1
|
Gao Y, Chen C, Liu R, Zhang Z, Zhao X, Ma H. Research progress of connexin 43 mediated gap junction communication regulating bone metabolism in glucocorticoid-induced osteonecrosis of the femoral head. Exp Cell Res 2025; 449:114598. [PMID: 40339781 DOI: 10.1016/j.yexcr.2025.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Osteonecrosis of the femoral head (ONFH) is a refractory orthopedic disease that commonly affects young and middle-aged individuals. Long-term and high-dose use of glucocorticoids (GCs) is one of the main causes. Currently, the pathological mechanism of GCs-induced ONFH remains unclear, which poses difficulties for clinical prevention and treatment. This article focuses on reviewing the roles of gap junctions (GJs) and connexin 43 (Cx43) in GCs-induced ONFH. Under normal circumstances, cells in bone tissue form a network structure through GJs to maintain bone metabolic balance. However, GCs can obstruct the normal connections and signal transmission between bone tissue cells, leading to bone metabolic imbalance and triggering ONFH. As a key component of GJs in bone tissue, Cx43 is of great significance in bone metabolism. It not only participates in the construction of the osteocyte network but also regulates osteocyte activity, osteoblast differentiation, and osteogenic activities. Meanwhile, in vascular endothelial cells, Cx43 plays an important role in angiogenesis and maintaining vascular homeostasis, and is closely related to the vascularization of bone tissue. In addition, Cx43 is associated with the release of prostaglandin E2 (PGE2). GCs can inhibit the activity of Cx43, reduce the release of PGE2, and disrupt the balance of bone metabolism. Studies have shown that measuring changes in the expression level of Cx43 is expected to become an early diagnostic biomarker for GCs-induced ONFH. Enhancing its expression through small - molecule drugs, biological agents, and gene therapy may be potential treatment approaches for ONFH. This article proposes the PI3K/Akt/GSK3β/β-catenin pathway and conducts research on the regulatory mechanism of Cx43-mediated GJ-based intercellular communication, aiming to provide new ideas for the treatment of ONFH and bone metabolism-related diseases.
Collapse
Affiliation(s)
- Yang Gao
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Changjun Chen
- Department of Orthopedics, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Rongxing Liu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Zhongkai Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Xin Zhao
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China.
| | - Huanzhi Ma
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China.
| |
Collapse
|
2
|
Lukowicz-Bedford RM, Eisen JS, Miller AC. Gap-junction-mediated bioelectric signaling required for slow muscle development and function in zebrafish. Curr Biol 2024; 34:3116-3132.e5. [PMID: 38936363 PMCID: PMC11265983 DOI: 10.1016/j.cub.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/11/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Bioelectric signaling, intercellular communication facilitated by membrane potential and electrochemical coupling, is emerging as a key regulator of animal development. Gap junction (GJ) channels can mediate bioelectric signaling by creating a fast, direct pathway between cells for the movement of ions and other small molecules. In vertebrates, GJ channels are formed by a highly conserved transmembrane protein family called the connexins. The connexin gene family is large and complex, creating challenges in identifying specific connexins that create channels within developing and mature tissues. Using the embryonic zebrafish neuromuscular system as a model, we identify a connexin conserved across vertebrate lineages, gjd4, which encodes the Cx46.8 protein, that mediates bioelectric signaling required for slow muscle development and function. Through mutant analysis and in vivo imaging, we show that gjd4/Cx46.8 creates GJ channels specifically in developing slow muscle cells. Using genetics, pharmacology, and calcium imaging, we find that spinal-cord-generated neural activity is transmitted to developing slow muscle cells, and synchronized activity spreads via gjd4/Cx46.8 GJ channels. Finally, we show that bioelectrical signal propagation within the developing neuromuscular system is required for appropriate myofiber organization and that disruption leads to defects in behavior. Our work reveals a molecular basis for GJ communication among developing muscle cells and reveals how perturbations to bioelectric signaling in the neuromuscular system may contribute to developmental myopathies. Moreover, this work underscores a critical motif of signal propagation between organ systems and highlights the pivotal role of GJ communication in coordinating bioelectric signaling during development.
Collapse
Affiliation(s)
| | - Judith S Eisen
- University of Oregon, Institute of Neuroscience, Eugene, OR 97405, USA
| | - Adam C Miller
- University of Oregon, Institute of Neuroscience, Eugene, OR 97405, USA.
| |
Collapse
|
3
|
Ji H, Shu Y, Li H. Unveiling a novel GJB2 dominant K22T mutation in a Chinese family with hearing loss. Acta Biochim Biophys Sin (Shanghai) 2024; 56:945-951. [PMID: 38733163 PMCID: PMC11292126 DOI: 10.3724/abbs.2024064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 05/13/2024] Open
Abstract
Hearing loss constitutes one of the most prevalent conditions within the field of otolaryngology. Recent investigations have revealed that mutations in deafness-associated genes, including point mutations and variations in DNA sequences, can cause hearing impairments. With the ethology of deafness remaining unclear for a substantial portion of the affected population, further screenings for pathogenic mutations are imperative to unveil the underlying mechanisms. On this study, by using next-generation sequencing, we examine 129 commonly implicated deafness-related genes in a Chinese family with hearing loss, revealing a novel heterozygous dominant mutation in the GJB2 gene (GJB2: c.65T>G: p. Lys22Thr). This mutation consistently occurs in affected family members but is not detected in unaffected individuals, strongly suggesting its causative role in hearing loss. Structural analysis indicates potential disruption to the Cx26 gap junction channel's hydrogen bond and electrostatic interactions, aligning with predictions from the PolyPhen and SIFT algorithms. In conclusion, our study provides conclusive evidence that the identified heterozygous GJB2 mutation (GJB2: c.65T>G: p. Lys22Thr), specifically the K22T alteration, is the primary determinant of the family's deafness. This contribution enhances our understanding of the interplay between common deafness-associated genes and hearing loss, offering valuable insights for diagnostic guidance and the formulation of therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Haiting Ji
- Department of the Affiliated Eye and ENT HospitalState Key Laboratory of Medical NeurobiologyENT Institute and OtorhinolaryngologyFudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
- Shanghai Engineering Research Centre of Cochlear ImplantShanghai200031China
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
| | - Yilai Shu
- Department of the Affiliated Eye and ENT HospitalState Key Laboratory of Medical NeurobiologyENT Institute and OtorhinolaryngologyFudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
- Shanghai Engineering Research Centre of Cochlear ImplantShanghai200031China
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Huawei Li
- Department of the Affiliated Eye and ENT HospitalState Key Laboratory of Medical NeurobiologyENT Institute and OtorhinolaryngologyFudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
- Shanghai Engineering Research Centre of Cochlear ImplantShanghai200031China
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
4
|
Lukowicz-Bedford RM, Eisen JS, Miller AC. Gap junction mediated bioelectric coordination is required for slow muscle development, organization, and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572619. [PMID: 38187655 PMCID: PMC10769300 DOI: 10.1101/2023.12.20.572619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Bioelectrical signaling, intercellular communication facilitated by membrane potential and electrochemical coupling, is emerging as a key regulator of animal development. Gap junction (GJ) channels can mediate bioelectric signaling by creating a fast, direct pathway between cells for the movement of ions and other small molecules. In vertebrates, GJ channels are formed by a highly conserved transmembrane protein family called the Connexins. The connexin gene family is large and complex, presenting a challenge in identifying the specific Connexins that create channels within developing and mature tissues. Using the embryonic zebrafish neuromuscular system as a model, we identify a connexin conserved across vertebrate lineages, gjd4, which encodes the Cx46.8 protein, that mediates bioelectric signaling required for appropriate slow muscle development and function. Through a combination of mutant analysis and in vivo imaging we show that gjd4/Cx46.8 creates GJ channels specifically in developing slow muscle cells. Using genetics, pharmacology, and calcium imaging we find that spinal cord generated neural activity is transmitted to developing slow muscle cells and synchronized activity spreads via gjd4/Cx46.8 GJ channels. Finally, we show that bioelectrical signal propagation within the developing neuromuscular system is required for appropriate myofiber organization, and that disruption leads to defects in behavior. Our work reveals the molecular basis for GJ communication among developing muscle cells and reveals how perturbations to bioelectric signaling in the neuromuscular system_may contribute to developmental myopathies. Moreover, this work underscores a critical motif of signal propagation between organ systems and highlights the pivotal role played by GJ communication in coordinating bioelectric signaling during development.
Collapse
|
5
|
Lukowicz-Bedford RM, Farnsworth DR, Miller AC. Connexinplexity: the spatial and temporal expression of connexin genes during vertebrate organogenesis. G3 (BETHESDA, MD.) 2022; 12:jkac062. [PMID: 35325106 PMCID: PMC9073686 DOI: 10.1093/g3journal/jkac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
Animal development requires coordinated communication between cells. The Connexin family of proteins is a major contributor to intercellular communication in vertebrates by forming gap junction channels that facilitate the movement of ions, small molecules, and metabolites between cells. Additionally, individual hemichannels can provide a conduit to the extracellular space for paracrine and autocrine signaling. Connexin-mediated communication is widely used in epithelial, neural, and vascular development and homeostasis, and most tissues likely use this form of communication. In fact, Connexin disruptions are of major clinical significance contributing to disorders developing from all major germ layers. Despite the fact that Connexins serve as an essential mode of cellular communication, the temporal and cell-type-specific expression patterns of connexin genes remain unknown in vertebrates. A major challenge is the large and complex connexin gene family. To overcome this barrier, we determined the expression of all connexins in zebrafish using single-cell RNA-sequencing of entire animals across several stages of organogenesis. Our analysis of expression patterns has revealed that few connexins are broadly expressed, but rather, most are expressed in tissue- or cell-type-specific patterns. Additionally, most tissues possess a unique combinatorial signature of connexin expression with dynamic temporal changes across the organism, tissue, and cell. Our analysis has identified new patterns for well-known connexins and assigned spatial and temporal expression to genes with no-existing information. We provide a field guide relating zebrafish and human connexin genes as a critical step toward understanding how Connexins contribute to cellular communication and development throughout vertebrate organogenesis.
