1
|
Bi C, Patel JS, Liang SH. Development of CD73 Inhibitors in Tumor Immunotherapy and Opportunities in Imaging and Combination Therapy. J Med Chem 2025; 68:6860-6869. [PMID: 40106690 PMCID: PMC11998006 DOI: 10.1021/acs.jmedchem.4c02151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 03/22/2025]
Abstract
CD73 is a member of the membrane-bound enucleotidase family, which catalyzes the extracellular hydrolysis of adenosine monophosphate (AMP) to produce anti-inflammatory and immunosuppressive adenosine. As a novel checkpoint protein, CD73 is overexpressed in the immune system of various tumors, where adenosine is abundantly enriched. A large number of monoclonal antibodies (mAbs), nucleotides, and non-nucleotides as potent CD73 inhibitors are being discovered, providing opportunities for novel tumor immunotherapy. Currently, 18 CD73 inhibitors are in clinical trials, showing promising results in combination therapy for various solid tumors. The development of CD73-specific companion positron emission tomography imaging ligands holds potential for facilitating diagnosis, patient selection, and treatment efficacy evaluation throughout the entire process of CD73-targeted therapeutic development.
Collapse
Affiliation(s)
- Chunyang Bi
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
- PharmaCenter
Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jimmy S. Patel
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University, Atlanta, Georgia 30322, United States
| | - Steven H. Liang
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
- Department
of Biomedical Engineering, Emory University
and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Jumabay M, Abud EM, Okamoto K, Dutta P, Chiang AWT, Li H, Manresa MC, Zhu YP, Frederick D, Kurten R, Croker B, Lewis NE, Kennedy JL, Dohil R, Croft M, Ay F, Wechsler JB, Aceves SS. Eosinophilic esophagitis drives tissue fibroblast regenerative programs toward pathologic dysfunction. J Allergy Clin Immunol 2025; 155:1333-1345. [PMID: 39617290 PMCID: PMC11980045 DOI: 10.1016/j.jaci.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 04/07/2025]
Abstract
BACKGROUND Pathologic tissue remodeling with scarring and tissue rigidity has been demonstrated in inflammatory, autoimmune, and allergic diseases. Eosinophilic esophagitis (EoE) is an allergic disease that is diagnosed and managed by repeated biopsy procurement, allowing an understanding of tissue fibroblast dysfunction. While EoE-associated tissue remodeling causes clinical dysphagia, food impactions, esophageal rigidity, and strictures, molecular mechanisms driving these complications remain under investigation. OBJECTIVE We hypothesized that chronic EoE inflammation induces pathogenic fibroblasts with dysfunctional tissue regeneration and motility. METHODS We used single-cell RNA sequencing, fluorescence-activated cell sorting analysis, and fibroblast differentiation and migration assays to decipher the induced and retained pathogenic dysfunctions in EoE versus healthy esophageal fibroblasts. RESULTS Differentiation assays demonstrated that active EoE fibroblasts retain regenerative programs for rigid cells such as chondrocytes (P < .05) but lose healthy fibroblast capacity for soft cells such as adipocytes (P < .01), which was reflected in biopsy sample immunostaining (P < .01). EoE, but not healthy, fibroblasts show proinflammatory and prorigidity transcriptional programs on single-cell RNA sequencing. In vivo, regenerative fibroblasts reside in perivascular regions and near the epithelial junction, and during EoE, they have significantly increased migration (P < .01). Flow analysis and functional assays demonstrated that regenerative EoE fibroblasts have decreased surface CD73 expression and activity (both P < .05) compared to healthy controls, indicating aberrant adenosine triphosphate handling. EoE fibroblast dysfunctions were induced in healthy fibroblasts by reducing CD73 activity and rescued in EoE using adenosine repletion. CONCLUSION A normalization of perturbed extracellular adenosine triphosphate handling and CD73 could improve pathogenic fibroblast dysfunction and tissue regeneration in type 2 inflammatory diseases.
Collapse
Affiliation(s)
- Medet Jumabay
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif
| | - Edsel M Abud
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif; Scripps Clinic, San Diego, Calif; Scripps Research Translational Institute, San Diego, Calif
| | - Kevin Okamoto
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif
| | | | - Austin W T Chiang
- Department of Pediatrics, University of California, San Diego, Calif; Department of Bioengineering, University of California, San Diego, Calif
| | - Haining Li
- Department of Pediatrics, University of California, San Diego, Calif; Scripps Clinic, San Diego, Calif
| | - Mario C Manresa
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif
| | - Yanfang P Zhu
- Department of Pediatrics, University of California, San Diego, Calif
| | | | - Richard Kurten
- Department of Bioengineering, University of California, San Diego, Calif
| | - Ben Croker
- Department of Pediatrics, University of California, San Diego, Calif
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, Calif; Scripps Clinic, San Diego, Calif
| | | | - Ranjan Dohil
- Department of Pediatrics, University of California, San Diego, Calif; Division of Gastroenterology, University of California, San Diego, Calif; La Jolla Institute, La Jolla, Calif
| | | | - Ferhat Ay
- Department of Pediatrics, University of California, San Diego, Calif; La Jolla Institute, La Jolla, Calif
| | | | - Seema S Aceves
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif; Division of Gastroenterology, University of California, San Diego, Calif; Department of Medicine, University of California, San Diego, Calif; Lurie Children's Hospital, Northwestern University, Chicago, Ill.
| |
Collapse
|
3
|
Yan W, Zhang H, Zhang J, Zhao Y, Wu Y, Ma X, Luan X. Human placental mesenchymal stem cells regulate the antioxidant capacity of CD8 +PD-1 + T cells through the CD73/ADO/Nrf2 pathway to protect against liver damage in mice with acute graft-versus-host disease. Mol Immunol 2025; 179:71-83. [PMID: 39923662 DOI: 10.1016/j.molimm.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Graft-versus-host disease (GVHD) constitutes a severe complication that occurs after allogeneic hematopoietic stem cell transplantation (allo-HSCT), significantly reducing the survival rate of patients. Mesenchymal stem cells (MSCs) are capable of ameliorating the tissue damage caused by GVHD through exerting immunosuppressive effects; however, the relevant mechanisms require further investigation. This study used a GVHD mouse model to explore the therapeutic effects and mechanisms of human placental mesenchymal stem cells (hPMSCs) in mitigating GVHD-induced liver injury. The findings indicated that hPMSCs reduced the proportion of CD8+PD-1+ T cells in both the liver and spleen of GVHD mice, decreased reactive oxygen species (ROS) levels, and upregulated glutathione S transferase (GST) and glutathione (GSH) levels. Consistently, this led to a decrease in the expression of liver fibrosis markers, including alpha-smooth muscle actin (α-SMA) and fibronectin (FN). Moreover, CD8+PD-1+ T cells and ROS were positively correlated with α-SMA and FN, respectively, whereas GST and GSH were negatively correlated with them. hPMSCs with low expression in CD73 attenuated this effect. In vitro studies demonstrated that hPMSCs upregulated the expression of nuclear factor-E2-related factor 2 (Nrf2) via the CD73/adenosine (ADO) pathway, regulated oxidative metabolism, and reduced the number of CD8+PD-1+ T cells. The results suggested that hPMSCs contributed to the regulation of redox homeostasis and reduced the proportion of CD8+PD-1+ T cells through the CD73/ADO/Nrf2 signaling pathway, thereby alleviating liver injury associated with GVHD.
Collapse
Affiliation(s)
- Wei Yan
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264000, China; Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong Province 264000, China
| | - Hengchao Zhang
- Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, Shandong Province 264000, China
| | - Jiashen Zhang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264000, China
| | - Yaxuan Zhao
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264000, China
| | - Yunhua Wu
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264000, China
| | - Xiaolin Ma
- Hematology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266000, China.
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264000, China.
| |
Collapse
|
4
|
Milovanovic P, Savic I, Popovic A, Grajic M. Ectopic calcifications in the musculoskeletal field: the basis for preventive and curative pharmacological strategies. Clin Rheumatol 2025; 44:869-886. [PMID: 39853559 DOI: 10.1007/s10067-025-07335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/02/2025] [Accepted: 01/12/2025] [Indexed: 01/26/2025]
Abstract
Ectopic calcifications occur in tendons, ligaments, entheses, muscles, and fasciae, and are often associated with pain and inflammation. In clinical settings, these calcifications are commonly treated by physical therapy and/or surgical interventions. However, there is not enough understanding of pharmacological treatments as primary cures, supportive therapy to physical or surgical treatment, or even preventive measures to avoid or diminish the development of ectopic calcifications. Here, we summarize preclinical and clinical evidence for pharmacological candidates for treatment/prevention of ectopic calcification in the context of painful syndromes in the musculoskeletal field. Specifically, we discuss the potential mechanisms of nonsteroidal anti-inflammatory drugs, corticosteroids, H2-receptor blockers, bisphosphonates, minocycline, biologics, ACTH analogues, colchicine, calcium channel blockers, vitamins K2 and D, magnesium, zinc, curcumin, and phytates. Given that ectopic calcification is sometimes paradoxically associated with reduced bone mineralization, it appears particularly reasonable to employ strategies that can both inhibit ectopic calcification and promote bone mineralization, such as bisphosphonates and the combination of vitamin K2 and vitamin D, along with other supplements such as magnesium and zinc. Future studies need to test whether differential therapeutic approaches are needed in different phases of the disease and whether different mechanisms of ectopic calcification require different therapeutic strategies. A precondition for such approaches is further clinical and/or imaging delineation and differentiation of various types and phases of calcific diseases. Finally, it is essential to ensure that anti-calcification effects of new treatment strategies do not harm bone formation and skeletal mineralization.
Collapse
Affiliation(s)
- Petar Milovanovic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Savic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Popovic
- Center for Physical Medicine and Rehabilitation, University Clinical Center of Serbia, Belgrade, Serbia
| | - Mirko Grajic
- Center for Physical Medicine and Rehabilitation, University Clinical Center of Serbia, Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
5
|
Lin L, Roccuzzo G, Yakymiv Y, Marchisio S, Ortolan E, Funaro A, Senetta R, Pala V, Bagot M, de Masson A, Battistella M, Guenova E, Ribero S, Quaglino P. The CD39/CD73/Adenosine and NAD/CD38/CD203a/CD73 Axis in Cutaneous T-Cell Lymphomas. Cells 2025; 14:309. [PMID: 39996780 PMCID: PMC11854806 DOI: 10.3390/cells14040309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
Cutaneous T-cell lymphoma (CTCL), characterized by malignant T-cell proliferation primarily in the skin, includes subtypes such as mycosis fungoides (MF) and Sézary syndrome (SS). The tumor microenvironment (TME) is central to their pathogenesis, with flow cytometry and histology being the gold standards for detecting malignant T cells within the TME. Alongside emerging molecular markers, particularly clonality analysis, these tools are indispensable for accurate diagnosis and treatment planning. Of note, adenosine signaling within the TME has been shown to suppress immune responses, affecting various cell types. The expression of CD39, CD73, and CD38, enzymes involved in adenosine production, can be elevated in MF and SS, contributing to immune suppression. Conversely, the expression of CD26, part of the adenosine deaminase/CD26 complex, that degrades adenosine, is often lost by circulating tumoral cells. Flow cytometry has demonstrated increased levels of CD39 and CD73 on Sézary cells, correlating with disease progression and prognosis, while CD38 shows a variable expression, with its prognostic significance remaining under investigation. Understanding these markers' roles in the complexity of TME-mediated immune evasion mechanisms might enhance diagnostic precision and offer new therapeutic targets in CTCL.
