1
|
Synergistic effects of agonists and two-pore-domain potassium channels on secretory responses of human pancreatic duct cells Capan-1. Pflugers Arch 2023; 475:361-379. [PMID: 36534232 PMCID: PMC9908661 DOI: 10.1007/s00424-022-02782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Mechanisms of synergistic agonist stimulation and modulation of the electrochemical driving force for anion secretion are still not fully explored in human pancreatic duct epithelial cells. The first objective of this study was therefore to test whether combined agonist stimulation augments anion transport responses in the Capan-1 monolayer model of human pancreatic duct epithelium. The second objective was to test the influence of H+,K+-ATPase inhibition on anion transport in Capan-1 monolayers. The third objective was to analyze the expression and function of K+ channels in Capan-1, which could support anion secretion and cooperate with H+,K+-ATPases in pH and potassium homeostasis. The human pancreatic adenocarcinoma cell line Capan-1 was cultured conventionally or as polarized monolayers that were analyzed by Ussing chamber electrophysiological recordings. Single-cell intracellular calcium was assayed with Fura-2. mRNA isolated from Capan-1 was analyzed by use of the nCounter assay or RT-PCR. Protein expression was assessed by immunofluorescence and western blot analyses. Combined stimulation with different physiological agonists enhanced anion transport responses compared to single agonist stimulation. The responsiveness of Capan-1 cells to histamine was also revealed in these experiments. The H+,K+-ATPase inhibitor omeprazole reduced carbachol- and riluzole-induced anion transport responses. Transcript analyses revealed abundant TASK-2, TWIK-1, TWIK-2, TASK-5, KCa3.1, and KCNQ1 mRNA expression. KCNE1 mRNA and TREK-1, TREK-2, TASK-2, and KCNQ1 protein expression were also shown. This study shows that the Capan-1 model recapitulates key physiological aspects of a bicarbonate-secreting epithelium and constitutes a valuable model for functional studies on human pancreatic duct epithelium.
Collapse
|
2
|
Zúñiga L, Cayo A, González W, Vilos C, Zúñiga R. Potassium Channels as a Target for Cancer Therapy: Current Perspectives. Onco Targets Ther 2022; 15:783-797. [PMID: 35899081 PMCID: PMC9309325 DOI: 10.2147/ott.s326614] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
Potassium (K+) channels are highly regulated membrane proteins that control the potassium ion flux and respond to different cellular stimuli. These ion channels are grouped into three major families, Kv (voltage-gated K+ channel), Kir (inwardly rectifying K+ channel) and K2P (two-pore K+ channels), according to the structure, to mediate the K+ currents. In cancer, alterations in K+ channel function can promote the acquisition of the so-called hallmarks of cancer – cell proliferation, resistance to apoptosis, metabolic changes, angiogenesis, and migratory capabilities – emerging as targets for the development of new therapeutic drugs. In this review, we focus our attention on the different K+ channels associated with the most relevant and prevalent cancer types. We summarize our knowledge about the potassium channels structure and function, their cancer dysregulated expression and discuss the K+ channels modulator and the strategies for designing new drugs.
Collapse
Affiliation(s)
- Leandro Zúñiga
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Angel Cayo
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Cristian Vilos
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile.,Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca, 3460000, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Rafael Zúñiga
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| |
Collapse
|
3
|
Schnipper J, Dhennin-Duthille I, Ahidouch A, Ouadid-Ahidouch H. Ion Channel Signature in Healthy Pancreas and Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2020; 11:568993. [PMID: 33178018 PMCID: PMC7596276 DOI: 10.3389/fphar.2020.568993] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer-related deaths in United States and Europe. It is predicted that PDAC will become the second leading cause of cancer-related deaths during the next decades. The development of PDAC is not well understood, however, studies have shown that dysregulated exocrine pancreatic fluid secretion can contribute to pathologies of exocrine pancreas, including PDAC. The major roles of healthy exocrine pancreatic tissue are secretion of enzymes and bicarbonate rich fluid, where ion channels participate to fine-tune these biological processes. It is well known that ion channels located in the plasma membrane regulate multiple cellular functions and are involved in the communication between extracellular events and intracellular signaling pathways and can function as signal transducers themselves. Hereby, they contribute to maintain resting membrane potential, electrical signaling in excitable cells, and ion homeostasis. Despite their contribution to basic cellular processes, ion channels are also involved in the malignant transformation from a normal to a malignant phenotype. Aberrant expression and activity of ion channels have an impact on essentially all hallmarks of cancer defined as; uncontrolled proliferation, evasion of apoptosis, sustained angiogenesis and promotion of invasion and migration. Research indicates that certain ion channels are involved in the aberrant tumor growth and metastatic processes of PDAC. The purpose of this review is to summarize the important expression, localization, and function of ion channels in normal exocrine pancreatic tissue and how they are involved in PDAC progression and development. As ion channels are suggested to be potential targets of treatment they are furthermore suggested to be biomarkers of different cancers. Therefore, we describe the importance of ion channels in PDAC as markers of diagnosis and clinical factors.
Collapse
Affiliation(s)
- Julie Schnipper
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Isabelle Dhennin-Duthille
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Ahmed Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France.,Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
4
|
Metsios GS, Stavropoulos-Kalinoglou A, Kitas GD. The role of exercise in the management of rheumatoid arthritis. Expert Rev Clin Immunol 2015; 11:1121-30. [DOI: 10.1586/1744666x.2015.1067606] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Venglovecz V, Rakonczay Z, Gray MA, Hegyi P. Potassium channels in pancreatic duct epithelial cells: their role, function and pathophysiological relevance. Pflugers Arch 2015; 467:625-640. [PMID: 25074489 DOI: 10.1007/s00424-014-1585-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/09/2014] [Accepted: 07/18/2014] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal epithelial cells play a fundamental role in HCO3 (-) secretion, a process which is essential for maintaining the integrity of the pancreas. Although several studies have implicated impaired HCO3 (-) and fluid secretion as a triggering factor in the development of pancreatitis, the mechanism and regulation of HCO3 (-) secretion is still not completely understood. To date, most studies on the ion transporters that orchestrate ductal HCO3 (-) secretion have focussed on the role of Cl(-)/HCO3 (-) exchangers and Cl(-) channels, whereas much less is known about the role of K(+) channels. However, there is growing evidence that many types of K(+) channels are present in ductal cells where they have an essential role in establishing and maintaining the electrochemical driving force for anion secretion. For this reason, strategies that increase K(+) channel function may help to restore impaired HCO3 (-) and fluid secretion, such as in pancreatitis, and therefore provide novel directions for future pancreatic therapy. In this review, our aims are to summarize the types of K(+) channels found in pancreatic ductal cells and to discuss their individual roles in ductal HCO3 (-) secretion. We will also describe how K(+) channels are involved in pathophysiological conditions and discuss how they could act as new molecular targets for the development of therapeutic approaches to treat pancreatic diseases.
Collapse
Affiliation(s)
- Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary,
| | | | | | | |
Collapse
|
6
|
Feliciangeli S, Chatelain FC, Bichet D, Lesage F. The family of K2P channels: salient structural and functional properties. J Physiol 2015; 593:2587-603. [PMID: 25530075 DOI: 10.1113/jphysiol.2014.287268] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/10/2014] [Indexed: 12/11/2022] Open
Abstract
Potassium channels participate in many biological functions, from ion homeostasis to generation and modulation of the electrical membrane potential. They are involved in a large variety of diseases. In the human genome, 15 genes code for K(+) channels with two pore domains (K2P ). These channels form dimers of pore-forming subunits that produce background conductances finely regulated by a range of natural and chemical effectors, including signalling lipids, temperature, pressure, pH, antidepressants and volatile anaesthetics. Since the cloning of TWIK1, the prototypical member of this family, a lot of work has been carried out on their structure and biology. These studies are still in progress, but data gathered so far show that K2P channels are central players in many processes, including ion homeostasis, hormone secretion, cell development and excitability. A growing number of studies underline their implication in physiopathological mechanisms, such as vascular and pulmonary hypertension, cardiac arrhythmias, nociception, neuroprotection and depression. This review gives a synthetic view of the most noticeable features of these channels.
Collapse
Affiliation(s)
- Sylvain Feliciangeli
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice-Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| | - Frank C Chatelain
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice-Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| | - Delphine Bichet
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice-Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| | - Florian Lesage
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice-Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| |
Collapse
|
7
|
Gough L, Penfold RS, Godfrey RJ, Castell L. The immune response to short-duration exercise in trained, eumenorrhoeic women. J Sports Sci 2015; 33:1396-402. [PMID: 25573319 DOI: 10.1080/02640414.2014.990488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Few studies have characterised the immune response to exercise of different intensities and durations in women. In those that have, baseline hormone levels and training status were not always adequately controlled for. Here, leucocyte and cytokine profiles of 11 aerobically trained, eumenorrhoeic females (33 ± 5 years) in the early follicular phase of the menstrual cycle were characterised after 30-min exercise at 3 intensities: 90% lactate threshold (LT), LT, and 110% LT. Proposed cytokine response mediators were quantified: plasma lactate and basal oestradiol concentrations. Intensity-dependent increases occurred in total white blood cells and lymphocyte counts (P < 0.001). Elevated plasma IL-6 and IL-1ra concentrations post-exercise [F = 12.38, P < 0.01 and F = 7.65, P < 0.05, respectively] were not intensity-dependent, indicating that cytokine release may be better associated with exercise duration than intensity in trained women. Changes in plasma IL-1ra and basal oestradiol (ρ = -0.893, P < 0.01) were correlated at intensities above LT only. These findings suggest a role for plasma sex hormones in moderating the exercise-induced immune response in women. However, the associations observed did not account for the magnitude of the cytokine response observed, and future studies should explore contributions of other potential mediators following short-duration exercise.
