1
|
Li C, Liu X, Hu C, Yan J, Qu Y, Li H, Zhou K, Li P. Genome-wide characterization of the TRP gene family and transcriptional expression profiles under different temperatures in gecko Hemiphyllodactylus yunnanensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101418. [PMID: 39809098 DOI: 10.1016/j.cbd.2025.101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Temperature is closely linked to the life history of organisms, and thus thermoception is an important sensory mechanism. Transient receptor potential (TRP) ion channels are the key mediators of thermal sensation. In this study, we analyzed the sequence characteristics of TRPs in gecko Hemiphyllodactylus yunnanensis and compared the phylogenetic relationships of TRP family members among different Squamata species. In addition, we sequenced the transcriptome of skin and brain tissues of H. yunnanensis exposed to 12 °C (cold), 20 °C (cool), 28 °C (warm), and 36 °C (hot). The results showed that a total of 591 TRPs were identified in the genomes of 21 Squamate species, and these genes were classified into six subfamilies. Among them, 26 TRP genes were identified in H. yunnanensis and distributed on 13 chromosomes. Overall, TRP genes were conserved in squamates. Based on the transcriptome results, we found a total of 9 TRP genes expressed in the brain and skin of H. yunnanensis, of which six TRP genes were under positive selection. TRPP1L2, TRPP1L3, and TRPV1 were involved in heat-sensitive responses (> 36 °C), and TRPV3, TRPA1, and TRPM8 were involved in cold-sensitive responses (< 20 °C). TRPM8 and TRPP1L2 were important cold and heat sensors in H. yunnanensis, respectively.
Collapse
Affiliation(s)
- Chao Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xiaoying Liu
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Chaochao Hu
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Jie Yan
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yanfu Qu
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Hong Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Kaiya Zhou
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Peng Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
2
|
Wang X, Stefanello ST, Shahin V, Qian Y. From Mechanoelectric Conversion to Tissue Regeneration: Translational Progress in Piezoelectric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417564. [PMID: 40434211 DOI: 10.1002/adma.202417564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 05/03/2025] [Indexed: 05/29/2025]
Abstract
Piezoelectric materials, capable of converting mechanical stimuli into electrical signals, have emerged as promising tools in regenerative medicine due to their potential to stimulate tissue repair. Despite a surge in research on piezoelectric biomaterials, systematic insights to direct their translational optimization remain limited. This review addresses the current landscape by bridging fundamental principles with clinical potential. The biomimetic basis of piezoelectricity, key molecular pathways involved in the synergy between mechanical and electrical stimulation for enhanced tissue regeneration, and critical considerations for material optimization, structural design, and biosafety is discussed. More importantly, the current status and translational quagmire of mechanisms and applications in recent years are explored. A mechanism-driven strategy is proposed for the therapeutic application of piezoelectric biomaterials for tissue repair and identify future directions for accelerated clinical applications.
Collapse
Affiliation(s)
- Xinyu Wang
- National Center for Orthopaedics, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Sílvio Terra Stefanello
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Yun Qian
- National Center for Orthopaedics, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| |
Collapse
|
3
|
Sasaki SI, Sumioka T, Yasuda S, Miyajima M, Iwanishi H, Reinach PS, Okada Y, Saika S. Lacking TRPA1 cation channel impairs primary closure of a stromal incision injury in a mouse cornea. J Transl Med 2025:104193. [PMID: 40348381 DOI: 10.1016/j.labinv.2025.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 04/04/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
The cornea is a high sensory, innervated, avascular tissue that consists of epithelium, keratocytes, endothelium, and extracellular matrix. We evaluated the effects of gene knockout of the transient receptor potential ankyrin 1 (TRPA1), a membrane cation channel potentially activated by various external stimuli on the wound-healing process in corneal stroma following an incision injury in mice. TRPA1 protein was detected markedly in corneal epithelium and cells in the stroma in a healthy uninjured wild-type (WT) cornea. Deletion of TRPA1 gene function delayed wound closure of a full-thickness incision injury in corneal stroma. Peak of appearance of Sox10 (Schwann cell marker)-positive and Sox2- or p75- (both repair-type Schwann cell markers) expressing cells, in the healing stroma was at day 2 post-incision injury in a WT mouse, that was delayed in a TRPA1-knockout (KO) mouse during the healing process. Expression of TGFβ1 mRNA was suppressed, in association with reduction of p-Smad3 expression in stromal cells, by TRPA1 gene deletion. We also observed that the loss of TRPA1 suppressed the appearance of myofibroblasts and expression of collagen Ia1 and fibronectin in the healing stroma. In vitro gel culture study showed that chemical TRPA1 inhibition attenuated TGFβ-induced fibroblast contractility. These results indicate that TRPA1 is involved in the process of corneal stromal wound healing in response to tissue laceration in mice. The phenotype was associated with attenuation of generation of repair Schwann cells, of TGFβ signaling in stromal cells, keratocyte-myofibroblast transformation, and collagen type I expression. (241 words).
Collapse
Affiliation(s)
- Shu-Ichiro Sasaki
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan,.
| | - Shingo Yasuda
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Masayasu Miyajima
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Hiroki Iwanishi
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Peter Sol Reinach
- Department of Ophthalmology and Optometry, Wenzhou Medical University School, Wenzhou, People's Republic of China
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University Kihoku Hospital, Wakayama, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| |
Collapse
|
4
|
Mamet T, Yang J, Zhang J, Guo Y, Zhao Z. Yak milk inhibits osteoclast differentiation by suppressing TRPV5 expression. J Dairy Sci 2025; 108:3142-3150. [PMID: 39824495 DOI: 10.3168/jds.2024-25607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/17/2024] [Indexed: 01/20/2025]
Abstract
Yak milk is a potential nutrient for improving osteoporosis. However, the effect of yak milk on the expression of Ca2+ion channel TRPV5 during osteoclast differentiation is still unclear. This study used ruthenium red as a control to investigate the effect of yak milk on osteoclast differentiation and activity. Tartrate-resistant acid phosphatase staining and bone resorption pit experiments showed that yak milk inhibited osteoclast differentiation and bone resorption activity in a dose-dependent manner. In addition, yak milk can inhibit osteoclast activity by inhibiting the expression of TRPV5. Quantitative real-time PCR and western blot results also exhibited that yak milk significantly decreased the expression of TRPV5 and calbindin-D28k mRNA and protein in osteoclasts. These results suggest that yak milk inhibits nuclear factor-κβ ligand-receptor activator-induced osteoclast differentiation and bone resorption activity in RAW 264.7 cells by suppressing the expression level of TRPV5 and calbindin-D28k mRNA and protein.
Collapse
Affiliation(s)
- Torkun Mamet
- Department of Food Science and Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830046, China.
| | - Jingru Yang
- Department of Food Science and Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jin Zhang
- Department of Food Science and Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yanping Guo
- Department of Food Science and Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Zhongkai Zhao
- Department of Food Science and Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
5
|
Wang D, Xie A, Luo J, Li L, Zhang Z, Deng W, Yang B, Chang Y, Liang Y. Thiotaurine inhibits melanoma progression by enhancing Ca 2+ overload-induced cellular apoptosis. J Dermatol Sci 2025; 118:29-37. [PMID: 40189970 DOI: 10.1016/j.jdermsci.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Melanoma is the most dangerous type of skin cancer with poor therapy outcomes. Since malignant cells are more susceptible to Ca2+ overload than normal cells, activating Ca2+ overload-mediated apoptosis may be a promising strategy to inhibit melanoma progression. Hydrogen sulfide (H2S) donors can regulate Ca2+ channels, but their effects on melanoma cells remain unclear. OBJECTIVE To explore the effects of Thiotaurine (TTAU), an H2S donor, on melanoma cells and its underlying mechanisms. METHODS We tested the effect of TTAU by culturing melanoma cells in vitro and establishing the xenograft model of mice in vivo. Cell proliferation and apoptosis were assessed using the CCK-8 test and flow cytometry. Molecules involved in apoptosis or Ca2+-related signal transduction were analyzed by western blotting. Immunofluorescence was used to measure Ca2+ levels, mitochondrial damage, and reactive oxygen species (ROS). RESULTS TTAU significantly reduced melanoma cell viability and induced apoptosis both in vitro and in vivo. Mechanistically, TTAU increased intracellular Ca2+, upregulated transient receptor potential vanilloid 1(TRPV1), and decreased activating transcription factor 3(ATF3) by nuclear factor of activated T cell cytoplasmic 1(NFATc1). TTAU also caused mitochondrial damage and ROS overproduction, which also promoted apoptosis. CONCLUSION We first elucidate that TTAU inhibits melanoma progression by activating Ca2+ influx-NFATc1-ATF3 signaling and aggravating mitochondrial oxidative stress, in which TRPV1 may act as an amplifier for Ca2+ influx. Our research is expected to provide new ideas for the treatment of tumors such as melanoma, as well as the clinical application of reactive sulfur species-based drugs.
Collapse
Affiliation(s)
- Di Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ansheng Xie
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jialiang Luo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lei Li
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiwen Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Deng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Chang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yunsheng Liang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Lv H, Wang G, Wu X, Jiang D. Molecular cloning and functional characterizations of transient receptor potential A1 (TRPA1) in Aedes albopictus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106295. [PMID: 40015887 DOI: 10.1016/j.pestbp.2025.106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 03/01/2025]
Abstract
Aedes albopictus is a potent vector of major arboviruses that cause serious health burdens and economic losses in worldwide. To facilitate the exploration of potential mosquito repellents, the Ae. albopictus TRPA1 (AalTRPA1) gene was cloned and investigated its molecular characteristics by bioinformatics techniques and the function using electrophysiological and RNAi techniques. In vitro expression and electrophysiological analysis of Xenopus oocytes showed that high temperature and allyl isothiocyanate (AITC) could activate the AalTRPA1 channel. After interfering with this gene, Ae. albopictus was insensitive to temperature changes, was more easily hurt and shot down by noxious heat; it was also insensitive to catnip, and the effect of repellent was poor. We firstly identified the molecular characterization of AalTRPA1 subfamily genes and their key role in temperature and irritant perception in Ae. albopictus, and then the AalTRPA1 has the potential to develop a new mosquito repellent target against Ae. albopictus.
Collapse
Affiliation(s)
- Haiyan Lv
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Guanlong Wang
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xinheng Wu
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Dingxin Jiang
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Zhang F, Mehta H, Choudhary HH, Islam R, Hanafy KA. TRPV4 Channel in Neurological Disease: from Molecular Mechanisms to Therapeutic Potential. Mol Neurobiol 2025; 62:3877-3891. [PMID: 39333347 PMCID: PMC11790740 DOI: 10.1007/s12035-024-04518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Transient Receptor Potential Vanilloid 4 (TRPV4) is a non-selective cation channel with pivotal roles in various physiological processes, including osmosensitivity, mechanosensation, neuronal development, vascular tone regulation, and bone homeostasis in human bodies. Recent studies have made significant progress in understanding the structure and functional role of TRPV4, shedding light on its involvement in pathological processes, particularly in the realm of neurological diseases. Here, we aim to provide a comprehensive exploration of the multifaceted contributions of TRPV4 to neurological diseases, spanning its intricate molecular mechanisms to its potential as a target for therapeutic interventions. We delve into the structural and functional attributes of TRPV4, scrutinize its expression profile, and elucidate the possible mechanisms through which it participates in the pathogenesis of neurological disorders. Furthermore, we discussed recent years' progress in therapeutic strategies aimed at harnessing TRPV4 for the treatment of these diseases. These insights will provide a basis for understanding and designing modality-specific pharmacological agents to treat TRPV4-associated disorders.
