1
|
Li Z, Yu H, Wang Z, Duan H, Li M, Liao J, Yang L. Recent advances in nanotechnology for repairing spinal cord injuries. Biomaterials 2025; 323:123422. [PMID: 40403446 DOI: 10.1016/j.biomaterials.2025.123422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/07/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Spinal cord injury (SCI) remains a formidable clinical challenge with limited therapeutic options. Recent advances in nanotechnology have introduced paradigm-shifting strategies that transcend the limitations of traditional treatments by offering precision, controllability, and multifunctionality in modulating the hostile post-injury microenvironment. This review systematically summarizes nanotechnology-based therapeutic approaches for SCI, including cell-based nanotherapeutics, nanogels/hydrogels, nano-engineered materials, and combinatorial strategies. We emphasize the synergistic design of multifunctional nanoplatforms that integrate neuroprotection, immune modulation, antioxidative capacity, and axonal regeneration within a single system. Special attention is given to microenvironment-responsive smart materials capable of dynamic therapeutic delivery in response to pathological cues. We critically analyze the challenges of clinical translation, such as the need for standardized safety evaluation and personalized therapeutic dosing, and explore emerging solutions including AI-driven nanocarrier design and organoid-based validation. By integrating interdisciplinary innovations, nanotherapies represent an irreplaceable therapeutic paradigm with the potential to achieve spatiotemporal precision and sustained regenerative support for SCI repair.
Collapse
Affiliation(s)
- Zhipeng Li
- The First Affiliated Hospital of China Medical University, Liaoning, 110001, China
| | - Honghao Yu
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | - Zhibin Wang
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | - Hongmei Duan
- The First Affiliated Hospital of China Medical University, Liaoning, 110001, China
| | - Minglei Li
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | - Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Lei Yang
- Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| |
Collapse
|
2
|
Khavandegar A, Ahmadi NS, Mousavi MA, Ramezani Z, Khodadoust E, Hasan Zadeh Tabatabaei MS, Hasanpour Segherlou Z, Zeinaddini-Meymand A, Nasehi F, Moafi M, RayatSanati K, Masoomi R, Hamidi S, Pourkhodadad S, Rahimi-Movaghar V. The potential role of RhoA/ROCK-inhibition on locomotor recovery after spinal cord injury: a systematic review of in-vivo studies. Spinal Cord 2025; 63:95-126. [PMID: 39956860 DOI: 10.1038/s41393-025-01064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
STUDY DESIGN Systematic Review. OBJECTIVES To thoroughly assess the existing literature regarding the impact of anti-RhoA/ROCK agents or procedures on functional recovery in animal models of SCI. SETTING Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences. METHODS A comprehensive search was conducted in Ovid MEDLINE, Embase, Scopus, and Web of Science Core Collection utilizing a combination of keywords. All in-vivo animal studies of acute or chronic SCI that evaluated the pharmacological effects of Rho/ROCK inhibitors in English literature were included in this study. RESULTS Totally, 2320 articles were identified, of which, 60 papers were included for further analysis. A total of 47 (78%) studies were conducted merely on rats, 9 (15%) on mice, 3 (5%) used both, and the remaining used other animals. Y-27632, Fasudil, C3 Transferase and its derivatives (C3-05/PEP-C3/CT04/C3bot154-182/C3bot26mer(156-181)), Ibuprofen, Electroacupuncture (EA), SiRhoA, miR-133b, miR-135-5p, miR-381, miR-30b, Statins, 17β-estradiol, β-elemene, Lentivirus-mediated PGC-1a, Repulsive guidance molecule (RGMa), Local profound hypothermia, Jisuikang (JSK), Hyperbaric oxygen (HBO), Lv-shRhoA (Notch-1 inhibitor), Anti-Ryk antibody, LINGO-antagonist, BA-210, p21Cip1/WAF1, ORL-1 antagonist, Epigallocatechin-3-gallate (EGCG), Tamsulosin, AAV.ULK1.DN, and Indomethacin were the 28 reported agents/procedures with anti-RhoA/ROCK effects. The pooled SMD for BBB scores was 0.41 (p = 0.048) in the first week, 0.85 (p < 0.001) in the second week, 1.22 (p = 0.010) in the third week, and 1.53 (p = 0.001) in the fourth week. CONCLUSION Of the 28 identified anti-RhoA/ROCK agents, all but two (C3bot and its derivatives and EGCG) demonstrated promising results. The results of the meta-analysis cautiously indicate a significant increase in BBB scores over time after SCI.
Collapse
Affiliation(s)
- Armin Khavandegar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Sadat Ahmadi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Alsadat Mousavi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ramezani
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Khodadoust
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Fatemeh Nasehi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maral Moafi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia RayatSanati
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasool Masoomi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Hamidi
- Department of Neurosurgery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Pourkhodadad
- Department of Pharmacy and Chemical Biology, Emory University, School of Medicine, Atlanta, GA, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Jang K, Garraway SM. TrkB Agonist (7,8-DHF)-Induced Responses in Dorsal Root Ganglia Neurons Are Decreased after Spinal Cord Injury: Implication for Peripheral Pain Mechanisms. eNeuro 2025; 12:ENEURO.0219-24.2024. [PMID: 39753357 PMCID: PMC11728855 DOI: 10.1523/eneuro.0219-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 01/15/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) are known to contribute to both protective and pronociceptive processes. However, their contribution to neuropathic pain after spinal cord injury (SCI) needs further investigation. In a recent study utilizing TrkBF616A mice, it was shown that systemic pharmacogenetic inhibition of TrkB signaling with 1NM-PP1 (1NMP) immediately after SCI delayed the onset of pain hypersensitivity, implicating maladaptive TrkB signaling in pain after SCI. To examine potential neural mechanisms underlying the behavioral outcome, patch-clamp recording was performed in small-diameter dissociated thoracic (T) dorsal root ganglia (DRG) neurons to evaluate TrkB signaling in uninjured mice and after T10 contusion SCI. Bath-applied 7,8-dihydroxyflavone (7,8-DHF), a selective TrkB agonist, induced a robust inward current in neurons from uninjured mice, which was attenuated by 1NMP treatment. SCI also decreased 7,8-DHF-induced current while increasing the latency to its peak amplitude. Western blot revealed a concomitant decrease in TrkB expression in DRGs adjacent to the spinal lesion. Analyses of cellular and membrane properties showed that SCI increased neuronal excitability, evident by an increase in resting membrane potential and the number of spiking neurons. However, SCI did not increase spontaneous firing in DRG neurons. These results suggest that SCI induced changes in TrkB activation in DRG neurons even though these alterations are likely not contributing to pain hypersensitivity by nociceptor hyperexcitability. Overall, this reveals complex interactions involving TrkB signaling and provides an opportunity to investigate other, presumably peripheral, mechanisms by which TrkB contributes to pain hypersensitivity after SCI.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Sandra M Garraway
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
4
|
Shi Z, Fang T, Fan B, Ma J, Wang J, Feng S. Analysis and experimental validation of genes and their transcription factor prediction in contused rat spinal cord at the intermediate phase. Aging (Albany NY) 2024; 16:9990-10003. [PMID: 38862258 PMCID: PMC11210225 DOI: 10.18632/aging.205912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/16/2024] [Indexed: 06/13/2024]
Abstract
The intermediate phase of spinal cord injury (SCI) serves as an important target site for therapeutic mediation of SCI. However, there is a lack of insight into the mechanism of the intermediate phase of SCI. The present study aimed to investigate the molecular mechanism and the feasible treatment targets in the intermediate phase of SCI. We downloaded GSE2599 from GEO and identified 416 significant differentially expressed genes (DEGs), including 206 downregulated and 210 upregulated DEGs. Further enrichment analysis of DEGs revealed that many important biological processes and signal pathways were triggered in the injured spinal cord. Furthermore, a protein-protein interaction (PPI) network was constructed and the top 10 high-degree hub nodes were identified. Furthermore, 27 predicted transcription factors (TFs) and 136 predicted motifs were identified. We then selected insulin-like growth factor 1 (IGF1) and its predicted transcription factor, transcription factor A, mitochondrial (TFAM) for further investigation. We speculated and preliminarily confirmed that TFAM may regulate gene transcription of IGF1 and effected alterations in the function recovery of rats after SCI. These findings together provide novel information that may improve our understanding of the pathophysiological processes during the intermediate phase of SCI.
Collapse
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Tuo Fang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Baoyou Fan
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Jun Ma
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Jianhao Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P.R. China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, P.R. China
| |
Collapse
|
5
|
Ozcicek I, Aysit N, Balcikanli Z, Ayturk NU, Aydeger A, Baydas G, Aydin MS, Altintas E, Erim UC. Development of BDNF/NGF/IKVAV Peptide Modified and Gold Nanoparticle Conductive PCL/PLGA Nerve Guidance Conduit for Regeneration of the Rat Spinal Cord Injury. Macromol Biosci 2024; 24:e2300453. [PMID: 38224015 DOI: 10.1002/mabi.202300453] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Indexed: 01/16/2024]
Abstract
Spinal cord injuries are very common worldwide, leading to permanent nerve function loss with devastating effects in the affected patients. The challenges and inadequate results in the current clinical treatments are leading scientists to innovative neural regenerative research. Advances in nanoscience and neural tissue engineering have opened new avenues for spinal cord injury (SCI) treatment. In order for designed nerve guidance conduit (NGC) to be functionally useful, it must have ideal scaffold properties and topographic features that promote the linear orientation of damaged axons. In this study, it is aimed to develop channeled polycaprolactone (PCL)/Poly-D,L-lactic-co-glycolic acid (PLGA) hybrid film scaffolds, modify their surfaces by IKVAV pentapeptide/gold nanoparticles (AuNPs) or polypyrrole (PPy) and investigate the behavior of motor neurons on the designed scaffold surfaces in vitro under static/bioreactor conditions. Their potential to promote neural regeneration after implantation into the rat SCI by shaping the film scaffolds modified with neural factors into a tubular form is also examined. It is shown that channeled groups decorated with AuNPs highly promote neurite orientation under bioreactor conditions and also the developed optimal NGC (PCL/PLGA G1-IKVAV/BDNF/NGF-AuNP50) highly regenerates SCI. The results indicate that the designed scaffold can be an ideal candidate for spinal cord regeneration.
Collapse
Affiliation(s)
- Ilyas Ozcicek
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Nese Aysit
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Zeynep Balcikanli
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Nilufer Ulas Ayturk
- Department of Histology and Embryology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Canakkale, 17020, Turkey
| | - Asel Aydeger
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Gulsena Baydas
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, 34815, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Mehmet Serif Aydin
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Esra Altintas
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Umit Can Erim
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Department of Analytical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, 34815, Turkey
| |
Collapse
|
6
|
El-Husseiny HM, Mady EA, Doghish AS, Zewail MB, Abdelfatah AM, Noshy M, Mohammed OA, El-Dakroury WA. Smart/stimuli-responsive chitosan/gelatin and other polymeric macromolecules natural hydrogels vs. synthetic hydrogels systems for brain tissue engineering: A state-of-the-art review. Int J Biol Macromol 2024; 260:129323. [PMID: 38242393 DOI: 10.1016/j.ijbiomac.2024.129323] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Currently, there are no viable curative treatments that can enhance the central nervous system's (CNS) recovery from trauma or illness. Bioengineered injectable smart/stimuli-responsive hydrogels (SSRHs) that mirror the intricacy of the CNS milieu and architecture have been suggested as a way to get around these restrictions in combination with medication and cell therapy. Additionally, the right biophysical and pharmacological stimuli are required to boost meaningful CNS regeneration. Recent research has focused heavily on developing SSRHs as cutting-edge delivery systems that can direct the regeneration of brain tissue. In the present article, we have discussed the pathology of brain injuries, and the applicable strategies employed to regenerate the brain tissues. Moreover, the most promising SSRHs for neural tissue engineering (TE) including alginate (Alg.), hyaluronic acid (HA), chitosan (CH), gelatin, and collagen are used in natural polymer-based hydrogels and thoroughly discussed in this review. The ability of these hydrogels to distribute bioactive substances or cells in response to internal and external stimuli is highlighted with particular attention. In addition, this article provides a summary of the most cutting-edge techniques for CNS recovery employing SSRHs for several neurodegenerative diseases.