Collapse
Affiliation(s)
- Liz Gough
- a Centre for Sports Medicine and Human Performance , Brunel University , UK
| | | | | | | |
Collapse
|
8
|
Pajarinen J, Lin TH, Sato T, Yao Z, Goodman SB. Interaction of Materials and Biology in Total Joint Replacement - Successes, Challenges and Future Directions. J Mater Chem B 2014; 2:7094-7108. [PMID: 25541591 PMCID: PMC4273175 DOI: 10.1039/c4tb01005a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Total joint replacement (TJR) has revolutionized the treatment of end-stage arthritic disorders. This success is due, in large part, to a clear understanding of the important interaction between the artificial implant and the biology of the host. All surgical procedures in which implants are placed in the body evoke an initial inflammatory reaction, which generally subsides over several weeks. Thereafter, a series of homeostatic events occur leading to progressive integration of the implant within bone and the surrounding musculoskeletal tissues. The eventual outcome of the operation is dependent on the characteristics of the implant, the precision of the surgical technique and operative environment, and the biological milieu of the host. If these factors and events are not optimal, adverse events can occur such as the development of chronic inflammation, progressive bone loss due to increased production of degradation products from the implant (periprosthetic osteolysis), implant loosening or infection. These complications can lead to chronic pain and poor function of the joint reconstruction, and may necessitate revision surgery or removal of the prosthesis entirely. Recent advances in engineering, materials science, and the immunological aspects associated with orthopaedic implants have fostered intense research with the hope that joint replacements will last a lifetime, and facilitate pain-free, normal function.
Collapse
Affiliation(s)
- J Pajarinen
- Department of Orthopaedic Surgery, Orthopaedic Surgery Laboratories, Stanford University, Stanford, CA, USA
| | - T-H Lin
- Department of Orthopaedic Surgery, Orthopaedic Surgery Laboratories, Stanford University, Stanford, CA, USA
| | - T Sato
- Department of Orthopaedic Surgery, Orthopaedic Surgery Laboratories, Stanford University, Stanford, CA, USA
| | - Z Yao
- Department of Orthopaedic Surgery, Orthopaedic Surgery Laboratories, Stanford University, Stanford, CA, USA
| | - S B Goodman
- Department of Orthopaedic Surgery, Orthopaedic Surgery Laboratories, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Orthopaedic Surgery Laboratories, Stanford University, Stanford, CA, USA
| |
Collapse
|
9
|
Novak I, Haanes KA, Wang J. Acid-base transport in pancreas-new challenges. Front Physiol 2013; 4:380. [PMID: 24391597 PMCID: PMC3868914 DOI: 10.3389/fphys.2013.00380] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/04/2013] [Indexed: 12/11/2022] Open
Abstract
Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H(+)) and base (HCO(-) 3) transporters, respectively. Nevertheless, they share the same challenges of transporting acid and bases across epithelia and effectively regulating their intracellular pH. In this review, we will make use of comparative physiology to enlighten the cellular mechanisms of pancreatic HCO(-) 3 and fluid secretion, which is still challenging physiologists. Some of the novel transporters to consider in pancreas are the proton pumps (H(+)-K(+)-ATPases), as well as the calcium-activated K(+) and Cl(-) channels, such as KCa3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signaling, fine-tune, and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport contributes to pancreatic diseases including cystic fibrosis, pancreatitis, and cancer.
Collapse
Affiliation(s)
- Ivana Novak
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| | | | - Jing Wang
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
10
|
Hayashi M, Novak I. Molecular basis of potassium channels in pancreatic duct epithelial cells. Channels (Austin) 2013; 7:432-41. [PMID: 23962792 PMCID: PMC4042478 DOI: 10.4161/chan.26100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance.
Collapse
Affiliation(s)
- Mikio Hayashi
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | - Ivana Novak
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| |
Collapse
|
11
|
Schulte W, Bernhagen J, Bucala R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets--an updated view. Mediators Inflamm 2013; 2013:165974. [PMID: 23853427 PMCID: PMC3703895 DOI: 10.1155/2013/165974] [Citation(s) in RCA: 494] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 05/22/2013] [Indexed: 12/11/2022] Open
Abstract
Sepsis and septic shock are among the leading causes of death in intensive care units worldwide. Numerous studies on their pathophysiology have revealed an imbalance in the inflammatory network leading to tissue damage, organ failure, and ultimately, death. Cytokines are important pleiotropic regulators of the immune response, which have a crucial role in the complex pathophysiology underlying sepsis. They have both pro- and anti-inflammatory functions and are capable of coordinating effective defense mechanisms against invading pathogens. On the other hand, cytokines may dysregulate the immune response and promote tissue-damaging inflammation. In this review, we address the current knowledge of the actions of pro- and anti-inflammatory cytokines in sepsis pathophysiology as well as how these cytokines and other important immunomodulating agents may be therapeutically targeted to improve the clinical outcome of sepsis.
Collapse
Affiliation(s)
- Wibke Schulte
- Department of Internal Medicine, Yale University School of Medicine, The Anlyan Center, S525, P.O. Box 208031, 300 Cedar Street, New Haven, CT 06520-8031, USA
- Institute of Biochemistry and Molecular Cell Biology, University Hospital of RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, University Hospital of RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, The Anlyan Center, S525, P.O. Box 208031, 300 Cedar Street, New Haven, CT 06520-8031, USA
| |
Collapse
|
12
|
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is highly expressed in the pancreatic duct epithelia and permits anions and water to enter the ductal lumen. This results in an increased volume of alkaline fluid allowing the highly concentrated proteins secreted by the acinar cells to remain in a soluble state. This work will expound on the pathophysiology and pathology caused by the malfunctioning CFTR protein with special reference to ion transport and acid-base abnormalities both in humans and animal models. We will also discuss the relationship between cystic fibrosis (CF) and pancreatitis, and outline present and potential therapeutic approaches in CF treatment relevant to the pancreas.
Collapse
Affiliation(s)
- Michael Wilschanski
- Pediatric Gastroenterology, Hadassah University Hospital, Jerusalem 91240, Israel
| | | |
Collapse
|
13
|
Ion transport in human pancreatic duct epithelium, Capan-1 cells, is regulated by secretin, VIP, acetylcholine, and purinergic receptors. Pancreas 2013; 42:452-60. [PMID: 22982819 DOI: 10.1097/mpa.0b013e318264c302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The objective of the study was to establish a solid model of polarized epithelium for human pancreatic ducts, where electrical parameters could be measured as indicators of ion transport. Further, we aimed to determine functional expression of several receptors, in particular, purinergic receptors, and determine their effects on ion transport. METHODS Human adenocarcinoma cell line Capan-1 cells were grown on permeable supports and set in Ussing chambers for electrophysiological recordings. Transepithelial voltage (Vte), resistance, and short-circuit currents (Isc) were measured in response to agonists. RESULTS Secretin, vasoactive intestinal peptide (VIP), acetylcholine, forskolin, ionomycin, adenosine 5'-triphosphate (ATP), uridine 5'-triphosphate (UTP), 3'-O-(4-benzoyl)benzoyl ATP, and adenosine induced lumen negative Vte and Isc. These changes were consistent with anion secretion, as verified in forskolin-stimulated preparations. Extracellular nucleotides, ATP, and UTP, applied from luminal and basolateral sides, caused largest responses: Vte increased up to -5 mV, Isc increased to 20 to 30 μA/cm, and resistance decreased by up to 200 Ω·cm. CONCLUSIONS Transepithelial transport in human pancreatic duct epithelium, Capan-1 cells, is regulated by secretin, VIP, acetylcholine, adenosine, and purinergic P2 receptors; and this human model has a good potential for studies of physiology and pathophysiology of pancreatic duct ion transport.