Collapse
Affiliation(s)
| | - Dylan R Farnsworth
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Adam C Miller
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
6
|
Abrams CK, Flores-Obando RE, Dungan GD, Cherepanova E, Freidin MM. Investigating oligodendrocyte connexins: Heteromeric interactions between Cx32 and mutant or wild-type forms of Cx47 do not contribute to or modulate gap junction function. Glia 2021; 69:1882-1896. [PMID: 33835612 DOI: 10.1002/glia.23999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/11/2022]
Abstract
Oligodendrocytes express two gap junction forming connexins, connexin 32 (Cx32) and Cx47; therefore, formation of heteromeric channels containing both Cx47 and Cx32 monomers might occur. Mutations in Cx47 cause both Pelizaeus-Merzbacher-like disease Type 1 (PMLD1) and hereditary spastic paraparesis Type 44 (SPG44) and heteromer formation between these mutants and Cx32 may contribute to the pathogenesis of these disorders. Here, we utilized electrophysiological and antibody-based techniques to examine this possibility. When cells expressing both Cx32 and Cx47 were paired with cells expressing either Cx32 or Cx47, properties were indistinguishable from those produced by cells expressing homotypic Cx32 or Cx47 channels. Similarly, pairing cells expressing both Cx32 and Cx47 with cells expressing Cx30 or Cx43 produced channels indistinguishable from heterotypic Cx32/Cx30 or Cx47/Cx43 channels, respectively. The same assessments were performed on cells expressing Cx32 and four mutant forms of Cx47 (p.I33M associated with SPG44 or p.P87S, p.Y269D or p.M283T associated with PMLD1). None of these mutants showed a functional effect on Cx32. Immunostained cells co-expressing Cx32WT (wild type) and Cx47WT showed a Pearson correlation coefficient close to zero, suggesting that any overlap was due to chance. p.Y269D showed a statistically significant negative correlation with Cx32, suggesting that Cx32 and this mutant overlap less than expected by chance. Co-immunoprecipitation of Cx32 with Cx47WT and mutants show only very low levels of co-immunoprecipitated protein. Overall, our data suggest that interactions between PMLD1 or SPG44 mutants and Cx32 gap junctions do not contribute to the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | | | - Gabriel D Dungan
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Elina Cherepanova
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Mona M Freidin
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| |
Collapse
|
7
|
González-Casanova J, Schmachtenberg O, Martínez AD, Sanchez HA, Harcha PA, Rojas-Gomez D. An Update on Connexin Gap Junction and Hemichannels in Diabetic Retinopathy. Int J Mol Sci 2021; 22:ijms22063194. [PMID: 33801118 PMCID: PMC8004116 DOI: 10.3390/ijms22063194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the main causes of vision loss in the working age population. It is characterized by a progressive deterioration of the retinal microvasculature, caused by long-term metabolic alterations inherent to diabetes, leading to a progressive loss of retinal integrity and function. The mammalian retina presents an orderly layered structure that executes initial but complex visual processing and analysis. Gap junction channels (GJC) forming electrical synapses are present in each retinal layer and contribute to the communication between different cell types. In addition, connexin hemichannels (HCs) have emerged as relevant players that influence diverse physiological and pathological processes in the retina. This article highlights the impact of diabetic conditions on GJC and HCs physiology and their involvement in DR pathogenesis. Microvascular damage and concomitant loss of endothelial cells and pericytes are related to alterations in gap junction intercellular communication (GJIC) and decreased connexin 43 (Cx43) expression. On the other hand, it has been shown that the expression and activity of HCs are upregulated in DR, becoming a key element in the establishment of proinflammatory conditions that emerge during hyperglycemia. Hence, novel connexin HCs blockers or drugs to enhance GJIC are promising tools for the development of pharmacological interventions for diabetic retinopathy, and initial in vitro and in vivo studies have shown favorable results in this regard.
Collapse
Affiliation(s)
- Jorge González-Casanova
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.D.M.); (H.A.S.); (P.A.H.)
| | - Helmuth A. Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.D.M.); (H.A.S.); (P.A.H.)
| | - Paloma A. Harcha
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.D.M.); (H.A.S.); (P.A.H.)
| | - Diana Rojas-Gomez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370146, Chile
- Correspondence: ; Tel.: +56-2-26618559
| |
Collapse
|
8
|
Abstract
Of the 21 members of the connexin family, 4 (Cx37, Cx40, Cx43, and Cx45) are expressed in the endothelium and/or smooth muscle of intact blood vessels to a variable and dynamically regulated degree. Full-length connexins oligomerize and form channel structures connecting the cytosol of adjacent cells (gap junctions) or the cytosol with the extracellular space (hemichannels). The different connexins vary mainly with regard to length and sequence of their cytosolic COOH-terminal tails. These COOH-terminal parts, which in the case of Cx43 are also translated as independent short isoforms, are involved in various cellular signaling cascades and regulate cell functions. This review focuses on channel-dependent and -independent effects of connexins in vascular cells. Channels play an essential role in coordinating and synchronizing endothelial and smooth muscle activity and in their interplay, in the control of vasomotor actions of blood vessels including endothelial cell reactivity to agonist stimulation, nitric oxide-dependent dilation, and endothelial-derived hyperpolarizing factor-type responses. Further channel-dependent and -independent roles of connexins in blood vessel function range from basic processes of vascular remodeling and angiogenesis to vascular permeability and interactions with leukocytes with the vessel wall. Together, these connexin functions constitute an often underestimated basis for the enormous plasticity of vascular morphology and function enabling the required dynamic adaptation of the vascular system to varying tissue demands.
Collapse
Affiliation(s)
- Ulrich Pohl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany; Biomedical Centre, Cardiovascular Physiology, LMU Munich, Planegg-Martinsried, Germany; German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
9
|
Kim NK, Santos-Miranda A, Chen H, Aoyama H, Bai D. Heterotypic docking compatibility of human connexin37 with other vascular connexins. J Mol Cell Cardiol 2019; 127:194-203. [PMID: 30594540 DOI: 10.1016/j.yjmcc.2018.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/03/2018] [Accepted: 12/26/2018] [Indexed: 01/18/2023]
Abstract
Human vascular connexins (Cx37, Cx40, Cx43, and Cx45) can form various types of gap junction channels to synchronize vasodilation/constriction to control local circulation. Most of our knowledge on heterotypic gap junctions of these vascular connexins was from studies on rodent connexins. In human vasculature, the same four homolog connexins exist, but whether these human connexins can form heterotypic GJs as those of rodents have not been fully studied. Here we used in vitro expression system to study the coupling status and GJ channel properties of human heterotypic Cx37/Cx40, Cx37/Cx43, and Cx37/Cx45 GJs. Our results showed that Cx37/Cx43 and Cx37/Cx45 GJs, but not Cx37/Cx40 GJs, were functional and each with unique rectifying channel properties. The failure of docking between Cx37 and Cx40 could be rescued by designed Cx40 variants. Characterization of the heterotypic Cx37/Cx43 and Cx37/Cx45 GJs may help us in understanding the intercellular communication at the myoendothelial junction.
Collapse
Affiliation(s)
- Nicholas K Kim
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Artur Santos-Miranda
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Honghong Chen
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
10
|
Valiunas V, Cohen IS, Brink PR. Defining the factors that affect solute permeation of gap junction channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:96-101. [PMID: 28690048 PMCID: PMC5705451 DOI: 10.1016/j.bbamem.2017.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 01/22/2023]
Abstract
This review focuses on the biophysical properties and structure of the pore and vestibule of homotypic gap junction channels as they relate to channel permeability and selectivity. Gap junction channels are unique in their sole role to connect the cytoplasm of two adjacent cells. In general, these channels are considered to be poorly selective, possess open probabilities approximating unity, and exhibit mean open times ranging from milliseconds to seconds. These properties suggest that such channels can function as delivery pathways from cell to cell for solutes that are significantly larger than monovalent ions. We have taken quantitative data from published works concerning unitary conductance, ion flux, and permeability for homotypic connexin 43 (Cx43), Cx40, Cx26, Cx50, and Cx37, and performed a comparative analysis of conductance and/or ion/solute flux versus diffusion coefficient. The analysis of monovalent cation flux portrays the pore as equivalent to an aqueous space where hydrogen bonding and weak interactions with binding sites dominate. For larger solutes, size, shape and charge are also significant components in determining the permeation rate. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Virginijus Valiunas
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Ira S Cohen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Peter R Brink
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
11
|
Bai D, Yue B, Aoyama H. Crucial motifs and residues in the extracellular loops influence the formation and specificity of connexin docking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:9-21. [PMID: 28693896 DOI: 10.1016/j.bbamem.2017.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/25/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022]
Abstract
Most of the early studies on gap junction (GJ) channel function and docking compatibility were on rodent connexins, while recent research on GJ channels gradually shifted from rodent to human connexins largely due to the fact that mutations in many human connexin genes are found to associate with inherited human diseases. The studies on human connexins have revealed some key differences from those found in rodents, calling for a comprehensive characterization of human GJ channels. Functional studies revealed that docking and formation of functional GJ channels between two hemichannels are possible only between docking-compatible connexins. Two groups of docking-compatible rodent connexins have been identified. Compatibility is believed to be due to their amino acid residue differences at the extracellular loop domains (E1 and E2). Sequence alignment of the E1 and E2 domains of all connexins known to make GJs revealed that they are highly conserved and show high sequence identity with human Cx26, which is the only connexin with near atomic resolution GJ structure. We hypothesize that different connexins have a similar structure as that of Cx26 at the E1 and E2 domains and use the corresponding residues in their E1 and E2 domains for docking. Based on the Cx26 GJ structure and sequence analysis of well-studied connexins, we propose that the E1-E1 docking interactions are staggered with each E1 interacting with two E1s on the docked connexon. The putative E1 docking residues are conserved in both docking-compatible and -incompatible connexins, indicating that E1 does not likely serve a role in docking compatibility. However, in the case of E2-E2 docking interactions, the putative docking residues are only conserved within the docking-compatible connexins, suggesting the E2 is likely to serve the function of docking compatibility. Docking compatibility studies on human connexins have attracted a lot of attention due to the fact that putative docking residues are mutational hotspots for several connexin-linked human diseases. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| | - Benny Yue
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
12
|
Zhong G, Akoum N, Appadurai DA, Hayrapetyan V, Ahmed O, Martinez AD, Beyer EC, Moreno AP. Mono-Heteromeric Configurations of Gap Junction Channels Formed by Connexin43 and Connexin45 Reduce Unitary Conductance and Determine both Voltage Gating and Metabolic Flux Asymmetry. Front Physiol 2017; 8:346. [PMID: 28611680 PMCID: PMC5447054 DOI: 10.3389/fphys.2017.00346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/11/2017] [Indexed: 11/29/2022] Open
Abstract
In cardiac tissues, the expression of multiple connexins (Cx40, Cx43, Cx45, and Cx30.2) is a requirement for proper development and function. Gap junctions formed by these connexins have distinct permeability and gating mechanisms. Since a single cell can express more than one connexin isoform, the formation of hetero-multimeric gap junction channels provides a tissue with an enormous repertoire of combinations to modulate intercellular communication. To study further the perm-selectivity and gating properties of channels containing Cx43 and Cx45, we studied two monoheteromeric combinations in which a HeLa cell co-transfected with Cx43 and Cx45 was paired with a cell expressing only one of these connexins. Macroscopic measurements of total conductance between cell pairs indicated a drastic reduction in total conductance for mono-heteromeric channels. In terms of Vj dependent gating, Cx43 homomeric connexons facing heteromeric connexons only responded weakly to voltage negativity. Cx45 homomeric connexons exhibited no change in Vj gating when facing heteromeric connexons. The distributions of unitary conductances (γj) for both mono-heteromeric channels were smaller than predicted, and both showed low permeability to the fluorescent dyes Lucifer yellow and Rhodamine123. For both mono-heteromeric channels, we observed flux asymmetry regardless of dye charge: flux was higher in the direction of the heteromeric connexon for MhetCx45 and in the direction of the homomeric Cx43 connexon for MhetCx43. Thus, our data suggest that co-expression of Cx45 and Cx43 induces the formation of heteromeric connexons with greatly reduced permeability and unitary conductance. Furthermore, it increases the asymmetry for voltage gating for opposing connexons, and it favors asymmetric flux of molecules across the junction that depends primarily on the size (not the charge) of the crossing molecules.