Collapse
Affiliation(s)
- Feng Zhang
- Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Hritik Mehta
- Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Hadi Hasan Choudhary
- Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Rezwanul Islam
- Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Khalid A Hanafy
- Cooper Medical School at Rowan University, Camden, NJ, USA.
- Cooper University Health Care, Camden, NJ, USA.
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA.
- Cooper Neurological Institute Center for Neuroinflammation, Cooper Medical School at Rowan University, Camden, NJ, USA.
| |
Collapse
|
8
|
Sharma A, Patel S, Rajput MS. Emerging Trends in Modulation of Transient Receptor Potential Canonical 6 Channels as Therapeutic Targets. J Biochem Mol Toxicol 2025; 39:e70203. [PMID: 40059794 DOI: 10.1002/jbt.70203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/31/2024] [Accepted: 02/20/2025] [Indexed: 05/13/2025]
Abstract
The transient receptor potential canonical (TRPC) channel family includes TRPC6, a nonselective receptor-activated cation channel. Its activation result in Ca2+, Na+ along with other cationic ion influx and the phosphorylation of tyrosine, serine and phosphoinositides regulates TRPC6. The channel is widely distributed and plays physiological role in different body parts such as kidney, lungs, blood vessels, heart, brain, intrinsic cardiac ganglia and eye. It has been determined that TRPC6 is a crucial part of the kidney podocytes. Mutation in TRPC6 gene results in focal segmental glomerulosclerosis. A significant function of TRPC6 is also witnessed in the pathogenesis of various cancers including breast, esophageal, renal, head and neck squamous cell carcinoma. TRPC6 channel is found to be overexpressed in the macrophages of chronic obstructive pulmonary disorder and has a role in cardiac hypertrophy. In last decade many natural, semi synthetic and synthetic pharmaceutical agents modulating TRPC6 activity have been investigated which can be alucrative approach for the prevention and treatment of diseases associated with TRPC6 channel downregulation and upregulation. Therefore, present review aims to summarize the involvement of TRPC6 with its Ca2+ dependent effect in different physiological and pathological conditions with the downregulation as well as upregulation of TRPC6 channel functions and summarizes the progress achieved in those investigations pertaining to modulators of TRP6 channels.
Collapse
Affiliation(s)
- Ayush Sharma
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Snehal Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Mithun Singh Rajput
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
9
|
Deng Z, Chen X, Zhang R, Kong L, Fang Y, Guo J, Shen B, Zhang L. Delta opioid peptide [D-ala2, D-leu5]-Enkephalin's ability to enhance mitophagy via TRPV4 to relieve ischemia/reperfusion injury in brain microvascular endothelial cells. Stroke Vasc Neurol 2025; 10:32-44. [PMID: 38697767 PMCID: PMC11877439 DOI: 10.1136/svn-2023-003080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Local brain tissue can suffer from ischaemia/reperfusion (I/R) injury, which lead to vascular endothelial damage. The peptide δ opioid receptor (δOR) agonist [D-ala2, D-leu5]-Enkephalin (DADLE) can reduce apoptosis caused by acute I/R injury in brain microvascular endothelial cells (BMECs). OBJECTIVE This study aims to explore the mechanism by which DADLE enhances the level of mitophagy in BMECs by upregulating the expression of transient receptor potential vanilloid subtype 4 (TRPV4). METHODS BMECs were extracted and made to undergo oxygen-glucose deprivation/reoxygenation (OGD/R) accompanied by DADLE. RNA-seq analysis revealed that DADLE induced increased TRPV4 expression. The CCK-8 method was used to assess the cellular viability; quantitative PCR (qPCR) was used to determine the mRNA expression of Drp1; western blot was used to determine the expression of TRPV4 and autophagy-related proteins; and calcium imaging was used to detect the calcium influx. Autophagosomes in in the cells' mitochondria were observed by using transmission electron microscopy. ELISA was used to measure ATP content, and a JC-1 fluorescent probe was used to detect mitochondrial membrane potential. RESULTS When compared with the OGD/R group, OGD/R+DADLE group showed significantly enhanced cellular viability; increased expression of TRPV4, Beclin-1, LC3-II/I, PINK1 and Parkin; decreased p62 expression; a marked rise in calcium influx; further increases in mitophagy, an increase in ATP synthesis and an elevation of mitochondrial membrane potential. These protective effects of DADLE can be blocked by a TRPV4 inhibitor HC067047 or RNAi of TRPV4. CONCLUSION DADLE can promote mitophagy in BMECs through TRPV4, improving mitochondrial function and relieving I/R injury.
Collapse
Affiliation(s)
- Zhongfang Deng
- Department of Physiology, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyu Chen
- Department of Physiology, Anhui Medical University, Hefei, Anhui, China
| | - Ran Zhang
- Department of Physiology, Anhui Medical University, Hefei, Anhui, China
| | - Lingchao Kong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Fang
- Department of Physiology, Anhui Medical University, Hefei, Anhui, China
| | - Jizheng Guo
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Lesha Zhang
- Department of Physiology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Zhang Y, Zhang P, Luo Z, Wang Q, Zhang J, Yang M, Yan S, Liu W, Wang G. Influence of the 'painless' TRP channel on temperature-dependent escape and humidity-related pupation in Bactrocera dorsalis larvae. PEST MANAGEMENT SCIENCE 2025. [PMID: 39968601 DOI: 10.1002/ps.8724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Temperature and humidity are critical environmental factors that shape insect growth, development and survival. The larval stage is particularly vulnerable, making the ability to detect and respond to adverse environmental conditions vital for avoiding harm. The oriental fruit fly, Bactrocera dorsalis, is a major global pest inflicting damage on >150 fruit crops. However, the behavioral responses of nonmodel insect larvae to temperature and humidity remain poorly characterized. RESULTS We found that temperature and humidity significantly influence key larval behaviors. To uncover the molecular mechanisms driving these behaviors, we identified B. dorsalis painless (Bdorpainless) homologs and confirmed their expression during larval behavioral stages. Genetic disruption of Bdorpainless notably impaired the larvae's temperature-escape response. Although humidity sensing remained unaffected in Bdorpainless-mutant larvae, their pupation rate was significantly reduced. CONCLUSIONS Our findings provide new insights into the role of environmental factors in B. dorsalis behavior and highlight Bdorpainless as a potential molecular target for pest control. For example, RNA-based biopesticides targeting Bdorpainless could impair larvae's environmental adaptability, offering a novel pest management approach. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Panpan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Zhicai Luo
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Qi Wang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jie Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Minghuan Yang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Wei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
11
|
Hedger G, Yen HY. The Influence of Phosphoinositide Lipids in the Molecular Biology of Membrane Proteins: Recent Insights from Simulations. J Mol Biol 2025; 437:168937. [PMID: 39793883 PMCID: PMC7617384 DOI: 10.1016/j.jmb.2025.168937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The phosphoinositide family of membrane lipids play diverse and critical roles in eukaryotic molecular biology. Much of this biological activity derives from interactions of phosphoinositide lipids with integral and peripheral membrane proteins, leading to modulation of protein structure, function, and cellular distribution. Since the discovery of phosphoinositides in the 1940s, combined molecular biology, biophysical, and structural approaches have made enormous progress in untangling this vast and diverse cellular network of interactions. More recently, in silico approaches such as molecular dynamics simulations have proven to be an asset in prospectively identifying, characterising, explaining the structural basis of these interactions, and in the best cases providing atomic level testable hypotheses on how such interactions control the function of a given membrane protein. This review details a number of recent seminal discoveries in phosphoinositide biology, enabled by advanced biomolecular simulation, and its integration with molecular biology, biophysical, and structural biology approaches. The results of the simulation studies agree well with experimental work, and in a number of notable cases have arrived at the key conclusion several years in advance of the experimental structures. SUMMARY: Hedger and Yen review developments in simulations of phosphoinositides and membrane proteins.
Collapse
Affiliation(s)
- George Hedger
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK.
| | - Hsin-Yung Yen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
12
|
Kumamoto E. Anesthetic- and Analgesic-Related Drugs Modulating Both Voltage-Gated Na + and TRP Channels. Biomolecules 2024; 14:1619. [PMID: 39766326 PMCID: PMC11727300 DOI: 10.3390/biom14121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na+ channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission. There is much evidence demonstrating that chemical compounds involved in Na+ channel (or nerve AP conduction) inhibition modify TRP channel functions. Among these compounds are local anesthetics, anti-epileptics, α2-adrenoceptor agonists, antidepressants (all of which are used as analgesic adjuvants), general anesthetics, opioids, non-steroidal anti-inflammatory drugs and plant-derived compounds, many of which are involved in antinociception. This review mentions the modulation of Na+ channels and TRP channels including TRPV1, TRPA1 and TRPM8, both of which modulations are produced by pain-related compounds.
Collapse
Affiliation(s)
- Eiichi Kumamoto
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
13
|
Catalina-Hernández È, López-Martín M, Masnou-Sánchez D, Martins M, Lorenz-Fonfria VA, Jiménez-Altayó F, Hellmich UA, Inada H, Alcaraz A, Furutani Y, Nonell-Canals A, Vázquez-Ibar JL, Domene C, Gaudet R, Perálvarez-Marín A. Experimental and computational biophysics to identify vasodilator drugs targeted at TRPV2 using agonists based on the probenecid scaffold. Comput Struct Biotechnol J 2024; 23:473-482. [PMID: 38261868 PMCID: PMC10796807 DOI: 10.1016/j.csbj.2023.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/25/2024] Open
Abstract
TRP channels are important pharmacological targets in physiopathology. TRPV2 plays distinct roles in cardiac and neuromuscular function, immunity, and metabolism, and is associated with pathologies like muscular dystrophy and cancer. However, TRPV2 pharmacology is unspecific and scarce at best. Using in silico similarity-based chemoinformatics we obtained a set of 270 potential hits for TRPV2 categorized into families based on chemical nature and similarity. Docking the compounds on available rat TRPV2 structures allowed the clustering of drug families in specific ligand binding sites. Starting from a probenecid docking pose in the piperlongumine binding site and using a Gaussian accelerated molecular dynamics approach we have assigned a putative probenecid binding site. In parallel, we measured the EC50 of 7 probenecid derivatives on TRPV2 expressed in Pichia pastoris using a novel medium-throughput Ca2+ influx assay in yeast membranes together with an unbiased and unsupervised data analysis method. We found that 4-(piperidine-1-sulfonyl)-benzoic acid had a better EC50 than probenecid, which is one of the most specific TRPV2 agonists to date. Exploring the TRPV2-dependent anti-hypertensive potential in vivo, we found that 4-(piperidine-1-sulfonyl)-benzoic acid shows a sex-biased vasodilator effect producing larger vascular relaxations in female mice. Overall, this study expands the pharmacological toolbox for TRPV2, a widely expressed membrane protein and orphan drug target.