Collapse
|
14
|
Cytokine response to acute running in recreationally-active and endurance-trained men. Eur J Appl Physiol 2013; 113:1871-82. [DOI: 10.1007/s00421-013-2615-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/12/2013] [Indexed: 11/25/2022]
|
15
|
Wang J, Haanes KA, Novak I. Purinergic regulation of CFTR and Ca(2+)-activated Cl(-) channels and K(+) channels in human pancreatic duct epithelium. Am J Physiol Cell Physiol 2013; 304:C673-84. [PMID: 23364268 DOI: 10.1152/ajpcell.00196.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Purinergic agonists have been considered for the treatment of respiratory epithelia in cystic fibrosis (CF) patients. The pancreas, one of the most seriously affected organs in CF, expresses various purinergic receptors. Studies on the rodent pancreas show that purinergic signaling regulates pancreatic secretion. In the present study we aim to identify Cl(-) and K(+) channels in human pancreatic ducts and their regulation by purinergic receptors. Human pancreatic duct epithelia formed by Capan-1 or CFPAC-1 cells were studied in open-circuit Ussing chambers. In Capan-1 cells, ATP/UTP effects were dependent on intracellular Ca(2+). Apically applied ATP/UTP stimulated CF transmembrane conductance regulator (CFTR) and Ca(2+)-activated Cl(-) (CaCC) channels, which were inhibited by CFTRinh-172 and niflumic acid, respectively. The basolaterally applied ATP stimulated CFTR. In CFPAC-1 cells, which have mutated CFTR, basolateral ATP and UTP had negligible effects. In addition to Cl(-) transport in Capan-1 cells, the effects of 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DC-EBIO) and clotrimazole indicated functional expression of the intermediate conductance K(+) channels (IK, KCa3.1). The apical effects of ATP/UTP were greatly potentiated by the IK channel opener DC-EBIO. Determination of RNA and protein levels revealed that Capan-1 cells have high expression of TMEM16A (ANO1), a likely CaCC candidate. We conclude that in human pancreatic duct cells ATP/UTP regulates via purinergic receptors both Cl(-) channels (TMEM16A/ANO1 and CFTR) and K(+) channels (IK). The K(+) channels provide the driving force for Cl(-)-channel-dependent secretion, and luminal ATP provided locally or secreted from acini may potentiate secretory processes. Future strategies in augmenting pancreatic duct function should consider sidedness of purinergic signaling and the essential role of K(+) channels.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
16
|
Curti MLR, Pires MM, Barros CR, Siqueira-Catania A, Rogero MM, Ferreira SRG. Associations of the TNF-alpha -308 G/A, IL6 -174 G/C and AdipoQ 45 T/G polymorphisms with inflammatory and metabolic responses to lifestyle intervention in Brazilians at high cardiometabolic risk. Diabetol Metab Syndr 2012; 4:49. [PMID: 23176569 PMCID: PMC3527217 DOI: 10.1186/1758-5996-4-49] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/11/2012] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED BACKGROUND Cytokines secreted by the adipose tissue influence inflammation and insulin sensitivity, and lead to metabolic disturbances. How certain single-nucleotide polymorphisms (SNPs) interfere on lifestyle interventions is unclear. We assessed associations of selected SNPs with changes induced by a lifestyle intervention. METHODS This 9-month intervention on diet and physical activity included 180 Brazilians at high cardiometabolic risk, genotyped for the TNF-α -308 G/A, IL-6 -174 G/C and AdipoQ 45 T/G SNPs. Changes in metabolic and inflammatory variables were analyzed according to these SNPs. Individuals with at least one variant allele were grouped and compared with those with the reference genotype. RESULTS In the entire sample (66.7% women; mean age 56.5 ± 11.6 years), intervention resulted in lower energy intake, higher physical activity, and improvement in anthropometry, plasma glucose, HOMA-IR, lipid profile and inflammatory markers, except for IL-6 concentrations. After intervention, only variant allele carriers of the TNF-α -308 G/A decreased plasma glucose, after adjusting for age and gender (OR 2.96, p = 0.025). Regarding the IL6 -174 G/C SNP, carriers of the variant allele had a better response of lipid profile and adiponectin concentration, but only the reference genotype group decreased plasma glucose. In contrast to individuals with the reference genotype, carriers of variant allele of AdipoQ 45 T/G SNP did not change plasma glucose, apolipoprotein B, HDL-c and adiponectin concentrations in response to intervention. CONCLUSION The TNFα -308 G/A SNP may predispose a better response of glucose metabolism to lifestyle intervention. The IL-6 -174 G/C SNP may confer a beneficial effect on lipid but not on glucose metabolism. Our findings reinforce unfavorable effects of the AdipoQ 45 T/G SNP in lipid profile and glucose metabolism after intervention in Brazilians at cardiometabolic risk. Further studies are needed to direct lifestyle intervention to subsets of individuals at cardiometabolic risk.
Collapse
Affiliation(s)
- Maira LR Curti
- Department of Nutrition, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, São Paulo, SP, 715, Brasil
| | - Milena M Pires
- Department of Nutrition, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, São Paulo, SP, 715, Brasil
| | - Camila R Barros
- Department of Nutrition, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, São Paulo, SP, 715, Brasil
| | - Antonela Siqueira-Catania
- Department of Nutrition, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, São Paulo, SP, 715, Brasil
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, São Paulo, SP, 715, Brasil
| | - Sandra RG Ferreira
- Department of Nutrition, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, São Paulo, SP, 715, Brasil
| |
Collapse
|
17
|
Zanchi NE, Almeida FN, Lira FS, Rosa Neto JC, Nicastro H, da Luz CR, de Siqueira Filho MA, Felitti V, Vainzof M, Seelaender M, Poortmans JR, Lancha AH. Renewed avenues through exercise muscle contractility and inflammatory status. ScientificWorldJournal 2012; 2012:584205. [PMID: 22629149 PMCID: PMC3354688 DOI: 10.1100/2012/584205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/13/2011] [Indexed: 01/27/2023] Open
Abstract
Physical inactivity leads to the accumulation of visceral fat and, consequently, to the activation of a network of inflammatory pathways which may promote development of insulin resistance, atherosclerosis, neurodegeneration, and tumour growth. These conditions belong to the "diseasome of physical inactivity". In contrast, the protective effect of regular exercise against diseases associated with chronic inflammation may to some extent be ascribed to an anti-inflammatory effect. The so called "acute exercise threshold", the complex mixture of several variables involved in exercise, such as type, volume, frequency, and intensity range is capable of inducing positive physiological adaptations and has been specifically addressed in the recent literature. The major concern is related to the level of the threshold: "exercise training shifts from a therapeutic adaptive intervention to one with potential pathological consequences". Nonetheless, if the mechanical stimulus is too weak to disrupt cellular homeostasis, training adaptations will not occur. Answering these questions could present practical applications, especially during inflammatory diseases associated with detrimental muscle effects and could theoretically constitute a "new" therapeutic approach to treat/improve an inflammatory state. This paper aims to describe specific data from the literature regarding the effects of exercise on inflammatory diseases in order to promote a more sophisticated perspective on the anti-inflammatory effects of exercise.
Collapse
Affiliation(s)
- Nelo Eidy Zanchi
- Laboratory of Applied Nutrition and Metabolism, Physical Education and Sport School, University of São Paulo, 05508-030 São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hayashi M, Wang J, Hede SE, Novak I. An intermediate-conductance Ca2+-activated K+ channel is important for secretion in pancreatic duct cells. Am J Physiol Cell Physiol 2012; 303:C151-9. [PMID: 22555847 DOI: 10.1152/ajpcell.00089.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels play a vital role in maintaining the membrane potential and the driving force for anion secretion in epithelia. In pancreatic ducts, which secrete bicarbonate-rich fluid, the identity of K(+) channels has not been extensively investigated. In this study, we investigated the molecular basis of functional K(+) channels in rodent and human pancreatic ducts (Capan-1, PANC-1, and CFPAC-1) using molecular and electrophysiological techniques. RT-PCR analysis revealed mRNAs for KCNQ1, KCNH2, KCNH5, KCNT1, and KCNT2, as well as KCNN4 coding for the following channels: KVLQT1; HERG; EAG2; Slack; Slick; and an intermediate-conductance Ca(2+)-activated K(+) (IK) channel (K(Ca)3.1). The following functional studies were focused on the IK channel. 5,6-Dichloro-1-ethyl-1,3-dihydro-2H-benzimidazole-2-one (DC-EBIO), an activator of IK channel, increased equivalent short-circuit current (I(sc)) in Capan-1 monolayer, consistent with a secretory response. Clotrimazole, a blocker of IK channel, inhibited I(sc). IK channel blockers depolarized the membrane potential of cells in microperfused ducts dissected from rodent pancreas. Cell-attached patch-clamp single-channel recordings revealed IK channels with an average conductance of 80 pS in freshly isolated rodent duct cells. These results indicated that the IK channels may, at least in part, be involved in setting the resting membrane potential. Furthermore, the IK channels are involved in anion and potassium transport in stimulated pancreatic ducts.
Collapse
Affiliation(s)
- Mikio Hayashi
- Department of Biology, August Krogh Building, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
19
|
Abstract
Pancreatic cells contain specialised stores for ATP. Purinergic receptors (P2 and P1) and ecto-nucleotidases are expressed in both endocrine and exocrine calls, as well as in stromal cells. The pancreas, especially the endocrine cells, were an early target for the actions of ATP. After the historical perspective of purinergic signalling in the pancreas, the focus of this review will be the physiological functions of purinergic signalling in the regulation of both endocrine and exocrine pancreas. Next, we will consider possible interaction between purinergic signalling and other regulatory systems and their relation to nutrient homeostasis and cell survival. The pancreas is an organ exhibiting several serious diseases - cystic fibrosis, pancreatitis, pancreatic cancer and diabetes - and some are associated with changes in life-style and are increasing in incidence. There is upcoming evidence for the role of purinergic signalling in the pathophysiology of the pancreas, and the new challenge is to understand how it is integrated with other pathological processes.