Collapse
Affiliation(s)
- Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amr M Abdelfatah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Ras Sudr 46612, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| |
Collapse
|
7
|
Ohashi N, Uta D, Ohashi M, Hoshino R, Baba H. Omega-conotoxin MVIIA reduces neuropathic pain after spinal cord injury by inhibiting N-type voltage-dependent calcium channels on spinal dorsal horn. Front Neurosci 2024; 18:1366829. [PMID: 38469570 PMCID: PMC10925679 DOI: 10.3389/fnins.2024.1366829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Spinal cord injury (SCI) leads to the development of neuropathic pain. Although a multitude of pathological processes contribute to SCI-induced pain, excessive intracellular calcium accumulation and voltage-gated calcium-channel upregulation play critical roles in SCI-induced pain. However, the role of calcium-channel blockers in SCI-induced pain is unknown. Omega-conotoxin MVIIA (MVIIA) is a calcium-channel blocker that selectively inhibits N-type voltage-dependent calcium channels and demonstrates neuroprotective effects. Therefore, we investigated spinal analgesic actions and cellular mechanisms underlying the analgesic effects of MVIIA in SCI. We used SCI-induced pain model rats and conducted behavioral tests, immunohistochemical analyses, and electrophysiological experiments (in vitro whole-cell patch-clamp recording and in vivo extracellular recording). A behavior study suggested intrathecal MVIIA administration in the acute phase after SCI induced analgesia for mechanical allodynia. Immunohistochemical experiments and in vivo extracellular recordings suggested that MVIIA induces analgesia in SCI-induced pain by directly inhibiting neuronal activity in the superficial spinal dorsal horn. In vitro whole-cell patch-clamp recording showed that MVIIA inhibits presynaptic N-type voltage-dependent calcium channels expressed on primary afferent Aδ-and C-fiber terminals and suppresses the presynaptic glutamate release from substantia gelatinosa in the spinal dorsal horn. In conclusion, MVIIA administration in the acute phase after SCI may induce analgesia in SCI-induced pain by inhibiting N-type voltage-dependent calcium channels on Aδ-and C-fiber terminals in the spinal dorsal horn, resulting in decreased neuronal excitability enhanced by SCI-induced pain.
Collapse
Affiliation(s)
- Nobuko Ohashi
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Masayuki Ohashi
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Rintaro Hoshino
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Baba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
8
|
Ridia KGM, Astawa P, Deslivia MF, Santosa C, Savio SD. A Systematic Review of Scoring System Based on Magnetic Resonance Imaging Parameters to Predict Outcome in Cervical Spinal Cord Injury. Spine Surg Relat Res 2023; 7:1-12. [PMID: 36819628 PMCID: PMC9931401 DOI: 10.22603/ssrr.2021-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/06/2022] [Indexed: 11/05/2022] Open
Abstract
Background Magnetic resonance imaging (MRI) is a potential tool for the objective assessment of spinal cord injury (SCI) because it correlates well with the spatial and temporal extension of spinal cord pathology. This study aimed to systematically identify currently available scoring system based on MRI parameters, including measurement of the spinal cord lesion length in sagittal view (intramedullary lesion length (IMLL)) and morphology of the lesion in axial view (Brain and Spinal Injury Center (BASIC) score). Methods A systematic search was conducted using the PubMed/MEDLINE database for English-language studies with the keywords "cervical," "spinal cord injury," "scoring system," "scoring," "classification," and "magnetic resonance imaging" to systematically identify the scoring system based on MRI parameters. The main outcomes of interest are the scoring system's inter- and intraobserver reliabilities and its predictive accuracy of neurological outcome. Results After assessing the full text and applying the inclusion and exclusion criteria, 13 articles were found to be eligible. The inter- and intraobserver reliabilities were rated as good until perfect for increased signal intensity (ISI), maximum canal compromise (MCC), maximum spinal cord compression (MSCC), BASIC score, cord-canal-area ratio, space available for the cord, and the compression ratio. The weighted mean difference of IML between the group with converted ASIA Impairment Scale (AIS) grade and the group without conversion is 31.79 (I2 =93%, P=0.008). The percentage of agreement between the initial BASIC score of 4 with AIS grade of A at follow-up is 100%. Conclusions Certain MRI parameters, including IML and BASIC score, have good reliability and correlate well with neurological outcome, making them candidates for building simple and objective scoring system for cervical SCI. Level of Evidence: 2A.
Collapse
Affiliation(s)
- K G Mulyadi Ridia
- Consultant of Orthopaedics and Traumatology Department, Faculty of Medicine Udayana University, Sanglah General Hospital, Denpasar, Bali, Indonesia
| | - Putu Astawa
- Consultant of Orthopaedics and Traumatology Department, Faculty of Medicine Udayana University, Sanglah General Hospital, Denpasar, Bali, Indonesia
| | - Maria Florencia Deslivia
- Resident of Orthopaedics and Traumatology Department, Faculty of Medicine Udayana University, Sanglah General Hospital, Denpasar, Bali, Indonesia
| | - Claudia Santosa
- Resident of Orthopaedics and Traumatology Department, Faculty of Medicine Udayana University, Sanglah General Hospital, Denpasar, Bali, Indonesia
| | - Sherly Desnita Savio
- Resident of Orthopaedics and Traumatology Department, Faculty of Medicine Udayana University, Sanglah General Hospital, Denpasar, Bali, Indonesia
| |
Collapse
|
9
|
Martin KK, Noble DJ, Parvin S, Jang K, Garraway SM. Pharmacogenetic inhibition of TrkB signaling in adult mice attenuates mechanical hypersensitivity and improves locomotor function after spinal cord injury. Front Cell Neurosci 2022; 16:987236. [PMID: 36226073 PMCID: PMC9548551 DOI: 10.3389/fncel.2022.987236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) signals through tropomyosin receptor kinase B (TrkB), to exert various types of plasticity. The exact involvement of BDNF and TrkB in neuropathic pain states after spinal cord injury (SCI) remains unresolved. This study utilized transgenic TrkBF616 mice to examine the effect of pharmacogenetic inhibition of TrkB signaling, induced by treatment with 1NM-PP1 (1NMP) in drinking water for 5 days, on formalin-induced inflammatory pain, pain hypersensitivity, and locomotor dysfunction after thoracic spinal contusion. We also examined TrkB, ERK1/2, and pERK1/2 expression in the lumbar spinal cord and trunk skin. The results showed that formalin-induced pain responses were robustly attenuated in 1NMP-treated mice. Weekly assessment of tactile sensitivity with the von Frey test showed that treatment with 1NMP immediately after SCI blocked the development of mechanical hypersensitivity up to 4 weeks post-SCI. Contrastingly, when treatment started 2 weeks after SCI, 1NMP reversibly and partially attenuated hind-paw hypersensitivity. Locomotor scores were significantly improved in the early-treated 1NMP mice compared to late-treated or vehicle-treated SCI mice. 1NMP treatment attenuated SCI-induced increases in TrkB and pERK1/2 levels in the lumbar cord but failed to exert similar effects in the trunk skin. These results suggest that early onset TrkB signaling after SCI contributes to maladaptive plasticity that leads to spinal pain hypersensitivity and impaired locomotor function.
Collapse
Affiliation(s)
| | | | | | | | - Sandra M. Garraway
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
10
|
Michel-Flutot P, Efthimiadi L, Djerbal L, Deramaudt TB, Bonay M, Vinit S. AMPK-Nrf2 Signaling Pathway in Phrenic Motoneurons following Cervical Spinal Cord Injury. Antioxidants (Basel) 2022; 11:antiox11091665. [PMID: 36139739 PMCID: PMC9495920 DOI: 10.3390/antiox11091665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
High spinal cord injuries (SCI) induce the deafferentation of phrenic motoneurons, leading to permanent diaphragm paralysis. This involves secondary injury associated with pathologic and inflammatory processes at the site of injury, and at the level of phrenic motoneurons. In the present study, we evaluated the antioxidant response in phrenic motoneurons involving the AMPK-Nrf2 signaling pathway following C2 spinal cord lateral hemi-section in rats. We showed that there is an abrupt reduction in the expression of phosphorylated AMPK and Nrf2 at one hour post-injury in phrenic motoneurons. A rebound is then observed at one day post-injury, reflecting a return to homeostasis condition. In the total spinal cord around phrenic motoneurons, the increase in phosphorylated AMPK and Nrf2 occurred at three days post-injury, showing the differential antioxidant response between phrenic motoneurons and other cell types. Taken together, our results display the implication of the AMPK-Nrf2 signaling pathway in phrenic motoneurons’ response to oxidative stress following high SCI. Harnessing this AMPK-Nrf2 signaling pathway could improve the antioxidant response and help in spinal rewiring to these deafferented phrenic motoneurons to improve diaphragm activity in patients suffering high SCI.
Collapse
|
11
|
Roles of Fatty Acids in Microglial Polarization: Evidence from In Vitro and In Vivo Studies on Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23137300. [PMID: 35806302 PMCID: PMC9266841 DOI: 10.3390/ijms23137300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Microglial polarization to the M1 phenotype (classically activated) or the M2 phenotype (alternatively activated) is critical in determining the fate of immune responses in neurodegenerative diseases (NDs). M1 macrophages contribute to neurotoxicity, neuronal and synaptic damage, and oxidative stress and are the first line of defense, and M2 macrophages elicit an anti-inflammatory response to regulate neuroinflammation, clear cell debris, and promote neuroregeneration. Various studies have focused on the ability of natural compounds to promote microglial polarization from the M1 phenotype to the M2 phenotype in several diseases, including NDs. However, studies on the roles of fatty acids in microglial polarization and their implications in NDs are a rare find. Most of the studies support the role of polyunsaturated fatty acids (PUFAs) in microglial polarization using cell and animal models. Thus, we aimed to collect data and provide a narrative account of microglial types, markers, and studies pertaining to fatty acids, particularly PUFAs, on microglial polarization and their neuroprotective effects. The involvement of only PUFAs in the chosen topic necessitates more in-depth research into the role of unexplored fatty acids in microglial polarization and their mechanistic implications. The review also highlights limitations and future challenges.
Collapse
|
12
|
Benedetti B, Weidenhammer A, Reisinger M, Couillard-Despres S. Spinal Cord Injury and Loss of Cortical Inhibition. Int J Mol Sci 2022; 23:5622. [PMID: 35628434 PMCID: PMC9144195 DOI: 10.3390/ijms23105622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
After spinal cord injury (SCI), the destruction of spinal parenchyma causes permanent deficits in motor functions, which correlates with the severity and location of the lesion. Despite being disconnected from their targets, most cortical motor neurons survive the acute phase of SCI, and these neurons can therefore be a resource for functional recovery, provided that they are properly reconnected and retuned to a physiological state. However, inappropriate re-integration of cortical neurons or aberrant activity of corticospinal networks may worsen the long-term outcomes of SCI. In this review, we revisit recent studies addressing the relation between cortical disinhibition and functional recovery after SCI. Evidence suggests that cortical disinhibition can be either beneficial or detrimental in a context-dependent manner. A careful examination of clinical data helps to resolve apparent paradoxes and explain the heterogeneity of treatment outcomes. Additionally, evidence gained from SCI animal models indicates probable mechanisms mediating cortical disinhibition. Understanding the mechanisms and dynamics of cortical disinhibition is a prerequisite to improve current interventions through targeted pharmacological and/or rehabilitative interventions following SCI.
