1
|
Pesta D, Anadol-Schmitz E, Sarabhai T, Op den Kamp Y, Gancheva S, Trinks N, Zaharia OP, Mastrototaro L, Lyu K, Habets I, Op den Kamp-Bruls YMH, Dewidar B, Weiss J, Schrauwen-Hinderling V, Zhang D, Gaspar RC, Strassburger K, Kupriyanova Y, Al-Hasani H, Szendroedi J, Schrauwen P, Phielix E, Shulman GI, Roden M. Determinants of increased muscle insulin sensitivity of exercise-trained versus sedentary normal weight and overweight individuals. SCIENCE ADVANCES 2025; 11:eadr8849. [PMID: 39742483 PMCID: PMC11691647 DOI: 10.1126/sciadv.adr8849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The athlete's paradox states that intramyocellular triglyceride accumulation associates with insulin resistance in sedentary but not in endurance-trained humans. Underlying mechanisms and the role of muscle lipid distribution and composition on glucose metabolism remain unclear. We compared highly trained athletes (ATHL) with sedentary normal weight (LEAN) and overweight-to-obese (OVWE) male and female individuals. This observational study found that ATHL show higher insulin sensitivity, muscle mitochondrial content, and capacity, but lower activation of novel protein kinase C (nPKC) isoforms, despite higher diacylglycerol concentrations. Notably, sedentary but insulin sensitive OVWE feature lower plasma membrane-to-mitochondria sn-1,2-diacylglycerol ratios. In ATHL, calpain-2, which cleaves nPKC, negatively associates with PKCε activation and positively with insulin sensitivity along with higher GLUT4 and hexokinase II content. These findings contribute to explaining the athletes' paradox by demonstrating lower nPKC activation, increased calpain, and mitochondrial partitioning of bioactive diacylglycerols, the latter further identifying an obesity subtype with increased insulin sensitivity (NCT03314714).
Collapse
Affiliation(s)
- Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Evrim Anadol-Schmitz
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Theresia Sarabhai
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Yvo Op den Kamp
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Nina Trinks
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ivo Habets
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Yvonne M. H. Op den Kamp-Bruls
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Vera Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Klaus Strassburger
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Schrauwen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- Leiden University Medical Center, Clinical Epidemiology, Leiden, Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
2
|
Pedersen ZO, Pedersen BS, Larsen S, Dysgaard T. A Scoping Review Investigating the "Gene-Dosage Theory" of Mitochondrial DNA in the Healthy Skeletal Muscle. Int J Mol Sci 2023; 24:8154. [PMID: 37175862 PMCID: PMC10179410 DOI: 10.3390/ijms24098154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
This review provides an overview of the evidence regarding mtDNA and valid biomarkers for assessing mitochondrial adaptions. Mitochondria are small organelles that exist in almost all cells throughout the human body. As the only organelle, mitochondria contain their own DNA, mitochondrial DNA (mtDNA). mtDNA-encoded polypeptides are subunits of the enzyme complexes in the electron transport chain (ETC) that are responsible for production of ATP to the cells. mtDNA is frequently used as a biomarker for mitochondrial content, since changes in mitochondrial volume are thought to induce similar changes in mtDNA. However, some exercise studies have challenged this "gene-dosage theory", and have indicated that changes in mitochondrial content can adapt without changes in mtDNA. Thus, the aim of this scoping review was to summarize the studies that used mtDNA as a biomarker for mitochondrial adaptions and address the question as to whether changes in mitochondrial content, induce changes in mtDNA in response to aerobic exercise in the healthy skeletal muscle. The literature was searched in PubMed and Embase. Eligibility criteria included: interventional study design, aerobic exercise, mtDNA measurements reported pre- and postintervention for the healthy skeletal muscle and English language. Overall, 1585 studies were identified. Nine studies were included for analysis. Eight out of the nine studies showed proof of increased oxidative capacity, six found improvements in mitochondrial volume, content and/or improved mitochondrial enzyme activity and seven studies did not find evidence of change in mtDNA copy number. In conclusion, the findings imply that mitochondrial adaptions, as a response to aerobic exercise, can occur without a change in mtDNA copy number.
Collapse
Affiliation(s)
- Zandra Overgaard Pedersen
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Britt Staevnsbo Pedersen
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Tina Dysgaard
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Gonzalez-Franquesa A, Stocks B, Chubanava S, Hattel HB, Moreno-Justicia R, Peijs L, Treebak JT, Zierath JR, Deshmukh AS. Mass-spectrometry-based proteomics reveals mitochondrial supercomplexome plasticity. Cell Rep 2021; 35:109180. [PMID: 34038727 DOI: 10.1016/j.celrep.2021.109180] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 11/26/2022] Open
Abstract
Mitochondrial respiratory complex subunits assemble in supercomplexes. Studies of supercomplexes have typically relied upon antibody-based quantification, often limited to a single subunit per respiratory complex. To provide a deeper insight into mitochondrial and supercomplex plasticity, we combine native electrophoresis and mass spectrometry to determine the supercomplexome of skeletal muscle from sedentary and exercise-trained mice. We quantify 422 mitochondrial proteins within 10 supercomplex bands in which we show the debated presence of complexes II and V. Exercise-induced mitochondrial biogenesis results in non-stoichiometric changes in subunits and incorporation into supercomplexes. We uncover the dynamics of supercomplex-related assembly proteins and mtDNA-encoded subunits after exercise. Furthermore, exercise affects the complexing of Lactb, an obesity-associated mitochondrial protein, and ubiquinone biosynthesis proteins. Knockdown of ubiquinone biosynthesis proteins leads to alterations in mitochondrial respiration. Our approach can be applied to broad biological systems. In this instance, comprehensively analyzing respiratory supercomplexes illuminates previously undetectable complexity in mitochondrial plasticity.
Collapse
Affiliation(s)
- Alba Gonzalez-Franquesa
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sabina Chubanava
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Helle B Hattel
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Roger Moreno-Justicia
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lone Peijs
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17177, Sweden
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
5
|
Watson MD, Cross BL, Grosicki GJ. Evidence for the Contribution of Gut Microbiota to Age-Related Anabolic Resistance. Nutrients 2021; 13:706. [PMID: 33672207 PMCID: PMC7926629 DOI: 10.3390/nu13020706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Globally, people 65 years of age and older are the fastest growing segment of the population. Physiological manifestations of the aging process include undesirable changes in body composition, declines in cardiorespiratory fitness, and reductions in skeletal muscle size and function (i.e., sarcopenia) that are independently associated with mortality. Decrements in muscle protein synthetic responses to anabolic stimuli (i.e., anabolic resistance), such as protein feeding or physical activity, are highly characteristic of the aging skeletal muscle phenotype and play a fundamental role in the development of sarcopenia. A more definitive understanding of the mechanisms underlying this age-associated reduction in anabolic responsiveness will help to guide promyogenic and function promoting therapies. Recent studies have provided evidence in support of a bidirectional gut-muscle axis with implications for aging muscle health. This review will examine how age-related changes in gut microbiota composition may impact anabolic response to protein feeding through adverse changes in protein digestion and amino acid absorption, circulating amino acid availability, anabolic hormone production and responsiveness, and intramuscular anabolic signaling. We conclude by reviewing literature describing lifestyle habits suspected to contribute to age-related changes in the microbiome with the goal of identifying evidence-informed strategies to preserve microbial homeostasis, anabolic sensitivity, and skeletal muscle with advancing age.
Collapse
Affiliation(s)
| | | | - Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, GA 31419, USA; (M.D.W.); (B.L.C.)
| |
Collapse
|
6
|
Joseph JS, Anand K, Malindisa ST, Oladipo AO, Fagbohun OF. Exercise, CaMKII, and type 2 diabetes. EXCLI JOURNAL 2021; 20:386-399. [PMID: 33746668 PMCID: PMC7975583 DOI: 10.17179/excli2020-3317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
Individuals who exercise regularly are protected from type 2 diabetes and other metabolic syndromes, in part by enhanced gene transcription and induction of many signaling pathways crucial in correcting impaired metabolic pathways associated with a sedentary lifestyle. Exercise activates Calmodulin-dependent protein kinase (CaMK)II, resulting in increased mitochondrial oxidative capacity and glucose transport. CaMKII regulates many health beneficial cellular functions in individuals who exercise compared with those who do not exercise. The role of exercise in the regulation of carbohydrate, lipid metabolism, and insulin signaling pathways are explained at the onset. Followed by the role of exercise in the regulation of glucose transporter (GLUT)4 expression and mitochondrial biogenesis are explained. Next, the main functions of Calmodulin-dependent protein kinase and the mechanism to activate it are illustrated, finally, an overview of the role of CaMKII in regulating GLUT4 expression, mitochondrial biogenesis, and histone modification are discussed.
Collapse
Affiliation(s)
- Jitcy S. Joseph
- Department of Toxicology and Biochemistry, National Institute for Occupational Health, A division of National Health Laboratory Service, Johannesburg, South Africa
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Sibusiso T. Malindisa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Florida Park, Johannesburg, South Africa
| | - Adewale O. Oladipo
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Park Florida, Johannesburg, 1710, South Africa
| | - Oladapo F. Fagbohun
- Department of Biomedical Engineering, First Technical University, Ibadan, Oyo State, Nigeria
- Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Flück M, Kramer M, Fitze DP, Kasper S, Franchi MV, Valdivieso P. Cellular Aspects of Muscle Specialization Demonstrate Genotype - Phenotype Interaction Effects in Athletes. Front Physiol 2019; 10:526. [PMID: 31139091 PMCID: PMC6518954 DOI: 10.3389/fphys.2019.00526] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction Gene polymorphisms are associated with athletic phenotypes relying on maximal or continued power production and affect the specialization of skeletal muscle composition with endurance or strength training of untrained subjects. We tested whether prominent polymorphisms in genes for angiotensin converting enzyme (ACE), tenascin-C (TNC), and actinin-3 (ACTN3) are associated with the differentiation of cellular hallmarks of muscle metabolism and contraction in high level athletes. Methods Muscle biopsies were collected from m. vastus lateralis of three distinct phenotypes; endurance athletes (n = 29), power athletes (n = 17), and untrained non-athletes (n = 63). Metabolism-, and contraction-related cellular parameters (such as capillary-to-fiber ratio, capillary length density, volume densities of mitochondria and intramyocellular lipid, fiber mean cross sectional area (MCSA) and volume densities of myofibrils) and the volume densities of sarcoplasma were analyzed by quantitative electron microscopy of the biopsies. Gene polymorphisms of ACE (I/D (insertion/deletion), rs1799752), TNC (A/T, rs2104772), and ACTN3 (C/T, rs1815739) were determined using high-resolution melting polymerase chain reaction (HRM-PCR). Genotype distribution was assessed using Chi2 tests. Genotype and phenotype effects were analyzed by univariate or multivariate analysis of variance and post hoc test of Fisher. P-values below 0.05 were considered statistically significant. Results The athletes demonstrated the specialization of metabolism- and contraction-related cellular parameters. Differences in cellular parameters could be identified for genotypes rs1799752 and rs2104772, and localized post hoc when taking the interaction with the phenotype into account. Between endurance and power athletes these concerned effects on capillary length density for rs1799752 and rs2104772, fiber type distribution and volume densities of myofibrils (rs1799752), and MSCA (rs2104772). Endurance athletes carrying the I-allele of rs1799752 demonstrated 50%-higher volume densities of mitochondria and sarcoplasma, when power athletes that carried only the D-allele showed the highest fiber MCSAs and a lower percentage of slow type muscle fibers. Discussion ACE and tenascin-C gene polymorphisms are associated with differences in cellular aspects of muscle metabolism and contraction in specifically-trained high level athletes. Quantitative differences in muscle fiber type distribution and composition, and capillarization in knee extensor muscle explain, in part, identified associations of the insertion/deletion genotypes of ACE (rs1799752) with endurance- and power-type Sports.
