1
|
Haase R, Dunst AK, Nitzsche N. Blood lactate accumulation during maximal cycling sprints and its relationship to sprint performance characteristics. Eur J Appl Physiol 2025:10.1007/s00421-025-05755-9. [PMID: 40111462 DOI: 10.1007/s00421-025-05755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE Blood lactate accumulation (ΔBLC) during maximal short-term exercise is a crucial indicator of peak glycolytic activation in anaerobic performance assessment. However, the relationship between ΔBLC and sprint performance remains inconsistent, potentially due to variations in testing protocols and the use of absolute rather than relative performance metrics. This study investigated the relationship between ΔBLC and cycling sprint performance, hypothesizing normalization to body weight is essential for accurate metabolic performance evaluation. METHODS Twenty-two trained male athletes performed a 10-s maximal isokinetic cycling sprint on an ergometer. Power output and cadence were continuously recorded to calculate peak power (Ppeak), time to peak power (tPpeak), mean power (Pmean), and power increase during the lactic phase (maxΔP, ΔP). Capillary blood samples were collected pre-exercise and up to 12 min post-exercise to determine pre-exercise (BLCpre) and maximal post-exercise blood lactate concentration (BLCmax). ΔBLC was calculated as BLCmax-BLCpre. Statistical analysis included Pearson correlations and stepwise multiple regression. RESULTS ΔBLC exhibited significant correlations with body-weight-normalized maxΔP (r = 0.78, p < 0.001), Pmean (r = 0.70, p < 0.001), and Ppeak (r = 0.65, p < 0.01). In contrast, no significant correlations were observed with absolute metrics (p > 0.05). Stepwise regression analysis identified adjusted maxΔP and Pmean as the strongest predictors of ΔBLC (adjusted R2 = 0.648, p < 0.001). CONCLUSION Relative, body-weight-adjusted metrics, particularly maxΔP and Pmean, are strongly associated with ΔBLC. The use of these relative metrics may enhance the precision of anaerobic performance assessment, facilitate more effective training monitoring, and improve talent identification processes in sports requiring high-intensity efforts.
Collapse
Affiliation(s)
- Ralf Haase
- Department of Sports Medicine and Exercise Therapy, Institute of Human Movement Science and Health, Chemnitz University of Technology, Thüringer Weg 11, 09126, Chemnitz, Germany.
| | - Anna Katharina Dunst
- Department of Endurance Sports, Institute for Applied Training Science Leipzig, Marschnerstraße 29, 04109, Leipzig, Germany
| | - Nico Nitzsche
- Department of Sports Medicine and Exercise Therapy, Institute of Human Movement Science and Health, Chemnitz University of Technology, Thüringer Weg 11, 09126, Chemnitz, Germany
| |
Collapse
|
2
|
Debold EP, Westerblad H. New insights into the cellular and molecular mechanisms of skeletal muscle fatigue: the Marion J. Siegman Award Lectureships. Am J Physiol Cell Physiol 2024; 327:C946-C958. [PMID: 39069825 DOI: 10.1152/ajpcell.00213.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Skeletal muscle fibers need to have mechanisms to decrease energy consumption during intense physical exercise to avoid devastatingly low ATP levels, with the formation of rigor cross bridges and defective ion pumping. These protective mechanisms inevitably lead to declining contractile function in response to intense exercise, characterizing fatigue. Through our work, we have gained insights into cellular and molecular mechanisms underlying the decline in contractile function during acute fatigue. Key mechanistic insights have been gained from studies performed on intact and skinned single muscle fibers and more recently from studies performed and single myosin molecules. Studies on intact single fibers revealed several mechanisms of impaired sarcoplasmic reticulum Ca2+ release and experiments on single myosin molecules provide direct evidence of how putative agents of fatigue impact myosin's ability to generate force and motion. We conclude that changes in metabolites due to an increased dependency on anaerobic metabolism (e.g., accumulation of inorganic phosphate ions and H+) act to directly and indirectly (via decreased Ca2+ activation) inhibit myosin's force and motion-generating capacity. These insights into the acute mechanisms of fatigue may help improve endurance training strategies and reveal potential targets for therapies to attenuate fatigue in chronic diseases.
Collapse
Affiliation(s)
- Edward P Debold
- Muscle Biophysics Lab, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Meixner B, Nusser V, Koehler K, Sablain M, Boone J, Sperlich B. Reliability of power output, maximal rate of capillary blood lactate accumulation, and phosphagen contribution time following 15-s sprint cycling in amateur cyclists. Physiol Rep 2024; 12:e16086. [PMID: 38783143 PMCID: PMC11116165 DOI: 10.14814/phy2.16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Based on Mader's mathematical model, the rate of capillary blood lactate concentration (νLamax) following intense exercise is thought to reflect the maximal glycolytic rate. We aimed to investigate the reliability of important variables of Mader's model (i.e. power output, lactate accumulation, predominant phosphagen contribution time frames (tP Cr)) and resulting νLamax values derived during and after a 15-s cycling sprint. Fifty cyclists performed a 15-s all-out sprint test on a Cyclus2 ergometer three times. The first sprint test was considered a familiarization trial. Capillary blood was sampled before and every minute (for 8 min) after the sprint to determine νLamax. Test-retest analysis between T2 and T3 revealed excellent reliability for power output (Pmean and Ppeak; ICC = 0.99, 0.99), ∆La and νLamax with tPCr of 3.5 s (ICC = 0.91, 0.91). νLamax calculated with tPCr = tP peak (ICC = 0.87) and tP Cr = tPpeak-3.5% (ICC = 0.79) revealed good reliability. tPpeak and tPpeak-3.5% revealed only poor and moderate reliability (ICC = 0.41, 0.52). Power output and ∆La are reliable parameters in the context of this test. Depending on tPCr, reliability of νLamax varies considerably with tP Cr of 3.5 s showing excellent reliability. We recommend standardization of this type of testing especially tP Cr.
Collapse
Affiliation(s)
- Benedikt Meixner
- Integrative and Experimental Exercise Science & TrainingJulius‐Maximilians‐Universität WürzburgWürzburgGermany
- Department of Sport Science and SportFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- Iq‐Move PG Lochmann & FraunbergerErlangenGermany
| | - Valentin Nusser
- TUM School of Medicine and Health, Department of Health and Sport ScienceTechnical University of MunichMunichGermany
| | - Karsten Koehler
- TUM School of Medicine and Health, Department of Health and Sport ScienceTechnical University of MunichMunichGermany
| | - Mattice Sablain
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Jan Boone
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Billy Sperlich
- Integrative and Experimental Exercise Science & TrainingJulius‐Maximilians‐Universität WürzburgWürzburgGermany
| |
Collapse
|
4
|
A Novel Approach to Determining the Alactic Time Span in Connection with Assessment of the Maximal Rate of Lactate Accumulation in Elite Track Cyclists. Int J Sports Physiol Perform 2023; 18:157-163. [PMID: 36596309 DOI: 10.1123/ijspp.2021-0464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Following short-term all-out exercise, the maximal rate of glycolysis is frequently assessed on the basis of the maximal rate of lactate accumulation in the blood. Since the end of the interval without significant accumulation (talac) is 1 of 2 denominators in the calculation employed, accurate determination of this parameter is crucial. Although the very existence and definition of talac, as well as the validity of its determination as time-to-peak power (tPpeak), remain controversial, this parameter plays a key role in anaerobic diagnostics. Here, we describe a novel approach to determination of talac and compare it to the current standard. METHODS Twelve elite track cyclists performed 3 maximal sprints (3, 8, and 12 s) and a high-rate, low-resistance pedaling test on an ergometer with monitoring of crank force and pedaling rate. Before and after each sprint, capillary blood samples were taken for determination of lactate accumulation. Fatigue-free force-velocity and power-velocity profiles were generated. talac was determined as tPpeak and as the time point of the first systematic deviation from the force-velocity profile (tFf). RESULTS Accumulation of lactate after the 3-second sprint was significant (0.58 [0.19] mmol L-1; P < .001, d = 1.982). tFf was <3 seconds and tPpeak was ≥3 seconds during all sprints (P < .001, d = - 2.111). Peak power output was lower than maximal power output (P < .001, d = -0.937). Blood lactate accumulation increased linearly with increasing duration of exercise (R2 ≥ .99) and intercepted the x-axis at ∼tFf. CONCLUSION Definition of talac as tPpeak can lead to incorrect conclusions. We propose determination of talac based on tFf, the end of the fatigue-free state that may reflect the beginning of blood lactate accumulation.
Collapse
|
5
|
Nielsen J, Dubillot P, Stausholm MLH, Ørtenblad N. Specific ATPases drive compartmentalized glycogen utilization in rat skeletal muscle. J Gen Physiol 2022; 154:213339. [PMID: 35796670 PMCID: PMC9270182 DOI: 10.1085/jgp.202113071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Glycogen is a key energy substrate in excitable tissue, including in skeletal muscle fibers where it also contributes to local energy production. Transmission electron microscopy imaging has revealed the existence of a heterogenic subcellular distribution of three distinct glycogen pools in skeletal muscle, which are thought to reflect the requirements for local energy stores at the subcellular level. Here, we show that the three main energy-consuming ATPases in skeletal muscles (Ca2+, Na+,K+, and myosin ATPases) utilize different local pools of glycogen. These results clearly demonstrate compartmentalized glycogen metabolism and emphasize that spatially distinct pools of glycogen particles act as energy substrate for separated energy requiring processes, suggesting a new model for understanding glycogen metabolism in working muscles, muscle fatigue, and metabolic disorders. These observations suggest that the distinct glycogen pools can regulate the functional state of mammalian muscle cells and have important implications for the understanding of how the balance between ATP utilization and ATP production is regulated at the cellular level in general and in skeletal muscle fibers in particular.
Collapse
Affiliation(s)
- Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark,Correspondence to Joachim Nielsen:
| | - Peter Dubillot
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Marie-Louise H. Stausholm
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Manta-Vogli PD, Schulpis KH, Dotsikas Y, Loukas YL. The significant role of amino acids during pregnancy: nutritional support. J Matern Fetal Neonatal Med 2018; 33:334-340. [PMID: 29909700 DOI: 10.1080/14767058.2018.1489795] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Background: Pregnancy is characterized by a complexity of metabolic processes that may impact fetal development and infant health outcome. Normal fetal growth and development depend on a continuous supply of nutrients via the placenta. The placenta transports, utilizes, produces, and interconverts amino acids (AAs).Findings: Concentrations of both nonessential and essential AAs in maternal plasma decrease in early pregnancy and persist at low concentrations throughout. The decline is greatest for the glucogenic AAs and AAs of the urea cycle. Additionally, there is a large placental utilization of the branched-chain AAs, some of which are transaminated to alpha ketoacids and contribute to placental ammonia production. Both nonessential and essential AAs regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of organisms. Some of the nonessential AAs (e.g. glutamine, glutamate, and arginine) play also important roles in regulating gene expression, cell signaling, antioxidant responses, immunity, and neurological function.Conclusions: Nutritional support during pregnancy is of great interest focusing not only to common pregnancies but also to those with low socioeconomic status, vegan-vegetarian groups, and pregnant women with metabolic disorders, the most known maternal phenylketonuria. The latter is of great interest because phenylalanine must be within the recommended range throughout pregnancy in addition to other nutrients such as vitamin B12, folate, etc. Loss of the adherence to this specific diet results in congenital malformations of the fetus. In addition to the routine laboratory test, quantitation of plasma AAs may be necessary throughout pregnancy.