Collapse
Affiliation(s)
- G Burnstock
- University College Medical School, Autonomic Neuroscience Centre, Rowland Hill Street, London NW3 2PF, UK.
| | | |
Collapse
|
20
|
Lee MG, Ohana E, Park HW, Yang D, Muallem S. Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev 2012; 92:39-74. [PMID: 22298651 DOI: 10.1152/physrev.00011.2011] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fluid and HCO(3)(-) secretion is a vital function of all epithelia and is required for the survival of the tissue. Aberrant fluid and HCO(3)(-) secretion is associated with many epithelial diseases, such as cystic fibrosis, pancreatitis, Sjögren's syndrome, and other epithelial inflammatory and autoimmune diseases. Significant progress has been made over the last 20 years in our understanding of epithelial fluid and HCO(3)(-) secretion, in particular by secretory glands. Fluid and HCO(3)(-) secretion by secretory glands is a two-step process. Acinar cells secrete isotonic fluid in which the major salt is NaCl. Subsequently, the duct modifies the volume and electrolyte composition of the fluid to absorb the Cl(-) and secrete HCO(3)(-). The relative volume secreted by acinar and duct cells and modification of electrolyte composition of the secreted fluids varies among secretory glands to meet their physiological functions. In the pancreas, acinar cells secrete a small amount of NaCl-rich fluid, while the duct absorbs the Cl(-) and secretes HCO(3)(-) and the bulk of the fluid in the pancreatic juice. Fluid secretion appears to be driven by active HCO(3)(-) secretion. In the salivary glands, acinar cells secrete the bulk of the fluid in the saliva that is driven by active Cl(-) secretion and contains high concentrations of Na(+) and Cl(-). The salivary glands duct absorbs both the Na(+) and Cl(-) and secretes K(+) and HCO(3)(-). In this review, we focus on the molecular mechanism of fluid and HCO(3)(-) secretion by the pancreas and salivary glands, to highlight the similarities of the fundamental mechanisms of acinar and duct cell functions, and to point out the differences to meet gland-specific secretions.
Collapse
Affiliation(s)
- Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
21
|
Maillé E, Trinh NTN, Privé A, Bilodeau C, Bissonnette É, Grandvaux N, Brochiero E. Regulation of normal and cystic fibrosis airway epithelial repair processes by TNF-α after injury. Am J Physiol Lung Cell Mol Physiol 2011; 301:L945-55. [DOI: 10.1152/ajplung.00149.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic infection and inflammation have been associated with progressive airway epithelial damage in patients with cystic fibrosis (CF). However, the effect of inflammatory products on the repair capacity of respiratory epithelia is unclear. Our objective was to study the regulation of repair mechanisms by tumor necrosis factor-α (TNF-α), a major component of inflammation in CF, in a model of mechanical wounding, in two bronchial cell lines, non-CF NuLi and CF CuFi. We observed that TNF-α enhanced the NuLi and CuFi repair rates. Chronic exposure (24–48 h) to TNF-α augmented this stimulation as well as the migration rate during repair. The cellular mechanisms involved in this stimulation were then evaluated. First, we discerned that TNF-α induced metalloproteinase-9 release, epidermal growth factor (EGF) shedding, and subsequent EGF receptor transactivation. Second, TNF-α-induced stimulation of the NuLi and CuFi wound-closure rates was prevented by GM6001 (metalloproteinase inhibitor), EGF antibody (to titrate secreted EGF), and EGF receptor tyrosine kinase inhibitors. Furthermore, we recently reported a relationship between the EGF response and K+channel function, both controlling bronchial repair. We now show that TNF-α enhances KvLQT1 and KATPcurrents, while their inhibition abolishes TNF-α-induced repair stimulation. These results indicate that the effect of TNF-α is mediated, at least in part, through EGF receptor transactivation and K+channel stimulation. In contrast, cell proliferation during repair was slowed by TNF-α, suggesting that TNF-α could exert contrasting actions on repair mechanisms of CF airway epithelia. Finally, the stimulatory effect of TNF-α on airway wound repair was confirmed on primary airway epithelial cells, from non-CF and CF patients.
Collapse
Affiliation(s)
- Emilie Maillé
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM)—Hôtel-Dieu, Montréal
- Département de médecine and
| | - Nguyen Thu Ngan Trinh
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM)—Hôtel-Dieu, Montréal
- Département de médecine and
| | - Anik Privé
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM)—Hôtel-Dieu, Montréal
| | - Claudia Bilodeau
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM)—Hôtel-Dieu, Montréal
| | - Élyse Bissonnette
- Institut Universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Université Laval, Québec, Québec, Canada
| | - Nathalie Grandvaux
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM)—Hôtel-Dieu, Montréal
- Département de Biochimie, Université de Montréal, Montréal; and
| | - Emmanuelle Brochiero
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM)—Hôtel-Dieu, Montréal
- Département de médecine and
| |
Collapse
|
22
|
Novak I. Purinergic signalling in epithelial ion transport: regulation of secretion and absorption. Acta Physiol (Oxf) 2011; 202:501-22. [PMID: 21073662 DOI: 10.1111/j.1748-1716.2010.02225.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracellular ATP, the energy source for many reactions, is crucial for the activity of plasma membrane pumps and, thus, for the maintenance of transmembrane ion gradients. Nevertheless, ATP and other nucleotides/nucleosides are also extracellular molecules that regulate diverse cellular functions, including ion transport. In this review, I will first introduce the main components of the extracellular ATP signalling, which have become known as the purinergic signalling system. With more than 50 components or processes, just at cell membranes, it ranks as one of the most versatile signalling systems. This multitude of system components may enable differentiated regulation of diverse epithelial functions. As epithelia probably face the widest variety of potential ATP-releasing stimuli, a special attention will be given to stimuli and mechanisms of ATP release with a focus on exocytosis. Subsequently, I will consider membrane transport of major ions (Cl(-) , HCO(3)(-) , K(+) and Na(+) ) and integrate possible regulatory functions of P2Y2, P2Y4, P2Y6, P2Y11, P2X4, P2X7 and adenosine receptors in some selected epithelia at the cellular level. Some purinergic receptors have noteworthy roles. For example, many studies to date indicate that the P2Y2 receptor is one common denominator in regulating ion channels on both the luminal and basolateral membranes of both secretory and absorptive epithelia. In exocrine glands though, P2X4 and P2X7 receptors act as cation channels and, possibly, as co-regulators of secretion. On an organ level, both receptor types can exert physiological functions and together with other partners in the purinergic signalling, integrated models for epithelial secretion and absorption are emerging.
Collapse
Affiliation(s)
- I Novak
- Department of Biology, August Krogh Building, University of Copenhagen, Denmark.
| |
Collapse
|
23
|
Curti MLR, Jacob P, Borges MC, Rogero MM, Ferreira SRG. Studies of gene variants related to inflammation, oxidative stress, dyslipidemia, and obesity: implications for a nutrigenetic approach. J Obes 2011; 2011:497401. [PMID: 21773006 PMCID: PMC3136190 DOI: 10.1155/2011/497401] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/15/2011] [Accepted: 03/14/2011] [Indexed: 01/05/2023] Open
Abstract
Obesity is currently considered a serious public health issue due to its strong impact on health, economy, and quality of life. It is considered a chronic low-grade inflammation state and is directly involved in the genesis of metabolic disturbances, such as insulin resistance and dyslipidemia, which are well-known risk factors for cardiovascular disease. Furthermore, there is evidence that genetic variation that predisposes to inflammation and metabolic disturbances could interact with environmental factors, such as diet, modulating individual susceptibility to developing these conditions. This paper aims to review the possible interactions between diet and single-nucleotide polymorphisms (SNPs) in genes implicated on the inflammatory response, lipoprotein metabolism, and oxidative status. Therefore, the impact of genetic variants of the peroxisome proliferator-activated receptor-(PPAR-)gamma, tumor necrosis factor-(TNF-)alpha, interleukin (IL)-1, IL-6, apolipoprotein (Apo) A1, Apo A2, Apo A5, Apo E, glutathione peroxidases 1, 2, and 4, and selenoprotein P exposed to variations on diet composition is described.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Roberta G. Ferreira
- Department of Nutrition, School of Public Health, University of São Paulo, Avenida Dr. Arnaldo, 715, 01246-904, São Paulo, SP, Brazil
| |
Collapse
|
24
|
Abstract
During exercise, body temperature rises as a result of increased energy metabolism and heat absorbed from the environment. In response to this rise in body temperature, blood flow increases and stress hormones are released. Together, blood flow and stress hormones stimulate increases in the number of circulating leukocytes and alterations in various aspects of immune function, including cytokine production. The extent of changes in leukocyte numbers, cytokine concentrations, and immune cell function depends on how high body temperature rises and the intensity and duration of exercise. In general, increases in body temperature of ≤ 1.8° F (1° C) induce mild changes in immune function, and such changes are unlikely to increase the risk of illness in athletes, firefighters, and military personnel who regularly exercise in hot conditions. More severe immune disturbances during exercise in extreme heat (≥ 106° F or 41° C) may contribute to classical symptoms of heatstroke.
Collapse
Affiliation(s)
- Jonathan Peake
- University of Queensland, School of Human Movement Studies, Brisbane, Australia, Centre of Excellence for Applied Sport Science Research, Queensland Academy of Sport, Brisbane, Australia,
| |
Collapse
|
25
|
Barmeyer C, Rahner C, Yang Y, Sigworth FJ, Binder HJ, Rajendran VM. Cloning and identification of tissue-specific expression of KCNN4 splice variants in rat colon. Am J Physiol Cell Physiol 2010; 299:C251-63. [PMID: 20445171 DOI: 10.1152/ajpcell.00091.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
KCNN4 channels that provide the driving force for cAMP- and Ca(2+)-induced anion secretion are present in both apical and basolateral membranes of the mammalian colon. However, only a single KCNN4 has been cloned. This study was initiated to identify whether both apical and basolateral KCNN4 channels are encoded by the same or different isoforms. Reverse transcriptase-PCR (RT-PCR), real-time quantitative-PCR (RT-QPCR), and immunofluorescence studies were used to clone and identify tissue-specific expression of KCNN4 isoforms. Three distinct KCNN4 cDNAs that are designated as KCNN4a, KCNN4b, and KCNN4c encoding 425, 424, and 395 amino acid proteins, respectively, were isolated from the rat colon. KCNN4a differs from KCNN4b at both the nucleotide and the amino acid level with distinct 628 bp at the 3'-untranslated region and an additional glutamine at position 415, respectively. KCNN4c differs from KCNN4b by lacking the second exon that encodes a 29 amino acid motif. KCNN4a and KCNN4b/c are identified as smooth muscle- and epithelial cell-specific transcripts, respectively. KCNN4b and KCNN4c transcripts likely encode basolateral (40 kDa) and apical (37 kDa) membrane proteins in the distal colon, respectively. KCNN4c, which lacks the S2 transmembrane segment, requires coexpression of a large conductance K(+) channel beta-subunit for plasma membrane expression. The KCNN4 channel blocker TRAM-34 inhibits KCNN4b- and KCNN4c-mediated (86)Rb (K(+) surrogate) efflux with an apparent inhibitory constant of 0.6 +/- 0.1 and 7.8 +/- 0.4 muM, respectively. We conclude that apical and basolateral KCNN4 K(+) channels that regulate K(+) and anion secretion are encoded by distinct isoforms in colonic epithelial cells.