Collapse
Affiliation(s)
- Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| | - Manuel Kramer
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| | - Daniel P Fitze
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| | - Stephanie Kasper
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| | - Martino V Franchi
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| | - Paola Valdivieso
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| |
Collapse
|
8
|
Fritzen AM, Thøgersen FB, Thybo K, Vissing CR, Krag TO, Ruiz-Ruiz C, Risom L, Wibrand F, Høeg LD, Kiens B, Duno M, Vissing J, Jeppesen TD. Adaptations in Mitochondrial Enzymatic Activity Occurs Independent of Genomic Dosage in Response to Aerobic Exercise Training and Deconditioning in Human Skeletal Muscle. Cells 2019; 8:cells8030237. [PMID: 30871120 PMCID: PMC6468422 DOI: 10.3390/cells8030237] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial DNA (mtDNA) replication is thought to be an integral part of exercise-training-induced mitochondrial adaptations. Thus, mtDNA level is often used as an index of mitochondrial adaptations in training studies. We investigated the hypothesis that endurance exercise training-induced mitochondrial enzymatic changes are independent of genomic dosage by studying mtDNA content in skeletal muscle in response to six weeks of knee-extensor exercise training followed by four weeks of deconditioning in one leg, comparing results to the contralateral untrained leg, in 10 healthy, untrained male volunteers. Findings were compared to citrate synthase activity, mitochondrial complex activities, and content of mitochondrial membrane markers (porin and cardiolipin). One-legged knee-extensor exercise increased endurance performance by 120%, which was accompanied by increases in power output and peak oxygen uptake of 49% and 33%, respectively (p < 0.01). Citrate synthase and mitochondrial respiratory chain complex I–IV activities were increased by 51% and 46–61%, respectively, in the trained leg (p < 0.001). Despite a substantial training-induced increase in mitochondrial activity of TCA and ETC enzymes, there was no change in mtDNA and mitochondrial inner and outer membrane markers (i.e., cardiolipin and porin). Conversely, deconditioning reduced endurance capacity by 41%, muscle citrate synthase activity by 32%, and mitochondrial complex I–IV activities by 29–36% (p < 0.05), without any change in mtDNA and porin and cardiolipin content in the previously trained leg. The findings demonstrate that the adaptations in mitochondrial enzymatic activity after aerobic endurance exercise training and the opposite effects of deconditioning are independent of changes in the number of mitochondrial genomes, and likely relate to changes in the rate of transcription of mtDNA.
Collapse
Affiliation(s)
- Andreas M Fritzen
- Copenhagen Neuromuscular Center, Section 3342, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Frank B Thøgersen
- Copenhagen Neuromuscular Center, Section 3342, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Kasper Thybo
- Copenhagen Neuromuscular Center, Section 3342, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Christoffer R Vissing
- Copenhagen Neuromuscular Center, Section 3342, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Thomas O Krag
- Copenhagen Neuromuscular Center, Section 3342, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
- Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Cristina Ruiz-Ruiz
- Copenhagen Neuromuscular Center, Section 3342, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Lotte Risom
- Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Flemming Wibrand
- Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Louise D Høeg
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Morten Duno
- Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - John Vissing
- Copenhagen Neuromuscular Center, Section 3342, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
- Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Tina D Jeppesen
- Copenhagen Neuromuscular Center, Section 3342, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
- Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
9
|
McDermott MM, Peterson CA, Sufit R, Ferrucci L, Guralnik JM, Kibbe MR, Polonsky TS, Tian L, Criqui MH, Zhao L, Stein JH, Li L, Leeuwenburgh C. Peripheral artery disease, calf skeletal muscle mitochondrial DNA copy number, and functional performance. Vasc Med 2018; 23:340-348. [PMID: 29734865 DOI: 10.1177/1358863x18765667] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In people without lower extremity peripheral artery disease (PAD), mitochondrial DNA copy number declines with aging, and this decline is associated with declines in mitochondrial activity and functional performance. However, whether lower extremity ischemia is associated with lower mitochondrial DNA copy number and whether mitochondrial DNA copy number is associated with the degree of functional impairment in people with PAD is unknown. In people with and without PAD, age 65 years and older, we studied associations of the ankle-brachial index (ABI) with mitochondrial DNA copy number and associations of mitochondrial DNA copy number with functional impairment. Calf muscle biopsies were obtained from 34 participants with PAD (mean age: 73.5 years (SD 6.4), mean ABI: 0.67 (SD 0.15), mean 6-minute walk distance: 1191 feet (SD 223)) and 10 controls without PAD (mean age: 73.1 years (SD 4.7), mean ABI: 1.14 (SD 0.07), mean 6-minute walk distance: 1387 feet (SD 488)). Adjusting for age and sex, lower ABI values were associated with higher mitochondrial DNA copy number, measured in relative copy number (ABI<0.60: 914, ABI 0.60-0.90: 731, ABI 0.90-1.50: 593; p trend=0.016). The association of mitochondrial DNA copy number with the 6-minute walk distance and 4-meter walking velocity differed significantly between participants with versus without PAD ( p-value for interaction=0.001 and p=0.015, respectively). The correlation coefficient between mitochondrial DNA copy number and the 6-minute walk distance was 0.653 ( p=0.056) among people without PAD and -0.254 ( p=0.154) among people with PAD and ABI < 0.90. In conclusion, lower ABI values are associated with increased mitochondrial DNA copy number. Associations of mitochondrial DNA copy number with the 6-minute walk distance and 4-meter walking velocity significantly differed between people with versus without PAD, with stronger positive associations observed in people without PAD than in people with PAD. The cross-sectional and exploratory nature of the analyses precludes conclusions regarding causal inferences. ClinicalTrials.gov Identifier: NCT02246660.
Collapse
Affiliation(s)
- Mary M McDermott
- 1 Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,2 Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Robert Sufit
- 4 Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luigi Ferrucci
- 5 National Institute on Aging, Division of Intramural Research, Baltimore, MD, USA
| | - Jack M Guralnik
- 6 Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Melina R Kibbe
- 7 Department of Surgery, University of North Carolina, Chapel Hill, NC, USA
| | - Tamar S Polonsky
- 8 Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Lu Tian
- 9 Biomedical Data Science, Stanford University, Palo Alto, CA, USA
| | - Michael H Criqui
- 10 Department of Family Medicine and Public Health, University of California, San Diego, CA, USA
| | - Lihui Zhao
- 2 Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - James H Stein
- 11 Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Lingyu Li
- 1 Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | |
Collapse
|
10
|
Smiles WJ, Camera DM. The guardian of the genome p53 regulates exercise-induced mitochondrial plasticity beyond organelle biogenesis. Acta Physiol (Oxf) 2018; 222. [PMID: 29178461 DOI: 10.1111/apha.13004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/31/2017] [Accepted: 11/22/2017] [Indexed: 12/28/2022]
Abstract
The Guardian of the Genome p53 has been established as a potent tumour suppressor. However, culminating from seminal findings in rodents more than a decade ago, several studies have demonstrated that p53 is required to maintain basal mitochondrial function [ie, respiration and reactive oxygen species (ROS) homeostasis]. Specifically, via its role(s) as a tumour suppressor, p53 intimately surveys cellular DNA damage, in particular mitochondrial DNA (mtDNA), to ensure that the mitochondrial network is carefully monitored and cell viability is upheld, because aberrant mtDNA damage leads to apoptosis and widespread cellular perturbations. Indeed, data from rodents and humans have demonstrated that p53 forms an integral component of the exercise-induced signal transduction network regulating skeletal muscle mitochondrial remodelling. In response to exercise-induced disruptions to cellular homeostasis that have the potential to harm mtDNA (eg, contraction-stimulated ROS emissions), appropriate p53-regulated, mitochondrial turnover responses prevail to protect the genome and ultimately facilitate a shift from aerobic glycolysis to oxidative phosphorylation, adaptations critical for endurance-based exercise that are commensurate with p53's role as a tumour suppressor. Despite these observations, several discrepancies exist between rodent and human studies pinpointing p53 subcellular trafficking from nuclear-to-mitochondrial compartments following acute exercise. Such interspecies differences in p53 activity and the plausible p53-mediated adaptations to chronic exercise training will be discussed herein.
Collapse
Affiliation(s)
- W. J. Smiles
- Mary MacKillop Institute for Health Research; Centre for Exercise and Nutrition; Australian Catholic University; Melbourne Vic. Australia
| | - D. M. Camera
- Mary MacKillop Institute for Health Research; Centre for Exercise and Nutrition; Australian Catholic University; Melbourne Vic. Australia
| |
Collapse
|
11
|
Vellers HL, Kleeberger SR, Lightfoot JT. Inter-individual variation in adaptations to endurance and resistance exercise training: genetic approaches towards understanding a complex phenotype. Mamm Genome 2018; 29:48-62. [PMID: 29356897 PMCID: PMC5851699 DOI: 10.1007/s00335-017-9732-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/27/2017] [Indexed: 12/21/2022]
Abstract
Exercise training which meets the recommendations set by the National Physical Activity Guidelines ensues a multitude of health benefits towards the prevention and treatment of various chronic diseases. However, not all individuals respond well to exercise training. That is, some individuals have no response, while others respond poorly. Genetic background is known to contribute to the inter-individual (human) and -strain (e.g., mice, rats) variation with acute exercise and exercise training, though to date, no specific genetic factors have been identified that explain the differential responses to exercise. In this review, we provide an overview of studies in human and animal models that have shown a significant contribution of genetics in acute exercise and exercise training-induced adaptations with standardized endurance and resistance training regimens, and further describe the genetic approaches which have been used to demonstrate such responses. Finally, our current understanding of the role of genetics and exercise is limited primarily to the nuclear genome, while only a limited focus has been given to a potential role of the mitochondrial genome and its interactions with the nuclear genome to predict the exercise training-induced phenotype(s) responses. We therefore discuss the mitochondrial genome and literature that suggests it may play a significant role, particularly through interactions with the nuclear genome, in the inherent ability to respond to exercise.
