenicity classifications, highlighting this approach's utility in resolving variants of uncertain significance (VUS). The data also identified structurally clustered trafficking-deficient variants, predominantly within the N-terminal region and second extracellular loop, in and above the extracellular/intradiscal beta-plug region. Furthermore, we evaluated the efficacy of the non-retinoid pharmacological chaperone YC-001, observing significant rescue of trafficking defects in a majority of mistrafficking variants. This comprehensive functional map of RHO missense variants provides a valuable resource for pathogenicity assessment, genotype-phenotype correlations, and the development of targeted therapeutic strategies for RHO-adRP, paving the way for improved diagnosis and treatment for patients.
Collapse
Affiliation(s)
- Kannan V. Manian
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Yan Zhao
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Xiaoping Yang
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David E. Root
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jason Comander
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Azam M, Jastrzebska B. Mechanisms of Rhodopsin-Related Inherited Retinal Degeneration and Pharmacological Treatment Strategies. Cells 2025; 14:49. [PMID: 39791750 PMCID: PMC11720364 DOI: 10.3390/cells14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025] Open
Abstract
Retinitis pigmentosa (RP) is a hereditary disease characterized by progressive vision loss ultimately leading to blindness. This condition is initiated by mutations in genes expressed in retinal cells, resulting in the degeneration of rod photoreceptors, which is subsequently followed by the loss of cone photoreceptors. Mutations in various genes expressed in the retina are associated with RP. Among them, mutations in the rhodopsin gene (RHO) are the most common cause of this condition. Due to the involvement of numerous genes and multiple mutations in a single gene, RP is a highly heterogeneous disease making the development of effective treatments particularly challenging. The progression of this disease involves complex cellular responses to restore cellular homeostasis, including the unfolded protein response (UPR) signaling, autophagy, and various cell death pathways. These mechanisms, however, often fail to prevent photoreceptor cell degradation and instead contribute to cell death under certain conditions. Current research focuses on the pharmacological modulation of the components of these pathways and the direct stabilization of mutated receptors as potential treatment strategies. Despite these efforts, the intricate interplay between these mechanisms and the diverse causative mutations involved has hindered the development of effective treatments. Advancing our understanding of the interactions between photoreceptor cell death mechanisms and the specific genetic mutations driving RP is critical to accelerate the discovery and development of therapeutic strategies for this currently incurable disease.
Collapse
Affiliation(s)
- Maria Azam
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Chukwunalu O, Ambrósio AF, Carvalho AL, Quinn PMJ, Marques JP, Alves CH. Genetic Landscape of Nonsyndromic Retinitis Pigmentosa in Portugal. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:81-86. [PMID: 39930177 DOI: 10.1007/978-3-031-76550-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Inherited retinal degenerations (IRDs) comprise a heterogeneous group of disorders that cause severe vision loss or even blindness. With an estimated prevalence of 1:4000, Retinitis Pigmentosa (RP) is the most prevalent IRD. RP is characterized by progressive centripetal degeneration of rods, followed by degeneration of cone photoreceptors. Clinically, RP presents with nyctalopia of variable age of onset and progressive narrowing of the peripheral visual field. Most patients eventually experience some degree of central vision loss, leading to legal blindness. We have evaluated the most common RP-causing genes in a Portuguese IRD registry (IRD-PT, www.retina.com.pt ).
Collapse
Affiliation(s)
- Oluji Chukwunalu
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - António Francisco Ambrósio
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ana Luísa Carvalho
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Medical Genetics Unit, Unidade Local de Saúde de Coimbra (ULS de Coimbra), Coimbra, Portugal
- Univ Coimbra, Clinic of Medical Genetics, Faculty of Medicine, Coimbra, Portugal
| | - Peter M J Quinn
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
- FM Kirby Center for Molecular Ophthalmology, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - João Pedro Marques
- Ophthalmology Unit, Unidade Local de Saúde de Coimbra (ULS de Coimbra), Coimbra, Portugal
- Univ Coimbra, University Clinic of Ophthalmology, Faculty of Medicine, Coimbra, Portugal
| | - C Henrique Alves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
6
|
Du SW, Newby GA, Salom D, Gao F, Menezes CR, Suh S, Choi EH, Chen PZ, Liu DR, Palczewski K. In vivo photoreceptor base editing ameliorates rhodopsin-E150K autosomal-recessive retinitis pigmentosa in mice. Proc Natl Acad Sci U S A 2024; 121:e2416827121. [PMID: 39556729 PMCID: PMC11621631 DOI: 10.1073/pnas.2416827121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/28/2024] [Indexed: 11/20/2024] Open
Abstract
Rhodopsin, the prototypical class-A G-protein coupled receptor, is a highly sensitive receptor for light that enables phototransduction in rod photoreceptors. Rhodopsin plays not only a sensory role but also a structural role as a major component of the rod outer segment disc, comprising over 90% of the protein content of the disc membrane. Mutations in RHO which lead to structural or functional abnormalities, including the autosomal recessive E150K mutation, result in rod dysfunction and death. Therefore, correction of deleterious rhodopsin mutations could rescue inherited retinal degeneration, as demonstrated for other visual genes such as RPE65 and PDE6B. In this study, we describe a CRISPR/Cas9 adenine base editing strategy to correct the E150K mutation and demonstrate precise in vivo editing in a Rho-E150K mouse model of autosomal recessive retinitis pigmentosa (RP). Using ultraviolet-visible spectroscopy, mass spectrometry, and the G-protein activation assay, we characterized wild-type rhodopsin and rhodopsin variants containing bystander base edits. Subretinal injection of dual-adeno-associated viruses delivering our base editing strategy yielded up to 44% Rho correction in homozygous Rho-E150K mice. Injection at postnatal day 15, but not later time points, restored rhodopsin expression, partially rescued retinal function, and partially preserved retinal structure. These findings demonstrate that in vivo base editing can restore the function of mutated structural and functional proteins in animal models of disease, including rhodopsin-associated RP and suggest that the timing of gene-editing is a crucial determinant of successful treatment outcomes for degenerative genetic diseases.
Collapse
Affiliation(s)
- Samuel W. Du
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
- Department of Physiology and Biophysics, University of California, Irvine, CA92617
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- HHMI, Harvard University, Cambridge, MA02138
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21205
| | - David Salom
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
| | - Fangyuan Gao
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
| | - Carolline Rodrigues Menezes
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
- Department of Physiology and Biophysics, University of California, Irvine, CA92617
| | - Susie Suh
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
| | - Elliot H. Choi
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
| | - Paul Z. Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- HHMI, Harvard University, Cambridge, MA02138
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- HHMI, Harvard University, Cambridge, MA02138
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
- Department of Physiology and Biophysics, University of California, Irvine, CA92617
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| |
Collapse
|
7
|
Krishnamoorthi A, Salom D, Wu A, Palczewski K, Rentzepis PM. Ultrafast transient absorption spectra and kinetics of human blue cone visual pigment at room temperature. Proc Natl Acad Sci U S A 2024; 121:e2414037121. [PMID: 39356673 PMCID: PMC11474067 DOI: 10.1073/pnas.2414037121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/01/2024] [Indexed: 10/04/2024] Open
Abstract
The ultrafast photochemical reaction mechanism, transient spectra, and transition kinetics of the human blue cone visual pigment have been recorded at room temperature. Ultrafast time-resolved absorption spectroscopy revealed the progressive formation and decay of several metastable photo-intermediates, corresponding to the Batho to Meta-II photo-intermediates previously observed with bovine rhodopsin and human green cone opsin, on the picosecond to millisecond timescales following pulsed excitation. The experimental data reveal several interesting similarities and differences between the photobleaching sequences of bovine rhodopsin, human green cone opsin, and human blue cone opsin. While Meta-II formation kinetics are comparable between bovine rhodopsin and blue cone opsin, the transition kinetics of earlier photo-intermediates and qualitative characteristics of the Meta-I to Meta-II transition are more similar for blue cone opsin and green cone opsin. Additionally, the blue cone photo-intermediate spectra exhibit a high degree of overlap with uniquely small spectral shifts. The observed variation in Meta-II formation kinetics between rod and cone visual pigments is explained based on key structural differences.