Collapse
Affiliation(s)
- Èric Catalina-Hernández
- Unit of Biophysics, Dept. of Biochemistry and Molecular Biology, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - Mario López-Martín
- Unit of Biophysics, Dept. of Biochemistry and Molecular Biology, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - David Masnou-Sánchez
- Unit of Biophysics, Dept. of Biochemistry and Molecular Biology, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - Marco Martins
- Unit of Biophysics, Dept. of Biochemistry and Molecular Biology, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - Victor A. Lorenz-Fonfria
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán-2, 46980 Paterna, Spain
| | - Francesc Jiménez-Altayó
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Department of Pharmacology, Toxicology and Therapeutics,Institute of Neurosciences, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - Ute A. Hellmich
- Friedrich Schiller University Jena, Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry & Macromolecular Chemistry, Humboldtstrasse 10, 07743 Jena, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Hitoshi Inada
- Department of Biochemistry & Cellular Biology National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Dept. of Physics, Universitat Jaume I, 12071 Castellón, Spain
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-Ku, Nagoya 466-8555, Japan
- Optobiotechnology Research Center, Nagoya Institute of Technology, Showa-Ku, Nagoya 466-8555, Japan
| | | | - Jose Luis Vázquez-Ibar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Carmen Domene
- Dept. of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Rachelle Gaudet
- Dept of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alex Perálvarez-Marín
- Unit of Biophysics, Dept. of Biochemistry and Molecular Biology, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| |
Collapse
|
14
|
Pan GP, Liu YH, Qi MX, Guo YQ, Shao ZL, Liu HT, Qian YW, Guo S, Yin YL, Li P. Alizarin attenuates oxidative stress-induced mitochondrial damage in vascular dementia rats by promoting TRPM2 ubiquitination and proteasomal degradation via Smurf2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156119. [PMID: 39418971 DOI: 10.1016/j.phymed.2024.156119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/27/2024] [Accepted: 07/13/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Alizarin (AZ) is a natural anthraquinone with anti-inflammatory and moderate antioxidant properties. PURPOSE In this study, we characterized the role of AZ in a rat model of vascular dementia (VaD) and explored its underlying mechanisms. METHODS VaD was induced by bilateral common carotid artery occlusion. RESULTS We found that AZ attenuated oxidative stress and improved mitochondrial structure and function in VaD rats, which led to the improvement of their learning and memory function. Mechanistically, AZ reduced transient receptor potential melastatin 2 (TRPM2) expression and activation of the Janus-kinase and signal transducer activator of transcription (JAK-STAT) pathway in VaD rats. In particular, the reduction in the expression of TRPM2 channels was the key to the attenuation of the oxidative stress-induced mitochondrial damage, which may be achieved by increasing the expression of the E3 ubiquitin ligase, Smad-ubiquitination regulatory factor 2 (Smurf2); thereby increasing the ubiquitination and degradation levels of TRPM2. CONCLUSION Our results suggest that AZ is an effective candidate drug for ameliorating VaD and provide new insights into the current clinical treatment of VaD.
Collapse
Affiliation(s)
- Guo-Pin Pan
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yan-Hua Liu
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Pharmacy Department, the First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Ming-Xu Qi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130000, China
| | - Ya-Qi Guo
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhen-Lei Shao
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Pharmacy Department, the First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Hui-Ting Liu
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yi-Wen Qian
- Department of Pharmacy, College of Basic Medicine and Forensic Medicien, Henan University of Science and Technology, Luoyang 471000, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Ya-Ling Yin
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| | - Peng Li
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
15
|
Boda VK, Yasmen N, Jiang J, Li W. Pathophysiological significance and modulation of the transient receptor potential canonical 3 ion channel. Med Res Rev 2024; 44:2510-2544. [PMID: 38715347 PMCID: PMC11452291 DOI: 10.1002/med.22048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Transient receptor potential canonical 3 (TRPC3) protein belongs to the TRP family of nonselective cation channels. Its activation occurs by signaling through a G protein-coupled receptor (GPCR) and a phospholipase C-dependent (PLC) pathway. Perturbations in the expression of TRPC3 are associated with a plethora of pathophysiological conditions responsible for disorders of the cardiovascular, immune, and central nervous systems. The recently solved cryo-EM structure of TRPC3 provides detailed inputs about the underlying mechanistic aspects of the channel, which in turn enables more efficient ways of designing small-molecule modulators. Pharmacologically targeting TRPC3 in animal models has demonstrated great efficacy in treating diseases including cancers, neurological disorders, and cardiovascular diseases. Despite extensive scientific evidence supporting some strong correlations between the expression and activity of TRPC3 and various pathophysiological conditions, therapeutic strategies based on its pharmacological modulations have not led to clinical trials. The development of small-molecule TRPC3 modulators with high safety, sufficient brain penetration, and acceptable drug-like profiles remains in progress. Determining the pathological mechanisms for TRPC3 involvement in human diseases and understanding the requirements for a drug-like TRPC3 modulator will be valuable in advancing small-molecule therapeutics to future clinical trials. In this review, we provide an overview of the origin and activation mechanism of TRPC3 channels, diseases associated with irregularities in their expression, and new development in small-molecule modulators as potential therapeutic interventions for treating TRPC3 channelopathies.
Collapse
Affiliation(s)
- Vijay K. Boda
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| |
Collapse
|
16
|
Huang J, Pan X, Yan N. Structural biology and molecular pharmacology of voltage-gated ion channels. Nat Rev Mol Cell Biol 2024; 25:904-925. [PMID: 39103479 DOI: 10.1038/s41580-024-00763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
Voltage-gated ion channels (VGICs), including those for Na+, Ca2+ and K+, selectively permeate ions across the cell membrane in response to changes in membrane potential, thus participating in physiological processes involving electrical signalling, such as neurotransmission, muscle contraction and hormone secretion. Aberrant function or dysregulation of VGICs is associated with a diversity of neurological, psychiatric, cardiovascular and muscular disorders, and approximately 10% of FDA-approved drugs directly target VGICs. Understanding the structure-function relationship of VGICs is crucial for our comprehension of their working mechanisms and role in diseases. In this Review, we discuss how advances in single-particle cryo-electron microscopy have afforded unprecedented structural insights into VGICs, especially on their interactions with clinical and investigational drugs. We present a comprehensive overview of the recent advances in the structural biology of VGICs, with a focus on how prototypical drugs and toxins modulate VGIC activities. We explore how these structures elucidate the molecular basis for drug actions, reveal novel pharmacological sites, and provide critical clues to future drug discovery.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Xiaojing Pan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
| | - Nieng Yan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
17
|
Daum F, Flockerzi F, Bozzato A, Schick B, Tschernig T. TRPC6 is ubiquitously present in lymphatic tissues: A study using samples from body donors. MEDICINE INTERNATIONAL 2024; 4:62. [PMID: 39161881 PMCID: PMC11332316 DOI: 10.3892/mi.2024.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Transient receptor potential canonical channel 6 (TRPC6) is a non-selective cation channel that is activated by diacylglycerol. It belongs to the TRP superfamily, is expressed in numerous tissues and has been shown to be associated with diseases, such as focal segmental glomerulosclerosis, idiopathic pulmonary arterial hypertension and cardiac hypertrophy. The investigation of the channel in human lymphoid tissues has thus far been limited to mRNA analysis or the western blotting of isolated lymphoid cell lines. The present study aimed to detect the channel in human lymphoid tissue using immunohistochemistry. For this purpose, lymphatic tissues were obtained from body donors. The lymphatic organs analyzed included the lymph nodes, spleen, palatine tonsil, gut-associated lymphoid tissues (ileum and vermiform appendix) and thymus. A total of 102 samples were obtained and processed for hematoxylin and eosin (H&E) staining. The H&E staining method was employed to identify five samples with good morphology. In total, three samples of the palatine tonsil of patients were included. Immunostaining was carried out using a knockout-validated anti-TRPC6 antibody. As shown by the results, using immunohistochemical staining, the presence of TRPC6 was confirmed in all the analyzed lymphatic tissue samples. Lymphocytes in lymph nodes, spleen, palatine tonsil, thymus, and gut-associated lymphatic tissues in ileum and vermiform appendix exhibited a positive staining signal. The follicle-associated epithelium of the palatine tonsil, ileum and appendix also demonstrated staining. Vessels of the lymphatic organs, particularly the trabecular arteries of the spleen, the submucosal vessels of the appendix and ileum, as well as the high endothelial venules in the palatine tonsils and lymphatic vessels of the lymph nodes expressed TRPC6 protein. TRPC6 in follicles may be involved in the immune response. TRPC6 in high endothelial venules suggests a role in leukocyte migration. The role of TRPC6 and other channels of the TRP family in lymphatic organs warrant further investigations to elucidate whether TRP channels are a pharmacological target.
Collapse
Affiliation(s)
- Felix Daum
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Saarland University, D-66421 Homburg/Saar, Germany
| | - Fidelis Flockerzi
- Institute of Pathology, Faculty of Medicine, Saarland University, D-66421 Homburg/Saar, Germany
| | - Alessandro Bozzato
- Department of Otorhinolaryngology, Faculty of Medicine, Saarland University, D-66421 Homburg/Saar, Germany
| | - Bernhard Schick
- Department of Otorhinolaryngology, Faculty of Medicine, Saarland University, D-66421 Homburg/Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Saarland University, D-66421 Homburg/Saar, Germany
| |
Collapse
|
18
|
Foti Randazzese S, Toscano F, Gambadauro A, La Rocca M, Altavilla G, Carlino M, Caminiti L, Ruggeri P, Manti S. Neuromodulators in Acute and Chronic Cough in Children: An Update from the Literature. Int J Mol Sci 2024; 25:11229. [PMID: 39457010 PMCID: PMC11508565 DOI: 10.3390/ijms252011229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cough is one of the most common reasons leading to pediatric consultations, negatively impacting the quality of life of patients and caregivers. It is defined as a sudden and forceful expulsion of air from the lungs through the mouth, typically triggered by irritation or the stimulation of sensory nerves in the respiratory tract. This reflex is controlled by a neural pathway that includes sensory receptors, afferent nerves, the brainstem's cough center, efferent nerves, and the muscles involved in coughing. Based on its duration, cough in children may be classified as acute, lasting less than four weeks, and chronic, persisting for more than four weeks. Neuromodulators have shown promise in reducing the frequency and severity of cough by modulating the neural pathways involved in the cough reflex, although they require careful monitoring and patient selection to optimize the outcomes. This review aims to examine the rationale for using neuromodulators in the management of cough in children.