Collapse
Affiliation(s)
- Liyun Lin
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.L.); (Y.Y.); (S.M.); (E.O.); (A.F.)
| | - Gabriele Roccuzzo
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (V.P.); (P.Q.)
| | - Yuliya Yakymiv
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.L.); (Y.Y.); (S.M.); (E.O.); (A.F.)
| | - Sara Marchisio
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.L.); (Y.Y.); (S.M.); (E.O.); (A.F.)
| | - Erika Ortolan
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.L.); (Y.Y.); (S.M.); (E.O.); (A.F.)
| | - Ada Funaro
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.L.); (Y.Y.); (S.M.); (E.O.); (A.F.)
| | - Rebecca Senetta
- Pathology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy;
| | - Valentina Pala
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (V.P.); (P.Q.)
| | - Martine Bagot
- Dermatology Department, Saint-Louis Hospital, AP-HP, Université Paris Cité, Inserm U976, 75010 Paris, France; (M.B.); (A.d.M.)
| | - Adèle de Masson
- Dermatology Department, Saint-Louis Hospital, AP-HP, Université Paris Cité, Inserm U976, 75010 Paris, France; (M.B.); (A.d.M.)
| | - Maxime Battistella
- Department of Pathology, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Inserm U976, 75010 Paris, France;
| | - Emmanuella Guenova
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, 1007 Lausanne, Switzerland;
- University Institute and Clinic for Immunodermatology, Medical Faculty, Johannes Kepler University, 4020 Linz, Austria
| | - Simone Ribero
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (V.P.); (P.Q.)
| | - Pietro Quaglino
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (V.P.); (P.Q.)
| |
Collapse
|
6
|
Pradhan G, Juvale K. Structure activity relationship for anticancer activities of spirooxindole derivatives: A comprehensive review. Bioorg Chem 2025; 154:107975. [PMID: 39591685 DOI: 10.1016/j.bioorg.2024.107975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Cancer remains one of the leading causes of mortality worldwide, necessitating the continuous search for novel therapeutic agents. Spirooxindole derivatives have recently emerged as a class of compounds with significant potential for cancer treatment owing to their diverse pharmacological activities and unique structural features. The structural diversity of spirooxindole derivatives enables a wide range of modifications, facilitating optimization of their pharmacokinetic and pharmacodynamic properties. Moreover, their ability to interact with multiple molecular targets involved in cancer progression, including kinases, receptors, and enzymes, makes them attractive candidates for multi-targeted therapy. In preclinical studies, numerous spirooxindole derivatives have demonstrated promising antiproliferative activity against various cancer cell lines, including breast, lung, colon, and prostate cancers. Mechanistic investigations have revealed their ability to induce cell cycle arrest and apoptosis and inhibit angiogenesis and metastasis, underscoring their potential as effective anticancer agents. However, challenges such as off-target effects, drug resistance, and limited bioavailability need to be addressed to maximize the therapeutic potential of these compounds. Continued research efforts to elucidate their molecular mechanisms, optimize their pharmacological properties, and conduct rigorous clinical evaluations are warranted to harness their full therapeutic benefits for cancer treatment. This review provides a comprehensive overview of recent advancements in developing spirooxindole derivatives as anticancer agents with structure-activity relationships.
Collapse
Affiliation(s)
- Gandhar Pradhan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
7
|
Liu D, Zhao J, Li L, Wang J, Wang C, Wu Y, Huang Y, Xing D, Chen W. CD73: agent development potential and its application in diabetes and atherosclerosis. Front Immunol 2024; 15:1515875. [PMID: 39735551 PMCID: PMC11672340 DOI: 10.3389/fimmu.2024.1515875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
CD73, an important metabolic and immune escape-promoting gene, catalyzes the hydrolysis of adenosine monophosphate (AMP) to adenosine (ADO). AMP has anti-inflammatory and vascular relaxant properties, while ADO has a strong immunosuppressive effect, suggesting that CD73 has pro-inflammatory and immune escape effects. However, CD73 also decreased proinflammatory reaction, suggesting that CD73 has a positive side to the body. Indeed, CD73 plays a protective role in diabetes, while with age, CD73 changes from anti-atherosclerosis to pro-atherosclerosis. The upregulation of CD73 with agents, including AGT-5, Aire-overexpressing DCs, Aspirin, BAFFR-Fc, CD4+ peptide, ICAs, IL-2 therapies, SAgAs, sCD73, stem cells, RAD51 inhibitor, TLR9 inhibitor, and VD, decreased diabetes and atherosclerosis development. However, the downregulation of CD73 with agents, including benzothiadiazine derivatives and CD73 siRNA, reduced atherosclerosis. Notably, many CD73 agents were investigated in clinical trials. However, no agents were used to treat diabetes and atherosclerosis. Most agents were CD73 inhibitors. Only FP-1201, a CD73 agonist, was investigated in clinical trials but its further development was discontinued. In addition, many lncRNAs, circRNAs, and genes are located at the same chromosomal location as CD73. In particular, circNT5E promoted CD73 expression. circNT5E may be a promising target for agent development. This mini-review focuses on the current state of knowledge of CD73 in diabetes, atherosclerosis, and its potential role in agent development.
Collapse
Affiliation(s)
- Dan Liu
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
| | - Jingjing Zhao
- Sleep Medicine Center, Huai’an No.3 People’s Hospital, Huaian Second Clinical College of Xuzhou Medical University, Huaian, China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Yucun Huang
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| |
Collapse
|
8
|
Abdelmohsen K, Mazan‐Mamczarz K, Munk R, Tsitsipatis D, Meng Q, Rossi M, Pal A, Shin CH, Martindale JL, Piao Y, Fan J, Yanai H, De S, Beerman I, Gorospe M. Identification of senescent cell subpopulations by CITE-seq analysis. Aging Cell 2024; 23:e14297. [PMID: 39143693 PMCID: PMC11561699 DOI: 10.1111/acel.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Cellular senescence, a state of persistent growth arrest, is closely associated with aging and age-related diseases. Deciphering the heterogeneity within senescent cell populations and identifying therapeutic targets are paramount for mitigating senescence-associated pathologies. In this study, proteins on the surface of cells rendered senescent by replicative exhaustion and by exposure to ionizing radiation (IR) were identified using mass spectrometry analysis, and a subset of them was further studied using single-cell CITE-seq (Cellular Indexing of Transcriptomes and Epitopes by Sequencing) analysis. Based on the presence of proteins on the cell surface, we identified two distinct IR-induced senescent cell populations: one characterized by high levels of CD109 and CD112 (cluster 3), the other characterized by high levels of CD112, CD26, CD73, HLA-ABC, CD54, CD49A, and CD44 (cluster 0). We further found that cluster 0 represented proliferating and senescent cells in the G1 phase of the division cycle, and CITE-seq detection of cell surface proteins selectively discerned those in the senescence group. Our study highlights the heterogeneity of senescent cells and underscores the value of cell surface proteins as tools for distinguishing senescent cell programs and subclasses, paving the way for targeted therapeutic strategies in disorders exacerbated by senescence.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | | | - Rachel Munk
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Qiong Meng
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Martina Rossi
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Apala Pal
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Chang Hoon Shin
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Jennifer L. Martindale
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Yulan Piao
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Jinshui Fan
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Hagai Yanai
- Translational Gerontology BranchNational Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Supriyo De
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Isabel Beerman
- Translational Gerontology BranchNational Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Myriam Gorospe
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| |
Collapse
|
9
|
Zhu J, Du W, Zeng Y, Liu T, Li J, Wang A, Li Y, Zhang W, Huang JA, Liu Z. CD73 promotes non-small cell lung cancer metastasis by regulating Axl signaling independent of GAS6. Proc Natl Acad Sci U S A 2024; 121:e2404709121. [PMID: 39423241 PMCID: PMC11513981 DOI: 10.1073/pnas.2404709121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024] Open
Abstract
As catabolic enzyme, CD73 dephosphorylates adenosine monophosphate (AMP) and can also regulate tumor cell proliferation and metastasis. To date, very few studies have explored the role of CD73 in mediating non-small cell lung cancer (NSCLC) metastasis, and the underlying transducing signal has not been elucidated. In the present study, we demonstrated that the CD73/Axl axis could regulate Smad3-induced epithelial-to-mesenchymal transition (EMT) to promote NSCLC metastasis. Mechanically, CD73 can be secreted via the Golgi apparatus transport pathway. Then secreted CD73 may activate AXl by directly bind with site R55 located in Axl extracellular domain independently of GAS6. In addition, we proved that CD73 can stabilize Axl expression via inhibiting CBLB expression. We also identified the distinct function of CD73 activity in adenocarcinoma and squamous cell carcinoma. Our findings indicated a role of CD73 in mediating NSCLC metastasis and propose it as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou215006, China
| | - Wenwen Du
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou215006, China
| | - Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou215006, China
| | - Ting Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou215006, China
| | - Jianjun Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou215006, China
| | - Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou215006, China
| | - Yue Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou215006, China
| | - Weijie Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou215006, China
| | - Jian-an Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou215006, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou215006, China
| |
Collapse
|
10
|
Yu Y, Zhang C, Dong B, Zhang Z, Li X, Huang S, Tang D, Jing X, Yu S, Zheng T, Wu D, Tai S. Neutrophil extracellular traps promote immune escape in hepatocellular carcinoma by up-regulating CD73 through Notch2. Cancer Lett 2024; 598:217098. [PMID: 38969159 DOI: 10.1016/j.canlet.2024.217098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Immune escape is the main reason that immunotherapy is ineffective in hepatocellular carcinoma (HCC). Here, this study illustrates a pathway mediated by neutrophil extracellular traps (NETs) that can promote immune escape of HCC. Mechanistically, we demonstrated that NETs up-regulated CD73 expression through activating Notch2 mediated nuclear factor kappa B (NF-κB) pathway, promoting regulatory T cells (Tregs) infiltration to mediate immune escape of HCC. In addition, we found the similar results in mouse HCC models by hydrodynamic plasmid transfection. The treatment of deoxyribonuclease I (DNase I) could inhibit the action of NETs and improve the therapeutic effect of anti-programmed cell death protein 1 (PD-1). In summary, our results revealed that targeting of NETs was a promising treatment to improve the therapeutic effect of anti-PD-1.
Collapse
Affiliation(s)
- Yang Yu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Congyi Zhang
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Bowen Dong
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Zhihua Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Shizhuan Huang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Daowei Tang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiaowei Jing
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Tongsen Zheng
- Heilongjiang Province Key Laboratory of Molecular Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Dehai Wu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| |
Collapse
|
11
|
Zhao N, Shao Z, Xia G, Liu H, Zhang L, Zhao X, Dang S, Qian L, Xu W, Yu Z, Wang R. Protective role of the CD73-A2AR axis in cirrhotic cardiomyopathy through negative feedback regulation of the NF-κB pathway. Front Immunol 2024; 15:1428551. [PMID: 39086479 PMCID: PMC11288852 DOI: 10.3389/fimmu.2024.1428551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Background Myocardial inflammation and apoptosis induced by cirrhosis are among the primary mechanisms of cirrhotic cardiomyopathy. CD73, a common extracellular nucleotidase also known as 5'-nucleotidase, is associated with the progression of inflammation and immunity in multiple organs. However, the mechanism by which CD73 contributes to myocardial inflammation and apoptosis in cirrhosis remains unclear. Methods In this study, a cirrhotic cardiomyopathy model in mice was established by bile duct ligation. Myocardial-specific overexpression of CD73 was achieved by tail vein injection of AAV9 (adeno-associated virus)-cTNT-NT5E-mCherry, and cardiac function in mice was assessed using echocardiography. Myocardial inflammation infiltration and apoptosis were evaluated through pathological observation and ELISA assays. The expression of CD73, A2AR, apoptotic markers, and proteins related to the NF-κB pathway in myocardial tissue were measured. Results In the myocardial tissue of the cirrhotic cardiomyopathy mouse model, the expression of CD73 and A2AR increased. Overexpression of CD73 in the myocardium via AAV9 injection and stimulation of A2AR with CGS 21680 inhibited myocardial inflammation and cardiomyocyte apoptosis induced by cirrhosis. Additionally, overexpression of CD73 suppressed the activation of the NF-κB pathway by upregulating the expression of the adenosine receptor A2A. Conclusion Our study reveals that the CD73/A2AR signaling axis mitigates myocardial inflammation and apoptosis induced by cirrhosis through negative feedback regulation of the NF-κB pathway.
Collapse
Affiliation(s)
- Ning Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Zhenhao Shao
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Guoqing Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Huanhuan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Zhang
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Xiaoxi Zhao
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Shipeng Dang
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Lingling Qian
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Wentao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhiming Yu
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Ruxing Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| |
Collapse
|
12
|
Ellakany AR, El Baz H, Shoheib ZS, Elzallat M, Ashour DS, Yassen NA. Stem cell-derived exosomes as a potential therapy for schistosomal hepatic fibrosis in experimental animals. Pathog Glob Health 2024; 118:429-449. [PMID: 37519008 PMCID: PMC11338202 DOI: 10.1080/20477724.2023.2240085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease. Egg-induced granuloma formation and tissue fibrosis are the main causes of the high morbidity and mortality of schistosomiasis. Mesenchymal stem cells (MSCs)-derived exosomes play an important role with a superior safety profile than MSCs in the treatment of liver fibrosis. Therefore, the aim of this study was to investigate the potential therapeutic effect of MSCs-derived exosomes on schistosomal hepatic fibrosis. Exosomes were isolated from bone marrow MSCs and characterized. A total of 85 mice were divided into four groups: group I (control group), group II (PZQ group) infected and treated with PZQ, group III (EXO group) infected and treated with MSCs-derived exosomes and group IV (PZQ+EXO group) infected and treated with both PZQ and MSCs-derived exosomes. Assessment of treatment efficacy was evaluated by histopathological and immunohistochemical examination of liver sections by proliferating cell nuclear antigen (PCNA) and nuclear factor-κB (NF-κB). The results showed significant reduction of the number and diameter of hepatic granulomas, hepatic fibrosis, upregulation of PCNA expression and reduction of NF-κB expression in EXO and PZQ+EXO groups as compared to other groups at all durations post infection. Additionally, more improvement was observed in PZQ+EXO group. In conclusion, MSCs-derived exosomes are a promising agent for the treatment of schistosomal hepatic fibrosis, and their combination with PZQ shows a synergistic action including antifibrotic and anti-inflammatory effects. However, further studies are required to establish their functional components and their mechanisms of action.
