1
|
Zallar LJ, Rivera-Irizarry JK, Hamor PU, Pigulevskiy I, Rico Rozo AS, Mehanna H, Liu D, Welday JP, Bender R, Asfouri JJ, Levine OB, Skelly MJ, Hadley CK, Fecteau KM, Nelson S, Miller J, Ghazal P, Bellotti P, Singh A, Hollmer LV, Erikson DW, Geri J, Pleil KE. Rapid nongenomic estrogen signaling controls alcohol drinking behavior in mice. Nat Commun 2024; 15:10725. [PMID: 39737915 PMCID: PMC11686278 DOI: 10.1038/s41467-024-54737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
Ovarian-derived estrogen can signal non-canonically at membrane-associated receptors in the brain to rapidly regulate neuronal function. Early alcohol drinking confers greater risk for alcohol use disorder in women than men, and binge alcohol drinking is correlated with high estrogen levels, but a causal role for estrogen in driving alcohol drinking has not been established. We found that female mice displayed greater binge alcohol drinking and reduced avoidance when estrogen was high during the estrous cycle than when it was low. The pro-drinking, but not anxiolytic, effect of high endogenous estrogen occurred via rapid signaling at membrane-associated estrogen receptor alpha in the bed nucleus of the stria terminalis, which promoted synaptic excitation of corticotropin-releasing factor neurons and facilitated their activity during alcohol drinking. Thus, this study demonstrates a rapid, nongenomic signaling mechanism for ovarian-derived estrogen in the brain controlling behavior in gonadally intact females.
Collapse
Affiliation(s)
- Lia J Zallar
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jean K Rivera-Irizarry
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Peter U Hamor
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irena Pigulevskiy
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ana-Sofia Rico Rozo
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hajar Mehanna
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dezhi Liu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jacqueline P Welday
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Rebecca Bender
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Joseph J Asfouri
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Olivia B Levine
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mary Jane Skelly
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Psychology Department, Iona University, New Rochelle, NY, USA
| | - Colleen K Hadley
- Weill Cornell/Rockefeller/Sloan Kettering Tri-institutional MD-PhD Program, New York, NY, 10065, USA
| | - Kristopher M Fecteau
- Endocrine Technologies Core, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Scottie Nelson
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - John Miller
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Pasha Ghazal
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Peter Bellotti
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ashna Singh
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lauren V Hollmer
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - David W Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Jacob Geri
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Kristen E Pleil
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
2
|
Sukhoplyasova M, Keith AM, Perrault EM, Vorndran HE, Jordahl AS, Yates ME, Pastor A, Li Z, Freaney ML, Deshpande RA, Adams DB, Guerriero CJ, Shi S, Kleyman TR, Kashlan OB, Brodsky JL, Buck TM. Lhs1 dependent ERAD is determined by transmembrane domain context. Biochem J 2023; 480:1459-1473. [PMID: 37702403 PMCID: PMC11040695 DOI: 10.1042/bcj20230075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
Transmembrane proteins have unique requirements to fold and integrate into the endoplasmic reticulum (ER) membrane. Most notably, transmembrane proteins must fold in three separate environments: extracellular domains fold in the oxidizing environment of the ER lumen, transmembrane domains (TMDs) fold within the lipid bilayer, and cytosolic domains fold in the reducing environment of the cytosol. Moreover, each region is acted upon by a unique set of chaperones and monitored by components of the ER associated quality control machinery that identify misfolded domains in each compartment. One factor is the ER lumenal Hsp70-like chaperone, Lhs1. Our previous work established that Lhs1 is required for the degradation of the unassembled α-subunit of the epithelial sodium channel (αENaC), but not the homologous β- and γENaC subunits. However, assembly of the ENaC heterotrimer blocked the Lhs1-dependent ER associated degradation (ERAD) of the α-subunit, yet the characteristics that dictate the specificity of Lhs1-dependent ERAD substrates remained unclear. We now report that Lhs1-dependent substrates share a unique set of features. First, all Lhs1 substrates appear to be unglycosylated, and second they contain two TMDs. Each substrate also contains orphaned or unassembled TMDs. Additionally, interfering with inter-subunit assembly of the ENaC trimer results in Lhs1-dependent degradation of the entire complex. Finally, our work suggests that Lhs1 is required for a subset of ERAD substrates that also require the Hrd1 ubiquitin ligase. Together, these data provide hints as to the identities of as-yet unconfirmed substrates of Lhs1 and potentially of the Lhs1 homolog in mammals, GRP170.