Collapse
Affiliation(s)
- Guoqiang Zhong
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical UniversityGuangxi, China
| | - Nazem Akoum
- University Medical Center, University of WashingtonSeattle, WA, United States
| | | | | | - Osman Ahmed
- Atlanta Heart SpecialistsAtlanta, GA, United States
| | - Agustin D Martinez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Eric C Beyer
- Department of Pediatrics, University of ChicagoChicago, IL, United States
| | - Alonso P Moreno
- Cardiovascular Research and Training Institute (CVRTI), Department of Bioengineering, University of UtahSalt Lake Citiy, UT, United States
| |
Collapse
|
13
|
Skerrett IM, Williams JB. A structural and functional comparison of gap junction channels composed of connexins and innexins. Dev Neurobiol 2017; 77:522-547. [PMID: 27582044 PMCID: PMC5412853 DOI: 10.1002/dneu.22447] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 02/03/2023]
Abstract
Methods such as electron microscopy and electrophysiology led to the understanding that gap junctions were dense arrays of channels connecting the intracellular environments within almost all animal tissues. The characteristics of gap junctions were remarkably similar in preparations from phylogenetically diverse animals such as cnidarians and chordates. Although few studies directly compared them, minor differences were noted between gap junctions of vertebrates and invertebrates. For instance, a slightly wider gap was noted between cells of invertebrates and the spacing between invertebrate channels was generally greater. Connexins were identified as the structural component of vertebrate junctions in the 1980s and innexins as the structural component of pre-chordate junctions in the 1990s. Despite a lack of similarity in gene sequence, connexins and innexins are remarkably similar. Innexins and connexins have the same membrane topology and form intercellular channels that play a variety of tissue- and temporally specific roles. Both protein types oligomerize to form large aqueous channels that allow the passage of ions and small metabolites and are regulated by factors such as pH, calcium, and voltage. Much more is currently known about the structure, function, and structure-function relationships of connexins. However, the innexin field is expanding. Greater knowledge of innexin channels will permit more detailed comparisons with their connexin-based counterparts, and provide insight into the ubiquitous yet specific roles of gap junctions. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 522-547, 2017.
Collapse
Affiliation(s)
- I Martha Skerrett
- Biology Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, New York, 14222
| | - Jamal B Williams
- Biology Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, New York, 14222
| |
Collapse
|
14
|
Ek Vitorín JF, Pontifex TK, Burt JM. Determinants of Cx43 Channel Gating and Permeation: The Amino Terminus. Biophys J 2016; 110:127-40. [PMID: 26745416 DOI: 10.1016/j.bpj.2015.10.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/11/2015] [Accepted: 10/30/2015] [Indexed: 11/30/2022] Open
Abstract
Separate connexin domains partake in proposed gating mechanisms of gap junction channels. The amino-terminus (NT) domains, which contribute to voltage sensing, may line the channel's cytoplasmic-facing funnel surface, stabilize the channel's overall structure through interactions with the transmembrane domains and each other, and integrate to form a compound particle to gate the channel closed. Interactions of the carboxyl-terminus (CT) and cytoplasmic loop (CL) domains underlie voltage- and low pH-triggered channel closure. To elucidate potential cooperation of these gating mechanisms, we replaced the Cx43NT with the Cx37NT (chimera Cx43(∗)NT37), leaving the remainder of the Cx43 sequence, including the CT and CL, unchanged. Compared to wild-type Cx43 (Cx43WT), Cx43(∗)NT37 junctions exhibited several functional alterations: extreme resistance to halothane- and acidification-induced uncoupling, absence of voltage-dependent fast inactivation, longer channel open times, larger unitary channel conductances, low junctional dye permeability/permselectivity, and an overall cation selectivity more typical of Cx37WT than Cx43WT junctions. Together, these results suggest a cohesive model of channel function wherein: 1) channel conductance and size selectivity are largely determined by pore diameter, whereas charge selectivity results from the NT domains, and 2) transition between fully open and (multiple) closed states involves global changes in structure of the pore-forming domains transduced by interactions of the pore-forming domains with either the NT, CT, or both, with the NT domains forming the gate of the completely closed channel.
Collapse
Affiliation(s)
| | - Tasha K Pontifex
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Janis M Burt
- Department of Physiology, University of Arizona, Tucson, Arizona
| |
Collapse
|
15
|
Abstract
Intercellular communication between cells within the blood vessel wall plays an important role in the control of artery diameter. The endothelial cells lining the lumen of arteries can evoke smooth muscle hyperpolarization both by the release of a factor (EDHF) and by direct cell-cell coupling through gap junctions. Hyperpolarizing current can spread rapidly to cause widespread vasodilatation, and thus increase blood flow to that segment. In addition to the spread of current, small molecules, such as Ca2+, can also pass between cells, but at a much reduced rate. Instead of co-ordinating changes in diameter, intercellular Ca2+ signalling acts to amplify and, in special cases, modulate vascular responses. Together, direct cell-cell communication enables the blood vessel wall to act as a functional syncytium, which is influenced by surrounding tissues and nerves, and blood constituents.
Collapse
Affiliation(s)
- Kim A Dora
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK,
| |
Collapse
|
16
|
Saitongdee P, Becker DL, Milner P, Knight GE, Burnstock G. Levels of Gap Junction Proteins in Coronary Arterioles and Aorta of Hamsters Exposed to the Cold and During Hibernation and Arousal. J Histochem Cytochem 2016; 52:603-15. [PMID: 15100238 DOI: 10.1177/002215540405200505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There are marked changes in vascular dynamics during prolonged periods in the cold, entrance into hibernation, and arousal to euthermy. Cell-to-cell communication through gap junction channels plays a pivotal role in the control of vasomotor function. Multiple gap junction proteins are expressed in blood vessels, including connexins 37 (Cx37), 40 (Cx40), 43 (Cx43), and 45 (Cx45). Using immunolabeling techniques combined with confocal microscopy, we quantitated the levels of these connexins in coronary arterioles and the thoracic aorta of the golden hamster in four physiological conditions: normal control animals at euthermy; cold-exposed animals (before entrance into hibernation); during hibernation; and after 2-hr arousal from hibernation. In all groups, Cx37 was localized between endothelial cells of the aorta and Cx40 was observed between endothelial cells of coronary arterioles and the aorta. Cx43 was confined to smooth muscle cells of the aorta. Labeling for Cx45 was detected in the endothelium of the ascending aorta. The expression of Cx37 was significantly reduced in cold-exposed, hibernating, and aroused animals. Immunolabeling for Cx40 was increased in the coronary arteriolar endothelium of the cold-exposed group compared with normal controls, hibernating, and aroused animals, perhaps to facilitate intercellular communication during the prolonged circulatory changes to vascular dynamics required to maintain core temperature during cold adaptation. Cx40 expression was unchanged in the aorta. Cx43 immunoexpression in the aorta remained constant under all conditions examined. These changes in connexin expression did not occur during the rapid circulatory changes associated with arousal from hibernation.