Collapse
Affiliation(s)
- Asmaa R. Ellakany
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hanan El Baz
- Immunology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Zeinab S. Shoheib
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Elzallat
- Immunology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Dalia S. Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Nabila A. Yassen
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
13
|
Ivanova DV, Khabirov RA, Ziganshin AU. Ectonucleotidase Activity in Smooth Muscle Tissues of Rats with a Valproate Model of Autism. Bull Exp Biol Med 2024; 177:47-50. [PMID: 38955852 DOI: 10.1007/s10517-024-06129-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 07/04/2024]
Abstract
Ectonucleotidases play an important role in regulating the level of extracellular nucleotides and nucleosides and are an important part of the regulation of the effects of adenosine and ATP on adenosine and P2 receptors, respectively. We have previously established the ambiguous effect of P2 receptor agonists on the contractile activity of smooth muscle tissue in rats with the valproate model of autism. In this work, HPLC was used to evaluate the activity of ectonucleotidases in the smooth muscle tissues of the internal organs of rats with a valproate model of autism. The activity of ectonucleotidases was significantly higher in the smooth muscle tissues of the duodenum, vas deferens, and bladder, but lower in the ileum and uterus. The results obtained make it possible to compare the activity of ectonucleotidases identified here with changes in P2 receptor-mediated contractility of smooth muscle tissues revealed in our previous experiments.
Collapse
Affiliation(s)
- D V Ivanova
- Department of Pharmacology, Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Republic of Tatarstan, Russia
| | - R A Khabirov
- Department of Pharmacology, Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Republic of Tatarstan, Russia
| | - A U Ziganshin
- Department of Pharmacology, Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Republic of Tatarstan, Russia.
| |
Collapse
|
14
|
Naß J, Terglane J, Zeuschner D, Gerke V. Evoked Weibel-Palade Body Exocytosis Modifies the Endothelial Cell Surface by Releasing a Substrate-Selective Phosphodiesterase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306624. [PMID: 38359017 PMCID: PMC11040351 DOI: 10.1002/advs.202306624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Weibel Palade bodies (WPB) are lysosome-related secretory organelles of endothelial cells. Commonly known for their main cargo, the platelet and leukocyte receptors von-Willebrand factor (VWF) and P-selectin, WPB play a crucial role in hemostasis and inflammation. Here, the authors identify the glycerophosphodiester phosphodiesterase domain-containing protein 5 (GDPD5) as a WPB cargo protein and show that GDPD5 is transported to WPB following uptake from the plasma membrane via an unique endocytic transport route. GDPD5 cleaves GPI-anchored, plasma membrane-resident proteins within their GPI-motif, thereby regulating their local activity. The authors identify a novel target of GDPD5 , the complement regulator CD59, and show that it is released from the endothelial surface by GDPD5 following WPB exocytosis. This results in increased deposition of complement components and can enhance local inflammatory and thrombogenic responses. Thus, stimulus-induced WPB exocytosis can modify the endothelial cell surface by GDPD5-mediated selective release of a subset of GPI-anchored proteins.
Collapse
Affiliation(s)
- Johannes Naß
- Institute of Medical Biochemistry, Center for Molecular Biology of InflammationUniversity of Muenstervon‐Esmarch‐Str. 5648149MuensterGermany
| | - Julian Terglane
- Institute of Medical Biochemistry, Center for Molecular Biology of InflammationUniversity of Muenstervon‐Esmarch‐Str. 5648149MuensterGermany
| | - Dagmar Zeuschner
- Electron Microscopy FacilityMax Planck Institute for Molecular BiomedicineRoentgenstr. 2048149MuensterGermany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of InflammationUniversity of Muenstervon‐Esmarch‐Str. 5648149MuensterGermany
| |
Collapse
|
15
|
Tsai PC, Ko AMS, Chen YL, Chiu CH, Yeh YH, Tsai FC. Exosomal miRNA Changes Associated with Restoration to Sinus Rhythm in Atrial Fibrillation Patients. Int J Mol Sci 2024; 25:3861. [PMID: 38612670 PMCID: PMC11011649 DOI: 10.3390/ijms25073861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
We aimed to identify serum exosomal microRNAs (miRNAs) associated with the transition from atrial fibrillation (AF) to sinus rhythm (SR) and investigate their potential as biomarkers for the early recurrence of AF within three months post-treatment. We collected blood samples from eight AF patients at Chang Gung Memorial Hospital in Taiwan both immediately before and within 14 days following rhythm control treatment. Exosomes were isolated from these samples, and small RNA sequencing was performed. Using DESeq2 analysis, we identified nine miRNAs (16-2-3p, 22-3p, 23a-3p, 23b-3p, 125a-5p, 328-3p, 423-5p, 504-5p, and 582-3p) associated with restoration to SR. Further analysis using the DIABLO model revealed a correlation between the decreased expression of miR-125a-5p and miR-328-3p and the early recurrence of AF. Furthermore, early recurrence is associated with a longer duration of AF, presumably indicating a more extensive state of underlying cardiac remodeling. In addition, the reads were mapped to mRNA sequences, leading to the identification of 14 mRNAs (AC005041.1, ARHGEF12, AMT, ANO8, BCL11A, DIO3OS, EIF4ENIF1, G2E3-AS1, HERC3, LARS, NT5E, PITX1, SLC16A12, and ZBTB21) associated with restoration to SR. Monitoring these serum exosomal miRNA and mRNA expression patterns may be beneficial for optimizing treatment outcomes in AF patients.
Collapse
Affiliation(s)
- Pei-Chien Tsai
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City 33302, Taiwan; (P.-C.T.); (A.M.-S.K.); (Y.-L.C.)
- Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | - Albert Min-Shan Ko
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City 33302, Taiwan; (P.-C.T.); (A.M.-S.K.); (Y.-L.C.)
- Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Cardiovascular Department, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | - Yu-Lin Chen
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City 33302, Taiwan; (P.-C.T.); (A.M.-S.K.); (Y.-L.C.)
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
- School of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Feng-Chun Tsai
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City 80708, Taiwan
| |
Collapse
|
16
|
Wang H, Cai P, Yu X, Li S, Zhu W, Liu Y, Wang D. Bioinformatics identifies key genes and potential drugs for energy metabolism disorders in heart failure with dilated cardiomyopathy. Front Pharmacol 2024; 15:1367848. [PMID: 38510644 PMCID: PMC10952830 DOI: 10.3389/fphar.2024.1367848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Background: Dysfunction in myocardial energy metabolism plays a vital role in the pathological process of Dilated Cardiomyopathy (DCM). However, the precise mechanisms remain unclear. This study aims to investigate the key molecular mechanisms of energy metabolism and potential therapeutic agents in the progression of dilated cardiomyopathy with heart failure. Methods: Gene expression profiles and clinical data for patients with dilated cardiomyopathy complicated by heart failure, as well as healthy controls, were sourced from the Gene Expression Omnibus (GEO) database. Gene sets associated with energy metabolism were downloaded from the Molecular Signatures Database (MSigDB) for subsequent analysis. Weighted Gene Co-expression Network Analysis (WGCNA) and differential expression analysis were employed to identify key modules and genes related to heart failure. Potential biological mechanisms were investigated through Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the construction of a competing endogenous RNA (ceRNA) network. Molecular docking simulations were then conducted to explore the binding affinity and conformation of potential therapeutic drugs with hub genes. Results: Analysis of the left ventricular tissue expression profiles revealed that, compared to healthy controls, patients with dilated cardiomyopathy exhibited 234 differentially expressed genes and 2 genes related to myocardial energy metabolism. Additionally, Benzoylaconine may serve as a potential therapeutic agent for the treatment of dilated cardiomyopathy. Conclusion: The study findings highlight the crucial role of myocardial energy metabolism in the progression of Dilated Cardiomyopathy. Notably, Benzoylaconine emerges as a potential candidate for treating Dilated Cardiomyopathy, potentially exerting its therapeutic effects by targeted modulation of myocardial energy metabolism through NRK and NT5.
Collapse
Affiliation(s)
- Haixia Wang
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Peifeng Cai
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Xiaohan Yu
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Shiqi Li
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Wei Zhu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, China
| | - Yuntao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Departments of Gynecologic Oncology, Guangzhou, China
| | - Dawei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Departments of Gynecologic Oncology, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Xiang F, Sun L, Cao X, Li Y, Chen X, Zhang Z, Zou J, Teng J, Shen B, Ding X. CD73 as a T cell dysfunction marker predicting cardiovascular and infection events in patients undergoing hemodialysis. Clin Chim Acta 2024; 555:117791. [PMID: 38266969 DOI: 10.1016/j.cca.2024.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND T cell dysfunction observed in patients undergoing hemodialysis (HD) has been linked to an extremely high morbidity of cardiovascular events (CVEs) and infections. The cell-surface 5'-nucleotidase CD73 sets the balance between pro-inflammatory nucleotides and anti-inflammatory adenosine. METHODS A total of 395 patients who had been receiving HD for at least six months were evaluated for proportions of CD73+ cells in both the CD4+ T cell and CD8+ T cell compartment and followed for one year to document CVEs and infections. Differences in the proportions of CD73-expressingT cells between healthy controls and patients undergoing HD were compared. The relationship between CD73+ T cells and clinical outcomes was analyzed using the Kaplan-Meier curve and Cox regression. RESULTS HD was significantly related to a lower fraction of CD4+CD73+ T cells. In patients on HD, lower proportions of CD4+ CD73+T cells and CD8+ CD73+T cells were both associated with systemic inflammation and T cell terminal differentiation. More importantly, a lower CD4+CD73+T cell ratio independently predicted CVEs and infection in these patients. CONCLUSION We identified CD73 as a T cell dysfunction marker predicting cardiovascular and infection events in patients undergoing HD, which provides a potential target in future studies of uremia-related immune dysfunction.
Collapse
Affiliation(s)
- Fangfang Xiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Renal Disease and Blood Purification, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Lin Sun
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuesen Cao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianzhou Zou
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Nephrology, Zhongshan Hospital, Fudan University(Xiamen Branch), Xiamen, Fujian, China; Nephrology Clinical Quality Control Center of Xiamen, Xiamen, Fujian, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Renal Disease and Blood Purification, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Renal Disease and Blood Purification, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China.
| |
Collapse
|
18
|
Bayazitov IT, Teubner BJW, Feng F, Wu Z, Li Y, Blundon JA, Zakharenko SS. Sound-evoked adenosine release in cooperation with neuromodulatory circuits permits auditory cortical plasticity and perceptual learning. Cell Rep 2024; 43:113758. [PMID: 38358887 PMCID: PMC10939737 DOI: 10.1016/j.celrep.2024.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Meaningful auditory memories are formed in adults when acoustic information is delivered to the auditory cortex during heightened states of attention, vigilance, or alertness, as mediated by neuromodulatory circuits. Here, we identify that, in awake mice, acoustic stimulation triggers auditory thalamocortical projections to release adenosine, which prevents cortical plasticity (i.e., selective expansion of neural representation of behaviorally relevant acoustic stimuli) and perceptual learning (i.e., experience-dependent improvement in frequency discrimination ability). This sound-evoked adenosine release (SEAR) becomes reduced within seconds when acoustic stimuli are tightly paired with the activation of neuromodulatory (cholinergic or dopaminergic) circuits or periods of attentive wakefulness. If thalamic adenosine production is enhanced, then SEAR elevates further, the neuromodulatory circuits are unable to sufficiently reduce SEAR, and associative cortical plasticity and perceptual learning are blocked. This suggests that transient low-adenosine periods triggered by neuromodulatory circuits permit associative cortical plasticity and auditory perceptual learning in adults to occur.