Collapse
Affiliation(s)
- Arjun Krishnamoorthi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX77843
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
| | - Arum Wu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
- Department of Chemistry, University of California Irvine, Irvine, CA92697
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA92697
| | - Peter M. Rentzepis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX77843
| |
Collapse
|
8
|
Giudetti G, Mukherjee M, Nandi S, Agrawal S, Prezhdo OV, Nakano A. Exploring the Global Reaction Coordinate for Retinal Photoisomerization: A Graph Theory-Based Machine Learning Approach. J Chem Inf Model 2024. [PMID: 39259968 DOI: 10.1021/acs.jcim.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Unraveling the reaction pathway of photoinduced reactions poses a great challenge owing to its complexity. Recently, graph theory-based machine learning combined with nonadiabatic molecular dynamics (NAMD) has been applied to obtain the global reaction coordinate of the photoisomerization of azobenzene. However, NAMD simulations are computationally expensive as they require calculating the nonadiabatic coupling vectors at each time step. Here, we showed that ab initio molecular dynamics (AIMD) can be used as an alternative to NAMD by choosing an appropriate initial condition for the simulation. We applied our methodology to determine a plausible global reaction coordinate of retinal photoisomerization, which is essential for human vision. On rank-ordering the internal coordinates, based on the mutual information (MI) between the internal coordinates and the HOMO energy, NAMD and AIMD give a similar trend. Our results demonstrate that our AIMD-based machine learning protocol for retinal is 1.5 times faster than that of NAMD to study reaction coordinates.
Collapse
Affiliation(s)
- Goran Giudetti
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Madhubani Mukherjee
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Samprita Nandi
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Sraddha Agrawal
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Aiichiro Nakano
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Computer Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
9
|
Choudhury A, Santra S, Ghosh D. Understanding the Photoprocesses in Biological Systems: Need for Accurate Multireference Treatment. J Chem Theory Comput 2024; 20:4951-4964. [PMID: 38864715 DOI: 10.1021/acs.jctc.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Light-matter interaction is crucial to life itself and revolves around many of the central processes in biology. The need for understanding these photochemical and photophysical processes cannot be overemphasized. Interaction of light with biological systems starts with the absorption of light and subsequent phenomena that occur in the excited states of the system. However, excited states are typically difficult to understand within the mean field approximation of quantum chemical methods. Therefore, suitable multireference methods and methodologies have been developed to understand these phenomena. In this Perspective, we will describe a few methods and methodologies suitable for these descriptions and discuss some persisting difficulties.
Collapse
Affiliation(s)
- Arpan Choudhury
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
10
|
Haseeb MW, Toutounji M. Vibration assisted electron tunnelling in COVID-19 infection using quantum state diffusion. Sci Rep 2024; 14:12152. [PMID: 38802472 PMCID: PMC11130241 DOI: 10.1038/s41598-024-62670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
The spread of the COVID-19 virus has become a global health crisis, and finding effective treatments and preventions is a top priority. The field of quantum biology primarily focuses on energy or charge transfer, with a particular emphasis on photosynthesis. However, there is evidence to suggest that cellular receptors such as olfactory or neural receptors may also use vibration-assisted electron tunnelling to enhance their functions. Quantum tunnelling has also been observed in enzyme activity, which is relevant to the invasion of host cells by the SARS-CoV-2 virus. Additionally, COVID-19 appears to disrupt receptors such as olfactory receptors. These findings suggest that quantum effects could provide new insights into the mechanisms of biological systems and disease, including potential treatments for COVID-19. We have applied the open quantum system approach using Quantum State Diffusion to solve the non-linear stochastic Schrödinger equation (SSE) for COVID-19 virus infection. Our model includes the mechanism when the spike protein of the virus binds with an ACE2 receptor is considered as dimer. These two entities form a system and then coupled with the cell membrane, which is modelled as a set of harmonic oscillators (bath). By simulating the SSE, we find that there is vibration-assisted electron tunnelling happening in certain biological parameters and coupling regimes. Furthermore, our model contributes to the ongoing research to understand the fundamental nature of virus dynamics. It proposes that vibration-assisted electron tunneling could be a molecular phenomenon that augments the lock-and-key process for olfaction. This insight may enhance our understanding of the underlying mechanisms governing virus-receptor interactions and could potentially lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Mohamad Toutounji
- Department of Chemistry, United Arab Emirates University, Al-Ain, UAE.
| |
Collapse
|
11
|
Zhu S, Xu R, Engel AL, Wang Y, McNeel R, Hurley JB, Chao JR, Du J. Proline provides a nitrogen source in the retinal pigment epithelium to synthesize and export amino acids for the neural retina. J Biol Chem 2023; 299:105275. [PMID: 37741457 PMCID: PMC10616405 DOI: 10.1016/j.jbc.2023.105275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
It is known that metabolic defects in the retinal pigment epithelium (RPE) can cause degeneration of its neighboring photoreceptors in the retina, leading to retinal degenerative diseases such as age-related macular degeneration. However, how RPE metabolism supports the health of the neural retina remains unclear. The retina requires exogenous nitrogen sources for protein synthesis, neurotransmission, and energy metabolism. Using 15N tracing coupled with mass spectrometry, we found human RPE can utilize the nitrogen in proline to produce and export 13 amino acids, including glutamate, aspartate, glutamine, alanine, and serine. Similarly, we found this proline nitrogen utilization in the mouse RPE/choroid but not in the neural retina of explant cultures. Coculture of human RPE with the retina showed that the retina can take up the amino acids, especially glutamate, aspartate, and glutamine, generated from proline nitrogen in the RPE. Intravenous delivery of 15N proline in vivo demonstrated 15N-derived amino acids appear earlier in the RPE before the retina. We also found proline dehydrogenase, the key enzyme in proline catabolism is highly enriched in the RPE but not the retina. The deletion of proline dehydrogenase blocks proline nitrogen utilization in RPE and the import of proline nitrogen-derived amino acids in the retina. Our findings highlight the importance of RPE metabolism in supporting nitrogen sources for the retina, providing insight into understanding the mechanisms of the retinal metabolic ecosystem and RPE-initiated retinal degenerative diseases.
Collapse
Affiliation(s)
- Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA; Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Rong Xu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Abbi L Engel
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Rachel McNeel
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - James B Hurley
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA; Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
12
|
Andrabi M, Upton BA, Lang RA, Vemaraju S. An Expanding Role for Nonvisual Opsins in Extraocular Light Sensing Physiology. Annu Rev Vis Sci 2023; 9:245-267. [PMID: 37196422 DOI: 10.1146/annurev-vision-100820-094018] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We live on a planet that is bathed in daily and seasonal sunlight cycles. In this context, terrestrial life forms have evolved mechanisms that directly harness light energy (plants) or decode light information for adaptive advantage. In animals, the main light sensors are a family of G protein-coupled receptors called opsins. Opsin function is best described for the visual sense. However, most animals also use opsins for extraocular light sensing for seasonal behavior and camouflage. While it has long been believed that mammals do not have an extraocular light sensing capacity, recent evidence suggests otherwise. Notably, encephalopsin (OPN3) and neuropsin (OPN5) are both known to mediate extraocular light sensing in mice. Examples of this mediation include photoentrainment of circadian clocks in skin (by OPN5) and acute light-dependent regulation of metabolic pathways (by OPN3 and OPN5). This review summarizes current findings in the expanding field of extraocular photoreception and their relevance for human physiology.
Collapse
Affiliation(s)
- Mutahar Andrabi
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Brian A Upton
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Molecular and Developmental Biology Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Medical Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Richard A Lang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shruti Vemaraju
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Hong JD, Palczewski K. A short story on how chromophore is hydrolyzed from rhodopsin for recycling. Bioessays 2023; 45:e2300068. [PMID: 37454357 PMCID: PMC10614701 DOI: 10.1002/bies.202300068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023]
Abstract
The photocycle of visual opsins is essential to maintain the light sensitivity of the retina. The early physical observations of the rhodopsin photocycle by Böll and Kühne in the 1870s inspired over a century's worth of investigations on rhodopsin biochemistry. A single photon isomerizes the Schiff-base linked 11-cis-retinylidene chromophore of rhodopsin, converting it to the all-trans agonist to elicit phototransduction through photoactivated rhodopsin (Rho*). Schiff base hydrolysis of the agonist is a key step in the photocycle, not only diminishing ongoing phototransduction but also allowing for entry and binding of fresh 11-cis chromophore to regenerate the rhodopsin pigment and maintain light sensitivity. Many challenges have been encountered in measuring the rate of this hydrolysis, but recent advancements have facilitated studies of the hydrolysis within the native membrane environment of rhodopsin. These techniques can now be applied to study hydrolysis of agonist in other opsin proteins that mediate phototransduction or chromophore turnover. In this review, we discuss the progress that has been made in characterizing the rhodopsin photocycle and the journey to characterize the hydrolysis of its all-trans-retinylidene agonist.