Collapse
Affiliation(s)
- Bruno Benedetti
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria; (B.B.); (A.W.); (M.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Annika Weidenhammer
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria; (B.B.); (A.W.); (M.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), 5020 Salzburg, Austria
| | - Maximilian Reisinger
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria; (B.B.); (A.W.); (M.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), 5020 Salzburg, Austria
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria; (B.B.); (A.W.); (M.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
13
|
Nance E, Pun SH, Saigal R, Sellers DL. Drug delivery to the central nervous system. NATURE REVIEWS. MATERIALS 2022; 7:314-331. [PMID: 38464996 PMCID: PMC10923597 DOI: 10.1038/s41578-021-00394-w] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 03/12/2024]
Abstract
Despite the rising global incidence of central nervous system (CNS) disorders, CNS drug development remains challenging, with high costs, long pathways to clinical use and high failure rates. The CNS is highly protected by physiological barriers, in particular, the blood-brain barrier and the blood-cerebrospinal fluid barrier, which limit access of most drugs. Biomaterials can be designed to bypass or traverse these barriers, enabling the controlled delivery of drugs into the CNS. In this Review, we first examine the effects of normal and diseased CNS physiology on drug delivery to the brain and spinal cord. We then discuss CNS drug delivery designs and materials that are administered systemically, directly to the CNS, intranasally or peripherally through intramuscular injections. Finally, we highlight important challenges and opportunities for materials design for drug delivery to the CNS and the anticipated clinical impact of CNS drug delivery.
Collapse
Affiliation(s)
- Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Rajiv Saigal
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Drew L. Sellers
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| |
Collapse
|
14
|
Bioactive injectable hydrogels for on demand molecule/cell delivery and for tissue regeneration in the central nervous system. Acta Biomater 2022; 140:88-101. [PMID: 34852302 DOI: 10.1016/j.actbio.2021.11.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022]
Abstract
Currently there are no potential curative therapies that can improve the central nervous system (CNS) regeneration after traumatic injuries or diseases. Indeed, the regeneration of CNS is greatly impaired by limited drug penetration across the blood brain barrier (BBB), poor drug targeting, deficient progenitor neural cells and limited proliferation of mature neural cells. To overcome these limitations, bioengineered injectable hydrogels in combination with drug and cell therapy have been proposed to mimic the complexity of the CNS microenvironment and architecture. Additionally, to enhance relevant CNS regeneration, proper biophysical and biochemical cues are needed. Recently, great efforts have been devoted to tailor stimuli-responsive hydrogels as novel carrier systems which are able to guide neural tissue regeneration. This review provides an extensive overview on the most promising injectable hydrogels for neural tissue engineering. A special emphasis is made to highlight the ability of these hydrogels to deliver bioactive compounds/cells upon the exposure to internal and external stimuli. Bioactive injectable hydrogels have a broad application in central nervous system's (CNS) regeneration. This review gives an overview of the latest pioneering approaches in CNS recovery using stimuli-responsive hydrogels for several neurodegenerative disorders. STATEMENT OF SIGNIFICANCE: This review summarizes the latest innovations on bioactive injectable hydrogels, focusing on tailoring internal/external stimuli-responsive hydrogels for the new injectable systems design, able to guide neural tissue response. The purpose is to highlight the advantages and the limitations of thermo-responsive, photo responsive, magnetic responsive, electric responsive, ultrasound responsive and enzymes-triggered injectable hydrogels in developing customizable neurotherapies. We believe that this comprehensive review will help in identifying the strengths and gaps in the existing literature and to further support the use of injectable hydrogels in stimulating CNS regeneration.
Collapse
|
15
|
Basu S, Choudhury IN, Nazareth L, Chacko A, Shelper T, Vial ML, Ekberg JAK, St John JA. In vitro modulation of Schwann cell behavior by VEGF and PDGF in an inflammatory environment. Sci Rep 2022; 12:662. [PMID: 35027585 PMCID: PMC8758747 DOI: 10.1038/s41598-021-04222-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/17/2021] [Indexed: 01/19/2023] Open
Abstract
Peripheral glial cell transplantation with Schwann cells (SCs) is a promising approach for treating spinal cord injury (SCI). However, improvements are needed and one avenue to enhance regenerative functional outcomes is to combine growth factors with cell transplantation. Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) are neuroprotective, and a combination of these factors has improved outcomes in rat SCI models. Thus, transplantation of SCs combined with VEGF and PDGF may further improve regenerative outcomes. First, however, we must understand how the two factors modulate SCs. In this in vitro study, we show that an inflammatory environment decreased the rate of SC-mediated phagocytosis of myelin debris but the addition of VEGF and PDGF (alone and combined) improved phagocytosis. Cytokine expression by SCs in the inflammatory environment revealed that addition of PDGF led to significantly lower level of pro-inflammatory cytokine, TNF-α, but IL-6 and anti-inflammatory cytokines (TGF-β and IL-10), remained unaltered. Further, PDGF was able to decrease the expression of myelination associated gene Oct6 in the presence of inflammatory environment. Overall, these results suggest that the use of VEGF and/or PDGF combined with SC transplantation may be beneficial in SCI therapy.
Collapse
Affiliation(s)
- Souptik Basu
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Indra N Choudhury
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Lynn Nazareth
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Anu Chacko
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Todd Shelper
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Marie-Laure Vial
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia. .,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
16
|
Wang X, Wang Z, Cao J, Dong Y, Chen Y. Melatonin ameliorates anxiety-like behaviors induced by sleep deprivation in mice: Role of oxidative stress, neuroinflammation, autophagy and apoptosis. Brain Res Bull 2021; 174:161-172. [PMID: 34144202 DOI: 10.1016/j.brainresbull.2021.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/24/2022]
Abstract
Increasing evidence suggests there is a relationship between anxiety disorders and sleep deprivation (SD). However, underlying molecular mechanism remains elusive and currently there is no effective therapy to negate the effects of SD. We established a mouse model of acute SD with or without melatonin supplementation. We found that melatonin supplementation suppressed an increase of corticosterone level caused by SD. Behavioral data indicated that 72 h SD exposure induced anxiety-like behaviors, as evidenced by the reduced central area travels in OFT. Immunohistochemical staining and western blot analysis revealed that SD promoted neuronal loss by inducing pro-apoptotic protein Bax and cleaved-caspase-3 and autophagic proteins (LC3II, ATG5 and Beclin1) and reducing the levels of the anti-apoptotic protein Bcl-2. In contrast, the aforementioned SD-inductions were reversed by supplementation using 20 mg/kg and 40 mg/kg melatonin in SD mice. Meanwhile, we observed that melatonin reduced activated gliosis via attenuation of Iba1, and inhibited increase of anti-inflammatory cytokines (IL-4 and IL-10) and the decrease of pro-inflammatory cytokines (IL-6 and TNF-α). Furthermore, melatonin supplementation inverted the SD-induced the decline of antioxidant enzyme activities (T-AOC and CAT etc) and the increase of p-P65 and p-IκB proteins in the hippocampus. On the whole, our findings revealed that melatonin attenuated SD-induced anxiety-like behavior via ameliorating oxidative stress, activation of NF-κB pathway, neuroinflammation, apoptosis and excessive autophagy.
Collapse
Affiliation(s)
- Xintong Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China.
| |
Collapse
|
17
|
Rodríguez-Barrera R, Rivas-González M, García-Sánchez J, Mojica-Torres D, Ibarra A. Neurogenesis after Spinal Cord Injury: State of the Art. Cells 2021; 10:cells10061499. [PMID: 34203611 PMCID: PMC8232196 DOI: 10.3390/cells10061499] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
Neurogenesis in the adult state is the process of new neuron formation. This relatively infrequent phenomenon comprises four stages: cell proliferation, cell migration, differentiation, and the integration of these cells into an existing circuit. Recent reports suggest that neurogenesis can be found in different regions of the Central Nervous System (CNS), including the spinal cord (SC). This process can be observed in physiological settings; however, it is more evident in pathological conditions. After spinal cord injury (SCI), the activation of microglial cells and certain cytokines have shown to exert different modulatory effects depending on the presence of inflammation and on the specific region of the injury site. In these conditions, microglial cells and cytokines are considered to play an important role in the regulation of neurogenesis after SCI. The purpose of this article is to present an overview on neural progenitor cells and neurogenic and non-neurogenic zones as well as the cellular and molecular regulation of neurogenesis. Additionally, we will briefly describe the recent advances in the knowledge of neurogenesis after SCI.
Collapse
|
18
|
Marufa SA, Hsieh TH, Liou JC, Chen HY, Peng CW. Neuromodulatory effects of repetitive transcranial magnetic stimulation on neural plasticity and motor functions in rats with an incomplete spinal cord injury: A preliminary study. PLoS One 2021; 16:e0252965. [PMID: 34086836 PMCID: PMC8177618 DOI: 10.1371/journal.pone.0252965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
We investigated the effects of intermittent theta-burst stimulation (iTBS) on locomotor function, motor plasticity, and axonal regeneration in an animal model of incomplete spinal cord injury (SCI). Aneurysm clips with different compression forces were applied extradurally around the spinal cord at T10. Motor plasticity was evaluated by examining the motor evoked potentials (MEPs). Long-term iTBS treatment was given at the post-SCI 5th week and continued for 2 weeks (5 consecutive days/week). Time-course changes in locomotor function and the axonal regeneration level were measured by the Basso Beattie Bresnahan (BBB) scale, and growth-associated protein (GAP)-43 expression was detected in brain and spinal cord tissues. iTBS-induced potentiation was reduced at post-1-week SCI lesion and had recovered by 4 weeks post-SCI lesion, except in the severe group. Multiple sessions of iTBS treatment enhanced the motor plasticity in all SCI rats. The locomotor function revealed no significant changes between pre- and post-iTBS treatment in SCI rats. The GAP-43 expression level in the spinal cord increased following 2 weeks of iTBS treatment compared to the sham-treatment group. This preclinical model may provide a translational platform to further investigate therapeutic mechanisms of transcranial magnetic stimulation and enhance the possibility of the potential use of TMS with the iTBS scheme for treating SCIs.
Collapse
Affiliation(s)
- Siti Ainun Marufa
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Physical Therapy Department, Faculty of Health Science, University of Muhammadiyah Malang, Indonesia
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Jian-Chiun Liou
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yung Chen
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Wei Peng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- School of Gerontology Health Management, College of Nursing, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
19
|
Zhang Y, Al Mamun A, Yuan Y, Lu Q, Xiong J, Yang S, Wu C, Wu Y, Wang J. Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Mol Med Rep 2021; 23:417. [PMID: 33846780 PMCID: PMC8025476 DOI: 10.3892/mmr.2021.12056] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most debilitating of all the traumatic conditions that afflict individuals. For a number of years, extensive studies have been conducted to clarify the molecular mechanisms of SCI. Experimental and clinical studies have indicated that two phases, primary damage and secondary damage, are involved in SCI. The initial mechanical damage is caused by local impairment of the spinal cord. In addition, the fundamental mechanisms are associated with hyperflexion, hyperextension, axial loading and rotation. By contrast, secondary injury mechanisms are led by systemic and cellular factors, which may also be initiated by the primary injury. Although significant advances in supportive care have improved clinical outcomes in recent years, a number of studies continue to explore specific pharmacological therapies to minimize SCI. The present review summarized some important pathophysiologic mechanisms that are involved in SCI and focused on several pharmacological and non‑pharmacological therapies, which have either been previously investigated or have a potential in the management of this debilitating injury in the near future.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Abdullah Al Mamun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yuan Yuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Qi Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jun Xiong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Shulin Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
| | - Chengbiao Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jian Wang
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
20
|
Geng X, Zou Y, Li S, Qi R, Jing C, Ding X, Li J, Yu H. Electroacupuncture promotes the recovery of rats with spinal cord injury by suppressing the Notch signaling pathway via the H19/EZH2 axis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:844. [PMID: 34164478 PMCID: PMC8184438 DOI: 10.21037/atm-21-1526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Spinal cord injury (SCI) is a life-changing event with an extremely poor prognosis. In our preliminary studies, electroacupuncture (EA) was found to promote the repair of SCI, which was closely related to the Notch signaling pathway. Therefore, in the present study, we hypothesized that EA protects against SCI by inhibiting the Notch signaling pathway and sought to investigate the underlying molecular mechanisms. Methods Rat and cell models of SCI were established. The expression of long non-coding RNA H19 was measured by real-time quantitative polymerase chain reaction. The expression levels of EZH2, Notch1, Notch3, Notch4, Hes1, and PS1 protein were measured by western blot. Cell apoptosis and viability were analyzed using flow cytometry and Cell Counting Kit-8 assays, respectively. The expressions of glial fibrillary acidic protein (GFAP) and nestin were detected by immunofluorescence staining. Results The expressions of H19, EZH2, and GFAP were significantly increased after SCI but were inhibited by EA; in contrast, nestin expression was significantly decreased by SCI but was restored by EA. Moreover, oxygen-glucose deprivation (OGD) treatment elevated the expression of H19, EZH2, and Notch-related factors as well as apoptosis in PC-12 cells, while suppressing cell viability. Suppressing H19 alleviated the effects of OGD on cell viability and apoptosis, and inhibited the expression of EZH2 and Notch-related factors expression; these effects were reversed by EZH2 overexpression. Finally, EA promoted the recovery of SCI rats and neural stem cell (NSC) proliferation by inhibiting the Notch signaling pathway, which was reversed by H19 overexpression. Conclusions Our results demonstrated that EA promotes the recovery of SCI rats and increases the proliferation and differentiation of NSCs by suppressing the Notch signaling pathway via modulating the H19/EZH2 axis.