Collapse
Affiliation(s)
- Maria Sukhoplyasova
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Abigail M. Keith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Emma M. Perrault
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Hannah E. Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Alexa S. Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Megan E. Yates
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Ashutosh Pastor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Zachary Li
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Michael L. Freaney
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Riddhi A. Deshpande
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - David B. Adams
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | | | - Shujie Shi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Ossama B. Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Teresa M. Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| |
Collapse
|
3
|
Yang KQ, Lu CX, Fan P, Zhang Y, Meng X, Dong XQ, Luo F, Liu YX, Zhang HM, Wu HY, Cai J, Zhang X, Zhou XL. Genetic screening of SCNN1B and SCNN1G genes in early-onset hypertensive patients helps to identify Liddle syndrome. Clin Exp Hypertens 2017; 40:107-111. [PMID: 28718682 DOI: 10.1080/10641963.2017.1334799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao-Xia Lu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Fan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Meng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Qi Dong
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Luo
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Xin Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Min Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Ying Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Cai
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Buck TM, Jordahl AS, Yates ME, Preston GM, Cook E, Kleyman TR, Brodsky JL. Interactions between intersubunit transmembrane domains regulate the chaperone-dependent degradation of an oligomeric membrane protein. Biochem J 2017; 474:357-376. [PMID: 27903760 PMCID: PMC5423784 DOI: 10.1042/bcj20160760] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022]
Abstract
In the kidney, the epithelial sodium channel (ENaC) regulates blood pressure through control of sodium and volume homeostasis, and in the lung, ENaC regulates the volume of airway and alveolar fluids. ENaC is a heterotrimer of homologous α-, β- and γ-subunits, and assembles in the endoplasmic reticulum (ER) before it traffics to and functions at the plasma membrane. Improperly folded or orphaned ENaC subunits are subject to ER quality control and targeted for ER-associated degradation (ERAD). We previously established that a conserved, ER lumenal, molecular chaperone, Lhs1/GRP170, selects αENaC, but not β- or γ-ENaC, for degradation when the ENaC subunits were individually expressed. We now find that when all three subunits are co-expressed, Lhs1-facilitated ERAD was blocked. To determine which domain-domain interactions between the ENaC subunits are critical for chaperone-dependent quality control, we employed a yeast model and expressed chimeric α/βENaC constructs in the context of the ENaC heterotrimer. We discovered that the βENaC transmembrane domain was sufficient to prevent the Lhs1-dependent degradation of the α-subunit in the context of the ENaC heterotrimer. Our work also found that Lhs1 delivers αENaC for proteasome-mediated degradation after the protein has become polyubiquitinated. These data indicate that the Lhs1 chaperone selectively recognizes an immature form of αENaC, one which has failed to correctly assemble with the other channel subunits via its transmembrane domain.
Collapse
Affiliation(s)
- Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Alexa S Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Megan E Yates
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - G Michael Preston
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Emily Cook
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Thomas R Kleyman
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| |
Collapse
|
5
|
Wojewoda M, Tyrankiewicz U, Gwozdz P, Skorka T, Jablonska M, Orzylowska A, Jasinski K, Jasztal A, Przyborowski K, Kostogrys RB, Zoladz JA, Chlopicki S. Exercise capacity and cardiac hemodynamic response in female ApoE/LDLR(-/-) mice: a paradox of preserved V'O2max and exercise capacity despite coronary atherosclerosis. Sci Rep 2016; 6:24714. [PMID: 27108697 PMCID: PMC4842974 DOI: 10.1038/srep24714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/04/2016] [Indexed: 11/16/2022] Open
Abstract
We assessed exercise performance, coronary blood flow and cardiac reserve of female ApoE/LDLR−/− mice with advanced atherosclerosis compared with age-matched, wild-type C57BL6/J mice. Exercise capacity was assessed as whole body maximal oxygen consumption (V’O2max), maximum running velocity (vmax) and maximum distance (DISTmax) during treadmill exercise. Cardiac systolic and diastolic function in basal conditions and in response to dobutamine (mimicking exercise-induced cardiac stress) were assessed by Magnetic Resonance Imaging (MRI) in vivo. Function of coronary circulation was assessed in isolated perfused hearts. In female ApoE/LDLR−/− mice V’O2max, vmax and DISTmax were not impaired as compared with C57BL6/J mice. Cardiac function at rest and systolic and diastolic cardiac reserve were also preserved in female ApoE/LDLR−/− mice as evidenced by preserved fractional area change and similar fall in systolic and end diastolic area after dobutamine. Moreover, endothelium-dependent responses of coronary circulation induced by bradykinin (Bk) and acetylcholine (ACh) were preserved, while endothelium-independent responses induced by NO-donors were augmented in female ApoE/LDLR−/− mice. Basal COX-2-dependent production of 6-keto-PGF1α was increased. Concluding, we suggest that robust compensatory mechanisms in coronary circulation involving PGI2- and NO-pathways may efficiently counterbalance coronary atherosclerosis-induced impairment in V’O2max and exercise capacity.
Collapse
Affiliation(s)
- M Wojewoda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - U Tyrankiewicz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland
| | - P Gwozdz
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - T Skorka
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland
| | - M Jablonska
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland
| | - A Orzylowska
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland
| | - K Jasinski
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland
| | - A Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - K Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - R B Kostogrys
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - J A Zoladz
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | - S Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
6
|
Yang KQ, Lu CX, Xiao Y, Liu YX, Jiang XJ, Zhang X, Zhou XL. A novel frameshift mutation of epithelial sodium channel β-subunit leads to Liddle syndrome in an isolated case. Clin Endocrinol (Oxf) 2015; 82:611-4. [PMID: 25378078 DOI: 10.1111/cen.12650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/23/2014] [Accepted: 10/28/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Liddle syndrome, an autosomal dominant form of monogenic hypertension, is attributed to mutations in the genes encoding β and γ subunits (SCNN1B and SCNN1G) of the epithelial sodium channel (ENaC). The aim of this study was to search for pathogenic mutations of SCNN1B and SCNN1G in an adolescent under the impression of Liddle syndrome and no family history of hypertension. DESIGN AND PATIENTS We screened the C-terminus of SCNN1B and SCNN1G in an adolescent with poorly controlled hypertension who was clinically diagnosed as having Liddle syndrome. We also screened for the mutation in his parents, 100 hypertensive patients and 100 controls. RESULTS Genetic analysis of SCNN1B revealed a frameshift mutation induced by insertion of an additional cytosine into a string of six located between codons 617 and 618, which is predicted to introduce a new termination codon at position 621 and produce a protein truncated by 20 amino acids. This frameshift mutation was not detected in the patient's parents, the 100 hypertensive patients or the 100 controls, indicating that this is a de novo mutation and not a common genetic polymorphism. There was no mutation of SCNN1G in any of the individuals examined. CONCLUSION Based on direct DNA sequencing, we identified a novel frameshift mutation in the βENaC gene in an isolated case of Liddle syndrome. Confirmation of the diagnosis and effective tailored treatment in the patient were achieved, implying that genetic testing is a useful tool to diagnose Liddle syndrome.