Collapse
Affiliation(s)
- Christian Barmeyer
- Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
26
|
Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 2010; 90:559-605. [PMID: 20393194 DOI: 10.1152/physrev.00029.2009] [Citation(s) in RCA: 670] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Two-pore domain K(+) (K(2P)) channels give rise to leak (also called background) K(+) currents. The well-known role of background K(+) currents is to stabilize the negative resting membrane potential and counterbalance depolarization. However, it has become apparent in the past decade (during the detailed examination of the cloned and corresponding native K(2P) channel types) that this primary hyperpolarizing action is not performed passively. The K(2P) channels are regulated by a wide variety of voltage-independent factors. Basic physicochemical parameters (e.g., pH, temperature, membrane stretch) and also several intracellular signaling pathways substantially and specifically modulate the different members of the six K(2P) channel subfamilies (TWIK, TREK, TASK, TALK, THIK, and TRESK). The deep implication in diverse physiological processes, the circumscribed expression pattern of the different channels, and the interesting pharmacological profile brought the K(2P) channel family into the spotlight. In this review, we focus on the physiological roles of K(2P) channels in the most extensively investigated cell types, with special emphasis on the molecular mechanisms of channel regulation.
Collapse
Affiliation(s)
- Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
27
|
The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol 2010; 2010:520258. [PMID: 20224659 PMCID: PMC2836182 DOI: 10.1155/2010/520258] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/26/2010] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammation is involved in the pathogenesis of insulin resistance, atherosclerosis, neurodegeneration, and tumour growth. Regular exercise offers protection against type 2 diabetes, cardiovascular diseases, colon cancer, breast cancer, and dementia. Evidence suggests that the protective effect of exercise may to some extent be ascribed to the antiinflammatory effect of regular exercise. Here we suggest that exercise may exert its anti-inflammatory effect via a reduction in visceral fat mass and/or by induction of an anti-inflammatory environment with each bout of exercise. According to our theory, such effects may in part be mediated via muscle-derived peptides, so-called "myokines". Contracting skeletal muscles release myokines with endocrine effects, mediating direct anti-inflammatory effects, and/or specific effects on visceral fat. Other myokines work locally within the muscle and exert their effects on signalling pathways involved in fat oxidation and glucose uptake. By mediating anti-inflammatory effects in the muscle itself, myokines may also counteract TNF-driven insulin resistance. In conclusion, exercise-induced myokines appear to be involved in mediating both systemic as well as local anti-inflammatory effects.
Collapse
|
28
|
Abstract
OBJECTIVES The human pancreatic duct cell line, HPAF, has been shown previously to secrete Cl(-) in response to Ca(2+)-mobilizing stimuli. Our aim was to assess the capacity of HPAF cells to transport and secrete HCO3(-). METHODS HPAF cells were grown as confluent monolayers on permeable supports. Short-circuit current was measured by voltage clamp. Intracellular pH (pHi) was measured by microfluorometry in cells loaded with 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). RESULTS In HCO3(-)-free solutions, ATP-evoked changes in short-circuit current were inhibited by bumetanide, and the recovery of pHi from acid loading was abolished by 5-(N-ethyl-N-isopropyl)-amiloride (EIPA). In the presence of HCO3(-), ATP-evoked secretion was no longer inhibited by bumetanide, and there was a strong EIPA-insensitive recovery from acid loading, which was inhibited by 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate (H2DIDS). ATP, but not forskolin, stimulated HCO3(-) efflux from the cells. CONCLUSIONS In the absence of HCO3(-), ATP-evoked Cl(-) secretion is driven by a basolateral Na(+)-K(+)-2Cl(-) cotransporter, and pH(i) is regulated by apical and basolateral Na(+)/H(+) exchangers. In the presence of HCO3(-), ATP-evoked secretion is sustained in the absence of Na(+)-K(+)-2Cl(-) cotransporter activity and is probably driven by basolateral Na(+)-HCO3(-) cotransport.
Collapse
|
29
|
Exercise and Bipolar Disorder: A Review of Neurobiological Mediators. Neuromolecular Med 2009; 11:328-36. [DOI: 10.1007/s12017-009-8079-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
|
30
|
Cornish SM, Chilibeck PD. Alpha-linolenic acid supplementation and resistance training in older adults. Appl Physiol Nutr Metab 2009; 34:49-59. [PMID: 19234585 DOI: 10.1139/h08-136] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased inflammation with aging has been linked to sarcopenia. The purpose of this study was to evaluate the effects of supplementing older adults with alpha-linolenic acid (ALA) during a resistance training program, based on the hypothesis that ALA decreases the plasma concentration of the inflammatory cytokine tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, which in turn would improve muscle size and strength. Fifty-one older adults (65.4 +/- 0.8 years) were randomized to receive ALA in flax oil (~14 g.day-1) or placebo for 12 weeks while completing a resistance training program (3 days a week). Subjects were evaluated at baseline and after 12 weeks for muscle thickness of knee and elbow flexors and extensors (B-mode ultrasound), muscle strength (1 repetition maximum), body composition (dual energy X-ray absorptiometry), and concentrations of TNF-alpha and IL-6. Males supplementing with ALA decreased IL-6 concentration over the 12 weeks (62 +/- 36% decrease; p = 0.003), with no other changes in inflammatory cytokines. Chest and leg press strength, lean tissue mass, muscle thickness, hip bone mineral content and density, and total bone mineral content significantly increased, and percent fat and total body mass decreased with training (p < 0.05), with the only benefit of ALA being a significantly greater increase in knee flexor muscle thickness in males (p < 0.05). Total-body bone mineral density improved in the placebo group, with no change in the ALA group (p = 0.05). ALA supplementation lowers the IL-6 concentration in older men but not women, but had minimal effect on muscle mass and strength during resistance training.
Collapse
Affiliation(s)
- Stephen M Cornish
- Nutrition Research Division, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A0K9, Canada.
| | | |
Collapse
|
31
|
Marsey LL, Winpenny JP. Bestrophin expression and function in the human pancreatic duct cell line, CFPAC-1. J Physiol 2009; 587:2211-24. [PMID: 19237432 DOI: 10.1113/jphysiol.2008.159087] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pancreatic duct epithelial cells (PDECs) have been shown to express calcium activated chloride channels (CaCCs) and there is evidence for their involvement in fluid secretion from these cells. The molecular identity of the CaCC in PDECs remains unknown. Recently, the bestrophin family of proteins have been proposed as a potential molecular candidate for CaCCs. Expression of bestrophins is strongly correlated with the function of CaCCs in a variety of tissues. In the present study, the expression of bestrophins has been investigated in the cystic fibrosis pancreatic duct cell line, CFPAC-1. Iodide efflux analysis was used to characterise native CaCCs in CFPAC-1 cell monolayers. Efflux was induced with the addition of UTP (100 microM, 10.2 +/- 1.5 nmol min(-1)), which was blocked by the chloride channel blockers niflumic acid (81%) and DIDS (90%). The UTP-stimulated iodide efflux was shown to be Ca(2+) dependent and cAMP independent. RT-PCR analysis of RNA isolated from CFPAC-1 cells demonstrated positive identification of all four human bestrophin mRNAs. Western blot of CFPAC-1 cell protein isolates with antibodies specific to human bestrophin 1 (hBest1) showed that hBest1 protein was expressed in this cell line. HBest1 was present on the cell surface, demonstrated using biotinylation and confocal imaging, as well as in the cytoplasm. SiRNA-mediated silencing of hBest1 in CFPAC-1 cells reduced the UTP-stimulated iodide efflux by around 40%. This study provides evidence that the bestrophins are expressed in pancreatic duct cells and, more specifically, that hBest1 plays a role in the CaCCs found in these cells.
Collapse
Affiliation(s)
- Laura L Marsey
- Biomedicine Group, Biomedical Research Centre, School of Medicine, Health Policy and Practice, Faculty of Health, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
32
|
Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 2008; 88:1379-406. [PMID: 18923185 DOI: 10.1152/physrev.90100.2007] [Citation(s) in RCA: 1477] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle has recently been identified as an endocrine organ. It has, therefore, been suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert paracrine, autocrine, or endocrine effects should be classified as "myokines." Recent research demonstrates that skeletal muscles can produce and express cytokines belonging to distinctly different families. However, the first identified and most studied myokine is the gp130 receptor cytokine interleukin-6 (IL-6). IL-6 was discovered as a myokine because of the observation that it increases up to 100-fold in the circulation during physical exercise. Identification of IL-6 production by skeletal muscle during physical activity generated renewed interest in the metabolic role of IL-6 because it created a paradox. On one hand, IL-6 is markedly produced and released in the postexercise period when insulin action is enhanced but, on the other hand, IL-6 has been associated with obesity and reduced insulin action. This review focuses on the myokine IL-6, its regulation by exercise, its signaling pathways in skeletal muscle, and its role in metabolism in both health and disease.
