1
|
Hou XJ, Ng YJ, Yu QY, Lin XZ, Han RPS. Efficacy of ultrasound-guided capsular hydrodilatation for refractory post-trauma finger joint stiffness in adult patients. J Orthop Surg Res 2025; 20:494. [PMID: 40394602 DOI: 10.1186/s13018-025-05893-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Finger joint stiffness is a common post-treatment complication in patients with upper limb fractures that lowers their quality of life. Physiotherapy is the standard of care for functional restoration in patients with finger joint stiffness. However, in adult patients, physiotherapy alone is not always sufficient to restore joint function. In this study, we report the efficacy of ultrasound-guided capsular hydrodilatation in adult patients with post-trauma finger joint stiffness that did not improve after ≥ 2 weeks of conventional physiotherapy. METHODS This prospective study included adult patients who developed finger joint stiffness after conservative treatment with plaster of Paris or open reduction and internal fixation for upper limb injuries between March 2023 and June 2024. All patients underwent ultrasound-guided hydrostatic separation of the finger joint capsules followed by conventional finger joint exercises. The outcomes of treatment were evaluated two weeks post-treatment. RESULTS A total of 15 patients with an average age of 58.13 ± 17.64 years were included in this study. The mean pain score decreased from 6.4 ± 1.06 cm to 1.93 ± 0.70 cm respectively (p < 0.0001) at baseline and 2 weeks post-treatment. The median joint swelling score decreased from 2 at baseline to 0 at 2 weeks post-treatment (p < 0.0001). The active ranges of motion increased by 51 ± 4.48 degrees, 18.27 ± 4.62 degrees, and 29.73 ± 4.79 degrees for the MCP, PIP, and DIP joints, respectively. Similarly, the passive ranges of motion increased by 43.4 ± 4.72, 13.27 ± 5.73 degrees, and 26.73 ± 4.83 degrees for the MCP, PIP, and DIP joints, respectively. CONCLUSION Ultrasound-guided capsular hydrodilatation in combination with conventional finger joint exercises is an effective intervention for post-trauma finger joint stiffness that is refractory to conventional physiotherapy in adult patients. It is a relatively simple and minimally invasive procedure that can rapidly reduce pain, and swelling, and restore finger joint function.
Collapse
Affiliation(s)
- Xin Ju Hou
- Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
- Department of Rehabilitation, Nanchang Hongdu Hospital of TCM, Nanchang, Jiangxi Province, China
| | - Ying Jing Ng
- Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Qing Ying Yu
- Department of Rehabilitation, Nanchang Hongdu Hospital of TCM, Nanchang, Jiangxi Province, China
| | - Xing Zhen Lin
- Department of Rehabilitation, Nanchang Hongdu Hospital of TCM, Nanchang, Jiangxi Province, China.
| | - Ray P S Han
- Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
2
|
Sadighi A, Black N, Taheri M, Taghvaei M, Siegler S, Schaer TP, Najafi AR. Prediction of bone ingrowth into the porous swelling bone anchors using an osteoconnectivity-based adaptive finite element algorithm. Med Biol Eng Comput 2025:10.1007/s11517-025-03370-6. [PMID: 40332631 DOI: 10.1007/s11517-025-03370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
In this study, a bone ingrowth framework was developed, which was integrated with a hygro-elastic swelling simulation, to evaluate the ingrowth of bone into porous co-polymeric swelling bone anchors. The aim was to investigate the impact of swelling-induced radial stress on bone ingrowth and the improvement in the mechanical properties and fixation strength of the anchors. Using the finite element method coupled with the osteoconnectivity matrix, the model successfully predicted the sequential bone formation within the porous bone anchor. The bone ingrowth framework was validated based on available experimental data, closely aligning with empirical observations. The results show that owing to radial stresses generated in the bone-anchor interface by swelling, considerable bone ingrowth could be stimulated. Moreover, among the three finite element models incorporating porosity within the recommended pore size range (300-600 μ m ), smaller pore sizes seem to promote faster and more extensive bone ingrowth, while larger pores exhibit slower ingrowth rates. Regardless of the pore sizes, the mechanical integrity and fixation strength of the anchors significantly improved. These findings strengthen the hypotheses that swelling of such anchors can stimulate bone ingrowth, and highlight the importance of pore geometry, size and interconnectivity in optimizing bone ingrowth and improving their performance.
Collapse
Affiliation(s)
- Amirreza Sadighi
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Nolan Black
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Mehrangiz Taheri
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Moein Taghvaei
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Sorin Siegler
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Thomas P Schaer
- Department of Clinical Studies New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19348, USA
| | - Ahmad R Najafi
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Yang M, Su Y, Wen P, Xie J, Wan X, Xu K, Jing W, Yang Z, Liu L, Xu P. Is the occurrence of deep vein thrombosis related to the fracture site? A two-sample Mendelian randomization study. Expert Rev Hematol 2025; 18:155-165. [PMID: 39852237 DOI: 10.1080/17474086.2025.2459251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
OBJECTIVE Deep vein thrombosis (DVT) is a known complication of fractures. This study aimed to explore the genetic causal relationship between DVT and fracture sites. RESEARCH DESIGN AND METHODS The exposures analyzed in this study included fracture of femur (FFE), fracture of lower leg, including ankle (FLLA), fracture of shoulder and upper arm (FSUA), fracture of forearm (FFO), fracture of rib, sternum and thoracic spine (FRSTS) and fracture of lumbar spine and pelvis (FLSP). DVT as the outcome. A two-sample Mendelian randomization (MR) approach was employed to investigate the genetic causal relationship, and a series of sensitivity analyses were conducted. RESULTS The findings indicated no genetic causal relationship between FFE (p = 0.569, OR 95% CI = 1.001 [0.998-1.003]), FLLA (p = 0.371, OR 95% CI = 0.999 [0.995-1.002]), FSUA (p = 0.871, OR 95% CI = 1.000 [0.998-1.002]), FFO (p = 0.281, OR 95% CI = 1.001 [0.999-1.002]), FRSTS (p = 0.346, OR 95% CI = 0.999 [0.996-1.001]) or FLSP (p = 0.759, OR 95% CI = 1.000 [0.999-1.002]) and DVT. Sensitivity analyses reinforced the robustness. CONCLUSIONS This study indicate that no genetic causal relationship exists between DVT and fracture site, the observed association may be attributable to non-genetic factors.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yani Su
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pengfei Wen
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiale Xie
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xianjie Wan
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wensen Jing
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Le Grill S, Brouillet F, Drouet C. Bone Regeneration: Mini-Review and Appealing Perspectives. Bioengineering (Basel) 2025; 12:38. [PMID: 39851312 PMCID: PMC11763268 DOI: 10.3390/bioengineering12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Bone is a natural mineral-organic nanocomposite protecting internal organs and allowing mobility. Through the ages, numerous strategies have been developed for repairing bone defects and fixing fractures. Several generations of bone repair biomaterials have been proposed, either based on metals, ceramics, glasses, or polymers, depending on the clinical need, the maturity of technologies, and knowledge of the natural constitution of the bone tissue to be repaired. The global trend in bone implant research is shifting toward osteointegrative, bioactive and possibly stimuli-responsive biomaterials and, where possible, resorbable implants that actively promote the regeneration of natural bone tissue. In this mini-review, the fundamentals of bone healing materials and clinical challenges are summarized and commented on with regard to progressing scientific discoveries. The main types of bone-healing materials are then reviewed, and their specific relevance to the field is reminded, with the citation of reference works. In the final part, we highlight the promise of hybrid organic-inorganic bioactive materials and the ongoing research activities toward the development of multifunctional or stimuli-responsive implants. This contribution is expected to serve as a commented introduction to the ever-progressing field of bone regeneration and highlight trends of future-oriented research.
Collapse
Affiliation(s)
- Sylvain Le Grill
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France; (F.B.); (C.D.)
- Regenerative Nanomedicine Unit, Center of Research on Biomedicines of Strasbourg (CRBS), French National Institute of Health and Medical Research (INSERM), University of Strasbourg, UMR 1260, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Fabien Brouillet
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France; (F.B.); (C.D.)
| | - Christophe Drouet
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France; (F.B.); (C.D.)