Collapse
|
17
|
Pierucci F, Frati A, Squecco R, Lenci E, Vicenti C, Slavik J, Francini F, Machala M, Meacci E. Non-dioxin-like organic toxicant PCB153 modulates sphingolipid metabolism in liver progenitor cells: its role in Cx43-formed gap junction impairment. Arch Toxicol 2016; 91:749-760. [PMID: 27318803 DOI: 10.1007/s00204-016-1750-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Abstract
The non-dioxin-like environmental toxicant 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153), member of a group of persistent organic pollutants wide-spread throughout the environment, reduces gap junction intercellular communication (GJIC), an event possibly associated with tumor promotion. Since very few studies have investigated the signaling effectors and mode(s) of action of PCB153, and it is known that the gap junction (GJ) protein Cx43 can be regulated by the bioactive sphingolipid (SL) sphingosine 1-phosphate (S1P), this in vitro study mainly addresses whether SL metabolism is affected by PCB153 in rat liver epithelial WB-F344 cells. PCB153 treatment obtained significant changes in the S1P/ceramide (Cer) ratio, known to be crucial in determining cell fate. In particular, an increase in S1P at 30 min and a decrease of the bioactive lipid at 3 h were observed, whereas Cer level increased at 1 h and 24 h. Notably, a time-dependent modulation of sphingosine kinase (SphK), the enzyme responsible for S1P synthesis, and of its regulators, ERK1/2 and protein phosphatase PP2A, supports the involvement of these signaling effectors in PCB153 toxicity. Electrophysiological analyses, furthermore, indicated that the lipophilic environmental toxicant significantly reduced GJ biophysical properties, affecting both voltage-dependent (such as those formed by Cx43 and/or Cx32) and voltage-independent channels, thereby demonstrating that PCB153 may act differently on GJs formed by distinct Cx isoforms. SphK down-regulation alone induced GJIC impairment, and, when combined with PCB153, the acute effect on GJ suppression was additive. Moreover, after enzyme-specific gene silencing, the SphK1 isoform appears to be responsible for down-regulating Cx43 expression, while being the target of PCB153 at short-term exposure. In conclusion, we provide the first evidence of novel effectors in PCB153 toxic action in rat liver stem-like cells, leading us to consider SLs as potential markers for preventing GJIC deregulation and, thus, the tumorigenic action elicited by this environmental toxicant.
Collapse
Affiliation(s)
- F Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - A Frati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - R Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - E Lenci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - C Vicenti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - J Slavik
- Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - F Francini
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - M Machala
- Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - E Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
18
|
Relating specific connexin co-expression ratio to connexon composition and gap junction function. J Mol Cell Cardiol 2015; 89:195-202. [PMID: 26550940 DOI: 10.1016/j.yjmcc.2015.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 10/05/2015] [Accepted: 11/04/2015] [Indexed: 12/15/2022]
Abstract
Cardiac connexin 43 (Cx43), Cx40 and Cx45 are co-expressed at distinct ratios in myocytes. This pattern is considered a key factor in regulating the gap junction channels composition, properties and function and remains poorly understood. This work aims to correlate gap junction function with the connexin composition of the channels at accurate ratios Cx43:Cx40 and Cx43:Cx45. Rat liver epithelial cells that endogenously express Cx43 were stably transfected to induce expression of accurate levels of Cx40 or Cx45 that may be present in various areas of the heart (e.g. atria and ventricular conduction system). Induction of Cx40 does not increase the amounts of junctional connexins (Cx43 and Cx40), whereas induction of Cx45 increases the amounts of junctional connexins (Cx43 and Cx45). Interestingly, the non-junctional fraction of Cx43 remains unaffected upon induction of Cx40 and Cx45. Co-immunoprecipitation studies show low level of Cx40/Cx43 heteromerisation and undetectable Cx45/Cx43 heteromerisation. Functional characterisation shows that induction of Cx40 and Cx45 decreases Lucifer Yellow transfer. Electrical coupling is decreased by Cx45 induction, whereas it is decreased at low induction of Cx40 and increased at high induction. These data indicate a fine regulation of the gap junction channel make-up in function of the type and the ratio of co-expressed Cxs that specifically regulates chemical and electrical coupling. This reflects specific gap junction function in regulating impulse propagation in the healthy heart, and a pro-arrhythmic potential of connexin remodelling in the diseased heart.
Collapse
|
19
|
Lin X, Xu Q, Veenstra RD. Functional formation of heterotypic gap junction channels by connexins-40 and -43. Channels (Austin) 2015; 8:433-43. [PMID: 25483586 DOI: 10.4161/19336950.2014.949188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance - voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.
Collapse
Key Words
- Connexin40
- Cx37, connexin37
- Cx40, connexin40; Cx43, connexin43
- Cx45, connexin45
- E1, first extracellular loop domain
- EDTA, Ethylenediaminetetraacetic acid
- FITC, fluorescein isothiocyante
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- Gj, normalized junctional conductance
- Gj,max, maximum normalized gj
- Gj,min, mimimum normalized gj
- I1 and I2, whole cell currents for cell 1 and cell 2
- Ij, junctional current
- Kon, inactivation on-rate
- N2a, mouse Neuro2a
- NT, N-terminal domain
- Popen, open probability
- RT-PCR, real-time PCR
- Rel1 and Rel2, whole cell patch electrode resistance values for cell 1 and cell 2
- Rin, renal insulinoma
- TBS, Tris buffered saline
- TRITC, tetramethylrhodamine isothiocyanate
- V1 and V2, command voltage clamp potentials for cell 1 and cell 2
- V1/2, half-inactivation voltage
- Vj, transjunctional voltage
- connexin43
- gap junctions
- gj, junctional conductance
- heterotypic
- ij, single gap junction channel current
- mCx30.2/hCx31.9, mouse connexin30.2/human connexin31.9
- pS, picoSiemen
- spermine
- transjunctional voltage gating
- wt, wild-type
- ΔI2, change in I2 in response to an applied Vj gradient produced by changing V1
- γj, single gap junction channel conductance
- τdecay, exponential decay time constant
Collapse
Affiliation(s)
- Xianming Lin
- a Department of Pharmacology ; SUNY Upstate Medical University ; Syracuse , NY USA
| | | | | |
Collapse
|
20
|
Wang HZ, Rosati B, Gordon C, Valiunas V, McKinnon D, Cohen IS, Brink PR. Inhibition of histone deacetylase (HDAC) by 4-phenylbutyrate results in increased junctional conductance between rat corpora smooth muscle cells. Front Pharmacol 2015; 6:9. [PMID: 25691868 PMCID: PMC4315027 DOI: 10.3389/fphar.2015.00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 01/11/2015] [Indexed: 01/02/2023] Open
Abstract
4-phenylbutyrate (4-PB) has been shown to increase the protein content in a number of cells types. One such protein is Connexin43 (Cx43). We show here that 4-phenylbutyrate exposure results in significantly elevated cell to cell coupling, as determined by dual whole cell patch clamp. Incubation with 5 mM 4PB for 24 h or more nearly doubles junctional conductance. Interestingly, mRNA levels for Cx43 declined with exposure to 4-PB while western blot analysis revealed not significant change in protein levels. These data are most consistent with stabilization of the existing Cx43 pool or alterations in the number of functional channels within an existing pool of active and silent channels. These data represent a baseline for testing the efficacy of increased connexin mediated coupling in a variety of multicellular functions including erectile function.
Collapse
Affiliation(s)
- Hong Zhan Wang
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA
| | - Barbara Rosati
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA ; Department of Physiology and Biophysics, Molecular Cardiology Institute, Stony Brook University Stony Brook, NY, USA
| | - Chris Gordon
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA
| | - Virginijus Valiunas
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA ; Department of Physiology and Biophysics, Molecular Cardiology Institute, Stony Brook University Stony Brook, NY, USA
| | - David McKinnon
- Department of Physiology and Biophysics, Molecular Cardiology Institute, Stony Brook University Stony Brook, NY, USA ; Department of Neurobiology and Behavior, Stony Brook University Stony Brook, NY, USA
| | - Ira S Cohen
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA ; Department of Physiology and Biophysics, Molecular Cardiology Institute, Stony Brook University Stony Brook, NY, USA
| | - Peter R Brink
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA ; Department of Physiology and Biophysics, Molecular Cardiology Institute, Stony Brook University Stony Brook, NY, USA
| |
Collapse
|
21
|
Pogoda K, Füller M, Pohl U, Kameritsch P. NO, via its target Cx37, modulates calcium signal propagation selectively at myoendothelial gap junctions. Cell Commun Signal 2014; 12:33. [PMID: 24885166 PMCID: PMC4036488 DOI: 10.1186/1478-811x-12-33] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/03/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Gap junctional calcium signal propagation (transfer of calcium or a calcium releasing messenger via gap junctions) between vascular cells has been shown to be involved in the control of vascular tone. We have shown before that nitric oxide (NO) inhibits gap junctional communication in HeLa cells exclusively expressing connexin 37 (HeLa-Cx37) but not in HeLa-Cx40 or HeLa-Cx43. Here we studied the effect of NO on the gap junctional calcium signal propagation in endothelial cells which, in addition to Cx37, also express Cx40 and Cx43. Furthermore, we analyzed the impact of NO on intermuscle and on myoendothelial gap junction-dependent calcium signal propagation. Since specific effects of NO at one of these three junctional areas (interendothelial/ myoendothelial/ intermuscle) may depend on a differential membrane localization of the connexins, we also studied the distribution of the vascular connexins in small resistance arteries. RESULTS In endothelial (HUVEC) or smooth muscle cells (HUVSMC) alone, NO did not affect gap junctional Ca2+ signal propagation as assessed by analyzing the spread of Ca2+ signals after mechanical stimulation of a single cell. In contrast, at myoendothelial junctions, it decreased Ca2+ signal propagation in both directions by about 60% (co-cultures of HUVEC and HUVSMC). This resulted in a longer maintenance of calcium elevation at the endothelial side and a faster calcium signal propagation at the smooth muscle side, respectively. Immunohistochemical stainings (confocal and two-photon-microscopy) of cells in co-cultures or of small arteries revealed that Cx37 expression was relatively higher in endothelial cells adjoining smooth muscle (culture) or in potential areas of myoendothelial junctions (arteries). Accordingly, Cx37 - in contrast to Cx40 - was not only expressed on the endothelial surface of small arteries but also in deeper layers (corresponding to the internal elastic lamina IEL). Holes of the IEL where myoendothelial contacts can only occur, stained significantly more frequently for Cx37 and Cx43 than for Cx40 (endothelium) or Cx45 (smooth muscle). CONCLUSION NO modulates the calcium signal propagation specifically between endothelial and smooth muscle cells. The effect is due to an augmented distribution of Cx37 towards myoendothelial contact areas and potentially counteracts endothelial Ca2+ signal loss from endothelial to smooth muscle cells. This targeted effect of NO may optimize calcium dependent endothelial vasomotor function.