Collapse
Affiliation(s)
- Xin Geng
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanghong Zou
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shipeng Li
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Renli Qi
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cong Jing
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiangqian Ding
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinghui Li
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hualin Yu
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
21
|
Bhattacharyya S, Dinda A, Vishnubhatla S, Anwar MF, Jain S. A combinatorial approach to modulate microenvironment toward regeneration and repair after spinal cord injury in rats. Neurosci Lett 2021; 741:135500. [PMID: 33197520 DOI: 10.1016/j.neulet.2020.135500] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/21/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition of CNS which leads to loss of sensory as well as motor functions. Secondary damage after SCI initiates cascade of events that creates an inhibitory milieu for axonal growth and repair. Combinatorial therapies are the hope to attenuate secondary injury progression and make the microenvironment growth and repair friendly for the neurons. We fabricated gelatin- genipin hydrogel system which was impregnated with IONPs and injected at the lesion site in a clinically relevant contusion rat model of SCI. 24 h later, the rats were exposed to magnetic fields (17.96 μT, 50 Hz uniform EMF) for 2 h/day for 5 weeks. A significant (P < 0.001) improvement in Basso, Beattie and Bresnahan (BBB) locomotor score, amplitude and threshold of spinally mediated reflexes and motor and somatosensory evoked potentials (MEP & SSEP) was observed following IONPs implantation and EMF exposure. Moreover, retrograde tracing showed a higher level of neuronal connectivity and survival after the intervention. There was also a reduction in activated microglia and lesion volume which attenuate secondary damage as evident by reduction in the scaring following intervention for 5 weeks. Moreover, we observed increase in the neuronal growth cone marker, GAP-43, growth promoting neurotrophins (GDNF, BDNF & NT-3) and reduction in the inhibitory molecule (Nogo-A) after this combinatorial therapy. We obsrvered that a significant improvement in behavioral, electrophysiological and morphological parameters was due to an alteration in neurotrophin levels, reduction in activated microglia and increase in GAP-43 expression after the combinatorial therapy. We propose that implantation of IONPs embedded gelatin-genipin hydrogel system along with MF exposure modulated the microenvironment, making it conducive for neural repair and regeneration.
Collapse
Affiliation(s)
| | - Amit Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
22
|
Sever-Bahcekapili M, Yilmaz C, Demirel A, Kilinc MC, Dogan I, Caglar YS, Guler MO, Tekinay AB. Neuroactive Peptide Nanofibers for Regeneration of Spinal Cord after Injury. Macromol Biosci 2020; 21:e2000234. [PMID: 33043585 DOI: 10.1002/mabi.202000234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/23/2020] [Indexed: 12/27/2022]
Abstract
The highly complex nature of spinal cord injuries (SCIs) requires design of novel biomaterials that can stimulate cellular regeneration and functional recovery. Promising SCI treatments use biomaterial scaffolds, which provide bioactive cues to the cells in order to trigger neural regeneration in the spinal cord. In this work, the use of peptide nanofibers is demonstrated, presenting protein binding and cellular adhesion epitopes in a rat model of SCI. The self-assembling peptide molecules are designed to form nanofibers, which display heparan sulfate mimetic and laminin mimetic epitopes to the cells in the spinal cord. These neuroactive nanofibers are found to support adhesion and viability of dorsal root ganglion neurons as well as neurite outgrowth in vitro and enhance tissue integrity after 6 weeks of injury in vivo. Treatment with the peptide nanofiber scaffolds also show significant behavioral improvement. These results demonstrate that it is possible to facilitate regeneration especially in the white matter of the spinal cord, which is usually damaged during the accidents using bioactive 3D nanostructures displaying high densities of laminin and heparan sulfate-mimetic epitopes on their surfaces.
Collapse
Affiliation(s)
- Melike Sever-Bahcekapili
- Institute of Materials Science and NanotechnologyNational Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| | - Canelif Yilmaz
- Neuroscience Graduate Program, Bilkent University, Ankara, 06800, Turkey
| | - Altan Demirel
- Department of Neurosurgery, Aksaray State Hospital, Aksaray, 68200, Turkey
| | - Mustafa Cemil Kilinc
- Faculty of Medicine, Department of Neurosurgery, Ankara University, Ankara, 06100, Turkey
| | - Ihsan Dogan
- Faculty of Medicine, Department of Neurosurgery, Ankara University, Ankara, 06100, Turkey
| | - Yusuf Sukru Caglar
- Faculty of Medicine, Department of Neurosurgery, Ankara University, Ankara, 06100, Turkey
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Ayse B Tekinay
- Institute of Materials Science and NanotechnologyNational Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.,The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.,Eryigit Research and Development Center, Ankara, 06380, Turkey
| |
Collapse
|
23
|
Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Law JX. Treatment of spinal cord injury with mesenchymal stem cells. Cell Biosci 2020; 10:112. [PMID: 32983406 PMCID: PMC7510077 DOI: 10.1186/s13578-020-00475-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Background Spinal cord injury (SCI) is the damage to the spinal cord that can lead to temporary or permanent loss of function due to injury to the nerve. The SCI patients are often associated with poor quality of life. Results This review discusses the current status of mesenchymal stem cell (MSC) therapy for SCI, criteria to considering for the application of MSC therapy and novel biological therapies that can be applied together with MSCs to enhance its efficacy. Bone marrow-derived MSCs (BMSCs), umbilical cord-derived MSCs (UC-MSCs) and adipose tissue-derived MSCs (ADSCs) have been trialed for the treatment of SCI. Application of MSCs may minimize secondary injury to the spinal cord and protect the neural elements that survived the initial mechanical insult by suppressing the inflammation. Additionally, MSCs have been shown to differentiate into neuron-like cells and stimulate neural stem cell proliferation to rebuild the damaged nerve tissue. Conclusion These characteristics are crucial for the restoration of spinal cord function upon SCI as damaged cord has limited regenerative capacity and it is also something that cannot be achieved by pharmacological and physiotherapy interventions. New biological therapies including stem cell secretome therapy, immunotherapy and scaffolds can be combined with MSC therapy to enhance its therapeutic effects.
Collapse
Affiliation(s)
- Ling Ling Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | - Qi Hao Looi
- Ming Medical Services Sdn. Bhd., Pusat Perdagangan Dana 1, 47301 Petaling Jaya, Selangor Malaysia
| | - Wui Chuen Chia
- Ming Medical Services Sdn. Bhd., Pusat Perdagangan Dana 1, 47301 Petaling Jaya, Selangor Malaysia
| | - Thayaalini Subramaniam
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, JalanYaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, JalanYaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, JalanYaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Gillespie ER, Ruitenberg MJ. Neuroinflammation after SCI: Current Insights and Therapeutic Potential of Intravenous Immunoglobulin. J Neurotrauma 2020; 39:320-332. [PMID: 32689880 DOI: 10.1089/neu.2019.6952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic spinal cord injury (SCI) elicits a complex cascade of cellular and molecular inflammatory events. Although certain aspects of the inflammatory response are essential to wound healing and repair, post-SCI inflammation is, on balance, thought to be detrimental to recovery by causing "bystander damage" and the spread of pathology into spared but vulnerable regions of the spinal cord. Much of the research to date has therefore focused on understanding the inflammatory drivers of secondary tissue loss after SCI, to define therapeutic targets and positively modulate this response. Numerous experimental studies have demonstrated that modulation of the inflammatory response to SCI can indeed lead to significant neuroprotection and improved recovery. However, it is now also recognized that broadscale immunosuppression is not necessarily beneficial and may even carry the risk of contributing to the development of serious adverse events. Immune modulation rather than suppression is therefore now considered a more promising approach to target harmful post-traumatic inflammation following a major neurotraumatic event such as SCI. One promising immunomodulatory agent is intravenous immunoglobulin (IVIG), a plasma product that contains mostly immunoglobulin G (IgG) from thousands of healthy donors. IVIG is currently already widely used to treat a range of autoimmune diseases, but recent studies have found that it also holds great promise for treating acute neurological conditions, including SCI. This review provides an overview of the inflammatory response to SCI, immunomodulatory approaches that are currently in clinical trials, proposed mechanisms of action for IVIG therapy, and the putative relevance of these in the context of neurotraumatic events.
Collapse
Affiliation(s)
- Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Trauma, Critical Care, and Recovery, Brisbane Diamantina Health Partners, Brisbane, Australia
| |
Collapse
|
25
|
Courson R, Ellis J, Herring SA, Boden BP, Henry G, Conway D, McNamara L, Neal TL, Putukian M, Sills AK, Walpert KP. Best Practices and Current Care Concepts in Prehospital Care of the Spine-Injured Athlete in American Tackle Football March 2-3, 2019; Atlanta, GA. J Athl Train 2020; 55:545-562. [PMID: 32579669 PMCID: PMC7319739 DOI: 10.4085/1062-6050-430-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sport-related spine injury can be devastating and have long-lasting effects on athletes and their families. Providing evidence-based care for patients with spine injury is essential for optimizing postinjury outcomes. When caring for an injured athlete in American tackle football, clinicians must make decisions that involve unique challenges related to protective equipment (eg, helmet and shoulder pads). The Spine Injury in Sport Group (SISG) met in Atlanta, Georgia, March 2-3, 2019, and involved 25 health care professionals with expertise in emergency medicine, sports medicine, neurologic surgery, orthopaedic surgery, neurology, physiatry, athletic training, and research to review the current literature and discuss evidence-based medicine, best practices, and care options available for the prehospital treatment of athletes with suspected cervical spine injuries.1,2 That meeting and the subsequent Mills et al publication delineate the quality and quantity of published evidence regarding many aspects of prehospital care for the athlete with a suspected cervical spine injury. This paper offers a practical treatment guide based on the experience of those who attended the Atlanta meeting as well as the evidence presented in the Mills et al article. Ongoing research will help to further advance clinical treatment recommendations.