Collapse
Affiliation(s)
- Heather L Vellers
- Immunity, Inflammation and, Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Building 101, E-224, Research Triangle Park, NC, 27709, USA.
| | - Steven R Kleeberger
- Immunity, Inflammation and, Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Building 101, E-224, Research Triangle Park, NC, 27709, USA
| | - J Timothy Lightfoot
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
12
|
Abstract
The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load endurance-type exercise leads to qualitative changes of muscle tissue characterized by an increase in structures supporting oxygen delivery and consumption, such as capillaries and mitochondria. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In endurance exercise, stress-induced signaling leads to transcriptional upregulation of genes, with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several interrelated signaling pathways converge on the transcriptional co-activator PGC-1α, perceived to be the coordinator of much of the transcriptional and post-transcriptional processes. Strength training is dominated by a translational upregulation controlled by mTORC1. mTORC1 is mainly regulated by an insulin- and/or growth-factor-dependent signaling cascade as well as mechanical and nutritional cues. Muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. In addition, there are several negative regulators of muscle mass. We currently have a good descriptive understanding of the molecular mechanisms controlling the muscle phenotype. The topology of signaling networks seems highly conserved among species, with the signaling outcome being dependent on the particular way individual species make use of the options offered by the multi-nodal networks. As a consequence, muscle structural and functional modifications can be achieved by an almost unlimited combination of inputs and downstream signaling events.
Collapse
Affiliation(s)
- Hans Hoppeler
- Emeritus Department of Anatomy, University of Bern, Baltzerstrasse 2, Bern 9 CH-3000, Switzerland
| |
Collapse
|
13
|
Camera DM, Smiles WJ, Hawley JA. Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic Biol Med 2016; 98:131-143. [PMID: 26876650 DOI: 10.1016/j.freeradbiomed.2016.02.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 12/18/2022]
Abstract
Skeletal muscle is a highly malleable tissue capable of altering its phenotype in response to external stimuli including exercise. This response is determined by the mode, (endurance- versus resistance-based), volume, intensity and frequency of exercise performed with the magnitude of this response-adaptation the basis for enhanced physical work capacity. However, training-induced adaptations in skeletal muscle are variable and unpredictable between individuals. With the recent application of molecular techniques to exercise biology, there has been a greater understanding of the multiplicity and complexity of cellular networks involved in exercise responses. This review summarizes the molecular and cellular events mediating adaptation processes in skeletal muscle in response to exercise. We discuss established and novel cell signaling proteins mediating key physiological responses associated with enhanced exercise performance and the capacity for reactive oxygen and nitrogen species to modulate training adaptation responses. We also examine the molecular bases underpinning heterogeneous responses to resistance and endurance exercise and the dissociation between molecular 'markers' of training adaptation and subsequent exercise performance.
Collapse
Affiliation(s)
- Donny M Camera
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic. 3065, Australia
| | - William J Smiles
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic. 3065, Australia
| | - John A Hawley
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic. 3065, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
14
|
Erlich AT, Tryon LD, Crilly MJ, Memme JM, Moosavi ZSM, Oliveira AN, Beyfuss K, Hood DA. Function of specialized regulatory proteins and signaling pathways in exercise-induced muscle mitochondrial biogenesis. Integr Med Res 2016; 5:187-197. [PMID: 28462117 PMCID: PMC5390460 DOI: 10.1016/j.imr.2016.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle mitochondrial content and function are regulated by a number of specialized molecular pathways that remain to be fully defined. Although a number of proteins have been identified to be important for the maintenance of mitochondria in quiescent muscle, the requirement for these appears to decrease with the activation of multiple overlapping signaling events that are triggered by exercise. This makes exercise a valuable therapeutic tool for the treatment of mitochondrially based metabolic disorders. In this review, we summarize some of the traditional and more recently appreciated pathways that are involved in mitochondrial biogenesis in muscle, particularly during exercise.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David A. Hood
- Corresponding author. Muscle Health Research Centre, School of Kinesiology and Health Science York University, Toronto, Ontario M3J1P3, Canada.
| |
Collapse
|
15
|
Hood DA, Tryon LD, Vainshtein A, Memme J, Chen C, Pauly M, Crilly MJ, Carter H. Exercise and the Regulation of Mitochondrial Turnover. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:99-127. [PMID: 26477912 DOI: 10.1016/bs.pmbts.2015.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exercise is a well-known stimulus for the expansion of the mitochondrial pool within skeletal muscle. Mitochondria have a remarkable ability to remodel their networks and can respond to an array of signaling stimuli following contractile activity to adapt to the metabolic demands of the tissue, synthesizing proteins to expand the mitochondrial reticulum. In addition, when they become dysfunctional, these organelles can be recycled by a specialized intracellular system. The signals regulating this mitochondrial life cycle of synthesis and degradation during exercise are still an area of great research interest. As mitochondrial turnover has valuable consequences in physical performance, in addition to metabolic health, disease, and aging, consideration of the signals which control this cycle is vital. This review focuses on the regulation of mitochondrial turnover in skeletal muscle and summarizes our current understanding of the impact that exercise has in modulating this process.
Collapse
Affiliation(s)
- David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.
| | - Liam D Tryon
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Anna Vainshtein
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Jonathan Memme
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Chris Chen
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Marion Pauly
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Matthew J Crilly
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Heather Carter
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
17
|
Hoppeler H, Baum O, Lurman G, Mueller M. Molecular mechanisms of muscle plasticity with exercise. Compr Physiol 2013; 1:1383-412. [PMID: 23733647 DOI: 10.1002/cphy.c100042] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.
Collapse
Affiliation(s)
- Hans Hoppeler
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
18
|
Toti L, Bartalucci A, Ferrucci M, Fulceri F, Lazzeri G, Lenzi P, Soldani P, Gobbi P, La Torre A, Gesi M. High-intensity exercise training induces morphological and biochemical changes in skeletal muscles. Biol Sport 2013; 30:301-9. [PMID: 24744502 PMCID: PMC3944543 DOI: 10.5604/20831862.1077557] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 11/13/2022] Open
Abstract
In the present study we investigated the effect of two different exercise protocols on fibre composition and metabolism of two specific muscles of mice: the quadriceps and the gastrocnemius. Mice were run daily on a motorized treadmill, at a velocity corresponding to 60% or 90% of the maximal running velocity. Blood lactate and body weight were measured during exercise training. We found that at the end of training the body weight significantly increased in high-intensity exercise mice compared to the control group (P=0.0268), whereas it decreased in low-intensity exercise mice compared to controls (P=0.30). In contrast, the food intake was greater in both trained mice compared to controls (P < 0.0001 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively). These effects were accompanied by a progressive reduction in blood lactate levels at the end of training in both the exercised mice compared with controls (P=0.03 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively); in particular, blood lactate levels after high-intensity exercise were significantly lower than those measured in low-intensity exercise mice (P=0.0044). Immunoblotting analysis demonstrated that high-intensity exercise training produced a significant increase in the expression of mitochondrial enzymes contained within gastrocnemius and quadriceps muscles. These changes were associated with an increase in the amount of slow fibres in both these muscles of high-intensity exercise mice, as revealed by the counts of slow fibres stained with specific antibodies (P < 0.0001 for the gastrocnemius; P=0.0002 for the quadriceps). Our results demonstrate that high-intensity exercise, in addition to metabolic changes consisting of a decrease in blood lactate and body weight, induces an increase in the mitochondrial enzymes and slow fibres in different skeletal muscles of mice, which indicates an exercise-induced increase in the aerobic metabolism.
Collapse
Affiliation(s)
- L Toti
- Department of Traslational Research and New Technology in Medicine and Surgery, University of Pisa, Italy ; These authors contributed equally to this work
| | - A Bartalucci
- Department of Traslational Research and New Technology in Medicine and Surgery, University of Pisa, Italy ; These authors contributed equally to this work
| | - M Ferrucci
- Department of Traslational Research and New Technology in Medicine and Surgery, University of Pisa, Italy
| | - F Fulceri
- Department of Traslational Research and New Technology in Medicine and Surgery, University of Pisa, Italy
| | - G Lazzeri
- Department of Traslational Research and New Technology in Medicine and Surgery, University of Pisa, Italy
| | - P Lenzi
- Department of Traslational Research and New Technology in Medicine and Surgery, University of Pisa, Italy
| | - P Soldani
- Department of Traslational Research and New Technology in Medicine and Surgery, University of Pisa, Italy
| | - P Gobbi
- Department of Earth, Life and Environment Sciences, Human Morphology Division, University of Urbino, Italy
| | - A La Torre
- Department of Traslational Research and New Technology in Medicine and Surgery, University of Pisa, Italy
| | - M Gesi
- Department of Traslational Research and New Technology in Medicine and Surgery, University of Pisa, Italy
| |
Collapse
|
19
|
Egan B, O’Connor PL, Zierath JR, O’Gorman DJ. Time course analysis reveals gene-specific transcript and protein kinetics of adaptation to short-term aerobic exercise training in human skeletal muscle. PLoS One 2013; 8:e74098. [PMID: 24069271 PMCID: PMC3771935 DOI: 10.1371/journal.pone.0074098] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022] Open
Abstract
Repeated bouts of episodic myofibrillar contraction associated with exercise training are potent stimuli for physiological adaptation. However, the time course of adaptation and the continuity between alterations in mRNA expression and protein content are not well described in human skeletal muscle. Eight healthy, sedentary males cycled for 60 min at 80% of peak oxygen consumption (VO2peak) each day for fourteen consecutive days, resulting in an increase in VO2peak of 17.5±3.8%. Skeletal muscle biopsies were taken at baseline, and on the morning following (+16 h after exercise) the first, third, seventh, tenth and fourteenth training sessions. Markers of mitochondrial adaptation (Cyt c and COXIV expression, and citrate synthase activity) were increased within the first week of training, but the mtDNA/nDNA ratio was unchanged by two weeks of training. Accumulation of PGC-1α and ERRα protein during training suggests a regulatory role for these factors in adaptations of mitochondrial and metabolic gene expression. A subset of genes were transiently increased after one training session, but returned to baseline levels thereafter, which is supportive of the concept of transcriptional capacity being particularly sensitive to the onset of a new level of contractile activity. Thus, gene-specific temporal patterns of induction of mRNA expression and protein content are described. Our results illustrate the phenomenology of skeletal muscle plasticity and support the notion that transcript level adjustments, coupled to accumulation of encoded protein, underlie the modulation of skeletal muscle metabolism and phenotype by regular exercise.