Collapse
Affiliation(s)
- Simone Foti Randazzese
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Fabio Toscano
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Mariarosaria La Rocca
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Giulia Altavilla
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Mariagrazia Carlino
- Pediatric Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Lucia Caminiti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Paolo Ruggeri
- Pulmonology Unit, Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy;
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| |
Collapse
|
19
|
Ives CM, Şahin AT, Thomson NJ, Zachariae U. A hydrophobic funnel governs monovalent cation selectivity in the ion channel TRPM5. Biophys J 2024; 123:3304-3316. [PMID: 39086136 PMCID: PMC11480762 DOI: 10.1016/j.bpj.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
A key capability of ion channels is the facilitation of selective permeation of certain ionic species across cellular membranes at high rates. Due to their physiological significance, ion channels are of great pharmaceutical interest as drug targets. The polymodal signal-detecting transient receptor potential (TRP) superfamily of ion channels forms a particularly promising group of drug targets. While most members of this family permeate a broad range of cations including Ca2+, TRPM4 and TRPM5 are unique due to their strong monovalent selectivity and impermeability for divalent cations. Here, we investigated the mechanistic basis for their unique monovalent selectivity by in silico electrophysiology simulations of TRPM5. Our simulations reveal an unusual mechanism of cation selectivity, which is underpinned by the function of the central channel cavity alongside the selectivity filter. Our results suggest that a subtle hydrophobic barrier at the cavity entrance ("hydrophobic funnel") enables monovalent but not divalent cations to pass and occupy the cavity at physiologically relevant membrane voltages. Monovalent cations then permeate efficiently by a cooperative, distant knock-on mechanism between two binding regions in the extracellular pore vestibule and the central cavity. By contrast, divalent cations do not enter or interact favorably with the channel cavity due to its raised hydrophobicity. Hydrophilic mutations in the transition zone between the selectivity filter and the central channel cavity abolish the barrier for divalent cations, enabling both monovalent and divalent cations to traverse TRPM5.
Collapse
Affiliation(s)
- Callum M Ives
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alp Tegin Şahin
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom; School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Neil J Thomson
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom; Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
20
|
Chen J, Sun W, Zhu Y, Zhao F, Deng S, Tian M, Wang Y, Gong Y. TRPV1: The key bridge in neuroimmune interactions. JOURNAL OF INTENSIVE MEDICINE 2024; 4:442-452. [PMID: 39310069 PMCID: PMC11411435 DOI: 10.1016/j.jointm.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 09/25/2024]
Abstract
The nervous and immune systems are crucial in fighting infections and inflammation and in maintaining immune homeostasis. The immune and nervous systems are independent, yet tightly integrated and coordinated organizations. Numerous molecules and receptors play key roles in enabling communication between the two systems. Transient receptor potential vanilloid subfamily member 1 (TRPV1) is a non-selective cation channel, recently shown to be widely expressed in the neuroimmune axis and implicated in neuropathic pain, autoimmune disorders, and immune cell function. TRPV1 is a key bridge in neuroimmune interactions, allowing for smooth and convenient communication between the two systems. Here, we discuss the coordinated cross-talking between the immune and nervous systems and the functional role and the functioning manner of the TRPV1 involved. We suggest that TRPV1 provides new insights into the collaborative relationship between the nervous and immune systems, highlighting exciting opportunities for advanced therapeutic approaches to treating neurogenic inflammation and immune-mediated diseases.
Collapse
Affiliation(s)
- Jianwei Chen
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenqian Sun
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Youjia Zhu
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feng Zhao
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yao Wang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
21
|
Grimm S, Just S, Fuertig R, Dwyer JB, Sharma VM, Wunder A. TRPC4/5 inhibitors: Phase I results and proof of concept studies. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01890-0. [PMID: 39343822 DOI: 10.1007/s00406-024-01890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024]
Abstract
Transient receptor potential canonical (TRPC) ion channels are expressed in areas of the brain responsible for processing emotion and mood and have been implicated in the pathophysiology of internalizing disorders such as major depressive disorder and anxiety disorders. This review outlines the rationale for targeting TRPC ion channels for drug development, with specific focus on TRPC4 and TRPC5. We provide preclinical evidence that the lack of TRPC4 and TRPC5 channels or its pharmacological inhibition attenuate fear and anxiety without impairing other behaviors in mice. We also report on clinical studies of BI 1358894, a small molecule inhibitor of TRPC4/5 ion channels, demonstrating reduced psychological and physiological responses to induced anxiety/panic-like symptoms in healthy volunteers. Furthermore, we highlight an imaging study that investigated the acute effects of BI 1358894 and showed reduced activation in several brain regions involved in emotional processing. We conclude that these findings demonstrate a critical role for TRPC4 and TRPC5 in emotional processing, even though it remains an open question if the biological signatures of TRPC4/5 inhibition reported here translate into clinical efficacy and indicate that a TRPC4/5 inhibitor might provide a more effective treatment of internalizing disorders.
Collapse
Affiliation(s)
- Simone Grimm
- Medical School Berlin, Rüdesheimer Str., 5014197, Berlin, Germany.
- Department of Psychiatry, Campus Benjamin Franklin Charité, Berlin, Germany.
| | - Stefan Just
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Rene Fuertig
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Vikas M Sharma
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Andreas Wunder
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
22
|
Machaty Z. The signal that stimulates mammalian embryo development. Front Cell Dev Biol 2024; 12:1474009. [PMID: 39355121 PMCID: PMC11442298 DOI: 10.3389/fcell.2024.1474009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Embryo development is stimulated by calcium (Ca2+) signals that are generated in the egg cytoplasm by the fertilizing sperm. Eggs are formed via oogenesis. They go through a cell division known as meiosis, during which their diploid chromosome number is halved and new genetic combinations are created by crossing over. During formation the eggs also acquire cellular components that are necessary to produce the Ca2+ signal and also, to support development of the newly formed embryo. Ionized calcium is a universal second messenger used by cells in a plethora of biological processes and the eggs develop a "toolkit", a set of molecules needed for signaling. Meiosis stops twice and these arrests are controlled by a complex interaction of regulatory proteins. The first meiotic arrest lasts until after puberty, when a luteinizing hormone surge stimulates meiotic resumption. The cell cycle proceeds to stop again in the middle of the second meiotic division, right before ovulation. The union of the female and male gametes takes place in the oviduct. Following gamete fusion, the sperm triggers the release of Ca2+ from the egg's intracellular stores which in mammals is followed by repetitive Ca2+ spikes known as Ca2+ oscillations in the cytosol that last for several hours. Downstream sensor proteins help decoding the signal and stimulate other molecules whose actions are required for proper development including those that help to prevent the fusion of additional sperm cells to the egg and those that assist in the release from the second meiotic arrest, completion of meiosis and entering the first mitotic cell division. Here I review the major steps of egg formation, discuss the signaling toolkit that is essential to generate the Ca2+ signal and describe the steps of the signal transduction mechanism that activates the egg's developmental program and turns it into an embryo.
Collapse
Affiliation(s)
- Zoltan Machaty
- Department of Animal Sciences Purdue University West Lafayette, West Lafayette, IN, United States
| |
Collapse
|
23
|
Li C, Qin X, Liang M, Luo Z, Zhan Z, Weng S, Guo C, He J. Genome-wide identification, characterization, and expression analysis of the transient receptor potential gene family in mandarin fish Siniperca chuatsi. BMC Genomics 2024; 25:848. [PMID: 39251938 PMCID: PMC11386371 DOI: 10.1186/s12864-024-10757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Temperature is a crucial environmental determinant for the vitality and development of teleost fish, yet the underlying mechanisms by which they sense temperature fluctuations remain largely unexplored. Transient receptor potential (TRP) proteins, renowned for their involvement in temperature sensing, have not been characterized in teleost fish, especially regarding their temperature-sensing capabilities. RESULTS In this study, a genome-wide analysis was conducted, identifying a total of 28 TRP genes in the mandarin fish Siniperca chuatsi. These genes were categorized into the families of TRPA, TRPC, TRPP, TRPM, TRPML, and TRPV. Despite notable variations in conserved motifs across different subfamilies, TRP family members shared common structural features, including ankyrin repeats and the TRP domain. Tissue expression analysis showed that each of these TRP genes exhibited a unique expression pattern. Furthermore, examination of the tissue expression patterns of ten selected TRP genes following exposure to both high and low temperature stress indicated the expression of TRP genes were responsive to temperatures changes. Moreover, the expression profiles of TRP genes in response to mandarin fish virus infections showed significant upregulation for most genes after Siniperca chuatsi rhabdovirus, mandarin fish iridovirus and infectious spleen and kidney necrosis virus infection. CONCLUSIONS This study characterized the TRP family genes in mandarin fish genome-wide, and explored their expression patterns in response to temperature stress and virus infections. Our work will enhance the overall understanding of fish TRP channels and their possible functions.
Collapse
Affiliation(s)
- Chuanrui Li
- School of Marine Sciences, State Key Laboratory for Biocontrol / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Xiaowei Qin
- School of Marine Sciences, State Key Laboratory for Biocontrol / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Mincong Liang
- School of Marine Sciences, State Key Laboratory for Biocontrol / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Zhiyong Luo
- School of Marine Sciences, State Key Laboratory for Biocontrol / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Zhipeng Zhan
- School of Marine Sciences, State Key Laboratory for Biocontrol / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Shaoping Weng
- School of Marine Sciences, State Key Laboratory for Biocontrol / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Changjun Guo
- School of Marine Sciences, State Key Laboratory for Biocontrol / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.
| | - Jianguo He
- School of Marine Sciences, State Key Laboratory for Biocontrol / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| |
Collapse
|
24
|
Umlauf F, Diebolt CM, Englisch CN, Flockerzi F, Tschernig T. Distribution of TRPC5 in the human lung: A study in body donors. Exp Ther Med 2024; 28:363. [PMID: 39071908 PMCID: PMC11273251 DOI: 10.3892/etm.2024.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
Transient receptor potential channel canonical 5 (TRPC5) is a non-selective ion channel; ion influx through TRPC5 causes activation of downstream signaling pathways. In addition, TRPC5 has been identified as having a potential role in pathological processes, particularly in diseases caused by cellular cation homeostasis dysregulation, such as bronchial asthma or pulmonary hypertension. However, the expression and distribution of TRPC5 in the human lung remain unclear. To date, TRPC5 has only been detected in a few cell types in the human lung, such as airway, pulmonary venous and arterial smooth muscle cells. The present study therefore aimed to investigate the protein expression of TRPC5 in the human lung and to evaluate its histological distribution. Human lung samples were obtained from six preserved body donors. After processing, both hematoxylin & eosin staining, as well as immunohistochemistry were performed. Microscopic analysis revealed medium to strong immunostaining signals in all lung structures examined, including the pleura, pulmonary arteries and veins, bronchioles, alveolar septa, type 1 and 2 pneumocytes, as well as alveolar macrophages. Current research suggests that TRPC5 may be involved in various pathological processes in the human lung and some pharmacological compounds have already been identified that affect the function of TRPC5. Therefore, TRPC5 may present a novel drug target for therapeutic intervention in various lung diseases. The results of the present study indicate that the TRPC5 protein is expressed in all examined histological structures of the human lung. These findings suggest that TRPC5 may be more important for physiological cell function and pathophysiological cell dysfunction in the lung than is currently known. Further research is needed to explore the role and therapeutic target potential of TRPC5 in the human lung.