Collapse
Affiliation(s)
- Ildar T Bayazitov
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett J W Teubner
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Feng Feng
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhaofa Wu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jay A Blundon
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
19
|
ZHAO Y, LIU X, ZHANG Y, ZHANG J, LIU X, YANG G. [Tandem mass tag-based quantitative proteomics analysis of plasma and plasma exosomes in Parkinson's disease]. Se Pu 2023; 41:1073-1083. [PMID: 38093537 PMCID: PMC10719805 DOI: 10.3724/sp.j.1123.2022.12022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 12/17/2023] Open
Abstract
The cardinal clinical features of Parkinson's disease (PD), a common neurodegenerative disease, include the irreversible impairment of movement coordination, such as tremors, gait rigidity, bradykinesia, and hypokinesia. Although various factors are associated with the pathological changes in PD, such as oxidative stress, mitochondrial dysfunction, and neuroinflammation, the availability of treatments to retard PD progression is limited. Therefore, novel biomarkers for PD diagnosis and therapeutic targets are urgently needed. The diagnosis of PD mainly depends on its clinical manifestations and has an error rate of approximately 20%. Studies have shown that α-synuclein (α-syn) levels are significantly increased in the cerebrospinal fluid of patients with PD; however, the invasive nature of lumbar puncture restricts further studies on its clinical applications. Hence, the development of novel peripheral blood markers would be helpful for the early diagnosis of PD. Exosomes are extracellular vesicles (EVs) released by various cell types under physiological and pathophysiological conditions. Because exosomes carry a variety of bioactive molecules, they play a key role in biological processes such as intercellular communication and the immune response. Central nervous system (CNS)-derived exosomes can be detected in the cerebrospinal and peripheral body fluids of patients with PD, and their contents are altered during the disease process, rendering them an attractive biomarker resource. Therefore, a comprehensive and high-throughput investigation of the plasma and its exosomes may enhance our understanding of PD. In this study, we isolated exosomes from plasma using standard differential centrifugation and performed tandem mass tag (TMT)-labeled quantitative proteomic analysis of plasma and plasma exosome samples from healthy individuals and patients with PD using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 724 proteins were quantified in the plasma samples, and 611 proteins were screened from the exosome samples. Among these 611 proteins, 413 were found in the Exosomal Protein Database (Exocarta). Using |log2FC|>0.26 and P-value (P)<0.05 as the cutoff, five upregulated and six downregulated proteins were identified in the plasma samples of the PD group compared with the healthy group. In the plasma exosome samples, compared with the healthy group, the PD group showed six upregulated and seven downregulated proteins. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted based on gene set enrichment analysis (GSEA). GO-cellular component (CC) analysis revealed that plasma-enriched proteins were mainly located in the nucleus whereas plasma exosome-enriched proteins were mainly located in the cytoplasm. According to the GO-molecular function (MF) analysis, the MFs of differentially expressed proteins in the plasma were mainly enriched in RNA, DNA binding, and complement binding. By contrast, the molecular functions of differentially expressed proteins derived from plasma exosomes were enriched in antioxidant activity, oxidoreductase activity, and peroxide acceptor activity. We then analyzed the enriched KEGG pathways of differentially expressed proteins derived from the plasma and plasma exosome samples. The enrichment pathways of differentially expressed proteins in the plasma samples included the lysosome pathway, cellular senescence, and protein processing in the endoplasmic reticulum. By contrast, the enrichment pathways of differentially expressed proteins in the plasma exosome samples included chemokine signaling and cytokine receptor interactions. Finally, we assessed the functions of some exosomal proteins in PD to elucidate their potential for PD diagnosis and treatment. Significant differences were observed between the plasma and plasma exosome protein profiles, and the functions of differentially expressed proteins in plasma exosomes were strongly related to the pathology of PD. Our study provides a reference for identifying the potential biomarkers and therapeutic targets of PD.
Collapse
|
20
|
Mierzejewska P, Di Marzo N, Zabielska-Kaczorowska MA, Walczak I, Slominska EM, Lavitrano M, Giovannoni R, Kutryb-Zajac B, Smolenski RT. Endothelial Effects of Simultaneous Expression of Human HO-1, E5NT, and ENTPD1 in a Mouse. Pharmaceuticals (Basel) 2023; 16:1409. [PMID: 37895880 PMCID: PMC10610121 DOI: 10.3390/ph16101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The vascular endothelium is key target for immune and thrombotic responses that has to be controlled in successful xenotransplantation. Several genes were identified that, if induced or overexpressed, help to regulate the inflammatory response and preserve the transplanted organ function and metabolism. However, few studies addressed combined expression of such genes. The aim of this work was to evaluate in vivo the effects of the simultaneous expression of three human genes in a mouse generated using the multi-cistronic F2A technology. Male 3-month-old mice that express human heme oxygenase 1 (hHO-1), ecto-5'-nucleotidase (hE5NT), and ecto-nucleoside triphosphate diphosphohydrolase 1 (hENTPD1) (Transgenic) were compared to wild-type FVB mice (Control). Background analysis include extracellular nucleotide catabolism enzymes profile on the aortic surface, blood nucleotide concentration, and serum L-arginine metabolites. Furthermore, inflammatory stress induced by LPS in transgenic and control mice was used to characterize interleukin 6 (IL-6) and adhesion molecules endothelium permeability responses. Transgenic mice had significantly higher rates of extracellular adenosine triphosphate and adenosine monophosphate hydrolysis on the aortic surface in comparison to control. Increased levels of blood AMP and adenosine were also noticed in transgenics. Moreover, transgenic animals demonstrated the decrease in serum monomethyl-L-arginine level and a higher L-arginine/monomethyl-L-arginine ratio. Importantly, significantly decreased serum IL-6, and adhesion molecule levels were observed in transgenic mice in comparison to control after LPS treatment. Furthermore, reduced endothelial permeability in the LPS-treated transgenic mice was noted as compared to LPS-treated control. The human enzymes (hHO-1, hE5NT, hENTPD1) simultaneously encoded in transgenic mice demonstrated benefits in several biochemical and functional aspects of endothelium. This is consistent in use of this approach in the context of xenotransplantation.
Collapse
Affiliation(s)
- Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
| | - Noemi Di Marzo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.D.M.); (M.L.); (R.G.)
| | - Magdalena A. Zabielska-Kaczorowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
- Department of Physiology, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Iga Walczak
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.D.M.); (M.L.); (R.G.)
| | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.D.M.); (M.L.); (R.G.)
- Department of Biology, University of Pisa, 56026 Pisa, Italy
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
| |
Collapse
|
21
|
Vaiasicca S, Melone G, James DW, Quintela M, Preziuso A, Finnell RH, Conlan RS, Francis LW, Corradetti B. Transcriptomic analysis of stem cells from chorionic villi uncovers the impact of chromosomes 2, 6 and 22 in the clinical manifestations of Down syndrome. Stem Cell Res Ther 2023; 14:265. [PMID: 37740230 PMCID: PMC10517537 DOI: 10.1186/s13287-023-03503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Down syndrome (DS) clinical multisystem condition is generally considered the result of a genetic imbalance generated by the extra copy of chromosome 21. Recent discoveries, however, demonstrate that the molecular mechanisms activated in DS compared to euploid individuals are more complex than previously thought. Here, we utilize mesenchymal stem cells from chorionic villi (CV) to uncover the role of comprehensive functional genomics-based understanding of DS complexity. METHODS Next-generation sequencing coupled with bioinformatic analysis was performed on CV obtained from women carrying fetuses with DS (DS-CV) to reveal specific genome-wide transcriptional changes compared to their euploid counterparts. Functional assays were carried out to confirm the biological processes identified as enriched in DS-CV compared to CV (i.e., cell cycle, proliferation features, immunosuppression and ROS production). RESULTS Genes located on chromosomes other than the canonical 21 (Ch. 2, 6 and 22) are responsible for the impairment of life-essential pathways, including cell cycle regulation, innate immune response and reaction to external stimuli were found to be differentially expressed in DS-CV. Experimental validation confirmed the key role of the biological pathways regulated by those genes in the etiology of such a multisystem condition. CONCLUSIONS NGS dataset generated in this study highlights the compromised functionality in the proliferative rate and in the innate response of DS-associated clinical conditions and identifies DS-CV as suitable tools for the development of specifically tailored, personalized intervention modalities.
Collapse
Affiliation(s)
- Salvatore Vaiasicca
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
- Scientific Direction, IRCCS INRCA, Ancona, Italy
| | - Gianmarco Melone
- Centre for NanoHealth, Swansea University Medical School, Singleton Park, Swansea, Wales, UK
| | - David W James
- Centre for NanoHealth, Swansea University Medical School, Singleton Park, Swansea, Wales, UK
| | - Marcos Quintela
- Centre for NanoHealth, Swansea University Medical School, Singleton Park, Swansea, Wales, UK
| | - Alessandra Preziuso
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Richard H Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Robert Steven Conlan
- Centre for NanoHealth, Swansea University Medical School, Singleton Park, Swansea, Wales, UK
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Lewis W Francis
- Centre for NanoHealth, Swansea University Medical School, Singleton Park, Swansea, Wales, UK
| | - Bruna Corradetti
- Centre for NanoHealth, Swansea University Medical School, Singleton Park, Swansea, Wales, UK.
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
22
|
Zhu H, Zhang M, Ye Y, Liu Z, Wang J, Wu X, Lv X. CD73 mitigates hepatic damage in alcoholic steatohepatitis by regulating PI3K/AKT-mediated hepatocyte pyroptosis. Biochem Pharmacol 2023; 215:115753. [PMID: 37611643 DOI: 10.1016/j.bcp.2023.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Alcohol use is a major risk factor for death and disability, resulting in a significant global disease burden. Alcoholic steatohepatitis (ASH) reflects an acute exacerbation of alcoholic liver disease (ALD) and is a growing health care and economic burden worldwide. Pyroptosis plays a central role in the pathogenesis of ASH. Nt5e (CD73) is a cell surface ecto-5'-nucleotidase, which is a key enzyme that converts the proinflammatory signal ATP to the anti-inflammatory mediator adenosine (ADO). Studies have found that CD73 is involved in multiple diseases and can alleviate gasdermin D (GSDMD)-mediated pyroptosis; however, its role and mechanism in ASH are not explicit. AIM To investigate the role and mechanisms of CD73-mediated hepatocyte pyroptosis in alcohol-induced liver injury through in vivo and in vitro experiments. METHODS CD73 knockout (CD73-/-) mice, wild-type (WT) mice, and AML-12 cells were used to evaluate the effect of CD73 on hepatocyte pyroptosis in vivo and in vitro. A combination of molecular and histological methods was performed to assess pyroptosis and investigate the mechanism both in vivo and in vitro. RESULTS The protein expression of CD73 and pyroptosis pathway-associated genes was increased significantly in hepatocyte injury model both in vivo and in vitro. In vivo, CD73 knockout dramatically aggravated inflammatory damage, lipid accumulation, and hepatocyte pyroptosis in the liver. In vitro, overexpression of CD73 by pEGFP-C1/CD73 can decrease NLRP3 inflammasome activation and pyroptosis in hepatocytes. Further analysis revealed that the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway is a possible mechanism of CD73 regulation. Meanwhile, this pathological process was inhibited after the use of PI3K inhibitors. CONCLUSION Our results show a novel function of CD73 regulates hepatocytes pyroptosis and highlights the therapeutic opportunity for reducing the disease process in ALD.
Collapse
Affiliation(s)
- Hong Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Mengda Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Ying Ye
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Zhenni Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jianpeng Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Xue Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
23
|
Effer B, Perez I, Ulloa D, Mayer C, Muñoz F, Bustos D, Rojas C, Manterola C, Vergara-Gómez L, Dappolonnio C, Weber H, Leal P. Therapeutic Targets of Monoclonal Antibodies Used in the Treatment of Cancer: Current and Emerging. Biomedicines 2023; 11:2086. [PMID: 37509725 PMCID: PMC10377242 DOI: 10.3390/biomedicines11072086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the leading global causes of death and disease, and treatment options are constantly evolving. In this sense, the use of monoclonal antibodies (mAbs) in immunotherapy has been considered a fundamental aspect of modern cancer therapy. In order to avoid collateral damage, it is indispensable to identify specific molecular targets or biomarkers of therapy and/or diagnosis (theragnostic) when designing an appropriate immunotherapeutic regimen for any type of cancer. Furthermore, it is important to understand the currently employed mAbs in immunotherapy and their mechanisms of action in combating cancer. To achieve this, a comprehensive understanding of the biology of cancer cell antigens, domains, and functions is necessary, including both those presently utilized and those emerging as potential targets for the design of new mAbs in cancer treatment. This review aims to provide a description of the therapeutic targets utilized in cancer immunotherapy over the past 5 years, as well as emerging targets that hold promise as potential therapeutic options in the application of mAbs for immunotherapy. Additionally, the review explores the mechanisms of actin of the currently employed mAbs in immunotherapy.