Collapse
Affiliation(s)
- Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Filova B, Malinova M, Babickova J, Tothova L, Ostatnikova D, Celec P, Hodosy J. Effects of testosterone and estradiol on anxiety and depressive-like behavior via a non-genomic pathway. Neurosci Bull 2015; 31:288-96. [PMID: 25754146 DOI: 10.1007/s12264-014-1510-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/01/2014] [Indexed: 12/25/2022] Open
Abstract
Besides their known slow genomic effects, testosterone and estradiol have rapid effects in the brain. However, their impact on mood-related behavior is not clear. The aim of this study was to investigate the non-genomic pathway of testosterone and estradiol in the amygdala in relation to anxiety and depressive-like behavior. Sham-operated and gonadectomized male rats (GDX) supplemented with testosterone propionate, estradiol, or olive oil were used. Five minutes after administration, anxiety and depression-like behavior were tested. Estradiol increased anxiolytic behavior in the open-field test compared to the GDX group, but administration of testosterone had no significant effect. Besides, c-Fos expression in the medial nucleus of the amygdala significantly increased after testosterone treatment compared to the GDX group, while no significant difference was observed in the central and the basolateral nuclei of the amygdala in the testosterone-treated group compared to the GDX group. In conclusion, estradiol had an anxiolytic effect via a rapid pathway, but no rapid effect of testosterone on anxiety was found. Further studies elucidating whether the rapid effect is mediated by a non-genomic pathway are needed.
Collapse
Affiliation(s)
- Barbora Filova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
8
|
Molecular genetics of Liddle's syndrome. Clin Chim Acta 2014; 436:202-6. [PMID: 24882431 DOI: 10.1016/j.cca.2014.05.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/11/2014] [Accepted: 05/15/2014] [Indexed: 01/04/2023]
Abstract
Liddle's syndrome, an autosomal dominant form of monogenic hypertension, is characterized by salt-sensitive hypertension with early penetrance, hypokalemia, metabolic alkalosis, suppression of plasma rennin activity and aldosterone secretion, and a clear-cut response to epithelial sodium channel (ENaC) blockers but not spironolactone therapy. Our understanding of ENaCs and Na(+) transport defects has expanded greatly over the past two decades and provides detailed insight into the molecular basis of Liddle's syndrome. In this review, we offer an overview of recent advances in understanding the molecular genetics of Liddle's syndrome, involving mutation analysis, molecular mechanisms and genetic testing. The ENaC in the distal nephron is composed of α, β and γ subunits that share similar structures. Mutations associated with Liddle's syndrome are positioned in either β or γ subunits and disturb or truncate a conserved proline-rich sequence (i.e., PY motif), leading to constitutive activation of the ENaC. Genetic testing has made it possible to make accurate diagnoses and develop tailored therapies for mutation carriers.
Collapse
|
9
|
Wang W, Putra A, Schools GP, Ma B, Chen H, Kaczmarek LK, Barhanin J, Lesage F, Zhou M. The contribution of TWIK-1 channels to astrocyte K(+) current is limited by retention in intracellular compartments. Front Cell Neurosci 2013; 7:246. [PMID: 24368895 PMCID: PMC3856854 DOI: 10.3389/fncel.2013.00246] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/18/2013] [Indexed: 12/04/2022] Open
Abstract
TWIK-1 two-pore domain K+ channels are expressed abundantly in astrocytes. In the present study, we examined the extent to which TWIK-1 contributes to the linear current-voltage (I–V) relationship (passive) K+ membrane conductance, a dominant electrophysiological feature of mature hippocampal astrocytes. Astrocytes from TWIK-1 knockout mice have a more negative resting potential than those from wild type animals and a reduction in both inward rectification and Cs+ permeability. Nevertheless, the overall whole-cell passive conductance is not altered significantly in TWIK-1 knockout astrocytes. The expression of Kir4.1 and TREK-1, two other major astrocytic K+ channels, or of other two-pore K+ channels is not altered in TWIK-1 knockout mice, suggesting that the mild effect of TWIK-1 knockout does not result from compensation by these channels. Fractionation experiments showed that TWIK-1 is primarily localized in intracellular cytoplasmic fractions (55%) and mildly hydrophobic internal compartment fractions (41%), with only 5% in fractions containing plasma membranes. Our study revealed that TWIK-1 proteins are mainly located in the intracellular compartments of hippocampal astrocyte under physiological condition, therefore a minimal contribution of TWIK-1 channels to whole-cell currents is likely attributable to a relatively low level presence of channels in the plasma membrane.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Adhytia Putra
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | | | - Baofeng Ma
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Haijun Chen
- Department of Biological Sciences, University at Albany, SUNY Albany, NY, USA
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine New Haven, CT, USA
| | - Jacques Barhanin
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis Valbonne, France
| | - Florian Lesage
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis Valbonne, France
| | - Min Zhou
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| |