Collapse
Affiliation(s)
| | - James Ellis
- University of South Carolina School of Medicine, Greenville
| | - Stanley A Herring
- Department of Rehabilitation Medicine and The Sports Institute, University of Washington, Seattle
| | - Barry P Boden
- The Orthopaedic Center, A Division of CAO, Rockville, MD
| | | | | | - Lance McNamara
- Barrow County Schools, Winder-Barrow High School, Winder, GA
| | | | - Margot Putukian
- University Health Services, Rugers Robert Wood Johnson Medical School, Princeton, NJ
| | | | | |
Collapse
|
26
|
Guo J, Cao G, Yang G, Zhang Y, Wang Y, Song W, Xu Y, Ma T, Liu R, Zhang Q, Hao D, Yang H. Transplantation of activated olfactory ensheathing cells by curcumin strengthens regeneration and recovery of function after spinal cord injury in rats. Cytotherapy 2020; 22:301-312. [PMID: 32279988 DOI: 10.1016/j.jcyt.2020.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIMS The pro-regeneration capabilities of olfactory ensheathing cells (OECs) remain controversial. However, little is known regarding whether the transplantation of activated OECs by curcumin (CCM) elicits neural regeneration and functional recovery after spinal cord injury (SCI) in rats, and the possible molecular mechanisms have never been investigated. METHODS Primary OECs were treated with 1μM CCM for 1-3 days. Concomitantly, activated OECs were transplanted into the traumatic spinal cord of Sprague Dawley rats. One to 9 weeks after surgery, the assessment of behavior recovery was made using the Basso, Beattie and Bresnahan (BBB) locomotor scale; electrophysiology tests, such as somatosensory evoked potential (SEP) and motor evoked potential (MEP); and the cylinder test. Pathological study, including hematoxylin and eosin staining and immunofluorescence staining for neurofilaments (NFs), was conducted at 5 weeks post-surgery. In addition, activation profiles of OECs by CCM stimulus were assessed and levels of transglutaminase-2 (TG2) and phosphatidylserine receptor (PSR) in OECs stimulated by CCM were further determined. RESULTS CCM remarkably enhanced OEC proliferation, improved cell viability and strengthened secretion of neurotrophins and anti-inflammatory factors. In addition, the levels of TG2 and PSR in CCM-treated OECs were significantly elevated. More importantly, beyond 1 week post-transplantation of CCM-treated OECs into lesioned spinal cord, BBB score and cylinder test score were significantly higher than that seen in the other three groups and a more postponed latent SEP and MEP period was noted. Furthermore, 5 weeks later, numerous, well-arranged NF-positive nerve fibers, lesions with less cavities and reduced levels of pro-inflammatory cytokines were found in activated OEC implantation groups. In addition, the number of NF-positive fibers was significantly improved and the number and area of both cavities and gliotic scars were remarkably decreased compared with the corresponding controls. CONCLUSIONS Transplantation of OECs activated by CCM promotes neural regeneration and functional recovery following SCI, the underlying mechanisms of which are intimately associated with the elevated production of neurotrophic factors and anti-inflammatory factors in OECs stimulated by CCM as well as reduced pro-inflammatory cytokines from the post-contusion spinal cord. In addition, OECs activated by CCM were mediated through TG2 and PSR.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Guihua Cao
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Guoqing Yang
- Department of Anesthesiology, the Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang Shaanxi, China
| | - Yumin Zhang
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yakang Wang
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wei Song
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yayong Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Tao Ma
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Rui Liu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qian Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
27
|
Bhattacharyya S, Sahu S, Kaur S, Jain S. Effect of Low Intensity Magnetic Field Stimulation on Calcium-Mediated Cytotoxicity After Mild Spinal Cord Contusion Injury in Rats. Ann Neurosci 2020; 27:49-56. [PMID: 33335356 PMCID: PMC7724432 DOI: 10.1177/0972753120950072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Magnetic field (MF) stimulation has the potential to reduce secondary damage and promote functional recovery after neural tissue injury. The study aimed to observe the effect of very low intensity (17.96µT) MF on general body condition, secondary damage, pain status, and locomotion. METHODS We exposed rats to MF (2 h/day × 3 weeks) after 6.25 mm contusion spinal injury. Locomotor behavior was evaluated by BBB score, pain assessment was done by recording threshold for tail flick, expression of voltage-gated calcium channels and extent of secondary damage in the spinal cord was assessed by immunofluorescence and Cresyl violet staining, respectively. RESULTS A significant (p ≤ .001) improvement in bladder function as well as BBB score was observed after MF exposure in comparison with sham and SCI over the observation period of 3 weeks. SCI group showed an increase in the threshold for vocalization after discharge, which decreased following MF exposure. Cresyl violet staining showed significantly higher tissue sparing (73%) at the epicenter after MF exposure when compared to SCI group. This was accompanied with a significant decrease in calcium channel expression in MF group as compared to SCI. CONCLUSION The results suggest facilitation of sensory-motor recovery after MF exposure, which could be due to attenuation of secondary damage and calcium-mediated excitotoxicity in a mild contusion rat model of SCI.
Collapse
Affiliation(s)
| | - Shivani Sahu
- Institute of Microbial Technology,
Chandigarh, India
| | - Sajeev Kaur
- Department of Physiology, All India
Institute of Medical Sciences, New Delhi, India
| | - Suman Jain
- Department of Physiology, All India
Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
28
|
Yip PK, Bowes AL, Hall JCE, Burguillos MA, Ip THR, Baskerville T, Liu ZH, Mohamed MAEK, Getachew F, Lindsay AD, Najeeb SUR, Popovich PG, Priestley JV, Michael-Titus AT. Docosahexaenoic acid reduces microglia phagocytic activity via miR-124 and induces neuroprotection in rodent models of spinal cord contusion injury. Hum Mol Genet 2020; 28:2427-2448. [PMID: 30972415 DOI: 10.1093/hmg/ddz073] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
Microglia are activated after spinal cord injury (SCI), but their phagocytic mechanisms and link to neuroprotection remain incompletely characterized. Docosahexaenoic acid (DHA) has been shown to have significant neuroprotective effects after hemisection and compression SCI and can directly affect microglia in these injury models. In rodent contusion SCI, we demonstrate that DHA (500 nmol/kg) administered acutely post-injury confers neuroprotection and enhances locomotor recovery, and also exerts a complex modulation of the microglial response to injury. In rodents, at 7 days after SCI, the level of phagocytosed myelin within Iba1-positive or P2Y12-positive cells was significantly lower after DHA treatment, and this occurred in parallel with an increase in intracellular miR-124 expression. Furthermore, intraspinal administration of a miR-124 inhibitor significantly reduced the DHA-induced decrease in myelin phagocytosis in mice at 7 days post-SCI. In rat spinal primary microglia cultures, DHA reduced the phagocytic response to myelin, which was associated with an increase in miR-124, but not miR-155. A similar response was observed in a microglia cell line (BV2) treated with DHA, and the effect was blocked by a miR-124 inhibitor. Furthermore, the phagocytic response of BV2 cells to stressed neurones was also reduced in the presence of DHA. In peripheral monocyte-derived macrophages, the expression of the M1, but not the M0 or M2 phenotype, was reduced by DHA, but the phagocytic activation was not altered. These findings show that DHA induces neuroprotection in contusion injury. Furthermore, the improved outcome is via a miR-124-dependent reduction in the phagocytic response of microglia.
Collapse
Affiliation(s)
- Ping K Yip
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amy L Bowes
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jodie C E Hall
- Centre for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Miguel A Burguillos
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla and, Sevilla, Spain
| | - T H Richard Ip
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tracey Baskerville
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Zhuo-Hao Liu
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Chang Gung Medical College and University, Chang Gung Memorial Hospital, Department of Neurosurgery, 5 Fu-Shin Street, Linkou, Taiwan
| | - Moumin A E K Mohamed
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fanuelle Getachew
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anna D Lindsay
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Saif-Ur-Rehman Najeeb
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Phillip G Popovich
- Centre for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - John V Priestley
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
29
|
An Y, Li J, Liu Y, Fan M, Tian W. Protective effect of D-pinitol on the experimental spinal cord injury in rats. Metab Brain Dis 2020; 35:473-482. [PMID: 31997266 DOI: 10.1007/s11011-020-00537-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/17/2020] [Indexed: 01/18/2023]
Abstract
Spinal cord injury (SCI) is the major cause of the spinal damage affecting motor and sensory function. Thus, the present study was conducted to investigate the effect of D-pinitol (PN) on spinal cord injury in rats. The PN showed to recover motor function near to normal via modulating oxidative stress, inflammatory response and cellular apoptosis in SCI rats. PN also causes modulation of Bcl2 family proteins and reduces the level of NF-ĸB and LOX-1 in dose dependent manner. The PN causes reduction of NLRP3, TNF-α and iNOS, with increase in caspase-1 together with modulation of MAPK mediators. It has been suggested that, D-pinitol exert protective action against SCI via inhibition of apoptosis, inflammation and oxidative stress, via modulating Bcl-2 genes and MAPK pathway.
Collapse
Affiliation(s)
- Yan An
- Department of Spine Surgery, Beijing Jishuitan Hospital, Xicheng, Beijing, 100035, China
| | - Jianing Li
- Department of Spine Surgery, Beijing Jishuitan Hospital, Xicheng, Beijing, 100035, China
| | - Yajun Liu
- Department of Spine Surgery, Beijing Jishuitan Hospital, Xicheng, Beijing, 100035, China
| | - Mingxing Fan
- Department of Spine Surgery, Beijing Jishuitan Hospital, Xicheng, Beijing, 100035, China
| | - Wei Tian
- Department of Spine Surgery, Beijing Jishuitan Hospital, Xicheng, Beijing, 100035, China.
| |
Collapse
|
30
|
Ghane N, Beigi MH, Labbaf S, Nasr-Esfahani MH, Kiani A. Design of hydrogel-based scaffolds for the treatment of spinal cord injuries. J Mater Chem B 2020; 8:10712-10738. [DOI: 10.1039/d0tb01842b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogel-based scaffold design approaches for the treatment of spinal cord injuries.
Collapse
Affiliation(s)
- Nazanin Ghane
- Department of Cellular Biotechnology Cell Science Research Center
- Royan Institute for Biotechnology
- ACECR
- Isfahan
- Iran
| | - Mohammad-Hossein Beigi
- Department of Cellular Biotechnology Cell Science Research Center
- Royan Institute for Biotechnology
- ACECR
- Isfahan
- Iran
| | - Sheyda Labbaf
- Biomaterials Research Group
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan
- Iran
| | | | - Amirkianoosh Kiani
- Silicon Hall: Micro/Nano Manufacturing Facility
- Faculty of Engineering and Applied Science
- Ontario Tech University
- Ontario
- Canada
| |
Collapse
|
31
|
Tian ZR, Yao M, Zhou LY, Song YJ, Ye J, Wang YJ, Cui XJ. Effect of docosahexaenoic acid on the recovery of motor function in rats with spinal cord injury: a meta-analysis. Neural Regen Res 2020; 15:537-547. [PMID: 31571666 PMCID: PMC6921345 DOI: 10.4103/1673-5374.266065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective: Studies have shown that docosahexaenoic acid (DHA) has a beneficial effect in the treatment of spinal cord injury. A meta-analysis was used to study the effect of DHA on the neurological recovery in the rat spinal cord injury model, and the relationship between the recovery of motor function after spinal cord injury and the time and method of administration and the dose of DHA. Data source: Published studies on the effect of DHA on spinal cord injury animal models from seven databases were searched from their inception to January 2019, including PubMed, MEDLINE, EMBASE, the China National Knowledge Infrastructure, Wanfang, VIP, and SinoMed databases. The search terms included “spinal cord injury” “docosahexaenoic acid”, and “rats”. Data selection: Studies that evaluated the influence of DHA in rat models of spinal cord injury for locomotor functional recovery were included. The intervention group included any form of DHA treatment and the control group included treatment with normal saline, vehicle solution or no treatment. The Systematic Review Centre for Laboratory animal Experimentation’s risk of bias assessment tool was used for the quality assessment of the included studies. Literature inclusion, quality evaluation and data extraction were performed by two researchers. Meta-analysis was then conducted on all studies that met the inclusion criteria. Statistical analysis was performed on the data using RevMan 5.1.2. software. Outcome measures: The primary outcome measure was the score on the Basso, Beattie, and Bresnahan scale. Secondary outcome measures were the sloping plate test, balance beam test, stair test and grid exploration test. Results: A total of 12 related studies were included, 3 of which were of higher quality and the remaining 9 were of lower quality. The highest mean Basso, Beattie, and Bresnahan scale score occurred at 42 days after DHA treatment in spinal cord injury rats. At 21 days after treatment, the mean difference in Basso, Beattie, Bresnahan scores between the DHA group and the control group was the most significant (pooled MD = 4.14; 95% CI = 3.58–4.70; P < 0.00001). In the subgroup analysis, improvement in the Basso, Beattie, and Bresnahan scale score was more significant in rats administered DHA intravenously (pooled MD = 2.74; 95% CI = 1.41–4.07; P < 0.0001) and subcutaneously (pooled MD = 2.99; 95% CI = 2.29–3.69; P < 0.00001) than in the groups administered DHA orally (pooled MD = 3.04; 95% CI = –1.01 to 7.09; P = 0.14). Intravenous injection of DHA at 250 nmol/kg (pooled MD = 2.94; 95% CI = 2.47–3.41; P < 0.00001] and 1000 nmol/kg [pooled MD = 3.60; 95% CI = 2.66–4.54; P < 0.00001) significantly improved the Basso, Beattie, and Bresnahan scale score in rats and promoted the recovery of motor function. Conclusion: DHA can promote motor functional recovery after spinal cord injury in rats. The administration of DHA by intravenous or subcutaneous injection is more effective than oral administration of DHA. Intravenous injection of DHA at doses of 250 nmol/kg or 1000 nmol/kg is beneficial. Because of the small number and the low quality of the included studies, more high-quality research is needed in future to substantiate the results.