Collapse
Affiliation(s)
- Bente K Pedersen
- The Centre of Inflammation and Metabolism at Department of Infectious Diseases, Rigshospitalet, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
33
|
Pancreatic duct secretion: experimental methods, ion transport mechanisms and regulation. J Physiol Biochem 2008; 64:243-57. [PMID: 19244938 DOI: 10.1007/bf03178846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Heitzmann D, Warth R. Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol Rev 2008; 88:1119-82. [PMID: 18626068 DOI: 10.1152/physrev.00020.2007] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epithelial cells of the gastrointestinal tract are an important barrier between the "milieu interne" and the luminal content of the gut. They perform transport of nutrients, salts, and water, which is essential for the maintenance of body homeostasis. In these epithelia, a variety of K(+) channels are expressed, allowing adaptation to different needs. This review provides an overview of the current literature that has led to a better understanding of the multifaceted function of gastrointestinal K(+) channels, thereby shedding light on pathophysiological implications of impaired channel function. For instance, in gastric mucosa, K(+) channel function is a prerequisite for acid secretion of parietal cells. In epithelial cells of small intestine, K(+) channels provide the driving force for electrogenic transport processes across the plasma membrane, and they are involved in cell volume regulation. Fine tuning of salt and water transport and of K(+) homeostasis occurs in colonic epithelia cells, where K(+) channels are involved in secretory and reabsorptive processes. Furthermore, there is growing evidence for changes in epithelial K(+) channel expression during cell proliferation, differentiation, apoptosis, and, under pathological conditions, carcinogenesis. In the future, integrative approaches using functional and postgenomic/proteomic techniques will help us to gain comprehensive insights into the role of K(+) channels of the gastrointestinal tract.
Collapse
Affiliation(s)
- Dirk Heitzmann
- Institute of Physiology and Clinic and Policlinic for Internal Medicine II, Regensburg, Germany
| | | |
Collapse
|
35
|
Selkirk GA, McLellan TM, Wright HE, Rhind SG. Mild endotoxemia, NF-kappaB translocation, and cytokine increase during exertional heat stress in trained and untrained individuals. Am J Physiol Regul Integr Comp Physiol 2008; 295:R611-23. [PMID: 18565834 DOI: 10.1152/ajpregu.00917.2007] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined endotoxin-mediated cytokinemia during exertional heat stress (EHS). Subjects were divided into trained [TR; n=12, peak aerobic power (VO2peak)=70+/-2 ml.kg lean body mass(-1).min(-1)] and untrained (UT; n=11, VO2peak=50+/-1 ml.kg lean body mass(-1).min(-1)) groups before walking at 4.5 km/h with 2% elevation in a climatic chamber (40 degrees C, 30% relative humidity) wearing protective clothing until exhaustion (Exh). Venous blood samples at baseline and 0.5 degrees C rectal temperature increments (38.0, 38.5, 39.0, 39.5, and 40.0 degrees C/Exh) were analyzed for endotoxin, lipopolysaccharide binding protein, circulating cytokines, and intranuclear NF-kappaB translocation. Baseline and Exh samples were also stimulated with LPS (100 ng/ml) and cultured in vitro in a 37 degrees C water bath for 30 min. Phenotypic determination of natural killer cell frequency was also determined. Enhanced blood (104+/-6 vs. 84+/-3 ml/kg) and plasma volumes (64+/-4 vs. 51+/-2 ml/kg) were observed in TR compared with UT subjects. EHS produced an increased concentration of circulating endotoxin in both TR (8+/-2 pg/ml) and UT subjects (15+/-3 pg/ml) (range: not detected to 32 pg/ml), corresponding with NF-kappaB translocation and cytokine increases in both groups. In addition, circulating levels of tumor necrosis factor-alpha and IL-6 were also elevated combined with concomitant increases in IL-1 receptor antagonist in both groups and IL-10 in TR subjects only. Findings suggest that the threshold for endotoxin leakage and inflammatory activation during EHS occurs at a lower temperature in UT compared with TR subjects and support the endotoxin translocation hypothesis of exertional heat stroke, linking endotoxin tolerance and heat tolerance.
Collapse
Affiliation(s)
- G A Selkirk
- Defence R & D Canada-Toronto, 1133 Sheppard Ave. E., Toronto, ON, Canada M3M 3B9
| | | | | | | |
Collapse
|
36
|
Meador BM, Krzyszton CP, Johnson RW, Huey KA. Effects of IL-10 and age on IL-6, IL-1beta, and TNF-alpha responses in mouse skeletal and cardiac muscle to an acute inflammatory insult. J Appl Physiol (1985) 2008; 104:991-7. [PMID: 18218915 DOI: 10.1152/japplphysiol.01079.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exaggerated proinflammatory cytokine responses can be observed with aging, and reduced levels of the anti-inflammatory cytokine IL-10 may contribute to these responses. IL-10 can reduce IL-6, IL-1beta, and TNF-alpha expression in nonmuscle tissues; however, no studies have examined the combined effects of IL-10 and age on cytokine responses in skeletal and cardiac muscle. These experiments tested the hypothesis that the absence of IL-10, in vivo, is associated with greater IL-6, TNF-alpha, and IL-1beta responses to an inflammatory challenge in skeletal and cardiac muscle and that aging exaggerates these responses. We compared IL-6, IL-1beta, and TNF-alpha mRNA and protein levels in skeletal and cardiac muscle of young (4 mo) and mature (10-11 mo) wild-type (IL-10(+/+)) and IL-10 deficient (IL-10(-/-)) mice following LPS. Skeletal and cardiac IL-6 mRNA and protein were elevated by LPS for IL-10(+/+) and IL-10(-/-) mice with greater responses in the IL-10(-/-) mice (P < 0.01). In skeletal muscle these effects were greater in mature than young mice (P < 0.01). IL-1beta mRNA and protein responses to LPS were greater in cardiac muscle of young but not mature IL-10(-/-) mice compared with IL-10(+/+) (P < 0.01). However, IL-1beta responses were greater in mature than young mice, but only in IL-10(+/+) groups (P < 0.05). The absence of IL-10 was associated with higher TNF-alpha protein levels in cardiac muscle (P < 0.05). The results provide the first in vivo evidence that the absence of IL-10 is associated with a greater IL-6 response to LPS in skeletal and cardiac muscles, and in skeletal muscle aging further exaggerates these responses.
Collapse
Affiliation(s)
- B M Meador
- Departments of Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
37
|
Novak I. Purinergic receptors in the endocrine and exocrine pancreas. Purinergic Signal 2007; 4:237-53. [PMID: 18368520 DOI: 10.1007/s11302-007-9087-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 11/06/2007] [Indexed: 11/28/2022] Open
Abstract
The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly, these processes have been viewed separately. In beta cells, stimulation of P2Y(1) receptors amplifies secretion of insulin in the presence of glucose. Nucleotides released from secretory granules could also contribute to autocrine/paracrine regulation in pancreatic islets. In addition to P2Y(1) receptors, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors are prominent in pancreatic ducts, and several studies indicate that P2Y(2), P2Y(4), P2Y(11), P2X(4) and P2X(7) receptors could regulate secretion, primarily by affecting Cl(-) and K(+) channels and intracellular Ca(2+) signalling. In order to understand the physiology of the whole organ, it is necessary to consider the full complement of purinergic receptors on different cells as well as the structural and functional relation between various cells within the whole organ. In addition to the possible physiological function of purinergic receptors, this review analyses whether the receptors could be potential therapeutic targets for drug design aimed at treatment of pancreatic diseases.
Collapse
Affiliation(s)
- I Novak
- Department of Biosciences, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Ø, Denmark,
| |
Collapse
|
38
|
Lotshaw DP. Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys 2007; 47:209-56. [PMID: 17652773 DOI: 10.1007/s12013-007-0007-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/12/2022]
Abstract
The mammalian family of two-pore domain K+ (K2P) channel proteins are encoded by 15 KCNK genes and subdivided into six subfamilies on the basis of sequence similarities: TWIK, TREK, TASK, TALK, THIK, and TRESK. K2P channels are expressed in cells throughout the body and have been implicated in diverse cellular functions including maintenance of the resting potential and regulation of excitability, sensory transduction, ion transport, and cell volume regulation, as well as metabolic regulation and apoptosis. In recent years K2P channel isoforms have been identified as important targets of several widely employed drugs, including: general anesthetics, local anesthetics, neuroprotectants, and anti-depressants. An important goal of future studies will be to identify the basis of drug actions and channel isoform selectivity. This goal will be facilitated by characterization of native K2P channel isoforms, their pharmacological properties and tissue-specific expression patterns. To this end the present review examines the biophysical, pharmacological, and functional characteristics of cloned mammalian K2P channels and compares this information with the limited data available for native K2P channels in order to determine criteria which may be useful in identifying ionic currents mediated by native channel isoforms and investigating their pharmacological and functional characteristics.