Collapse
|
10
|
Buck TM, Plavchak L, Roy A, Donnelly BF, Kashlan OB, Kleyman TR, Subramanya AR, Brodsky JL. The Lhs1/GRP170 chaperones facilitate the endoplasmic reticulum-associated degradation of the epithelial sodium channel. J Biol Chem 2013; 288:18366-80. [PMID: 23645669 DOI: 10.1074/jbc.m113.469882] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial sodium channel, ENaC, plays a critical role in maintaining salt and water homeostasis, and not surprisingly defects in ENaC function are associated with disease. Like many other membrane-spanning proteins, this trimeric protein complex folds and assembles inefficiently in the endoplasmic reticulum (ER), which results in a substantial percentage of the channel being targeted for ER-associated degradation (ERAD). Because the spectrum of factors that facilitates the degradation of ENaC is incomplete, we developed yeast expression systems for each ENaC subunit. We discovered that a conserved Hsp70-like chaperone, Lhs1, is required for maximal turnover of the ENaC α subunit. By expressing Lhs1 ATP binding mutants, we also found that the nucleotide exchange properties of this chaperone are dispensable for ENaC degradation. Consistent with the precipitation of an Lhs1-αENaC complex, Lhs1 holdase activity was instead most likely required to support the ERAD of αENaC. Moreover, a complex containing the mammalian Lhs1 homolog GRP170 and αENaC co-precipitated, and GRP170 also facilitated ENaC degradation in human, HEK293 cells, and in a Xenopus oocyte expression system. In both yeast and higher cell types, the effect of Lhs1 on the ERAD of αENaC was selective for the unglycosylated form of the protein. These data establish the first evidence that Lhs1/Grp170 chaperones can act as mediators of ERAD substrate selection.
Collapse
Affiliation(s)
- Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Alli AA, Song JZ, Al-Khalili O, Bao HF, Ma HP, Alli AA, Eaton DC. Cathepsin B is secreted apically from Xenopus 2F3 cells and cleaves the epithelial sodium channel (ENaC) to increase its activity. J Biol Chem 2012; 287:30073-83. [PMID: 22782900 DOI: 10.1074/jbc.m111.338574] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial sodium channel (ENaC) plays an important role in regulating sodium balance, extracellular volume, and blood pressure. Evidence suggests the α and γ subunits of ENaC are cleaved during assembly before they are inserted into the apical membranes of epithelial cells, and maximal activity of ENaC depends on cleavage of the extracellular loops of α and γ subunits. Here, we report that Xenopus 2F3 cells apically express the cysteine protease cathepsin B, as indicated by two-dimensional gel electrophoresis and mass spectrometry analysis. Recombinant GST ENaC α, β, and γ subunit fusion proteins were expressed in Escherichia coli and then purified and recovered from bacterial inclusion bodies. In vitro cleavage studies revealed the full-length ENaC α subunit fusion protein was cleaved by active cathepsin B but not the full-length β or γ subunit fusion proteins. Both single channel patch clamp studies and short circuit current experiments show ENaC activity decreases with the application of a cathepsin B inhibitor directly onto the apical side of 2F3 cells. We suggest a role for the proteolytic cleavage of ENaC by cathepsin B, and we suggest two possible mechanisms by which cathepsin B could regulate ENaC. Cathepsin B may cleave ENaC extracellularly after being secreted or intracellularly, while ENaC is present in the Golgi or in recycling endosomes.
Collapse
Affiliation(s)
- Abdel A Alli
- Department of Physiology, Emory University School of Medicine and the Center for Cell and Molecular Signaling, Atlanta, GA 30345, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Rosenhouse‐Dantsker A, Mehta D, Levitan I. Regulation of Ion Channels by Membrane Lipids. Compr Physiol 2012; 2:31-68. [DOI: 10.1002/cphy.c110001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Butterworth MB. Regulation of the epithelial sodium channel (ENaC) by membrane trafficking. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1166-77. [PMID: 20347969 DOI: 10.1016/j.bbadis.2010.03.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/15/2010] [Accepted: 03/20/2010] [Indexed: 02/07/2023]
Abstract
The epithelial Na(+) channel (ENaC) is a major regulator of salt and water reabsorption in a number of epithelial tissues. Abnormalities in ENaC function have been directly linked to several human disease states including Liddle syndrome, psuedohypoaldosteronism, and cystic fibrosis and may be implicated in salt-sensitive hypertension. ENaC activity in epithelial cells is regulated both by open probability and channel number. This review focuses on the regulation of ENaC in the cells of the kidney cortical collecting duct by trafficking and recycling. The trafficking of ENaC is discussed in the broader context of epithelial cell vesicle trafficking. Well-characterized pathways and protein interactions elucidated using epithelial model cells are discussed, and the known overlap with ENaC regulation is highlighted. In following the life of ENaC in CCD epithelial cells the apical delivery, internalization, recycling, and destruction of the channel will be discussed. While a number of pathways presented still need to be linked to ENaC regulation and many details of the regulation of ENaC trafficking remain to be elucidated, knowledge of these mechanisms may provide further insights into ENaC activity in normal and disease states.