Collapse
Affiliation(s)
- Frederik Umlauf
- Institute of Anatomy and Cell Biology, Saarland University, Faculty of Medicine, D-66421 Homburg, Germany
| | - Coline M. Diebolt
- Institute of Anatomy and Cell Biology, Saarland University, Faculty of Medicine, D-66421 Homburg, Germany
| | - Colya N. Englisch
- Institute of Anatomy and Cell Biology, Saarland University, Faculty of Medicine, D-66421 Homburg, Germany
| | - Fidelis Flockerzi
- Institute of Pathology, Saarland University, Faculty of Medicine, D-66421 Homburg, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Faculty of Medicine, D-66421 Homburg, Germany
| |
Collapse
|
25
|
Zhou R, Fu W, Vasylyev D, Waxman SG, Liu CJ. Ion channels in osteoarthritis: emerging roles and potential targets. Nat Rev Rheumatol 2024; 20:545-564. [PMID: 39122910 DOI: 10.1038/s41584-024-01146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Osteoarthritis (OA) is a highly prevalent joint disease that causes substantial disability, yet effective approaches to disease prevention or to the delay of OA progression are lacking. Emerging evidence has pinpointed ion channels as pivotal mediators in OA pathogenesis and as promising targets for disease-modifying treatments. Preclinical studies have assessed the potential of a variety of ion channel modulators to modify disease pathways involved in cartilage degeneration, synovial inflammation, bone hyperplasia and pain, and to provide symptomatic relief in models of OA. Some of these modulators are currently being evaluated in clinical trials. This review explores the structures and functions of ion channels, including transient receptor potential channels, Piezo channels, voltage-gated sodium channels, voltage-dependent calcium channels, potassium channels, acid-sensing ion channels, chloride channels and the ATP-dependent P2XR channels in the osteoarthritic joint. The discussion spans channel-targeting drug discovery and potential clinical applications, emphasizing opportunities for further research, and underscoring the growing clinical impact of ion channel biology in OA.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Wenyu Fu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Dmytro Vasylyev
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
26
|
Yuan Y, Zhang Q, Qiu F, Kang N, Zhang Q. Targeting TRPs in autophagy regulation and human diseases. Eur J Pharmacol 2024; 977:176681. [PMID: 38821165 DOI: 10.1016/j.ejphar.2024.176681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Transient receptor potential channels (TRPs) are widely recognized as a group of ion channels involved in various sensory perceptions, such as temperature, taste, pressure, and vision. While macroautophagy (hereafter referred to as autophagy) is primarily regulated by core machinery, the ion exchange mediated by TRPs between intracellular and extracellular compartments, as well as within organelles and the cytoplasm, plays a crucial role in autophagy regulation as an important signaling transduction mechanism. Moreover, certain TRPs can directly interact with autophagy regulatory proteins to participate in autophagy regulation. In this article, we provide an in-depth review of the current understanding of the regulatory mechanisms of autophagy, with a specific focus on TRPs. Furthermore, we highlight the potential prospects for drug development targeting TRPs in autophagy for the treatment of human diseases.
Collapse
Affiliation(s)
- Yongkang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Qiuju Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.
| |
Collapse
|
27
|
Silva-Cardoso GK, Boda VK, Li W, N'Gouemo P. Inhibition of TRPC3 channels suppresses seizure susceptibility in the genetically-epilepsy prone rats. Eur J Pharmacol 2024; 977:176722. [PMID: 38851562 PMCID: PMC11295865 DOI: 10.1016/j.ejphar.2024.176722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/27/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Transient receptor potential canonical 3 (TRPC3) channels are important in regulating Ca2+ homeostasis and have been implicated in the pathophysiology of chemically induced seizures. Inherited seizure susceptibility in genetically epilepsy-prone rats (GEPR-3s) has been linked to increased voltage-gated Ca2+ channel currents in the inferior colliculus neurons, which can affect intraneuronal Ca2+ homeostasis. However, whether TRPC3 channels also contribute to inherited seizure susceptibility in GEPR-3s is unclear. This study investigated the effects of JW-65, a potent and selective inhibitor of TRPC3 channels, on acoustically evoked seizure susceptibility in adult male and female GEPR-3s. These seizures consisted of wild running seizures (WRSs) that evolved into generalized tonic-clonic seizures (GTCSs). The results showed that acute administration of low doses of JW-65 significantly decreased by 55-89% the occurrence of WRSs and GTCSs and the seizure severity in both male and female GEPR-3s. This antiseizure effect was accompanied by increased seizure latency and decreased seizure duration. Additionally, female GEPR-3s were more responsive to JW-65's antiseizure effects than males. Moreover, JW-65 treatment for five consecutive days completely suppressed acoustically evoked seizures in male and female GEPR-3s. These findings suggest that inhibiting TRPC3 channels could be a promising antiseizure strategy targeting Ca2+ signaling mechanisms in inherited generalized tonic-clonic epilepsy.
Collapse
Affiliation(s)
- Gleice K Silva-Cardoso
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Vijay K Boda
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Wei Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Prosper N'Gouemo
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, 20059, USA.
| |
Collapse
|
28
|
Renò F, De Andrea M, Raviola S, Migliario M, Invernizzi M. Clodronate Reduces ATP-Containing Microvesicle Releasing Induced by Nociceptive Stimuli in Human Keratinocytes. Int J Mol Sci 2024; 25:8435. [PMID: 39126004 PMCID: PMC11312912 DOI: 10.3390/ijms25158435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Clodronate (Clod), a first-generation bisphosphonate, acts as a natural analgesic inhibiting vesicular storage of the nociception mediator ATP by vesicular nucleotide transporter (VNUT). Epidermal keratinocytes participate in cutaneous nociception, accumulating ATP within vesicles, which are released following different stimulations. Under stress conditions, keratinocytes produce microvesicles (MVs) by shedding from plasma membrane evagination. MV secretion has been identified as a novel and universal mode of intercellular communication between cells. The aim of this project was to evaluate if two nociceptive stimuli, Capsaicin and Potassium Hydroxide (KOH), could stimulate MV shedding from human keratinocytes, if these MVs could contain ATP, and if Clod could inhibit this phenomenon. In our cellular model, the HaCaT keratinocyte monolayer, both Capsaicin and KOH stimulated MV release after 3 h incubation, and the released MVs contained ATP. Moreover, Clod (5 µM) was able to reduce Caps-induced MV release and abolish the one KOH induced, while the Dansylcadaverine, an endocytosis inhibitor of Clod uptake, partially failed to block the bisphosphonate activity. Based on these new data and given the role of the activation of ATP release by keratinocytes as a vehicle for nociception and pain, the "old" bisphosphonate Clodronate could provide the pharmacological basis to develop new local analgesic drugs.
Collapse
Affiliation(s)
- Filippo Renò
- Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | - Marco De Andrea
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Eastern Piedmont, Corso Trieste, 15/A, 28100 Novara, Italy; (M.D.A.); (S.R.)
- Department of Public Health and Pediatric Sciences, University of Turin, Via Verdi 8, 10124 Turin, Italy
| | - Stefano Raviola
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Eastern Piedmont, Corso Trieste, 15/A, 28100 Novara, Italy; (M.D.A.); (S.R.)
- Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy;
| | - Mario Migliario
- Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy;
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy;
| |
Collapse
|
29
|
Zong P, Li CX, Feng J, Cicchetti M, Yue L. TRP Channels in Stroke. Neurosci Bull 2024; 40:1141-1159. [PMID: 37995056 PMCID: PMC11306852 DOI: 10.1007/s12264-023-01151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/24/2023] Open
Abstract
Ischemic stroke is a devastating disease that affects millions of patients worldwide. Unfortunately, there are no effective medications for mitigating brain injury after ischemic stroke. TRP channels are evolutionally ancient biosensors that detect external stimuli as well as tissue or cellular injury. To date, many members of the TRP superfamily have been reported to contribute to ischemic brain injury, including the TRPC subfamily (1, 3, 4, 5, 6, 7), TRPV subfamily (1, 2, 3, 4) and TRPM subfamily (2, 4, 7). These TRP channels share structural similarities but have distinct channel functions and properties. Their activation during ischemic stroke can be beneficial, detrimental, or even both. In this review, we focus on discussing the interesting features of stroke-related TRP channels and summarizing the underlying cellular and molecular mechanisms responsible for their involvement in ischemic brain injury.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
- Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT, 06269, USA.
| | - Cindy X Li
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Mara Cicchetti
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
- Department of Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
| |
Collapse
|
30
|
Yamaguchi Y, Ikeba K, Yoshida MA, Takagi W. Molecular basis of the unique osmoregulatory strategy in the inshore hagfish, Eptatretus burgeri. Am J Physiol Regul Integr Comp Physiol 2024; 327:R208-R233. [PMID: 38105762 DOI: 10.1152/ajpregu.00166.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Hagfishes are characterized by omo- and iono-conforming nature similar to marine invertebrates. Conventionally, hagfishes had been recognized as the most primitive living vertebrate that retains plesiomorphic features. However, some of the "ancestral" features of hagfishes, such as rudimentary eyes and the lack of vertebrae, have been proven to be deceptive. Similarly, by the principle of maximum parsimony, the unique body fluid regulatory strategy of hagfishes seems to be apomorphic, since the lamprey, another cyclostome, adopts osmo- and iono-regulatory mechanisms as in jawed vertebrates. Although hagfishes are unequivocally important in discussing the origin and evolution of the vertebrate osmoregulatory system, the molecular basis for the body fluid homeostasis in hagfishes has been poorly understood. In the present study, we explored this matter in the inshore hagfish, Eptatretus burgeri, by analyzing the transcriptomes obtained from the gill, kidney, and muscle of the animals acclimated to distinct environmental salinities. Together with the measurement of parameters in the muscular fluid compartment, our data indicate that the hagfish possesses an ability to conduct free amino acid (FAA)-based osmoregulation at a cellular level, which is in coordination with the renal and branchial FAA absorption. We also revealed that the hagfish does possess the orthologs of the known osmoregulatory genes and that the transepithelial movement of inorganic ions in the hagfish gill and kidney is more complex than previously thought. These observations pose a challenge to the conventional view that the physiological features of hagfishes have been inherited from the last common ancestor of the extant vertebrates.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Kiriko Ikeba
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Masa-Aki Yoshida
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Okinoshima, Japan
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
31
|
Liu H, Zhou L, Wang X, Lin Y, Yi P, Xiong Y, Zhan F, Zhou L, Dong Y, Ying J, Wu L, Xu G, Hua F. PIEZO1 as a new target for hyperglycemic stress-induced neuropathic injury: The potential therapeutic role of bezafibrate. Biomed Pharmacother 2024; 176:116837. [PMID: 38815290 DOI: 10.1016/j.biopha.2024.116837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024] Open
Abstract
Hyperglycemic stress can directly lead to neuronal damage. The mechanosensitive ion channel PIEZO1 can be activated in response to hyperglycemia, but its role in hyperglycemic neurotoxicity is unclear. The role of PIEZO1 in hyperglycemic neurotoxicity was explored by constructing a hyperglycemic mouse model and a high-glucose HT22 cell model. The results showed that PIEZO1 was significantly upregulated in response to high glucose stress. In vitro experiments have shown that high glucose stress induces changes in neuronal cell morphology and membrane tension, a key mechanism for PIEZO1 activation. In addition, high glucose stress upregulates serum/glucocorticoid-regulated kinase-1 (SGK1) and activates PIEZO1 through the Ca2+ pool and store-operated calcium entry (SOCE). PIEZO1-mediated Ca2+ influx further enhances SGK1 and SOCE, inducing intracellular Ca2+ peaks in neurons. PIEZO1 mediated intracellular Ca2+ elevation leads to calcium/calmodulin-dependent protein kinase 2α (CaMK2α) overactivation, which promotes oxidative stress and apoptosis signalling through p-CaMK2α/ERK/CREB and ox-CaMK2α/MAPK p38/NFκB p65 pathways, subsequently inducing synaptic damage and cognitive impairment in mice. The intron miR-107 of pantothenic kinase 1 (PANK1) is highly expressed in the brain and has been found to target PIEZO1 and SGK1. The PANK1 receptor is activated by peroxisome proliferator-activated receptor α (PPARα), an activator known to upregulate miR-107 levels in the brain. The clinically used lipid-lowering drug bezafibrate, a known PPARα activator, may upregulate miR-107 through the PPARɑ/PANK1 pathway, thereby inhibiting PIEZO1 and improving hyperglycemia-induced neuronal cell damage. This study provides a new idea for the pathogenesis and drug treatment of hyperglycemic neurotoxicity and diabetes-related cognitive dysfunction.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lian Zhou
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Anesthesiology, Ganjiang New Area Hospital of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xifeng Wang
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pengcheng Yi
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanhong Xiong
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lanqian Zhou
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yao Dong
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lidong Wu
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
32
|
Marshall-Gradisnik S, Martini Sasso E, Eaton-Fitch N, Smith P, Baraniuk JN, Muraki K. Novel characterization of endogenous transient receptor potential melastatin 3 ion channels from Gulf War Illness participants. PLoS One 2024; 19:e0305704. [PMID: 38917121 PMCID: PMC11198784 DOI: 10.1371/journal.pone.0305704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Gulf War Illness (GWI) is a chronic condition characterized by multisystem symptoms that still affect up to one-third of veterans who engaged in combat in the Gulf War three decades ago. The aetiology of GWI is mainly explained by exposure to multiple toxic agents, vaccines, and medications. As there is a significant overlap in symptoms between GWI and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), the objective of this study was to investigate a biomarker widely reported in Natural Killer (NK) cells from ME/CFS patients, the Transient Receptor Potential Melastatin 3 (TRPM3) ion channel. NK cells from 6 healthy controls (HC) and 6 GWI participants were isolated, and TRPM3 function was assessed through whole-cell patch-clamp. As demonstrated by prior studies, NK cells from HC expressed typical TRPM3 function after pharmacomodulation. In contrast, this pilot investigation demonstrates a dysfunctional TRPM3 in NK cells from GWI participants through application of a TRPM3 agonist and confirmed by a TRPM3 antagonist. There was a significant reduction in TRPM3 function from GWI than results measured in HC. This study provides an unprecedented research field to investigate the involvement of TRP ion channels in the pathomechanism and potential medical interventions to improve GWI quality of life.