Collapse
Affiliation(s)
- Penelope D Manta-Vogli
- Department of Clinical Nutrition and Dietetics, Agia Sofia Children's Hospital, Athens, Greece
| | | | - Yannis Dotsikas
- Laboratory of Pharm. Analysis, Department of Pharmacy, National and Kapodestrian University of Athens, Athens, Greece
| | - Yannis L Loukas
- Laboratory of Pharm. Analysis, Department of Pharmacy, National and Kapodestrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Broxterman RM, Skiba PF, Craig JC, Wilcox SL, Ade CJ, Barstow TJ. W' expenditure and reconstitution during severe intensity constant power exercise: mechanistic insight into the determinants of W'. Physiol Rep 2017; 4:4/19/e12856. [PMID: 27688431 PMCID: PMC5064128 DOI: 10.14814/phy2.12856] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/16/2016] [Indexed: 11/24/2022] Open
Abstract
The sustainable duration of severe intensity exercise is well-predicted by critical power (CP) and the curvature constant (W'). The development of the W'BAL model allows for the pattern of W' expenditure and reconstitution to be characterized and this model has been applied to intermittent exercise protocols. The purpose of this investigation was to assess the influence of relaxation phase duration and exercise intensity on W' reconstitution during dynamic constant power severe intensity exercise. Six men (24.6 ± 0.9 years, height: 173.5 ± 1.9 cm, body mass: 78.9 ± 5.6 kg) performed severe intensity dynamic handgrip exercise to task failure using 50% and 20% duty cycles. The W'BAL model was fit to each exercise test and the time constant for W' reconstitution (τW') was determined. The τW' was significantly longer for the 50% duty cycle (1640 ± 262 sec) than the 20% duty cycle (863 ± 84 sec, P = 0.02). Additionally, the relationship between τW' and CP was well described as an exponential decay (r(2) = 0.90, P < 0.0001). In conclusion, the W'BAL model is able to characterize the expenditure and reconstitution of W' across the contraction-relaxation cycles comprising severe intensity constant power handgrip exercise. Moreover, the reconstitution of W' during constant power severe intensity exercise is influenced by the relative exercise intensity, the duration of relaxation between contractions, and CP.
Collapse
Affiliation(s)
- Ryan M Broxterman
- Department of Kinesiology, Kansas State University, Manhattan, Kansas Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Phillip F Skiba
- Department of Sports Medicine, Advocate Lutheran General Hospital, Park Ridge, Illinois
| | - Jesse C Craig
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Samuel L Wilcox
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Carl J Ade
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Thomas J Barstow
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
8
|
Bendahan D, Chatel B, Jue T. Comparative NMR and NIRS analysis of oxygen-dependent metabolism in exercising finger flexor muscles. Am J Physiol Regul Integr Comp Physiol 2017; 313:R740-R753. [PMID: 28877871 DOI: 10.1152/ajpregu.00203.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/07/2017] [Accepted: 08/30/2017] [Indexed: 02/08/2023]
Abstract
Muscle contraction requires the physiology to adapt rapidly to meet the surge in energy demand. To investigate the shift in metabolic control, especially between oxygen and metabolism, researchers often depend on near-infrared spectroscopy (NIRS) to measure noninvasively the tissue O2 Because NIRS detects the overlapping myoglobin (Mb) and hemoglobin (Hb) signals in muscle, interpreting the data as an index of cellular or vascular O2 requires deconvoluting the relative contribution. Currently, many in the NIRS field ascribe the signal to Hb. In contrast, 1H NMR has only detected the Mb signal in contracting muscle, and comparative NIRS and NMR experiments indicate a predominant Mb contribution. The present study has examined the question of the NIRS signal origin by measuring simultaneously the 1H NMR, 31P NMR, and NIRS signals in finger flexor muscles during the transition from rest to contraction, recovery, ischemia, and reperfusion. The experiment results confirm a predominant Mb contribution to the NIRS signal from muscle. Given the NMR and NIRS corroborated changes in the intracellular O2, the analysis shows that at the onset of muscle contraction, O2 declines immediately and reaches new steady states as contraction intensity rises. Moreover, lactate formation increases even under quite aerobic condition.
Collapse
Affiliation(s)
- David Bendahan
- Aix-Marseille Univ, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Marseille, France
| | - Benjamin Chatel
- Aix-Marseille Univ, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Marseille, France
| | - Thomas Jue
- Biochemistry and Molecular Medicine, University of California Davis, Davis, California; and
| |
Collapse
|
9
|
Cleary MP, Juneja SC, Phillips FC, Hu X, Grande JP, Maihle NJ. Leptin Receptor-Deficient MMTV-TGF-α/Leprdb Leprdb Female Mice Do Not Develop Oncogene-Induced Mammary Tumors. Exp Biol Med (Maywood) 2016; 229:182-93. [PMID: 14734797 DOI: 10.1177/153537020422900207] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Being overweight is a risk factor for postmenopausal breast cancer and is associated with an increased incidence and shortened latency of spontaneous and chemically Induced mammary tumors in rodents. However, leptin-deficient obese Lepob Lepob female mice have reduced incidences of spontaneous and oncogene-induced mammary tumors. Of interest, leptin enhances the proliferation of human breast cancer cell lines in which leptin receptors are expressed, which suggests that leptin signaling plays a role in tumor development. We evaluated oncogene-induced mammary tumor development in obese MMTV-TGF-α/Leprdb Leprdb mice that exhibit a defect in OB-Rb, which is considered to be the major signaling isoform of the leptin receptor. Lepr and MMTV-TGF-α mice were crossed, and the offspring were genotyped for oncogene expression and the determination of Lepr status. Lean MMTV-TGF-α/Lepr+ Lepr+ (homozygous) and MMTV-TGF-α/Lepr+ Leprdb (heterozygous) mice and obese MMTV-TGF-α/Leprdb Leprdb mice were monitored until age 104 weeks. Body weights of MMTV-TGF-α/Leprdb Leprdb mice were significantly heavier than those of the lean groups. No mammary tumors were detected in MMTV-TGF-α/LeprdbLeprdb mice, whereas the incidence of mammary tumors in MMTV-TGF-α/Lepr+ Lepr+ and MMTV-TGF-α/Lepr+ Leprdb mice was 69% and 82%, respectively. Examination of mammary tissue whole mounts indicated an absence of duct formation and branching for MMTV-TGF-α/Leprdb Leprdb mice. Both age at mammary tumor detection and tumor burden (tumors/mouse and tumor weights) were similar for the lean genotypes. Serum leptin levels of MMTV-TGF-α/Leprdb Leprdb mice were 12-20-fold higher than levels of lean mice. Thus, despite elevated serum leptin levels, leptin receptor-deficient MMTV-TGF-α/Leprdb Leprdb mice do not develop mammary tumors. This study provides additional evidence that leptin and its cognate receptor may be involved in mammary tumorigenesis.
Collapse
MESH Headings
- Animals
- Body Weight
- Disease Models, Animal
- Female
- Leptin/blood
- Leptin/metabolism
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Obesity/genetics
- Obesity/pathology
- Oncogenes/genetics
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/physiology
- Receptors, Leptin
- Survival Analysis
- Transforming Growth Factor alpha/genetics
Collapse
Affiliation(s)
- Margot P Cleary
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Richardson RS, Wary C, Wray DW, Hoff J, Rossiter HB, Layec G, Carlier PG. Response. Med Sci Sports Exerc 2016; 47:2481-2. [PMID: 26473761 DOI: 10.1249/mss.0000000000000739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Russell S Richardson
- Division of Geriatrics Department of Medicine University of Utah Salt Lake City, UT Department of Exercise and Sport Science University of Utah Salt Lake City, UT Geriatric Research Education, and Clinical Center Salt Lake City VA Medical Center Salt Lake City, UT Institut of Myology Paris, FRANCE CEA, I2BM, MIRcen IdM NMR Laboratory Paris, FRANCE Division of Geriatrics Department of Medicine University of Utah Salt Lake City, UT Department of Exercise and Sport Science University of Utah Salt Lake City, UT Geriatric Research Education, and Clinical Center Salt Lake City VA Medical Center Salt Lake City, UT Faculty of Medicine Norwegian University of Science and Technology Trondheim, NORWAY Division of Respiratory and Critical Care Physiology, and Medicine Department of Medicine Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center Torrance, CA Division of Geriatrics Department of Medicine University of Utah Salt Lake City, UT Geriatric Research Education, and Clinical Center Salt Lake City VA Medical Center Salt Lake City, UT Institut of Myology Paris, FRANCE CEA, I2BM, MIRcen IdM NMR Laboratory Paris, FRANCE
| | | | | | | | | | | | | |
Collapse
|
11
|
de Faria AP, Ritter AMV, Sabbatini AR, Modolo R, Moreno H. Effects of leptin and leptin receptor SNPs on clinical- and metabolic-related traits in apparent treatment-resistant hypertension. Blood Press 2016; 26:74-80. [PMID: 27310420 DOI: 10.1080/08037051.2016.1192945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leptin is associated to the lack of blood pressure control as well as target organ damage in resistant hypertensive (RH) subjects. Single-nucleotide polymorphisms (SNPs) rs7799039 and rs1137101 in leptin (LEP) and leptin receptor (LEPR) genes, respectively, are associated with cardiovascular disease and metabolic syndrome. We evaluated the association of these two SNPs with clinical and biochemical features in 109 apparent treatment-RH subjects (aTRH) and 125 controlled hypertensives. Homozygous genotypes GG (n = 43) vs. AA (n = 14) for rs7799039 and AA (n = 34) vs. GG (n = 26) genotypes for rs1137101 were compared in aTRH subjects. There was no difference in leptin levels among both SNPs. On the other hand, LEP SNP (GG vs. AA) associated with the levels of glycated haemoglobin (6.4 ± 1.4 vs. 7.8 ± 2.3%, p = 0.03), insulin (8.6 ± 4.6 vs. 30.6 ± 27.7 uUI/mL, p = 0.01), HDL-cholesterol (51 ± 16 vs. 39 ± 11 mg/dL, p = 0.001) and PWV (9.5 ± 2.1 vs. 11.2 ± 2.8 m/s, p = 0.03). LEPR SNP (AA vs. GG), associated with heart rate (69 ± 12 vs. 67 ± 12 bpm, p = 0.03), fat mass (31 ± 11 vs. 24 ± 8 kg, p = 0.03) and triglycerides levels (175 ± 69 vs. 135 ± 75 mg/dL, p = 0.03). These findings may be clinically useful for identifying a group of aTRH who may have a LEP and/or LEPR gene variants, which may predispose this specific group to worse or better outcomes.