Collapse
Affiliation(s)
- John D. Hong
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Sun C, Ruzycki PA, Chen S. Rho enhancers play unexpectedly minor roles in Rhodopsin transcription and rod cell integrity. Sci Rep 2023; 13:12899. [PMID: 37558693 PMCID: PMC10412641 DOI: 10.1038/s41598-023-39979-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Enhancers function with a basal promoter to control the transcription of target genes. Enhancer regulatory activity is often studied using reporter-based transgene assays. However, unmatched results have been reported when selected enhancers are silenced in situ. In this study, using genomic deletion analysis in mice, we investigated the roles of two previously identified enhancers and the promoter of the Rho gene that codes for the visual pigment rhodopsin. The Rho gene is robustly expressed by rod photoreceptors of the retina, and essential for the subcellular structure and visual function of rod photoreceptors. Mutations in RHO cause severe vision loss in humans. We found that each Rho regulatory region can independently mediate local epigenomic changes, but only the promoter is absolutely required for establishing active Rho chromatin configuration and transcription and maintaining the cell integrity and function of rod photoreceptors. To our surprise, two Rho enhancers that enable strong promoter activation in reporter assays are largely dispensable for Rho expression in vivo. Only small and age-dependent impact is detectable when both enhancers are deleted. Our results demonstrate context-dependent roles of enhancers and highlight the importance of studying functions of cis-regulatory regions in the native genomic context.
Collapse
Affiliation(s)
- Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA
| | - Philip A Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA.
- Department of Genetics, Washington University, 660 South Euclid Avenue, MSC 8096-0006-11, Saint Louis, MO, 63110, USA.
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University, 660 South Euclid Avenue, MSC 8096-0006-06, Saint Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Sp S, Mitra RN, Zheng M, Chrispell JD, Wang K, Kwon YS, Weiss ER, Han Z. Gene augmentation for autosomal dominant retinitis pigmentosa using rhodopsin genomic loci nanoparticles in the P23H +/- knock-in murine model. Gene Ther 2023; 30:628-640. [PMID: 36935427 DOI: 10.1038/s41434-023-00394-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/21/2023]
Abstract
Gene therapy for autosomal dominant retinitis pigmentosa (adRP) is challenged by the dominant inheritance of the mutant genes, which would seemingly require a combination of mutant suppression and wild-type replacement of the appropriate gene. We explore the possibility that delivery of a nanoparticle (NP)-mediated full-length mouse genomic rhodopsin (gRho) or human genomic rhodopsin (gRHO) locus can overcome the dominant negative effects of the mutant rhodopsin in the clinically relevant P23H+/--knock-in heterozygous mouse model. Our results demonstrate that mice in both gRho and gRHO NP-treated groups exhibit significant structural and functional recovery of the rod photoreceptors, which lasted for 3 months post-injection, indicating a promising reduction in photoreceptor degeneration. We performed miRNA transcriptome analysis using next generation sequencing and detected differentially expressed miRNAs as a first step towards identifying miRNAs that could potentially be used as rhodopsin gene expression enhancers or suppressors for sustained photoreceptor rescue. Our results indicate that delivering an intact genomic locus as a transgene has a greater chance of success compared to the use of the cDNA for treatment of this model of adRP, emphasizing the importance of gene augmentation using a gDNA that includes regulatory elements.
Collapse
Affiliation(s)
- Simna Sp
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rajendra N Mitra
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Min Zheng
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jared D Chrispell
- Department of Cell Biology and Physiology, the University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kai Wang
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yong-Su Kwon
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ellen R Weiss
- Department of Cell Biology and Physiology, the University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Institute for NanoMedicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
16
|
Zhu S, Xu R, Engel AL, Wang Y, McNeel R, Hurley JB, Chao JR, Du J. Proline provides a nitrogen source in the retinal pigment epithelium to synthesize and export amino acids for the neural retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537355. [PMID: 37131780 PMCID: PMC10153141 DOI: 10.1101/2023.04.18.537355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It is known that metabolic defects in the retinal pigment epithelium (RPE) can cause degeneration of its neighboring photoreceptors in the retina, leading to retinal degenerative diseases such as age-related macular degeneration. However, how RPE metabolism supports the health of the neural retina remains unclear. The retina requires exogenous nitrogen sources for protein synthesis, neurotransmission, and energy metabolism. Using 15N tracing coupled with mass spectrometry, we found human RPE can utilize the nitrogen in proline to produce and export 13 amino acids, including glutamate, aspartate, glutamine, alanine and serine. Similarly, we found this proline nitrogen utilization in the mouse RPE/choroid but not in the neural retina of explant cultures. Co-culture of human RPE with the retina showed that the retina can take up the amino acids, especially glutamate, aspartate and glutamine, generated from proline nitrogen in the RPE. Intravenous delivery of 15N proline in vivo demonstrated 15N-derived amino acids appear earlier in the RPE before the retina. We also found proline dehydrogenase (PRODH), the key enzyme in proline catabolism is highly enriched in the RPE but not the retina. The deletion of PRODH blocks proline nitrogen utilization in RPE and the import of proline nitrogen-derived amino acids in the retina. Our findings highlight the importance of RPE metabolism in supporting nitrogen sources for the retina, providing insight into understanding the mechanisms of the retinal metabolic ecosystem and RPE-initiated retinal degenerative diseases.
Collapse
Affiliation(s)
- Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, WV 26506
| | - Rong Xu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
| | - Abbi L. Engel
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
| | - Rachel McNeel
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
| | - James B. Hurley
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
- Department of Biochemistry, University of Washington, Seattle, WA 98109
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
17
|
Gulati S, Palczewski K. Structural view of G protein-coupled receptor signaling in the retinal rod outer segment. Trends Biochem Sci 2023; 48:172-186. [PMID: 36163145 PMCID: PMC9868064 DOI: 10.1016/j.tibs.2022.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023]
Abstract
Visual phototransduction is the most extensively studied G protein-coupled receptor (GPCR) signaling pathway because of its quantifiable stimulus, non-redundancy of genes, and immense importance in vision. We summarize recent discoveries that have advanced our understanding of rod outer segment (ROS) morphology and the pathological basis of retinal diseases. We have combined recently published cryo-electron tomography (cryo-ET) data on the ROS with structural knowledge on individual proteins to define the precise spatial limitations under which phototransduction occurs. Although hypothetical, the reconstruction of the rod phototransduction system highlights the potential roles of phosphodiesterase 6 (PDE6) and guanylate cyclases (GCs) in maintaining the spacing between ROS discs, suggesting a plausible mechanism by which intrinsic optical signals are generated in the retina.
Collapse
Affiliation(s)
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, Center for Translational Vision Research, Department of Physiology and Biophysics, Department of Chemistry, Molecular Biology, and Biochemistry, University of California Irvine, 850 Health Sciences Road, Irvine, CA 92697-4375, USA.
| |
Collapse
|
18
|
Quantum tunnelling in the context of SARS-CoV-2 infection. Sci Rep 2022; 12:16929. [PMID: 36209224 PMCID: PMC9547378 DOI: 10.1038/s41598-022-21321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022] Open
Abstract
The SARS-CoV-2 pandemic has added new urgency to the study of viral mechanisms of infection. But while vaccines offer a measure of protection against this specific outbreak, a new era of pandemics has been predicted. In addition to this, COVID-19 has drawn attention to post-viral syndromes and the healthcare burden they entail. It seems integral that knowledge of viral mechanisms is increased through as wide a research field as possible. To this end we propose that quantum biology might offer essential new insights into the problem, especially with regards to the important first step of virus-host invasion. Research in quantum biology often centres around energy or charge transfer. While this is predominantly in the context of photosynthesis there has also been some suggestion that cellular receptors such as olfactory or neural receptors might employ vibration assisted electron tunnelling to augment the lock-and-key mechanism. Quantum tunnelling has also been observed in enzyme function. Enzymes are implicated in the invasion of host cells by the SARS-CoV-2 virus. Receptors such as olfactory receptors also appear to be disrupted by COVID-19. Building on these observations we investigate the evidence that quantum tunnelling might be important in the context of infection with SARS-CoV-2. We illustrate this with a simple model relating the vibronic mode of, for example, a viral spike protein to the likelihood of charge transfer in an idealised receptor. Our results show a distinct parameter regime in which the vibronic mode of the spike protein enhances electron transfer. With this in mind, novel therapeutics to prevent SARS-CoV-2 transmission could potentially be identified by their vibrational spectra.
Collapse
|
19
|
Engineered Allosteric Regulation of Protein Function. J Mol Biol 2022; 434:167620. [PMID: 35513109 DOI: 10.1016/j.jmb.2022.167620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/27/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022]
Abstract
Allosteric regulation of proteins has been utilized to study various aspects of cell signaling, from unicellular events to organism-wide phenotypes. However, traditional methods of allosteric regulation, such as constitutively active mutants and inhibitors, lack tight spatiotemporal control. This often leads to unintended signaling consequences that interfere with data interpretation. To overcome these obstacles, researchers employed protein engineering approaches that enable tight control of protein function through allosteric mechanisms. These methods provide high specificity as well as spatial and temporal precision in regulation of protein activity in vitro and in vivo. In this review, we focus on the recent advancements in engineered allosteric regulation and discuss the various bioengineered allosteric techniques available now, from chimeric GPCRs to chemogenetic and optogenetic switches. We highlight the benefits and pitfalls of each of these techniques as well as areas in which future improvements can be made. Additionally, we provide a brief discussion on implementation of engineered allosteric regulation approaches, demonstrating that these tools can shed light on elusive biological events and have the potential to be utilized in precision medicine.