Collapse
Affiliation(s)
- David P Lotshaw
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
39
|
Kong D, Nishino N, Shibusawa M, Kusano M. Establishment and characterization of human pancreatic adenocarcinoma cell line in tissue culture and the nude mouse. Tissue Cell 2007; 39:217-23. [PMID: 17560620 DOI: 10.1016/j.tice.2007.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 04/04/2007] [Indexed: 10/23/2022]
Abstract
We established a human pancreatic carcinoma cell line, designated SPH, from cancerous ascites of a 57-year-old male patient with ductal adenocarcinoma of the pancreas. The cells have been cultured for 32 months with RPMI-1640 medium supplemental with 10% fetal calf serum. The population doubling time of this cell line was about 35 h, and the modal number of chromosomes was 85 at passage 20. The cells produced CA19-9, SPan-1, and DUPAN-2 in the conditioned medium and formed tumors in nude mice, the histology of which was similar to that of the primary tumor. Based on these findings, this cell line is considered to be a very useful model for studying many aspects of primary and metastatic pancreatic cancer cell biology.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/metabolism
- CA-19-9 Antigen/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Disease Models, Animal
- Humans
- Karyotyping
- Male
- Mice
- Mice, Nude
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Transplantation
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Tumor Cells, Cultured/immunology
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
Collapse
Affiliation(s)
- Dalu Kong
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | | | | | | |
Collapse
|
40
|
Kong D, Nishino N, Shibusawa M, Kusano M. Establishment and characterization of a new cell line (SPH) derived from a pancreatic ductal adenocarcinoma. Pancreas 2007; 35:188-9. [PMID: 17632328 DOI: 10.1097/01.mpa.0000250140.18015.9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
41
|
Fuller CM, Kovacs G, Anderson SJ, Benos DJ. The CLCAs: Proteins with Ion Channel, Cell Adhesion and Tumor Suppressor Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007. [DOI: 10.1007/0-387-23250-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Wang JS, Lin HY, Cheng ML, Wong MK. Chronic intermittent hypoxia modulates eosinophil- and neutrophil-platelet aggregation and inflammatory cytokine secretion caused by strenuous exercise in men. J Appl Physiol (1985) 2007; 103:305-14. [PMID: 17463301 DOI: 10.1152/japplphysiol.00226.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although acclimatization to intermittent hypoxia (IH) improves exercise performance by increasing oxygen delivery and utilization, the effects of chronic IH on platelet-leukocyte interaction and inflammation-related cytokine secretion caused by strenuous exercise remain unclear. This investigation elucidates how two intensities of IH influence eosinophil- and neutrophil-platelet aggregation (EPA and NPA) as well as pro- and anti-inflammatory cytokines mediated by strenuous exercise. Twenty healthy sedentary men were randomly divided into severe (SIH) and moderate (MIH) IH groups; groups were exposed to 12% O2 (SIH) and 15% O2 (MIH) for 1 h/day, respectively, for 5 days/wk for 8 wk in a normobaric hypoxia chamber. Before IH intervention, 1) exercise up to maximal oxygen consumption promoted shear stress-, LPS-, and N-formyl-methionyl-leucyl-phenylalanine-induced EPA, increased IL-1beta and malondialdehyde levels, and decreased total antioxidant levels in plasma and 2) exposure to 12% O2, but not to 15% O2 for 1 h, enhanced LPS-induced EPA and reduced plasma total antioxidant levels. After IH for 8 wk, hypoxia- and exercise-promoted EPA, IL-1beta, or malondialdehyde levels were suppressed in both MIH and SIH groups, and plasma IL-6 and IL-10 levels in the SIH group were increased. However, the NPA induced by the shear force and chemical agonists was not changed under the two IH regimens. Therefore, both MIH and SIH regimens ameliorate eosinophil- and platelet-related thrombosis, proinflammatory IL-1beta secretion, and lipid peroxidation enhanced by strenuous exercise. Furthermore, SIH simultaneously increases circulatory anti-inflammatory IL-6 and IL-10 concentrations. These findings can help to develop effective IH regimens that improve aerobic fitness and minimize risk of thromboinflammation.
Collapse
Affiliation(s)
- Jong-Shyan Wang
- Graduate Institute of Rehabilitation Science and Center for Gerontological Research, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | | | | | | |
Collapse
|
43
|
Pedersen BK, Akerström TCA, Nielsen AR, Fischer CP. Role of myokines in exercise and metabolism. J Appl Physiol (1985) 2007; 103:1093-8. [PMID: 17347387 DOI: 10.1152/japplphysiol.00080.2007] [Citation(s) in RCA: 521] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During the past 20 yr, it has been well documented that exercise has a profound effect on the immune system. With the discovery that exercise provokes an increase in a number of cytokines, a possible link between skeletal muscle contractile activity and immune changes was established. For most of the last century, researchers sought a link between muscle contraction and humoral changes in the form of an "exercise factor," which could mediate some of the exercise-induced metabolic changes in other organs such as the liver and the adipose tissue. We suggest that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either paracrine or endocrine effects should be classified as "myokines." Since the discovery of interleukin (IL)-6 release from contracting skeletal muscle, evidence has accumulated that supports an effect of IL-6 on metabolism. We suggested that muscle-derived IL-6 fulfils the criteria of an exercise factor and that such classes of cytokines should be named "myokines." Interestingly, recent research demonstrates that skeletal muscles can produce and express cytokines belonging to distinctly different families. Thus skeletal muscle has the capacity to express several myokines. To date the list includes IL-6, IL-8, and IL-15, and contractile activity plays a role in regulating the expression of these cytokines in skeletal muscle. The present review focuses on muscle-derived cytokines, their regulation by exercise, and their possible roles in metabolism and skeletal muscle function and it discusses which cytokines should be classified as true myokines.
Collapse
Affiliation(s)
- Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism, 7641 Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
44
|
Kaur J, Madan S, Hamid A, Singla A, Mahmood A. Intestinal alkaline phosphatase secretion in oil-fed rats. Dig Dis Sci 2007; 52:665-670. [PMID: 17268832 DOI: 10.1007/s10620-006-9384-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 04/06/2006] [Indexed: 01/15/2023]
Abstract
Oil feeding is known to increase the secretion of intestinal alkaline phosphatase (IAP) into serum and this phenomenon is shown to be mediated by surfactant-like particles. These lipoprotein particles are secreted by enterocytes and are rich in phosphatidyl choline and IAP. The exact mechanisms underlying this phenomenon are not known. We studied the effect of feeding different oils varying in fatty acid composition, i.e., coconut oil, corn oil, and cod liver oil, on the secretion of IAP into serum. Also, the effect of actinomycin D treatment on this phenomenon was evaluated. Male albino rats were fed 2 ml of various oils. Alkaline phosphatase activity was measured in serum, luminal washings, and other intestinal fractions. Cod liver oil was found to maximally enhance the soluble and membrane-bound IAP as well as secretion of IAP into lumen and serum. Administration of actinomycin D significantly reduced the enzyme activity in serum and various intestinal fractions in both control and cod liver oil-fed rats. These results were further substantiated by 5-bromo-4-chloroindolyl phosphate staining of IAP in acrylamide gels and by western blotting. The effect of cod liver oil feeding was specific for IAP, as there was no change in the activity of another brush border enzyme, sucrase, under these conditions. These findings suggest that fatty acid composition of the oil determines the amount of IAP secretion and there is coordination between IAP synthesis and its secretion for transport into serum in response to oil feeding.
Collapse
Affiliation(s)
- Jyotdeep Kaur
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Regular moderate exercise is associated with a reduced incidence of infection compared with a completely sedentary state. However, prolonged bouts of strenuous exercise cause a temporary depression of various aspects of immune function (e.g., neutrophil respiratory burst, lymphocyte proliferation, monocyte antigen presentation) that usually lasts approximately 3-24 h after exercise, depending on the intensity and duration of the exercise bout. Postexercise immune function dysfunction is most pronounced when the exercise is continuous, prolonged (>1.5 h), of moderate to high intensity (55-75% maximum O(2) uptake), and performed without food intake. Periods of intensified training (overreaching) lasting 1 wk or more may result in longer lasting immune dysfunction. Although elite athletes are not clinically immune deficient, it is possible that the combined effects of small changes in several immune parameters may compromise resistance to common minor illnesses, such as upper respiratory tract infection. However, this may be a small price to pay as the anti-inflammatory effects of exercise mediated through cytokines and/or downregulation of toll-like receptor expression are likely mediators of many of the long-term health benefits of regular exercise.