| |
Collapse
|
5
|
Dreizin D, Edmond T, Zhang T, Sarkar N, Turan O, Nascone J. CT of Periarticular Adult Knee Fractures: Classification and Management Implications. Radiographics 2024; 44:e240014. [PMID: 39146203 DOI: 10.1148/rg.240014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Periarticular knee fractures, which include fractures of the distal femur, tibial plateau, and patella, account for 5%-10% of musculoskeletal injuries encountered in trauma centers and emergency rooms. These injuries are frequently complex, with articular surface involvement. Surgical principles center on reconstruction of the articular surface as well as restoration of limb length, alignment, and rotation to reestablish functional knee biomechanics. Fixation principles are guided by fracture morphology, and thus, CT with multiplanar reformats and volume rendering is routinely used to help plan surgical intervention. Fractures involving the distal femur, tibial plateau, and patella have distinct management considerations. This comprehensive CT primer of periarticular knee fractures promotes succinct and clinically relevant reporting as well as optimized communication with orthopedic trauma surgeon colleagues by tying fracture type and key CT findings with surgical decision making. Fracture patterns are presented within commonly employed fracture classification systems, rooted in specific biomechanical principles. Fracture typing of distal femur fractures and patellar fractures is performed using Arbeitsgemeinschaft für Osteosynthesefragen/Orthopedic Trauma Association (AO/OTA) classification schemes. Tibial plateau fractures are graded using the Schatzker system, informed by a newer explicitly CT-based three-column concept. For each anatomic region, the fracture pattern helps determine the surgical access required, whether bone grafting is warranted, and the choice of hardware that achieves suitable functional outcomes while minimizing the risk of articular collapse and accelerated osteoarthritis. Emphasis is also placed on recognizing bony avulsive patterns that suggest ligament injury to help guide stress testing in the early acute period. ©RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- David Dreizin
- From the Department of Diagnostic Radiology and Nuclear Medicine (D.D., N.S., O.T.) and Division of Orthopaedic Traumatology (T.E., T.Z., J.N.), R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, 655 W Baltimore St, Baltimore, MD 21201
| | - Tyler Edmond
- From the Department of Diagnostic Radiology and Nuclear Medicine (D.D., N.S., O.T.) and Division of Orthopaedic Traumatology (T.E., T.Z., J.N.), R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, 655 W Baltimore St, Baltimore, MD 21201
| | - Tina Zhang
- From the Department of Diagnostic Radiology and Nuclear Medicine (D.D., N.S., O.T.) and Division of Orthopaedic Traumatology (T.E., T.Z., J.N.), R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, 655 W Baltimore St, Baltimore, MD 21201
| | - Nathan Sarkar
- From the Department of Diagnostic Radiology and Nuclear Medicine (D.D., N.S., O.T.) and Division of Orthopaedic Traumatology (T.E., T.Z., J.N.), R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, 655 W Baltimore St, Baltimore, MD 21201
| | - Ozerk Turan
- From the Department of Diagnostic Radiology and Nuclear Medicine (D.D., N.S., O.T.) and Division of Orthopaedic Traumatology (T.E., T.Z., J.N.), R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, 655 W Baltimore St, Baltimore, MD 21201
| | - Jason Nascone
- From the Department of Diagnostic Radiology and Nuclear Medicine (D.D., N.S., O.T.) and Division of Orthopaedic Traumatology (T.E., T.Z., J.N.), R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, 655 W Baltimore St, Baltimore, MD 21201
| |
Collapse
|
6
|
Jiang W, Zhan Y, Zhang Y, Sun D, Zhang G, Wang Z, Chen L, Sun J. Synergistic large segmental bone repair by 3D printed bionic scaffolds and engineered ADSC nanovesicles: Towards an optimized regenerative microenvironment. Biomaterials 2024; 308:122566. [PMID: 38603824 DOI: 10.1016/j.biomaterials.2024.122566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Achieving sufficient bone regeneration in large segmental defects is challenging, with the structure of bone repair scaffolds and their loaded bioactive substances crucial for modulating the local osteogenic microenvironment. This study utilized digital laser processing (DLP)-based 3D printing technology to successfully fabricate high-precision methacryloylated polycaprolactone (PCLMA) bionic bone scaffold structures. Adipose-derived stem cell-engineered nanovesicles (ADSC-ENs) were uniformly and stably modified onto the bionic scaffold surface using a perfusion device, constructing a conducive microenvironment for tissue regeneration and long bone defect repair through the scaffold's structural design and the vesicles' biological functions. Scanning electron microscopy (SEM) examination of the scaffold surface confirmed the efficient loading of ADSC-ENs. The material group loaded with vesicles (PCLMA-BAS-ENs) demonstrated good cell compatibility and osteogenic potential when analyzed for the adhesion and osteogenesis of primary rabbit bone marrow mesenchymal stem cells (BMSCs) on the material surface. Tested in a 15 mm critical rabbit radial defect model, the PCLMA-BAS-ENs scaffold facilitated near-complete bone defect repair after 12 weeks. Immunofluorescence and proteomic results indicated that the PCLMA-BAS-ENs scaffold significantly improved the osteogenic microenvironment at the defect site in vivo, promoted angiogenesis, and enhanced the polarization of macrophages towards M2 phenotype, and facilitated the recruitment of BMSCs. Thus, the PCLMA-BAS-ENs scaffold was proven to significantly promote the repair of large segmental bone defects. Overall, this strategy of combining engineered vesicles with highly biomimetic scaffolds to promote large-segment bone tissue regeneration holds great potential in orthopedic and other regenerative medicine applications.
Collapse
Affiliation(s)
- Wenbin Jiang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Yichen Zhan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Yifan Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Di Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Guo Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Lifeng Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| |
Collapse
|
7
|
Orlando JD, Li L, Limbu TB, Deng C, Wolf ME, Vickery WM, Yan F, Sydlik SA. Calcium phosphate graphene and Ti 3C 2T x MXene scaffolds with osteogenic and antibacterial properties. J Biomed Mater Res B Appl Biomater 2024; 112:e35434. [PMID: 38874589 DOI: 10.1002/jbm.b.35434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/26/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
Bioactive degradable scaffolds that facilitate bone healing while fighting off initial bacterial infection have the potential to change established strategies of dealing with traumatic bone injuries. To achieve this a composite material made from calcium phosphate graphene (CaPG), and MXene was synthesized. CaPG was created by functionalizing graphene oxide with phosphate groups in the presence of CaBr with a Lewis acid catalyst. Through this transformation, Ca2+ and PO4 3- inducerons are released as the material degrades thereby aiding in the process of osteogenesis. The 2D MXene sheets, which have shown to have antibacterial properties, were made by etching the Al from a layered Ti3AlC2 (MAX phase) using HF. The hot-pressed scaffolds made of these materials were designed to combat the possibility of infection during initial surgery and failure of osteogenesis to occur. These two failure modes account for a large percentage of issues that can arise during the treatment of traumatic bone injuries. These scaffolds were able to retain induceron-eluting properties in various weight percentages and bring about osteogenesis with CaPG alone and 2 wt% MXene scaffolds demonstrating increased osteogenic activity as compared to no treatment. Additionally, added MXene provided antibacterial properties that could be seen at as little as 2 wt%. This CaPG and MXene composite provides a possible avenue for developing osteogenic, antibacterial materials for treating bone injuries.
Collapse
Affiliation(s)
- Jason D Orlando
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Li Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Tej B Limbu
- Department of Physical and Applied Sciences, University of Houston-Clear Lake, Houston, Texas, USA
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, USA
| | - Chenyun Deng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Michelle E Wolf
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Walker M Vickery
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Fei Yan
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, USA
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Taghvaei M, Taheri M, Sadighi A, Zegarski R, Schaer TP, Palmese GR, Najafi AR, Siegler S. Fixation strength of swelling copolymeric anchors in artificial bone. J Orthop Res 2024; 42:1223-1230. [PMID: 38111190 DOI: 10.1002/jor.25770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Fixation with suture anchors and metallic hardware for osteosynthesis is common in orthopedic surgeries. Most metallic commercial bone anchors achieve their fixation to bone through shear of the bone located between the threads. They have several deficiencies, including stress-shielding due to mechanical properties mismatch, generation of acidic by-products, poor osteointegration, low mechanical strength and catastrophic failure often associated with large bone defects that may be difficult to repair. To overcome these deficiencies, a swelling porous copolymeric material, to be used as bone anchors with osteointegration potential, was introduced. The purpose of this study was to investigate the fixation strength of these porous, swelling copolymeric bone anchors in artificial bone of various densities. The pull-out and subsidence studies indicate an effective fixation mechanism based on friction including re-fixation capabilities, and minimization of damage following complete failure. The study suggests that this swelling porous structure may provide an effective alternative to conventional bone anchors, particularly in low-density bone.
Collapse
Affiliation(s)
- Moein Taghvaei
- School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Mehrangiz Taheri
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Amirreza Sadighi
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Ryan Zegarski
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Thomas P Schaer
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Ahmad R Najafi
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Sorin Siegler
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Bowers KM, Anderson DE. Delayed Union and Nonunion: Current Concepts, Prevention, and Correction: A Review. Bioengineering (Basel) 2024; 11:525. [PMID: 38927761 PMCID: PMC11201148 DOI: 10.3390/bioengineering11060525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Surgical management of fractures has advanced with the incorporation of advanced technology, surgical techniques, and regenerative therapies, but delayed bone healing remains a clinical challenge and the prevalence of long bone nonunion ranges from 10 to 15% of surgically managed fractures. Delayed bone healing arises from a combination of mechanical, biological, and systemic factors acting on the site of tissue remodeling, and careful consideration of each case's injury-related, patient-dependent, surgical, and mechanical risk factors is key to successful bone union. In this review, we describe the biology and biomechanics of delayed bone healing, outline the known risk factors for nonunion development, and introduce modern preventative and corrective therapies targeting fracture nonunion.
Collapse
Affiliation(s)
| | - David E. Anderson
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, 2407 River Dr., Knoxville, TN 37996-4550, USA;
| |
Collapse
|
10
|
Abar B, Vail E, Mathey E, Park E, Allen NB, Adams SB, Gall K. A bending model for assessing relative stiffness and strength of orthopaedic fixation constructs. Clin Biomech (Bristol, Avon) 2024; 111:106135. [PMID: 37948989 DOI: 10.1016/j.clinbiomech.2023.106135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The purpose of this study is to develop a simple and reproducible bending model that is compatible with a wide range of orthopaedic fixation devices and 3D printed spacers. METHODS A robust 4-point bending model was constructed by securing sawbones blocks with different orthopaedic fixation device constructs. Stress strain curves derived from a fundamental mechanics model were used to assess the effect of bone density, type of hardware (staple vs intramedullary beam), the use of dynamic compression, orientation of staples (dorsal vs plantar), and the use of 3D printed titanium spacers. FINDINGS The high throughput 4-point bending model is simple enough that the methods can be easily repeated to assess a wide range of fixation methods, while complex enough to provide clinically relevant information. INTERPRETATIONS It is recommended that this model is used to assess a large initial set of fixation methods in direct and straightforward comparisons.
Collapse
Affiliation(s)
- Bijan Abar
- Duke University, Department of Mechanical Engineering and Material Sciences, USA; Duke University, Department of Orthopaedic Surgery, USA
| | - Elijah Vail
- Duke University, Department of Mechanical Engineering and Material Sciences, USA
| | - Elizabeth Mathey
- University of Colorado Denver, Department of Mechanical Engineering, USA
| | - Ella Park
- Duke University, Department of Mechanical Engineering and Material Sciences, USA
| | | | | | - Ken Gall
- Duke University, Department of Mechanical Engineering and Material Sciences, USA.
| |
Collapse
|
11
|
Kavanagh AM, Schumann J, Burgess BJ. Intramedullary Nail Fixation for the Treatment of Symptomatic Fibular Nonunion: A Case Series. Foot Ankle Spec 2023:19386400231193620. [PMID: 37608750 DOI: 10.1177/19386400231193620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Ankle fractures are a relatively common injury in the lower extremity. They can be treated with conservative management if they are nondisplaced and only involve the fibula. Nonunions at the fracture site, however, are a potential complicating factor during treatment. There is growing literature supporting the use of intramedullary fixation for fracture care. Not only does it have the advantages of using smaller incisions to preserve periosteum while providing improved biomechanical outcomes, but intramedullary reaming can help stimulate cells to promote bone healing. Few articles discuss the use and success of intramedullary reaming in revision surgery of the distal fibula. We present 3 cases of computed tomography-confirmed fibular nonunion following conservative fracture care, which underwent revision surgery with fibular nail fixation technique. These cases illustrate clinical and image findings as well as highlight the surgical technique used for each patient. At follow-up, all patients were asymptomatic and radiographs confirmed healing of the previous nonunion site. These cases are examples of successful revision for fibular fracture nonunion using intramedullary nail fixation.Level of Evidence: Level IV: Case series.