Collapse
|
20
|
Ortega JT, Jastrzebska B. Rhodopsin as a Molecular Target to Mitigate Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:61-77. [PMID: 34962636 DOI: 10.1007/5584_2021_682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retinitis pigmentosa (RP) is a group of hereditary degenerative diseases affecting 1 of 4000 people worldwide and being the most prevalent cause of visual handicap among working populations in developed countries. These disorders are mainly related to the abnormalities in the rod G protein-coupled receptor (GPCR), rhodopsin reflected in the dysregulated membrane trafficking, stability and phototransduction processes that lead to progressive loss of retina function and eventually blindness. Currently, there is no cure for RP, and the therapeutic options are limited. Targeting rhodopsin with small molecule chaperones to improve the folding and stability of the mutant receptor is one of the most promising pharmacological approaches to alleviate the pathology of RP. This review provides an update on the current knowledge regarding small molecule compounds that have been evaluated as rhodopsin modulators to be considered as leads for the development of novel therapies for RP.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology, School of Medicine, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
21
|
Trifonov L, Rothstein A, Korshin EE, Viskind O, Afri M, Leitus G, Palczewski K, Gruzman A. Straightforward Access to Terminally Disubstituted Electron‐Deficient Alkylidene Cyclopent‐2‐en‐4‐ones through Olefination with α‐Carbonyl and α‐Cyano Secondary Alkyl Sulfones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lena Trifonov
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Ayelet Rothstein
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Edward E. Korshin
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Olga Viskind
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Michal Afri
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Gregory Leitus
- Department of Chemical Research Support the Weizmann Institute of Science Rehovot 76100 Israel
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute Department of Ophthalmology and Departments of Physiology and Biophysics and Chemistry and Molecular Biology and Biochemistry, University of California Irvine CA 92697 USA
| | - Arie Gruzman
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| |
Collapse
|
22
|
Picarazzi F, Manetti F, Marigo V, Mori M. Conformational insights into the C-terminal mutations of human rhodopsin in retinitispigmentosa. J Mol Graph Model 2021; 110:108076. [PMID: 34798368 DOI: 10.1016/j.jmgm.2021.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Rhodopsin is a light-sensitive transmembrane receptor involved in the visual transduction cascade. Among the several rhodopsin mutations related to retinitis pigmentosa (RP), those affecting the C-terminal VAPA-COOH motif that is implicated in rhodopsin trafficking from the Golgi to the rod outer segment are notably associated with more aggressive RP forms. However, molecular reasons for defective rhodopsin signaling due to VAPA-COOH mutations, which might include steric hindrance, physicochemical features and structural determinants, are yet unknown, thus limiting further drug design approaches. In this work, clinically relevant rhodopsin mutations at the P347 site within the VAPA-COOH motif were investigated by molecular dynamics (MD) simulations and compared to the wild-type (WT) system. In agreement with experimental evidence, conformational fluctuations of the intrinsically disordered C-terminal tail of WT and mutant rhodopsin were found not to affect the overall structure of the transmembrane domain, including binding to the retinal cofactor. The WT VAPA-COOH motif adopts a unique conformation that is not found in pathological mutants, suggesting that structural features could better explain the pathogenicity of P347 rhodopsin mutants than physicochemical or steric determinants. These results were confirmed by MD simulations in both membrane-embedded full-length opsin and membrane-free C-terminal deca-peptides, these latter becoming very useful and small-size model systems for further investigations of rhodopsin C-terminal mutations. Structural details elucidated in this work might facilitate the understanding of the pathological mechanisms of this class of rhodopsin mutants, which will be instrumental to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy, "Department of Excellence 2018-2022", University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, "Department of Excellence 2018-2022", University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi, 287, 41125 Modena, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, "Department of Excellence 2018-2022", University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
23
|
Xiao YS, Liang J, Gao M, Sun JR, Liu Y, Chen JQ, Zhao XH, Wang YM, Chen YH, Wang YW, Wan XL, Luo XT, Sun XD. Deletion of prominin-1 in mice results in disrupted photoreceptor outer segment protein homeostasis. Int J Ophthalmol 2021; 14:1334-1344. [PMID: 34540608 PMCID: PMC8403851 DOI: 10.18240/ijo.2021.09.07] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To illustrate the underlying mechanism how prominin-1 (also known as Prom1) mutation contribute to progressive photoreceptor degeneration. METHODS A CRISPR-mediated Prom1 knockout (Prom1-KO) mice model in the C57BL/6 was generated and the photoreceptor degeneration phenotypes by means of structural and functional tests were demonstrated. Immunohistochemistry and immunoblot analysis were performed to reveal the localization and quantity of related outer segment (OS) proteins. RESULTS The Prom1-KO mice developed the photoreceptor degeneration phenotype including the decreased outer nuclear layer (ONL) thickness and compromised electroretinogram amplitude. Immunohistochemistry analysis revealed impaired trafficking of photoreceptor OS proteins. Immunoblot data demonstrated decreased photoreceptor OS proteins. CONCLUSION Prom1 deprivation causes progressive photoreceptor degeneration. Prom1 is essential for maintaining normal trafficking and normal quantity of photoreceptor OS proteins. The new light is shed on the pathogenic mechanism underlying photoreceptor degeneration caused by Prom1 mutation.
Collapse
Affiliation(s)
- Yu-Shu Xiao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Jian Liang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Min Gao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Jun-Ran Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Yang Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Jie-Qiong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Xiao-Huan Zhao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Yi-Min Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Yu-Hong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Yu-Wei Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Xiao-Ling Wan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Xue-Ting Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Xiao-Dong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China
| |
Collapse
|
24
|
Ozkan AD, Gettas T, Sogata A, Phaychanpheng W, Zhou M, Lacroix JJ. Mechanical and chemical activation of GPR68 probed with a genetically encoded fluorescent reporter. J Cell Sci 2021; 134:271846. [PMID: 34322699 DOI: 10.1242/jcs.255455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/17/2021] [Indexed: 12/24/2022] Open
Abstract
G-protein-coupled receptor (GPCR) 68 (GPR68, or OGR1) couples extracellular acidifications and mechanical stimuli to G-protein signaling and plays important roles in vascular physiology, neuroplasticity and cancer progression. Inspired by previous GPCR-based reporters, here, we inserted a cyclic permuted fluorescent protein into the third intracellular loop of GPR68 to create a genetically encoded fluorescent reporter of GPR68 activation we call 'iGlow'. iGlow responds to known physiological GPR68 activators such as fluid shear stress and extracellular acidifications. In addition, iGlow responds to Ogerin, a synthetic GPR68-selective agonist, but not to a non-active Ogerin analog, showing the specificity of iGlow-mediated fluorescence signals. Flow-induced iGlow activation is not eliminated by pharmacological modulation of downstream G-protein signaling, disruption of actin filaments or application of GsMTx4, an inhibitor of certain mechanosensitive ion channels activated by membrane stretch. Deletion of the conserved helix 8, proposed to mediate mechanosensitivity in certain GPCRs, does not eliminate flow-induced iGlow activation. iGlow could be useful to investigate the contribution of GPR68-dependent signaling in health and disease.
Collapse
Affiliation(s)
- Alper D Ozkan
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Tina Gettas
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Audrey Sogata
- Chino Hills High School, 16150 Pomona Rincon Rd, Chino Hills, CA 91709, USA
| | - Wynn Phaychanpheng
- Chino Hills High School, 16150 Pomona Rincon Rd, Chino Hills, CA 91709, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Jérôme J Lacroix
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| |
Collapse
|
25
|
Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021; 83:100919. [PMID: 33188897 PMCID: PMC8113320 DOI: 10.1016/j.preteyeres.2020.100919] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness. It has long been regarded as vascular disease, but work in the past years has shown abnormalities also in the neural retina. Unfortunately, research on the vascular and neural abnormalities have remained largely separate, instead of being integrated into a comprehensive view of DR that includes both the neural and vascular components. Recent evidence suggests that the most predominant neural cell in the retina (photoreceptors) and the adjacent retinal pigment epithelium (RPE) play an important role in the development of vascular lesions characteristic of DR. This review summarizes evidence that the outer retina is altered in diabetes, and that photoreceptors and RPE contribute to retinal vascular alterations in the early stages of the retinopathy. The possible molecular mechanisms by which cells of the outer retina might contribute to retinal vascular damage in diabetes also are discussed. Diabetes-induced alterations in the outer retina represent a novel therapeutic target to inhibit DR.