Collapse
Affiliation(s)
- Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, Munich Heart Alliance, Ludwig-Maximilians-Universität München, Munich, Germany
- DZHK (German Centre of Cardiovascular Research), partner site Munich Heart Alliance, Marchioninistr. 27, 81377 Munich, Germany
| | - Monika Füller
- Walter Brendel Centre of Experimental Medicine, Munich Heart Alliance, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich Pohl
- Walter Brendel Centre of Experimental Medicine, Munich Heart Alliance, Ludwig-Maximilians-Universität München, Munich, Germany
- DZHK (German Centre of Cardiovascular Research), partner site Munich Heart Alliance, Marchioninistr. 27, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergY), Munich, Germany
| | - Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, Munich Heart Alliance, Ludwig-Maximilians-Universität München, Munich, Germany
- DZHK (German Centre of Cardiovascular Research), partner site Munich Heart Alliance, Marchioninistr. 27, 81377 Munich, Germany
| |
Collapse
|
22
|
Extracellular domains play different roles in gap junction formation and docking compatibility. Biochem J 2014; 458:1-10. [PMID: 24438327 DOI: 10.1042/bj20131162] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GJ (gap junction) channels mediate direct intercellular communication and play an important role in many physiological processes. Six connexins oligomerize to form a hemichannel and two hemichannels dock together end-to-end to form a GJ channel. Connexin extracellular domains (E1 and E2) have been shown to be important for the docking, but the molecular mechanisms behind the docking and formation of GJ channels are not clear. Recent developments in atomic GJ structure and functional studies on a series of connexin mutants revealed that E1 and E2 are likely to play different roles in the docking. Non-covalent interactions at the docking interface, including hydrogen bonds, are predicted to form between interdocked extracellular domains. Protein sequence alignment analysis on the docking compatible/incompatible connexins indicate that the E1 domain is important for the formation of the GJ channel and the E2 domain is important in the docking compatibility in heterotypic channels. Interestingly, the hydrogen-bond forming or equivalent residues in both E1 and E2 domains are mutational hot spots for connexin-linked human diseases. Understanding the molecular mechanisms of GJ docking can assist us to develop novel strategies in rescuing the disease-linked connexin mutants.
Collapse
|
23
|
Gago-Fuentes R, Carpintero-Fernandez P, Goldring MB, Brink PR, Mayan MD, Blanco FJ. Biochemical evidence for gap junctions and Cx43 expression in immortalized human chondrocyte cell line: a potential model in the study of cell communication in human chondrocytes. Osteoarthritis Cartilage 2014; 22:586-90. [PMID: 24530659 DOI: 10.1016/j.joca.2014.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/01/2014] [Accepted: 02/06/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The development of chondrocytic cell lines has enabled the investigation of the role of cellular phenotype and mechanisms in articular cartilage biology and physiopathology of several rheumatic diseases. Among them, the T/C-28a2 cell line has become a common tool in cartilage research. Recent results from our group have revealed that primary human chondrocytes in tissue and in monolayer culture contain high levels of connexin 43 (Cx43) and are able to directly communicate through gap junction (GJ) channels. These results challenge the existing thesis of cartilage physiology, that chondrocytes do not have the capacity to physically communicate with each other. Established cell lines offer the advantage of convenience and uniformity; however, the establishment process may cause a disruption of GJ. This study was performed to investigate if T/C-28a2 cells contain Cx43 protein and form functional channels. METHODS Cx43 was characterized by RT-qPCR, Western blotting, and immunohistochemistry (IHC). Electrophysiology experiments, Lucifer Yellow (LY) uptake, electroporation in situ and scrape loading assay were performed to test the functionality of GJs. RESULTS T/C-28a2 cells express Cx43. Electrophysiology experiments and LY uptake confirmed the capacity of these cells to communicate through GJ channels, although these cells contain significant levels of active c-Src kinase, presumably due to their immortalization with the Simian Virus 40 large T antigen. The results were validated using primary chondrocytes (PC). CONCLUSIONS These results reveal that the T/C-28a2 line may provide a useful in vitro model for the study of Cx43 function and cell communication to understand the physiology of chondrocytes and cartilage.
Collapse
Affiliation(s)
- R Gago-Fuentes
- Cartilage Biology Research Group, Rheumatology Division, INIBIC-Hospital Universitario A Coruña, Xubias de Arriba 84, 15006 A Coruña, Spain
| | - P Carpintero-Fernandez
- Cartilage Biology Research Group, Rheumatology Division, INIBIC-Hospital Universitario A Coruña, Xubias de Arriba 84, 15006 A Coruña, Spain
| | - M B Goldring
- Tissue Engineering Repair and Regeneration Program, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY, USA
| | - P R Brink
- Department of Physiology and Biophysics, State University of New York, Stony Brook, NY, USA
| | - M D Mayan
- Cartilage Biology Research Group, Rheumatology Division, INIBIC-Hospital Universitario A Coruña, Xubias de Arriba 84, 15006 A Coruña, Spain.
| | - F J Blanco
- Cartilage Biology Research Group, Rheumatology Division, INIBIC-Hospital Universitario A Coruña, Xubias de Arriba 84, 15006 A Coruña, Spain; Rheumatology Division, ProteoRed/ISCIII, Proteomics Group, INIBIC-Hospital Universitario A Coruña, Xubias de Arriba 84, 15006 A Coruña, Spain; Rheumatology Division, CIBER-BBN/ISCIII, INIBIC-Hospital Universitario A Coruña, Xubias de Arriba 84, 15006 A Coruña, Spain.
| |
Collapse
|
24
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 PMCID: PMC3973613 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
25
|
Syndromic and non-syndromic disease-linked Cx43 mutations. FEBS Lett 2014; 588:1339-48. [PMID: 24434540 DOI: 10.1016/j.febslet.2013.12.022] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/30/2013] [Indexed: 01/05/2023]
Abstract
There are now at least 14 distinct diseases linked to germ line mutations in the 21 genes that encode the connexin (Cx) family of gap junction proteins. This review focuses on the links between germ-line mutations in the gene encoding Cx43 (GJA1) and the human disease termed oculodentodigital dysplasia (ODDD). This disease is clinically characterized by soft tissue fusion of the digits, abnormal craniofacial bone development, small eyes and loss of tooth enamel. However, the disease is considerably more complex and somewhat degenerative as patients often suffer from other syndromic effects that include incontinence, glaucoma, skin diseases and neuropathies that become more pronounced during aging. The challenge continues to be understanding how distinct Cx43 gene mutations cause such a diverse range of tissue phenotypes and pathophysiological changes while other Cx43-rich organs are relatively unaffected. This review will provide an overview of many of these studies and distill some themes and outstanding questions that need to be addressed in the coming years.
Collapse
|
26
|
Nielsen MS, Axelsen LN, Sorgen PL, Verma V, Delmar M, Holstein-Rathlou NH. Gap junctions. Compr Physiol 2013; 2:1981-2035. [PMID: 23723031 DOI: 10.1002/cphy.c110051] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease.
Collapse
Affiliation(s)
- Morten Schak Nielsen
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
27
|
Beyer EC, Lin X, Veenstra RD. Interfering amino terminal peptides and functional implications for heteromeric gap junction formation. Front Pharmacol 2013; 4:67. [PMID: 23734129 PMCID: PMC3659311 DOI: 10.3389/fphar.2013.00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/29/2013] [Indexed: 02/05/2023] Open
Abstract
Connexin43 (Cx43) is widely expressed in many different tissues of the human body. In cells of some organs, Cx43 is co-expressed with other connexins (Cx), including Cx46 and Cx50 in lens, Cx40 in atrium, Purkinje fibers, and the blood vessel wall, Cx45 in heart, and Cx37 in the ovary. Interactions with the co-expressed connexins may have profound functional implications. The abilities of Cx37, Cx45, Cx46, and Cx50 to function in heteromeric gap junction combinations with Cx43 are well documented. Different studies disagree regarding the ability of Cx43 and Cx40 to produce functional heteromeric gap junctions with each other. We review previous studies regarding the heteromeric interactions of Cx43. The possibility of negative functional interactions between the cytoplasmic pore-forming amino-terminal (NT) domains of these connexins was assessed using pentameric connexin sequence-specific NT domain [interfering NT (iNT)] peptides applied to cells expressing homomeric Cx40, Cx37, Cx45, Cx46, and Cx50 gap junctions. A Cx43 iNT peptide corresponding to amino acids 9–13 (Ac-KLLDK-NH2) specifically inhibited the electrical coupling of Cx40 gap junctions in a transjunctional voltage (Vj)-dependent manner without affecting the function of homologous Cx37, Cx46, Cx50, and Cx45 gap junctions. A Cx40 iNT (Ac-EFLEE-OH) peptide counteracted the Vj-dependent block of Cx40 gap junctions, whereas a similarly charged Cx50 iNT (Ac-EEVNE-OH) peptide did not, suggesting that these NT domain interactions are not solely based on electrostatics. These data are consistent with functional Cx43 heteromeric gap junction formation with Cx37, Cx45, Cx46, and Cx50 and suggest that Cx40 uniquely experiences functional suppressive interactions with a Cx43 NT domain sequence. These findings present unique functional implications about the heteromeric interactions between Cx43 and Cx40 that may influence cardiac conduction in atrial myocardium and the specialized conduction system.