Collapse
Affiliation(s)
- Amber M Kavanagh
- Division of Hinsdale Orthopaedics, Illinois Bone & Joint Institute, Joliet, Illinois
| | - Jaclyn Schumann
- Division of Hinsdale Orthopaedics, Illinois Bone & Joint Institute, Joliet, Illinois
| | - Brian J Burgess
- Division of Hinsdale Orthopaedics, Illinois Bone & Joint Institute, Joliet, Illinois
| |
Collapse
|
12
|
Wang P, Gong Y, Zhou G, Ren W, Wang X. Biodegradable Implants for Internal Fixation of Fractures and Accelerated Bone Regeneration. ACS OMEGA 2023; 8:27920-27931. [PMID: 37576626 PMCID: PMC10413843 DOI: 10.1021/acsomega.3c02727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Bone fractures have always been a burden to patients due to their common occurrence and severe complications. Traditionally, operative treatments have been widely used in the clinic for implanting, despite the fact that they can only achieve bone fixation with limited stability and pose no effect on promoting tissue growth. In addition, the nondegradable implants usually need a secondary surgery for implant removal, otherwise they may block the regeneration of bones resulting in bone nonunion. To overcome the low degradability of implants and avoid multiple surgeries, tissue engineers have investigated various biodegradable materials for bone regeneration, whereas the significance of stability of long-term bone fixation tends to be neglected during this process. Combining the traditional orthopedic implantation surgeries and emerging tissue engineering, we believe that both bone fixation and bone regeneration are indispensable factors for a successful bone repair. Herein, we define such a novel idea as bone regenerative fixation (BRF), which should be the main future development trend of biodegradable materials.
Collapse
Affiliation(s)
- Pei Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yan Gong
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangdong Zhou
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| | - Wenjie Ren
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| | - Xiansong Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| |
Collapse
|
13
|
Sadighi A, Taghvaei M, Taheri M, Oeth D, Siegler S, Schaer TP, R Najafi A. Numerical analysis of the mechanical response of novel swelling bone implants in polyurethane foams. J Mech Behav Biomed Mater 2023; 143:105871. [PMID: 37187154 DOI: 10.1016/j.jmbbm.2023.105871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/17/2023]
Abstract
In this study, a numerical framework was developed in order to analyze the swelling properties, mechanical response and fixation strength of swelling bone anchors. Using this framework, fully porous and solid implants, along with a novel hybrid design (consisting of a solid core and a porous sleeve), were modeled and studied. Free swelling experiments were conducted to investigate their swelling characteristics. The finite element model of swelling was validated using the conducted free swelling. Compared with the experimental data, results obtained from the finite element analysis proved the reliability of this frame-work. Afterwards, the swelling bone anchors were studied embedded in artificial bones with different densities with two different interface properties: considering frictional interface between the bone anchors and artificial bones (simulating the stages prior to osteointegration, when the bone and implant are not fully bonded and the surface of the implant can slide along the interface), and perfectly bonded (simulating the stages subsequent to osteointegration, when the bone and implant are fully bonded). It was observed that the swelling considerably decreases while the average radial stress on the lateral surface of the swelling bone anchor surges in the denser artificial bones. Ultimately, the pull-out experiments and simulations of the swelling bone anchors from the artificial bones were conducted to look into the fixation strength of the swelling bone anchors. It was found that the hybrid swelling bone anchor exhibits mechanical and swelling properties close to those of solid bone anchors, while also bone in-growth is expected to happen, which is an integral factor to these bone anchors.
Collapse
Affiliation(s)
- Amirreza Sadighi
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Moein Taghvaei
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Mehrangiz Taheri
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Delaney Oeth
- Department of Clinical Studies New Bolton Center, University of Pennsylvania School of Veterinary Medicine, PA, 19348, USA
| | - Sorin Siegler
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Thomas P Schaer
- Department of Clinical Studies New Bolton Center, University of Pennsylvania School of Veterinary Medicine, PA, 19348, USA
| | - Ahmad R Najafi
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Maresca JA, DeMel DC, Wagner GA, Haase C, Geibel JP. Three-Dimensional Bioprinting Applications for Bone Tissue Engineering. Cells 2023; 12:cells12091230. [PMID: 37174630 PMCID: PMC10177443 DOI: 10.3390/cells12091230] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The skeletal system is a key support structure within the body. Bones have unique abilities to grow and regenerate after injury. Some injuries or degeneration of the tissues cannot rebound and must be repaired by the implantation of foreign objects following injury or disease. This process is invasive and does not always improve the quality of life of the patient. New techniques have arisen that can improve bone replacement or repair. 3D bioprinting employs a printer capable of printing biological materials in multiple directions. 3D bioprinting potentially requires multiple steps and additional support structures, which may include the use of hydrogels for scaffolding. In this review, we discuss normal bone physiology and pathophysiology and how bioprinting can be adapted to further the field of bone tissue engineering.
Collapse
Affiliation(s)
- Jamie A Maresca
- The John B. Pierce Laboratory, University of New Haven, New Haven, CT 06519, USA
| | - Derek C DeMel
- Yale School of Engineering & Applied Science, Yale University, New Haven, CT 06519, USA
| | - Grayson A Wagner
- Yale School of Engineering & Applied Science, Yale University, New Haven, CT 06519, USA
| | - Colin Haase
- The John B. Pierce Laboratory, University of New Haven, New Haven, CT 06519, USA
| | - John P Geibel
- The John B. Pierce Laboratory, University of New Haven, New Haven, CT 06519, USA
- Yale School of Engineering & Applied Science, Yale University, New Haven, CT 06519, USA
- Department of Surgery, School of Medicine, Yale University, New Haven, CT 06519, USA
| |
Collapse
|
15
|
Bingol HB, Bender JC, Opsteen JA, Leeuwenburgh SC. Bone adhesive materials: From bench to bedside. Mater Today Bio 2023; 19:100599. [PMID: 37063249 PMCID: PMC10102013 DOI: 10.1016/j.mtbio.2023.100599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Biodegradable bone adhesives represent a highly sought-after type of biomaterial which would enable replacement of traditional metallic devices for fixation of bone. However, these biomaterials should fulfil an extremely large number of requirements. As a consequence, bone-adhesive biomaterials which meet all of these requirements are not yet commercially available. Therefore, this comprehensive review provides an extensive overview of the development of bone adhesives from a translational perspective. First, the definition, classification, and chemistry of various types of bone adhesives are highlighted to provide a detailed overview of this emerging class of biomaterials. In this review we particularly focused studies which describe the use of materials that are capable of gluing two pieces of bone together within a time frame of minutes to days. Second, this review critically reflects on i) the experimental conditions of commonly employed adhesion tests to assess bone adhesion and ii) the current state-of-the-art regarding their preclinical and clinical applicability.
Collapse
Affiliation(s)
- Hatice B. Bingol
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- GATT Technologies BV, Nijmegen, the Netherlands
| | | | | | - Sander C.G. Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Corresponding author.
| |
Collapse
|
16
|
Siegler S, Taghvaei M, Zegarski R, Palmese G, Mathew R, Schayes J, Schaer T, Najafi A. A porous swelling copolymeric material for improved implant fixation to bone. J Biomed Mater Res B Appl Biomater 2023; 111:1342-1350. [PMID: 36815442 DOI: 10.1002/jbm.b.35238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
Most metallic commercial bone anchors, such as screws and suture anchors achieve their fixation to bone through shear of the bone located between the threads. They have several deficiencies, potentially leading to failure, which are particularly evident in low-density bone. These include stress-shielding resulting from mechanical properties mismatch; lack of mechanically induced remodeling and osteointegration; and when the pullout force on the anchor, during functional activities, exceeds their pullout strength, catastrophic failure occurs leaving behind large bone defects that may be hard to repair. To overcome these deficiencies, we introduced in this study a porous swelling co-polymeric material and studied its swelling and compressive mechanical characteristics as bone anchor under different configurations. Porosity was achieved by adding a non-dissolvable agent (NaCl) during the process of polymerization, which was later dissolved in water, leaving behind a porous structure with adequate porosity for osteointegration. Three different groups of cylindrical samples of the swelling co-polymer were investigated. Solid, fully porous, and partially porous with a solid core and a porous outer layer. The results of the swelling and simple compression study show that the partially porous swelling co-polymer maintains excellent mechanical properties matching those of cancellous bone, quick swelling response, and an adequate porous outer layer for mechanically induced osteointegration. These suggest that this material may present an effective alternative to conventional bone anchors particularly in low-density bone.
Collapse
Affiliation(s)
- Sorin Siegler
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Moein Taghvaei
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Ryan Zegarski
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Giuseppe Palmese
- College of Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Rena Mathew
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Julia Schayes
- School of Veterniary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas Schaer
- School of Veterniary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ahmad Najafi
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Yang Y, Su S, Liu S, Liu W, Yang Q, Tian L, Tan Z, Fan L, Yu B, Wang J, Hu Y. Triple-functional bone adhesive with enhanced internal fixation, bacteriostasis and osteoinductive properties for open fracture repair. Bioact Mater 2023; 25:273-290. [PMID: 36825223 PMCID: PMC9941416 DOI: 10.1016/j.bioactmat.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
At present, effective fixation and anti-infection implant materials represent the mainstay for the treatment of open fractures. However, external fixation can cause nail tract infections and is ineffective for fixing small fracture fragments. Moreover, closed reduction and internal fixation during the early stage of injury can lead to potential bone infection, conducive to bone nonunion and delayed healing. Herein, we designed a bone adhesive with anti-infection, osteogenic and bone adhesion fixation properties to promote reduction and fixation of open fractures and subsequent soft tissue repair. It was prepared by the reaction of gelatin (Gel) and oxidized starch (OS) with vancomycin (VAN)-loaded mesoporous bioactive glass nanoparticles (MBGNs) covalently cross-linked with Schiff bases. Characterization and adhesion experiments were conducted to validate the successful preparation of the Gel-OS/VAN@MBGNs (GOVM-gel) adhesive. Meanwhile, in vitro cell experiments demonstrated its good antibacterial effects with the ability to stimulate bone marrow mesenchymal stem cell (BMSCs) proliferation, upregulate the expression of alkaline phosphatase (ALP) and osteogenic proteins (RunX2 and OPN) and enhance the deposition of calcium nodules. Additionally, we established a rat skull fracture model and a subcutaneous infection model. The histological analysis showed that bone adhesive enhanced osteogenesis, and in vivo experiments demonstrated that the number of inflammatory cells and bacteria was significantly reduced. Overall, the adhesive could promote early reduction of fractures and antibacterial and osteogenic effects, providing the foothold for treatment of this patient population.