Collapse
Affiliation(s)
- Ana Paula de Faria
- a Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , SP , Brazil
| | - Alessandra M V Ritter
- a Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , SP , Brazil
| | - Andréa R Sabbatini
- a Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , SP , Brazil
| | - Rodrigo Modolo
- a Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , SP , Brazil
| | - Heitor Moreno
- a Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , SP , Brazil
| |
Collapse
|
12
|
Park JM, Josan S, Mayer D, Hurd RE, Chung Y, Bendahan D, Spielman DM, Jue T. Hyperpolarized 13C NMR observation of lactate kinetics in skeletal muscle. ACTA ACUST UNITED AC 2015; 218:3308-18. [PMID: 26347554 DOI: 10.1242/jeb.123141] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/21/2015] [Indexed: 01/02/2023]
Abstract
The production of glycolytic end products, such as lactate, usually evokes a cellular shift from aerobic to anaerobic ATP generation and O2 insufficiency. In the classical view, muscle lactate must be exported to the liver for clearance. However, lactate also forms under well-oxygenated conditions, and this has led investigators to postulate lactate shuttling from non-oxidative to oxidative muscle fiber, where it can serve as a precursor. Indeed, the intracellular lactate shuttle and the glycogen shunt hypotheses expand the vision to include a dynamic mobilization and utilization of lactate during a muscle contraction cycle. Testing the tenability of these provocative ideas during a rapid contraction cycle has posed a technical challenge. The present study reports the use of hyperpolarized [1-(13)C]lactate and [2-(13)C]pyruvate in dynamic nuclear polarization (DNP) NMR experiments to measure the rapid pyruvate and lactate kinetics in rat muscle. With a 3 s temporal resolution, (13)C DNP NMR detects both [1-(13)C]lactate and [2-(13)C]pyruvate kinetics in muscle. Infusion of dichloroacetate stimulates pyruvate dehydrogenase activity and shifts the kinetics toward oxidative metabolism. Bicarbonate formation from [1-(13)C]lactate increases sharply and acetyl-l-carnitine, acetoacetate and glutamate levels also rise. Such a quick mobilization of pyruvate and lactate toward oxidative metabolism supports the postulated role of lactate in the glycogen shunt and the intracellular lactate shuttle models. The study thus introduces an innovative DNP approach to measure metabolite transients, which will help delineate the cellular and physiological role of lactate and glycolytic end products.
Collapse
Affiliation(s)
- Jae Mo Park
- Radiology, Stanford University, Stanford, CA 94305, USA
| | - Sonal Josan
- Radiology, Stanford University, Stanford, CA 94305, USA Neuroscience Program, SRI International, Menlo Park, CA 94025, USA
| | - Dirk Mayer
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | - Youngran Chung
- Biochemistry and Molecular Medicine, University of California Davis, Davis, CA 95616, USA
| | - David Bendahan
- Centre de Resonance Magnetique Biologique et Medicale, Aix-Marseille University, Marseille 13385, France
| | | | - Thomas Jue
- Biochemistry and Molecular Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
13
|
Goncalves RLS, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Brand MD. Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J Biol Chem 2014; 290:209-27. [PMID: 25389297 DOI: 10.1074/jbc.m114.619072] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The sites and rates of mitochondrial production of superoxide and H2O2 in vivo are not yet defined. At least 10 different mitochondrial sites can generate these species. Each site has a different maximum capacity (e.g. the outer quinol site in complex III (site IIIQo) has a very high capacity in rat skeletal muscle mitochondria, whereas the flavin site in complex I (site IF) has a very low capacity). The maximum capacities can greatly exceed the actual rates observed in the absence of electron transport chain inhibitors, so maximum capacities are a poor guide to actual rates. Here, we use new approaches to measure the rates at which different mitochondrial sites produce superoxide/H2O2 using isolated muscle mitochondria incubated in media mimicking the cytoplasmic substrate and effector mix of skeletal muscle during rest and exercise. We find that four or five sites dominate during rest in this ex vivo system. Remarkably, the quinol site in complex I (site IQ) and the flavin site in complex II (site IIF) each account for about a quarter of the total measured rate of H2O2 production. Site IF, site IIIQo, and perhaps site EF in the β-oxidation pathway account for most of the remainder. Under conditions mimicking mild and intense aerobic exercise, total production is much less, and the low capacity site IF dominates. These results give novel insights into which mitochondrial sites may produce superoxide/H2O2 in vivo.
Collapse
Affiliation(s)
| | - Casey L Quinlan
- From the Buck Institute for Research on Aging, Novato, California 94945
| | | | | | - Martin D Brand
- From the Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
14
|
Yelovitch S, Barr HM, Camden J, Weisman GA, Shai E, Varon D, Fischer B. Identification of a promising drug candidate for the treatment of type 2 diabetes based on a P2Y(1) receptor agonist. J Med Chem 2012; 55:7623-35. [PMID: 22873688 PMCID: PMC4354947 DOI: 10.1021/jm3006355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The activation by extracellular nucleotides of pancreatic P2Y receptors, particularly, the P2Y(1)R subtype, increases insulin secretion. Therefore, we developed analogues of the P2Y(1)R receptor agonist 2-MeS-ADP, as potential antidiabetic drugs. Analogue 3A was found to be a potent P2Y(1)R agonist (EC(50) = 0.038 μM vs 0.0025 μM for 2-MeS-ADP) showing no activity at P2Y(2/4/6)Rs. Analogue 3A was stable at pH 1.4 (t(1/2) = 7.3 h) and resistant to hydrolysis vs 2-MeS-ADP by alkaline phosphatase (t(1/2) = 6 vs 4.5 h), human e-NPP1 (4% vs 16% hydrolysis after 20 min), and human blood serum (30% vs 50% hydrolysis after 24 h). Intravenous administration of 3A in naive rats decreased blood glucose from 155 mg/dL to normal values, ca. 87 mg/dL, unlike glibenclamide, leading to subnormal values (i.e., 63 mg/dL). Similar observations were made for streptozotocin (STZ)-treated and db(+)/db(-) mouse models. Furthermore, 3A inhibits platelet aggregation in vitro and elongates bleeding time in mice (iv administration of 30 mg of 3A/kg), increasing bleeding time to 16 vs 9 min for Prasugrel. Oral administration of 30 mg/kg 3A to rats increased tail bleeding volume, similar to aspirin. These findings suggest that 3A may be an effective treatment for type 2 diabetes by reducing both blood glucose levels and platelet aggregation.
Collapse
Affiliation(s)
- Shir Yelovitch
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Haim M. Barr
- BioLlneRx Ltd., 23 Hillel Street, Jerusalem 91450, Israel
| | - Jean Camden
- Biochemistry Department, 540E Bond Life Sciences Center, University of Nlissouri, Colwnbia, Nlissouri 65211, United States
| | - Gary A Weisman
- Biochemistry Department, 540E Bond Life Sciences Center, University of Nlissouri, Colwnbia, Nlissouri 65211, United States
| | - Ela Shai
- Department of Hematology, Hadassah University Hospital, Jerusalem 91120, Israel
| | - David Varon
- Department of Hematology, Hadassah University Hospital, Jerusalem 91120, Israel
| | - Bilha Fischer
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
15
|
Hu Z, Peel SA, Lindholm TC, Sàndor GK, Clokie CML, Su Y. Osteoinductivity of partially purified bovine, ostrich and emu bone morphogenetic proteins in vitro. J Biomed Mater Res A 2011; 98:473-7. [DOI: 10.1002/jbm.a.33119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 02/26/2011] [Accepted: 03/17/2011] [Indexed: 11/07/2022]
|
16
|
Baligand C, Wary C, Ménard JC, Giacomini E, Hogrel JY, Carlier PG. Measuring perfusion and bioenergetics simultaneously in mouse skeletal muscle: a multiparametric functional-NMR approach. NMR IN BIOMEDICINE 2011; 24:281-290. [PMID: 20862659 DOI: 10.1002/nbm.1587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 06/12/2010] [Accepted: 06/15/2010] [Indexed: 05/29/2023]
Abstract
A totally noninvasive set-up was developed for comprehensive NMR evaluation of mouse skeletal muscle function in vivo. Dynamic pulsed arterial spin labeling-NMRI perfusion and blood oxygenation level-dependent (BOLD) signal measurements were interleaved with (31)P NMRS to measure both vascular response and oxidative capacities during stimulated exercise and subsequent recovery. Force output was recorded with a dedicated ergometer. Twelve exercise bouts were performed. The perfusion, BOLD signal, pH and force-time integral were obtained from mouse legs for each exercise. All reached a steady state after the second exercise, justifying the pointwise summation of the last 10 exercises to compensate for the limited (31)P signal. In this way, a high temporal resolution of 2.5 s was achieved to provide a time constant for phosphocreatine (PCr) recovery (τ(PCr)). The higher signal-to-noise ratio improved the precision of τ(PCr) measurement [coefficient of variation (CV) = 16.5% vs CV = 49.2% for a single exercise at a resolution of 30 s]. Inter-animal summation confirmed that τ(PCr) was stable at steady state, but shorter (89.3 ± 8.6 s) than after the first exercise (148 s, p < 0.05). This novel experimental approach provides an assessment of muscle vascular response simultaneously to energetic function in vivo. Its pertinence was illustrated by observing the establishment of a metabolic steady state. This comprehensive tool offers new perspectives for the study of muscle pathology in mice models.
Collapse
Affiliation(s)
- C Baligand
- Institute of Myology, NMR Laboratory, Paris, France
| | | | | | | | | | | |
Collapse
|
17
|
Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011; 40:1271-96. [PMID: 21448658 PMCID: PMC3080659 DOI: 10.1007/s00726-011-0877-3] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 12/02/2010] [Indexed: 11/24/2022]
Abstract
The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans.