Collapse
Affiliation(s)
- Michael B Butterworth
- Department Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
14
|
Eaton DC, Malik B, Bao HF, Yu L, Jain L. Regulation of epithelial sodium channel trafficking by ubiquitination. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2010; 7:54-64. [PMID: 20160149 PMCID: PMC3137150 DOI: 10.1513/pats.200909-096js] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 11/02/2009] [Indexed: 01/13/2023]
Abstract
Amiloride-sensitive epithelial sodium (Na(+)) channels (ENaC) play a crucial role in Na(+) transport and fluid reabsorption in the kidney, lung, and colon. The magnitude of ENaC-mediated Na(+) transport in epithelial cells depends on the average open probability of the channels and the number of channels on the apical surface of epithelial cells. The number of channels in the apical membrane, in turn, depends upon a balance between the rate of ENaC insertion and the rate of removal from the apical membrane. ENaC is made up of three homologous subunits, alpha, beta, and gamma. The C-terminal domain of all three subunits is intracellular and contains a proline rich motif (PPxY). Mutations or deletion of this PPxY motif in the beta and gamma subunits prevent the binding of one isoform of a specific ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein (Nedd4-2) to the channel in vitro and in transfected cell systems, thereby impeding ubiquitin conjugation of the channel subunits. Ubiquitin conjugation would seem to imply that ENaC turnover is determined by the ubiquitin-proteasome system, but when MDCK cells are transfected with ENaC, ubiquitin conjugation apparently leads to lysosomal degradation. However, in untransfected epithelial cells (A6) expressing endogenous ENaC, ENaC appears to be degraded by the ubiquitin-proteasome system. Nonetheless, in both transfected and untransfected cells, the rate of ENaC degradation is apparently controlled by the rate of Nedd4-2-mediated ENaC ubiquitination. Controlling the rate of degradation is apparently important enough to have multiple, redundant pathways to control Nedd4-2 and ENaC ubiquitination.
Collapse
Affiliation(s)
- Douglas C Eaton
- Department of Physiology, Whitehead Biomedical Research Building, 615 Micheal Street, Suite 601, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
15
|
Abstract
A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K(+) channels, voltage-gated K(+) channels, Ca(+2) sensitive K(+) channels, voltage-gated Na(+) channels, N-type voltage-gated Ca(+2) channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na(+) channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K(+) channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed.
Collapse
Affiliation(s)
- Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | | | | | | |
Collapse
|
16
|
Remage-Healey L, Bass AH. Estradiol interacts with an opioidergic network to achieve rapid modulation of a vocal pattern generator. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 196:137-46. [PMID: 20035335 PMCID: PMC2809949 DOI: 10.1007/s00359-009-0500-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 12/12/2022]
Abstract
Estrogens rapidly regulate neuronal activity within seconds-to-minutes, yet it is unclear how estrogens interact with neural circuits to rapidly coordinate behavior. This study examines whether 17-beta-estradiol interacts with an opioidergic network to achieve rapid modulation of a vocal control circuit. Adult plainfin midshipman fish emit vocalizations that mainly differ in duration, and rhythmic activity of a hindbrain–spinal vocal pattern generator (VPG) directly establishes the temporal features of midshipman vocalizations. VPG activity is therefore predictive of natural calls, and ‘fictive calls’ can be elicited by electrical microstimulation of the VPG. Prior studies show that intramuscular estradiol injection rapidly (within 5 min) increases fictive call duration in midshipman. Here, we delivered opioid antagonists near the VPG prior to estradiol injection. Rapid estradiol actions on fictive calling were completely suppressed by the broad-spectrum opioid antagonist naloxone and the mu-opioid antagonist beta-funaltrexamine, but were unaffected by the kappa-opioid antagonist nor-binaltorphimine. Unexpectedly, prior to estradiol administration, all three opioid antagonists caused immediate, transient reductions in fictive call duration. Together, our results indicate that: (1) vocal activity is modulated by opioidergic networks, confirming hypotheses from birds and mammals, and (2) the rapid actions of estradiol on vocal patterning depend on interactions with a mu-opioid modulatory network.
Collapse
Affiliation(s)
- Luke Remage-Healey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
17
|
Lee IH, Campbell CR, Song SH, Day ML, Kumar S, Cook DI, Dinudom A. The activity of the epithelial sodium channels is regulated by caveolin-1 via a Nedd4-2-dependent mechanism. J Biol Chem 2009; 284:12663-9. [PMID: 19304660 DOI: 10.1074/jbc.m809737200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
It has recently been shown that the epithelial Na(+) channel (ENaC) is compartmentalized in caveolin-rich lipid rafts and that pharmacological depletion of membrane cholesterol, which disrupts lipid raft formation, decreases the activity of ENaC. Here we show, for the first time, that a signature protein of caveolae, caveolin-1 (Cav-1), down-regulates the activity and membrane surface expression of ENaC. Physical interaction between ENaC and Cav-1 was also confirmed in a coimmunoprecipitation assay. We found that the effect of Cav-1 on ENaC requires the activity of Nedd4-2, a ubiquitin protein ligase of the Nedd4 family, which is known to induce ubiquitination and internalization of ENaC. The effect of Cav-1 on ENaC requires the proline-rich motifs at the C termini of the beta- and gamma-subunits of ENaC, the binding motifs that mediate interaction with Nedd4-2. Taken together, our data suggest that Cav-1 inhibits the activity of ENaC by decreasing expression of ENaC at the cell membrane via a mechanism that involves the promotion of Nedd4-2-dependent internalization of the channel.