Collapse
Affiliation(s)
- Brendan Egan
- Institute for Sport and Health, School of Public Health, Physiotherapy, and Population Sciences, University College Dublin, Dublin, Ireland
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institute, Stockholm, Sweden
| | - Paul L. O’Connor
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Juleen R. Zierath
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institute, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Donal J. O’Gorman
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- Centre for Preventive Medicine, Dublin City University, Dublin, Ireland
- * E-mail:
| |
Collapse
|
20
|
Guth LM, Ludlow AT, Witkowski S, Marshall MR, Lima LCJ, Venezia AC, Xiao T, Ting Lee ML, Spangenburg EE, Roth SM. Sex-specific effects of exercise ancestry on metabolic, morphological and gene expression phenotypes in multiple generations of mouse offspring. Exp Physiol 2013; 98:1469-84. [PMID: 23771910 DOI: 10.1113/expphysiol.2012.070300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Early life and preconception environmental stimuli can affect adult health-related phenotypes. Exercise training is an environmental stimulus affecting many systems throughout the body and appears to alter offspring phenotypes. The aim of this study was to examine the influence of parental exercise training, or 'exercise ancestry', on morphological and metabolic phenotypes in two generations of mouse offspring. The F0 C57BL/6 mice were exposed to voluntary exercise (EX) or sedentary lifestyle (SED) and bred with like-exposed mates to produce an F1 generation. The F1 mice of both ancestries were sedentary and killed at 8 weeks or bred with littermates to produce an F2 generation, which was also sedentary and killed at 8 weeks. Small but broad generation- and sex-specific effects of exercise ancestry were observed for body mass, fat and muscle mass, serum insulin, glucose tolerance and muscle gene expression. The F1 EX females were lighter than F1 SED females and had lower absolute tibialis anterior and omental fat masses. Serum insulin was higher in F1 EX females compared with F1 SED females. The F2 EX females had impaired glucose tolerance compared with F2 SED females. Analysis of skeletal muscle mRNA levels revealed several generation- and sex-specific differences in mRNA levels for multiple genes, especially those related to metabolic genes (e.g. F1 EX males had lower mRNA levels of Hk2, Ppard, Ppargc1a, Adipoq and Scd1 than F1 SED males). These results provide preliminary evidence that parental exercise training can influence health-related phenotypes in mouse offspring.
Collapse
Affiliation(s)
- Lisa M Guth
- S. M. Roth: Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Busso T, Flück M. A mixed-effects model of the dynamic response of muscle gene transcript expression to endurance exercise. Eur J Appl Physiol 2012. [PMID: 23179205 DOI: 10.1007/s00421-012-2547-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Altered expression of a broad range of gene transcripts after exercise reflects the specific adjustment of skeletal muscle makeup to endurance training. Towards a quantitative understanding of this molecular regulation, we aimed to build a mixed-effects model of the dynamics of co-related transcript responses to exercise. It was built on the assumption that transcript levels after exercise varied because of changes in the balance between transcript synthesis and degradation. It was applied to microarray data of 231 gene transcripts in vastus lateralis muscle of six subjects 1, 8 and 24 h after endurance exercise and 6-week training on a stationary bicycle. Cluster analysis was used to select groups of transcripts having highest co-correlation of their expression (r > 0.70): Group 1 comprised 45 transcripts including factors defining the oxidative and contractile phenotype and Group 2 included 39 transcripts mainly defined by factors found at the cell periphery and the extracellular space. Data from six subjects were pooled to filter experimental noise. The model fitted satisfactorily the responses of Group 1 (r (2) = 0.62 before and 0.85 after training, P < 0.001) and Group 2 (r (2) = 0.75 and 0.79, P < 0.001). Predicted variation in transcription rate induced by exercise yielded a difference in amplitude and time-to-peak response of gene transcripts between the two groups before training and with training in Group 2. The findings illustrate that a mixed-effects model of transcript responses to exercise is suitable to explore the regulation of muscle plasticity by training at the transcriptional level and indicate critical experiments needed to consolidate model parameters empirically.
Collapse
Affiliation(s)
- Thierry Busso
- Laboratoire de Physiologie de l'Exercice, Université de Lyon, Saint-Etienne, France.
| | | |
Collapse
|
22
|
Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge JW, Dela F, Hey-Mogensen M. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 2012; 590:3349-60. [PMID: 22586215 DOI: 10.1113/jphysiol.2012.230185] [Citation(s) in RCA: 911] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle mitochondrial content varies extensively between human subjects. Biochemical measures of mitochondrial proteins, enzyme activities and lipids are often used as markers of mitochondrial content and muscle oxidative capacity (OXPHOS). The purpose of this study was to determine how closely associated these commonly used biochemical measures are to muscle mitochondrial content and OXPHOS. Sixteen young healthy male subjects were recruited for this study. Subjects completed a graded exercise test to determine maximal oxygen uptake (VO2peak) and muscle biopsies were obtained from the vastus lateralis. Mitochondrial content was determined using transmission electron microscopy imaging and OXPHOS was determined as the maximal coupled respiration in permeabilized fibres. Biomarkers of interest were citrate synthase (CS) activity, cardiolipin content, mitochondrial DNA content (mtDNA), complex I–V protein content, and complex I–IV activity. Spearman correlation coefficient tests and Lin's concordance tests were applied to assess the absolute and relative association between the markers and mitochondrial content or OXPHOS. Subjects had a large range of VO2peak (range 29.9–71.6ml min−1 kg−1) and mitochondrial content (4–15% of cell volume).Cardiolipin content showed the strongest association with mitochondrial content followed by CS and complex I activities. mtDNA was not related to mitochondrial content. Complex IV activity showed the strongest association with muscle oxidative capacity followed by complex II activity.We conclude that cardiolipin content, and CS and complex I activities are the biomarkers that exhibit the strongest association with mitochondrial content, while complex IV activity is strongly associated with OXPHOS capacity in human skeletal muscle.
Collapse
Affiliation(s)
- Steen Larsen
- Center for Healthy Aging-Department of Biomedical Sciences, Copenhagen University, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Role of mitochondrial function in insulin resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:215-34. [PMID: 22399424 DOI: 10.1007/978-94-007-2869-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The obesity pandemic increases the prevalence of type 2 diabetes (DM2).DM2 develops when pancreatic β-cells fail and cannot compensate for the decrease in insulin sensitivity. How excessive caloric intake and weight gain cause insulin resistance has not completely been elucidated.Skeletal muscle is responsible for a major part of insulin stimulated whole-body glucose disposal and, hence, plays an important role in the pathogenesis of insulin resistance.It has been hypothesized that skeletal muscle mitochondrial dysfunction is involved in the accumulation of intramyocellular lipid metabolites leading to lipotoxicity and insulin resistance. However, findings on skeletal muscle mitochondrial function in relation to insulin resistance in human subjects are inconclusive. Differences in mitochondrial activity can be the result of several factors, including a reduced mitochondrial density, differences in insulin stimulated mitochondrial respiration, lower energy demand or reduced skeletal muscle perfusion, besides an intrinsic mitochondrial defect. The inconclusive results may be explained by the use of different techniques and study populations. Also, mitochondrial capacity is in far excess to meet energy requirements and therefore it may be questioned whether a reduced mitochondrial capacity limits mitochondrial fatty acid oxidation. Whether reduced mitochondrial function is causally related to insulin resistance or rather a consequence of the sedentary lifestyle remains to be elucidated.
Collapse
|
24
|
Aerobic exercise training adaptations are increased by postexercise carbohydrate-protein supplementation. J Nutr Metab 2011; 2011:623182. [PMID: 21773022 PMCID: PMC3136187 DOI: 10.1155/2011/623182] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 04/19/2011] [Indexed: 11/17/2022] Open
Abstract
Carbohydrate-protein supplementation has been found to increase the rate of training adaptation when provided postresistance exercise. The present study compared the effects of a carbohydrate and protein supplement in the form of chocolate milk (CM), isocaloric carbohydrate (CHO), and placebo on training adaptations occurring over 4.5 weeks of aerobic exercise training. Thirty-two untrained subjects cycled 60 min/d, 5 d/wk for 4.5 wks at 75-80% of maximal oxygen consumption (VO(2) max). Supplements were ingested immediately and 1 h after each exercise session. VO(2) max and body composition were assessed before the start and end of training. VO(2) max improvements were significantly greater in CM than CHO and placebo. Greater improvements in body composition, represented by a calculated lean and fat mass differential for whole body and trunk, were found in the CM group compared to CHO. We conclude supplementing with CM postexercise improves aerobic power and body composition more effectively than CHO alone.
Collapse
|
25
|
Skovbro M, Boushel R, Hansen CN, Helge JW, Dela F. High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle. J Appl Physiol (1985) 2011; 110:1607-14. [PMID: 21415171 DOI: 10.1152/japplphysiol.01341.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Twenty one healthy untrained male subjects were randomized to follow a high-fat diet (HFD; 55-60E% fat, 25-30E% carbohydrate, and 15E% protein) or a normal diet (ND; 25-35E% fat, 55-60E% carbohydrate, and 10-15E% protein) for 2(1/2) wk. Diets were isocaloric and tailored individually to match energy expenditure. At 2(1/2) wk of diet, one 60-min bout of bicycle exercise (70% of maximal oxygen uptake) was performed. Muscle biopsies were obtained before and after the diet, immediately after exercise, and after 3-h recovery. Insulin sensitivity (hyperinsulinemic-euglycemic clamp) and intramyocellular triacylglycerol content did not change with the intervention in either group. Indexes of mitochondrial density were similar across the groups and intervention. Mitochondrial respiratory rates, measured in permeabilized muscle fibers, showed a 31 ± 11 and 26 ± 9% exercise-induced increase (P < 0.05) in state 3 (glycolytic substrates) and uncoupled respiration, respectively. However, in HFD this increase was abolished. At recovery, no change from resting respiration was seen in either group. With a lipid substrate (octanoyl-carnitine with or without ADP), similar exercise-induced increases (31-62%) were seen in HFD and ND, but only in HFD was an elevated (P < 0.05) respiratory rate seen at recovery. With HFD complex I and IV protein expression decreased (P < 0.05 and P = 0.06, respectively). A fat-rich diet induces marked changes in the mitochondrial electron transport system protein content and in exercise-induced mitochondrial substrate oxidation rates, with the effects being present hours after the exercise. The effect of HFD is present even without effects on insulin sensitivity and intramyocellular lipid accumulation. An isocaloric high-fat diet does not cause insulin resistance.
Collapse
Affiliation(s)
- Mette Skovbro
- Xlab, Center for Healthy Aging, Dept. of Biomedical Sciences, Faculty of Health Sciences, Bldg. 12.4.7, Univ. of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | | | | | | | | |
Collapse
|
26
|
McGivney BA, McGettigan PA, Browne JA, Evans ACO, Fonseca RG, Loftus BJ, Lohan A, MacHugh DE, Murphy BA, Katz LM, Hill EW. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC Genomics 2010; 11:398. [PMID: 20573200 PMCID: PMC2900271 DOI: 10.1186/1471-2164-11-398] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 06/23/2010] [Indexed: 11/22/2022] Open
Abstract
Background Digital gene expression profiling was used to characterize the assembly of genes expressed in equine skeletal muscle and to identify the subset of genes that were differentially expressed following a ten-month period of exercise training. The study cohort comprised seven Thoroughbred racehorses from a single training yard. Skeletal muscle biopsies were collected at rest from the gluteus medius at two time points: T1 - untrained, (9 ± 0.5 months old) and T2 - trained (20 ± 0.7 months old). Results The most abundant mRNA transcripts in the muscle transcriptome were those involved in muscle contraction, aerobic respiration and mitochondrial function. A previously unreported over-representation of genes related to RNA processing, the stress response and proteolysis was observed. Following training 92 tags were differentially expressed of which 74 were annotated. Sixteen genes showed increased expression, including the mitochondrial genes ACADVL, MRPS21 and SLC25A29 encoded by the nuclear genome. Among the 58 genes with decreased expression, MSTN, a negative regulator of muscle growth, had the greatest decrease. Functional analysis of all expressed genes using FatiScan revealed an asymmetric distribution of 482 Gene Ontology (GO) groups and 18 KEGG pathways. Functional groups displaying highly significant (P < 0.0001) increased expression included mitochondrion, oxidative phosphorylation and fatty acid metabolism while functional groups with decreased expression were mainly associated with structural genes and included the sarcoplasm, laminin complex and cytoskeleton. Conclusion Exercise training in Thoroughbred racehorses results in coordinate changes in the gene expression of functional groups of genes related to metabolism, oxidative phosphorylation and muscle structure.