Collapse
Affiliation(s)
- Theo Wallimann
- Institute of Cell Biology, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
18
|
The creatine kinase reaction: a simple reaction with functional complexity. Amino Acids 2011; 40:1363-7. [PMID: 21394603 DOI: 10.1007/s00726-011-0856-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 11/10/2010] [Indexed: 11/26/2022]
Abstract
The classical role of PCr is seen as a reservoir of high-energy phosphates defending cellular ATP levels under anaerobic conditions, high rates of energy transfer or rapid fluctuations in energy requirement. Although the high concentration of PCr in glycolytic fast-twitch fibers supports the role of PCr as a buffer of ATP, the primary importance of the creatine kinase (CK) reaction may in fact be to counteract large increases in ADP, which could otherwise inhibit cellular ATPase-mediated systems. A primary role for CK in the maintenance of ADP homeostasis may explain why, in many conditions, there is an inverse relationship between PCr and muscle contractility but not between ATP and muscle contractility. The high rate of ATP hydrolysis during muscle contraction combined with restricted diffusion of ADP suggests that ADP concentration increases transiently during the contraction phase (ADP spikes) and that these are synchronized with the contraction. The presence of CK, structurally bound in close vicinity to the sites of ATP utilization, will reduce the amplitude and duration of the ADP spikes through PCr-mediated phosphotransfer. When PCr is reduced, the efficiency of CK as an ATP buffer will be reduced and the changes in ADP will become more prominent. The presence of ADP spikes is supported by the finding that other processes known to be activated by ADP (i.e. AMP deamination and glycolysis) are stimulated during exercise but not during anoxia, despite the same low global energy state. Breakdown of PCr is driven by increases in ADP above that depicted by the CK equilibrium and the current method to calculate ADPfree from the CK reaction in a contracting muscle is therefore questionable.
Collapse
|
19
|
Abstract
BACKGROUND The hypothesis that the failing heart may be energy-starved is supported in part by observations of reduced rates of adenosine 5'-triphosphate (ATP) synthesis through the creatine kinase (CK) reaction, the primary myocardial energy reservoir, in patients with heart failure (HF). Although murine models have been used to probe HF pathophysiology, it has not been possible to noninvasively measure the rate of ATP synthesis through CK in the in vivo mouse heart. The purpose of this work was to exploit noninvasive spatially localized magnetic resonance spectroscopy techniques to measure ATP flux through CK in in vivo mouse hearts and determine the extent of any reductions in murine HF. METHODS AND RESULTS The Triple Repetition Time Saturation Transfer (TRiST) magnetic resonance spectroscopy method of measuring ATP kinetics was first validated in skeletal muscle, rendering similar results to conventional saturation transfer magnetic resonance spectroscopy. In normal mouse hearts, the in vivo CK pseudo-first-order-rate constant, k(F), was 0.32±0.03 s(-1) (mean±SD) and the rate of ATP synthesis through CK was 3.16±0.47 μmol/g/s. Thoracic aortic constriction reduced k(F) by 31% (0.23±0.03 s(-1), P<0.0001) and ATP synthesis through CK by 51% (1.54±0.25 μmol/g/s, P<0.0001), values analogous to those in failing human hearts. CONCLUSIONS Despite the small size and high murine heart rate, the ATP synthesis rate through CK is similar in vivo in murine and human hearts and comparably reduced in HF. Because murine thoracic aortic constriction shares fundamental energetic similarities with human HF, this model and new magnetic resonance spectroscopy approach promise a powerful means to noninvasively probe altered energetics in HF.
Collapse
Affiliation(s)
- Ashish Gupta
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
20
|
Jumbo-Lucioni P, Ayroles JF, Chambers MM, Jordan KW, Leips J, Mackay TF, De Luca M. Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster. BMC Genomics 2010; 11:297. [PMID: 20459830 PMCID: PMC2880307 DOI: 10.1186/1471-2164-11-297] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 05/11/2010] [Indexed: 12/30/2022] Open
Abstract
Background Obesity and phenotypic traits associated with this condition exhibit significant heritability in natural populations of most organisms. While a number of genes and genetic pathways have been implicated to play a role in obesity associated traits, the genetic architecture that underlies the natural variation in these traits is largely unknown. Here, we used 40 wild-derived inbred lines of Drosophila melanogaster to quantify genetic variation in body weight, the content of three major metabolites (glycogen, triacylglycerol, and glycerol) associated with obesity, and metabolic rate in young flies. We chose these lines because they were previously screened for variation in whole-genome transcript abundance and in several adult life-history traits, including longevity, resistance to starvation stress, chill-coma recovery, mating behavior, and competitive fitness. This enabled us not only to identify candidate genes and transcriptional networks that might explain variation for energy metabolism traits, but also to investigate the genetic interrelationships among energy metabolism, behavioral, and life-history traits that have evolved in natural populations. Results We found significant genetically based variation in all traits. Using a genome-wide association screen for single feature polymorphisms and quantitative trait transcripts, we identified 337, 211, 237, 553, and 152 novel candidate genes associated with body weight, glycogen content, triacylglycerol storage, glycerol levels, and metabolic rate, respectively. Weighted gene co-expression analyses grouped transcripts associated with each trait in significant modules of co-expressed genes and we interpreted these modules in terms of their gene enrichment based on Gene Ontology analysis. Comparison of gene co-expression modules for traits in this study with previously determined modules for life-history traits identified significant modular pleiotropy between glycogen content, body weight, competitive fitness, and starvation resistance. Conclusions Combining a large phenotypic dataset with information on variation in genome wide transcriptional profiles has provided insight into the complex genetic architecture underlying natural variation in traits that have been associated with obesity. Our findings suggest that understanding the maintenance of genetic variation in metabolic traits in natural populations may require that we understand more fully the degree to which these traits are genetically correlated with other traits, especially those directly affecting fitness.
Collapse
Affiliation(s)
- Patricia Jumbo-Lucioni
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-3360, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Li XT, Chen R, Jin LM, Chen HY. Regulation on energy metabolism and protection on mitochondria of Panax ginseng polysaccharide. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2010; 37:1139-52. [PMID: 19938222 DOI: 10.1142/s0192415x09007454] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Panax ginseng C A Meyer (PG) is one of the most popular qi-invigorating herbal medicine and has been used to promote health, vitality, and longevity in China. Although PG has been used in traditional Chinese medicine for millennia, its qi-invigorating activities still lack convincing evidence. We investigated the effects of Panax ginseng polysaccharide (PGP) on energy metabolism and mitochondrial protection. The chronic hypoxia model was set up. Lipid peroxidation product malondialdehyde (MDA) was assayed by thiobarbituric acid (TBA) colorimetry. Mice liver mitochondria were isolated by differential centrifugation. The spectrophotometric method was used to measure the swelling of mitochondria. The levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) in liver cells were determined by reversed-phase high performance liquid chromatography (RP-HPLC), adenylate energy charge (AEC), total adenylate pool (TAP), ATP/ADP and ATP/AMP ratio were calculated. The creatine kinase (CK) activities in mice skeletal muscle were determined by a commercial monitoring kit. The result showed that PGP could inhibit mitochondrial injury and swelling induced by Fe(2+)-L-Cys in a concentration-dependent manner. PGP which was administered by oral gavage daily for 10 days could inhibit the formation of MDA in mice brain, increase levels of ATP, ADP, TAP and AEC, ratio of ATP/ADP and ATP/AMP in liver cells, increase CK activities in mice skeletal muscle under chronic hypoxia condition. These results indicate that PGP protect mitochondria by inhibiting mitochondrial swelling, and improving energy metabolism. PGP functions as a preventive antioxidant by increasing CK activities. Therefore, PGP had the pharmaceutical activities of antihypoxia, antioxidation and improving energy status.
Collapse
Affiliation(s)
- Xing-Tai Li
- College of Life Science, Dalian Nationalities University, Dalian 116600, China.
| | | | | | | |
Collapse
|
22
|
Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state. Biochem J 2009; 420:161-8. [PMID: 19250062 DOI: 10.1042/bj20082135] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The control of glycolysis in contracting muscle is not fully understood. The aim of the present study was to examine whether activation of glycolysis is mediated by factors related to the energy state or by a direct effect of Ca2+ on the regulating enzymes. Extensor digitorum longus muscles from rat were isolated, treated with cyanide to inhibit aerobic ATP production and stimulated (0.2 s trains every 4 s) until force was reduced to 70% of initial force (control muscle, referred to as Con). Muscles treated with BTS (N-benzyl-p-toluene sulfonamide), an inhibitor of cross-bridge cycling without affecting Ca2+ transients, were stimulated for an equal time period as Con. Energy utilization by the contractile apparatus (estimated from the observed relation between ATP utilization and force-time integral) was 60% of total. In BTS, the force-time integral and ATP utilization were only 38 and 58% of those in Con respectively. Glycolytic rate in BTS was only 51% of that in Con but the relative contribution of ATP derived from PCr (phosphocreatine) and glycolysis and the relation between muscle contents of PCr and Lac (lactate) were not different. Prolonged cyanide incubation of quiescent muscle (low Ca2+) did not change the relation between PCr and Lac. The reduced glycolytic rate in BTS despite maintained Ca2+ transients, and the unchanged PCr/Lac relation in the absence of Ca2+ transients, demonstrates that Ca2+ is not the main trigger of glycogenolysis. Instead the preserved relative contribution of energy delivered from PCr and glycolysis during both conditions suggests that the glycolytic rate is controlled by factors related to energy state.
Collapse
|
23
|
Abstract
Evolutionary considerations relating to efficiency in reproduction, and survival in hostile environments, suggest that body energy stores are sensed and actively regulated, with stronger physiological and behavioral responses to loss than gain of stored energy. Many physiological studies support this inference, and suggest that a critical axis runs between body fat and the hypothalamus. The molecular cloning of leptin and its receptor-projects based explicitly on the search for elements in this axis-confirmed the existence of this axis and provided important tools with which to understand its molecular physiology. Demonstration of the importance of this soma-brain reciprocal connection in body weight regulation in humans has been pursued using both classical genetic approaches and studies of physiological responses to experimental weight perturbation. This paper reviews the history of the rationale and methodology of the cloning of leptin (Lep) and the leptin receptor (Lepr), and describes some of the clinical investigation characterizing this axis.
Collapse
Affiliation(s)
- R L Leibel
- Division of Molecular Genetics and Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
24
|
Lai N, Gladden LB, Carlier PG, Cabrera ME. Models of muscle contraction and energetics. ACTA ACUST UNITED AC 2008; 5:273-288. [PMID: 24421861 DOI: 10.1016/j.ddmod.2009.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
How does skeletal muscle manage to regulate the pathways of ATP synthesis during large-scale changes in work rate while maintaining metabolic homeostasis remains unknown. The classic model of metabolic regulation during muscle contraction states that accelerating ATP utilization leads to increasing concentrations of ADP and Pi, which serve as substrates for oxidative phosphorylation and thus accelerate ATP synthesis. An alternative model states that both the ATP demand and ATP supply pathways are simultaneously activated. Here, we review experimental and computational models of muscle contraction and energetics at various organizational levels and compare them with respect to their pros and cons in facilitating understanding of the regulation of energy metabolism during exercise in the intact organism.