Collapse
Affiliation(s)
- Brian Effer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Isabela Perez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Daniel Ulloa
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolyn Mayer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisca Muñoz
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Diego Bustos
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudio Rojas
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carlos Manterola
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis Vergara-Gómez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Dappolonnio
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Helga Weber
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Pamela Leal
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
24
|
Bach N, Winzer R, Tolosa E, Fiedler W, Brauneck F. The Clinical Significance of CD73 in Cancer. Int J Mol Sci 2023; 24:11759. [PMID: 37511518 PMCID: PMC10380759 DOI: 10.3390/ijms241411759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The search for new and effective treatment targets for cancer immunotherapy is an ongoing challenge. Alongside the more established inhibitory immune checkpoints, a novel potential target is CD73. As one of the key enzymes in the purinergic signalling pathway CD73 is responsible for the generation of immune suppressive adenosine. The expression of CD73 is higher in tumours than in the corresponding healthy tissues and associated with a poor prognosis. CD73, mainly by the production of adenosine, is critical in the suppression of an adequate anti-tumour immune response, but also in promoting cancer cell proliferation, tumour growth, angiogenesis, and metastasis. The upregulation of CD73 and generation of adenosine by tumour or tumour-associated immune cells is a common resistance mechanism to many cancer treatments such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Therefore, the inhibition of CD73 represents a new and promising approach to increase therapy efficacy. Several CD73 inhibitors have already been developed and successfully demonstrated anti-cancer activity in preclinical studies. Currently, clinical studies evaluate CD73 inhibitors in different therapy combinations and tumour entities. The initial results suggest that inhibiting CD73 could be an effective option to augment anti-cancer immunotherapeutic strategies. This review provides an overview of the rationale behind the CD73 inhibition in different treatment combinations and the role of CD73 as a prognostic marker.
Collapse
Affiliation(s)
- Niklas Bach
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Riekje Winzer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
25
|
Qi C, Feng Y, Jiang Y, Chen W, Vakal S, Chen JF, Zheng W. A 2AR antagonist treatment for multiple sclerosis: Current progress and future prospects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:185-223. [PMID: 37741692 DOI: 10.1016/bs.irn.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Emerging evidence suggests that both selective and non-selective Adenosine A2A receptor (A2AR) antagonists could effectively protect mice from experimental autoimmune encephalomyelitis (EAE), which is the most commonly used animal model for multiple sclerosis (MS) research. Meanwhile, the recent FDA approval of Nourianz® (istradefylline) in 2019 as an add-on treatment to levodopa in Parkinson's disease (PD) with "OFF" episodes, along with its proven clinical safety, has prompted us to explore the potential of A2AR antagonists in treating multiple sclerosis (MS) through clinical trials. However, despite promising findings in experimental autoimmune encephalomyelitis (EAE), the complex and contradictory role of A2AR signaling in EAE pathology has raised concerns about the feasibility of using A2AR antagonists as a therapeutic approach for MS. This review addresses the potential effect of A2AR antagonists on EAE/MS in both the peripheral immune system (PIS) and the central nervous system (CNS). In brief, A2AR antagonists had a moderate effect on the proliferation and inflammatory response, while exhibiting a potent anti-inflammatory effect in the CNS through their impact on microglia, astrocytes, and the endothelial cells/epithelium of the blood-brain barrier. Consequently, A2AR signaling remains an essential immunomodulator in EAE/MS, suggesting that A2AR antagonists hold promise as a drug class for treating MS.
Collapse
Affiliation(s)
- Chenxing Qi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yijia Feng
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yiwei Jiang
- Alberta Institute, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wangchao Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jiang-Fan Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wu Zheng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.
| |
Collapse
|
26
|
Qile M, Xu Q, Ye Y, Liu H, Gomchok D, Liu J, Wuren T, Ge RL. Erythrocytes Display Metabolic Changes in High-Altitude Polycythemia. High Alt Med Biol 2023; 24:104-109. [PMID: 37195723 DOI: 10.1089/ham.2022.0151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Qile, Muge, Qiying Xu, Yi Ye, Huifang Liu, Drolma Gomchok, Juanli Liu, Tana Wuren, and Ri-Li Ge. Erythrocytes display metabolic changes in high-altitude polycythemia. High Alt Med Biol. 24:104-109, 2023. Background: Sphingosine-1-phosphate (S1P) levels are increased after acute exposure to high altitude; however, whether this effect is observed in chronic high-altitude hypoxia is unknown. Methods: We studied erythrocyte S1P levels in 13 subjects with high-altitude polycythemia (HAPC) and 13 control subjects and also used a mouse model of HAPC. HAPC subjects lived in Maduo (4,300 m altitude) for 10 years, whereas control subjects lived permanently in Xining (2,260 m). The mouse model of HAPC was established by stimulating an altitude of 5,000 m in a hypobaric chamber for 30 days. Hematology and S1P, CD73, 2,3-bisphosphoglycerate (2,3-BPG), and reticulocyte levels were measured. Results: The hemoglobin concentration and number of red blood cells were significantly elevated in human and mouse HAPC groups. Blood S1P levels in HAPC subjects and mice were higher than those in control groups (p < 0.05 and p < 0.001, respectively). 2,3-BPG and CD73 levels in HAPC subjects were significantly higher than those in control subjects (p < 0.05). No significant changes in reticulocyte levels were observed. Conclusions: The critical altitude-induced metabolic changes such as S1P retained high levels even after prolonged exposure, and it may inspire future research into therapeutic strategies for hypoxia-associated illnesses.
Collapse
Affiliation(s)
- Muge Qile
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai, China
| | - Qiying Xu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai, China
| | - Yi Ye
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai, China
| | - Huifang Liu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai, China
| | - Drolma Gomchok
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai, China
| | - Juanli Liu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai, China
| | - Tana Wuren
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai, China
| | - Ri-Li Ge
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai, China
| |
Collapse
|
27
|
CD73: Friend or Foe in Lung Injury. Int J Mol Sci 2023; 24:ijms24065545. [PMID: 36982618 PMCID: PMC10056814 DOI: 10.3390/ijms24065545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Ecto-5′-nucleotidase (CD73) plays a strategic role in calibrating the magnitude and chemical nature of purinergic signals that are delivered to immune cells. Its primary function is to convert extracellular ATP to adenosine in concert with ectonucleoside triphosphate diphosphohydrolase-1 (CD39) in normal tissues to limit an excessive immune response in many pathophysiological events, such as lung injury induced by a variety of contributing factors. Multiple lines of evidence suggest that the location of CD73, in proximity to adenosine receptor subtypes, indirectly determines its positive or negative effect in a variety of organs and tissues and that its action is affected by the transfer of nucleoside to subtype-specific adenosine receptors. Nonetheless, the bidirectional nature of CD73 as an emerging immune checkpoint in the pathogenesis of lung injury is still unknown. In this review, we explore the relationship between CD73 and the onset and progression of lung injury, highlighting the potential value of this molecule as a drug target for the treatment of pulmonary disease.
Collapse
|
28
|
Parhizkar F, Kiani A, Darzi S, Motavalli R, Noori Dolama F, Yousefzadeh Y, Aghebati-Maleki L, Pia H, Abdollahi-Fard S, Mardi A, Danaii S, Ahmadian Heris J, Yousefi M, Soltani-Zangbar MS. The evaluation of CD39, CD73, and HIF-1 α expression besides their related miRNAs in PBMCs of women with recurrent pregnancy loss. J Reprod Immunol 2023; 156:103820. [PMID: 36758470 DOI: 10.1016/j.jri.2023.103820] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/24/2022] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
The molecular mechanisms involved in the pathogenesis of recurrent pregnancy loss (RPL) are not completely recognized. The present study aimed to assess the molecules associated with ATP catabolism and hypoxia besides their related miRNAs in patients with RPL. The frequency of Th17 and Treg cells in PBMCs of RPL women and healthy pregnant women were evaluated with Flow cytometry. The expression levels of CD39, CD73, and Hypoxia-inducible factor-alpha (HIF-1α), miR-18a, miR-30a, and miR-206 in PBMCs of two groups were measured with real-time PCR and western blotting. Then, serum levels of IGF-1, TGF-β, and HIF-1α were measured by ELISA. Our results indicated a higher (p = 0.0002) and lower (p < 0.0001) frequency of Th17 and Treg lymphocytes in RPL women, respectively. The expression level of CD39 decreased in PBMCs of RPL women whereas the level of CD73 and HIF-α increased (p = 0.0010, 0.0023, 0.0006 respectively). The results of CD39 and CD37 were also confirmed by protein analysis (p = 0.0047, 0.0364 respectively). Almost, the same results for CD39 and CD73 expression at mRNA and protein levels were observed in isolated Treg cells. Moreover, we found the higher expression of miR-206 and miRNA-30a (p = 0.0038, 0.0123), but the lower expression of miRNA-18a (p = 0.0101) in RPL. The concentration level of IGF-1, and TGF-β reduced (p = 0.0017, 0.0065 respectively) while the level of HIF-α elevated (p = 0.0235) in serum samples of RPL. In conclusion, we observed the dysregulation of molecules that are involved in ATP catabolism and hypoxia, including CD39, CD73, and HIF-1a which is related to miR-18a, miR-30a, and miR-206 change in RPL women. It may be potentially used for RPL prognosis by more comprehensive future studies.
Collapse
Affiliation(s)
- Forough Parhizkar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Kiani
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Satinik Darzi
- Department of Obstetrics and Gynecology, Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Faculty of Advanced Medical sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yousef Yousefzadeh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Helen Pia
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amirhossein Mardi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART center, Eastern Azerbaijan branch of ACECR, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Sadegh Soltani-Zangbar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
das Neves GM, Kagami LP, Battastini AMO, Figueiró F, Eifler-Lima VL. Targeting ecto-5'-nucleotidase: A comprehensive review into small molecule inhibitors and expression modulators. Eur J Med Chem 2023; 247:115052. [PMID: 36599229 DOI: 10.1016/j.ejmech.2022.115052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
The purinergic signaling has drawn attention from academia and more recently from pharmaceutical industries as a potential therapeutic route for cancer treatment, since ATP may act as chemotactic agent and possess in vitro antineoplastic activity. On the other way, adenosine, produced in extracellular medium by ecto-5'-NT, acts as immunosuppressor and is related to neoangiogenesis, vasculogenesis and evasion to the immune system. Consequently, inhibitors of ecto-5'-NT may prevent tumor progression, reducing adenosine concentrations, preventing escape from the host's immune system and slowing cancer's growth. This review aims to highlight important biochemical and structural features of ecto-5'NT, highlight its expression profile in normal and cancer cell lines detailing compounds which may act as expression regulators and to review the several classes of ecto-5'NT inhibitors developed in the past 12 years, in order to build a general structure-activity relationship model to guide further compound design.
Collapse
Affiliation(s)
- Gustavo Machado das Neves
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luciano Porto Kagami
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Laboratório de Imunobioquímica do Câncer (LIBC), Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabrício Figueiró
- Laboratório de Imunobioquímica do Câncer (LIBC), Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vera Lucia Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Li H, Xie P, Li P, Du Y, Zhu J, Yuan Y, Wu C, Shi Y, Huang Z, Wang X, Liu D, Liu W. CD73/NT5E is a Potential Biomarker for Cancer Prognosis and Immunotherapy for Multiple Types of Cancers. Adv Biol (Weinh) 2023; 7:e2200263. [PMID: 36480312 DOI: 10.1002/adbi.202200263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Indexed: 12/14/2022]
Abstract
Cluster of Differentiations 73 (CD73)/ecto-5'-nucleotidase (NT5E) is a novel type of immune molecular marker expressed on many tumor cells and involved in regulating the essential immune functions and affecting the prognosis of cancer patients. However, it is not clear how the NT5E is linked to the infiltration levels of the immune cells in pan-cancer patients and their final prognosis. This study explores the role of NT5E in 33 tumor types using GEPIA, TIMER, Oncomine, BioGPS databases, and several bioinformatic tools. The findings reveal that the NT5E is abnormally expressed in a majority of the types of cancers and can be used for determining the prognosis prediction ability of different cancers. Moreover, NT5E is significantly related to the infiltration status of numerous immune cells, immune-activated pathways, and immunoregulator expressions. Last, specific inhibitor molecules, like NORNICOTINE, AS-703026, and FOSTAMATINIB, which inhibit the expression of NT5E in various types of cancers, are screened with the CMap. Thus, it is proposed that NT5E can be utilized as a potential biomarker for predicting the prognosis of cancer patients and determining the infiltration of various immune cells in different types of cancers.