Collapse
Affiliation(s)
- Il-Ha Lee
- Discipline of Physiology, The Bosch Institute, Faculty of Medicine, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Lan C, Su TC, Chen SY, Lai JS. Effect of T'ai Chi Chuan Training on Cardiovascular Risk Factors in Dyslipidemic Patients. J Altern Complement Med 2008; 14:813-9. [DOI: 10.1089/acm.2008.0143] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ching Lan
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Ta-Chen Su
- Department of Internal Medicine (Cardiology), National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Ssu-Yuan Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Jin-Shin Lai
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| |
Collapse
|
19
|
de Lira CAB, Vancini RL, Ihara SSM, da Silva AC, Aboulafia J, Nouailhetas VLA. Aerobic exercise affects C57BL/6 murine intestinal contractile function. Eur J Appl Physiol 2008; 103:215-23. [DOI: 10.1007/s00421-008-0689-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2008] [Indexed: 01/22/2023]
|
20
|
Hill WG, Butterworth MB, Wang H, Edinger RS, Lebowitz J, Peters KW, Frizzell RA, Johnson JP. The epithelial sodium channel (ENaC) traffics to apical membrane in lipid rafts in mouse cortical collecting duct cells. J Biol Chem 2007; 282:37402-11. [PMID: 17932048 DOI: 10.1074/jbc.m704084200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously showed that ENaC is present in lipid rafts in A6 cells, a Xenopus kidney cell line. We now demonstrate that ENaC can be detected in lipid rafts in mouse cortical collecting duct ((MPK)CCD(14)) cells by detergent insolubility, buoyancy on density gradients using two distinct approaches, and colocalization with caveolin 1. Less than 30% of ENaC subunits were found in raft fractions. The channel subunits also colocalized on sucrose gradients with known vesicle targeting and fusion proteins syntaxin 1A, Vamp 2, and SNAP23. Hormonal stimulation of ENaC activity by either forskolin or aldosterone, short or long term, did not alter the lipid raft distribution of ENaC. Methyl-beta-cyclodextrin added apically to (MPK)CCD(14) cells resulted in a slow decline in amiloride-sensitive sodium transport with short circuit current reductions of 38.1 +/- 9.6% after 60 min. The slow decline in ENaC activity in response to apical cyclodextrin was identical to the rate of decline seen when protein synthesis was inhibited by cycloheximide. Apical biotinylation of (MPK)CCD(14) cells confirmed the loss of ENaC at the cell surface following cyclodextrin treatment. Acute stimulation of the recycling pool of ENaC was unaffected by apical cyclodextrin application. Expression of dominant negative caveolin isoforms (CAV1-eGFP and CAV3-DGV) which disrupt caveolae, reduced basal ENaC currents by 72.3 and 78.2%, respectively; but, as with cyclodextrin, the acute response to forskolin was unaffected. We conclude that ENaC is present in and regulated by lipid rafts. The data are consistent with a model in which rafts mediate the constitutive apical delivery of ENaC.
Collapse
Affiliation(s)
- Warren G Hill
- Division of Matrix Biology, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Peschel T, Sixt S, Beitz F, Sonnabend M, Muth G, Thiele H, Tarnok A, Schuler G, Niebauer J. High, but not moderate frequency and duration of exercise training induces downregulation of the expression of inflammatory and atherogenic adhesion molecules. ACTA ACUST UNITED AC 2007; 14:476-82. [PMID: 17568252 DOI: 10.1097/hjr.0b013e328167239d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lifestyle changes which include daily exercise training have been shown to slow the progression of coronary artery disease. We designed a study to examine the effects of a multifactorial intervention on atherogenic adhesion molecules on the surface of monocytes in patients with coronary artery disease. METHODS We randomized 39 patients with coronary artery disease to (i) an intervention program which consisted of 4 weeks of daily 6x15 min ergometer training at submaximal intensity in addition to a 1 h/week group exercise session, followed by 5 months of home-based ergometer training of 30 min/day again in addition to a 1 h/week group exercise session or (ii) conventional therapy. All patients received a statin. Monocyte-bound cellular adhesion molecules LFA-1 (CD11a), MAC-1 (CD11b), VLA-4 (CD49d) and L-selectin (CD62L) were assessed by fluorescence activated cell sorting analysis. RESULTS After 4 weeks the multifactorial intervention led to a significant improvement of maximal work capacity, lipid profile, body mass index, blood pressure, fasting glucose and hemoglobin A1c. This was associated with a reduced expression of MAC-1 and VLA-4. After 5 months of a home-based intervention the beneficial effects of the cardiovascular risk profile were still apparent, whereas the effects on the expression of adhesion molecules were blunted. CONCLUSION In patients treated with statins, 4 weeks of high frequency and long duration exercise training led to a diminished expression of atherogenic adhesion molecules MAC-1 und VLA-4. After 5 months of home-based exercise training of moderate frequency and duration, these effects were blunted. Our data suggest that our patients in cardiac rehabilitation programs might further benefit from the antiatherogenic effects of an even higher amount of exercise training.