Collapse
Affiliation(s)
- Yusheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Shenghui Su
- Department of Orthopaedics, Ningde Municipal Hospital, Ningde Normal University, Ningde, Fujian Province, 352100, China
| | - Shencai Liu
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Weilu Liu
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Qinfeng Yang
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Liangjie Tian
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zilin Tan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Lei Fan
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China,Corresponding author.
| | - Jian Wang
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China,Corresponding author.
| | - Yanjun Hu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China,Corresponding author.
| |
Collapse
|
18
|
Alipour S, Nour S, Attari SM, Mohajeri M, Kianersi S, Taromian F, Khalkhali M, Aninwene GE, Tayebi L. A review on in vitro/ in vivo response of additively manufactured Ti-6Al-4V alloy. J Mater Chem B 2022; 10:9479-9534. [PMID: 36305245 DOI: 10.1039/d2tb01616h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bone replacement using porous and solid metallic implants, such as Ti-alloy implants, is regarded as one of the most practical therapeutic approaches in biomedical engineering. The bone is a complex tissue with various mechanical properties based on the site of action. Patient-specific Ti-6Al-4V constructs may address the key needs in bone treatment for having customized implants that mimic the complex structure of the natural tissue and diminish the risk of implant failure. This review focuses on the most promising methods of fabricating such patient-specific Ti-6Al-4V implants using additive manufacturing (AM) with a specific emphasis on the popular subcategory, which is powder bed fusion (PBF). Characteristics of the ideal implant to promote optimized tissue-implant interactions, as well as physical, mechanical/chemical treatments and modifications will be discussed. Accordingly, such investigations will be classified into 3B-based approaches (Biofunctionality, Bioactivity, and Biostability), which mainly govern native body response and ultimately the success in implantation.
Collapse
Affiliation(s)
- Saeid Alipour
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Shirin Nour
- Tissue Engineering Group, Department of Biomedical Engineering, University of Melbourne, VIC 3010, Australia.,Polymer Science Group, Department of Chemical Engineering, University of Melbourne, VIC 3010, Australia
| | - Seyyed Morteza Attari
- Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, TX, USA
| | - Sogol Kianersi
- CÚRAM, SFI Centre for Research in Medical Devices, Biomedical Sciences, University of Galway, Galway, Ireland
| | - Farzaneh Taromian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammadparsa Khalkhali
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - George E Aninwene
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, California, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California, USA.,California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, California, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA.
| |
Collapse
|
19
|
Liu Y, Du T, Qiao A, Mu Y, Yang H. Zinc-Based Biodegradable Materials for Orthopaedic Internal Fixation. J Funct Biomater 2022; 13:jfb13040164. [PMID: 36278633 PMCID: PMC9589944 DOI: 10.3390/jfb13040164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Traditional inert materials used in internal fixation have caused many complications and generally require removal with secondary surgeries. Biodegradable materials, such as magnesium (Mg)-, iron (Fe)- and zinc (Zn)-based alloys, open up a new pathway to address those issues. During the last decades, Mg-based alloys have attracted much attention by researchers. However, the issues with an over-fast degradation rate and release of hydrogen still need to be overcome. Zn alloys have comparable mechanical properties with traditional metal materials, e.g., titanium (Ti), and have a moderate degradation rate, potentially serving as a good candidate for internal fixation materials, especially at load-bearing sites of the skeleton. Emerging Zn-based alloys and composites have been developed in recent years and in vitro and in vivo studies have been performed to explore their biodegradability, mechanical property, and biocompatibility in order to move towards the ultimate goal of clinical application in fracture fixation. This article seeks to offer a review of related research progress on Zn-based biodegradable materials, which may provide a useful reference for future studies on Zn-based biodegradable materials targeting applications in orthopedic internal fixation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Aike Qiao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yongliang Mu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Correspondence: ; Tel.: +86-(010)-6739-6657
| |
Collapse
|
20
|
Paiva JCC, Oliveira L, Vaz MF, Costa-de-Oliveira S. Biodegradable Bone Implants as a New Hope to Reduce Device-Associated Infections-A Systematic Review. Bioengineering (Basel) 2022; 9:409. [PMID: 36004934 PMCID: PMC9405200 DOI: 10.3390/bioengineering9080409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Bone fractures often require fixation devices that frequently need to be surgically removed. These temporary implants and procedures leave the patient more prone to developing medical device-associated infections, and osteomyelitis associated with trauma is a challenging complication for orthopedists. In recent years, biodegradable materials have gained great importance as temporary medical implant devices, avoiding removal surgery. The purpose of this systematic review was to revise the literature regarding the use of biodegradable bone implants in fracture healing and its impact on the reduction of implant-associated infections. The systematic review followed the PRISMA guidelines and was conducted by searching published studies regarding the in vivo use of biodegradable bone fixation implants and its antibacterial activity. From a total of 667 references, 23 studies were included based on inclusion and exclusion criteria. Biodegradable orthopedic implants of Mg-Cu, Mg-Zn, and Zn-Ag have shown antibacterial activity, especially in reducing infection burden by MRSA strains in vivo osteomyelitis models. Their ability to prevent and tackle implant-associated infections and to gradually degrade inside the body reduces the need for a second surgery for implant removal, with expectable gains regarding patients' comfort. Further in vivo studies are mandatory to evaluate the efficiency of these antibacterial biodegradable materials.
Collapse
Affiliation(s)
- José C. C. Paiva
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Luís Oliveira
- DPS—Product Systems Development, INEGI—Institute of Science and Innovation in Mechanical and Industrial Engineering, 4200-465 Porto, Portugal
| | - Maria Fátima Vaz
- IDMEC—Instituto Superior Técnico, Universidade de Lisboa, 1499-002 Lisboa, Portugal
- Departamento de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, 1499-002 Lisboa, Portugal
| | - Sofia Costa-de-Oliveira
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
21
|
Hu JS, Huang CB, Mao SM, Fang KH, Wu ZY, Zhao YM. Development of a nomogram to predict surgical site infection after closed comminuted calcaneal fracture. BMC Surg 2022; 22:313. [PMID: 35962373 PMCID: PMC9373506 DOI: 10.1186/s12893-022-01735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Background Compared with open comminuted calcaneal fractures, less emphasis is placed on postoperative surgical site infection (SSI) of closed comminuted calcaneal fractures. This study aimed to identify the risk factors associated with SSI and build a nomogram model to visualize the risk factors for postoperative SSI. Methods We retrospectively collected patients with closed comminuted calcaneal fractures from the Second Affiliated Hospital of Wenzhou Medical University database from 2017 to 2020. Risk factors were identified by logistics regression analysis, and the predictive value of risk factors was evaluated by ROC (receiver operating characteristic curve). Besides, the final risk factors were incorporated into R4.1.2 software to establish a visual nomogram prediction model. Results The high-fall injury, operative time, prealbumin, aspartate aminotransferase (AST), and cystatin-C were independent predictors of SSI in calcaneal fracture patients, with OR values of 5.565 (95%CI 2.220–13.951), 1.044 (95%CI 1.023–1.064), 0.988 (95%CI 0.980–0.995), 1.035 (95%CI 1.004–1.067) and 0.010 (95%CI 0.001–0.185) (Ps < 0.05). Furthermore, ROC curve analysis showed that the AUC values of high-fall injury, operation time, prealbumin, AST, cystatin-C, and their composite indicator for predicting SSI were 0.680 (95%CI 0.593–0.766), 0.756 (95%CI 0.672–939), 0.331 (95%CI 0.243–0.419), 0.605 (95%CI 0.512–0.698), 0.319 (95%CI 0.226–0.413) and 0.860 (95%CI 0.794–0.926), respectively (Ps < 0.05). Moreover, the accuracy of the nomogram to predict SSI risk was 0.860. Conclusions Our study findings suggest that clinicians should pay more attention to the preoperative prealbumin, AST, cystatin C, high-fall injury, and operative time for patients with closed comminuting calcaneal fractures to avoid the occurrence of postoperative SSI. Furthermore, our established nomogram to assess the risk of SSI in calcaneal fracture patients yielded good accuracy and can assist clinicians in taking appropriate measures to prevent SSI.
Collapse
Affiliation(s)
- Jia-Sen Hu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Cheng-Bin Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Shu-Ming Mao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Kang-Hao Fang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zong-Yi Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - You-Ming Zhao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
22
|
Taljanovic MS, Omar IM, Weaver JS, Becker JL, Mercer DM, Becker GW. Posttreatment Imaging of the Wrist and Hand: Update 2022. Semin Musculoskelet Radiol 2022; 26:295-313. [PMID: 35654096 DOI: 10.1055/s-0042-1743538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Common indications for surgical procedures of the wrist and hand include acute fractures or fracture-dislocations; nonunited fractures; posttraumatic, degenerative, and inflammatory arthritides and tendinopathies; injuries to tendons, ligaments, and the triangular fibrocartilage complex; and entrapment neuropathies. Soft tissue or osseous infections or masses may also need surgical treatment. Several of these procedures require surgical hardware placement, and most entail clinical follow-up with periodic imaging. Radiography should be the first imaging modality in the evaluation of the postoperative wrist and hand. Computed tomography, magnetic resonance imaging, diagnostic ultrasonography, and occasionally nuclear medicine studies may be performed to diagnose or better characterize suspected postoperative complications. To provide adequate evaluation of postoperative imaging of the wrist and hand, the interpreting radiologist must be familiar with the basic principles of these surgical procedures and both the imaging appearance of normal postoperative findings as well as the potential complications.
Collapse
Affiliation(s)
- Mihra S Taljanovic
- Department of Medical Imaging, The University of Arizona, College of Medicine, Tucson, Arizona.,Department of Radiology, University of New Mexico, Albuquerque, New Mexico
| | - Imran M Omar
- Department of Radiology, Northwestern Memorial Hospital, Chicago, Illinois
| | - Jennifer S Weaver
- Department of Radiology, University of New Mexico, Albuquerque, New Mexico
| | - Jennifer L Becker
- Department of Medical Imaging, The University of Arizona, College of Medicine, Tucson, Arizona
| | - Deana M Mercer
- Department of Orthopaedics and Rehabilitation, University of New Mexico, Albuquerque, New Mexico
| | - Giles W Becker
- Department of Orthopaedic Surgery, University of Arizona, Tucson, Arizona
| |
Collapse
|
23
|
Nasr Azadani M, Zahedi A, Bowoto OK, Oladapo BI. A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog Biomater 2022; 11:1-26. [PMID: 35239157 DOI: 10.1007/s40204-022-00182-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/29/2022] [Indexed: 02/08/2023] Open
Abstract
Medical application materials must meet multiple requirements, and the designed implant must mimic the bone structure in shape and support the formation of bone tissue (osteogenesis). Magnesium (Mg) alloys, as a "smart" biodegradable material and as "the green engineering material in the twenty-first century", have become an outstanding bone implant material due to their natural degradability, smart biocompatibility, and desirable mechanical properties. Magnesium is recognised as the next generation of orthopaedic appliances and bioresorbable scaffolds. At the same time, improving the mechanical properties and corrosion resistance of magnesium alloys is an urgent challenge to promote the application of magnesium alloys. Nevertheless, the excessively quick deterioration rate generally results in premature mechanical integrity disintegration and local hydrogen build-up, resulting in restricted clinical bone restoration applicability. The condition of Mg bone implants is thoroughly examined in this study. The relevant approaches to boost the corrosion resistance, including purification, alloying treatment, surface coating, and Mg-based metal matrix composite, are comprehensively revealed. These characteristics are reviewed to assess the progress of contemporary Mg-based biocomposites and alloys for biomedical applications. The fabricating techniques for Mg bone implants also are thoroughly investigated. Notably, laser-based additive manufacturing fabricates customised forms and complicated porous structures based on its distinctive additive manufacturing conception. Because of its high laser energy density and strong controllability, it is capable of fast heating and cooling, allowing it to modify the microstructure and performance. This review paper aims to provide more insight on the present challenges and continued research on Mg bone implants, highlighting some of the most important characteristics, challenges, and strategies for improving Mg bone implants.