Collapse
Affiliation(s)
- Nicola Lai
- Center for Modeling Integrated Metabolic Systems, Case Western Reserve University, Cleveland, Ohio. U.S.A
| | - L Bruce Gladden
- Department of Kinesiology, Auburn University, Auburn, Alabama. U.S.A
| | - Pierre G Carlier
- Institute of Myology, NMR Laboratory, F-75651 Paris, France ; CEA, I BM, MIRCen, IdM NMR Laboratory, F-75651 Paris, France ; UPMC Univ Paris 06, F-75005 Paris, France
| | - Marco E Cabrera
- Center for Modeling Integrated Metabolic Systems, Case Western Reserve University, Cleveland, Ohio. U.S.A
| |
Collapse
|
25
|
Ponganis PJ, Kreutzer U, Stockard TK, Lin PC, Sailasuta N, Tran TK, Hurd R, Jue T. Blood flow and metabolic regulation in seal muscle during apnea. J Exp Biol 2008; 211:3323-32. [DOI: 10.1242/jeb.018887] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
SUMMARYIn order to examine myoglobin (Mb) function and metabolic responses of seal muscle during progressive ischemia and hypoxemia, Mb saturation and high-energy phosphate levels were monitored with NMR spectroscopy during sleep apnea in elephant seals (Mirounga angustirostris). Muscle blood flow(MBF) was measured with laser-Doppler flowmetry (LDF). During six,spontaneous, 8–12 min apneas of an unrestrained juvenile seal, apneic MBF decreased to 46±10% of the mean eupneic MBF. By the end of apnea,MBF reached 31±8% of the eupneic value. The t1/2for 90% decline in apneic MBF was 1.9±1.2 min. The initial post-apneic peak in MBF occurred within 0.20±0.04 min after the start of eupnea. NMR measurements revealed that Mb desaturated rapidly from its eupenic resting level to a lower steady state value within 4 min after the onset of apnea at rates between 1.7±1.0 and 3.8±1.5% min–1, which corresponded to a muscle O2 depletion rate of 1–2.3 ml O2 kg–1 min–1. High-energy phosphate levels did not change with apnea. During the transition from apnea to eupnea, Mb resaturated to 95% of its resting level within the first minute. Despite the high Mb concentration in seal muscle, experiments detected Mb diffusing with a translational diffusion coefficient of 4.5×10–7 cm2 s–1,consistent with the value observed in rat myocardium. Equipoise PO2 analysis revealed that Mb is the predominant intracellular O2 transporter in elephant seals during eupnea and apnea.
Collapse
Affiliation(s)
- Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093,USA
| | - Ulrike Kreutzer
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA 95616, USA
| | - Torre K. Stockard
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093,USA
| | - Ping-Chang Lin
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA 95616, USA
| | | | - Tuan-Khan Tran
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA 95616, USA
| | - Ralph Hurd
- GE Medical Systems, Fremont, CA 94539, USA
| | - Thomas Jue
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
26
|
Equine placenta expresses glutamine synthetase. Vet Res Commun 2008; 33:175-82. [DOI: 10.1007/s11259-008-9167-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 08/08/2008] [Indexed: 10/21/2022]
|
27
|
Abstract
The mechanisms by which amino acids are transferred across the human placenta are fundamental to our understanding of foetal nutrition. Amino acid transfer across the human placenta is dependent on transport across both the microvillous and basal plasma membranes of the placental syncytiotrophoblast, and on metabolism within the syncytiotrophoblast. Although the principles underlying uptake of amino acids across the microvillous plasma membrane are well understood, the extent to which amino acids are metabolised within human placenta and the mechanisms by which amino acids are transported out of the placenta across the basal plasma membrane are not well understood. Understanding the mechanisms and regulation of amino acid transport is necessary to understand the causes of intrauterine growth restriction in human pregnancy.
Collapse
Affiliation(s)
- J K Cleal
- The Institute of Developmental Sciences, University of Southampton, Southampton, UK.
| | | |
Collapse
|
28
|
Jubrias SA, Vollestad NK, Gronka RK, Kushmerick MJ. Contraction coupling efficiency of human first dorsal interosseous muscle. J Physiol 2008; 586:1993-2002. [PMID: 18238810 PMCID: PMC2375725 DOI: 10.1113/jphysiol.2007.146829] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/17/2007] [Accepted: 01/30/2008] [Indexed: 11/08/2022] Open
Abstract
During working contractions, chemical energy in the form of ATP is converted to external work. The efficiency of this conversion, called 'contraction coupling efficiency', is calculated by the ratio of work output to energy input from ATP splitting. Experiments on isolated muscles and permeabilized fibres show the efficiency of this conversion has a wide range, 0.2-0.7. We measured the work output in contractions of a single human hand muscle in vivo and of the ATP cost of that work to calculate the contraction coupling efficiency of the muscle. Five subjects performed six bouts of rapid voluntary contractions every 1.5 s for 42 s (28 contractions, each with time to peak force < 150 ms). The bouts encompassed a 7-fold range of workloads. The ATP cost during work was quantified by measuring the extent of chemical changes within the muscle from (31)P magnetic resonance spectra. Contraction coupling efficiency was determined as the slope of paired measurements of work output and ATP cost at the five graded work loads. The results show that 0.68 of the chemical energy available from ATP splitting was converted to external work output. A plausible mechanism to account for this high value is a substantially lower efficiency for mitochondrial ATP synthesis. The method described here can be used to analyse changes in the overall efficiency determined from oxygen consumption during exercise that can occur in disease or with age, and to test the hypothesis that such changes are due to reduced contraction coupling efficiency.
Collapse
Affiliation(s)
- Sharon A Jubrias
- Department of Radiology, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
29
|
Lutjemeier BJ, Ferreira LF, Poole DC, Townsend D, Barstow TJ. Muscle microvascular hemoglobin concentration and oxygenation within the contraction-relaxation cycle. Respir Physiol Neurobiol 2007; 160:131-8. [PMID: 17964228 DOI: 10.1016/j.resp.2007.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 08/24/2007] [Accepted: 09/11/2007] [Indexed: 12/01/2022]
Abstract
Inability to directly measure microvascular oxygen distribution and extraction in striated muscle during a contraction/relaxation cycle limits our understanding of oxygen transport to and utilization by contracting muscle. We examined muscle microvascular hemoglobin concentration (total [Hb/Mb]) and oxygenation within the contraction-relaxation cycle to determine if microvascular RBC volume would be preserved and if oxygen extraction continued during the actual contraction phase. Eight subjects performed dynamic knee extension exercise (40 contractions/min) at moderate ( approximately 30% of peak work rate) and heavy ( approximately 80% of peak) work rates. Total hemoglobin/myoglobin (total [Hb/Mb]) and deoxy-hemoglobin/myoglobin (deoxy-[Hb/Mb]) were measured in the rectus femoris using NIRS to determine if microvascular total [Hb/Mb] would be preserved during the contraction, and to estimate microvascular oxygen extraction, respectively. Mean values during the relaxation (RP) and contractile phases and the peak values during the contractile phase for both moderate and heavy exercise were calculated. Total [Hb/Mb] increased from rest to steady-state exercise (6.36+/-5.08 microM moderate; 5.72+/-4.46 microM heavy exercise, both P<0.05), but did not change significantly within the contraction/relaxation cycle. Muscle contractions were associated with a significant (1.29+/-0.98 microM moderate; 2.16+/-2.12 microM heavy exercise, P<0.05) increase in deoxy-[Hb/Mb] relative to RP. We conclude that (a) microvascular RBC volume is preserved during muscle contractions (i.e., RBCs are present in the capillaries), and (b) the cyclical pattern of deoxygenation/oxygenation during the respective contraction/relaxation phases of the contraction cycle suggests that oxygen extraction is not restricted to the relaxation phase but continues to occur during muscle contractions.
Collapse
Affiliation(s)
- Barbara J Lutjemeier
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506-0302, USA
| | | | | | | | | |
Collapse
|
30
|
Farooqi IS, Wangensteen T, Collins S, Kimber W, Matarese G, Keogh JM, Lank E, Bottomley B, Lopez-Fernandez J, Ferraz-Amaro I, Dattani MT, Ercan O, Myhre AG, Retterstol L, Stanhope R, Edge JA, McKenzie S, Lessan N, Ghodsi M, De Rosa V, Perna F, Fontana S, Barroso I, Undlien DE, O'Rahilly S. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med 2007; 356:237-47. [PMID: 17229951 PMCID: PMC2670197 DOI: 10.1056/nejmoa063988] [Citation(s) in RCA: 433] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND A single family has been described in which obesity results from a mutation in the leptin-receptor gene (LEPR), but the prevalence of such mutations in severe, early-onset obesity has not been systematically examined. METHODS We sequenced LEPR in 300 subjects with hyperphagia and severe early-onset obesity, including 90 probands from consanguineous families, and investigated the extent to which mutations cosegregated with obesity and affected receptor function. We evaluated metabolic, endocrine, and immune function in probands and affected relatives. RESULTS Of the 300 subjects, 8 (3%) had nonsense or missense LEPR mutations--7 were homozygotes, and 1 was a compound heterozygote. All missense mutations resulted in impaired receptor signaling. Affected subjects were characterized by hyperphagia, severe obesity, alterations in immune function, and delayed puberty due to hypogonadotropic hypogonadism. Serum leptin levels were within the range predicted by the elevated fat mass in these subjects. Their clinical features were less severe than those of subjects with congenital leptin deficiency. CONCLUSIONS The prevalence of pathogenic LEPR mutations in a cohort of subjects with severe, early-onset obesity was 3%. Circulating levels of leptin were not disproportionately elevated, suggesting that serum leptin cannot be used as a marker for leptin-receptor deficiency. Congenital leptin-receptor deficiency should be considered in the differential diagnosis in any child with hyperphagia and severe obesity in the absence of developmental delay or dysmorphism.