Collapse
Affiliation(s)
- Deoye Tonade
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy S Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Veterans Administration Medical Center Research Service, Cleveland, OH, USA; Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Veterans Administration Medical Center Research Service, Long Beach, CA, USA.
| |
Collapse
|
26
|
Kircheva N, Dobrev S, Nikolova V, Angelova S, Dudev T. Zinc and Its Critical Role in Retinitis pigmentosa: Insights from DFT/SMD Calculations. Inorg Chem 2020; 59:17347-17355. [DOI: 10.1021/acs.inorgchem.0c02664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria
| |
Collapse
|
27
|
Kalamkarov GR, Shevchenko TF, Aboltin PV, Konstantinova TS, Levin PP. Study of Phototoxic Properties of Retinal and Its Derivatives in a Photoreceptor Cell by the Method of Pulsed Photolysis. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2020. [DOI: 10.1134/s1990793120030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Zhang J, Choi EH, Tworak A, Salom D, Leinonen H, Sander CL, Hoang TV, Handa JT, Blackshaw S, Palczewska G, Kiser PD, Palczewski K. Photic generation of 11- cis-retinal in bovine retinal pigment epithelium. J Biol Chem 2019; 294:19137-19154. [PMID: 31694912 DOI: 10.1074/jbc.ra119.011169] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Photoisomerization of the 11-cis-retinal chromophore of rod and cone visual pigments to an all-trans-configuration is the initiating event for vision in vertebrates. The regeneration of 11-cis-retinal, necessary for sustained visual function, is an endergonic process normally conducted by specialized enzyme systems. However, 11-cis-retinal also can be formed through reverse photoisomerization from all-trans-retinal. A nonvisual opsin known as retinal pigment epithelium (RPE)-retinal G-protein-coupled receptor (RGR) was previously shown to mediate visual chromophore regeneration in photic conditions, but conflicting results have cast doubt on its role as a photoisomerase. Here, we describe high-level production of 11-cis-retinal from RPE membranes stimulated by illumination at a narrow band of wavelengths. This activity was associated with RGR and enhanced by cellular retinaldehyde-binding protein (CRALBP), which binds the 11-cis-retinal produced by RGR and prevents its re-isomerization to all-trans-retinal. The activity was recapitulated with cells heterologously expressing RGR and with purified recombinant RGR. Using an RGR variant, K255A, we confirmed that a Schiff base linkage at Lys-255 is critical for substrate binding and isomerization. Single-cell RNA-Seq analysis of the retina and RPE tissue confirmed that RGR is expressed in human and bovine RPE and Müller glia, whereas mouse RGR is expressed in RPE but not in Müller glia. These results provide key insights into the mechanisms of physiological retinoid photoisomerization and suggest a novel mechanism by which RGR, in concert with CRALBP, regenerates the visual chromophore in the RPE under sustained light conditions.
Collapse
Affiliation(s)
- Jianye Zhang
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697
| | - Elliot H Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697.,Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Aleksander Tworak
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697
| | - David Salom
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697
| | - Henri Leinonen
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697
| | - Christopher L Sander
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697.,Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - James T Handa
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | | | - Philip D Kiser
- Department of Physiology and Biophysics, University of California, Irvine, California 92697.,Research Service, Veterans Affairs Long Beach Healthcare System, Long Beach, California 90822
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697
| |
Collapse
|
29
|
Azizzadeh Pormehr L, Ahmadian S, Daftarian N, Mousavi SA, Shafiezadeh M. PRPF31 reduction causes mis-splicing of the phototransduction genes in human organotypic retinal culture. Eur J Hum Genet 2019; 28:491-498. [PMID: 31654038 DOI: 10.1038/s41431-019-0531-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/30/2019] [Accepted: 10/13/2019] [Indexed: 12/22/2022] Open
Abstract
PRPF31 is ubiquitously expressed splicing factor and has an essential role in the pre-mRNA splicing in all tissues. However, it is not clear how reduced expression of this general splicing factor leads to retinal restricted disease, retinitis pigmentosa (RP). In this study, we used RNA interference and RNA-sequencing to mimic the PRPF31 haploinsufficiency in human organotypic retinal cultures (HORCs). We examined the effects of PRPF31 deficiency on splicing by analyzing the differential exon usages (DEUs) and intron retentions of the retinal transcriptome. Our results revealed that the PRPF31 deficiency causes mis-splicing of genes involved in RNA processing (PRPF3, PRPF8, PRPF4, and PRPF19) and phototransduction (RHO, ROM1, FSCN2, GNAT2, and GNAT1) in the retina in the PRPF31 reduced samples. Mis-splicing of genes implicated in phototransduction was associated with photoreceptor degeneration observed in RP patients. Our data revealed that PRPF31 deficiency leads to the mis-splicing of a distinct subset of pre-mRNAs with a widespread effect on phototransduction and RNA processing.
Collapse
Affiliation(s)
- Leila Azizzadeh Pormehr
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Narsis Daftarian
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Ahmad Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahshid Shafiezadeh
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
30
|
Sancho-Pelluz J, Cui X, Lee W, Tsai YT, Wu WH, Justus S, Washington I, Hsu CW, Park KS, Koch S, Velez G, Bassuk AG, Mahajan VB, Lin CS, Tsang SH. Mechanisms of neurodegeneration in a preclinical autosomal dominant retinitis pigmentosa knock-in model with a Rho D190N mutation. Cell Mol Life Sci 2019; 76:3657-3665. [PMID: 30976840 PMCID: PMC7144803 DOI: 10.1007/s00018-019-03090-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 11/30/2022]
Abstract
D190N, a missense mutation in rhodopsin, causes photoreceptor degeneration in patients with autosomal dominant retinitis pigmentosa (adRP). Two competing hypotheses have been developed to explain why D190N rod photoreceptors degenerate: (a) defective rhodopsin trafficking prevents proteins from correctly exiting the endoplasmic reticulum, leading to their accumulation, with deleterious effects or (b) elevated mutant rhodopsin expression and unabated signaling causes excitotoxicity. A knock-in D190N mouse model was engineered to delineate the mechanism of pathogenesis. Wild type (wt) and mutant rhodopsin appeared correctly localized in rod outer segments of D190N heterozygotes. Moreover, the rhodopsin glycosylation state in the mutants appeared similar to that in wt mice. Thus, it seems plausible that the injurious effect of the heterozygous mutation is not related to mistrafficking of the protein, but rather from constitutive rhodopsin activity and a greater propensity for chromophore isomerization even in the absence of light.
Collapse
Affiliation(s)
- Javier Sancho-Pelluz
- Neurobiología y Neurofisiología, Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
| | - Xuan Cui
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
- Tianjin Medical University Eye Hospital, The College of Optometry, Tianjin Medical University Eye Institute, Tianjin, China
| | - Winston Lee
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
| | - Yi-Ting Tsai
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
- Institute of Human Nutrition and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Wen-Hsuan Wu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
- Institute of Human Nutrition and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Sally Justus
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
- Harvard Medical School, Boston, MA, USA
| | - Ilyas Washington
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
| | - Chun-Wei Hsu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
| | - Karen Sophia Park
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
| | - Susanne Koch
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
- Institute of Human Nutrition and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | | | - Vinit B Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA.
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA.
- Institute of Human Nutrition and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
31
|
Strand J, Stinson C, Bellinger LL, Peng Y, Kramer PR. G i protein functions in thalamic neurons to decrease orofacial nociceptive response. Brain Res 2018; 1694:63-72. [PMID: 29763576 PMCID: PMC6026072 DOI: 10.1016/j.brainres.2018.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/27/2018] [Accepted: 05/12/2018] [Indexed: 01/01/2023]
Abstract
Orofacial pain includes neuronal pathways that project from the trigeminal nucleus to and through the thalamus. What role the ventroposterior thalamic complex (VP) has on orofacial pain transmission is not understood. To begin to address this question an inhibitory G protein (Gi) designer receptor exclusively activated by a designer drug (DREADD) was transfected in cells of the VP using adeno-associated virus isotype 8. Virus infected cells were identified by a fluorescent tag and immunostaining. Cells were silenced after injecting the designer drug clozapine-n-oxide, which binds the designer receptor activating Gi. Facial rubbing and local field potentials (LFP) in the VP were then recorded in awake, free moving Sprague Dawley rats after formalin injection of the masseter muscle to induce nociception. Formalin injection significantly increased LFP and the nociceptive behavioral response. Activation of DREADD Gi with clozapine-n-oxide significantly reduced LFP in the VP and reduced the orofacial nociceptive response. Because DREADD silencing can result from Gi-coupled inwardly-rectifying potassium channels (GIRK), the GIRK channel blocker tertiapin-Q was injected. Injection of GIRK blocker resulted in an increase in the nociceptive response and increased LFP activity. Immunostaining of the VP for glutamate vesicular transporter (VGLUT2) and gamma-aminobutyric acid vesicular transporter (VGAT) indicated a majority of the virally transfected cells were excitatory (VGLUT2 positive) and a minority were inhibitory (VGAT positive). We conclude first, that inhibition of the excitatory neurons within the VP reduced electrical activity and the orofacial nociceptive response and that the effect on excitatory neurons overwhelmed any change resulting from inhibitor neurons. Second, inhibition of LFP and nociception was due, in part, to GIRK activation.