Collapse
Affiliation(s)
- Beatrice A McGivney
- Animal Genomics Laboratory, UCD School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Endurance athletes demonstrate an exceptional resistance to fatigue when exercising at high intensity. Much research has been devoted to the contribution of aerobic capacity for the economy of endurance performance. Important aspects of the fine-tuning of metabolic processes and power output in the endurance athlete have been overlooked. This review addresses how training paradigms exploit bioenergetic pathways in recruited muscle groups to promote the endurance phenotype. A special focus is laid on the genome-mediated mechanisms that underlie the conditioning of fatigue resistance and aerobic performance by training macrocycles and complements. The available data on work-induced muscle plasticity implies that different biologic strategies are exploited in athletic and untrained populations to boost endurance capacity. Olympic champions are probably endowed with a unique constitution that renders the conditioning of endurance capacity for competition particularly efficient.
Collapse
Affiliation(s)
- Martin Flueck
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, UK.
| | | |
Collapse
|
28
|
Ritov VB, Menshikova EV, Azuma K, Wood R, Toledo FGS, Goodpaster BH, Ruderman NB, Kelley DE. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab 2010; 298:E49-58. [PMID: 19887598 PMCID: PMC2806111 DOI: 10.1152/ajpendo.00317.2009] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin resistance in skeletal muscle in obesity and T2DM is associated with reduced muscle oxidative capacity, reduced expression in nuclear genes responsible for oxidative metabolism, and reduced activity of mitochondrial electron transport chain. The presented study was undertaken to analyze mitochondrial content and mitochondrial enzyme profile in skeletal muscle of sedentary lean individuals and to compare that with our previous data on obese or obese T2DM group. Frozen skeletal muscle biopsies obtained from lean volunteers were used to estimate cardiolipin content, mtDNA (markers of mitochondrial mass), NADH oxidase activity of mitochondrial electron transport chain (ETC), and activity of citrate synthase and beta-hydroxyacyl-CoA dehydrogenase (beta-HAD), key enzymes of TCA cycle and beta-oxidation pathway, respectively. Frozen biopsies collected from obese or T2DM individuals in our previous studies were used to estimate activity of beta-HAD. The obtained data were complemented by data from our previous studies and statistically analyzed to compare mitochondrial content and mitochondrial enzyme profile in lean, obese, or T2DM cohort. The total activity of NADH oxidase was reduced significantly in obese or T2DM subjects. The cardiolipin content for lean or obese group was similar, and although for T2DM group cardiolipin showed a tendency to decline, it was statistically insignificant. The total activity of citrate synthase for lean and T2DM group was similar; however, it was increased significantly in the obese group. Activity of beta-HAD and mtDNA content was similar for all three groups. We conclude that the total activity of NADH oxidase in biopsy for lean group is significantly higher than corresponding activity for obese or T2DM cohort. The specific activity of NADH oxidase (per mg cardiolipin) and NADH oxidase/citrate synthase and NADH oxidase/beta-HAD ratios are reduced two- to threefold in both T2DM and obesity.
Collapse
Affiliation(s)
- Vladimir B Ritov
- Univ. of Pittsburgh, School of Medicine, Div. of Endocrinology and Metabolism, 810N MUH, 3459 5th Ave., Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Flueck M. Tuning of mitochondrial pathways by muscle work: from triggers to sensors and expression signatures. Appl Physiol Nutr Metab 2009; 34:447-53. [PMID: 19448713 DOI: 10.1139/h09-034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Performance of striated muscle relies on the nerve-driven activation of the sarcomeric motor and coupled energy supply lines. This biological engine is unique; its mechanical and metabolic characteristics are not fixed, but are tailored by functional demand with exercise. This remodelling is specific for the imposed muscle stimulus. This is illustrated by the increase in local oxidative capacity with highly repetitive endurance training vs. the preferential initiation of sarcomerogenesis with strength training regimes, where high-loading increments are imposed. The application of molecular biology has provided unprecedented insight into the pathways that govern muscle plasticity. Time-course analysis indicates that the adjustments to muscle work involve a broad regulation of transcript expression during the recovery phase from a single bout of exercise. Highly resolving microarray analysis demonstrates that the specificity of an endurance-exercise stimulus is reflected by the signature of the transcriptome response after muscle work. A quantitative match in mitochondrial transcript adjustments and mitochondrial volume density after endurance training suggests that the gradual accumulation of expressional microadaptations underlies the promotion of fatigue resistance with training. This regulation is distinguished from control of muscle growth via the load-dependent activation of sarcomerogenesis. Discrete biochemical signalling systems have evolved that sense metabolic perturbations during exercise and trigger a specific expression program, which instructs the remodelling of muscle makeup. A drop in muscle oxygen tension and metabolite perturbations with exercise are recognized as important signals in the genome-mediated remodelling of the metabolic muscle phenotype in humans.
Collapse
Affiliation(s)
- Martin Flueck
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Oxford Road, Manchester M15 6BH, UK.
| |
Collapse
|
30
|
STEPTO NIGELK, COFFEY VERNONG, CAREY ANDREWL, PONNAMPALAM ANNAP, CANNY BENEDICTJ, POWELL DAVID, HAWLEY JOHNA. Global Gene Expression in Skeletal Muscle from Well-Trained Strength and Endurance Athletes. Med Sci Sports Exerc 2009; 41:546-65. [DOI: 10.1249/mss.0b013e31818c6be9] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Bye A, Høydal MA, Catalucci D, Langaas M, Kemi OJ, Beisvag V, Koch LG, Britton SL, Ellingsen Ø, Wisløff U. Gene expression profiling of skeletal muscle in exercise-trained and sedentary rats with inborn high and low VO2max. Physiol Genomics 2008; 35:213-21. [PMID: 18780757 DOI: 10.1152/physiolgenomics.90282.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relationship between inborn maximal oxygen uptake (VO(2max)) and skeletal muscle gene expression is unknown. Since low VO(2max) is a strong predictor of cardiovascular mortality, genes related to low VO(2max) might also be involved in cardiovascular disease. To establish the relationship between inborn VO(2max) and gene expression, we performed microarray analysis of the soleus muscle of rats artificially selected for high- and low running capacity (HCR and LCR, respectively). In LCR, a low VO(2max) was accompanied by aggregation of cardiovascular risk factors similar to the metabolic syndrome. Although sedentary HCR were able to maintain a 120% higher running speed at VO(2max) than sedentary LCR, only three transcripts were differentially expressed (FDR <or=0.05) between the groups. Sedentary LCR expressed high levels of a transcript with strong homology to human leucyl-transfer RNA synthetase, of whose overexpression has been associated with a mutation linked to mitochondrial dysfunction. Moreover, we studied exercise-induced alterations in soleus gene expression, since accumulating evidence indicates that long-term endurance training has beneficial effects on the metabolic syndrome. In terms of gene expression, the response to exercise training was more pronounced in HCR than LCR. HCR upregulated several genes associated with lipid metabolism and fatty acid elongation, whereas LCR upregulated only one transcript after exercise training. The results indicate only minor differences in soleus muscle gene expression between sedentary HCR and LCR. However, the inborn level of fitness seems to influence the transcriptional adaption to exercise, as more genes were upregulated after exercise training in HCR than LCR.
Collapse
Affiliation(s)
- Anja Bye
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol (1985) 2008; 105:1462-70. [PMID: 18772325 DOI: 10.1152/japplphysiol.90882.2008] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We determined the effects of a cycle training program in which selected sessions were performed with low muscle glycogen content on training capacity and subsequent endurance performance, whole body substrate oxidation during submaximal exercise, and several mitochondrial enzymes and signaling proteins with putative roles in promoting training adaptation. Seven endurance-trained cyclists/triathletes trained daily (High) alternating between 100-min steady-state aerobic rides (AT) one day, followed by a high-intensity interval training session (HIT; 8 x 5 min at maximum self-selected effort) the next day. Another seven subjects trained twice every second day (Low), first undertaking AT, then 1-2 h later, the HIT. These training schedules were maintained for 3 wk. Forty-eight hours before and after the first and last training sessions, all subjects completed a 60-min steady-state ride (60SS) followed by a 60-min performance trial. Muscle biopsies were taken before and after 60SS, and rates of substrate oxidation were determined throughout this ride. Resting muscle glycogen concentration (412 +/- 51 vs. 577 +/- 34 micromol/g dry wt), rates of whole body fat oxidation during 60SS (1,261 +/- 247 vs. 1,698 +/- 174 micromol.kg(-1).60 min(-1)), the maximal activities of citrate synthase (45 +/- 2 vs. 54 +/- 1 mmol.kg dry wt(-1).min(-1)), and beta-hydroxyacyl-CoA-dehydrogenase (18 +/- 2 vs. 23 +/- 2 mmol.kg dry wt(-1).min(-1)) along with the total protein content of cytochrome c oxidase subunit IV were increased only in Low (all P < 0.05). Mitochondrial DNA content and peroxisome proliferator-activated receptor-gamma coactivator-1alpha protein levels were unchanged in both groups after training. Cycling performance improved by approximately 10% in both Low and High. We conclude that compared with training daily, training twice every second day compromised high-intensity training capacity. While selected markers of training adaptation were enhanced with twice a day training, the performance of a 1-h time trial undertaken after a 60-min steady-state ride was similar after once daily or twice every second day training programs.
Collapse
Affiliation(s)
- Wee Kian Yeo
- Exercise Metabolism Group, School of Medical Sciences, Bldg. 223.2.52, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia
| | | | | | | | | | | |
Collapse
|
33
|
Klossner S, Däpp C, Schmutz S, Vogt M, Hoppeler H, Flück M. Muscle transcriptome adaptations with mild eccentric ergometer exercise. Pflugers Arch 2007; 455:555-62. [PMID: 17701424 DOI: 10.1007/s00424-007-0303-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/12/2007] [Accepted: 05/29/2007] [Indexed: 01/09/2023]
Abstract
The muscle has a wide range of possibilities to adapt its phenotype. Repetitive submaximal concentric exercise (i.e., shortening contractions) mainly leads to adaptations of muscle oxidative metabolism and endurance while eccentric exercise (i.e., lengthening contractions) results in muscle growth and gain of muscle strength. Modified gene expression is believed to mediate these exercise-specific muscle adjustments. In the present study, early alterations of the gene expression signature were monitored by a muscle-specific microarray. Transcript profiling was performed on muscle biopsies of vastus lateralis obtained from six male subjects before and in a 24-h time course after a single bout of mild eccentric ergometer exercise. The eccentric exercise consisted of 15 min of eccentric cycling at 50% of the individual maximal concentric power output leading to muscle soreness (5.9 on a 0-10 visual analogue scale) and limited muscle damage (1.7-fold elevated creatine kinase activity). Muscle impairment was highlighted by a transient reduction in jumping height after the eccentric exercise. On the gene expression level, we observed a general early downregulation of detected transcripts, followed by a slow recovery close to the control values within the first 24 h post exercise. Only very few regulatory factors were increased. This expression signature is different from the signature of a previously published metabolic response after an intensive endurance-type concentric exercise as well as after maximal eccentric exercise. This is the first description of the time course of changes in gene expression as a consequence of a mild eccentric stimulus.