Collapse
Affiliation(s)
- Eric C Beyer
- Department of Pediatrics, University of Chicago Chicago, IL, USA
| | | | | |
Collapse
|
28
|
Huang T, Shao Q, MacDonald A, Xin L, Lorentz R, Bai D, Laird DW. Autosomal recessive GJA1 (Cx43) gene mutations cause oculodentodigital dysplasia by distinct mechanisms. J Cell Sci 2013; 126:2857-66. [PMID: 23606748 DOI: 10.1242/jcs.123315] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oculodentodigital dysplasia (ODDD) is mainly an autosomal dominant human disease caused by mutations in the GJA1 gene, which encodes the gap junction protein connexin43 (Cx43). Surprisingly, there have been two autosomal recessive mutations reported that cause ODDD: a single amino acid substitution (R76H) and a premature truncation mutation (R33X). When expressed in either gap junctional intercellular communication (GJIC)-deficient HeLa cells or Cx43-expressing NRK cells, the R76H mutant trafficked to the plasma membrane to form gap junction-like plaques, whereas the R33X mutant remained diffusely localized throughout the cell, including the nucleus. As expected, the R33X mutant failed to form functional channels. In the case of the R76H mutant, dye transfer studies in HeLa cells and electrical conductance analysis in GJIC-deficient N2a cells revealed that this mutant could form functional gap junction channels, albeit with reduced macroscopic and single channel conductance. Alexa 350 dye transfer studies further revealed that the R76H mutant had no detectable negative effect on the function of co-expressed Cx26, Cx32, Cx37 or Cx40, whereas the R33X mutant exhibited significant dominant or trans-dominant effects on Cx43 and Cx40 as manifested by a reduction in wild-type connexin gap junction plaques. Taken together, our results suggest that the trans-dominant effect of R33X together with its complete inability to form a functional channel may explain why patients harboring this autosomal recessive R33X mutant exhibit greater disease burden than patients harboring the R76H mutant.
Collapse
Affiliation(s)
- Tao Huang
- Department of Anatomy and Cell Biology, University of Western Ontario, London ON N6A-5C1, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Vele O, Schrijver I. Inherited hearing loss: molecular genetics and diagnostic testing. ACTA ACUST UNITED AC 2013; 2:231-48. [PMID: 23495655 DOI: 10.1517/17530059.2.3.231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Hearing loss is a clinically and genetically heterogeneous condition with major medical and social consequences. It affects up to 8% of the general population. OBJECTIVE This review recapitulates the principles of auditory physiology and the molecular basis of hearing loss, outlines the main types of non-syndromic and syndromic deafness by mode of inheritance, and provides an overview of current clinically available genetic testing. METHODS This paper reviews the literature on auditory physiology and on genes, associated with hearing loss, for which genetic testing is presently offered. RESULTS/CONCLUSION The advent of molecular diagnostic assays for hereditary hearing loss permits earlier detection of the underlying causes, facilitates appropriate interventions, and is expected to generate the data necessary for more specific genotype-phenotype correlations.
Collapse
Affiliation(s)
- Oana Vele
- Stanford University School of Medicine, Department of Pathology and Pediatrics, L235, 300 Pasteur Drive, Stanford, CA 94305, USA +1 650 724 2403 ; +1 650 724 1567 ;
| | | |
Collapse
|
30
|
Brink PR, Valiunas V, Gordon C, Rosen MR, Cohen IS. Can gap junctions deliver? BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:2076-81. [PMID: 21986484 DOI: 10.1016/j.bbamem.2011.09.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/09/2011] [Accepted: 09/23/2011] [Indexed: 01/08/2023]
Abstract
In vivo delivery of small interfering RNAs (siRNAs) to target cells via the extracellular space has been hampered by dilution effects and immune responses. Gap junction-mediated transfer between cells avoids the extracellular space and its associated limitations. Because of these advantages cell based delivery via gap junctions has emerged as a viable alternative for siRNA or miRNA delivery. Here we discuss the advantages and disadvantages of extracellular delivery and cell to cell delivery via gap junction channels composed of connexins. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Peter R Brink
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA.
| | | | | | | | | |
Collapse
|
31
|
Gemel J, Nelson TK, Burt JM, Beyer EC. Inducible coexpression of connexin37 or connexin40 with connexin43 selectively affects intercellular molecular transfer. J Membr Biol 2012; 245:231-41. [PMID: 22729648 PMCID: PMC3501935 DOI: 10.1007/s00232-012-9444-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/01/2012] [Indexed: 12/17/2022]
Abstract
Many tissues express multiple gap junction proteins, or connexins (Cx); for example, Cx43, Cx40, and Cx37 are coexpressed in vascular cells. This study was undertaken to elucidate the consequences of coexpression of Cx40 or Cx37 with Cx43 at different ratios. EcR-293 cells (which endogenously produce Cx43) were transfected with ecdysone-inducible plasmids encoding Cx37 or Cx40. Immmunoblotting showed a ponasterone dose-dependent induction of Cx37 or Cx40 while constant levels of Cx43 were maintained. The coexpressed connexins colocalized at appositional membranes. Double whole-cell patch clamp recordings showed no significant change in total junctional conductances in cells treated with 0, 0.5, or 4 μM ponasterone; however, they did show a diversity of unitary channel sizes consistent with the induced connexin expression. In cells with induced expression of either Cx40 or Cx37, intercellular transfer of microinjected Lucifer yellow was reduced, but transfer of NBD-TMA (2-(4-nitro-2,1,3-benzoxadiol-7-yl)[aminoethyl]trimethylammonium) was not affected. In cocultures containing uninduced EcR cells together with cells induced to coexpress Cx37 or Cx40, Lucifer yellow transfer was observed only between the cells expressing Cx43 alone. These data show that induced expression of either Cx37 or Cx40 in Cx43-expressing cells can selectively alter the intercellular exchange of some molecules without affecting the transfer of others.
Collapse
Affiliation(s)
- Joanna Gemel
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Tasha K. Nelson
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Janis M. Burt
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Eric C. Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
- Section of Pediatric Hematology/Oncology, University of Chicago, 900 E 57th St., KCBD 5152, Chicago, IL 60637, USA
| |
Collapse
|
32
|
Ek-Vitorin JF, Burt JM. Structural basis for the selective permeability of channels made of communicating junction proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:51-68. [PMID: 22342665 DOI: 10.1016/j.bbamem.2012.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/24/2012] [Accepted: 02/01/2012] [Indexed: 01/08/2023]
Abstract
The open state(s) of gap junction channels is evident from their permeation by small ions in response to an applied intercellular (transjunctional/transchannel) voltage gradient. That an open channel allows variable amounts of current to transit from cell-to-cell in the face of a constant intercellular voltage difference indicates channel open/closing can be complete or partial. The physiological significance of such open state options is, arguably, the main concern of junctional regulation. Because gap junctions are permeable to many substances, it is sensible to inquire whether and how each open state influences the intercellular diffusion of molecules as valuable as, but less readily detected than current-carrying ions. Presumably, structural changes perceived as shifts in channel conductivity would significantly alter the transjunctional diffusion of molecules whose limiting diameter approximates the pore's limiting diameter. Moreover, changes in junctional permeability to some molecules might occur without evident changes in conductivity, either at macroscopic or single channel level. Open gap junction channels allow the exchange of cytoplasmic permeants between contacting cells by simple diffusion. The identity of such permeants, and the functional circumstances and consequences of their junctional exchange presently constitute the most urgent (and demanding) themes of the field. Here, we consider the necessity for regulating this exchange, the possible mechanism(s) and structural elements likely involved in such regulation, and how regulatory phenomena could be perceived as changes in chemical vs. electrical coupling; an overall reflection on our collective knowledge of junctional communication is then applied to suggest new avenues of research. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.
Collapse
|
33
|
Gerhart SV, Eble DM, Burger RM, Oline SN, Vacaru A, Sadler KC, Jefferis R, Iovine MK. The Cx43-like connexin protein Cx40.8 is differentially localized during fin ontogeny and fin regeneration. PLoS One 2012; 7:e31364. [PMID: 22347467 PMCID: PMC3275562 DOI: 10.1371/journal.pone.0031364] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/09/2012] [Indexed: 11/18/2022] Open
Abstract
Connexins (Cx) are the subunits of gap junctions, membraneous protein channels that permit the exchange of small molecules between adjacent cells. Cx43 is required for cell proliferation in the zebrafish caudal fin. Previously, we found that a Cx43-like connexin, cx40.8, is co-expressed with cx43 in the population of proliferating cells during fin regeneration. Here we demonstrate that Cx40.8 exhibits novel differential subcellular localization in vivo, depending on the growth status of the fin. During fin ontogeny, Cx40.8 is found at the plasma membrane, but Cx40.8 is retained in the Golgi apparatus during regeneration. We next identified a 30 amino acid domain of Cx40.8 responsible for its dynamic localization. One possible explanation for the differential localization is that Cx40.8 contributes to the regulation of Cx43 in vivo, perhaps modifying channel activity during ontogenetic growth. However, we find that the voltage-gating properties of Cx40.8 are similar to Cx43. Together our findings reveal that Cx40.8 exhibits differential subcellular localization in vivo, dependent on a discrete domain in its carboxy terminus. We suggest that the dynamic localization of Cx40.8 differentially influences Cx43-dependent cell proliferation during ontogeny and regeneration.
Collapse
Affiliation(s)
- Sarah V. Gerhart
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Diane M. Eble
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - R. Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Stefan N. Oline
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Ana Vacaru
- Department of Medicine-Division of Liver Disease, Department of Regenerative and Developmental Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Kirsten C. Sadler
- Department of Medicine-Division of Liver Disease, Department of Regenerative and Developmental Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Rebecca Jefferis
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
34
|
Different domains are critical for oligomerization compatibility of different connexins. Biochem J 2011; 436:35-43. [PMID: 21348854 DOI: 10.1042/bj20110008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oligomerization of connexins is a critical step in gap junction channel formation. Some members of the connexin family can oligomerize with other members and form functional heteromeric hemichannels [e.g. Cx43 (connexin 43) and Cx45], but others are incompatible (e.g. Cx43 and Cx26). To find connexin domains important for oligomerization, we constructed chimaeras between Cx43 and Cx26 and studied their ability to oligomerize with wild-type Cx43, Cx45 or Cx26. HeLa cells co-expressing Cx43, Cx45 or Cx26 and individual chimaeric constructs were analysed for interactions between the chimaeras and the wild-type connexins using cell biological (subcellular localization by immunofluorescence), functional (intercellular diffusion of microinjected Lucifer yellow) and biochemical (sedimentation velocity through sucrose gradients) assays. All of the chimaeras containing the third transmembrane domain of Cx43 interacted with wild-type Cx43 on the basis of co-localization, dominant-negative inhibition of intercellular communication, and altered sedimentation velocity. The same chimaeras also interacted with co-expressed Cx45. In contrast, immunofluorescence and intracellular diffusion of tracer suggested that other domains influenced oligomerization compatibility when chimaeras were co-expressed with Cx26. Taken together, these results suggest that amino acids in the third transmembrane domain are critical for oligomerization with Cx43 and Cx45. However, motifs in different domains may determine oligomerization compatibility in members of different connexin subfamilies.