Collapse
Affiliation(s)
- Huisheng Li
- Department of Maxillofacial & Otorhinolaryngology Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Peng Xie
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Ping Li
- Department of Maxillofacial & Otorhinolaryngology Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Yuheng Du
- Department of Maxillofacial & Otorhinolaryngology Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Jiajia Zhu
- Department of Maxillofacial & Otorhinolaryngology Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Yudong Yuan
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Chao Wu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Yantao Shi
- Department of Technology, Swanshine (Tianjin) Biotechnology Development Co. Ltd, Anime East Road, Airport Economic Zone, Tianjin, 300308, China
| | - Zhiyong Huang
- Department of Industrial Biosystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Xiqi Road Airport Economic Zone, Tianjin, 300308, China
| | - Xudong Wang
- Department of Maxillofacial & Otorhinolaryngology Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Dongying Liu
- Department of Pain Management, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Weishuai Liu
- Department of Pain Management, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| |
Collapse
|
31
|
Sutton NR, Malhotra R, Hilaire C, Aikawa E, Blumenthal RS, Gackenbach G, Goyal P, Johnson A, Nigwekar SU, Shanahan CM, Towler DA, Wolford BN, Chen Y. Molecular Mechanisms of Vascular Health: Insights From Vascular Aging and Calcification. Arterioscler Thromb Vasc Biol 2023; 43:15-29. [PMID: 36412195 PMCID: PMC9793888 DOI: 10.1161/atvbaha.122.317332] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular disease is the most common cause of death worldwide, especially beyond the age of 65 years, with the vast majority of morbidity and mortality due to myocardial infarction and stroke. Vascular pathology stems from a combination of genetic risk, environmental factors, and the biologic changes associated with aging. The pathogenesis underlying the development of vascular aging, and vascular calcification with aging, in particular, is still not fully understood. Accumulating data suggests that genetic risk, likely compounded by epigenetic modifications, environmental factors, including diabetes and chronic kidney disease, and the plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype are major determinants of age-associated vascular calcification. Understanding the molecular mechanisms underlying genetic and modifiable risk factors in regulating age-associated vascular pathology may inspire strategies to promote healthy vascular aging. This article summarizes current knowledge of concepts and mechanisms of age-associated vascular disease, with an emphasis on vascular calcification.
Collapse
Affiliation(s)
- Nadia R. Sutton
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rajeev Malhotra
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Cynthia Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, 1744 BSTWR, 200 Lothrop St, Pittsburgh, PA, 15260 USA
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Roger S. Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease; Baltimore, MD
| | - Grace Gackenbach
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Parag Goyal
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Adam Johnson
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Sagar U. Nigwekar
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Catherine M. Shanahan
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| | - Dwight A. Towler
- Department of Medicine | Endocrine Division and Pak Center for Mineral Metabolism Research, UT Southwestern Medical Center, Dallas, TX USA
| | - Brooke N. Wolford
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham and Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| |
Collapse
|
32
|
Shi H, Dai H, Sun Q, Wang S, Chen Y. CD73, a significant protein in liver diseases. Front Med (Lausanne) 2023; 10:1147782. [PMID: 37122331 PMCID: PMC10130655 DOI: 10.3389/fmed.2023.1147782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Purine adenosine pathway exists widely in the body metabolism, and is involved in regulating various physiological processes. It is one of the important pathways of environmental regulation in human body. CD73 is essentially a protease that catalyzes further dephosphorylation of extracellular adenine nucleotides, hydrolyzing extracellular AMP to adenosine and phosphate. CD73 is an important part of the adenosine signaling pathway. Studies have shown that CD73-mediated adenosine pathway can convert the inflammatory ATP into the immunosuppressant adenosine. This paper aims to summarize the relevant effects of CD73 in the occurrence, development and prognosis of liver diseases such as viral hepatitis, highlight the important role of CD73 in liver diseases, especially in viral hepatitis such as HBV and HCV, and explore new clinical ideas for future treatment targets of liver diseases.
Collapse
Affiliation(s)
- Huilian Shi
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- *Correspondence: Huilian Shi,
| | - Heng Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qianqian Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Siliang Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Yuanyuan Chen,
| |
Collapse
|
33
|
CD73-Adenosinergic Axis Mediates the Protective Effect of Extracellular Vesicles Derived from Mesenchymal Stromal Cells on Ischemic Renal Damage in a Rat Model of Donation after Circulatory Death. Int J Mol Sci 2022; 23:ijms231810681. [PMID: 36142593 PMCID: PMC9501320 DOI: 10.3390/ijms231810681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/21/2022] Open
Abstract
We propose a new organ-conditioning strategy based on mesenchymal stromal cell (MSCs)/extracellular vesicle (EVs) delivery during hypothermic perfusion. MSCs/EVs marker CD73 is present on renal proximal tubular cells, and it protects against renal ischemia-reperfusion injury by converting adenosine monophosphate into adenosine (ADO). In this study, after checking if CD73-silenced EVs (EVsi) would impact in vitro tubular-cell proliferation, we perfused kidneys of a rat model of donation after circulatory death, with Belzer solution (BS) alone, BS supplemented with MSCs, EVs, or EVsi. The ADO and ATP levels were measured in the effluents and tissues. Global renal ischemic damage score (GRS), and tubular cell proliferation index (IPT) were evaluated in the tissue. EVsi did not induce cell proliferation in vitro. Ex vivo kidneys perfused with BS or BS + EVsi showed the worst GRS and higher effluent ADO levels than the MSC- and EV-perfused kidneys. In the EV-perfused kidneys, the tissue and effluent ATP levels and IPT were the highest, but not if CD73 was silenced. Tissue ATP content was positively correlated with tissue ADO content and negatively correlated with effluent ADO level in all groups. In conclusion, kidney conditioning with EVs protects against ischemic damage by activating the CD73/ADO system.
Collapse
|
34
|
Wang J, Liu X, Jin T, Cao Y, Tian Y, Xu F. NK cell immunometabolism as target for liver cancer therapy. Int Immunopharmacol 2022; 112:109193. [PMID: 36087507 DOI: 10.1016/j.intimp.2022.109193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Natural killer (NK) cells are being used effectively as a potential candidate in tumor immunotherapy. However, the migration and transport of NK cells to solid tumors is inadequate. NK cell dysfunction, tumor invasiveness, and metastasis are associated with altered metabolism of NK cells in the liver cancer microenvironment. However, in liver cancers, metabolic impairment of NK cells is still not understood fully. Evidence from various sources has shown that the interaction of NK cell's immune checkpoints with its metabolic checkpoints is responsible for the regulation of the development and function of these cells. How immune checkpoints contribute to metabolic programming is still not fully understood, and how this can be beneficial needs a better understanding, but they are emerging to be incredibly compelling to rebuilding the function of NK cells in the tumor. It is expected to represent a potential aim that focuses on improving the efficacy of therapies based on NK cells for treating liver cancer. Here, the recent advancements made to understand the NK cell's metabolic reprogramming in liver cancer have been summarized, along with the possible interplay between the immune and the metabolic checkpoints in NK cell function. Finally, an overview of some potential metabolic-related targets that can be used for liver cancer therapy treatment has been presented.
Collapse
Affiliation(s)
- Junqi Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaolin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yuqing Cao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
35
|
Chen XM, Liu YY, Tao BY, Xue XM, Zhang XX, Wang LL, Zhong H, Zhang J, Yang SM, Jiang QQ. NT5E upregulation in head and neck squamous cell carcinoma: A novel biomarker on cancer-associated fibroblasts for predicting immunosuppressive tumor microenvironment. Front Immunol 2022; 13:975847. [PMID: 36091055 PMCID: PMC9458906 DOI: 10.3389/fimmu.2022.975847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Despite tremendous progress made in the diagnosis and managements, head and neck squamous cell carcinoma (HNSC) remains a global medical dilemma with dismal clinical prognosis and high mortality. Gene NT5E encodes the ecto-5’-nucleotidase (CD73), which facilitates the formation of immunosuppressive tumor microenvironment (TME) permissive for tumor progression in various malignancies. Nevertheless, the cell subsets NT5E expressed on and the potential function of NT5E in the TME of HNSC remain virgin lands in HNSC. In this study, we comprehensively performed integrated prognostic analysis and elucidated that NT5E was an independent prognostic indicator for HNSC, for which a high NT5E level predicted poor overall survival (OS), disease-specific survival (DSS) and progression-free interval (PFI) in HNSC patients (p<0.05). Enrichment analyses revealed the close correlation between NT5E and ECM remodeling, and the latent function of NT5E may involve in epithelial-to-mesenchymal transition (EMT) and metastasis during HNSC progression. HNSC-related immune infiltration analysis and single-cell type analysis demonstrated that NT5E expression was significantly positively associated with cancer-associated fibroblasts (CAFs) in HNSC (p<0.01). NT5E-related TME analysis revealed that NT5E-high group are characterized by low neoantigen loads (NAL, p<0.001) and tumor mutation burden (TMB, p<0.01), indicating high-NT5E-expression HNSC patients may be recalcitrant to immunotherapy. In-situ multicolor immunofluorescence staining was later conducted and the results further verified our findings. Taken together, NT5E could be a novel biomarker in HNSC. Predominantly expressed on CAFs, the upregulation of NT5E might predict an immunosuppressive TME for HNSC patients who may benefit little from immunotherapy. Targeting CAFs with high NT5E expression might be a novel therapeutic strategy for HNSC patients.
Collapse
Affiliation(s)
- Xue-min Chen
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Yu-yang Liu
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Neurosurgery, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Bing-yan Tao
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Neurosurgery, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Xin-miao Xue
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Xin-xin Zhang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Lin-lin Wang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Hui Zhong
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
- Southern Medical University, Guangzhou, China
| | - Jun Zhang
- Department of Neurosurgery, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Qing-qing Jiang, ; Shi-ming Yang, ; Jun Zhang,
| | - Shi-ming Yang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
- *Correspondence: Qing-qing Jiang, ; Shi-ming Yang, ; Jun Zhang,
| | - Qing-qing Jiang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
- *Correspondence: Qing-qing Jiang, ; Shi-ming Yang, ; Jun Zhang,
| |
Collapse
|
36
|
Zhou X, Jin S, Pan J, Lin Q, Yang S, Ambe PC, Basharat Z, Zimmer V, Wang W, Hong W. Damage associated molecular patterns and neutrophil extracellular traps in acute pancreatitis. Front Cell Infect Microbiol 2022; 12:927193. [PMID: 36034701 PMCID: PMC9411527 DOI: 10.3389/fcimb.2022.927193] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
Previous researches have emphasized a trypsin-centered theory of acute pancreatitis (AP) for more than a century. With additional studies into the pathogenesis of AP, new mechanisms have been explored. Among them, the role of immune response bears great importance. Pro-inflammatory substances, especially damage-associated molecular patterns (DAMPs), play an essential role in activating, signaling, and steering inflammation. Meanwhile, activated neutrophils attach great importance to the immune defense by forming neutrophil extracellular traps (NETs), which cause ductal obstruction, premature trypsinogen activation, and modulate inflammation. In this review, we discuss the latest advances in understanding the pathological role of DAMPs and NETs in AP and shed light on the flexible crosstalk between these vital inflammatory mediators. We, then highlight the potentially promising treatment for AP targeting DAMPs and NETs, with a focus on novel insights into the mechanism, diagnosis, and management of AP.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shengchun Jin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingyi Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingyi Lin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shaopeng Yang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peter C. Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Bensberg, Germany
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Vincent Zimmer
- Department of Medicine, Marienhausklinik St. Josef Kohlhof, Neunkirchen, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wandong Hong, ; Wei Wang,
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wandong Hong, ; Wei Wang,
| |
Collapse
|
37
|
Ren Y, Song J, Li X, Luo N. Rationale and Clinical Research Progress on PD-1/PD-L1-Based Immunotherapy for Metastatic Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23168878. [PMID: 36012144 PMCID: PMC9408844 DOI: 10.3390/ijms23168878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 01/23/2023] Open
Abstract
Metastatic triple-negative breast cancer (mTNBC), a highly aggressive and malignant tumor, currently lacks an effective treatment. There has been some progress in the treatment of mTNBC with programmed death receptor-1/programmed death ligand-1 (PD-1/PD-L1) immunotherapy in recent years. The combination of PD-1/PD-L1 inhibitors with other therapies is a noteworthy treatment strategy. Immunotherapy in combination with chemotherapy or small-molecule inhibitors still faces many challenges. Additionally, there are some new immunotherapy targets in development. We aimed to further evaluate the effectiveness and usefulness of immunotherapy for treating mTNBC and to propose new immunotherapy strategies. This review explains the rationale and results of existing clinical trials evaluating PD-1/PD-L1 inhibitors alone or in combination for the treatment of mTNBC. For patients with aggressive tumors and poor health, PD-1/PD-L1 inhibitors, either alone or in combination with other modalities, have proven to be effective. However, more research is needed to explore more effective immunotherapy regimens that will lead to new breakthroughs in the treatment of mTNBC.