Collapse
|
34
|
Menshikova EV, Ritov VB, Ferrell RE, Azuma K, Goodpaster BH, Kelley DE. Characteristics of skeletal muscle mitochondrial biogenesis induced by moderate-intensity exercise and weight loss in obesity. J Appl Physiol (1985) 2007; 103:21-7. [PMID: 17332268 DOI: 10.1152/japplphysiol.01228.2006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There are fewer mitochondria and a reduced oxidative capacity in skeletal muscle in obesity. Moderate-intensity physical activity combined with weight loss increase oxidative enzyme activity in obese sedentary adults; however, this adaptation occurs without a significant increase in mitochondrial DNA (mtDNA), which is unlike the classic pattern of mitochondrial biogenesis induced by vigorous activity. The objective of this study was to examine the hypothesis that the mitochondrial adaptation to moderate-intensity exercise and weight loss in obesity induces increased mitochondrial cristae despite a lack of mtDNA proliferation. Content of cardiolipin and mtDNA and enzymatic activities of the electron transport chain (ETC) and tricarboxylic acid cycle were measured in biopsy samples of vastus lateralis muscle obtained from sedentary obese men and women before and following a 4-mo walking intervention combined with weight loss. Cardiolipin increased by 60% from 47 ± 4 to 74 ± 8 μg/mU CK ( P < 0.01), but skeletal muscle mtDNA content did not change significantly (1,901 ± 363 to 2,169 ± 317 Rc, where Rc is relative copy number of mtDNA per diploid nuclear genome). Enzyme activity of the ETC increased ( P < 0.01); that for rotenone-sensitive NADH-oxidase (96 ± 1%) increased more than for ubiquinol-oxidase (48 ± 6%). Activities for citrate synthase and succinate dehydrogenase increased by 29 ± 9% and 40 ± 6%, respectively. In conclusion, moderate-intensity physical activity combined with weight loss induces skeletal muscle mitochondrial biogenesis in previously sedentary obese men and women, but this response occurs without mtDNA proliferation and may be characterized by an increase in mitochondrial cristae.
Collapse
Affiliation(s)
- Elizabeth V Menshikova
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
35
|
Rabøl R, Boushel R, Dela F. Mitochondrial oxidative function and type 2 diabetes. Appl Physiol Nutr Metab 2007; 31:675-83. [PMID: 17213881 DOI: 10.1139/h06-071] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cause of insulin resistance and type 2 diabetes is unknown. The major part of insulin-mediated glucose disposal takes place in the skeletal muscle, and increased amounts of intramyocellular lipid has been associated with insulin resistance and linked to decreased activity of mitochondrial oxidative phosphorylation. This review will cover the present knowledge and literature on the topics of the activity of oxidative enzymes and the electron transport chain (ETC) in skeletal muscle of patients with type 2 diabetes. Different methods of studying mitochondrial function are described, including biochemical measurements of oxidative enzyme and electron transport activity, isolation of mitochondria for measurements of respiration, and ATP production and indirect measurements of ATP production using nuclear magnetic resonance (NMR) - spectroscopy. Biochemical markers of mitochondrial content are also discussed. Several studies show reduced activity of oxidative enzymes in skeletal muscle of type 2 diabetics. The reductions are independent of muscle fiber type, and are accompanied by visual evidence of damaged mitochondria. In most studies, the reduced oxidative enzyme activity is explained by decreases in mitochondrial content; thus, evidence of a functional impairment in mitochondria in type 2 diabetes is not convincing. These impairments in oxidative function and mitochondrial morphology could reflect the sedentary lifestyle of the diabetic subjects, and the influence of physical activity on oxidative activity and mitochondrial function is discussed. The studies on insulin-resistant offspring of type 2 diabetic parents have provided important insights in the earliest metabolic defects in type 2 diabetes. These defects include reductions in basal ATP production and an attenuated response to insulin stimulation. The decreased basal ATP production does not affect overall lipid or glucose oxidation, and no studies linking changes in oxidative activity and insulin sensitivity in type 2 diabetes have been published. It is concluded that evidence of a functional impairment in mitochondria in type 2 diabetes is not convincing, and that intervention studies describing the correlation between changes in insulin resistance and mitochondrial function in type 2 diabetes are lacking. Specific effects of regular physical training and muscular work on mitochondrial function and plasticity in type 2 diabetes remain an important area of research.
Collapse
Affiliation(s)
- Rasmus Rabøl
- The Copenhagen Muscle Research Centre, The Panum Institute, Department of Medical Physiology, University of Copenhagen, Blegdamsvej 3, DK 2200 Copenhagen N, Denmark.
| | | | | |
Collapse
|
36
|
Zoll J, Ponsot E, Dufour S, Doutreleau S, Ventura-Clapier R, Vogt M, Hoppeler H, Richard R, Flück M. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J Appl Physiol (1985) 2007; 100:1258-66. [PMID: 16540710 DOI: 10.1152/japplphysiol.00359.2005] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that specific muscular transcript level adaptations participate in the improvement of endurance performances following intermittent hypoxia training in endurance-trained subjects. Fifteen male high-level, long-distance runners integrated a modified living low-training high program comprising two weekly controlled training sessions performed at the second ventilatory threshold for 6 wk into their normal training schedule. The athletes were randomly assigned to either a normoxic (Nor) (inspired O2 fraction = 20.9%, n = 6) or a hypoxic group exercising under normobaric hypoxia (Hyp) (inspired O2 fraction = 14.5%, n = 9). Oxygen uptake and speed at second ventilatory threshold, maximal oxygen uptake (VO2 max), and time to exhaustion (Tlim) at constant load at VO2 max velocity in normoxia and muscular levels of selected mRNAs in biopsies were determined before and after training. VO2 max (+5%) and Tlim (+35%) increased specifically in the Hyp group. At the molecular level, mRNA concentrations of the hypoxia-inducible factor 1alpha (+104%), glucose transporter-4 (+32%), phosphofructokinase (+32%), peroxisome proliferator-activated receptor gamma coactivator 1alpha (+60%), citrate synthase (+28%), cytochrome oxidase 1 (+74%) and 4 (+36%), carbonic anhydrase-3 (+74%), and manganese superoxide dismutase (+44%) were significantly augmented in muscle after exercise training in Hyp only. Significant correlations were noted between muscular mRNA levels of monocarboxylate transporter-1, carbonic anhydrase-3, glucose transporter-4, and Tlim only in the group of athletes who trained in hypoxia (P < 0.05). Accordingly, the addition of short hypoxic stress to the regular endurance training protocol induces transcriptional adaptations in skeletal muscle of athletic subjects. Expressional adaptations involving redox regulation and glucose uptake are being recognized as a potential molecular pathway, resulting in improved endurance performance in hypoxia-trained subjects.
Collapse
Affiliation(s)
- Joffrey Zoll
- Department of Anatomy, University of Bern, Bühlstrasse 26, 3000 Bern 9, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gene expression in working skeletal muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 618:245-54. [PMID: 18269202 DOI: 10.1007/978-0-387-75434-5_19] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A number of molecular tools enable us to study the mechanisms of muscle plasticity. Ideally, this research is conducted in view of the structural and functional consequences of the exercise-induced changes in gene expression. Muscle cells are able to detect mechanical, metabolic, neuronal and hormonal signals which are transduced over multiple pathways to the muscle genome. Exercise activates many signaling cascades--the individual characteristic of the stress leading to a specific response of a network of signaling pathways. Signaling typically results in the transcription of multiple early genes among those of the well known for and jun family, as well as many other transcription factors. These bind to the promoter regions of downstream genes initiating the structural response of muscle tissue. While signaling is a matter of minutes, early genes are activated over hours leading to a second wave of transcript adjustments of structure genes that can then be effective over days. Repeated exercise sessions thus lead to a concerted accretion of mRNAs which upon translation results in a corresponding protein accretion. On the structural level, the protein accretion manifests itself for instance as an increase in mitochondrial volume upon endurance training or an increase in myofibrillar proteins upon strength training. A single exercise stimulus carries a molecular signature which is typical both for the type of stimulus (i.e. endurance vs. strength) as well as the actual condition of muscle tissue (i.e. untrained vs. trained). Likewise, it is clearly possible to distinguish a molecular signature of an expressional adaptation when hypoxic stress is added to a regular endurance exercise protocol in well-trained endurance athletes. It therefore seems feasible to use molecular tools to judge the properties of an exercise stimulus much earlier and at a finer level than is possible with conventional functional or structural techniques.
Collapse
|
38
|
Toledo FGS, Watkins S, Kelley DE. Changes induced by physical activity and weight loss in the morphology of intermyofibrillar mitochondria in obese men and women. J Clin Endocrinol Metab 2006; 91:3224-7. [PMID: 16684829 DOI: 10.1210/jc.2006-0002] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT In obesity, skeletal muscle insulin resistance may be associated with smaller mitochondria. OBJECTIVE Our objective was to examine the effect of a lifestyle-modification intervention on the content and morphology of skeletal muscle mitochondria and its relationship to insulin sensitivity in obese, insulin-resistant subjects. DESIGN In this prospective interventional study, intermyofibrillar mitochondrial content and size were quantified by transmission electron microscopy with quantitative morphometric analysis of biopsy samples from vastus lateralis muscle. Systemic insulin sensitivity was measured with euglycemic hyperinsulinemic clamps. SETTING The study took place at a university-based clinical research center. PARTICIPANTS Eleven sedentary, overweight/obese volunteers without diabetes participated in the study. INTERVENTION Intervention included 16 wk of aerobic training with dietary restriction of 500-1000 kcal/d. MAIN OUTCOME MEASURES We assessed changes in mitochondrial content and size and changes in insulin sensitivity. RESULTS The percentage of myofiber volume occupied by mitochondria significantly increased from 3.70 +/- 0.31 to 4.87 +/- 0.33% after intervention (P = 0.01). The mean individual increase was 42.5 +/- 18.1%. There was also a change in the mean cross-sectional mitochondrial area, increasing from a baseline of 0.078 +/- 0.007 to 0.091 +/- 0.007 microm(2) (P < 0.01), a mean increase of 19.2 +/- 6.1% per subject. These changes in mitochondrial size and content highly correlated with improvements in insulin resistance (r = 0.68 and 0.72, respectively; P = 0.01). CONCLUSIONS A combined intervention of weight loss and physical activity in previously sedentary obese adults is associated with enlargement of mitochondria and an increase in the mitochondrial content in skeletal muscle. These findings indicate that in obesity with insulin resistance, ultrastructural mitochondrial plasticity is substantially retained and, importantly, that changes in the morphology of mitochondria are associated with improvements in insulin resistance.