Collapse
Affiliation(s)
- Thomas Peschel
- Department of Internal Medicine/Cardiology, University of Leipzig, Heart Center, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Huddleston GG, Paisley JC, Graham S, Grober MS, Clancy AN. Implants of estradiol conjugated to bovine serum albumin in the male rat medial preoptic area promote copulatory behavior. Neuroendocrinology 2007; 86:249-59. [PMID: 17726305 DOI: 10.1159/000107695] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 07/06/2007] [Indexed: 12/26/2022]
Abstract
The expression of mating behavior in male rats is dependent on estrogen-responsive neurons in the medial preoptic area (MPO). Previous reports showed that mating is attenuated if the aromatization of testosterone to estradiol (E2) is blocked in the MPO and that mating is maintained by MPO E2 implants. However, the mechanisms by which E2 exerts its action are not fully understood. It had been thought that E2 acted exclusively by binding to nuclear estrogen receptors to exert it effects; however, recent reports suggest that E2 also binds to membrane-associated receptors activating downstream intracellular cascade responses. In this study, we aimed to determine if an action of E2 at the cell surface is sufficient to support mating behavior. Therefore, either vehicle, E2, or E2 conjugated to bovine serum albumin (BSA-E2: a complex of E2 and a large protein that will not cross the plasma membrane, thereby restricting the action of E2 to cell surface signaling) was chronically administered bilaterally to the MPO of castrated, dihydrotestosterone-treated male rats. Mating behavior was supported by MPO BSA-E2 implants, suggesting that E2 operates in the MPO via a cell surface mechanism to facilitate male rat mating behavior.
Collapse
Affiliation(s)
- Gloria G Huddleston
- Department of Biology, Georgia State University, Atlanta, GA 30302-4010, USA
| | | | | | | | | |
Collapse
|
24
|
Dominguez-Salazar E, Shetty S, Rissman EF. Rapid neural Fos responses to oestradiol in oestrogen receptor alphabeta double knockout mice. J Neuroendocrinol 2006; 18:195-202. [PMID: 16454803 DOI: 10.1111/j.1365-2826.2005.01408.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The standard mode of action for oestradiol is via activation of nuclear oestrogen receptors (ERs), which initiate DNA transcription leading to protein formation. In the present study, we examined the rapid and potentially ER-independent action of oestradiol using Fos as a marker of neural activity. We assessed Fos immunoreactivity (ir) in brains of mice with functional versus nonfunctional ERs. Fos-ir was compared in brains of control mice that did and did not receive oestradiol treatment prior to sacrifice, and cell numbers in the preoptic area (POA), ventromedial nucleus of the hypothalamus (VMH), area 2 of cingulate cortex (CG2), granular layer of accessory olfactory bulb (Gr-AOB), olivary pretectal nucleus (OPT) and pyramidal layer of field CA3 of hippocampus (Py-CA3) were increased 90 min after oestradiol treatment. By contrast, in brains of double oestrogen receptor alphabeta knockout (ERalphabetaKO) female mice, no change in Fos-ir was noted after oestradiol treatment in the POA, VMH, Gr-AOB or Py-CA3, suggesting that these responses to oestradiol depend on ERalpha and/or ERbeta. However, Fos-ir was induced by oestradiol in the OPT and CG2 in ERalphabetaKO mice. These regions do not contain ERalpha-ir in control brains. In ERalphabetaKO brains as well, ERalpha-ir was absent, suggesting that the mutant ERalpha (E1) present in ERalphaKO brain is also absent in these regions. We speculate that oestradiol has rapid effects in the OPT and CG2 via a novel mechanism that does not require either classic oestrogen receptor.
Collapse
Affiliation(s)
- E Dominguez-Salazar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
25
|
Balut C, Steels P, Radu M, Ameloot M, Driessche WV, Jans D. Membrane cholesterol extraction decreases Na+transport in A6 renal epithelia. Am J Physiol Cell Physiol 2006; 290:C87-94. [PMID: 16107507 DOI: 10.1152/ajpcell.00184.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we have investigated the dependence of Na+transport regulation on membrane cholesterol content in A6 renal epithelia. We continuously monitored short-circuit current ( Isc), transepithelial conductance ( GT), and transepithelial capacitance ( CT) to evaluate the effects of cholesterol extraction from the apical and basolateral membranes in steady-state conditions and during activation with hyposmotic shock, oxytocin, and adenosine. Cholesterol extraction was achieved by perfusing the epithelia with methyl-β-cyclodextrin (mβCD) for 1 h. In steady-state conditions, apical membrane cholesterol extraction did not significantly affect the electrophysiological parameters; in contrast, marked reductions were observed during basolateral mβCD treatment. However, apical mβCD application hampered the responses of Iscand GTto hypotonicity, oxytocin, and adenosine. Analysis of the blocker-induced fluctuation in Iscdemonstrated that apical mβCD treatment decreased the epithelial Na+channel (ENaC) open probability ( Po) in the steady state as well as after activation of Na+transport by adenosine, whereas the density of conducting channels was not significantly changed as confirmed by CTmeasurements. Na+transport activation by hypotonicity was abolished during basolateral mβCD treatment as a result of reduced Na+/K+pump activity. On the basis of the findings in this study, we conclude that basolateral membrane cholesterol extraction reduces Na+/K+pump activity, whereas the reduced cholesterol content of the apical membranes affects the activation of Na+transport by reducing ENaC Po.