Collapse
|
38
|
Zhou W, Yu T, Hua Y, Hou Y, Ding Y, Nie H. Effects of Hypoxia on Respiratory Diseases: Perspective View of Epithelial Ion Transport. Am J Physiol Lung Cell Mol Physiol 2022; 323:L240-L250. [PMID: 35819839 DOI: 10.1152/ajplung.00065.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The balance of gas exchange and lung ventilation is essential for the maintenance of body homeostasis. There are many ion channels and transporters in respiratory epithelial cells, including epithelial sodium channel, Na,K-ATPase, cystic fibrosis transmembrane conductance regulator, and some transporters. These ion channels/transporters maintain the capacity of liquid layer on the surface of respiratory epithelial cells, and provide an immune barrier for the respiratory system to clear off foreign pathogens. However, in some harmful external environment and/or pathological conditions, the respiratory epithelium is prone to hypoxia, which would destroy the ion transport function of the epithelium and unbalance the homeostasis of internal environment, triggering a series of pathological reactions. Many respiratory diseases associated with hypoxia manifest an increased expression of hypoxia-inducible factor-1, which mediates the integrity of the epithelial barrier and affects epithelial ion transport function. It is important to study the relationship between hypoxia and ion transport function, whereas the mechanism of hypoxia-induced ion transport dysfunction in respiratory diseases is not clear. This review focuses on the relationship of hypoxia and respiratory diseases, as well as dysfunction of ion transport and tight junctions in respiratory epithelial cells under hypoxia.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yu Hua
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
39
|
Ishida M, Maki Y, Ninomiya A, Takada Y, Campeau P, Kinoshita T, Murakami Y. Ethanolamine-phosphate on the second mannose is a preferential bridge for some GPI-anchored proteins. EMBO Rep 2022; 23:e54352. [PMID: 35603428 PMCID: PMC9253782 DOI: 10.15252/embr.202154352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 09/10/2023] Open
Abstract
Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor many proteins (GPI-APs) on the cell surface. The core glycan of GPI precursor has three mannoses, which in mammals, are all modified by ethanolamine-phosphate (EthN-P). It is postulated that EthN-P on the third mannose (EthN-P-Man3) is the bridge between GPI and the protein and the second (EthN-P-Man2) is removed after GPI-protein attachment. However, EthN-P-Man2 may not be always transient, as mutations of PIGG, the enzyme that transfers EthN-P to Man2, result in inherited GPI deficiencies (IGDs), characterized by neuronal dysfunctions. Here, we show that EthN-P on Man2 is the preferential bridge in some GPI-APs, among them, the Ect-5'-nucleotidase and Netrin G2. We find that CD59, a GPI-AP, is attached via EthN-P-Man2 both in PIGB-knockout cells, in which GPI lacks Man3, and with a small fraction in wild-type cells. Our findings modify the current view of GPI anchoring and provide a mechanistic basis for IGDs caused by PIGG mutations.
Collapse
Affiliation(s)
- Mizuki Ishida
- Yabumoto Department of Intractable Disease ResearchResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Yuta Maki
- Department of ChemistryOsaka UniversityToyonakaJapan
- Project Research Center for Fundamental SciencesGraduate School of ScienceOsaka UniversityToyonakaJapan
| | - Akinori Ninomiya
- Central Instrumentation LaboratoryResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Yoko Takada
- WPI Immunology Frontier Research CenterOsaka UniversitySuitaJapan
| | - Philippe Campeau
- Department of PediatricsCHU Sainte‐Justine and University of MontrealMontrealQCCanada
| | - Taroh Kinoshita
- Yabumoto Department of Intractable Disease ResearchResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
- WPI Immunology Frontier Research CenterOsaka UniversitySuitaJapan
- Center for Infectious Disease Education and ResearchOsaka UniversitySuitaJapan
| | - Yoshiko Murakami
- Yabumoto Department of Intractable Disease ResearchResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
- WPI Immunology Frontier Research CenterOsaka UniversitySuitaJapan
| |
Collapse
|
40
|
Xue F, Wang T, Shi H, Feng H, Feng G, Wang R, Yao Y, Yuan H. CD73 facilitates invadopodia formation and boosts malignancy of head and neck squamous cell carcinoma via the MAPK signaling pathway. Cancer Sci 2022; 113:2704-2715. [PMID: 35657703 PMCID: PMC9357645 DOI: 10.1111/cas.15452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Elevated adenosine generated by CD73 (ecto‐5′‐nucleotidase; NT5E) could boost immunosuppressive responses and promote immune evasion in the tumor microenvironment. However, despite the immune response, CD73 could also promote tumor progression in a variety of cancers, and the nonimmunologic role and corresponding molecular mechanism of CD73 involved in head and neck squamous cell carcinoma (HNSCC) progression are not well characterized. Here, we demonstrated that CD73/NT5E is overexpressed in HNSCC tissues and predicts poor prognosis. Suppression of CD73 inhibited the proliferation, migration, and invasion of HNSCC cell lines (CAL27 and HN4) in vitro and in vivo. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) predicted that CD73 may be involved in invadopodia formation and MAPK signaling activation. As expected, knockdown of CD73 inhibited the MAPK signaling pathway, and the suppressive effect of CD73 knockdown on proliferation, migration, invasion, and invadopodia formation was reversed by a MAPK signaling activator. Our results suggest that CD73 could promote the proliferation, migration, invasion, and invadopodia formation of HNSCC via the MAPK signaling pathway and provide new mechanistic insights into the nonimmunological role of CD73 in HNSCC.
Collapse
Affiliation(s)
- Feifei Xue
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tianxiao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hao Shi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hongjie Feng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Guanying Feng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yao Yao
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
41
|
Velázquez-Enríquez JM, Ramírez-Hernández AA, Navarro LMS, Reyes-Avendaño I, González-García K, Jiménez-Martínez C, Castro-Sánchez L, Sánchez-Chino XM, Vásquez-Garzón VR, Baltiérrez-Hoyos R. Proteomic Analysis Reveals Differential Expression Profiles in Idiopathic Pulmonary Fibrosis Cell Lines. Int J Mol Sci 2022; 23:ijms23095032. [PMID: 35563422 PMCID: PMC9105114 DOI: 10.3390/ijms23095032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, irreversible lung disorder of unknown cause. This disease is characterized by profibrotic activation of resident pulmonary fibroblasts resulting in aberrant deposition of extracellular matrix (ECM) proteins. However, although much is known about the pathophysiology of IPF, the cellular and molecular processes that occur and allow aberrant fibroblast activation remain an unmet need. To explore the differentially expressed proteins (DEPs) associated with aberrant activation of these fibroblasts, we used the IPF lung fibroblast cell lines LL97A (IPF-1) and LL29 (IPF-2), compared to the normal lung fibroblast cell line CCD19Lu (NL-1). Protein samples were quantified and identified using a label-free quantitative proteomic analysis approach by liquid chromatography-tandem mass spectrometry (LC-MS/MS). DEPs were identified after pairwise comparison, including all experimental groups. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein–Protein Interaction (PPI) network construction were used to interpret the proteomic data. Eighty proteins expressed exclusively in the IPF-1 and IPF-2 clusters were identified. In addition, 19 proteins were identified up-regulated in IPF-1 and 10 in IPF-2; 10 proteins were down-regulated in IPF-1 and 2 in IPF-2 when compared to the NL-1 proteome. Using the search tool for retrieval of interacting genes/proteins (STRING) software, a PPI network was constructed between the DEPs and the 80 proteins expressed exclusively in the IPF-2 and IPF-1 clusters, containing 115 nodes and 136 edges. The 10 hub proteins present in the IPP network were identified using the CytoHubba plugin of the Cytoscape software. GO and KEGG pathway analyses showed that the hub proteins were mainly related to cell adhesion, integrin binding, and hematopoietic cell lineage. Our results provide relevant information on DEPs present in IPF lung fibroblast cell lines when compared to the normal lung fibroblast cell line that could play a key role during IPF pathogenesis.
Collapse
Affiliation(s)
- Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | | | - Itayetzi Reyes-Avendaño
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | - Karina González-García
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico;
| | - Luis Castro-Sánchez
- Conacyt-Centro Universitario de Investigaciones Biomédicas “CUIB”, Universidad de Colima, Colima 28045, Mexico;
| | - Xariss Miryam Sánchez-Chino
- Catedra-Conacyt, Departamento de Salud El Colegio de La Frontera Sur, Unidad Villahermosa, Tabasco 86280, Mexico;
| | | | - Rafael Baltiérrez-Hoyos
- Conacyt-Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico;
- Correspondence:
| |
Collapse
|
42
|
Jiang Y, Lin J, Zheng H, Zhu P. The Role of Purinergic Signaling in Heart Transplantation. Front Immunol 2022; 13:826943. [PMID: 35529844 PMCID: PMC9069525 DOI: 10.3389/fimmu.2022.826943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Heart transplantation remains the optimal treatment option for patients with end-stage heart disease. Growing evidence demonstrates that purinergic signals mediated by purine nucleotides and nucleosides play vital roles in heart transplantation, especially in the era of ischemia-reperfusion injury (IRI) and allograft rejection. Purinergic signaling consists of extracellular nucleotides and nucleosides, ecto-enzymes, and cell surface receptors; it participates in the regulation of many physiological and pathological processes. During transplantation, excess adenosine triphosphate (ATP) levels are released from damaged cells, and driver detrimental inflammatory responses largely via purinergic P2 receptors. Ecto-nucleosidases sequentially dephosphorylate extracellular ATP to ADP, AMP, and finally adenosine. Adenosine exerts a cardioprotective effect by its anti-inflammatory, antiplatelet, and vasodilation properties. This review focused on the role of purinergic signaling in IRI and rejection after heart transplantation, as well as the clinical applications and prospects of purinergic signaling.
Collapse
Affiliation(s)
| | | | | | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
43
|
Scortichini M, Idris RM, Moschütz S, Keim A, Salmaso V, Dobelmann C, Oliva P, Losenkova K, Irjala H, Vaittinen S, Sandholm J, Yegutkin GG, Sträter N, Junker A, Müller CE, Jacobson KA. Structure-Activity Relationship of 3-Methylcytidine-5'-α,β-methylenediphosphates as CD73 Inhibitors. J Med Chem 2022; 65:2409-2433. [PMID: 35080883 PMCID: PMC8865918 DOI: 10.1021/acs.jmedchem.1c01852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We recently reported N4-substituted 3-methylcytidine-5'-α,β-methylenediphosphates as CD73 inhibitors, potentially useful in cancer immunotherapy. We now expand the structure-activity relationship of pyrimidine nucleotides as human CD73 inhibitors. 4-Chloro (MRS4598 16; Ki = 0.673 nM) and 4-iodo (MRS4620 18; Ki = 0.436 nM) substitution of the N4-benzyloxy group decreased Ki by ∼20-fold. Primary alkylamine derivatives coupled through a p-amido group with a varying methylene chain length (24 and 25) were functionalized congeners, for subsequent conjugation to carrier or reporter moieties. X-ray structures of hCD73 with two inhibitors indicated a ribose ring conformational adaptation, and the benzyloxyimino group (E configuration) binds to the same region (between the C-terminal and N-terminal domains) as N4-benzyl groups in adenine inhibitors. Molecular dynamics identified stabilizing interactions and predicted conformational diversity. Thus, by N4-benzyloxy substitution, we have greatly enhanced the inhibitory potency and added functionality enabling molecular probes. Their potential as anticancer drugs was confirmed by blocking CD73 activity in tumor tissues in situ.