Collapse
Affiliation(s)
- I Sadaf Farooqi
- Cambridge Institute for Medical Research, University Department of Clinical Biochemistry, Addenbrooke's Hospital, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lin PC, Kreutzer U, Jue T. Anisotropy and temperature dependence of myoglobin translational diffusion in myocardium: implication for oxygen transport and cellular architecture. Biophys J 2007; 92:2608-20. [PMID: 17218454 PMCID: PMC1864849 DOI: 10.1529/biophysj.106.094458] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pulsed field gradient NMR methods have determined the temperature-dependent diffusion of myoglobin (Mb) in perfused rat myocardium. Mb diffuses with an averaged translational diffusion coefficient (DMb) of 4.24-8.37x10(-7)cm2/s from 22 degrees C to 40 degrees C and shows no orientation preference over a root mean-square displacement of 2.5-3.5 microm. The DMb agrees with the value predicted by rotational diffusion measurements. Based on the DMb, the equipoise diffusion PO2, the PO2 in which Mb-facilitated and free O2 diffusion contribute equally to the O2 flux, varies from 2.72 to 0.15 in myocardium and from 7.27 to 4.24 mmHg in skeletal muscle. Given the basal PO2 of approximately 10 mmHg, the Mb contribution to O2 transport appears insignificant in myocardium. In skeletal muscle, Mb-facilitated diffusion begins to contribute significantly only when the PO2 approaches the P50. In marine mammals, the high Mb concentration confers a predominant role for Mb in intracellular O2 transport under all physiological conditions. The Q10 of the DMb ranges from 1.3 to 1.6. The Mb diffusion data indicate that the postulated gel network in the cell must have a minimum percolation cutoff size exceeding 17.5 A and does not impose tortuosity within the diffusion root mean-square displacement. Moreover, the similar Q10 for the DMb of solution versus cell Mb suggests that any temperature-dependent alteration of the postulated cell matrix does not significantly affect protein mobility.
Collapse
Affiliation(s)
- Ping-Chang Lin
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California 95616-8635, USA
| | | | | |
Collapse
|
32
|
Chance B, Im J, Nioka S, Kushmerick M. Skeletal muscle energetics with PNMR: personal views and historic perspectives. NMR IN BIOMEDICINE 2006; 19:904-26. [PMID: 17075955 DOI: 10.1002/nbm.1109] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This article reviews historical and current NMR approaches to describing in vivo bioenergetics of skeletal muscles in normal and diseased populations. It draws upon the first author's more than 70 years of personal experience in enzyme kinetics and the last author's physiological approaches. The development of in vivo PNMR jointly with researchers around the world is described. It is explained how non-invasive PNMR has advanced human exercise biochemistry, physiology and pathology. Further, after a brief explanation of bioenergetics with PNMR on creatine kinase, anerobic glycolysis and mitochondrial oxidative phosphorylation, some basic and controversial subjects are focused upon, and the authors' view of the subjects are offered, with questions and answers. Some of the research has been introduced in exercise physiology. Future directions of NMR on bioenergetics, as a part of system biological approaches, are indicated.
Collapse
Affiliation(s)
- Britton Chance
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059, USA.
| | | | | | | |
Collapse
|
33
|
Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG. Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 2006; 26:865-77. [PMID: 16407855 DOI: 10.1038/sj.jcbfm.9600263] [Citation(s) in RCA: 313] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Prior 13C magnetic resonance spectroscopy (MRS) experiments, which simultaneously measured in vivo rates of total glutamate-glutamine cycling (V(cyc(tot))) and neuronal glucose oxidation (CMR(glc(ox), N)), revealed a linear relationship between these fluxes above isoelectricity, with a slope of approximately 1. In vitro glial culture studies examining glutamate uptake indicated that glutamate, which is cotransported with Na+, stimulated glial uptake of glucose and release of lactate. These in vivo and in vitro results were consolidated into a model: recycling of one molecule of neurotransmitter between glia and neurons was associated with oxidation of one glucose molecule in neurons; however, the glucose was taken up only by glia and all the lactate (pyruvate) generated by glial glycolysis was transferred to neurons for oxidation. The model was consistent with the 1:1 relationship between DeltaCMR(glc(ox), N) and DeltaV(cyc(tot)) measured by 13C MRS. However, the model could not specify the energetics of glia and gamma-amino butyric acid (GABA) neurons because quantitative values for these pathways were not available. Here, we review recent 13C and 14C tracer studies that enable us to include these fluxes in a more comprehensive model. The revised model shows that glia produce at least 8% of total oxidative ATP and GABAergic neurons generate approximately 18% of total oxidative ATP in neurons. Neurons produce at least 88% of total oxidative ATP, and take up approximately 26% of the total glucose oxidized. Glial lactate (pyruvate) still makes the major contribution to neuronal oxidation, but approximately 30% less than predicted by the prior model. The relationship observed between DeltaCMR(glc(ox), N) and DeltaV(cyc(tot)) is determined by glial glycolytic ATP as before. Quantitative aspects of the model, which can be tested by experimentation, are discussed.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The power needs of muscle are supplied by rapid anaerobic glycogenolytic ATP generation. Lactate is built up by the mismatch between steady state energy needs and short-term power demands and the increased concentration drives the lactate shuttle. In this model, contributions to fatigue should be looked for in the flux of glucose through glycogen rather than in the concentrations of fuel.
Collapse
Affiliation(s)
- Robert G Shulman
- Department of Diagnostic Radiology, Yale University School of Medicine, MR Research Center, New Haven, CT 06520-8043, USA.
| |
Collapse
|
35
|
Hamaoka T, Tatsumi K, Saito Y, Arai Y, Horie Y, Masuyama S, Tanabe N, Takiguchi Y, Ikehira H, Obata T, Sasaki Y, Tanada S, Kuriyama T. Metabolic activity in skeletal muscles of patients with non-hypoxaemic chronic obstructive pulmonary disease studied by 31P-magnetic resonance spectroscopy. Respirology 2006; 10:164-70. [PMID: 15823180 DOI: 10.1111/j.1440-1843.2005.00696.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE An alteration of high energy phosphate metabolism in muscles may contribute to exercise intolerance. The objective of this study was to clarify the changes in high energy phosphate metabolites in muscles during exercise in patients with non-hypoxaemic chronic obstructive pulmonary disease (COPD), which influences the impairment of muscle metabolism. METHODOLOGY Calf muscle energy metabolism was studied in eight stable non-hypoxaemic COPD patients and eight control subjects, using 31P-magnetic resonance spectroscopy (MRS). MRS spectra were acquired at rest, during exercise at two levels of intensity, and during recovery. The control subjects exercised under both normoxic and hypoxic conditions. The intensity of exercise was standardized by the maximal isometric voluntary contraction (MVC) of the calf muscle and the cross-sectional area (CSA) of calf muscle. RESULTS MVC and CSA were lower in COPD patients. No significant differences in intracellular pH, inorganic phosphate/phosphocreatine ratio or percentage recovery in inorganic phosphate/phosphocreatine ratio were observed between the two groups in muscles at rest, during exercise or during recovery. CONCLUSIONS Muscle metabolites, during exercise standardized by muscle CSA and MVC, did not differ between non-hypoxaemic COPD patients and control subjects. MVC, CSA or both, are assumed to be closely related to muscle metabolism, as no difference in high energy phosphate metabolites was observed for COPD patients compared to control subjects when the load was standardized for MVC and CSA. This suggests that high energy metabolites are consumed to a similar extent in the same muscle volume in non-hypoxaemic COPD patients and control subjects.
Collapse
Affiliation(s)
- Tomoko Hamaoka
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Huppertz B, Peeters LLH. Vascular biology in implantation and placentation. Angiogenesis 2005; 8:157-67. [PMID: 16211358 DOI: 10.1007/s10456-005-9007-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 12/12/2004] [Indexed: 11/25/2022]
Abstract
Pregnancy leads to dramatic changes of the vascular system of the mother and enables the development of a completely new vascular system within the growing embryo including the formation of the placenta as the exchange organ between both circulations. Besides a general adaptation of the maternal blood system, the uterine spiral arteries display the greatest changes. Within placental villi angiogenesis as well as vasculogenesis can be found already a few weeks after implantation. Both systems in parallel will determine the blood flow within the placental villi and the intervillous space. Finally, compromised blood flow on either side of the placental membrane will not only lead to fetal malnutrition, but will also trigger morphological changes of the villous trees. This review tries to cover all the above-mentioned topics and will try to depict the consequences of poor placentation on mother and fetus.
Collapse
Affiliation(s)
- Berthold Huppertz
- Department of Anatomy II, University Hospital RWTH Aachen, Aachen, Germany.
| | | |
Collapse
|
37
|
Weiss RG, Gerstenblith G, Bottomley PA. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci U S A 2005; 102:808-13. [PMID: 15647364 PMCID: PMC545546 DOI: 10.1073/pnas.0408962102] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heart consumes more energy per gram than any other organ, and the creatine kinase (CK) reaction serves as its prime energy reserve. Because chemical energy is required to fuel systolic and diastolic function, the question of whether the failing heart is "energy starved" has been debated for decades. Despite the central role of the CK reaction in cardiac energy metabolism, direct measures of CK flux in the beating human heart were not previously possible. Using an image-guided molecular assessment of endogenous ATP turnover, we directly measured ATP flux through CK in normal, stressed, and failing human hearts. We show that cardiac CK flux in healthy humans is faster than that estimated through oxidative phosphorylation and that CK flux does not increase during a doubling of the heart rate-blood pressure product by dobutamine. Furthermore, cardiac ATP flux through CK is reduced by 50% in mild-to-moderate human heart failure (1.6 +/- 0.6 vs. 3.2 +/- 0.9 micromol/g of wet weight per sec, P <0.0005). We conclude that magnetic resonance strategies can now directly assess human myocardial CK energy flux. The deficit in ATP supplied by CK in the failing heart is cardiac-specific and potentially of sufficient magnitude, even in the absence of a significant reduction in ATP stores, to contribute to the pathophysiology of human heart failure. These findings support the pursuit of new therapies that reduce energy demand and/or augment energy transfer in heart failure and indicate that cardiac magnetic resonance can be used to assess their effectiveness.
Collapse
Affiliation(s)
- Robert G Weiss
- Department of Medicine, Cardiology Division, and Department of Radiology, Nuclear Magnetic Resonance Research Division, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
38
|
Binzoni T. Saturation of the Lactate Clearance Mechanisms Different from the “Lactate Shuttle” Determines the Anaerobic Threshold: Prediction from the Bioenergetic Model. ACTA ACUST UNITED AC 2005; 24:175-82. [PMID: 15840950 DOI: 10.2114/jpa.24.175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is demonstrated, that the bioenergetic model combined with the mathematical constraints determined by the experimental knowledge of the aerobic metabolism and the Lohmann reaction dictates the exact lactate (La)-time relationship during exercise. The theory predicts that La is necessarily produced (above the resting baseline), even during extremely low work loads, where the metabolism was usually considered in the past to be "pure" aerobic. The La rate of production increases linearly as a function of the work load. The anaerobic threshold is strictly determined by the saturation of the La clearance mechanisms of the body different from the "La shuttle" and not by the involvement of a sudden increased La production at the cellular level. These results imply that the half time of the PCr breakdown kinetics at the onset of a constant load exercise can be expressed as a function of the onset speed of the aerobic and of the anaerobic metabolism, even in the case of a very low mechanical power. The PCr half-time does not depend on the workload and represents a physiological invariant. The bioenergetic model was created during a long historical period, when it was believed that the La production was not present at all for very low exercise levels but, actually, the bioenergetic model predicts exactly the opposite result!