Collapse
Affiliation(s)
- Michael Gleeson
- School of Sport and Exercise Sciences, Loughborough Univ., UK.
| |
Collapse
|
46
|
Malo MS, Biswas S, Abedrapo MA, Yeh L, Chen A, Hodin RA. The pro-inflammatory cytokines, IL-1beta and TNF-alpha, inhibit intestinal alkaline phosphatase gene expression. DNA Cell Biol 2007; 25:684-95. [PMID: 17233117 DOI: 10.1089/dna.2006.25.684] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
High levels of the pro-inflammatory cytokines, interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), are present in the gut mucosa of patients suffering form various diseases, most notably inflammatory bowel diseases (IBD). Since the inflammatory milieu can cause important alterations in epithelial cell function, we examined the cytokine effects on the expression of the enterocyte differentiation marker, intestinal alkaline phosphatase (IAP), a protein that detoxifies bacterial lipopolysaccharides (LPS) and limits fat absorption. Sodium butyrate (NaBu), a short-chain fatty acid and histone deacetylase (HDAC) inhibitor, was used to induce IAP expression in HT-29 cells and the cells were also treated +/- the cytokines. Northern blots confirmed IAP induction by NaBu, however, pretreatment (6 h) with either cytokine showed a dose-dependent inhibition of IAP expression. IAP Western analyses and alkaline phosphatase enzyme assays corroborated the Northern data and confirmed that the cytokines inhibit IAP induction. Transient transfections with a reporter plasmid carrying the human IAP promoter showed significant inhibition of NaBu-induced IAP gene activation by the cytokines (100 and 60% inhibition with IL-1beta and TNF-alpha, respectively). Western analyses showed that NaBu induced H4 and H3 histone acetylation, and pretreatment with IL-1beta or TNF-alpha did not change this global acetylation pattern. In contrast, chromatin immunoprecipitation showed that local histone acetylation of the IAP promoter region was specifically inhibited by either cytokine. We conclude that IL-1beta and TNF-alpha inhibit NaBu-induced IAP gene expression, likely by blocking the histone acetylation within its promoter. Cytokine-mediated IAP gene silencing may have important implications for gut epithelial function in the setting of intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Madhu S Malo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
47
|
Nieman DC, Henson DA, Gojanovich G, Davis JM, Murphy EA, Mayer EP, Pearce S, Dumke CL, Utter AC, McAnulty SR, McAnulty LS. Influence of carbohydrate on immune function following 2 h cycling. Res Sports Med 2006; 14:225-37. [PMID: 16967774 DOI: 10.1080/15438620600854793] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The influence of carbohydrate compared with placebo ingestion on changes in immune cell counts and functions following 2 h intensive cycling was studied in 12 trained cyclists who functioned as their own controls. The subjects performed two tests 2 weeks apart where they cycled for 2 h at approximately 64% Watts(max) while receiving 4 mL x kg(-1) x 15 min(-1) carbohydrate (6%) (Cho) or placebo (Pla) beverages. Blood samples were collected 30 min preexercise, and immediately and 1 h postexercise. The samples were assayed for plasma cortisol and epinephrine, blood leukocyte subset counts, PHA-induced lymphocyte proliferation, and natural killer cell activity (NKCA). Compared with Pla ingestion, Cho attenuated exercise-induced changes in plasma cortisol, blood neutrophil, and monocyte counts, but not in total blood lymphocyte, T cell, and NK cell counts, PHA-induced lymphocyte proliferation, and NKCA. Thus despite a strong attenuating influence of carbohydrate ingestion on exercise-induced changes in plasma cortisol and blood neutrophil and monocyte counts, other immune measures related to lymphocyte subset counts, and function were unaffected.
Collapse
Affiliation(s)
- David C Nieman
- Department of Health, Leisure, and Exercise Science, Fischer Hamilton/Nycom Biochemistry Laboratory, Appalachian State University, Boone, North Carolina 28608, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Suzuki K, Peake J, Nosaka K, Okutsu M, Abbiss CR, Surriano R, Bishop D, Quod MJ, Lee H, Martin DT, Laursen PB. Changes in markers of muscle damage, inflammation and HSP70 after an Ironman triathlon race. Eur J Appl Physiol 2006; 98:525-34. [PMID: 17031693 DOI: 10.1007/s00421-006-0296-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
We investigated the effects of an Ironman triathlon race on markers of muscle damage, inflammation and heat shock protein 70 (HSP70). Nine well-trained male triathletes (mean +/- SD age 34 +/- 5 years; VO(2peak) 66.4 ml kg(-1) min(-1)) participated in the 2004 Western Australia Ironman triathlon race (3.8 km swim, 180 km cycle, 42.2 km run). We assessed jump height, muscle strength and soreness, and collected venous blood samples 2 days before the race, within 30 min and 14-20 h after the race. Plasma samples were analysed for muscle proteins, acute phase proteins, cytokines, heat shock protein 70 (HSP70), and clinical biochemical variables related to dehydration, haemolysis, liver and renal functions. Muscular strength and jump height decreased significantly (P < 0.05) after the race, whereas muscle soreness and the plasma concentrations of muscle proteins increased. The cytokines interleukin (IL)-1 receptor antagonist, IL-6 and IL-10, and HSP70 increased markedly after the race, while IL-12p40 and granulocyte colony-stimulating factor (G-CSF) were also elevated. IL-4, IL-1beta and tumour necrosis factor-alpha did not change significantly, despite elevated C-reactive protein and serum amyloid protein A on the day after the race. Plasma creatinine, uric acid and total bilirubin concentrations and gamma-glutamyl transferase activity also changed after the race. In conclusion, despite evidence of muscle damage and an acute phase response after the race, the pro-inflammatory cytokine response was minimal and anti-inflammatory cytokines were induced. HSP70 is released into the circulation as a function of exercise duration.
Collapse
Affiliation(s)
- Katsuhiko Suzuki
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima Saitama, Tokorozawa, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nemet D, Eliakim A, Zaldivar F, Cooper DM. Effect of rhIL-6 infusion on GH-->IGF-I axis mediators in humans. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1663-8. [PMID: 16840657 DOI: 10.1152/ajpregu.00053.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise leads to simultaneous increases in mediators signaling apparently antagonistic functional responses such as growth factors and inflammatory mediators. The aim of the present study was to demonstrate the physiological effect of IL-6 on circulating components of the growth hormone (GH)-insulin-like growth factor-I (IGF-I) axis. Twelve men (ages 26 +/- 2 yr) were divided into two groups (n = 6 in each group), receiving either albumin or recombinant human (rh) IL-6 infusion. IL-6 was infused via an antecubital vein, and a contralateral antecubital vein was used for blood sampling. The IL-6 dose was chosen to reach plasma levels of IL-6 characteristic of intense exercise (5 microg/h, for 3 h, resulting in plasma levels of 100 pg/ml). Blood samples for GH, GH binding protein, IGF-I, and IGF binding protein (IGFBP)-1 and -3 were collected at baseline, 30 min, and 1, 2, 3, 4, 5, and 8 h after the beginning of the rhIL-6 infusion. IL-6 levels increased only in the rhIL-6-infused group (P < 0.0005) and returned to baseline after the infusion was stopped. IL-6 infusion led to a significant increase in GH, peaking 1 h after the beginning of infusion (P < 0.001). A decrease in total IGF-I levels was noted only in the rhIL-6-infused group (P < 0.027). An initial decrease in IGFBP-1 levels was noted in both groups during infusion (P < 0.03). Following the initial decrease, there was a significant increase in IGFBP-1 levels only in the IL-6-infused participants, peaking at 2 after the infusion cessation (P < 0.001). IL-6 infusion had no effect on GH binding protein, IGFBP-3, and acid-labile subunit levels. rhIL-6 levels similar to the levels found after strenuous exercise induced a typical exercise-associated GH-->IGF-I axis response (increase GH, decreased IGF-I, and elevated IGFBP-1). The results suggest that IL-6 plays a role in the GH-->IGF-I response to intense exercise.
Collapse
Affiliation(s)
- Dan Nemet
- College of Medicine, Clinical Research Center, University of California at Irvine, 101 The City Drive, Orange, CA 92868, USA
| | | | | | | |
Collapse
|
50
|
Rakonczay Z, Fearn A, Hegyi P, Boros I, Gray MA, Argent BE. Characterization of H+ and HCO3- transporters in CFPAC-1 human pancreatic duct cells. World J Gastroenterol 2006; 12:885-895. [PMID: 16521216 PMCID: PMC4066153 DOI: 10.3748/wjg.v12.i6.885] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 07/25/2005] [Accepted: 08/03/2005] [Indexed: 02/06/2023] Open
Abstract
AIM To characterize H+ and HCO3- transporters in polarized CFPAC-1 human pancreatic duct cells, which were derived from a cystic fibrosis patient with the DeltaF508 CFTR mutation. METHODS CFPAC-1 cells were seeded at high density onto permeable supports and grown to confluence. The cells were loaded with the pH-sensitive fluorescent dye BCECF, and mounted into a perfusion chamber, which allowed the simultaneous perfusion of the basolateral and apical membranes. Transmembrane base flux was calculated from the changes in intracellular pH and the buffering capacity of the cells. RESULTS Our results showed differential permeability to HCO3-/CO2 at the apical and basolateral membranes of CFPAC-1 cells. Na+/ HCO3- co-transporters (NBCs) and Cl-/ HCO3- exchangers (AEs) were present on the basolateral membrane, and Na+/H+ exchangers (NHEs) on both the apical and basolateral membranes of the cells. Basolateral HCO3- uptake was sensitive to variations of extracellular K+ concentration, the membrane permeable carbonic anhydrase (CA) inhibitors acetazolamide (100 micromol/L) and ethoxyzolamide (100 micromol/L), and was partially inhibited by H2-DIDS (600 micromol/L). The membrane-impermeable CA inhibitor 1-N-(4-sulfamoylphenylethyl)-2,4,6-trimethylpyridine perchlorate did not have any effect on HCO3- uptake. The basolateral AE had a much higher activity than that in the apical membrane, whereas there was no such difference with the NHE under resting conditions. Also, 10 micromol/L forskolin did not significantly influence Cl-/ HCO3- exchange on the apical and basolateral membranes. The administration of 250 micromol/L H2-DIDS significantly inhibited the basolateral AE. Amiloride (300 micromol/L) completely inhibited NHEs on both membranes of the cells. RT-PCR revealed the expression of pNBC1, AE2, and NHE1 mRNA. CONCLUSION These data suggest that apart from the lack of CFTR and apical Cl-/ HCO3- exchanger activity, CFPAC-1 cells express similar H+ and HCO3- transporters to those observed in native animal tissue.
Collapse
Affiliation(s)
- Zoltan Rakonczay
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | |
Collapse
|