Collapse
Affiliation(s)
- Jennifer Strand
- Department of Psychology, University of Texas at Arlington, Arlington, TX 76019, United States
| | - Crystal Stinson
- Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Larry L Bellinger
- Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Yuan Peng
- Department of Psychology, University of Texas at Arlington, Arlington, TX 76019, United States
| | - Phillip R Kramer
- Texas A&M University College of Dentistry, Dallas, TX 75246, United States.
| |
Collapse
|
32
|
Protein-enriched outer membrane vesicles as a native platform for outer membrane protein studies. Commun Biol 2018; 1:23. [PMID: 30271910 PMCID: PMC6123736 DOI: 10.1038/s42003-018-0027-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/20/2018] [Indexed: 01/15/2023] Open
Abstract
Most studies characterizing the folding, structure, and function of membrane proteins rely on solubilized or reconstituted samples. Whereas solubilized membrane proteins lack the functionally important lipid membrane, reconstitution embeds them into artificial lipid bilayers, which lack characteristic features of cellular membranes including lipid diversity, composition and asymmetry. Here, we utilize outer membrane vesicles (OMVs) released from Escherichia coli to study outer membrane proteins (Omps) in the native membrane environment. Enriched in the native membrane of the OMV we characterize the assembly, folding, and structure of OmpG, FhuA, Tsx, and BamA. Comparing Omps in OMVs to those reconstituted into artificial lipid membranes, we observe different unfolding pathways for some Omps. This observation highlights the importance of the native membrane environment to maintain the native structure and function relationship of Omps. Our fast and easy approach paves the way for functional and structural studies of Omps in the native membrane. Johannes Thoma et al. overexpress outer membrane proteins (Omps) in Escherichia coli and collect the expelled outer membrane vesicles (OMVs) to study Omp assembly, folding and structure. They find that Omps in OMVs show different unfolding pathways compared to Omps reconstituted in artificial lipid membranes.
Collapse
|
33
|
C8ORF37 Is Required for Photoreceptor Outer Segment Disc Morphogenesis by Maintaining Outer Segment Membrane Protein Homeostasis. J Neurosci 2018; 38:3160-3176. [PMID: 29440555 DOI: 10.1523/jneurosci.2964-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 01/09/2023] Open
Abstract
C8ORF37 is a causative gene for three different clinical forms of incurable retinal degeneration. However, the completely unknown function of C8ORF37 limits our understanding of the pathogenicity of C8ORF37 mutations. Here, we performed a comprehensive phenotypic characterization of a C8orf37 KO mouse line, generated using CRISPR/Cas9 technology. Both C8orf37 KO male and female mice exhibited progressive and simultaneous degeneration of rod and cone photoreceptors but no non-ocular phenotypes. The major ultrastructural feature of C8orf37 KO photoreceptors was massive disorganization of the outer segment (OS) membrane discs starting from the onset of disc morphogenesis during development. At the molecular level, the amounts of multiple OS-specific membrane proteins, including proteins involved in membrane disc organization, were reduced, although these proteins were targeted normally to the OS. Considering the distribution of C8ORF37 throughout the photoreceptor cell body, the normal structure of the KO photoreceptor connecting cilium, and the absence of defects in other ciliary organs of the KO mice, our findings do not support the previous notion that C8ORF37 was a ciliary protein. Because C8ORF37 is absent in the photoreceptor OS, C8ORF37 may participate in the secretory pathway of OS membrane proteins in the photoreceptor cell body and thus maintain the homeostasis of these proteins. This study established a valid animal model for future therapeutic studies of C8ORF37-associated retinal degeneration. This study also shed new light on the role of C8ORF37 in photoreceptors and on the pathogenic mechanism underlying retinal degeneration caused by C8ORF37 mutations.SIGNIFICANCE STATEMENT Inherited retinal degeneration is a group of incurable conditions with poorly understood underlying molecular mechanisms. We investigated C8ORF37, a causative gene for three retinal degenerative conditions: retinitis pigmentosa, cone-rod dystrophy, and Bardet-Biedl syndrome. C8ORF37 encodes a protein with no known functional domains and thus its biological function is unpredictable. We knocked out the C8ORF37 ortholog in mice, which resulted in a retinal phenotype similar to that observed in patients. We further demonstrated that C8ORF37 is required for photoreceptor outer segment disc formation and alignment, a process that is critical for photoreceptor function and survival. This study advances our understanding of the pathogenesis of retinal degeneration and establishes a valuable mouse model for future therapeutic development.
Collapse
|
34
|
Owen TS, Salom D, Sun W, Palczewski K. Increasing the Stability of Recombinant Human Green Cone Pigment. Biochemistry 2018; 57:1022-1030. [PMID: 29320632 PMCID: PMC5853123 DOI: 10.1021/acs.biochem.7b01118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three types of cone cells exist in the human retina, each containing a different pigment responsible for the initial step of phototransduction. These pigments are distinguished by their specific absorbance maxima: 425 nm (blue), 530 nm (green), and 560 nm (red). Each pigment contains a common chromophore, 11-cis-retinal covalently bound to an opsin protein via a Schiff base. The 11-cis-retinal protonated Schiff base has an absorbance maxima at 440 nm in methanol. Unfortunately, the chemistry that allows the same chromophore to interact with different opsin proteins to tune the absorbance of the resulting pigments to distinct λmax values is poorly understood. Rhodopsin is the only pigment with a native structure determined at high resolution. Homology models for cone pigments have been generated, but experimentally determined structures are needed for a precise understanding of spectral tuning. The principal obstacle to solving the structures of cone pigments has been their innate instability in recombinant constructs. By inserting five different thermostabilizing proteins (BRIL, T4L, PGS, RUB, and FLAV) into the recombinant green opsin sequence, constructs were created that were up to 9-fold more stable than WT. Using cellular retinaldehyde-binding protein (CRALBP), we developed a quick means of assessing the stability of the green pigment. CRALBP testing also confirmed an additional 48-fold increase in pigment stability when varying the detergent used. These results suggest an efficient protocol for routine purification and stabilization of cone pigments that could be used for high-resolution determination of their structures, as well as for other studies.
Collapse
Affiliation(s)
- Timothy S. Owen
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| | - David Salom
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Wenyu Sun
- Polgenix, Inc., Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
35
|
Abstract
GPCRs play a pervasive physiological role and, in turn, are the leading target class for pharmaceuticals. Beginning with the determination of the structure of rhodopsin, and dramatically accelerating since the reporting of the first ligand-mediated GPCR X-ray structures, our understanding of the structural and functional characteristics of these proteins has grown dramatically. Deploying this now rapidly emerging information for drug discovery has already been extensively demonstrated through a watershed of studies appearing in numerous scientific reports. Included in these expositions are areas such as sites and characteristics of ligand to GPCR binding, protein activation, effector bias, allosteric mechanisms, dimerization, polypharmacology and others. Computational chemistry studies are demonstrating an increasing role in capitalizing on the structural studies to further advance our understanding of these proteins as well as to drive drug discovery. Such drug discovery activities range from the design of orthosteric site inhibitors through, for example, allosteric modulators, biased ligands, partial agonists and bitopic ligands. Herein, these topics are outlined through specific examples in the hopes of providing a glimpse of the state of the field.
Collapse
|
36
|
Hishikawa D, Valentine WJ, Iizuka-Hishikawa Y, Shindou H, Shimizu T. Metabolism and functions of docosahexaenoic acid-containing membrane glycerophospholipids. FEBS Lett 2017; 591:2730-2744. [PMID: 28833063 PMCID: PMC5639365 DOI: 10.1002/1873-3468.12825] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/13/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
Omega‐3 (ω‐3) fatty acids (FAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are known to have important roles in human health and disease. Besides being utilized as fuel, ω‐3 FAs have specific functions based on their structural characteristics. These functions include serving as ligands for several receptors, precursors of lipid mediators, and components of membrane glycerophospholipids (GPLs). Since ω‐3 FAs (especially DHA) are highly flexible, the levels of DHA in GPLs may affect membrane biophysical properties such as fluidity, flexibility, and thickness. Here, we summarize some of the cellular mechanisms for incorporating DHA into membrane GPLs and propose biological effects and functions of DHA‐containing membranes of several cell and tissue types.