Collapse
Affiliation(s)
- Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, 807N Montefiore Hospital, 3459 5th Avenue, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
39
|
Flück M. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J Exp Biol 2006; 209:2239-48. [PMID: 16731801 DOI: 10.1242/jeb.02149] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Biological systems have acquired effective adaptive strategies to cope with physiological challenges and to maximize biochemical processes under imposed constraints. Striated muscle tissue demonstrates a remarkable malleability and can adjust its metabolic and contractile makeup in response to alterations in functional demands. Activity-dependent muscle plasticity therefore represents a unique model to investigate the regulatory machinery underlying phenotypic adaptations in a fully differentiated tissue.
Adjustments in form and function of mammalian muscle have so far been characterized at a descriptive level, and several major themes have evolved. These imply that mechanical, metabolic and neuronal perturbations in recruited muscle groups relay to the specific processes being activated by the complex physiological stimulus of exercise. The important relationship between the phenotypic stimuli and consequent muscular modifications is reflected by coordinated differences at the transcript level that match structural and functional adjustments in the new training steady state. Permanent alterations of gene expression thus represent a major strategy for the integration of phenotypic stimuli into remodeling of muscle makeup.
A unifying theory on the molecular mechanism that connects the single exercise stimulus to the multi-faceted adjustments made after the repeated impact of the muscular stress remains elusive. Recently, master switches have been recognized that sense and transduce the individual physical and chemical perturbations induced by physiological challenges via signaling cascades to downstream gene expression events. Molecular observations on signaling systems also extend the long-known evidence for desensitization of the muscle response to endurance exercise after the repeated impact of the stimulus that occurs with training. Integrative approaches involving the manipulation of single factors and the systematic monitoring of downstream effects at multiple levels would appear to be the ultimate method for pinpointing the mechanism of muscle remodeling. The identification of the basic relationships underlying the malleability of muscle tissue is likely to be of relevance for our understanding of compensatory processes in other tissues, species and organisms.
Collapse
Affiliation(s)
- Martin Flück
- Unit for Functional Anatomy, Department of Anatomy, University of Berne, Baltzerstrasse 2, Switzerland.
| |
Collapse
|
40
|
Schmutz S, Däpp C, Wittwer M, Vogt M, Hoppeler H, Flück M. Endurance training modulates the muscular transcriptome response to acute exercise. Pflugers Arch 2005; 451:678-87. [PMID: 16362354 DOI: 10.1007/s00424-005-1497-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 06/22/2005] [Accepted: 07/15/2005] [Indexed: 12/25/2022]
Abstract
We hypothesized that in untrained individuals (n=6) a single bout of ergometer endurance exercise provokes a concerted response of muscle transcripts towards a slow-oxidative muscle phenotype over a 24-h period. We further hypothesized this response during recovery to be attenuated after six weeks of endurance training. We monitored the expression profile of 220 selected transcripts in muscle biopsies before as well as 1, 8, and 24 h after a 30-min near-maximal bout of exercise. The generalized gene response of untrained vastus lateralis muscle peaked after 8 h of recovery (P=0.001). It involved multiple transcripts of oxidative metabolism and glycolysis. Angiogenic and cell regulatory transcripts were transiently reduced after 1 h independent of the training state. In the trained state, the induction of most transcripts 8 h after exercise was less pronounced despite a moderately higher relative exercise intensity, partially because of increased steady-state mRNA concentration, and the level of metabolic and extracellular RNAs was reduced during recovery from exercise. Our data suggest that the general response of the transcriptome for regulatory and metabolic processes is different in the trained state. Thus, the response is specifically modified with repeated bouts of endurance exercise during which muscle adjustments are established.
Collapse
Affiliation(s)
- Silvia Schmutz
- Department of Anatomy, University of Bern, Baltzerstrasse 2, 3000, Bern 9, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Ponsot E, Dufour SP, Zoll J, Doutrelau S, N'Guessan B, Geny B, Hoppeler H, Lampert E, Mettauer B, Ventura-Clapier R, Richard R. Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle. J Appl Physiol (1985) 2005; 100:1249-57. [PMID: 16339351 DOI: 10.1152/japplphysiol.00361.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study investigates whether adaptations of mitochondrial function accompany the improvement of endurance performance capacity observed in well-trained athletes after an intermittent hypoxic training program. Fifteen endurance-trained athletes performed two weekly training sessions on treadmill at the velocity associated with the second ventilatory threshold (VT2) with inspired O2 fraction = 14.5% [hypoxic group (Hyp), n = 8] or with inspired O2 fraction = 21% [normoxic group (Nor), n = 7], integrated into their usual training, for 6 wk. Before and after training, oxygen uptake (VO2) and speed at VT2, maximal VO2 (VO2 max), and time to exhaustion at velocity of VO2 max (minimal speed associated with VO2 max) were measured, and muscle biopsies of vastus lateralis were harvested. Muscle oxidative capacities and sensitivity of mitochondrial respiration to ADP (Km) were evaluated on permeabilized muscle fibers. Time to exhaustion, VO2 at VT2, and VO2 max were significantly improved in Hyp (+42, +8, and +5%, respectively) but not in Nor. No increase in muscle oxidative capacity was obtained with either training protocol. However, mitochondrial regulation shifted to a more oxidative profile in Hyp only as shown by the increased Km for ADP (Nor: before 476 +/- 63, after 524 +/- 62 microM, not significant; Hyp: before 441 +/- 59, after 694 +/- 51 microM, P < 0.05). Thus including hypoxia sessions into the usual training of athletes qualitatively ameliorates mitochondrial function by increasing the respiratory control by creatine, providing a tighter integration between ATP demand and supply.
Collapse
Affiliation(s)
- Elodie Ponsot
- Service de Physiologie Clinique et des Explorations Fonctionnelles Respiratoires et de l'Exercice, Département de Physiologie, Equipe d'Accueil 3072, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zoll J, Steiner R, Meyer K, Vogt M, Hoppeler H, Flück M. Gene expression in skeletal muscle of coronary artery disease patients after concentric and eccentric endurance training. Eur J Appl Physiol 2005; 96:413-22. [PMID: 16311763 DOI: 10.1007/s00421-005-0082-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Low-intensity concentric (CET) and eccentric (EET) endurance-type training induce specific structural adaptations in skeletal muscle. We evaluated to which extent steady-state adaptations in transcript levels are involved in the compensatory alterations of muscle mitochondria and myofibrils with CET versus EET at a matched metabolic exercise intensity of medicated, stable coronary patients (CAD). Biopsies were obtained from vastus lateralis muscle before and after 8 weeks of CET (n=6) or EET (n=6). Transcript levels for factors involved in mitochondrial biogenesis (PGC-1alpha, Tfam), mitochondrial function (COX-1, COX-4), control of contractile phenotype (MyHC I, IIa, IIx) as well as mechanical stress marker (IGF-I) were quantified using an reverse-transcriptase polymerase chain reaction approach. After 8 weeks of EET, a reduction of the COX-4 mRNA level by 41% and a tendency for a drop in Tfam transcript concentration (-33%, P=0.06) was noted. This down-regulation corresponded to a drop in total mitochondrial volume density. MyHC-IIa transcript levels were specifically decreased after EET, and MyHC-I mRNA showed a trend towards a reduction (P=0.08). Total fiber cross-sectional area was not altered. After CET and EET, the IGF-I mRNA level was significantly increased. The PGC-1alpha significantly correlated with Tfam, and both PGC-1alpha and Tfam significantly correlated with COX-1 and COX-4 mRNAs. Post-hoc analysis identified significant interactions between the concurrent medication and muscular transcript levels as well as fiber size. Our findings support the concept that specific transcriptional adaptations mediate the divergent mitochondrial response of muscle cells to endurance training under different load condition and indicate a mismatch of processes related to muscle hypertrophy in medicated CAD patients.
Collapse
Affiliation(s)
- J Zoll
- Department of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | | | | | | | | | | |
Collapse
|
43
|
Willoughby DS, Taylor L. Effects of sequential bouts of resistance exercise on androgen receptor expression. Med Sci Sports Exerc 2004; 36:1499-506. [PMID: 15354030 DOI: 10.1249/01.mss.0000139795.83030.d1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Increased serum testosterone (TST) occurs in response to resistance exercise and is associated with increased muscle mass. However, the effects of elevated TST and sequential resistance exercise bouts on androgen receptor (AR) expression in humans are not well known. This study examined three sequential bouts of heavy-resistance exercise on serum total TST, sex hormone-binding globulin (SHBG) and free androgen index (FAI), skeletal muscle AR mRNA and protein expression, and myofibrillar protein content. METHODS Eighteen untrained males were randomly assigned to either a resistance-training [RST (N = 9)] or control group [CON (N = 9)]. RST performed three lower-body resistance exercise bouts, each separated by 48 h. At each exercise bout, RST performed three sets of 8-10 repetitions at 75-80% one-repetition maximum using the squat, leg press, and leg extension exercises, respectively, whereas CON performed no resistance exercise. Muscle biopsies were obtained immediately before the first exercise bout and 48 h after each of the three bouts, whereas blood samples were obtained immediately before, immediately after, and 30 min after each bout. Data were analyzed with two-way ANOVA and bivariate correlations. RESULTS Serum TST and FAI were significantly increased after each exercise bout (P < 0.05); however, there were no significant changes for SHBG. AR mRNA and protein were significantly increased (P < 0.05) after the second and third exercise bouts, respectively, and were significantly correlated to TST and FAI (P < 0.05). Myofibrillar protein increased after the third bout (P < 0.05). CONCLUSIONS Three sequential bouts of heavy resistance exercise increases serum TST and are effective at up-regulating AR mRNA and protein expression that appears to correspond to subsequent increases in myofibrillar protein.
Collapse
Affiliation(s)
- Darryn S Willoughby
- Exercise and Biochemical Nutrition Laboratory, Department of HHPR, Baylor University, Waco, TX 76798, USA.
| | | |
Collapse
|
44
|
Park HK, Jin CJ, Cho YM, Park DJ, Shin CS, Park KS, Kim SY, Cho BY, Lee HK. Changes of mitochondrial DNA content in the male offspring of protein-malnourished rats. Ann N Y Acad Sci 2004. [PMID: 15126298 DOI: 10.1196/annals.1293.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nutritional deprivation of the fetus and infant is associated with susceptibility to the development of impaired glucose tolerance or type 2 diabetes in adult life. Quantitative changes in mitochondrial DNA (mtDNA) seem to be associated with type 2 diabetes, but the effect of protein malnutrition on mtDNA content is not known. This study investigated the effects of protein malnutrition in fetus and early life on mtDNA content and glucose-insulin metabolism in adult life. Male offspring of dams fed a low-protein (LP) diet (8% casein) during pregnancy and lactation were weaned onto either a control (18% casein) diet (recuperated group, R) or a LP diet, and they were compared with the control group (C). The mtDNA content in the liver was lower in the R and LP groups than in the C group at 5 weeks of age, but higher in the R and LP groups than in the C group at 15 weeks of age. The mtDNA content in skeletal muscle and pancreas was significantly lower in the R and LP groups than in the C group at 25 weeks of age. Fetal-malnourished rats showed decreased pancreatic beta-cell mass and reduced insulin secretory responses to glucose load, but no differences in glucose tolerance or insulin sensitivity. Our findings imply that protein malnutrition in utero causes changes in mtDNA content, impaired beta-cell development, and insulin secretion, which may contribute to the development of type 2 diabetes in later life.