Collapse
Affiliation(s)
- Zi-Rui Tian
- Institute of Spine Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine); Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Institute of Spine Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Long-Yun Zhou
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine); Shanghai University of Traditional Chinese Medicine; Rehabilitation Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jia Song
- Institute of Spine Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine); Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ye
- Department of Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jun Wang
- Institute of Spine Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine); Shanghai University of Traditional Chinese Medicine; Rehabilitation Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue-Jun Cui
- Institute of Spine Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| |
Collapse
|
32
|
Guan B, Chen R, Zhong M, Liu N, Chen Q. Protective effect of Oxymatrine against acute spinal cord injury in rats via modulating oxidative stress, inflammation and apoptosis. Metab Brain Dis 2020; 35:149-157. [PMID: 31840202 DOI: 10.1007/s11011-019-00528-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022]
Abstract
The present study was performed to examine the effect of oxymatrine (OMT) on motor functions and histopathologic changes after spinal cord injury and the mechanism underlying its neuroprotective effects. Results suggested that, OMT causes regain of lost motor function near to normal via attenuating oxidative stress, inflammatory response and cellular apoptosis. These observations were further supported by histological examination of spinal cord of rats. It also showed to regulate pro-inflammatory cytokines, Bcl2 family proteins and reduces the level of toll like receptor (TLR-4) and nuclear factor-kappa B (NF-ĸB) in concentration dependent manner. The mitogen-activated protein kinase (MAPK) pathway was also regulated by OMT after SCI. It has been suggested that, OMT promotes the recovery of motor function after SCI in rats via multiple mechanism, and this effect may be related to its anti-oxidant, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Binggang Guan
- Department of Spine Surgery, Tianjin Hospital, Tianjin, 300211, China
| | - Rongchun Chen
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Mingliang Zhong
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Ning Liu
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
33
|
Wang YY, Wang JD, Wang L, Dan QQ, Xia QJ, Wang TH, Xiong LL. Establishment of Neurobehavioral Assessment System in Tree Shrew SCT Model. J Mol Neurosci 2019; 70:308-319. [PMID: 31845102 DOI: 10.1007/s12031-019-01414-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/26/2019] [Indexed: 02/05/2023]
Abstract
Tree shrews, possessing higher developed motor function than rats, were more suitable to study neurological behavior after spinal cord injury (SCI). Here, we established a feasible behavioral assessment method to detect the degree of ethology recovery in tree shrew subjected to spinal cord transection (SCT). Tree shrews were divided into normal group, sham group, and SCT group. The tree shrew in sham group was subjected to laminectomy without SCI, while the tree shrews in the SCT group were subjected to a complete SCT in thoracic 10 (T10). A novel neurobehavior assessment scale was established, in which, the behavior index including slow advancement, fast advancement, standing, shaking head, voluntary jump, lateral movement, and tail status, was determined, respectively. Meanwhile, magnetic resonance imaging (MRI) was applied to observe the structure of the spinal cord, and diffusion tensor imaging (DTI)-based white matter mapping was used to show the fibers of the spinal cord. As a result, a marked decrease in locomotor function and consciousness was seen in tree shrews with SCT, and the detection of MRI showed the collapsing of nerve fibers after SCT is completely cut and there is corresponding to the behavior change. Together, the present study provided a novel and feasible method that can be used to assess the neurobehavior in SCT model from tree shrews, which may be useful to the SCI translational study in future preclinic trial.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie-Dong Wang
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming, 650031, China
| | - Lei Wang
- Molecular Imaging Laboratory, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi-Qin Dan
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming, 650031, China.
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liu-Lin Xiong
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, 5000, South Australia, Australia.
| |
Collapse
|
34
|
Zhou Y, Su P, Pan Z, Liu D, Niu Y, Zhu W, Yao P, Song Y, Sun Y. Combination Therapy With Hyperbaric Oxygen and Erythropoietin Inhibits Neuronal Apoptosis and Improves Recovery in Rats With Spinal Cord Injury. Phys Ther 2019; 99:1679-1689. [PMID: 31504911 DOI: 10.1093/ptj/pzz125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/03/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Apoptosis plays an important role in various diseases, including spinal cord injury (SCI). Hyperbaric oxygen (HBO) and erythropoietin (EPO) promote the recovery from SCI, but the relationship between apoptosis and the combination therapeutic effect is not completely clear. OBJECTIVE The purpose of this study was to investigate the effects of HBO and EPO on SCI and the mechanisms that underlie their therapeutic benefits. DESIGN The study was designed to explore the effects of HBO and EPO on SCI through a randomized controlled trial. METHODS Sixty young developing female Sprague-Dawley rats were randomly divided into groups of 12 rats receiving sham, SCI, HBO, EPO, or HBO plus EPO. The SCI model was modified with the Allen method to better control consistency. HBO was performed for 1 hour per day for a total of 21 days, and EPO was given once per week for a total of 3 weeks. Both methods were performed 2 hours after SCI. Locomotor function was evaluated with the 21-point Basso-Beattie-Bresnahan Locomotor Rating Scale, an inclined-plane test, and a footprint analysis. All genes were detected by Western blotting and immunohistochemistry. The level of cell apoptosis was determined by Hoechst staining. RESULTS The results showed that HBO and EPO promoted the recovery of locomotor function in the hind limbs of rats by inhibiting the apoptosis of neurons. During this period, the expression of B-cell lymphoma/leukemia 2 protein (Bcl-2) increased significantly, whereas the expression of Bcl-2-associated X protein (Bax) and cleaved caspase 3 decreased significantly, indicating the inhibition of apoptosis. Meanwhile, the expression of G protein-coupled receptor 17 decreased, and that of myelin basic protein increased, suggesting that there may be a potential connection between demyelination and neuronal apoptosis. LIMITATIONS The limitations of the study include deviations in the preparation of SCI models; lack of reverse validation of molecular mechanisms; absence of in vitro cell experiments; and only one time point after SCI was studied. CONCLUSIONS HBO and EPO treatments are beneficial for SCI, especially when the 2 therapies are combined.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing, China; Department of Orthopedics and The Experimental Center, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Peng Su
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Zhenzhen Pan
- Department of Radiology, People's Hospital of Changshan, Quzhou, China
| | - Dong Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Yanping Niu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Weiqing Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Pengfei Yao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Yue Song
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Yongming Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| |
Collapse
|
35
|
Cong Y, Wang C, Wang J, Li H, Li Q. NT-3 Promotes Oligodendrocyte Proliferation and Nerve Function Recovery After Spinal Cord Injury by Inhibiting Autophagy Pathway. J Surg Res 2019; 247:128-135. [PMID: 31776022 DOI: 10.1016/j.jss.2019.10.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious medical problem, leading to lifelong disability and increasing the health burden worldwide. Traditional treatments have limited effects on neuronal function recovery. Previous studies showed that neurotrophin-3 (NT-3) promoted oligodendrocyte survival and improved neuronal functional recovery after SCI. However, the mechanism by which NT-3 promotes oligodendrocyte survival after SCI remains unclear, which limits its application. MATERIALS AND METHODS A total of 75 female Sprague-Dawley rats were randomly divided into three groups: the NS group, NT-3 group, and NT-3 + rapamycin group. After successful modeling, the spinal cord specimens were taken at the corresponding time points. Western blot was used to detect autophagy-related proteins and Olig1 protein expression and combined with pathology, immunohistochemistry, flow cytometry, and other methods to detect the proliferation of oligodendrocytes after NT-3 application. RESULTS NT-3 was found to significantly promote the recovery of motor function by Basso-Beattie-Bresnahan scores analysis in the rat SCI model. Furthermore, intraspinal administration of NT-3 could downregulate the expression of Beclin-1 in oligodendrocytes, indicating that NT-3 could inhibit excessive autophagy of oligodendrocytes after SCI. The effects of NT-3 on oligodendrocyte survival could be blocked by an autophagy activator rapamycin. CONCLUSIONS This study found that NT-3 could promote the recovery of motor function after SCI in rats. The underlying reason may be that NT-3 inhibits the expression of autophagy proteins in oligodendrocytes and promotes oligodendrocyte proliferation. This study provided evidence for the future clinical application of NT-3 in SCI patients.
Collapse
Affiliation(s)
- Yan Cong
- Orthopaedic Professional, Guizhou Medical University, GuiYang, China
| | - Chunqing Wang
- Department of Orthopadic Trauma, Chief Physician, The Affiliated Hospital of Guizhou Medical University, GuiYang, China.
| | - Jiyao Wang
- Orthopaedic Professional, Guizhou Medical University, GuiYang, China
| | - Hexiang Li
- Orthopaedic Professional, Guizhou Medical University, GuiYang, China
| | - Qing Li
- Department of Orthopadic Trauma, Chief Physician, The Affiliated Hospital of Guizhou Medical University, GuiYang, China
| |
Collapse
|
36
|
Liu N, Fan M. Protective functions of salvianolic acid B in PC-12 cells against hydrogen peroxide-triggered damage by mediation of microRNA-26a. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4030-4037. [PMID: 31603005 DOI: 10.1080/21691401.2019.1673766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Niansheng Liu
- Department of Traumatology, North Medical District of Linyi People’s Hospital, Linyi, PR China
| | - Mingfu Fan
- Department of Spinal Surgery, North Medical District of Linyi People’s Hospital, Linyi, PR China
| |
Collapse
|
37
|
Song YH, Agrawal NK, Griffin JM, Schmidt CE. Recent advances in nanotherapeutic strategies for spinal cord injury repair. Adv Drug Deliv Rev 2019; 148:38-59. [PMID: 30582938 PMCID: PMC6959132 DOI: 10.1016/j.addr.2018.12.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/12/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a devastating and complicated condition with no cure available. The initial mechanical trauma is followed by a secondary injury characterized by inflammatory cell infiltration and inhibitory glial scar formation. Due to the limitations posed by the blood-spinal cord barrier, systemic delivery of therapeutics is challenging. Recent development of various nanoscale strategies provides exciting and promising new means of treating SCI by crossing the blood-spinal cord barrier and delivering therapeutics. As such, we discuss different nanomaterial fabrication methods and provide an overview of recent studies where nanomaterials were developed to modulate inflammatory signals, target inhibitory factors in the lesion, and promote axonal regeneration after SCI. We also review emerging areas of research such as optogenetics, immunotherapy and CRISPR-mediated genome editing where nanomaterials can provide synergistic effects in developing novel SCI therapy regimens, as well as current efforts and barriers to clinical translation of nanomaterials.