Collapse
Affiliation(s)
- Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Etianne Martini Sasso
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Natalie Eaton-Fitch
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Peter Smith
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Clinical Medicine, Griffith University, Gold Coast, QLD, Australia
| | - James N. Baraniuk
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Department of Medicine, Georgetown University, Washington, DC, United States of America
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| |
Collapse
|
33
|
Grigore A, Coman OA, Păunescu H, Costescu M, Fulga I. Latest Insights into the In Vivo Studies in Murine Regarding the Role of TRP Channels in Wound Healing-A Review. Int J Mol Sci 2024; 25:6753. [PMID: 38928459 PMCID: PMC11204351 DOI: 10.3390/ijms25126753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Wound healing involves physical, chemical and immunological processes. Transient receptor potential (TRP) and other ion channels are implicated in epidermal re-epithelization. Ion movement across ion channels can induce transmembrane potential that leads to transepithelial potential (TEP) changes. TEP is present in epidermis surrounding the lesion decreases and induces an endogenous direct current generating an epithelial electric field (EF) that could be implicated in wound re-epithelialization. TRP channels are involved in the activation of immune cells during mainly the inflammatory phase of wound healing. The aim of the study was to review the mechanisms of ion channel involvement in wound healing in in vivo experiments in murine (mice, rats) and how can this process be influenced. This review used the latest results published in scientific journals over the last year and this year to date (1 January 2023-31 December 3000) in order to include the in-press articles. Some types of TRP channels, such as TRPV1, TRPV3 and TRPA1, are expressed in immune cells and can be activated by inflammatory mediators. The most beneficial effects in wound healing are produced using agonists of TRPV1, TRPV4 and TRPA1 channels or by inhibiting with antagonists, antisense oligonucleotides or knocking down TRPV3 and TRPM8 channels.
Collapse
Affiliation(s)
| | | | - Horia Păunescu
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucureșt, Romania; (A.G.); (O.A.C.); (M.C.); (I.F.)
| | | | | |
Collapse
|
34
|
Zakirova NF, Khomich OA, Smirnova OA, Molle J, Duponchel S, Yanvarev DV, Valuev-Elliston VT, Monnier L, Grigorov B, Ivanova ON, Karpenko IL, Golikov MV, Bovet C, Rindlisbacher B, Khomutov AR, Kochetkov SN, Bartosch B, Ivanov AV. Hepatitis C Virus Dysregulates Polyamine and Proline Metabolism and Perturbs the Urea Cycle. Cells 2024; 13:1036. [PMID: 38920664 PMCID: PMC11201506 DOI: 10.3390/cells13121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Hepatitis C virus (HCV) is an oncogenic virus that causes chronic liver disease in more than 80% of patients. During the last decade, efficient direct-acting antivirals were introduced into clinical practice. However, clearance of the virus does not reduce the risk of end-stage liver diseases to the level observed in patients who have never been infected. So, investigation of HCV pathogenesis is still warranted. Virus-induced changes in cell metabolism contribute to the development of HCV-associated liver pathologies. Here, we studied the impact of the virus on the metabolism of polyamines and proline as well as on the urea cycle, which plays a crucial role in liver function. It was found that HCV strongly suppresses the expression of arginase, a key enzyme of the urea cycle, leading to the accumulation of arginine, and up-regulates proline oxidase with a concomitant decrease in proline concentrations. The addition of exogenous proline moderately suppressed viral replication. HCV up-regulated transcription but suppressed protein levels of polyamine-metabolizing enzymes. This resulted in a decrease in polyamine content in infected cells. Finally, compounds targeting polyamine metabolism demonstrated pronounced antiviral activity, pointing to spermine and spermidine as compounds affecting HCV replication. These data expand our understanding of HCV's imprint on cell metabolism.
Collapse
Affiliation(s)
- Natalia F. Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Olga A. Khomich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Olga A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Jennifer Molle
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Sarah Duponchel
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Dmitry V. Yanvarev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Vladimir T. Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Lea Monnier
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Boyan Grigorov
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Inna L. Karpenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Mikhail V. Golikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Cedric Bovet
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (B.R.)
| | - Barbara Rindlisbacher
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (B.R.)
| | - Alex R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Birke Bartosch
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| |
Collapse
|
35
|
Zuluaga G. Potential of Bitter Medicinal Plants: A Review of Flavor Physiology. Pharmaceuticals (Basel) 2024; 17:722. [PMID: 38931389 PMCID: PMC11206615 DOI: 10.3390/ph17060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The function of the sense of taste is usually confined to the ability to perceive the flavor of food to assess and use the nutrients necessary for healthy survival and to discard those that may be harmful, toxic, or unpleasant. It is almost unanimously agreed that the perception of bitter taste prevents the consumption of toxins from plants, decaying foods, and drugs. Forty years ago, while practicing medicine in a rural area of the Colombian Amazon, I had an unexpected encounter with the Inga Indians. I faced the challenge of accepting that their traditional medicine was effective and that the medicinal plants they used had a real therapeutic effect. Wanting to follow a process of learning about medicinal plants on their terms, I found that, for them, the taste of plants is a primary and fundamental key to understanding their functioning. One of the most exciting results was discovering the therapeutic value of bitter plants. The present review aims to understand whether there is any scientific support for this hypothesis from the traditional world. Can the taste of plants explain their possible therapeutic benefit? In the last 20 years, we have made novel advances in the knowledge of the physiology of taste. Our purpose will be to explore these scientific advances to determine if the bitter taste of medicinal plants benefits human health.
Collapse
Affiliation(s)
- Germán Zuluaga
- Grupo de Estudios en Sistemas Tradicionales de Salud, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia; ; Tel.: +57-311-2179102
- Centro de Estudios Médicos Interculturales, Cota 250010, Colombia
| |
Collapse
|
36
|
Hu J, Park SJ, Walter T, Orozco IJ, O'Dea G, Ye X, Du J, Lü W. Physiological temperature drives TRPM4 ligand recognition and gating. Nature 2024; 630:509-515. [PMID: 38750366 PMCID: PMC11168932 DOI: 10.1038/s41586-024-07436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 06/14/2024]
Abstract
Temperature profoundly affects macromolecular function, particularly in proteins with temperature sensitivity1,2. However, its impact is often overlooked in biophysical studies that are typically performed at non-physiological temperatures, potentially leading to inaccurate mechanistic and pharmacological insights. Here we demonstrate temperature-dependent changes in the structure and function of TRPM4, a temperature-sensitive Ca2+-activated ion channel3-7. By studying TRPM4 prepared at physiological temperature using single-particle cryo-electron microscopy, we identified a 'warm' conformation that is distinct from those observed at lower temperatures. This conformation is driven by a temperature-dependent Ca2+-binding site in the intracellular domain, and is essential for TRPM4 function in physiological contexts. We demonstrated that ligands, exemplified by decavanadate (a positive modulator)8 and ATP (an inhibitor)9, bind to different locations of TRPM4 at physiological temperatures than at lower temperatures10,11, and that these sites have bona fide functional relevance. We elucidated the TRPM4 gating mechanism by capturing structural snapshots of its different functional states at physiological temperatures, revealing the channel opening that is not observed at lower temperatures. Our study provides an example of temperature-dependent ligand recognition and modulation of an ion channel, underscoring the importance of studying macromolecules at physiological temperatures. It also provides a potential molecular framework for deciphering how thermosensitive TRPM channels perceive temperature changes.