Collapse
Affiliation(s)
- Hyeong Kyu Park
- Department of Internal Medicine, SoonChunHyang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Park HK, Jin CJ, Cho YM, Park DJ, Shin CS, Park KS, Kim SY, Cho BY, Lee HK. Changes of mitochondrial DNA content in the male offspring of protein-malnourished rats. Ann N Y Acad Sci 2004; 1011:205-16. [PMID: 15126298 DOI: 10.1007/978-3-662-41088-2_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Nutritional deprivation of the fetus and infant is associated with susceptibility to the development of impaired glucose tolerance or type 2 diabetes in adult life. Quantitative changes in mitochondrial DNA (mtDNA) seem to be associated with type 2 diabetes, but the effect of protein malnutrition on mtDNA content is not known. This study investigated the effects of protein malnutrition in fetus and early life on mtDNA content and glucose-insulin metabolism in adult life. Male offspring of dams fed a low-protein (LP) diet (8% casein) during pregnancy and lactation were weaned onto either a control (18% casein) diet (recuperated group, R) or a LP diet, and they were compared with the control group (C). The mtDNA content in the liver was lower in the R and LP groups than in the C group at 5 weeks of age, but higher in the R and LP groups than in the C group at 15 weeks of age. The mtDNA content in skeletal muscle and pancreas was significantly lower in the R and LP groups than in the C group at 25 weeks of age. Fetal-malnourished rats showed decreased pancreatic beta-cell mass and reduced insulin secretory responses to glucose load, but no differences in glucose tolerance or insulin sensitivity. Our findings imply that protein malnutrition in utero causes changes in mtDNA content, impaired beta-cell development, and insulin secretion, which may contribute to the development of type 2 diabetes in later life.
Collapse
Affiliation(s)
- Hyeong Kyu Park
- Department of Internal Medicine, SoonChunHyang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sheehan TE, Kumar PA, Hood DA. Tissue-specific regulation of cytochrome c oxidase subunit expression by thyroid hormone. Am J Physiol Endocrinol Metab 2004; 286:E968-74. [PMID: 14970006 DOI: 10.1152/ajpendo.00478.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The influence of thyroid hormone (T(3)) on respiration is partly mediated via its effect on the cytochrome c oxidase (COX) enzyme, a multi-subunit complex within the mitochondrial respiratory chain. We compared the expression of COX subunits I, III, Vb, and VIc and thyroid receptors (TR)alpha1 and TRbeta1 with functional changes in COX activity in tissues that possess high oxidative capacities. In response to 5 days of T(3) treatment, TRbeta1 increased 1.6-fold in liver, whereas TRalpha1 remained unchanged. T(3) also induced concomitant increases in the protein and mRNA expression of nuclear-encoded subunit COX Vb in liver, matched by a 1.3-fold increase in binding to a putative thyroid response element (TRE) within the COX Vb promoter in liver, suggesting transcriptional regulation. In contrast, T(3) had no effect on COX Vb expression in heart. T(3) produced a significant increase in COX III mRNA in liver but decreased COX III mRNA in heart. These changes were matched by parallel alterations in mitochondrial transcription factor A expression in both tissues. In contrast, COX I protein increased in both liver and heart 1.7- and 1.5-fold (P < 0.05), respectively. These changes in COX I closely paralleled the T(3)-induced increases in COX activity observed in both of these tissues. In liver, T(3) induced a coordinated increase in the expression of the nuclear (COX Vb) and mitochondrial (COX I) genomes at the protein level. However, in heart, the main effect of T(3) was restricted to the expression of mitochondrial DNA subunits. Thus our data suggest that T(3) regulates the expression of COX subunits by both transcriptional and posttranscriptional mechanisms. The nature of this regulation differs between tissues possessing a high mitochondrial content, like liver and heart.
Collapse
Affiliation(s)
- Treacey E Sheehan
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | | | | |
Collapse
|
47
|
Abstract
PURPOSE Myostatin is a negative regulator of muscle mass and its effects seem to be exacerbated by glucocorticoids; however, its response to resistance training is not well known. This study examined 12 wk of resistance training on the mRNA and protein expression of myostatin, follistatin-like related gene (FLRG), activin IIb receptor, cortisol, glucocorticoid receptor, myofibrillar protein, as well as the effects on muscle strength and mass and body composition. METHODS Twenty-two untrained males were randomly assigned to either a resistance-training [RTR (N = 12)] or control group [CON (N = 10)]. Muscle biopsies and blood samples were obtained before and after 6 and 12 wk of resistance training. RTR trained 3 x wk(-1) using three sets of six to eight repetitions at 85-90% 1-RM on lower-body exercises, whereas CON performed no resistance training. Data were analyzed with two- and three-way ANOVA. RESULTS After 12 wk of training, RTR increased total body mass, fat-free mass, strength, and thigh volume and mass; however, they increased myostatin mRNA, myostatin, FLRG, cortisol, glucocorticoid receptor, and myofibrillar protein after 6 and 12 wk of training (P < 0.05). CONCLUSIONS Resistance training and/or increased glucocorticoid receptor expression appears to up-regulate myostatin mRNA expression. Furthermore, it is possible that any plausible decreases in skeletal muscle function from the observed increase in serum myostatin were attenuated by increased serum FLRG levels and the concomitant down-regulation of the activin IIb receptor. It is therefore concluded that the increased myostatin in response to cortisol and/or resistance training appears to have no effects on training-induced increases in muscle strength and mass.
Collapse
Affiliation(s)
- Darryn S Willoughby
- Exercise and Molecular Kinesiology Laboratory, Department of Kinesiology, Texas Christian University, Fort Worth, TX 76129, USA.
| |
Collapse
|
48
|
Myburgh KH. What makes an endurance athlete world-class? Not simply a physiological conundrum. Comp Biochem Physiol A Mol Integr Physiol 2004; 136:171-90. [PMID: 14527639 DOI: 10.1016/s1095-6433(03)00220-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inter-individual variation in endurance performance capacity is a characteristic, not only of the general population, but also in trained athletes. The ability of sport scientists to predict which athletes amongst an elite group will become world-class is limited. We do not fully understand the interactions between biological factors, training, recovery and competitive performance. Assessment methods and interpretation of results do not take into account the facts that most research is not done on elite athletes and performances of world-class endurance athletes cannot be attributed to aerobic capacity alone. Many lines of evidence suggest that there is a limit to adaptation in aerobic capacity. Recent advances in molecular biology and genetics should be harnessed by exercise biologists in conjunction with previously used physiological, histological and biochemical techniques to study elite athletes and their responses to different training and recovery regimens. Technological advances should be harnessed to study world-class athletes to determine optimal training and competition strategies. In summary, it is likely that multiple factors are essential contributors to world-class endurance performance and that it is only by using a multidisciplinary approach that we will come closer to solving the conundrum: 'What makes an endurance athlete world class?'
Collapse
Affiliation(s)
- Kathryn H Myburgh
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, Private Bag X1, 7602, Matieland, South Africa.
| |
Collapse
|
49
|
Wittwer M, Billeter R, Hoppeler H, Flück M. Regulatory gene expression in skeletal muscle of highly endurance-trained humans. ACTA ACUST UNITED AC 2004; 180:217-27. [PMID: 14738480 DOI: 10.1046/j.0001-6772.2003.01242.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM AND BACKGROUND Changes in regulatory and structural gene expression provide the molecular basis for the adaptation of human skeletal muscle to endurance exercise. HYPOTHESIS The steady-state levels of multiple mRNAs mainly involved in regulatory functions differ between highly endurance-trained and untrained subjects in a muscle heavily recruited during the exercise. METHODS Biopsies from musculus vastus lateralis of seven untrained (UT) subjects [maximal oxygen consumption (VO2max) = 39 mL kg-1 min-1] and seven trained (T) professional cyclists (VO2max = 72 mL kg-1 min-1) were analysed for the contents of 597 different mRNAs using commercially available cDNA arrays (Clontech no. 7740-1). Intra-individual expression profiles were compared by least-square linear regression analysis. Differences in gene expression between the two groups were tested for statistical significance using L1 regression analysis combined with the sign test on all permutations of scatter plots of log raw values from UT vs. T subjects. RESULTS Transcripts for 144 of 597 genes were sufficiently abundant to be analysed quantitatively. The expression profiles of the T group had a better intragroup correlation (R2) than those of the UT group (0.78 vs. 0.65, P < 0.05). An intergroup (T vs. UT) correlation of expression profiles gave an R2 of 0.71. Statistical analysis at a false discovery rate of 5% identified differential expression of nine cell-regulatory genes between T and UT. The mRNA levels of eight genes, including two DNA repair enzymes, transcription factors, signal transducers, a glycolytic enzyme and a factor involved in steroid hormone metabolism were increased in T vs. UT. Conversely, the mRNA of the tumour suppressor APC was downregulated with endurance training. Selective reverse-transcriptase polymerase chain reaction experiments confirmed the signal estimates from the array analysis. CONCLUSIONS The repetitive impact of the complex exercise stimuli in professional cyclists attenuated the interindividual differences in regulatory gene expression in skeletal muscle. Long-term nuclear reprogramming of regulatory gene expression seems to be characteristic of human musculus vastus lateralis in a highly endurance-trained steady state.
Collapse
Affiliation(s)
- M Wittwer
- Department of Anatomy, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
50
|
Irrcher I, Adhihetty PJ, Joseph AM, Ljubicic V, Hood DA. Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med 2004; 33:783-93. [PMID: 12959619 DOI: 10.2165/00007256-200333110-00001] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Behavioural and hereditary conditions are known to decrease mitochondrial volume and function within skeletal muscle. This reduces endurance performance, and is manifest both at high- and low-intensity levels of exertion. A programme of regular endurance exercise, undertaken over a number of weeks, produces significant adaptations within skeletal muscle such that noticeable improvements in oxidative capacity are evident, and the related decline in endurance performance can be attenuated. Notwithstanding the important implications that this has for the highly trained endurance athlete, an improvement in mitochondrial volume and function through regular physical activity also endows the previously sedentary and/or aging population with an improved quality of life, and a greater functional independence. An understanding of the molecular and cellular mechanisms that govern the increases in mitochondrial volume with repeated bouts of exercise can provide insights into possible therapeutic interventions to care for those with mitochondrially-based diseases, and those unable to withstand regular physical activity. This review focuses on the recent developments in the molecular aspects of mitochondrial biogenesis in chronically exercising muscle. Specifically, we discuss the initial signalling events triggered by muscle contraction, the activation of transcription factors involved in both nuclear and mitochondrial DNA transcription, as well as the post-translational import mechanisms required for mitochondrial biogenesis. We consider the importance and relevance of chronic physical activity in the induction of mitochondrial biogenesis, with particular emphasis on how an endurance training programme could positively affect the age-related decline in mitochondrial content and delay the progression of age- and physical inactivity-related diseases.
Collapse
Affiliation(s)
- Isabella Irrcher
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|