Collapse
Affiliation(s)
- Tiziano Binzoni
- Department of Radiology, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
39
|
Hermanussen M, Tresguerres JAF. Does the thrifty phenotype result from chronic glutamate intoxication? A hypothesis. J Perinat Med 2004; 31:489-95. [PMID: 14711105 DOI: 10.1515/jpm.2003.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The thrifty phenotype hypothesis proposes that the epidemiological associations between poor fetal and infant growth and the subsequent development of the metabolic syndrome, result from the effects of poor nutrition in early life. The present review however, considers an opposite explanation. We hypothesize that fetal over-nutrition plays a major role in the development of the metabolic syndrome. We found evidence that the thrifty phenotype may be the consequence of fetal hyperglutamatemia. Maternal glutamate (GLU) reaches the fetal circulation, as part of the materno-fetal glutamine-glutamate exchange. Glutamine is absorbed from the maternal circulation, and deaminated for nitrogen utilization, resulting in a fetal production of GLU. GLU is extracted as it returns to the placenta. When the umbilical plasma flow is low, GLU may be trapped in the fetal circulation, and reaches neurotoxic levels. Administering GLU to newborn rodents completely destructs arcuate nucleus neurons, and results in permanently elevated plasma leptin levels that fail to adequately counter-regulate food intake. Chronic fetal exposure to elevated levels of GLU may be caused by chronic maternal over-nutrition or by reduced umbilical plasma flow. We strongly suggest abandoing the flavoring agent monosodium glutamate and reconsidering the recommended daily allowances of protein and amino acids during pregnancy.
Collapse
|
40
|
Bendahan D, Kemp GJ, Roussel M, Fur YL, Cozzone PJ. ATP synthesis and proton handling in muscle during short periods of exercise and subsequent recovery. J Appl Physiol (1985) 2003; 94:2391-7. [PMID: 12611771 DOI: 10.1152/japplphysiol.00589.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used (31)P-magnetic resonance spectroscopy to study proton buffering in finger flexor muscles of eight healthy men (25-45 yr), during brief (18-s) voluntary finger flexion exercise (0.67-Hz contraction at 10% maximum voluntary contraction; 50/50 duty cycle) and 180-s recovery. Phosphocreatine (PCr) concentration fell 19 +/- 2% during exercise and then recovered with half time = 0.24 +/- 0.01 min. Cell pH rose by 0.058 +/- 0.003 units during exercise as a result of H(+) consumption by PCr splitting, which (assuming no lactate production or H(+) efflux) implies a plausible non-P(i) buffer capacity of 20 +/- 3 mmol. l intracellular water(-1). pH unit(-1). There was thus no evidence of significant glycogenolysis to lactate during exercise. Analysis of PCr kinetics as a classic linear response suggests that oxidative ATP synthesis reached 48 +/- 2% of ATP demand by the end of exercise; the rest was met by PCr splitting. Postexercise pH recovery was faster than predicted, suggesting "excess proton" production, with a peak value of 0.6 +/- 0.2 mmol/l intracellular water at 0.45 min of recovery, which might be due to, e.g., proton influx driven by cellular alkalinization, or a small glycolytic contribution to PCr resynthesis in recovery.
Collapse
Affiliation(s)
- David Bendahan
- Faculté de Médecine, Centre de Resonance Magnetique Biologique et Medicale, Unité Mixte de Recherche 6612 Centre National de la Recherche Scientifique, Marseille 13005, France.
| | | | | | | | | |
Collapse
|
41
|
Cleary MP, Phillips FC, Getzin SC, Jacobson TL, Jacobson MK, Christensen TA, Juneja SC, Grande JP, Maihle NJ. Genetically obese MMTV-TGF-alpha/Lep(ob)Lep(ob) female mice do not develop mammary tumors. Breast Cancer Res Treat 2003; 77:205-15. [PMID: 12602920 DOI: 10.1023/a:1021891825399] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Elevated body weight is a risk factor for postmenopausal breast cancer and is associated with increased incidence of spontaneous and chemically induced mammary tumors (MTs) in rodents. In this study, genetically obese Lep(ob)Lep(ob) female mice that overexpress human TGF-alpha (transforming growth factor-alpha) were used to assess the role of body weight on oncogene-induced MT development in comparison to lean counterparts. MMTV (mouse mammary tumor virus)-TGF-alpha and Lep strain mice were crossed to produce TGF-alpha/Lep(+)Lep(+) (homozygous lean), TGF-alpha/Lep(+)Lep(ob) (heterozygous lean) and TGF-alpha/Lep(ob)Lep(ob) (homozygous obese) genotypes. Body weights were determined weekly and mice palpated for the presence of MTs until 104 weeks of age. Despite their significantly higher body weight, obese TGF-alpha/Lep(ob)Lep(ob) mice failed to develop MTs. MTs were detected between 48 and 104 weeks of age for 26/39 TGF-alpha/Lep(+)Lep(ob) mice and for 19/38 TGF-alpha/Lep(+)Lep(+) mice between 67 and 104 weeks of age. Although MT incidence was not statistically different between the lean groups, age of MT detection tended to be younger for TGF-alpha/Lep(+)Lep(ob) mice (p < 0.09). There were significant effects of both genotype and MTs on final body weight, that is, TGF-alpha/Lep(+)Lep(ob) mice weighed more than homozygous lean mice, and mice with MTs weighed more than those without MTs. TGF-alpha/Lep(ob)Lep(ob) mice are not a good model to evaluate the effect of body weight on MT development possibly due to leptin deficiency. However, the finding that increased body weight is associated with increased oncogene-induced MT development within the normal weight range provides experimental support for the role of body weight in breast cancer.
Collapse
Affiliation(s)
- Margot P Cleary
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Timmerman M, Wilkening RB, Regnault TRH. Induction of glutamate dehydrogenase in the ovine fetal liver by dexamethasone infusion during late gestation. Exp Biol Med (Maywood) 2003; 228:100-5. [PMID: 12524480 DOI: 10.1177/153537020322800114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids near term are known to upregulate many important enzyme systems prior to birth. Glutamate dehydrogenase (GDH) is a mitochondrial enzyme that catalyzes both the reversible conversion of ammonium nitrogen into organic nitrogen (glutamate production) and the oxidative deamination of glutamate resulting in 2-oxoglutarate. The activity of this enzyme is considered to be of major importance in the development of catabolic conditions leading to gluconeogenesis prior to birth. Ovine hepatic GDH mRNA expression and activity were determined in near-term (130 days of gestation, term 147 +/- 4 days) control and acutely dexamethasone-treated (0.07 mg(-1) hr(-1) for 26 hr) fetuses. Dexamethasone infusion had no effect on placental or fetal liver weights. Dexamethasone infusion for 26 hr significantly increased hepatic GDH mRNA expression. This increased GDH mRNA expression was accompanied by an increase in hepatic mitochondrial GDH activity, from 30.0 +/- 7.4 to 58.2 +/- 8.1 U GDH/U CS (citrate synthase), and there was a significant correlation between GDH mRNA expression and GDH activity. The generated ovine GDH sequence displayed significant similarity with published human, rat, and murine GDH sequence. These data are consistent with the in vivo studies that have shown a redirection of glutamine carbon away from net hepatic glutamate release and into the citric acid cycle through the forward reaction catalyzed by GDH, i.e., glutamate to oxoglutarate.
Collapse
Affiliation(s)
- M Timmerman
- Department of Obstetrics and Gynecology, Erasmus University, Rotterdam, The Netherlands
| | | | | |
Collapse
|
43
|
Robinson DM, Loiselle DS. Effect of creatine manipulation on fast-twitch skeletal muscle of the mouse. Clin Exp Pharmacol Physiol 2002; 29:1105-11. [PMID: 12390299 DOI: 10.1046/j.1440-1681.2002.03782.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The effect of short-term, reversible alteration of muscle total creatine content (Crtot) on force development was sought in fast-twitch extensor digitorum longus (EDL) muscles of female mice. 2. Three in vivo interventions were investigated: 1% creatine-supplementation, treatment with the creatine-uptake inhibitor beta-guanidino propionic acid (beta-GPA; 1%) or beta-GPA treatment followed by creatine supplementation for 5 days. 3. The Crtot of isolated muscles, determined using reverse-phase high-performance liquid chromatography, was 133 +/- 38 mmol/kg dry in 11 EDL control muscles and was not significantly affected by dietary creatine-supplementation (152 +/- 25 mmol/kg dry; n = 8). Significant creatine depletion was observed in the beta-GPA-fed group (65 +/- 6 mmol/kg dry; n = 9) and this was reversed by 5 days of creatine supplementation (133 +/- 21 mmol/kg dry; n = 10). 4. Creatine depletion did not affect maximum tetanic stress. However, when muscle creatine was restored by creatine supplementation, a substantial increase in tetanic stress was observed. Significant correlations were observed between Crtot and maximum tetanic stress (r = 0.56) and relaxation rate (r = 0.43). The enhancement of force was not due to effects of creatine on muscle fibre type because neither mechanical tests of fibre characteristics nor the fibre types of the muscles were affected. 5. We conclude that, in muscles that contain large numbers of fast-twitch fibres, maximum tetanic stress is determined, in part, by muscle creatine stores.
Collapse
Affiliation(s)
- Dean M Robinson
- Department of Physiology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
44
|
Hespel P, Eijnde BO, Derave W, Richter EA. Creatine supplementation: exploring the role of the creatine kinase/phosphocreatine system in human muscle. CANADIAN JOURNAL OF APPLIED PHYSIOLOGY = REVUE CANADIENNE DE PHYSIOLOGIE APPLIQUEE 2002; 26 Suppl:S79-102. [PMID: 11897886 DOI: 10.1139/h2001-045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The effect of oral creatine supplementation on high-intensity exercise performance has been extensively studied over the past ten years and its ergogenic potential in young healthy subjects is now well documented. Recently, research has shifted from performance evaluation towards elucidating the mechanisms underlying enhanced muscle functional capacity after creatine supplementation. In this review, we attempt to summarise recent advances in the understanding of potential mechanisms of action of creatine supplementation at the level of skeletal muscle cells. By increasing intracellular creatine content, oral creatine ingestion conceivably stimulates operation of the creatine kinase (CK)/phosphocreatine (PCr) system, which in turn facilitates muscle relaxation. Furthermore, evidence is accumulating to suggest that creatine supplementation can beneficially impact on muscle protein and glycogen synthesis. Thus, muscle hypertrophy and glycogen supercompensation are candidate factors to explain the ergogenic potential of creatine ingestion. Additional issues discussed in this review are the fibre-type specificity of muscle creatine metabolism, the identification of responders versus non-responders to creatine intake, and the scientific background concerning potential side effects of creatine supplementation.