Collapse
Affiliation(s)
- Meysam Nasr Azadani
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK.
| | - Abolfazl Zahedi
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK
| | - Oluwole Kingsley Bowoto
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK
| | - Bankole Ibrahim Oladapo
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK
| |
Collapse
|
24
|
Khan H, Adil A, Ul Ain N, Qureshi BA, Chishti UF, Malik TS. Outcome of Buried Versus Exposed Kirchner Wires in Terms of Infection in Fractures of Phalanges and Metacarpal Bones of Hand. Cureus 2022; 14:e22515. [PMID: 35345717 PMCID: PMC8956480 DOI: 10.7759/cureus.22515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction and objective The fracture of hand bones is very common among manual hand workers and a fractured hand imparts a great effect on a person’s productivity both socioeconomically and from a body image point of view. The most common method of hand fractures fixation is with the help of Kirschner wires. Kirchner wires can be inserted in exposed or in buried manner. There are a few studies that provide a comparative analysis of rate of infection between these two techniques. This study aimed to assess the rate of infection in buried versus exposed Kirschner (K)-wires for hand fractures. Material and method The study was designed as a randomized controlled trial with consecutive non-random sampling. It was conducted in the Department of Plastic Surgery, Holy Family Hospital, Rawalpindi, Pakistan, and lasted from June to December 2019. Blinding was not possible as both the operating surgeon and patient were aware of the procedure being done; however, the assessor was blinded and was not aware which group got which treatment. Total 122 patients with fractures of metacarpals and phalanges of hand were included in the study and were divided into two groups with 61 patients in each. Group A was treated with buried K-wires and group B with exposed K-wires. The patients were followed for one month for the outcomes in terms of infection in the patients. Results Group A had 24 females (39.3%) and 37 males (60.7%). Group B had 16 females (26.2%) and 45 males (73.8%). In group A, nine (14.8%) patients had ages between 10 and 20 years, 18 (29.5%) patients between 21 and 30 years, 14 (23.0%) patients between 31 and 40 years, 11 (18.0%) patients between 41 and 50 years, and nine (14.8%) were between 51 and 60 years. The mean duration of surgery was 35.16 minutes for group A and 27.30 minutes for group B. Based on modified Oppenheim scoring system for pin site infection, out of 61 patients, seven (11.5%) with buried K-wires while 14 (23%) with exposed K-wires developed pin site infection. Conclusion Rate of infection is low in buried K-wires as compared to exposed K-wires though not statistically significant (p>0.05) for the fractures of metacarpals and phalangeal fractures of hand.
Collapse
|
25
|
Buso C, Zanini P, Titotto S. Bioinspired design proposal for a new external bone fixator device. Biomed Phys Eng Express 2022; 8. [PMID: 35100569 DOI: 10.1088/2057-1976/ac5092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
The article presents a new medical device through an authorial and interdisciplinary approach. It consists of a flexible external fixator, whose flexible property may bring advantages over rigid mechanisms. Its design was inspired by the DNA biological mechanism of condensation, while the modeling was based on the pseudo-rigid modeling technique. From the models obtained, this study conducted prototyping and computational tests to obtain a proof-of-concept of the bioinspired theory and dynamic functioning effectiveness. The prototyping relied on hot glue manufacturing and the computational simulations consisted of linear static analysis. The experimental analysis concluded that the prototype with fewer beams and thinner beams delivered better results in all three parameters: flexibility, height variation and rotation arc. In the computational analysis, among the design models with the variation of the number of beams, the model with 8 beams performed better. Concerning thickness variation, the one whose beams measured 8mm in thickness showed better results. Among the models with length variation, the design made with 100 mm long beams better equilibrated the parameters.
Collapse
Affiliation(s)
- Carla Buso
- 4D Printing and Biomimetics (4DB) Research Group, Universidade Federal do ABC, Av. dos Estados, 5001 - Bangú, Santo Andre, SP, 09210-170, BRAZIL
| | - Plinio Zanini
- 4D Printing and Biomimetics (4DB) Research Group, Universidade Federal do ABC, Av. dos Estados, 5001 - Bangú, Santo Andre, SP, 09210-170, BRAZIL
| | - Silvia Titotto
- 4D Printing and Biomimetics (4DB) Research Group, Universidade Federal do ABC, Av. dos Estados, 5001 - Bangú, Santo Andre, 09210-170, BRAZIL
| |
Collapse
|
26
|
|
27
|
Wang Y, Wang X, Jin L, Wei X. X-Ray Film under Artificial Intelligence Algorithm in the Evaluation for Nursing Effect of Gamma Nail Internal Fixation in Elderly Patients with Intertrochanteric Fracture of Femur. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2562575. [PMID: 34887939 PMCID: PMC8651362 DOI: 10.1155/2021/2562575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 01/13/2023]
Abstract
The aim of this work was to explore the effects of Gamma nail internal fixation for intertrochanteric fracture of femur by X-ray film classification and recognition method based on artificial intelligence algorithm. The study subjects were 100 elderly patients with intertrochanteric fracture of femur admitted to hospital. The cases were diagnosed as elderly (over 60 years old) femoral intertrochanteric fractures by X-ray or CT. They were divided into two groups, with 50 persons in each group: one group used the X-ray film evaluation image guidance based on the artificial intelligence algorithm (research group), and the other group did not use algorithmic guidance (control group). The results showed that the segmentation effect of the proposed algorithm was similar to the gold standard segmentation result, indicating that the algorithm was effective and feasible in the segmentation of fractures and bones. The global level set algorithm was set as the control. The ultimate measurement accuracy (UMA) value of the algorithm group was (1.77 ± 0.22), and the UMA value of the global level set algorithm group was (3.42 ± 0.36), indicating that the image processed by the algorithm group had obvious numerical effect, high accuracy, and good retention of details. The operation time, intraoperative blood loss, incision length, hospital stay, weight-bearing time, and fracture healing time of the two groups were all better than those of the control group. One month after surgery, the Harris score of the algorithm group was 67, and that of the control group was 51, with a 16-point difference between the two groups (p < 0.05). The patient had less pain and fast recovery speed, indicating that it was a good way to treat elderly intertrochanteric fractures with the nursing effect of X-ray Gamma nail internal fixation based on an artificial intelligence algorithm. The artificial intelligence algorithm not only can be applied to the Gamma nail internal fixation of elderly patients with intertrochanteric fractures but also can be applied to the X-ray image processing of other fractures and other surgical methods to provide effective treatment for fracture patients.
Collapse
Affiliation(s)
- Yudi Wang
- Department of Kidney Disease and Endocrine Disease, Sichuan Science City Hospital, Mianyang, 621900 Sichuan, China
| | - Xin Wang
- Department of Nursing, Sichuan Science City Hospital, Mianyang, 621900 Sichuan, China
| | - Lei Jin
- Department of Nursing, Sichuan Science City Hospital, Mianyang, 621900 Sichuan, China
| | - Xuemei Wei
- Department of Nursing, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 Sichuan, China
| |
Collapse
|
28
|
Raisuddin AM, Vaattovaara E, Nevalainen M, Nikki M, Järvenpää E, Makkonen K, Pinola P, Palsio T, Niemensivu A, Tervonen O, Tiulpin A. Critical evaluation of deep neural networks for wrist fracture detection. Sci Rep 2021; 11:6006. [PMID: 33727668 PMCID: PMC7971048 DOI: 10.1038/s41598-021-85570-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/01/2021] [Indexed: 11/08/2022] Open
Abstract
Wrist Fracture is the most common type of fracture with a high incidence rate. Conventional radiography (i.e. X-ray imaging) is used for wrist fracture detection routinely, but occasionally fracture delineation poses issues and an additional confirmation by computed tomography (CT) is needed for diagnosis. Recent advances in the field of Deep Learning (DL), a subfield of Artificial Intelligence (AI), have shown that wrist fracture detection can be automated using Convolutional Neural Networks. However, previous studies did not pay close attention to the difficult cases which can only be confirmed via CT imaging. In this study, we have developed and analyzed a state-of-the-art DL-based pipeline for wrist (distal radius) fracture detection-DeepWrist, and evaluated it against one general population test set, and one challenging test set comprising only cases requiring confirmation by CT. Our results reveal that a typical state-of-the-art approach, such as DeepWrist, while having a near-perfect performance on the general independent test set, has a substantially lower performance on the challenging test set-average precision of 0.99 (0.99-0.99) versus 0.64 (0.46-0.83), respectively. Similarly, the area under the ROC curve was of 0.99 (0.98-0.99) versus 0.84 (0.72-0.93), respectively. Our findings highlight the importance of a meticulous analysis of DL-based models before clinical use, and unearth the need for more challenging settings for testing medical AI systems.