Collapse
|
35
|
Good ME, Nelson TK, Simon AM, Burt JM. A functional channel is necessary for growth suppression by Cx37. J Cell Sci 2011; 124:2448-56. [PMID: 21693589 PMCID: PMC3124374 DOI: 10.1242/jcs.081695] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2011] [Indexed: 11/20/2022] Open
Abstract
Connexin 37 (Cx37) profoundly suppresses the proliferation of rat insulinoma (Rin) cells by unknown mechanisms. To determine whether a functional pore domain is necessary for Cx37-mediated growth suppression, we introduced a mutation that converted threonine 154 into alanine (T154A). Like other connexins mutated at the homologous site, Cx37-T154A localized to appositional membrane but failed to form functional channels and exerted a dominant-negative effect on coexpressed wild-type Cx37 or Cx43. Unlike the wild-type protein, Cx37-T154A did not suppress the proliferation of Rin cells and did not, with serum deprivation, result in cell cycle arrest. Furthermore, progression through the cell cycle was unaffected by expression of Cx37-T154A. These results indicate that a pore-forming domain that is able to form functional channels is essential for the anti-proliferative, cell-cycle arrest and serum-sensitivity effects of Cx37, and furthermore that the normally localized C-terminal domain is not sufficient for these effects of Cx37.
Collapse
Affiliation(s)
- Miranda E. Good
- Department of Physiology, University of Arizona, PO Box 245051, Tucson, AZ 85724, USA
| | - Tasha K. Nelson
- Department of Physiology, University of Arizona, PO Box 245051, Tucson, AZ 85724, USA
| | - Alexander M. Simon
- Department of Physiology, University of Arizona, PO Box 245051, Tucson, AZ 85724, USA
| | - Janis M. Burt
- Department of Physiology, University of Arizona, PO Box 245051, Tucson, AZ 85724, USA
| |
Collapse
|
36
|
Kanaporis G, Brink PR, Valiunas V. Gap junction permeability: selectivity for anionic and cationic probes. Am J Physiol Cell Physiol 2010; 300:C600-9. [PMID: 21148413 DOI: 10.1152/ajpcell.00316.2010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gap junction channels formed by different connexins exhibit specific permeability to a variety of larger solutes including second messengers, polypeptides, and small interfering RNAs. Here, we report the permeability of homotypic connexin26 (Cx26), Cx40, Cx43, and Cx45 gap junction channels stably expressed in HeLa cells to solutes with different size and net charge. Channel permeability was determined using simultaneous measurements of junctional conductance and the cell-cell flux of a fluorescent probe. All four connexins allowed passage of both cationic and anionic probes, but the transfer rates were connexin dependent. The negatively charged probes [Lucifer yellow (LY; median axial diameter 9.9 Å, charge -2), carboxyfluorescein (CF; 8.2 Å; -2), and Alexa Fluor350 (AF350, 5.4 Å; -1)] exhibited the following permeability order: Cx43 > Cx45 > Cx26 > Cx40. In contrast, for the positively charged species permeability, the orders were as follows: Cx26 ≈ Cx43 ≈ Cx40 ≈ Cx45 for N,N,N-trimethyl-2-[methyl-(7-nitro-2,1,3-benzoxadiol-4-yl) amino] ethanaminium (NBD-m-TMA; 5.5 Å, +1) and Cx26 ≥ Cx43 ≈ Cx40 > Cx45 for ethidium bromide (10.3 Å, +1). Comparison of probe permeability relative to K(+) revealed that Cx43 and Cx45 exhibited similar permeability for NBD-m-TMA and AF350, indicating weak charge selectivity. However, lesser transfer of CF and LY through Cx45 relative to Cx43 channels suggests stronger size-dependent discrimination of solute. The permeability of NBD-m-TMA for Cx40 and Cx26 channels was approximately three times higher than to anionic AF350 despite the fact that both have similar minor diameters, suggesting charge selectivity. In conclusion, these results confirm that channels formed from individual connexins can discriminate for solutes based on size and charge, suggesting that channel selectivity may be a key factor in cell signaling.
Collapse
Affiliation(s)
- G Kanaporis
- Dept. of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY 11794-8661, USA
| | | | | |
Collapse
|
37
|
Dominant connexin26 mutants associated with human hearing loss have trans-dominant effects on connexin30. Neurobiol Dis 2010; 38:226-36. [PMID: 20096356 DOI: 10.1016/j.nbd.2010.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/27/2009] [Accepted: 01/12/2010] [Indexed: 11/23/2022] Open
Abstract
Dominant mutations in GJB2, the gene encoding the human gap junction protein connexin26 (Cx26), cause hearing loss. We investigated whether dominant Cx26 mutants interact directly with Cx30. HeLa cells stably expressing nine dominant Cx26 mutants, six associated with non-syndromic hearing loss (W44C, W44S, R143Q, D179N, R184Q and C202F) and three associated with hearing loss and palmoplantar keratoderma (G59A, R75Q and R75W), individually or together with Cx30, were analyzed by immunocytochemistry, co-immunoprecipitation, and functional assays (scrape-loading and/or fluorescence recovery after photobleaching). When expressed alone, all mutants formed gap junction plaques, but with impaired intercellular dye transfer. When expressed with Cx30, all mutants co-localized and co-immunoprecipitated with Cx30, indicating they likely co-assembled into heteromers. Furthermore, 8/9 Cx26 mutants inhibited the transfer of neurobiotin or calcein, indicating that these Cx26 mutants have trans-dominant effects on Cx30, an effect that may contribute to the pathogenesis of hearing loss.
Collapse
|
38
|
Wagner C, Kurtz L, Schweda F, Simon AM, Kurtz A. Connexin 37 is dispensable for the control of the renin system and for positioning of renin-producing cells in the kidney. Pflugers Arch 2009; 459:151-8. [PMID: 19672618 DOI: 10.1007/s00424-009-0707-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 12/24/2022]
Abstract
Within the juxtaglomerular apparatus, renin-producing cells and endothelial cells of the afferent arterioles express connexin (Cx)37 and Cx40, which form abundant gap junctions among these cells. Deletion of Cx40 leads to strong hyperreninemia and ectopic localization of renin-producing cells; however, the relevance of Cx37 for the renin system in the kidney has not been investigated. We therefore studied renin expression and renin secretion in kidneys from Cx37-deficient mice, both on normal salt diet and during chronic challenge of the renin system by pretreatment of mice with a low-salt diet in combination with an angiotensin I-converting enzyme inhibitor. This treatment procedure strongly enhances renin gene expression and renin secretion. We found that renal renin mRNA abundance and plasma renin concentration did not differ between wild-type and Cx37-/- mice under normal conditions. The stimulation of renin gene expression and renin secretion by salt depletion was even more pronounced in Cx37-/- as compared to wild-type mice. The regulation of renin secretion from isolated perfused kidneys by perfusion pressure and by angiotensin II was normal in Cx37-/- mice. In addition, the localization of renin-expressing cells was also regular in Cx37-/- kidneys. Finally, the expression pattern of other vascular Cxs such as Cx40, Cx43, and Cx45 was not altered in Cx37-/- kidneys. Our findings suggest that Cx37 is not essential for normal development and function of renin-producing cells. As a consequence, it appears unlikely that Cx40 exerts its important function in renin-producing cells via Cx37/Cx40 heteromeric gap junctions.
Collapse
Affiliation(s)
- Charlotte Wagner
- Physiologisches Institut, Universität Regensburg, 93040, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
39
|
Valiunas V, Kanaporis G, Valiuniene L, Gordon C, Wang HZ, Li L, Robinson RB, Rosen MR, Cohen IS, Brink PR. Coupling an HCN2-expressing cell to a myocyte creates a two-cell pacing unit. J Physiol 2009; 587:5211-26. [PMID: 19736302 DOI: 10.1113/jphysiol.2009.180505] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We examined whether coupling of a ventricular myocyte to a non-myocyte cell expressing HCN2 could create a two-cell syncytium capable of generating sustained pacing. Three non-myocyte cell types were transfected with the mHCN2 gene and used as sources of mHCN2-induced currents. They were human mesenchymal stem cells and HEK293 cells, both of which express connexin43 (Cx43), and HeLa cells transfected with Cx43. Cell-cell coupling between heterologous pairs increased with time in co-culture, and hyperpolarization of the myocyte induced HCN2 currents, indicating current transfer from the mHCN2-expressing cell to the myocyte via gap junctions. The magnitude of the HCN2 currents recorded in myocytes increased with increasing junctional conductance. Once a critical level of electrical cell-cell coupling between myocytes and mHCN2 transfected cells was exceeded spontaneous action potentials were generated at frequencies of approximately 0.6 to 1.7 Hz (1.09 +/- 0.05 Hz). Addition of carbenoxolone (200 microM), a gap junction channel blocker, to the media stopped spontaneous activity in heterologous cell pairs. Carbenoxolone washout restored activity. Blockade of HCN2 currents by 100 microM 9-amino-1,2,3,4-tetrahydroacridine (THA) stopped spontaneous activity and subsequent washout restored it. Neither THA nor carbenoxolone affected electrically stimulated action potentials in isolated single myocytes. In summary, the inward current evoked in the genetically engineered (HCN2-expressing) cell was delivered to the cardiac myocyte via gap junctions and generated action potentials such that the cell pair could function as a pacemaker unit. This finding lays the groundwork for understanding cell-based biological pacemakers in vivo once an understanding of delivery and target cell geometry is defined.