Collapse
Affiliation(s)
- Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nikunj K Agrawal
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jonathan M Griffin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
38
|
Ghosh B, Nong J, Wang Z, Urban MW, Heinsinger NM, Trovillion VA, Wright MC, Lepore AC, Zhong Y. A hydrogel engineered to deliver minocycline locally to the injured cervical spinal cord protects respiratory neural circuitry and preserves diaphragm function. Neurobiol Dis 2019; 127:591-604. [PMID: 31028873 DOI: 10.1016/j.nbd.2019.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/06/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
We tested a biomaterial-based approach to preserve the critical phrenic motor circuitry that controls diaphragm function by locally delivering minocycline hydrochloride (MH) following cervical spinal cord injury (SCI). MH is a clinically-available antibiotic and anti-inflammatory drug that targets a broad range of secondary injury mechanisms via its anti-inflammatory, anti-oxidant and anti-apoptotic properties. However, MH is only neuroprotective at high concentrations that cannot be achieved by systemic administration, which limits its clinical efficacy. We have developed a hydrogel-based MH delivery system that can be injected into the intrathecal space for local delivery of high concentrations of MH, without damaging spinal cord tissue. Implantation of MH hydrogel after unilateral level-C4/5 contusion SCI robustly preserved diaphragm function, as assessed by in vivo recordings of compound muscle action potential (CMAP) and electromyography (EMG) amplitudes. MH hydrogel also decreased lesion size and degeneration of cervical motor neuron somata, demonstrating its central neuroprotective effects within the injured cervical spinal cord. Furthermore, MH hydrogel significantly preserved diaphragm innervation by the axons of phrenic motor neurons (PhMNs), as assessed by both detailed neuromuscular junction (NMJ) morphological analysis and retrograde PhMN labeling from the diaphragm using cholera toxin B (CTB). In conclusion, our findings demonstrate that local MH hydrogel delivery to the injured cervical spinal cord is effective in preserving respiratory function after SCI by protecting the important neural circuitry that controls diaphragm activation.
Collapse
Affiliation(s)
- Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 S. 10th St., Bluemle Life Sciences Building - Room 245, Philadelphia, PA 19107, United States of America
| | - Jia Nong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 7-716, Philadelphia, PA 19104, United States of America
| | - Zhicheng Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 7-716, Philadelphia, PA 19104, United States of America
| | - Mark W Urban
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 S. 10th St., Bluemle Life Sciences Building - Room 245, Philadelphia, PA 19107, United States of America
| | - Nicolette M Heinsinger
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 S. 10th St., Bluemle Life Sciences Building - Room 245, Philadelphia, PA 19107, United States of America
| | - Victoria A Trovillion
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 S. 10th St., Bluemle Life Sciences Building - Room 245, Philadelphia, PA 19107, United States of America
| | - Megan C Wright
- Department of Biology, Arcadia University, 450 S Easton Rd, 220 Boyer Hall, Glenside, PA 19038, United States of America
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 S. 10th St., Bluemle Life Sciences Building - Room 245, Philadelphia, PA 19107, United States of America.
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 7-716, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
39
|
Zhang Q, Shi B, Ding J, Yan L, Thawani JP, Fu C, Chen X. Polymer scaffolds facilitate spinal cord injury repair. Acta Biomater 2019; 88:57-77. [PMID: 30710714 DOI: 10.1016/j.actbio.2019.01.056] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/23/2022]
Abstract
During the past decades, improving patient neurological recovery following spinal cord injury (SCI) has remained a challenge. An effective treatment for SCI would not only reduce fractured elements and isolate developing local glial scars to promote axonal regeneration but also ameliorate secondary effects, including inflammation, apoptosis, and necrosis. Three-dimensional (3D) scaffolds provide a platform in which these mechanisms can be addressed in a controlled manner. Polymer scaffolds with favorable biocompatibility and appropriate mechanical properties have been engineered to minimize cicatrization, customize drug release, and ensure an unobstructed space to promote cell growth and differentiation. These properties make polymer scaffolds an important potential therapeutic platform. This review highlights the recent developments in polymer scaffolds for SCI engineering. STATEMENT OF SIGNIFICANCE: How to improve the efficacy of neurological recovery after spinal cord injury (SCI) is always a challenge. Tissue engineering provides a promising strategy for SCI repair, and scaffolds are one of the most important elements in addition to cells and inducing factors. The review highlights recent development and future prospects in polymer scaffolds for SCI therapy. The review will guide future studies by outlining the requirements and characteristics of polymer scaffold technologies employed against SCI. Additionally, the peculiar properties of polymer materials used in the therapeutic process of SCI also have guiding significance to other tissue engineering approaches.
Collapse
|
40
|
Wang H, Wang G, Zhu LD, Xu X, Diao B, Zhang HY. Subnetwork identification and chemical modulation for neural regeneration: A study combining network guided forest and heat diffusion model. QUANTITATIVE BIOLOGY 2018. [DOI: 10.1007/s40484-018-0159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Manzhulo O, Tyrtyshnaia A, Kipryushina Y, Dyuizen I, Manzhulo I. Docosahexaenoic acid induces changes in microglia/macrophage polarization after spinal cord injury in rats. Acta Histochem 2018; 120:741-747. [PMID: 30170694 DOI: 10.1016/j.acthis.2018.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 02/05/2023]
Abstract
Docosahexaenoic acid (DHA, 22:6 (n-3)) leads to recovery of locomotor functions observed of spinal cord injury (SCI) in rats. In present study, we characterized the expression of iba-1, CD86, CD163 in microglia/macrophages, to assess activation state and M1 (pro-inflammatory)/M2 (anti-inflammatory) phenotypes respectively, in the rostral, central and caudal segment of the spinal cord on 7 and 35 days after SCI. We found that DHA treatment leads to: (1) an increased activation and proliferation of microglial cells; (2) an alteration in the dynamics between M1 and M2 microglia/macrophages phenotypes (3) and increased production of an antioxidant enzymes. Overall, our data demonstrates that DHA has a complex effect in post-traumatic process within the central nervous system, and supports the therapeutic potential of DHA-based drugs.
Collapse
Affiliation(s)
- Olga Manzhulo
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Anna Tyrtyshnaia
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia; School of Biomedicine, Far Eastern Federal University, Vladivostok, 690950, Russia
| | - Yulia Kipryushina
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Inessa Dyuizen
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Igor Manzhulo
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia; School of Biomedicine, Far Eastern Federal University, Vladivostok, 690950, Russia.
| |
Collapse
|
42
|
Locomotor Training Promotes Time-dependent Functional Recovery after Experimental Spinal Cord Contusion. Neuroscience 2018; 392:258-269. [DOI: 10.1016/j.neuroscience.2018.08.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022]
|
43
|
Oliveira KM, Binda NS, Lavor MSL, Silva CMO, Rosado IR, Gabellini ELA, Da Silva JF, Oliveira CM, Melo MM, Gomez MV, Melo EG. Conotoxin MVIIA improves cell viability and antioxidant system after spinal cord injury in rats. PLoS One 2018; 13:e0204948. [PMID: 30286181 PMCID: PMC6171875 DOI: 10.1371/journal.pone.0204948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/16/2018] [Indexed: 12/12/2022] Open
Abstract
This study evaluates whether intrathecal MVIIA injection after spinal cord injury (SCI) elicits neuroprotective effects. The test rats were randomly distributed into six groups— sham, placebo, MVIIA 2.5 μM, MVIIA 5 μM, MVIIA 10 μM, and MVIIA 20 μM—and were administered the treatment four hours after SCI. After the optimal MVIIA dose (MVIIA 10 μM) was defined, the best time for application, one or four hours, was analyzed. Locomotor hind limb function and side effects were assessed. Forty-eight hours after the injury and immediately after euthanasia, spinal cord segments were removed from the test rats. Cell viability, reactive oxygen species, lipid peroxidation, and glutamate release were investigated. To examine the MVIIA mechanism of action, the gene expressions of pro-apoptotic (Bax, nNOS, and caspase-3, -8, -9, -12) and anti-apoptotic (Bcl-xl) factors in the spinal cord tissue samples were determined by real-time PCR, and the activities of antioxidant enzymes were also investigated. Application of intrathecal MVIIA 10 μM four hours after SCI prompted a neuroprotective effect: neuronal death decreased (22.46%), oxidative stress diminished, pro-apoptotic factors (Bax, nNOS, and caspase-3, -8) were expressed to a lesser extent, and mitochondrial viability as well as anti-apoptotic factor (Bcl-xl) expression increased. These results suggested that MVIIA provided neuroprotection through antioxidant effects. Indeed, superoxide dismutase (188.41%), and glutathione peroxidase (199.96%), reductase (193.86%), and transferase (175.93%) expressions increased. Therefore, intrathecal MVIIA (MVIIA 10 μM, 4 h) application has neuroprotective potential, and the possible mechanisms are related to antioxidant agent modulation and to intrinsic and extrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Karen M. Oliveira
- Clinical and Surgery Department, Veterinary School, Minas Gerais Federal University, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Nancy S. Binda
- Laboratory of Toxins, Institute of Education and Research, Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | - Mário Sérgio L. Lavor
- Department of Agrarian and Environmental Sciences, Santa Cruz State University, Ilhéus, Bahia, Brazil
| | - Carla M. O. Silva
- Clinical and Surgery Department, Veterinary School, Minas Gerais Federal University, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Isabel R. Rosado
- Veterinary Medicine Department, Uberaba University, Uberada, Minas Gerais, Brazil
| | | | - Juliana F. Da Silva
- Laboratory of Toxins, Institute of Education and Research, Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | | | - Marília M. Melo
- Clinical and Surgery Department, Veterinary School, Minas Gerais Federal University, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Marcus Vinícius Gomez
- Laboratory of Toxins, Institute of Education and Research, Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | - Eliane G. Melo
- Clinical and Surgery Department, Veterinary School, Minas Gerais Federal University, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
44
|
Nune M, Manchineella S, T G, K S N. Melanin incorporated electroactive and antioxidant silk fibroin nanofibrous scaffolds for nerve tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:17-25. [PMID: 30423699 DOI: 10.1016/j.msec.2018.09.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 08/27/2018] [Accepted: 09/05/2018] [Indexed: 02/03/2023]
Abstract
Nerve restoration and repair in the central nervous system is complicated and requires several factors to be considered while designing the scaffolds like being bioactive as well as having neuroinductive, neuroconductive and antioxidant properties. Aligned electrospun nanofibers provide necessary guidance and topographical cues required for directing the axonal and neurite outgrowth during regeneration. Conduction of nerve impulses is a mandatory feature of a typical nerve. The neuro-conductive property can be imparted by blending the biodegradable, bioactive polymers with conductive polymers. This will provide additional features, i.e., electrical cues to the already existing topographical and bioactive cues in order to make it a more multifaceted neuroregenerative approach. Hence in the present study, we used a combination of silk fibroin and melanin for the fabrication of random and aligned electrospun nanofibrous composite scaffolds. We performed the physico-chemical characterization and also assessed their antioxidant properties. We also evaluated their neurogenic potential using human neuroblastoma cells (SH-SY5Y) for their cellular viability, proliferation, adhesion and differentiation levels. Designed nanofibrous scaffolds had adequate physical properties suitable as neural substrates to promote neuronal growth and regeneration. They stimulated the neuroblastoma cell attachment and viability indicating their biocompatible nature. Silk/melanin composite scaffolds have specifically exhibited high antioxidant nature proven by the radical scavenging activity. Additionally, the melanin incorporated aligned silk fibroin scaffolds promoted the cell differentiation into neurons and orientation along their axis. Our results confirmed the potential of melanin incorporated aligned silk fibroin scaffolds as the promising candidates for effective nerve regeneration and recovery.