Collapse
Affiliation(s)
| | - Elias Vaattovaara
- University of Oulu, Oulu, Finland
- Oulu University Hospital, Oulu, Finland
| | - Mika Nevalainen
- University of Oulu, Oulu, Finland
- Oulu University Hospital, Oulu, Finland
| | | | | | | | - Pekka Pinola
- University of Oulu, Oulu, Finland
- Oulu University Hospital, Oulu, Finland
| | - Tuula Palsio
- University of Oulu, Oulu, Finland
- City of Oulu, Oulu, Finland
| | | | - Osmo Tervonen
- University of Oulu, Oulu, Finland
- Oulu University Hospital, Oulu, Finland
| | - Aleksei Tiulpin
- University of Oulu, Oulu, Finland
- Oulu University Hospital, Oulu, Finland
- Ailean Technologies Oy, Oulu, Finland
| |
Collapse
|
29
|
Ex-vivo biomechanical testing of pig femur diaphysis B type fracture fixed by novel biodegradable bone glue. J Mech Behav Biomed Mater 2020; 115:104249. [PMID: 33340777 DOI: 10.1016/j.jmbbm.2020.104249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 11/05/2020] [Accepted: 11/28/2020] [Indexed: 11/21/2022]
Abstract
AIMS The aim of this study was to answer the question whether our newly developed injectable biodegradable "self-setting" polymer-composite as a bone adhesive is a good "bone-glue" candidate to efficiently fix comminuted fractures of pig femoral bones used as an ex-vivo experimental model. METHODS Mechanical properties of adhesive prepared from α-tricalcium phosphate (TCP) powder and thermogelling copolymer were optimized by selecting the appropriate composition with adhesion enhancers based on dopamine and sodium iodinate. Setting time and injectability were controlled by rheology. Ex-vivo experiments of fixed pig bones were provided in terms of either the three-point bending test of bending wedge type fractured pig femurs (with LCP) or the axial compression test of 45° oblique fractured femurs (without LCP) in physiological saline solution at 37 °C. Fractured bones treated with optimized adhesive before and after bending tests were imaged by X-ray microtomography (μCT). RESULTS Based on the rheological measurement, the adhesive modified with both dopamine and sodium iodinate exhibited optimal thixotropic properties required for injection via thin 22 G needle. This optimal adhesive composition showed an 8 min lag phase (processing time) followed by fast increase in storage modulus at 37 °C up to 1 GPa within 110 min. Self-setting of dopamine/iodinate modified adhesive was completed in 48 h exhibiting the maximum strength at compression of 7.98 MPa ± 1.39 MPa. Whereas unmodified adhesive failed in glue-to-bone adhesion, dopamine and dopamine/iodinate modified adhesive used for 45° oblique fracture fixation showed good and similar strength at compression (3.05 and 2.79 MPa, respectively). However, significantly higher elasticity of about 250% exhibited adhesive with iodinate enhancer. Moreover, mechanical properties of B2 fractures fixed with both LCP and dopamine/iodinate adhesive were approaching closely to the properties of original bone. Excellent adhesion between the adhesive and the bone fragments was proved by μCT. CONCLUSION The polymer-composite bone adhesive modified with dopamine/iodinate exhibited very good fixation ability of femoral artificial comminuted fractures in an experimental model.
Collapse
|
30
|
Sabouni K, Ozturk Y, Kacar E, Mutlu HS, Solakoglu S, Kose GT, Kok FN, Kazmanli MK, Urgen KM, Onder S. Assessment of bone healing using (Ti,Mg)N thin film coated plates and screws: Rabbit femur model. J Biomed Mater Res B Appl Biomater 2020; 109:227-237. [PMID: 32770599 DOI: 10.1002/jbm.b.34694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 11/06/2022]
Abstract
Magnesium (Mg) based implants such as plates and screws are often preferred to treat bone defects because of the positive effects of magnesium in bone growth and healing. Their low corrosion resistance, however, leads to fast degradation and consequently failure before healing was completed. Previously, we developed Mg doped titanium nitrate (TiN) thin film coatings to address these limitations and demonstrated that <10 at% Mg doping led to enhanced mineralization in vitro. In the present study, in vivo performance of (Ti,Mg)N coated Ti6Al4V based plates and screws were studied in the rabbit model. Bone fractures were formed on femurs of 16 rabbits and then fixed with either (Ti,Mg)N coated (n = 8) or standard TiN coated (n = 8) plates and screws. X-ray imaging and μCT analyses showed enhanced bone regeneration on fracture sites fixed with (Ti,Mg)N coated plates in comparison with the Mg free ones. Bone mineral density, bone volume, and callus volume were also found to be 11.4, 23.4, and 42.8% higher, respectively, in accordance with μCT results. Furthermore, while TiN coatings promoted only primary bone regeneration, (Ti,Mg)N led to secondary bone regeneration in 6 weeks. These results indicated that Mg presence in the coatings accelerated bone regeneration in the fracture site. (Ti,Mg)N coating can be used as a practical method to increase the efficiency of existing bone fixation devices of varying geometry.
Collapse
Affiliation(s)
- Kenda Sabouni
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Yetkin Ozturk
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Erkan Kacar
- Department of Metallurgical and Materials Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Hasan Serdar Mutlu
- Department of Histology and Embryology, Istanbul University, Istanbul, Turkey
| | - Seyhun Solakoglu
- Department of Histology and Embryology, Istanbul University, Istanbul, Turkey
| | - Gamze Torun Kose
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Fatma Nese Kok
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Muhammet Kursat Kazmanli
- Department of Metallurgical and Materials Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Kamil Mustafa Urgen
- Department of Metallurgical and Materials Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Sakip Onder
- Department of Biomedical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
31
|
Investigation of Biomechanical Characteristics of Orthopedic Implants for Tibial Plateau Fractures by Means of Deep Learning and Support Vector Machine Classification. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An experimental comparative study of the biomechanical behavior of commonly used orthopedic implants for tibial plateau fractures was carried out. An artificial bone model Synbone1110 was used and a Schatzker V type tibial plateau fracture was created in vitro, then stabilized with three different implant types, classic L plate, Locking Plate System (PLS), and Hybrid External Fixator (HEF). The stiffness of the bone—implant assembly was assessed by means of mechanical testing using an automated testing machine. It was found that the classic L plate type internal implant has a significantly higher value of deformation then the other two implant types. In case of the other implant types, PLS had a better performance than HEF at low and medium values of the applied force. At high values of the applied forces, the difference between deformation values of the two types became gradually smaller. An Artificial Neural Network model was developed to predict the implant deformation as a function of the applied force and implant device type. To establish if a clear-cut distinction exists between mechanical performance of PLS and HEF, a Support Vector Machine classifier was employed. At high values of the applied force, the Support Vector Machine (SVM) classifier predicts that no statistically significant difference exists between the performance of PLS and HEF.
Collapse
|
32
|
Kim T, See CW, Li X, Zhu D. Orthopedic implants and devices for bone fractures and defects: Past, present and perspective. ENGINEERED REGENERATION 2020. [DOI: 10.1016/j.engreg.2020.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Xiong L, Li X, Li H, Chen Z, Xiao T. The efficacy of 3D printing-assisted surgery for traumatic fracture: a meta-analysis. Postgrad Med J 2019; 95:414-419. [DOI: 10.1136/postgradmedj-2019-136482] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 02/06/2023]
Abstract
BackgroundRecent years have witnessed a rapid development of three-dimensional (3D) printing technology applied in orthopaedic surgery. To be assisted by 3D printing is a potent method to realise accurate and individualised operation. The objective of this meta-analysis was to assess the efficacy of 3D printing technology in the management of trauma fractures.MethodsPubMed, Embase and the Cochrane Library were systematically searched up until January 2019 to identify relevant studies. All clinical studies comparing conventional surgery and 3D printing-assisted surgery in the management of orthopaedic trauma were obtained. The meta-analysis was performed with RevMan V.5.3 software.ResultsFour randomised controlled trials, four retrospective comparative studies and two prospective comparative studies involving 521 patients were included. Compared with conventional surgery, 3D printing-assisted surgery leads to shorter operation duration (mean difference (MD) −16.59 (95% CI −18.60 to –14.58), p<0.001), less intraoperative blood loss (standardised mean difference (SMD) −1.02 (95% CI –1.25 to –0.79), p<0.001) and fewer intraoperative fluroscopies (SMD −2.20 (95% CI –2.50 to –1.90), p<0.001). However, 3D printing-assisted surgery leads to longer hospital stay (MD 2.51 (95% CI 0.31 to –4.72), p=0.03). No significant results were found regarding fracture healing time, the rate of excellent and good outcomes, anatomical reduction and complications.ConclusionsThese results suggest that 3D printing-assisted surgery outperforms conventional surgery in the management of orthopaedic trauma fractures with shorter operation duration, less intraoperative blood loss and fewer intraoperative fluoroscopies.
Collapse
|
34
|
A Review on Surface Modifications and Coatings on Implants to Prevent Biofilm. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00116-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Melo P, Tarrant E, Swift T, Townshend A, German M, Ferreira AM, Gentile P, Dalgarno K. Short phosphate glass fiber - PLLA composite to promote bone mineralization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109929. [PMID: 31500017 DOI: 10.1016/j.msec.2019.109929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 01/15/2023]
Abstract
The clinical application of composites seeks to exploit the mechanical and chemical properties of materials which make up the composite, and in researching polymer composites for biomedical applications the aim is usually to enhance the bioactivity of the polymer, while maintaining the mechanical properties. To that end, in this study medical grade Poly(L-lactic) acid (PLLA) has been reinforced with short phosphate-based glass fibers (PGF). The materials were initially mixed by melting PLLA granules with the short fibers, before being extruded to form a homogenous filament, which was pelletized and used as feedstock for compression moulding. As made the composite materials had a bending strength of 51 MPa ± 5, and over the course of eight weeks in PBS the average strength of the composite material was in the range 20-50 MPa. Human mesenchymal stromal cells were cultured on the surfaces of scaffolds, and the metabolic activity, alkaline phosphatase production and mineralization monitored over a three week period. The short fiber filler made no significant difference to cell proliferation or differentiation, but had a clear and immediate osteoinductive effect, promoting mineralization by cells at the material surface. It is concluded that the PLLA/PGF composite material offers a material with both the mechanical and biological properties for potential application to bone implants and fixation, particularly where an osteoinductive effect would be valuable.