Collapse
Affiliation(s)
- Mirko Scortichini
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Riham Mohammed Idris
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Susanne Moschütz
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Antje Keim
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Clemens Dobelmann
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | - Paola Oliva
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | - Heikki Irjala
- Department of Otorhinolaryngology-Head and Neck Surgery, Turku University Hospital and Turku University, 20520 Turku, Finland
| | - Samuli Vaittinen
- Department of Pathology, Turku University Hospital and Turku University, 20520 Turku, Finland
| | - Jouko Sandholm
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | | | - Norbert Sträter
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Anna Junker
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
44
|
Hakovirta H, Jalkanen J, Saimanen E, Kukkonen T, Romsi P, Suominen V, Vikatmaa L, Valtonen M, Karvonen MK, Venermo M. Induction of CD73 prevents death after emergency open aortic surgery for a ruptured abdominal aortic aneurysm: a randomized, double-blind, placebo-controlled study. Sci Rep 2022; 12:1839. [PMID: 35115574 PMCID: PMC8813993 DOI: 10.1038/s41598-022-05771-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022] Open
Abstract
Mortality remains high after emergency open surgery for a ruptured abdominal aortic aneurysm (RAAA). The aim of the present study was to assess, if intravenous (IV) Interferon (IFN) beta-1a improve survival after surgery by up-regulating Cluster of differentiation (CD73). This is a multi-center phase II double-blind, 2:1 randomized, parallel group comparison of the efficacy and safety of IV IFN beta-1a vs. placebo for the prevention of death after open surgery for an infra-renal RAAA. All study patients presented a confirmed infra-renal RAAA, survived the primary emergency surgery and were treated with IFN beta-1a (10 μg) or matching placebo for 6 days after surgery. Major exclusion criteria included fatal hemorrhagic shock, chronic renal replacement therapy, diagnosed liver cirrhosis, severe congestive heart failure, advanced malignant disease, primary attempt of endovascular aortic repair (EVAR), and per-operative suprarenal clamping over 30 min. Main outcome measure was all-cause mortality at day 30 (D30) from initial emergency aortic reconstruction. The study was pre-maturely stopped due to a reported drug-drug interaction and was left under-powered. Out of 40 randomized patients 38 were included in the outcome analyses (27 IFN beta-1a and 11 placebo). There was no statistically significant difference between treatment groups at baseline except more open-abdomen and intestinal ischemia was present in the IFN beta-1a arm. D30 all-cause mortality was 22.2% (6/27) in the IFN beta-1a arm and 18.2% (2/11) in the placebo arm (OR 1.30; 95% CI 0.21-8.19). The most common adverse event relating to the IFN beta-1a was pyrexia (20.7% in the IFN beta-1a arm vs. 9.1% in the placebo arm). Patients with high level of serum CD73 associated with survival (P = 0.001) whereas the use of glucocorticoids and the presence of IFN beta-1a neutralizing antibodies associated with a poor CD73 response and survival. The initial aim of the trial, if postoperative INF beta-1a treatment results on better RAAA survival, could not be demonstrated. Nonetheless the anticipated target mechanism up-regulation of CD73 was associated with 100% survival. According to present results the INF beta-1a induced up-regulation of serum CD73 was blocked with both use of glucocorticoids and serum IFN beta-1a neutralizing antibodies. The study was pre-maturely stopped due to interim analysis after a study concerning the use if IV IFN beta-1a in ARDS suggested that the concomitant use of glucocorticoids and IFN beta-1a block the CD73 induction. Trial registration: ClinicalTrials.gov NCT03119701. Registered 19/04/2017 (retrospectively registered).
Collapse
Affiliation(s)
- Harri Hakovirta
- Turku University, Kiinanmyllynkatu 4-8, 20520, Turku, Finland. .,Satasairaala, Pori, Finland. .,Department of Vascular Surgery, Turku University Hospital, Turku, Finland.
| | | | - Eija Saimanen
- Department of Surgery, South Karelia Central Hospital, Lappeenranta, Finland
| | - Tiia Kukkonen
- Department of Vascular Surgery, Hospital Nova of Central Finland, Jyvaskyla, Finland
| | - Pekka Romsi
- Department of Vascular Surgery, Oulu University Hospital, Oulu, Finland
| | - Velipekka Suominen
- Department of Vascular Surgery, Tampere University Hospital, Tampere, Finland
| | - Leena Vikatmaa
- Department of Anesthesiology, Intensive Care, and Pain Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Mika Valtonen
- Department of Perioperative Services, Intensive Care and Pain Management, Turku University Hospital, Turku, Finland
| | | | - Maarit Venermo
- Department of Vascular Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | |
Collapse
|
45
|
Computational investigation of adenosine 5′-(α,β-methylene)-diphosphate (AMPCP) derivatives as ecto-5′-nucleotidase (CD73) inhibitors by using 3D-QSAR, molecular docking, and molecular dynamics simulations. Struct Chem 2022. [DOI: 10.1007/s11224-021-01863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Muñoz-López S, Sánchez-Melgar A, Martín M, Albasanz JL. Resveratrol enhances A 1 and hinders A 2A adenosine receptors signaling in both HeLa and SH-SY5Y cells: Potential mechanism of its antitumoral action. Front Endocrinol (Lausanne) 2022; 13:1007801. [PMID: 36407311 PMCID: PMC9669387 DOI: 10.3389/fendo.2022.1007801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Despite great efforts, effective treatment against cancer has not yet been found. However, natural compounds such as the polyphenol resveratrol have emerged as promising preventive agent in cancer therapy. The mode of action of resveratrol is still poorly understood, but it can modulate many signaling pathways related to the initiation and progression of cancer. Adenosinergic signaling may be involved in the antitumoral action of resveratrol since resveratrol binds to the orthosteric binding site of adenosine A2A receptors and acts as a non-selective agonist for adenosine receptors. In the present study, we measured the impact of resveratrol treatment on different adenosinergic pathway components (i.e. adenosine receptors levels, 5'-nucleotidase, adenosine deaminase, and adenylyl cyclase activities, protein kinase A levels, intracellular adenosine and other related metabolites levels) and cell viability and proliferation in HeLa and SH-SY5Y cell lines. Results revealed changes leading to turning off cAMP signaling such as decreased levels of A2A receptors and reduced adenylyl cyclase activation, increased levels of A1 receptors and increased adenylyl cyclase inhibition, and lower levels of PKA. All these changes could contribute to the antitumoral action of resveratrol. Interestingly, these effects were almost identical in HeLa and SH-SY5Y cells suggesting that resveratrol enhances A1 and hinders A2A adenosine receptors signaling as part of a potential mechanism of antitumoral action.
Collapse
|
47
|
Red blood cell transfusion induces abnormal HIF-1α response to cytokine storm after adult cardiac surgery. Sci Rep 2021; 11:22230. [PMID: 34782683 PMCID: PMC8592994 DOI: 10.1038/s41598-021-01695-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
Patients undergoing cardiac surgery develop a marked postoperative systemic inflammatory response. Blood transfusion may contribute to disruption of homeostasis in these patients. We sought to evaluate the impact of blood transfusion on serum interleukin-6 (IL-6), hypoxia induced factor-1 alpha (HIF-1α) levels as well as adverse outcomes in patients undergoing adult cardiac surgery. We prospectively enrolled 282 patients undergoing adult cardiac surgery. Serum IL-6 and HIF-1α levels were measured preoperatively and on the first postoperative day. Packed red blood cells were transfused in 26.3% of patients (mean 2.93 ± 3.05 units) by the time of postoperative sampling. Postoperative IL-6 levels increased over 30-fold and were similar in both groups (p = 0.115), whilst HIF-1α levels (0.377 pg/mL vs. 0.784 pg/mL, p = 0.002) decreased significantly in patients who received red blood cell transfusion. Moreover, greater decrease in HIF-1α levels predicted worse in-hospital and 3mo adverse outcome. Red blood cell transfusion was associated with higher risk of major adverse outcomes (stroke, pneumonia, all-cause mortality) during the index hospitalization. Red blood cell transfusion induces blunting of postoperative HIF-1 α response and is associated with higher risk of adverse thrombotic and pulmonary adverse events after cardiac surgery.
Clinical Trial Registration ClinicalTrials.gov Identifier: NCT03444259.
Collapse
|
48
|
Cadassou O, Forey P, Machon C, Petrotto E, Chettab K, Tozzi MG, Guitton J, Dumontet C, Cros-Perrial E, Jordheim LP. Transcriptional and Metabolic Investigation in 5'-Nucleotidase Deficient Cancer Cell Lines. Cells 2021; 10:cells10112918. [PMID: 34831141 PMCID: PMC8616413 DOI: 10.3390/cells10112918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Enzymes of nucleoside and nucleotide metabolism regulate important cellular processes with potential impacts on nucleotide-unrelated parameters. We have used a set of CRISPR/Cas9-modified cell models expressing both, one, or none of the 5'-nucleotidases cN-II and CD73, together with RNA sequencing and targeted metabolomics, to decipher new regulatory roles of these proteins. We observed important transcriptional modifications between models as well as upon exposure to adenosine. Metabolite content varied differently between cell models in response to adenosine exposure but was rather similar in control conditions. Our original cell models allowed us to identify a new unobvious link between proteins in the nucleotide metabolism and other cellular pathways. Further analyses of our models, including additional experiments, could help us to better understand some of the roles played by these enzymes.
Collapse
Affiliation(s)
- Octavia Cadassou
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
| | - Prescillia Forey
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
| | - Christelle Machon
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, 69495 Pierre Bénite, France
| | - Edoardo Petrotto
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy;
| | - Kamel Chettab
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
| | - Maria Grazia Tozzi
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy;
| | - Jérôme Guitton
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, 69495 Pierre Bénite, France
| | - Charles Dumontet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, 69495 Pierre Bénite, France
| | - Emeline Cros-Perrial
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
| | - Lars Petter Jordheim
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
- Correspondence: ; Tel.: +33-478777128
| |
Collapse
|
49
|
Zhang X, Lei T, Chen P, Wang L, Wang J, Wang D, Guo W, Zhou Y, Li Q, Du H. Stem Cells from Human Exfoliated Deciduous teeth Promote Hair Regeneration in Mouse. Cell Transplant 2021; 30:9636897211042927. [PMID: 34633878 PMCID: PMC8512255 DOI: 10.1177/09636897211042927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stem cells in different types may interact with each other to maintain
homeostasis or growth and the interactions are complicated and extensive. There
is increasing evidence that mesenchymal-epithelial interactions in early
morphogenesis stages of both tooth and hair follicles show many similarities. In
order to explore whether stem cells from one tissue could interact with cells
from another tissue, a series of experiments were carried out. Here we
successfully extracted and identified stem cells from human exfoliated deciduous
teeth (SHED) of 8–12 years old kids, and then found that SHED could promote hair
regeneration in a mouse model. In vitro, SHED shortened the hair regeneration
cycle and promoted the proliferation and aggregation of dermal cells. In vivo,
when SHED and skin cells of C57 mice were subcutaneously co-transplanted to nude
mice, more hair was formed than skin cells without SHED. To further explore the
molecular mechanism, epidermal and dermal cells were freshly extracted and
co-cultured with SHED. Then several signaling molecules in hair follicle
regeneration were detected and we found that the expression of Sonic Hedgehog
(Shh) and Glioma-associated oncogene 1 (Gli1) was up-regulated. It seems that
SHED may boost the prosperity of hairs by increase Shh/Gli1 pathway, which
brings new perspectives in tissue engineering and damaged tissue repairing.
Collapse
Affiliation(s)
- Xiaoshuang Zhang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Tong Lei
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing, China
| | - Lei Wang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Jian Wang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Donghui Wang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Wenhuan Guo
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yabin Zhou
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Quanhai Li
- Cell Therapy Laboratory, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
50
|
Alcedo KP, Bowser JL, Snider NT. The elegant complexity of mammalian ecto-5'-nucleotidase (CD73). Trends Cell Biol 2021; 31:829-842. [PMID: 34116887 PMCID: PMC8448938 DOI: 10.1016/j.tcb.2021.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
Purinergic signaling is a fundamental mechanism used by all cells to control their internal activities and interact with the environment. A key component of the purinergic system, the enzyme ecto-5'-nucleotidase (CD73) catalyzes the last step in the extracellular metabolism of ATP to form adenosine. Efforts to harness the therapeutic potential of endogenous adenosine in cancer have culminated in the ongoing clinical development of multiple CD73-targeting antibodies and small-molecule inhibitors. However, recent studies are painting an increasingly complex picture of CD73 mRNA and protein regulation and function in cellular homeostasis, physiological adaptation, and disease development. This review discusses the latest conceptual and methodological advances that are helping to unravel the complexity of this important enzyme that was identified nearly 90 years ago.
Collapse
Affiliation(s)
- Karel P Alcedo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|