Collapse
Affiliation(s)
- Jinhong Hu
- Van Andel Institute, Grand Rapids, MI, USA
| | | | - Tyler Walter
- Van Andel Institute, Grand Rapids, MI, USA
- Zoetis, Kalamazoo, MI, USA
| | - Ian J Orozco
- Van Andel Institute, Grand Rapids, MI, USA
- AnaBios, San Diego, CA, USA
| | | | - Xinyu Ye
- Van Andel Institute, Grand Rapids, MI, USA
| | - Juan Du
- Van Andel Institute, Grand Rapids, MI, USA.
| | - Wei Lü
- Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
37
|
Wang Y, Zhang Y, Ouyang J, Yi H, Wang S, Liu D, Dai Y, Song K, Pei W, Hong Z, Chen L, Zhang W, Liu Z, Mcleod HL, He Y. TRPV1 inhibition suppresses non-small cell lung cancer progression by inhibiting tumour growth and enhancing the immune response. Cell Oncol (Dordr) 2024; 47:779-791. [PMID: 37902941 DOI: 10.1007/s13402-023-00894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
PURPOSE TRPV1 is a nonselective Ca2+ channel protein that is widely expressed and plays an important role during the occurrence and development of many cancers. Activation of TRPV1 channels can affect tumour progression by regulating proliferation, apoptosis and migration. Some studies have also shown that activating TRPV1 can affect tumour progression by modulating tumour immunity. However, the effects of TRPV1 on the development of non-small cell lung cancer (NSCLC) have not been explored clearly. METHOD The Cancer Genome Atlas (TCGA) database and spatial transcriptomics datasets from 10 × Genomics were used to analyze TRPV1 expression in various tumour tissues. Cell proliferation and apoptosis were examined by cell counting kit 8 (CCK8), colony formation, and flow cytometry. Immunohistochemistry, qPCR, and western blotting were used to determine the mRNA and protein expression levels of TRPV1 and other related molecules. Tumour xenografts in BALB/C and C57BL/6J mice were used to determine the effects of TRPV1 on NSCLC development in vivo. Neurotransmitter content was examined by LC-MS/MS, ELISA and Immunohistochemistry. Immune cell infiltration was assessed by flow cytometry. RESULTS In this study, we found that TRPV1 expression was significantly upregulated in NSCLC and that patients with high TRPV1 expression had a poor prognosis. TRPV1 knockdown can significantly inhibit NSCLC proliferation and induce cell apoptosis through Ca2+-IGF1R signaling. In addition, TRPV1 knockdown resulted in increased infiltration of CD4+ T cells, CD8+ T cells, GZMB+CD8+ T cells and DCs and decreased infiltration of immunosuppressive MDSCs in NSCLC. In addition, TRPV1 knockout effectively decreased the expression of M2 macrophage markers CD163 and increased the expression of M1-associated, costimulatory markers CD86. Knockdown or knockout of TRPV1 significantly inhibit tumour growth and promoted an antitumour immune response through supressing γ-aminobutyric acid (GABA) secretion in NSCLC. CONCLUSION Our study suggests that TRPV1 acts as a tumour promoter in NSCLC, mediating pro-proliferative and anti-apoptotic effects on NSCLC through IGF1R signaling and regulating GABA release to affect the tumour immune response.
Collapse
Affiliation(s)
- Yang Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiang Ya Road 110, Changsha, 410000, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, P. R. China
| | - Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiang Ya Road 110, Changsha, 410000, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, P. R. China
| | - Jing Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiang Ya Road 110, Changsha, 410000, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, P. R. China
| | - Hanying Yi
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiang Ya Road 110, Changsha, 410000, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, P. R. China
| | - Shiyu Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiang Ya Road 110, Changsha, 410000, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, P. R. China
| | - Dongbo Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiang Ya Road 110, Changsha, 410000, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, P. R. China
| | - Yingying Dai
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiang Ya Road 110, Changsha, 410000, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, P. R. China
| | - Kun Song
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, 3 Hunan, Changsha, China
| | - Wenwu Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, 3 Hunan, Changsha, China
| | - Ziyang Hong
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, 3 Hunan, Changsha, China
| | - Ling Chen
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, 3 Hunan, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiang Ya Road 110, Changsha, 410000, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiang Ya Road 110, Changsha, 410000, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Howard L Mcleod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiang Ya Road 110, Changsha, 410000, Hunan, China
- Center for Precision Medicine, Utah Tech University, St George, UT, USA
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiang Ya Road 110, Changsha, 410000, Hunan, China.
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, P. R. China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, P. R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
38
|
Kohashi H, Nagata R, Tamenori Y, Amatani T, Ueda Y, Mori Y, Kasahara Y, Obika S, Shimojo M. A novel transient receptor potential C3/C6 selective activator induces the cellular uptake of antisense oligonucleotides. Nucleic Acids Res 2024; 52:4784-4798. [PMID: 38621757 PMCID: PMC11109983 DOI: 10.1093/nar/gkae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Antisense oligonucleotide (ASO) therapy is a novel therapeutic approach in which ASO specifically binds target mRNA, resulting in mRNA degradation; however, cellular uptake of ASOs remains critically low, warranting improvement. Transient receptor potential canonical (TRPC) channels regulate Ca2+ influx and are activated upon stimulation by phospholipase C-generated diacylglycerol. Herein, we report that a novel TRPC3/C6/C7 activator, L687, can induce cellular ASO uptake. L687-induced ASO uptake was enhanced in a dose- and incubation-time-dependent manner. L687 enhanced the knockdown activity of various ASOs both in vitro and in vivo. Notably, suppression of TRPC3/C6 by specific siRNAs reduced ASO uptake in A549 cells. Application of BAPTA-AM, a Ca2+ chelator, and SKF96365, a TRPC3/C6 inhibitor, suppressed Ca2+ influx via TRPC3/C6, resulting in reduced ASO uptake, thereby suggesting that Ca2+ influx via TRPC3/C6 is critical for L687-mediated increased ASO uptake. L687 also induced dextran uptake, indicating that L687 increased endocytosis. Adding ASO to L687 resulted in endosome accumulation; however, the endosomal membrane disruptor UNC7938 facilitated endosomal escape and enhanced knockdown activity. We discovered a new function for TRPC activators regarding ASO trafficking in target cells. Our findings provide an opportunity to formulate an innovative drug delivery system for the therapeutic development of ASO.
Collapse
Affiliation(s)
- Hiroto Kohashi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Ryu Nagata
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Yusuke Tamenori
- School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Tomorrow Amatani
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshifumi Ueda
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yuuya Kasahara
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
| | - Masahito Shimojo
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Murphy EA, Kleiner FH, Helliwell KE, Wheeler GL. Channels of Evolution: Unveiling Evolutionary Patterns in Diatom Ca 2+ Signalling. PLANTS (BASEL, SWITZERLAND) 2024; 13:1207. [PMID: 38732422 PMCID: PMC11085791 DOI: 10.3390/plants13091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Diatoms are important primary producers in marine and freshwater environments, but little is known about the signalling mechanisms they use to detect changes in their environment. All eukaryotic organisms use Ca2+ signalling to perceive and respond to environmental stimuli, employing a range of Ca2+-permeable ion channels to facilitate the movement of Ca2+ across cellular membranes. We investigated the distribution of different families of Ca2+ channels in diatom genomes, with comparison to other members of the stramenopile lineage. The four-domain voltage-gated Ca2+ channels (Cav) are present in some centric diatoms but almost completely absent in pennate diatoms, whereas single-domain voltage-gated EukCatA channels were found in all diatoms. Glutamate receptors (GLRs) and pentameric ligand-gated ion channels (pLGICs) also appear to have been lost in several pennate species. Transient receptor potential (TRP) channels are present in all diatoms, but have not undergone the significant expansion seen in brown algae. All diatom species analysed lacked the mitochondrial uniporter (MCU), a highly conserved channel type found in many eukaryotes, including several stramenopile lineages. These results highlight the unique Ca2+-signalling toolkit of diatoms and indicate that evolutionary gains or losses of different Ca2+ channels may contribute to differences in cellular-signalling mechanisms between species.
Collapse
Affiliation(s)
- Eleanor A. Murphy
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Katherine E. Helliwell
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Glen L. Wheeler
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
| |
Collapse
|
40
|
Márquez-Nogueras KM, Kuo IY. Cardiovascular perspectives of the TRP channel polycystin 2. J Physiol 2024; 602:1565-1577. [PMID: 37312633 PMCID: PMC10716366 DOI: 10.1113/jp283835] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/09/2023] [Indexed: 06/15/2023] Open
Abstract
Calcium release from the endoplasmic reticulum (ER) is predominantly driven by two key ion channel receptors, inositol 1, 4, 5-triphosphate receptor (InsP3R) in non-excitable cells and ryanodine receptor (RyR) in excitable and muscle-based cells. These calcium transients can be modified by other less-studied ion channels, including polycystin 2 (PC2), a member of the transient receptor potential (TRP) family. PC2 is found in various cell types and is evolutionarily conserved with paralogues ranging from single-cell organisms to yeasts and mammals. Interest in the mammalian form of PC2 stems from its disease relevance, as mutations in the PKD2 gene, which encodes PC2, result in autosomal dominant polycystic kidney disease (ADPKD). This disease is characterized by renal and liver cysts, and cardiovascular extrarenal manifestations. However, in contrast to the well-defined roles of many TRP channels, the role of PC2 remains unknown, as it has different subcellular locations, and the functional understanding of the channel in each location is still unclear. Recent structural and functional studies have shed light on this channel. Moreover, studies on cardiovascular tissues have demonstrated a diverse role of PC2 in these tissues compared to that in the kidney. We highlight recent advances in understanding the role of this channel in the cardiovascular system and discuss the functional relevance of PC2 in non-renal cells.
Collapse
Affiliation(s)
- Karla M Márquez-Nogueras
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Ivana Y Kuo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
41
|
Li W, Lv Z, Wang P, Xie Y, Sun W, Guo H, Jin X, Liu Y, Jiang R, Fei Y, Tan G, Jiang H, Wang X, Liu Z, Wang Z, Xu N, Gong W, Wu R, Shi D. Near Infrared Responsive Gold Nanorods Attenuate Osteoarthritis Progression by Targeting TRPV1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307683. [PMID: 38358041 PMCID: PMC11040380 DOI: 10.1002/advs.202307683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Indexed: 02/16/2024]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease worldwide, with the main pathological manifestation of articular cartilage degeneration. It have been investigated that pharmacological activation of transient receptor potential vanilloid 1 (TRPV1) significantly alleviated cartilage degeneration by abolishing chondrocyte ferroptosis. In this work, in view of the thermal activated feature of TRPV1, Citrate-stabilized gold nanorods (Cit-AuNRs) is conjugated to TRPV1 monoclonal antibody (Cit-AuNRs@Anti-TRPV1) as a photothermal switch for TRPV1 activation in chondrocytes under near infrared (NIR) irradiation. The conjugation of TRPV1 monoclonal antibody barely affect the morphology and physicochemical properties of Cit-AuNRs. Under NIR irradiation, Cit-AuNRs@Anti-TRPV1 exhibited good biocompatibility and flexible photothermal responsiveness. Intra-articular injection of Cit-AuNRs@Anti-TRPV1 followed by NIR irradiation significantly activated TRPV1 and attenuated cartilage degradation by suppressing chondrocytes ferroptosis. The osteophyte formation and subchondral bone sclerosis are remarkably alleviated by NIR-inspired Cit-AuNRs@Anti-TRPV1. Furthermore, the activation of TRPV1 by Cit-AuNRs@Anti-TRPV1 evidently improved physical activities and alleviated pain of destabilization of the medial meniscus (DMM)-induced OA mice. The study reveals Cit-AuNRs@Anti-TRPV1 under NIR irradiation protects chondrocytes from ferroptosis and attenuates OA progression, providing a potential therapeutic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Weitong Li
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Zhongyang Lv
- Department of OrthopedicsNanjing Jinling HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210002China
| | - Peng Wang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Ya Xie
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Wei Sun
- Department of OrthopedicThe Jiangyin Clinical College of Xuzhou Medical UniversityJiangyin214400China
| | - Hu Guo
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Xiaoyu Jin
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Yuan Liu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Ruiyang Jiang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalClinical College of Xuzhou Medical UniversityXuzhou Medical UniversityNanjingJiangsu221004China
| | - Yuxiang Fei
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Guihua Tan
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Huiming Jiang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Xucai Wang
- Co‐Innovation Center for Efficient Processing and Utilization of Forest ResourcesCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037China
| | - Zizheng Liu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Zheng Wang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Nuo Xu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Wenli Gong
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Rui Wu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalClinical College of Xuzhou Medical UniversityXuzhou Medical UniversityNanjingJiangsu221004China
| |
Collapse
|
42
|
Xu S, Wang Y. Transient Receptor Potential Channels: Multiple Modulators of Peripheral Neuropathic Pain in Several Rodent Models. Neurochem Res 2024; 49:872-886. [PMID: 38281247 DOI: 10.1007/s11064-023-04087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Neuropathic pain, a prevalent chronic condition in clinical settings, has attracted widespread societal attention. This condition is characterized by a persistent pain state accompanied by affective and cognitive disruptions, significantly impacting patients' quality of life. However, current clinical therapies fall short of addressing its complexity. Thus, exploring the underlying molecular mechanism of neuropathic pain and identifying potential targets for intervention is highly warranted. The transient receptor potential (TRP) receptors, a class of widely distributed channel proteins, in the nervous system, play a crucial role in sensory signaling, cellular calcium regulation, and developmental influences. TRP ion channels are also responsible for various sensory responses including heat, cold, pain, and stress. This review highlights recent advances in understanding TRPs in various rodent models of neuropathic pain, aiming to uncover potential therapeutic targets for clinical management.