Collapse
Affiliation(s)
- Priscila Melo
- School of Engineering, Newcastle University, Claremont Road, NE1 7RU Newcastle Upon Tyne, United Kingdom
| | - Emma Tarrant
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Thomas Swift
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Anthony Townshend
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle Upon Tyne NE2 4BW, United Kingdom
| | - Matthew German
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle Upon Tyne NE2 4BW, United Kingdom
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Claremont Road, NE1 7RU Newcastle Upon Tyne, United Kingdom
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Claremont Road, NE1 7RU Newcastle Upon Tyne, United Kingdom
| | - Kenneth Dalgarno
- School of Engineering, Newcastle University, Claremont Road, NE1 7RU Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|
36
|
Bliven EK, Greinwald M, Hackl S, Augat P. External fixation of the lower extremities: Biomechanical perspective and recent innovations. Injury 2019; 50 Suppl 1:S10-S17. [PMID: 31018903 DOI: 10.1016/j.injury.2019.03.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/28/2019] [Indexed: 02/08/2023]
Abstract
The concept of supporting fractured long bones externally with mechanical fixation has been evidentially applied for over 2000 years, and since been expanded on in the mid-19th century by percutaneous bone fixation. Surgical techniques, external fixator systems, and materials have made continued progress since. The benefits of traditional external fixation have been enhanced in recent years with the introduction of hexapod-style fixators, innovative configurations, and pin modifications, among other things. It is generally agreed upon that biomechanical testing of advancements in external fixation must be inclusive of transverse or torsional loading to simulate construct behaviour in realistic scenarios. Biomechanical studies indicate that hexapod-style fixators show comparable axial stiffness to Ilizarov-style systems and improved performance under torsional and transverse forces. The addition of configuration elements to fixators, inclusion of certain carbon fibre chemical compositions, and techniques intended to augment ring thickness have also been investigated, in hopes of increasing construct stiffness under loading. Novel external fixators attempt to broaden their applications by rethinking bone mounting mechanisms and either expanding on or simplifying the implementation of 3D bone segment transport for corrective osteotomy. Older and seemingly unconventional fixation techniques are being rediscovered and evolved further in order to increase patient comfort by improving everyday usability. The development of new pin coatings can potentially enhance the pin-bone interface while lowering infection rates typically expected at thicker soft tissue envelopes. Although complication, malunion, and nonunion rates have decreased over the past 50 years, the clinical results of external fixation today can still be optimized. Unsatisfactory healing in the lower extremities has especially been reported at locations such as the distal tibia; however, advancements such as osteoinductive growth hormone treatment may provide improved results. With the current progression of technology and digitization, it is only a matter of time before 'smart', partly-autonomous external fixation systems enter the market. This review article will provide a versatile overview of biomechanically proven fixator configurations and some carefully selected innovative systems and techniques that have emerged or been established in the past two decades.
Collapse
Affiliation(s)
- Emily K Bliven
- Institute for Biomechanics, Trauma Centre Murnau, Germany
| | | | - Simon Hackl
- Institute for Biomechanics, Trauma Centre Murnau, Germany
| | - Peter Augat
- Institute for Biomechanics, Trauma Centre Murnau, Germany; Institute for Biomechanics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
37
|
Tian L, Tang N, Ngai T, Wu C, Ruan Y, Huang L, Qin L. Hybrid fracture fixation systems developed for orthopaedic applications: A general review. J Orthop Translat 2018; 16:1-13. [PMID: 30723676 PMCID: PMC6350075 DOI: 10.1016/j.jot.2018.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/11/2018] [Accepted: 06/29/2018] [Indexed: 12/28/2022] Open
Abstract
Orthopaedic implants are applied daily in our orthopaedic clinics for treatment of musculoskeletal injuries, especially for bone fracture fixation. To realise the multiple functions of orthopaedic implants, hybrid system that contains several different materials or parts have also been designed for application, such as prosthesis for total hip arthroplasty. Fixation of osteoporotic fracture is challenging as the current metal implants made of stainless steel or titanium that are rather rigid and bioinert, which are not favourable for enhancing fracture healing and subsequent remodelling. Magnesium (Mg) and its alloys are reported to possess good biocompatibility, biodegradability and osteopromotive effects during its in vivo degradation and now tested as a new generation of degradable metallic biomaterials. Several recent clinical studies reported the Mg-based screws for bone fixation, although the history of testing Mg as fixation implant was documented more than 100 years ago. Truthfully, Mg has its limitations as fixation implant, especially when applied at load-bearing sites because of rather rapid degradation. Currently developed Mg-based implants have only been designed for application at less or non-loading-bearing skeletal site(s). Therefore, after years research and development, the authors propose an innovative hybrid fixation system with parts composed of Mg and titanium or stainless steel to maximise the biological benefits of Mg; titanium or stainless steel in this hybrid system can provide enough mechanical support for fractures at load-bearing site(s) while Mg promotes the fracture healing through novel mechanisms during its degradation, especially in patients with osteoporosis and other metabolic disorders that are unfavourable conditions for fracture healing. This hybrid fixation strategy is designed to effectively enhance the osteoporotic fracture healing and may potentially also reduce the refracture rate. The translational potential of this article: This article systemically reviewed the combination utility of different metallic implants in orthopaedic applications. It will do great contribution to the further development of internal orthopaedic implants for fracture fixation. Meanwhile, it also introduced a titanium-magnesium hybrid fixation system as an alternative fixation strategy, especially for osteoporotic patients.
Collapse
Affiliation(s)
- Li Tian
- Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Ning Tang
- Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yechun Ruan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, PR China
| | - Le Huang
- Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Ling Qin
- Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
38
|
McSweeney AL, Zani BG, Baird R, Stanley JR, Hayward A, Markham PM, Kopia GA, Edelman ER, Rabiner R. Biocompatibility, bone healing, and safety evaluation in rabbits with an IlluminOss bone stabilization system. J Orthop Res 2017; 35:2181-2190. [PMID: 28135014 PMCID: PMC5534392 DOI: 10.1002/jor.23532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/23/2017] [Indexed: 02/04/2023]
Abstract
Bone healing, biocompatibility, and safety employing the IlluminOss System (IS), comprised of an inflatable balloon filled with photopolymerizable liquid monomer, was evaluated in New Zealand white rabbits. Successful bone healing and callus remodeling over 6 months was demonstrated radiologically and histologically with IS implants in fenestrated femoral cortices. Biocompatibility was demonstrated with IS implants in brushed, flushed femoral intramedullary spaces, eliciting no adverse, local, or systemic responses and with similar biocompatibility to K-wires in contralateral femurs up to 1 year post-implant. Lastly simulated clinical failures demonstrated the safety of IS implants up to 1 year in the presence of liquid or polymerized polymer within the intramedullary space. Polymerized material displayed cortical bone and vasculature effects comparable to mechanical disruption of the endosteum. In the clinically unlikely scenario with no remediation or polymerization, a high dose monomer injection resulted in marked necrosis of cortical bone, as well as associated vasculature, endosteum, and bone marrow. Overall, when polymerized and hardened within bone intramedullary spaces, this light curable monomer system may provide a safe and effective method for fracture stabilization. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2181-2190, 2017.
Collapse
Affiliation(s)
- Amanda L. McSweeney
- Concord Biomedical Sciences and Emerging Technologies, 500 Shire Way, Lexington, MA 02421,Author to whom all correspondence should be addressed: Amanda L. McSweeney, BS, RLATG, SRS, CBSET, Inc., 500 Shire Way, Lexington, MA 02421, Phone: 781-541-5567,
| | - Brett G. Zani
- Concord Biomedical Sciences and Emerging Technologies, 500 Shire Way, Lexington, MA 02421
| | - Rose Baird
- Concord Biomedical Sciences and Emerging Technologies, 500 Shire Way, Lexington, MA 02421
| | - James R.L. Stanley
- Concord Biomedical Sciences and Emerging Technologies, 500 Shire Way, Lexington, MA 02421
| | - Alison Hayward
- Concord Biomedical Sciences and Emerging Technologies, 500 Shire Way, Lexington, MA 02421
| | - Peter M. Markham
- Concord Biomedical Sciences and Emerging Technologies, 500 Shire Way, Lexington, MA 02421
| | | | - Elazer R. Edelman
- Institute for Medical and Engineering Science, Massachusetts Institute of Technology, E25, 45 Carleton St., Cambridge, MA, 02139
| | - Robert Rabiner
- IlluminOss Medical Inc., 993 Waterman Ave., East Providence, RI 02914
| |
Collapse
|
39
|
Lee EJ, Huh BK, Kim SN, Lee JY, Park CG, Mikos AG, Choy YB. Application of Materials as Medical Devices with Localized Drug Delivery Capabilities for Enhanced Wound Repair. PROGRESS IN MATERIALS SCIENCE 2017; 89:392-410. [PMID: 29129946 PMCID: PMC5679315 DOI: 10.1016/j.pmatsci.2017.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The plentiful assortment of natural and synthetic materials can be leveraged to accommodate diverse wound types, as well as different stages of the healing process. An ideal material is envisioned to promote tissue repair with minimal inconvenience for patients. Traditional materials employed in the clinical setting often invoke secondary complications, such as infection, pain, foreign body reaction, and chronic inflammation. This review surveys the repertoire of surgical sutures, wound dressings, surgical glues, orthopedic fixation devices and bone fillers with drug eluting capabilities. It highlights the various techniques developed to effectively incorporate drugs into the selected material or blend of materials for both soft and hard tissue repair. The mechanical and chemical attributes of the resultant materials are also discussed, along with their biological outcomes in vitro and/or in vivo. Perspectives and challenges regarding future research endeavors are also delineated for next-generation wound repair materials.
Collapse
Affiliation(s)
- Esther J. Lee
- Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, Texas, 77251-1892, USA
| | - Beom Kang Huh
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Se Na Kim
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Jae Yeon Lee
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Chun Gwon Park
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, Texas, 77251-1892, USA
- Department of Chemical and Biomolecular Engineering, Rice University, MS 362, P.O. Box 1892, Houston, Texas, 77251-1892, USA
| | - Young Bin Choy
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
40
|
Ibrahim H, Esfahani SN, Poorganji B, Dean D, Elahinia M. Resorbable bone fixation alloys, forming, and post-fabrication treatments. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:870-888. [DOI: 10.1016/j.msec.2016.09.069] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022]
|
41
|
Wei CK, Ding SJ. Acid-resistant calcium silicate-based composite implants with high-strength as load-bearing bone graft substitutes and fracture fixation devices. J Mech Behav Biomed Mater 2016; 62:366-383. [PMID: 27254281 DOI: 10.1016/j.jmbbm.2016.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/12/2016] [Accepted: 05/15/2016] [Indexed: 12/11/2022]
Abstract
To achieve the excellent mechanical properties of biodegradable materials used for cortical bone graft substitutes and fracture fixation devices remains a challenge. To this end, the biomimetic calcium silicate/gelatin/chitosan oligosaccharide composite implants were developed, with an aim of achieving high strength, controlled degradation, and superior osteogenic activity. The work focused on the effect of gelatin on mechanical properties of the composites under four different kinds of mechanical stresses including compression, tensile, bending, and impact. The evaluation of in vitro degradability and fatigue at two simulated body fluid (SBF) of pH 7.4 and 5.0 was also performed, in which the pH 5.0 condition simulated clinical conditions caused by bacterial induced local metabolic acidosis or tissue inflammation. In addition, human mesenchymal stem cells (hMSCs) were sued to examine osteogenic activity. Experimental results showed that the appropriate amount of gelatin positively contributed to failure enhancement in compressive and impact modes. The 10wt% gelatin-containing composite exhibits the maximum value of the compressive strength (166.1MPa), which is within the reported compressive strength for cortical bone. The stability of the bone implants was apparently affected by the in vitro fatigue, but not by the initial pH environments (7.4 or 5.0). The gelatin not only greatly enhanced the degradation of the composite when soaked in the dynamic SBF solution, but effectively promoted attachment, proliferation, differentiation, and formation of mineralization of hMSCs. The 10wt%-gelatin composite with high initial strength may be a potential implant candidate for cortical bone repair and fracture fixation applications.