Collapse
Affiliation(s)
- Manasa Nune
- Chemistry and Physics of Materials Unit School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Shivaprasad Manchineella
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Govindaraju T
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Narayan K S
- School of Advanced Materials and Department of Neurosciences, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India.
| |
Collapse
|
45
|
Drenger B, Blanck TJJ, Piskoun B, Jaffrey E, Recio-Pinto E, Sideris A. Minocycline Before Aortic Occlusion Reduces Hindlimb Motor Impairment, Attenuates Spinal Cord Damage and Spinal Astrocytosis, and Preserve Neuronal Cytoarchitecture in the Rat. J Cardiothorac Vasc Anesth 2018; 33:1003-1011. [PMID: 30195965 DOI: 10.1053/j.jvca.2018.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Spinal cord ischemia secondary to trauma or a vascular occlusive event is a threatening phenomenon. The neuroprotective properties of minocycline have been shown in several models of central nervous system diseases and after spinal cord ischemia; however, the benefit of using the drug requires additional confirmation in different animal models. Astrocytes are essential as regulators of neuronal functions and for providing nutrients. The authors hypothesized that astrocytes in the spinal cord may be an important target for minocycline action after ischemia and thus in the prevention of secondary spreading damage. DESIGN A prospective, randomized animal study. SETTING University research laboratory, single institution. PARTICIPANTS Adult male Sprague Dawley rats, weighing between 400 and 450 g. INTERVENTIONS A model of spinal cord ischemia in the rat was used for this study to determine whether a single, high-dose (10 mg/kg) of minocycline protects against damage to the neuronal cytoskeleton, both in the white and gray matter, and whether it reduces glial fibrillary acidic protein levels, which is an index for prevention of astrocyte activation during ischemia. Thirty minutes before thoracic aorta occlusion, minocycline was administered for 18 minutes using a 2 F Fogarty catheter. MEASUREMENTS AND MAIN RESULTS Minocycline given prophylactically significantly mitigated severe hindlimb motor impairment and reduced glial fibrillary acidic protein plus astrocytosis in both the white and gray matter of the spinal cord, caudal to the occlusion. Neuronal histologic cytoarchitecture, which was severely and significantly compromised in control animals, was preserved in the minocycline-treated animals. CONCLUSIONS This study's data imply that minocycline may attenuate reactive astrocytosis in response to injury with better neurologic outcome in a model of spinal cord ischemia in rats. The data suggest that future use of minocycline, clinically, might be advantageous in surgeries with a potential risk for paraplegia due to spinal cord ischemia.
Collapse
Affiliation(s)
- Benjamin Drenger
- Department of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Thomas J J Blanck
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY
| | - Boris Piskoun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY
| | - E Jaffrey
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY
| | - Esperanza Recio-Pinto
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY; Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY
| | - Alexandra Sideris
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY; Department of Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY
| |
Collapse
|
46
|
Durdag E, Yildirim Z, Unlu NL, Kale A, Ceviker N. Neuroprotective Effects of Vigabatrin on Spinal Cord Ischemia-Reperfusion Injury. World Neurosurg 2018; 120:e33-e41. [PMID: 30031958 DOI: 10.1016/j.wneu.2018.07.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Spinal cord ischemia is a serious and catastrophic clinicopathologic condition. Despite studies reported over the last 20 years, alternative and efficient treatment options remain unclear. We examined the neuroprotective effects of vigabatrin on a spinal ischemia-reperfusion model. METHODS We divided 24 New Zealand rabbits into 4 groups (control, ischemia reperfusion, and low-dose and high-dose vigabatrin). The control group underwent only abdominal surgery, whereas an abdominal aortic cross-clamp model of spinal ischemia was performed in the other groups. Clips were removed after 30 minutes and 50 and 150 mg/kg vigabatrin was administered intraperitoneally to the low-dose and high-dose groups, respectively. Neurologic examination was performed for 48 hours, after which the rabbits were sacrificed and a blood sample obtained. Biochemical examination of malondialdehyde, advanced oxidation protein products, total nitric oxide, and glutathione levels and superoxide dismutase activities in plasma and tissue sample, and histopathologic examination of the spinal cord were performed and statistical results compared between the groups. RESULTS Low-dose vigabatrin had statistically significant effects of neuroprotection on spinal ischemia. Although high-dose vigabatrin had similar effects, the results were not statistically significant for all parameters of biochemical analysis. In addition, histopathologic examination showed some toxic effects of high-dose vigabatrin. CONCLUSIONS Neuroprotective effects of vigabatrin are shown. For clinical use, further studies are needed.
Collapse
Affiliation(s)
- Emre Durdag
- Department of Neurosurgery, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - Zuhal Yildirim
- Etimesgut Public Health Laboratory, Etimesgut, Ankara, Turkey.
| | - Nese Lortlar Unlu
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Aydemir Kale
- Department of Neurosurgery, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - Necdet Ceviker
- Department of Neurosurgery, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| |
Collapse
|
47
|
Baek A, Cho SR, Kim SH. Elucidation of Gene Expression Patterns in the Brain after Spinal Cord Injury. Cell Transplant 2018; 26:1286-1300. [PMID: 28933220 PMCID: PMC5657738 DOI: 10.1177/0963689717715822] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological disease. The pathophysiological mechanisms of SCI have been reported to be relevant to central nervous system injury such as brain injury. In this study, gene expression of the brain after SCI was elucidated using transcriptome analysis to characterize the temporal changes in global gene expression patterns in a SCI mouse model. Subjects were randomly classified into 3 groups: sham control, acute (3 h post-injury), and subacute (2 wk post-injury) groups. We sought to confirm the genes differentially expressed between post-injured groups and sham control group. Therefore, we performed transcriptome analysis to investigate the enriched pathways associated with pathophysiology of the brain after SCI using Database for Annotation Visualization, and Integrated Discovery (DAVID), which yielded Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Following enriched pathways were found in the brain: oxidative phosphorylation pathway; inflammatory response pathways—cytokine–cytokine receptor interaction and chemokine signaling pathway; and endoplasmic reticulum (ER) stress-related pathways—antigen processing and presentation and mitogen-activated protein kinase signaling pathway. Oxidative phosphorylation pathway was identified at acute phase, while inflammation response and ER stress-related pathways were identified at subacute phase. Since the following pathways—oxidative phosphorylation pathway, inflammatory response pathways, and ER stress-related pathways—have been well known in the SCI, we suggested a link between SCI and brain injury. These mechanisms provide valuable reference data for better understanding pathophysiological processes in the brain after SCI.
Collapse
Affiliation(s)
- Ahreum Baek
- 1 Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.,2 Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Rae Cho
- 2 Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,5 Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hoon Kim
- 1 Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| |
Collapse
|
48
|
Buen EPD, Salgado-Ceballos H, González-Tapia D, Leal-Cortés C, Mondragón-Lozano R, Sánchez-Torres S, Álvarez-Mejía L, Fabela-Sánchez O, Martínez-Torres NI, González-Ramírez MM, Vázquez-Hernández N, González-Burgos I. Spinogenesis and Plastic Changes in the Dendritic Spines of Spinal Cord Motoneurons After Traumatic Injury in Rats. Arch Med Res 2018. [PMID: 29530339 DOI: 10.1016/j.arcmed.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) is highly incapacitating, and the neurobiological factors involved in an eventual functional recovery remain uncertain. Plastic changes to dendritic spines are closely related with the functional modifications of behavior. AIM OF THE STUDY To explore the plastic response of dendritic spines in motoneurons after SCI. METHODS Female rats were assigned to either of three groups: Intact (no manipulations), Sham (T9 laminectomy), and SCI (T9 laminectomy and spinal cord contusion). RESULTS Motor function according to a BBBscale was progressively recovered from 2 week through 8 week postinjury, reaching a plateau through week 16. Dendritic spine density was greater in SCI vs. control groups, rostral as well as caudal to the lesion, at 8 and 16 weeks postinjury. Thin and stubby/wide spines were more abundant at both locations and time points, whereas mushroom spines predominated at 2 and 4 months in rostral to the lesion. Filopodia and atypical structures resembling dendritic spines were observed. Synaptophysin expression was lower in SCI at the caudal portion at 8 weeks, and was higher at week 16. CONCLUSION Spinogenesis in spinal motoneurons may be a crucial plastic response to favor spontaneous recovery after SCI.
Collapse
Affiliation(s)
- Eliseo Portilla-de Buen
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Proyecto Camina, A.C., Ciudad de México, México
| | - David González-Tapia
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México; Universidad Politécnica de la Zona Metropolitana de Guadalajara, Tlajomulco de Zúñiga, Jal., México; Instituto de Ciencias de la Rehabilitación Integral, Guadalajara, Jal., México
| | - Caridad Leal-Cortés
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México
| | - Rodrigo Mondragón-Lozano
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Proyecto Camina, A.C., Ciudad de México, México; CONACyT- Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Stephanie Sánchez-Torres
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Proyecto Camina, A.C., Ciudad de México, México; Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, México
| | - Laura Álvarez-Mejía
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Proyecto Camina, A.C., Ciudad de México, México; Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, México
| | - Omar Fabela-Sánchez
- Proyecto Camina, A.C., Ciudad de México, México; Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, México
| | - Néstor I Martínez-Torres
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México; Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Jalisco, México
| | - Myrna M González-Ramírez
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México
| | - Nallely Vázquez-Hernández
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México
| | - Ignacio González-Burgos
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México.
| |
Collapse
|
49
|
Cordero K, Coronel GG, Serrano-Illán M, Cruz-Bracero J, Figueroa JD, De León M. Effects of Dietary Vitamin E Supplementation in Bladder Function and Spasticity during Spinal Cord Injury. Brain Sci 2018; 8:E38. [PMID: 29495419 PMCID: PMC5870356 DOI: 10.3390/brainsci8030038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 11/25/2022] Open
Abstract
Traumatic spinal cord injury (SCI) results in debilitating autonomic dysfunctions, paralysis and significant sensorimotor impairments. A key component of SCI is the generation of free radicals that contributes to the high levels of oxidative stress observed. This study investigates whether dietary supplementation with the antioxidant vitamin E (alpha-tocopherol) improves functional recovery after SCI. Female adult Sprague-Dawley rats were fed either with a normal diet or a dietary regiment supplemented with vitamin E (51 IU/g) for eight weeks. The rats were subsequently exposed either to a contusive SCI or sham operation, and evaluated using standard functional behavior analysis. We report that the rats that consumed the vitamin E-enriched diet showed an accelerated bladder recovery and significant improvements in locomotor function relative to controls, as determined by residual volumes and Basso, Beatie, and Bresnaham BBB scores, respectively. Interestingly, the prophylactic dietary intervention did not preserve neurons in the ventral horn of injured rats, but it significantly increased the numbers of oligodendrocytes. Vitamin E supplementation attenuated the depression of the H-reflex (a typical functional consequence of SCI) while increasing the levels of supraspinal serotonin immunoreactivity. Our findings support the potential complementary use of vitamin E to ameliorate sensory and autonomic dysfunctions associated with spinal cord injury, and identified promising new cellular and functional targets of its neuroprotective effects.
Collapse
Affiliation(s)
- Kathia Cordero
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Gemma G Coronel
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Miguel Serrano-Illán
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Jennifer Cruz-Bracero
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Marino De León
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
50
|
Li J, Li L, Shen Y. Protective role of microRNA-219-5p inhibitor against spinal cord injury via liver receptor homolog-1/Wnt/β-catenin signaling pathway regulation. Exp Ther Med 2018; 15:3563-3569. [PMID: 29545884 DOI: 10.3892/etm.2018.5829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the role of microRNA (miR)-219-5p in spinal cord injury (SCI) and to examine the underlying molecular mechanism. SCI rat and cell models were conducted in the current study, while reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the level of miR-219-5p in the SCI mice and neurons. Bioinformatics analysis was applied to predict the target genes of miR-219-5p, and dual-luciferase reporter assay was performed to verify the prediction. In addition, MTT assay and flow cytometry were conducted to determine the cell viability and cell apoptosis of the neurons, respectively. Western blot analysis was also performed to detect the expression of associated proteins. The study results demonstrated that miR-219-5p was highly expressed in SCI mice and neurons, and directly targets liver receptor homolog-1 (LRH-1). The neuron viability was significantly reduced by SCI, however, it was recovered upon transfection with an miR-219-5p inhibitor. Neuron apoptosis was notably induced by SCI and inhibited by miR-219-5p inhibition. The LRH-1/Wnt/β-catenin signaling pathway was also inhibited by SCI, while it was significantly enhanced by the miR-219-5p inhibitor. Furthermore, LRH-1 overexpression eliminated the effects of the miR-219-5p inhibitor on SCI. In conclusion, these data indicated that the miR-219-5p inhibitor served a protective role in SCI via regulating the LRH-1/Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Liqiang Li
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yong Shen
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|