Collapse
Affiliation(s)
- Daisuke Hishikawa
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoshiko Iizuka-Hishikawa
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Lipid Science, The University of Tokyo, Bunkyo-ku, Japan.,AMED, Chiyoda-ku, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Lipidomics Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
37
|
Uddin MS, Naider F, Becker JM. Dynamic roles for the N-terminus of the yeast G protein-coupled receptor Ste2p. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2058-2067. [PMID: 28754538 DOI: 10.1016/j.bbamem.2017.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
The Saccharomyces cerevisiae α-factor receptor Ste2p has been used extensively as a model to understand the molecular mechanism of signal transduction by G protein-coupled receptors (GPCRs). Single and double cysteine mutants of Ste2p were created and served as surrogates to detect intramolecular interactions and dimerization of Ste2p using disulfide cross-linking methodology. When a mutation was introduced into the phylogenetically conserved tyrosine residue at position 26 (Y26C) in the N-terminus of Ste2p, dimerization was increased greatly. The amount of dimer formed by this Y26C mutant was greatly reduced by ligand binding even though the ligand binding site is far removed from the N-terminus; the lowering of the dimer formation was consistent with a conformational change in the N-terminus of the receptor upon activation. Dimerization was decreased by double mutations Y26C/V109C or Y26C/T114C indicating that Y26 is in close proximity to V109 and T114 of extracellular loop 1 in native Ste2p. Combined with earlier studies, these results indicate previously unrecognized roles for the N-terminus of Ste2p, and perhaps of GPCRs in general, and reveal a specific N-terminus residue or region, that is involved in GPCR signaling, intrareceptor interactions, and receptor dimerization.
Collapse
Affiliation(s)
- M Seraj Uddin
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Fred Naider
- Department of Chemistry and Macromolecular Assemblies Institute, College of Staten Island, CUNY, New York, New York 10314, United States; Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Jeffrey M Becker
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States.
| |
Collapse
|
38
|
Xie P, Zhou P, Alsaedi A, Zhang Y. pH-dependent absorption spectra of rhodopsin mutant E113Q: On the role of counterions and protein. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:25-31. [PMID: 27865136 DOI: 10.1016/j.saa.2016.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/08/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
The absorption spectra of bovine rhodopsin mutant E113Q in solutions were investigated at the molecular level by using a hybrid quantum mechanics/molecular mechanics (QM/MM) method. The calculations suggest the mechanism of the absorption variations of E113Q at different pH values. The results indicate that the polarizations of the counterions in the vicinity of Schiff base under protonation and unprotonation states of the mutant E113Q would be a crucial factor to change the energy gap of the retinal to tune the absorption spectra. Glu-181 residue, which is close to the chromophore, cannot serve as the counterion of the protonated Schiff base of E113Q in dark state. Moreover, the results of the absorption maximum in mutant E113Q with the various anions (Cl-, Br-, I- and NO3-) manifested that the mutant E113Q could have the potential for use as a template of anion biosensors at visible wavelength.
Collapse
Affiliation(s)
- Peng Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Panwang Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Ahmed Alsaedi
- Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China.
| |
Collapse
|
39
|
Varsano D, Caprasecca S, Coccia E. Theoretical description of protein field effects on electronic excitations of biological chromophores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:013002. [PMID: 27830666 DOI: 10.1088/0953-8984/29/1/013002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.
Collapse
Affiliation(s)
- Daniele Varsano
- S3 Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | | | | |
Collapse
|
40
|
Kalamkarov GR, Shevchenko TF, Aboltin PV, Levin PP. A flash photolysis study of the formation of retinal Schiff bases in a native photoreceptor cell. HIGH ENERGY CHEMISTRY 2017. [DOI: 10.1134/s0018143917010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Zhang X, Kim KM. Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis. Biomol Ther (Seoul) 2017; 25:26-43. [PMID: 28035080 PMCID: PMC5207461 DOI: 10.4062/biomolther.2016.186] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 12/26/2022] Open
Abstract
Endocytosis is a process by which cells absorb extracellular materials via the inward budding of vesicles formed from the plasma membrane. Receptor-mediated endocytosis is a highly selective process where receptors with specific binding sites for extracellular molecules internalize via vesicles. G protein-coupled receptors (GPCRs) are the largest single family of plasma-membrane receptors with more than 1000 family members. But the molecular mechanisms involved in the regulation of GPCRs are believed to be highly conserved. For example, receptor phosphorylation in collaboration with β-arrestins plays major roles in desensitization and endocytosis of most GPCRs. Nevertheless, a number of subsequent studies showed that GPCR regulation, such as that by endocytosis, occurs through various pathways with a multitude of cellular components and processes. This review focused on i) functional interactions between homologous and heterologous pathways, ii) methodologies applied for determining receptor endocytosis, iii) experimental tools to determine specific endocytic routes, iv) roles of small guanosine triphosphate-binding proteins in GPCR endocytosis, and v) role of post-translational modification of the receptors in endocytosis.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
42
|
Xie P, Zhang Y. Why choose 9-cis retinal for therapy of congenital stationary night blindness caused by G90D rhodopsin? Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-2039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Abstract
Recent progress in molecular understanding of the retinoid cycle in mammalian retina stems from painstaking biochemical reconstitution studies supported by natural or engineered animal models with known genetic lesions and studies of humans with specific genetic blinding diseases. Structural and membrane biology have been used to detect critical retinal enzymes and proteins and their substrates and ligands, placing them in a cellular context. These studies have been supplemented by analytical chemistry methods that have identified small molecules by their spectral characteristics, often in conjunction with the evaluation of models of animal retinal disease. It is from this background that rational therapeutic interventions to correct genetic defects or environmental insults are identified. Thus, most presently accepted modulators of the retinoid cycle already have demonstrated promising results in animal models of retinal degeneration. These encouraging signs indicate that some human blinding diseases can be alleviated by pharmacological interventions.
Collapse
Affiliation(s)
- Philip D Kiser
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106 ; Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio 44106
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
44
|
Comitato A, Di Salvo MT, Turchiano G, Montanari M, Sakami S, Palczewski K, Marigo V. Dominant and recessive mutations in rhodopsin activate different cell death pathways. Hum Mol Genet 2016; 25:2801-2812. [PMID: 27149983 DOI: 10.1093/hmg/ddw137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/05/2016] [Accepted: 04/25/2016] [Indexed: 12/25/2022] Open
Abstract
Mutations in rhodopsin (RHO) are a common cause of retinal dystrophy and can be transmitted by dominant or recessive inheritance. Clinical symptoms caused by dominant and recessive mutations in patients and animal models are very similar but the molecular mechanisms leading to retinal degeneration may differ. We characterized three murine models of retina degeneration caused by either Rho loss of function or expression of the P23H dominant mutation in Rho. Rho loss of function is characterized by activation of calpains and apoptosis-inducing factor (Aif) in dying photoreceptors. Retinas bearing the P23H dominant mutations activate both the calpain-Aif cell death pathway and ER-stress responses that together contribute to photoreceptor cell demise. In vivo treatment with the calpastatin peptide, a calpain inhibitor, was strongly neuroprotective in mice lacking Rho while photoreceptor survival in retinas expressing the P23H dominant mutation was more affected by treatment with salubrinal, an inhibitor of the ER-stress pathway. The further reduction of photoreceptor cell demise by co-treatment with calpastatin and salubrinal suggests co-activation of the calpain and ER-stress death pathways in mice bearing dominant mutations in the Rho gene.
Collapse
Affiliation(s)
- Antonella Comitato
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Teresa Di Salvo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giandomenico Turchiano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Monica Montanari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Sanae Sakami
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
45
|
Tahara S, Takeuchi S, Abe-Yoshizumi R, Inoue K, Ohtani H, Kandori H, Tahara T. Ultrafast photoreaction dynamics of a light-driven sodium-ion-pumping retinal protein from Krokinobacter eikastus revealed by femtosecond time-resolved absorption spectroscopy. J Phys Chem Lett 2015; 6:4481-4486. [PMID: 26582475 DOI: 10.1021/acs.jpclett.5b01994] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the first femtosecond time-resolved absorption study on ultrafast photoreaction dynamics of a recently discovered retinal protein, KR2, which functions as a light-driven sodium-ion pump. The obtained data show that the excited-state absorption around 460 nm and the stimulated emission around 720 nm decay concomitantly with a time constant of 180 fs. This demonstrates that the deactivation of the S1 state of KR2, which involves isomerization of the retinal chromophore, takes place three times faster than that of bacteriorhodopsin. In accordance with this rapid electronic relaxation, the photoproduct band assignable to the J intermediate grows up at ∼620 nm, indicating that the J intermediate is directly formed with the S1 → S0 internal conversion. The photoproduct band subsequently exhibits a ∼30 nm blue shift with a 500 fs time constant, corresponding to the conversion to the K intermediate. On the basis of the femtosecond absorption data obtained, we discuss the mechanism for the rapid photoreaction of KR2 and its relevance to the unique function of the sodium-ion pump.