Collapse
Affiliation(s)
- P Hespel
- Exercise Physiology and Biomechanics Laboratory, Department of Kinesiology, Faculty of Physical Education and Physiotherapy, Catholic University of Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
45
|
Thureen PJ, Baron KA, Fennessey PV, Hay WW. Ovine placental and fetal arginine metabolism at normal and increased maternal plasma arginine concentrations. Pediatr Res 2002; 51:464-71. [PMID: 11919331 DOI: 10.1203/00006450-200204000-00011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Arginine (A) may play a significant role in fetal growth, by stimulating insulin secretion and as a precursor for both polyamine synthesis and nitric oxide production. To determine whether increased maternal plasma A concentrations can enhance delivery of A to the fetus, uterine, umbilical, and net uteroplacental (UP) A uptake rates were measured in 12 pregnant ewes at 129.6 +/- 0.4 d gestation (mean +/- SEM) during normal and after 3 h of increased maternal plasma A concentrations. With a 2.7-fold increase in maternal plasma A concentrations (p < 0.001), there were significant increases in uterine A uptake (13.8 +/- 1.0 to 41.3 +/- 7.7 micromol/min, p < 0.005), umbilical A uptake (3.3 +/- 0.5 to 5.2 +/- 0.8 micromol.min(-1).kg(-1) fetus, p < 0.005), UP A uptake (17.8 +/- 6.2 to 89.2 +/- 20.3 micromol.min(-1).kg(-1) placenta, p < 0.01), fetal arterial A concentration (98.7 +/- 6.3 to 137.1 +/- 9.9 microM, p < 0.001), maternal A disposal rate (143.7 +/- 9.4 to 217.0 +/- 6.7 micromol/min, p < 0.001), fetal A disposal rate (7.9 +/- 0.8 to 9.9 +/- 1.1 micromol.min(-1).kg(-1), p < 0.05), fetal A oxidation rate (1.31 +/- 0.24 to 1.84 +/- 0.36 micromol.min(-1).kg(-1), p < 0.05), and plasma insulin concentration in both fetus (16 +/- 2 to 20 +/- 2 microU/mL, p < 0.001) and mother (24 +/- 3 to 32 +/- 4 microU/mL, p < 0.001). Thus, increased maternal plasma A concentration increases maternal, UP, and fetal A net uptake, and increases insulin secretion in mother and fetus. The 4.2-fold larger increase in UP than net fetal A uptake could represent preferential UP A metabolism relative to fetal A metabolism, relatively limited placental-fetal A transport capacity compared with uterine A uptake capacity, or both; responsible mechanisms remain unknown.
Collapse
Affiliation(s)
- Patti J Thureen
- Perinatal Research Center, Department of Pediatrics, University of Colorado Health Sciences Center, Denver, Colorado, 80262, USA.
| | | | | | | |
Collapse
|
46
|
Russ DW, Elliott MA, Vandenborne K, Walter GA, Binder-Macleod SA. Metabolic costs of isometric force generation and maintenance of human skeletal muscle. Am J Physiol Endocrinol Metab 2002; 282:E448-57. [PMID: 11788378 DOI: 10.1152/ajpendo.00285.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During isometric contractions, no true work is performed, so the force-time integral (FTI) is often used to approximate isometric work. However, the relationship between FTI and metabolic cost is not as linear. We tested the hypothesis that this nonlinearity was due to the cost of attaining a given force being greater than that of maintaining it. The ATP consumed per contraction in the human medial gastrocnemius muscle (n = 6) was determined by use of (31)P-NMR spectroscopy during eight different electrical stimulation protocols. Each protocol consisted of 8 trains of a single frequency (20 or 80 Hz) and duration (300, 600, 1,200, or 1,800 ms) performed under ischemic conditions. The cost of force generation was determined from the ATP turnover during the short-duration trains that did not attain a steady force level. Estimates of the cost of force maintenance at each frequency were determined by subtracting the ATP turnover during the shorter-duration trains from the turnover during the long-duration trains. The force generation phase of an isometric contraction was indeed more metabolically costly than the force maintenance phase during both 20- and 80-Hz stimulation. Thus the mean rate of ATP hydrolysis appeared to decline as contraction duration increased. Interestingly, the metabolic costs of maintaining force during 20-Hz and 80-Hz stimulation were comparable, although different levels of force were produced.
Collapse
Affiliation(s)
- David W Russ
- Department of Biomechanics and Movement Science, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | |
Collapse
|
47
|
Farooqi IS, Keogh JM, Kamath S, Jones S, Gibson WT, Trussell R, Jebb SA, Lip GY, O'Rahilly S. Partial leptin deficiency and human adiposity. Nature 2001; 414:34-5. [PMID: 11689931 DOI: 10.1038/35102112] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The adipocyte-derived hormone leptin is crucial for energy homeostasis in mammals; mice and humans without it suffer from a voracious appetite and extreme obesity. The effect on energy balance of variations in plasma leptin above a minimal threshold is uncertain, however, particularly in humans. Here we examine a group of individuals who are genetically partially deficient in leptin, and show that differences in circulating leptin levels within the range found in normal human populations can directly influence the laying down of fat tissue (adiposity).
Collapse
Affiliation(s)
- I S Farooqi
- University Departments of Medicine and Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shulman RG, Hyder F, Rothman DL. Lactate efflux and the neuroenergetic basis of brain function. NMR IN BIOMEDICINE 2001; 14:389-396. [PMID: 11746930 DOI: 10.1002/nbm.741] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the unstimulated brain energy is primarily supplied by the oxidation of glucose. However the oxygen-to-glucose index (OGI), which is the ratio of metabolic rates of oxygen to glucose, CMR(O2)/CMR(glc), diverges from the theoretical value of 6 as activity is increased. In vivo measurements of brain lactate show its concentration to increase with stimulation. The decreasing OGI with stimulation had led to the suggestion that activation, unlike resting activity, is supported by anaerobic glycolysis. To date a unifying concept that accommodates glucose oxidation at rest with lactate generation and OGI decrease during stimulation of brain is lacking. Furthermore, energetics that change with increasing activity are not consistent with a neuroenergetic model that has been proposed from 1-(13)C-glucose MRS experiments. That model, based upon in vivo MRS measurements and cellular studies by Pellerin and Magistretti, showed that glutamate neurotransmitter cycling was coupled to glucose oxidation over a wide range of brain activities from rest down to deep anesthesia. Here we reconcile these paradoxical observations by suggesting that anaerobic glucose consumption (which can provide energy rapidly) increases with activation to meet the power requirements of millisecond neuronal firing. It is proposed, in accord with our neuroenergetic model, that the extra glucose mobilized rapidly for glial clearance of glutamate, is not needed for the oxidative processes that are responsible for neuronal firing and glutamate release, and consequently it is effluxed as lactate. A stoichiometric relation between OGI and lactate concentration is derived from the neuroenergetic model, showing that the enhanced glucose uptake during activation is consistent with neuronal activity being energetically supported by glucose oxidation.
Collapse
Affiliation(s)
- R G Shulman
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520-8024, USA.
| | | | | |
Collapse
|
49
|
Lee JW, Romsos DR. Leptin-deficient mice commence hypersecreting insulin in response to acetylcholine between 1 and 2 weeks of age. Exp Biol Med (Maywood) 2001; 226:906-11. [PMID: 11682696 DOI: 10.1177/153537020122601005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Leptin-deficient Lep(ob)/Lep(ob)mice develop hyperinsulinemia early in life, before they begin to overeat or develop insulin resistance. Pancreatic islets from these young mice do not yet hypersecrete insulin in response to glucose, but they hyperrespond to acetylcholine. Islets from 4-day, and 1-, 2-, and 4-week-old mice were used in the present study to determine when leptin-deficient mice first hypersecrete insulin in response to acetylcholine. This relative hypersecretion of insulin from islets of leptin-deficient mice occurred between 1 and 2 weeks of age. The divergence in insulin secretion occurred at this time because islets from lean, leptin-sufficient mice became relatively less responsive to acetylcholine between 1 and 2 weeks of age, whereas islets from leptin-deficient mice maintained a high responsiveness to acetylcholine during development. Leptin addition to islets isolated from 4-day, and 2-, and 4-week-old leptin-deficient mice rapidly (i.e., within 30 min) suppressed acetylcholine-induced insulin secretion at each stage of development. In contrast, islets from 4-day, and 2- and 4-week-old leptin-sufficient mice became progressively less responsive to leptin with development. Leptin targets pancreatic islets early in development to specifically constrain the overall capacity for acetylcholine-induced insulin secretion, and to acutely modulate this secretion.
Collapse
Affiliation(s)
- J W Lee
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA
| | | |
Collapse
|
50
|
Shulman RG, Hyder F, Rothman DL. Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proc Natl Acad Sci U S A 2001; 98:6417-22. [PMID: 11344262 PMCID: PMC33483 DOI: 10.1073/pnas.101129298] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Positron-emission tomography and functional MRS imaging signals can be analyzed to derive neurophysiological values of cerebral blood flow or volume and cerebral metabolic consumption rates of glucose (CMR(Glc)) or oxygen (CMR(O(2))). Under basal physiological conditions in the adult mammalian brain, glucose oxidation is nearly complete so that the oxygen-to-glucose index (OGI), given by the ratio of CMR(O(2))/CMR(Glc), is close to the stoichiometric value of 6. However, a survey of functional imaging data suggests that the OGI is activity dependent, moving further below the oxidative value of 6 as activity is increased. Brain lactate concentrations also increase with stimulation. These results had led to the concept that brain activation is supported by anaerobic glucose metabolism, which was inconsistent with basal glucose oxidation. These differences are resolved here by a proposed model of glucose energetics, in which a fraction of glucose is cycled through the cerebral glycogen pool, a fraction that increases with degree of brain activation. The "glycogen shunt," although energetically less efficient than glycolysis, is followed because of its ability to supply glial energy in milliseconds for rapid neurotransmitter clearance, as a consequence of which OGI is lowered and lactate is increased. The value of OGI observed is consistent with passive lactate efflux, driven by the observed lactate concentration, for the few experiments with complete data. Although the OGI changes during activation, the energies required per neurotransmitter release (neuronal) and clearance (glial) are constant over a wide range of brain activity.
Collapse
Affiliation(s)
- R G Shulman
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06510, USA.
| | | | | |
Collapse
|