Collapse
Affiliation(s)
- Songchao Xu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
43
|
Cho KJ, Kim JC. Novel pharmacotherapeutic avenues for bladder storage dysfunction in men. Expert Opin Pharmacother 2024; 25:585-594. [PMID: 38651268 DOI: 10.1080/14656566.2024.2346278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Bladder storage dysfunction is associated with low quality of life in men and remains a challenging field in pharmacotherapy because of low persistence followed by patient-perceived lack of efficacy and adverse effects. The persistent desire for the development of novel pharmacotherapy is evident, leading to numerous research efforts based on its pathophysiology. AREAS COVERED This review describes the pathophysiology, current pharmacotherapeutic strategies, and emerging novel drugs for male bladder storage dysfunction. The section on emerging pharmacotherapy provides an overview of current research, focusing on high-potential target molecules, particularly those being evaluated in ongoing clinical trials. EXPERT OPINION As pharmacotherapies targeting alpha-adrenergic, beta-adrenergic, and muscarinic receptors - the current primary targets for treating male bladder storage dysfunction - have demonstrated insufficient efficacy and side effects, researchers are exploring various alternative molecular targets. Numerous targets have been identified as central to regulating bladder afferent nerve activity, and their pharmacological effects and potential have been evaluated in animal-based experiments. However, there is a limited number of clinical trials for these new pharmacotherapies, and they have not demonstrated clear superiority over current treatments. Further research is needed to develop new effective pharmacotherapies for bladder storage dysfunction in men.
Collapse
Affiliation(s)
- Kang Jun Cho
- Department of Urology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Chul Kim
- Department of Urology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
44
|
Chakraborty P, Hasan G. ER-Ca 2+ stores and the regulation of store-operated Ca 2+ entry in neurons. J Physiol 2024; 602:1463-1474. [PMID: 36691983 DOI: 10.1113/jp283827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Key components of endoplasmic reticulum (ER) Ca2+ release and store-operated Ca2+ entry (SOCE) are likely expressed in all metazoan cells. Due to the complexity of canonical Ca2+ entry mechanisms in neurons, the functional significance of ER-Ca2+ release and SOCE has been difficult to identify and establish. In this review we present evidence of how these two related mechanisms of Ca2+ signalling impact multiple aspects of neuronal physiology and discuss their interaction with the better understood classes of ion channels that are gated by either voltage changes or extracellular ligands in neurons. Given how a small imbalance in Ca2+ homeostasis can have strongly detrimental effects on neurons, leading to cell death, it is essential that neuronal SOCE is carefully regulated. We go on to discuss some mechanisms of SOCE regulation that have been identified in Drosophila and mammalian neurons. These include specific splice variants of stromal interaction molecules, different classes of membrane-interacting proteins and an ER-Ca2+ channel. So far these appear distinct from the mechanisms of SOCE regulation identified in non-excitable cells. Finally, we touch upon the significance of these studies in the context of certain human neurodegenerative diseases.
Collapse
Affiliation(s)
- Pragnya Chakraborty
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- SASTRA University, Thanjavur, Tamil Nadu, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
45
|
Wang Z, Chen M, Su Q, Morais TDC, Wang Y, Nazginov E, Pillai AR, Qian F, Shi Y, Yu Y. Molecular and structural basis of the dual regulation of the polycystin-2 ion channel by small-molecule ligands. Proc Natl Acad Sci U S A 2024; 121:e2316230121. [PMID: 38483987 PMCID: PMC10962963 DOI: 10.1073/pnas.2316230121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
Mutations in the PKD2 gene, which encodes the polycystin-2 (PC2, also called TRPP2) protein, lead to autosomal dominant polycystic kidney disease (ADPKD). As a member of the transient receptor potential (TRP) channel superfamily, PC2 functions as a non-selective cation channel. The activation and regulation of the PC2 channel are largely unknown, and direct binding of small-molecule ligands to this channel has not been reported. In this work, we found that most known small-molecule agonists of the mucolipin TRP (TRPML) channels inhibit the activity of the PC2_F604P, a gain-of-function mutant of the PC2 channel. However, two of them, ML-SA1 and SF-51, have dual regulatory effects, with low concentration further activating PC2_F604P, and high concentration leading to inactivation of the channel. With two cryo-electron microscopy (cryo-EM) structures, a molecular docking model, and mutagenesis results, we identified two distinct binding sites of ML-SA1 in PC2_F604P that are responsible for activation and inactivation, respectively. These results provide structural and functional insights into how ligands regulate PC2 channel function through unusual mechanisms and may help design compounds that are more efficient and specific in regulating the PC2 channel and potentially also for ADPKD treatment.
Collapse
Affiliation(s)
- Zhifei Wang
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Mengying Chen
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang province310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang province310024, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qiang Su
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang province310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang province310024, China
| | - Tiago D. C. Morais
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Yan Wang
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Elianna Nazginov
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Akhilraj R. Pillai
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Yigong Shi
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang province310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang province310024, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yong Yu
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| |
Collapse
|
46
|
Bonsignore G, Martinotti S, Ranzato E. Wound Repair and Ca 2+ Signalling Interplay: The Role of Ca 2+ Channels in Skin. Cells 2024; 13:491. [PMID: 38534335 PMCID: PMC10969298 DOI: 10.3390/cells13060491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
The process of wound healing is intricate and tightly controlled, involving a number of different cellular and molecular processes. Numerous cellular functions, especially those related to wound healing, depend critically on calcium ions (Ca2+). Ca2+ channels are proteins involved in signal transduction and communication inside cells that allow calcium ions to pass through cell membranes. Key Ca2+ channel types involved in wound repair are described in this review.
Collapse
Affiliation(s)
- Gregorio Bonsignore
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy; (G.B.); (S.M.)
| | - Simona Martinotti
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy; (G.B.); (S.M.)
- SSD Laboratori di Ricerca—DAIRI, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy; (G.B.); (S.M.)
- SSD Laboratori di Ricerca—DAIRI, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| |
Collapse
|
47
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
48
|
Wang Y, Deng X, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Zhou C, Chen XZ, Tang J. The TRPV6 Calcium Channel and Its Relationship with Cancer. BIOLOGY 2024; 13:168. [PMID: 38534438 DOI: 0.3390/biology13030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 10/14/2024]
Abstract
Transient receptor potential vanilloid-6 (TRPV6) is a cation channel belonging to the TRP superfamily, specifically the vanilloid subfamily, and is the sixth member of this subfamily. Its presence in the body is primarily limited to the skin, ovaries, kidney, testes, and digestive tract epithelium. The body maintains calcium homeostasis using the TRPV6 channel, which has a greater calcium selectivity than the other TRP channels. Several pieces of evidence suggest that it is upregulated in the advanced stages of thyroid, ovarian, breast, colon, and prostate cancers. The function of TRPV6 in regulating calcium signaling in cancer will be covered in this review, along with its potential applications as a cancer treatment target.
Collapse
Affiliation(s)
- Yifang Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoling Deng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
49
|
Wang Y, Deng X, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Zhou C, Chen XZ, Tang J. The TRPV6 Calcium Channel and Its Relationship with Cancer. BIOLOGY 2024; 13:168. [PMID: 38534438 PMCID: PMC10968549 DOI: 10.3390/biology13030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Transient receptor potential vanilloid-6 (TRPV6) is a cation channel belonging to the TRP superfamily, specifically the vanilloid subfamily, and is the sixth member of this subfamily. Its presence in the body is primarily limited to the skin, ovaries, kidney, testes, and digestive tract epithelium. The body maintains calcium homeostasis using the TRPV6 channel, which has a greater calcium selectivity than the other TRP channels. Several pieces of evidence suggest that it is upregulated in the advanced stages of thyroid, ovarian, breast, colon, and prostate cancers. The function of TRPV6 in regulating calcium signaling in cancer will be covered in this review, along with its potential applications as a cancer treatment target.
Collapse
Affiliation(s)
- Yifang Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Y.W.); (X.D.); (R.Z.); (H.L.); (S.X.); (D.G.); (C.Z.)
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoling Deng
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Y.W.); (X.D.); (R.Z.); (H.L.); (S.X.); (D.G.); (C.Z.)
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Y.W.); (X.D.); (R.Z.); (H.L.); (S.X.); (D.G.); (C.Z.)
| | - Hao Lyu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Y.W.); (X.D.); (R.Z.); (H.L.); (S.X.); (D.G.); (C.Z.)
| | - Shuai Xiao
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Y.W.); (X.D.); (R.Z.); (H.L.); (S.X.); (D.G.); (C.Z.)
| | - Dong Guo
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Y.W.); (X.D.); (R.Z.); (H.L.); (S.X.); (D.G.); (C.Z.)
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Cefan Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Y.W.); (X.D.); (R.Z.); (H.L.); (S.X.); (D.G.); (C.Z.)
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Y.W.); (X.D.); (R.Z.); (H.L.); (S.X.); (D.G.); (C.Z.)
| |
Collapse
|
50
|
Zhang X, Zhang Y, Su Q, Liu Y, Li Z, Yong VW, Xue M. Ion Channel Dysregulation Following Intracerebral Hemorrhage. Neurosci Bull 2024; 40:401-414. [PMID: 37755675 PMCID: PMC10912428 DOI: 10.1007/s12264-023-01118-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/14/2023] [Indexed: 09/28/2023] Open
Abstract
Injury to the brain after intracerebral hemorrhage (ICH) results from numerous complex cellular mechanisms. At present, effective therapy for ICH is limited and a better understanding of the mechanisms of brain injury is necessary to improve prognosis. There is increasing evidence that ion channel dysregulation occurs at multiple stages in primary and secondary brain injury following ICH. Ion channels such as TWIK-related K+ channel 1, sulfonylurea 1 transient receptor potential melastatin 4 and glutamate-gated channels affect ion homeostasis in ICH. They in turn participate in the formation of brain edema, disruption of the blood-brain barrier, and the generation of neurotoxicity. In this review, we summarize the interaction between ions and ion channels, the effects of ion channel dysregulation, and we discuss some therapeutics based on ion-channel modulation following ICH.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Qiuyang Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|