Collapse
Affiliation(s)
- Shinya Tahara
- Molecular Spectroscopy Laboratory, RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology , Yokohama 226-8501, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan
| | - Rei Abe-Yoshizumi
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
- PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Hiroyuki Ohtani
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology , Yokohama 226-8501, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
46
|
Park SP, Lee W, Bae EJ, Greenstein V, Sin BH, Chang S, Tsang SH. Early structural anomalies observed by high-resolution imaging in two related cases of autosomal-dominant retinitis pigmentosa. Ophthalmic Surg Lasers Imaging Retina 2015; 45:469-473. [PMID: 25215869 DOI: 10.3928/23258160-20140908-01] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/27/2014] [Indexed: 11/20/2022]
Abstract
The authors report the use of adaptive-optics scanning laser ophthalmoscopy (AO-SLO) to investigate RHO, D190N autosomal-dominant retinitis pigmentosa in two siblings (11 and 16 years old, respectively). Each patient exhibited distinct hyperautofluorescence patterns in which the outer borders corresponded to inner segment ellipsoid band disruption. Areas within the hyperautofluorescence patterns exhibited normal photoreceptor outer segments and retinal pigment epithelium. However, AO-SLO imaging revealed noticeable spacing irregularities in the cone mosaic. AO-SLO allows researchers to characterize retinal structural abnormalities with precision so that early structural changes in retinitis pigmentosa can be identified and reconciled with genetic findings.
Collapse
Affiliation(s)
- Sung Pyo Park
- Bernard and Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, Columbia University, 160 Fort Washington Avenue, Room 513, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Gao S, Nagpal J, Schneider MW, Kozjak-Pavlovic V, Nagel G, Gottschalk A. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nat Commun 2015; 6:8046. [PMID: 26345128 PMCID: PMC4569695 DOI: 10.1038/ncomms9046] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 07/11/2015] [Indexed: 12/28/2022] Open
Abstract
Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s−1). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals. Cyclic guanosine monophosphate (cGMP) is a cellular second messenger involved in many processes including regulation of neuronal excitability and vascular tone. Gao, Nagpal et al., employ a fungal rhodopsin to optogenetically control cGMP levels in multiple systems including C. elegans sensory neurons.
Collapse
Affiliation(s)
- Shiqiang Gao
- Department of Biology, Institute for Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Jatin Nagpal
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max von Laue Strasse 15, D-60438 Frankfurt, Germany.,Department for Biochemistry, Chemistry and Pharmacy, Institute of Biochemistry, Goethe University, Max von Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Martin W Schneider
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max von Laue Strasse 15, D-60438 Frankfurt, Germany.,Department for Biochemistry, Chemistry and Pharmacy, Institute of Biochemistry, Goethe University, Max von Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Georg Nagel
- Department of Biology, Institute for Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max von Laue Strasse 15, D-60438 Frankfurt, Germany.,Department for Biochemistry, Chemistry and Pharmacy, Institute of Biochemistry, Goethe University, Max von Laue Strasse 9, D-60438 Frankfurt, Germany.,Cluster of Excellence Frankfurt-Macromolecular Complexes (CEF-MC), Goethe University, Max von Laue Strasse 15, D-60438 Frankfurt, Germany
| |
Collapse
|
48
|
Chen Y, Tang H, Seibel W, Papoian R, Li X, Lambert NA, Palczewski K. A High-Throughput Drug Screening Strategy for Detecting Rhodopsin P23H Mutant Rescue and Degradation. Invest Ophthalmol Vis Sci 2015; 56:2553-67. [PMID: 25783607 DOI: 10.1167/iovs.14-16298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Inherent instability of the P23H mutant opsin accounts for approximately 10% of autosomal dominant retinitis pigmentosa cases. Our purpose was to develop an overall set of reliable screening strategies to assess if either stabilization or enhanced degradation of mutant rhodopsin could rescue rod photoreceptors expressing this mutant protein. These strategies promise to reveal active compounds and clarify molecular mechanisms of biologically important processes, such as inhibition of target degradation or enhanced target folding. METHODS Cell-based bioluminescence reporter assays were developed and validated for high-throughput screening (HTS) of compounds that promote either stabilization or degradation of P23H mutant opsin. Such assays were further complemented by immunoblotting and image-based analyses. RESULTS Two stabilization assays of P23H mutant opsin were developed and validated, one based on β-galactosidase complementarity and a second assay involving bioluminescence resonance energy transfer (BRET) technology. Moreover, two additional assays evaluating mutant protein degradation also were employed, one based on the disappearance of luminescence and another employing the ALPHA immunoassay. Imaging of cells revealed the cellular localization of mutant rhodopsin, whereas immunoblots identified changes in the aggregation and glycosylation of P23H mutant opsin. CONCLUSIONS Our findings indicate that these initial HTS and following assays can identify active therapeutic compounds, even for difficult targets such as mutant rhodopsin. The assays are readily scalable and their function has been proven with model compounds. High-throughput screening, supported by automated imaging and classic immunoassays, can further characterize multiple steps and pathways in the biosynthesis and degradation of this essential visual system protein.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology Case Western Reserve University, Cleveland, Ohio, United States
| | - Hong Tang
- Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - William Seibel
- Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - Ruben Papoian
- Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - Xiaoyu Li
- Department of Pharmacology Case Western Reserve University, Cleveland, Ohio, United States
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia, United States
| | - Krzysztof Palczewski
- Department of Pharmacology Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
49
|
Abstract
Rhodopsin is a key light-sensitive protein expressed exclusively in rod photoreceptor cells of the retina. Failure to express this transmembrane protein causes a lack of rod outer segment formation and progressive retinal degeneration, including the loss of cone photoreceptor cells. Molecular studies of rhodopsin have paved the way to understanding a large family of cell-surface membrane proteins called G protein-coupled receptors (GPCRs). Work started on rhodopsin over 100 years ago still continues today with substantial progress made every year. These activities underscore the importance of rhodopsin as a prototypical GPCR and receptor required for visual perception-the fundamental process of translating light energy into a biochemical cascade of events culminating in vision.
Collapse
Affiliation(s)
- Lukas Hofmann
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | | |
Collapse
|
50
|
Palczewski K. Chemistry and biology of the initial steps in vision: the Friedenwald lecture. Invest Ophthalmol Vis Sci 2014; 55:6651-72. [PMID: 25338686 DOI: 10.1167/iovs.14-15502] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Visual transduction is the process in the eye whereby absorption of light in the retina is translated into electrical signals that ultimately reach the brain. The first challenge presented by visual transduction is to understand its molecular basis. We know that maintenance of vision is a continuous process requiring the activation and subsequent restoration of a vitamin A-derived chromophore through a series of chemical reactions catalyzed by enzymes in the retina and retinal pigment epithelium (RPE). Diverse biochemical approaches that identified key proteins and reactions were essential to achieve a mechanistic understanding of these visual processes. The three-dimensional arrangements of these enzymes' polypeptide chains provide invaluable insights into their mechanisms of action. A wealth of information has already been obtained by solving high-resolution crystal structures of both rhodopsin and the retinoid isomerase from pigment RPE (RPE65). Rhodopsin, which is activated by photoisomerization of its 11-cis-retinylidene chromophore, is a prototypical member of a large family of membrane-bound proteins called G protein-coupled receptors (GPCRs). RPE65 is a retinoid isomerase critical for regeneration of the chromophore. Electron microscopy (EM) and atomic force microscopy have provided insights into how certain proteins are assembled to form much larger structures such as rod photoreceptor cell outer segment membranes. A second challenge of visual transduction is to use this knowledge to devise therapeutic approaches that can prevent or reverse conditions leading to blindness. Imaging modalities like optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) applied to appropriate animal models as well as human retinal imaging have been employed to characterize blinding diseases, monitor their progression, and evaluate the success of therapeutic agents. Lately two-photon (2-PO) imaging, together with biochemical assays, are revealing functional aspects of vision at a new molecular level. These multidisciplinary approaches combined with suitable animal models and inbred mutant species can be especially helpful in translating provocative cell and tissue culture findings into therapeutic options for further development in animals and eventually in humans. A host of different approaches and techniques is required for substantial progress in understanding fundamental properties of the visual system.
Collapse
Affiliation(s)
- Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|