Collapse
Affiliation(s)
- Chung-Kai Wei
- Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Shinn-Jyh Ding
- Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung City 402, Taiwan.
| |
Collapse
|
42
|
Chou CH, Chen YG, Lin CC, Lin SM, Yang KC, Chang SH. Bioabsorbable fish scale for the internal fixation of fracture: a preliminary study. Tissue Eng Part A 2015; 20:2493-502. [PMID: 25211643 DOI: 10.1089/ten.tea.2013.0174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fish scales, which consist of type I collagen and hydroxyapatite (HA), were used to fabricate a bioabsorbable bone pin in this study. Fresh fish scales were decellularized and characterized to provide higher biocompatibility. The mechanical properties of fish scales were tested, and the microstructure of an acellular fish scale was examined. The growth curve of a myoblastic cell line (C2C12), which was cultured on the acellular fish scales, implied biocompatibility in vitro, and the morphology of the cells cultured on the scales was observed using scanning electron microscopy (SEM). A bone pin made of decellularized fish scales was used for the internal fixation of femur fractures in New Zealand rabbits. Periodic X-ray evaluations were obtained, and histologic examinations were performed postoperatively. The present results show good cell growth on decellularized fish scales, implying great biocompatibility in vitro. Using SEM, the cell morphology revealed great adhesion on a native, layered collagen structure. The Young's modulus was 332 ± 50.4 MPa and the tensile strength was 34.4 ± 6.9 MPa for the decellularized fish scales. Animal studies revealed that a fish-scale-derived bone pin improved the healing of bone fractures and degraded with time. After an 8-week implantation, the bone pin integrated with the adjacent tissue, and new extracellular matrix was synthesized around the implant. Our results proved that fish-scale-derived bone pins are a promising implant material for bone healing and clinical applications.
Collapse
Affiliation(s)
- Cheng-Hung Chou
- 1 Department of Research, Body Organ Biomedical Corp., Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
43
|
Carlier A, Geris L, Lammens J, Van Oosterwyck H. Bringing computational models of bone regeneration to the clinic. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:183-94. [DOI: 10.1002/wsbm.1299] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/24/2015] [Accepted: 03/18/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Aurélie Carlier
- Biomechanics Section; KU Leuven; Leuven Belgium
- Prometheus, Division of Skeletal Tissue Engineering; KU Leuven; Leuven Belgium
| | - Liesbet Geris
- Biomechanics Section; KU Leuven; Leuven Belgium
- Prometheus, Division of Skeletal Tissue Engineering; KU Leuven; Leuven Belgium
- Biomechanics Research Unit; University of Liege; Liege Belgium
| | - Johan Lammens
- Prometheus, Division of Skeletal Tissue Engineering; KU Leuven; Leuven Belgium
- Department of Orthopaedics; University Hospitals of KU Leuven; Pellenberg Belgium
| | - Hans Van Oosterwyck
- Biomechanics Section; KU Leuven; Leuven Belgium
- Prometheus, Division of Skeletal Tissue Engineering; KU Leuven; Leuven Belgium
| |
Collapse
|
44
|
Zani BG, Baird R, Stanley JRL, Markham PM, Wilke M, Zeiter S, Beck A, Nehrbass D, Kopia GA, Edelman ER, Rabiner R. Evaluation of an intramedullary bone stabilization system using a light-curable monomer in sheep. J Biomed Mater Res B Appl Biomater 2015; 104:291-9. [PMID: 25772144 DOI: 10.1002/jbm.b.33380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/28/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022]
Abstract
Percutaneous intramedullary fixation may provide an ideal method for stabilization of bone fractures, while avoiding the need for large tissue dissections. Tibiae in 18 sheep were treated with an intramedullary photodynamic bone stabilization system (PBSS) that comprised a polyethylene terephthalate (Dacron) balloon filled with a monomer, cured with visible light in situ, and then harvested at 30, 90, or 180 days. In additional 40 sheep, a midshaft tibial osteotomy was performed and stabilized with external fixators or external fixators combined with the PBSS and evaluated at 8, 12, and 26 weeks. Healing and biocompatibility were evaluated by radiographic analysis, micro-computed tomography, and histopathology. In nonfractured sheep tibiae, PBSS implants conformably filled the medullary canal, while active cortical bone remodeling and apposition of new periosteal and/or endosteal bone was observed with no significant macroscopic or microscopic observations. Fractured sheep tibiae exhibited increased bone formation inside the osteotomy gap, with no significant difference when fixation was augmented by PBSS implants. Periosteal callus size gradually decreased over time and was similar in both treatment groups. No inhibition of endosteal bone remodeling or vascularization was observed with PBSS implants. Intramedullary application of a light-curable PBSS is a biocompatible, feasible method for fracture fixation.
Collapse
Affiliation(s)
- Brett G Zani
- Department of Applied Sciences, CBSET, Inc., Lexington, Massachusetts, 02421
| | - Rose Baird
- Department of Applied Sciences, CBSET, Inc., Lexington, Massachusetts, 02421
| | - James R L Stanley
- Department of Pathology, CBSET, Inc., Lexington, Massachusetts, 02421
| | | | - Markus Wilke
- AO Research Institute Davos, 7270, Davos, Switzerland
| | | | - Aswin Beck
- AO Research Institute Davos, 7270, Davos, Switzerland
| | - Dirk Nehrbass
- AO Research Institute Davos, 7270, Davos, Switzerland
| | | | - Elazer R Edelman
- Institute for Medical and Engineering Science, Massachusetts Institute of Technology E25, Cambridge, Massachusetts, 02139
| | - Robert Rabiner
- IlluminOss Medical, Inc., East Providence, Rhode Island, 02914
| |
Collapse
|
45
|
Miramini S, Zhang L, Richardson M, Pirpiris M, Mendis P, Oloyede K, Edwards G. Computational simulation of the early stage of bone healing under different configurations of locking compression plates. Comput Methods Biomech Biomed Engin 2013; 18:900-13. [PMID: 24261957 DOI: 10.1080/10255842.2013.855729] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Flexible fixation or the so-called 'biological fixation' has been shown to encourage the formation of fracture callus, leading to better healing outcomes. However, the nature of the relationship between the degree of mechanical stability provided by a flexible fixation and the optimal healing outcomes has not been fully understood. In this study, we have developed a validated quantitative model to predict how cells in fracture callus might respond to change in their mechanical microenvironment due to different configurations of locking compression plate (LCP) in clinical practice, particularly in the early stage of healing. The model predicts that increasing flexibility of the LCP by changing the bone-plate distance (BPD) or the plate working length (WL) could enhance interfragmentary strain in the presence of a relatively large gap size (> 3 mm). Furthermore, conventional LCP normally results in asymmetric tissue development during early stage of callus formation, and the increase of BPD or WL is insufficient to alleviate this problem.
Collapse
Affiliation(s)
- Saeed Miramini
- a Department of Infrastructure Engineering , The University of Melbourne , VIC 3010 , Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
Wang J, Han W, Lin H. Femoral fracture reduction with a parallel manipulator robot on a traction table. Int J Med Robot 2013; 9:464-71. [PMID: 24249699 DOI: 10.1002/rcs.1550] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 09/23/2013] [Accepted: 09/30/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND A parallel manipulator robot (PMR) on a traction table was developed to achieve better alignment of a fractured femur and reduce radiation exposure to both patients and physicians. METHODS A PMR was built with a disk platform and a two-thirds circular ring. Fracture reductions were performed on eight artificially broken sawbone models and a cadaveric model. Fracture reduction was achieved using six degrees of freedom (6-DOF) movements of the two-thirds circular ring, while the PMR disk platform and the proximal femur remained stationary. RESULTS Axial discrepancy, lateral translation and angulation had mean errors of 1.31 ± 0.45, 2.43 ± 0.49 and 2.26 ± 0.23 mm, respectively, when coarse adjustment was used. For the fine adjustment step, the mean errors were 0.63 ± 0.19 mm for axial discrepancy and 0.75 ± 0.26 mm for lateral translation. CONCLUSION Femoral shaft fracture reduction with PMR on a traction table is a feasible and accurate approach to fracture reduction.
Collapse
Affiliation(s)
- Junqiang Wang
- Beijing Ji Shui Tan Hospital, Orthopaedic Traumatology, Beijing, People's Republic of China
| | | | | |
Collapse
|
47
|
Lin H, Wang JQ, Han W. Parallel manipulator robot assisted femoral fracture reduction on traction table. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:4847-4850. [PMID: 24110820 DOI: 10.1109/embc.2013.6610633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The principle of femoral shaft fracture reduction is to restore its pre-fractured limb length and mechanical axis. The current documented treatment method with traction table reduction does not conform to the quantitative alignment and reduction. There is also a great amount of X-Ray radiation exposure to both surgeon and patient during the procedure. For this reason, we introduced an innovated Parallel Manipulator Robot (PMR) application: A Femoral Shaft Fracture Reduction with Parallel Manipulator Robot on Traction Table. With this application, the quantitative control on fracture reduction and alignment can be achieved and the radiation exposure to both surgeons and patients can be greatly reduced.
Collapse
|
48
|
Nasr S, Hunt S, Duncan NA. Effect of screw position on bone tissue differentiation within a fixed femoral fracture. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.612a009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Population-Based Design of Mandibular Fixation Plates with Bone Quality and Morphology Considerations. Ann Biomed Eng 2012; 41:377-84. [DOI: 10.1007/s10439-012-0671-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/29/2012] [Indexed: 10/27/2022]
|
50
|
Wang Y, Grainger DW. RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Adv Drug Deliv Rev 2012; 64:1341-57. [PMID: 21945356 DOI: 10.1016/j.addr.2011.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/05/2011] [Indexed: 01/13/2023]
Abstract
RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing technique developed with dramatically increasing utility for both scientific and therapeutic purposes. Short interfering RNA (siRNA) is currently exploited to regulate protein expression relevant to many therapeutic applications, and commonly used as a tool for elucidating disease-associated genes. Osteoporosis and their associated osteoporotic fragility fractures in both men and women are rapidly becoming a global healthcare crisis as average life expectancy increases worldwide. New therapeutics are needed for this increasing patient population. This review describes the diversity of molecular targets suitable for RNAi-based gene knock down in osteoclasts to control osteoclast-mediated excessive bone resorption. We identify strategies for developing targeted siRNA delivery and efficient gene silencing, and describe opportunities and challenges of introducing siRNA as a therapeutic approach to hard and connective tissue disorders.
Collapse
|