Collapse
Affiliation(s)
- V Valiunas
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Inai T, Shibata Y. Heterogeneous expression of endothelial connexin (Cx) 37, Cx40, and Cx43 in rat large veins. Anat Sci Int 2009; 84:237-45. [PMID: 19322632 DOI: 10.1007/s12565-009-0029-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/25/2008] [Indexed: 11/25/2022]
Abstract
Gap junctions are clusters of transmembrane protein channels for intercellular communication and are composed of connexin (Cx). The vascular endothelial cells express Cx37, Cx40, and Cx43. We herein examined the spatial distribution of the endothelial connexins Cx37, Cx40, and Cx43 in rat large veins including the cranial vena cava, thoracic section of the caudal vena cava, and abdominal section of the caudal vena cava. We also examined the mean size of the endothelial cells and quantified the protein expression levels of the endothelial connexins. We found that the large veins heterogeneously expressed Cx37, Cx40, and Cx43 as follows: Cx40 > Cx37 > > Cx43 in the cranial vena cava, Cx37 > Cx43 > > Cx40 in the thoracic section of the caudal vena cava, and Cx40 > Cx43 > > Cx37 in the abdominal section of the caudal vena cava. Double immunostaining of two of the endothelial connexins revealed that the gap-junction plaques were composed of various combinations of endothelial connexins. The mean size of the endothelial cells was large, moderate, or small in the cranial vena cava, the abdominal section of the caudal vena cava, or the thoracic section of the caudal vena cava, respectively. The heterogeneity of the endothelial cells of the rat large veins in terms of the connexin expression suggests that the endothelial cells are differently coupled in the large veins. The present data are useful for investigating, for example, disease-related alterations in expression of endothelial connexins in large veins.
Collapse
Affiliation(s)
- Tetsuichiro Inai
- Department of Developmental Molecular Anatomy, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | | |
Collapse
|
41
|
Martínez AD, Hayrapetyan V, Moreno AP, Beyer EC. A Carboxyl Terminal Domain of Connexin43 Is Critical for Gap Junction Plaque Formation but not for Homo- or Hetero-Oligomerization. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/cac.10.4-6.323.328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Carette D, Gilleron J, Decrouy X, Fiorini C, Diry M, Segretain D, Pointis G. Connexin 33 impairs gap junction functionality by accelerating connexin 43 gap junction plaque endocytosis. Traffic 2009; 10:1272-85. [PMID: 19548984 DOI: 10.1111/j.1600-0854.2009.00949.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Connexin 33 (Cx33) is a testis-specific gap junction protein. We previously reported that Cx33 exerts dominant-negative effect on gap junction intercellular communication by sequestering Cx43 within early endosomes in Sertoli cells. However, the molecular mechanisms that drive this process are unknown. The present study analyzed: (i) the trafficking of Cx33 and Cx43 in wild-type Sertoli cells transfected with Cx33-DsRed2 and Cx43-green fluorescent protein vectors; (ii) the formation of heteromeric Cx33/Cx43 hemi-channels and their incorporation into gap junction plaques. Fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer and videomicroscopy studies demonstrated that Cx33 and Cx43 associated to form heteromeric oligomers that trafficked along microtubules to the plasma membrane. However, the plaques containing Cx33 were not functional. Immunoprecipitation experiments revealed that zonula occludens-1 (ZO-1), a scaffold protein proposed to secure Cx in gap junction plaques at the cell-cell boundary, associated with Cx33 in testis extracts. In cells expressing Cx33, Cx33 and ZO-1 specifically interacted with P(1) phosphorylated and P(0) unphosphorylated isoforms of Cx43, and the ZO-1 membranous signal level was reduced. It is suggested that alteration of Cx43/ZO-1 association by Cx33 could be one mechanism by which Cx33 exerts its dominant-negative effect on gap junction plaque.
Collapse
Affiliation(s)
- Diane Carette
- INSERM U 895, Team 5 "Physiopathology of germ cell control: genomic and non genomic mechanisms", Centre Méditerranéen Moléculaire (C3M), Université Sophia Antipolis, F-06204 Nice Cedex 3, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Johnstone S, Isakson B, Locke D. Biological and biophysical properties of vascular connexin channels. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:69-118. [PMID: 19815177 PMCID: PMC2878191 DOI: 10.1016/s1937-6448(09)78002-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function, including cell-type-independent and cell-type-specific transcription factors, posttranslational modifications, and localized membrane targeting. Additionally, differences in protein-protein interactions, including those between connexins, significantly contribute to both vascular homeostasis and disease progression. The biophysical properties of the connexin channels identified in the vasculature, those formed by Cx37, Cx40, Cx43 and/or Cx45 proteins, are discussed in this chapter in the physiological and pathophysiological context of vessel function.
Collapse
Affiliation(s)
- Scott Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 29908
| | - Brant Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 29908
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 29908
| | - Darren Locke
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| |
Collapse
|
44
|
|
45
|
Meşe G, Valiunas V, Brink PR, White TW. Connexin26 deafness associated mutations show altered permeability to large cationic molecules. Am J Physiol Cell Physiol 2008; 295:C966-74. [PMID: 18684989 DOI: 10.1152/ajpcell.00008.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intercellular communication is important for cochlear homeostasis because connexin26 (Cx26) mutations are the leading cause of hereditary deafness. Gap junctions formed by different connexins have unique selectivity to large molecules, so compensating for the loss of one isoform can be challenging in the case of disease causing mutations. We compared the properties of Cx26 mutants T8M and N206S with wild-type channels in transfected cells using dual whole cell voltage clamp and dye flux experiments. Wild-type and mutant channels demonstrated comparable ionic coupling, and their average unitary conductance was approximately 106 and approximately 60 pS in 120 mM K(+)-aspartate(-) and TEA(+)-aspartate(-) solution, respectively, documenting their equivalent permeability to K(+) and TEA(+). Comparison of cAMP, Lucifer Yellow (LY), and ethidium bromide (EtBr) transfer revealed differences in selectivity for larger anionic and cationic tracers. cAMP and LY permeability to wild-type and mutant channels was similar, whereas the transfer of EtBr through mutant channels was greatly reduced compared with wild-type junctions. Altered permeability of Cx26 to large cationic molecules suggests an essential role for biochemical coupling in cochlear homeostasis.
Collapse
Affiliation(s)
- Gülistan Meşe
- Graduate Program in Genetics, State University of New York, Stony Brook, New York 11794-8661, USA
| | | | | | | |
Collapse
|
46
|
Gemel J, Lin X, Collins R, Veenstra RD, Beyer EC. Cx30.2 can form heteromeric gap junction channels with other cardiac connexins. Biochem Biophys Res Commun 2008; 369:388-94. [PMID: 18291099 PMCID: PMC2323682 DOI: 10.1016/j.bbrc.2008.02.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/07/2008] [Indexed: 12/22/2022]
Abstract
Since most cells in the heart co-express multiple connexins, we studied the possible heteromeric interactions between connexin30.2 and connexin40, connexin43 or connexin45 in transfected cells. Double-label immunofluorescence microscopy showed that connexin30.2 extensively co-localized with each co-expressed connexin at appositional membranes. When Triton X-100 solubilized connexons were affinity purified from co-expressing cells, connexin30.2 was isolated together with connexin40, connexin43, or connexin45. Co-expression of connexin30.2 with connexin40, connexin43, or connexin45 did not significantly reduce total junctional conductance. Gap junction channels in cells co-expressing connexin30.2 with connexin43 or connexin45 exhibited voltage-dependent gating intermediate between that of either connexin alone. In contrast, connexin30.2 dominated the voltage-dependence when co-expressed with connexin40. Our data suggest that connexin30.2 can form heteromers with the other cardiac connexins and that mixed channel formation will influence the gating properties of gap junctions in cardiac regions that co-express these connexins.
Collapse
|
47
|
Abstract
In vertebrates, a family of related proteins called connexins form gap junctions (GJs), which are intercellular channels. In the central nervous system (CNS), GJs couple oligodendrocytes and astrocytes (O/A junctions) and adjacent astrocytes (A/A junctions), but not adjacent oligodendrocytes, forming a "glial syncytium." Oligodendrocytes and astrocytes each express different connexins. Mutations of these connexin genes demonstrate that the proper functioning of myelin and oligodendrocytes requires the expression of these connexins. The physiological function of O/A and A/A junctions, however, remains to be illuminated.
Collapse
|
48
|
Mathias RT, White TW, Brink PR. Chapter 3 The Role of Gap Junction Channels in the Ciliary Body Secretory Epithelium. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00403-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
del Corsso C, Srinivas M, Urban-Maldonado M, Moreno AP, Fort AG, Fishman GI, Spray DC. Transfection of mammalian cells with connexins and measurement of voltage sensitivity of their gap junctions. Nat Protoc 2007; 1:1799-809. [PMID: 17487162 DOI: 10.1038/nprot.2006.266] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vertebrate gap junction channels are formed by a family of more than 20 connexin proteins. These gap junction proteins are expressed with overlapping cellular and tissue specificity, and coding region mutations can cause human hereditary diseases. Here we present a summary of what has been learned from voltage clamp studies performed on cell pairs either endogenously expressing gap junctions or in which connexins are exogenously expressed. General protocols presented here are currently used to transfect mammalian cells with connexins and to study the biophysical properties of the heterologously expressed connexin channels. Transient transfection is accomplished overnight with maximal expression occurring at about 36 h; stable transfectants normally can be generated within three or four weeks through colony selection. Electrophysiological protocols are presented for analysis of voltage dependence and single-channel conductance of gap junction channels as well as for studies of chemical gating of these channels.
Collapse
Affiliation(s)
- Cristiane del Corsso
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Kumar NM. Molecular Biology of the Interactions between Connexins. NOVARTIS FOUNDATION SYMPOSIUM 219 - GAP JUNCTION-MEDIATED INTERCELLULAR SIGNALLING IN HEALTH AND DISEASE 2007. [DOI: 10.1002/9780470515587.ch2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|