Collapse
Affiliation(s)
- Corina Balut
- Laboratory of Physiology, Hasselt Univ., Agoralaan 1D, B-3590 Diepenbeek, Belgium
| | | | | | | | | | | |
Collapse
|
26
|
Rochira V, Granata ARM, Madeo B, Zirilli L, Rossi G, Carani C. Estrogens in males: what have we learned in the last 10 years? Asian J Androl 2005; 7:3-20. [PMID: 15685347 DOI: 10.1111/j.1745-7262.2005.00018.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the role of estrogen in men, mainly in male reproduction. The continuing increase in data obtained, and recent discoveries in this area will enable a better understanding of male physiology; these, in turn, will have important clinical implications.
Collapse
Affiliation(s)
- Vincenzo Rochira
- Integrated Department of Medicine and Medical Specialties, University of Modena and Reggio Emilia, Modena 41100, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Rochat T, Lacroix JS, Jornot L. N-acetylcysteine inhibits Na+ absorption across human nasal epithelial cells. J Cell Physiol 2004; 201:106-16. [PMID: 15281093 DOI: 10.1002/jcp.20066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
N-acetylcysteine (NAC) is a widely used mucolytic drug in patients with a variety of respiratory disorders. The mechanism of action is based on rupture of the disulfide bridges of the high molecular glycoproteins present in the mucus, resulting in smaller subunits of the glycoproteins and reduced viscosity of the mucus. Because Na(+) absorption regulates airway surface liquid volume and thus the efficiency of mucociliary clearance, we asked whether NAC affects the bioelectric properties of human nasal epithelial cells. A 24-h basolateral treatment with 10 mM of NAC decreased the transepithelial potential difference and short-circuit current (I(SC)) by 40%, and reduced the amiloride-sensitive current by 50%, without affecting the transepithelial resistance. After permeabilization of the basolateral membranes of cells with amphotericin B in the presence of a mucosal-to-serosal Na(+) gradient (135:25 mM), NAC inhibited 45% of the amiloride-sensitive current. The Na(+)-K(+)-ATPase pump activity and the basolateral K(+) conductance were not affected by NAC treatment. NAC did not alter total cell mRNA and protein levels of alpha-epithelial Na(+) channel (EnaC) subunit, but reduced abundance of alpha-ENaC subunits in the apical cell membrane as quantified by biotinylation. This effect can be ascribed to the sulphydryl (SH) group of NAC, since N-acetylserine and S-carboxymethyl-l-cysteine were ineffective. Given the importance of epithelial Na(+) channels in controlling the thin layer of fluid that covers the surface of the airways, the increase in the fluidity of the airway mucus following NAC treatment in vivo might be in part related to downregulation of Na(+) absorption and consequently water transport.
Collapse
Affiliation(s)
- Thierry Rochat
- Respiratory Division, Clinic of Otorhinolaryngology, University Hospitals, Geneva, Switzerland
| | | | | |
Collapse
|
28
|
Abstract
In the past two decades, normal endothelial function has been identified as integral to vascular health. The endothelium produces numerous vasodilator and vasoconstrictor compounds that regulate vascular tone; the vasodilator, nitric oxide (NO), has additional antiatherogenic properties, is probably the most important and best characterised mediator, and its intrinsic vasodilator function is commonly used as a surrogate index of endothelial function. Many conditions, including atherosclerosis, diabetes mellitus and even vascular risk factors, are associated with endothelial dysfunction, which, in turn, correlates with cardiovascular mortality. Furthermore, clinical benefit and improved endothelial function tend to be associated in response to interventions. Shear stress on endothelial cells is a potent stimulus for NO production. Although the role of endothelium-derived NO in acute exercise has not been fully resolved, exercise training involving repetitive bouts of exercise over weeks or months up-regulates endothelial NO bioactivity. Animal studies have found improved endothelium-dependent vasodilation after as few as 7 days of exercise. Consequent changes in vasodilator function appear to persist for several weeks but may regress with long-term training, perhaps reflecting progression to structural adaptation which may, however, have been partly endothelium-dependent. The increase in blood flow, and change in haemodynamics that occur during acute exercise may, therefore, provide a stimulus for both acute and chronic changes in vascular function. Substantial differences within species and within the vasculature appear to exist. In humans, exercise training improves endothelium-dependent vasodilator function, not only as a localised phenomenon in the active muscle group, but also as a systemic response when a relatively large mass of muscle is activated regularly during an exercise training programme. Individuals with initially impaired endothelial function at baseline appear to be more responsive to exercise training than healthy individuals; that is, it is more difficult to improve already normal vascular function. While improvement is reflected in increased NO bioactivity, the detail of mechanisms, for example the relative importance of up-regulation of mediators and antioxidant effects, is unclear. Optimum training schedules, possible sequential changes and the duration of benefit under various conditions also remain largely unresolved. In summary, epidemiological evidence strongly suggests that regular exercise confers beneficial effects on cardiovascular health. Shear stress-mediated improvement in endothelial function provides one plausible explanation for the cardioprotective benefits of exercise training.
Collapse
Affiliation(s)
- Andrew Maiorana
- Department of Human Movement and Exercise Science, The University of Western Australia, Crawley, Western Australia, Australia.
| | | | | | | |
Collapse
|
29
|
Pynn M, Schäfer K, Konstantinides S, Halle M. Exercise training reduces neointimal growth and stabilizes vascular lesions developing after injury in apolipoprotein e-deficient mice. Circulation 2003; 109:386-92. [PMID: 14699007 DOI: 10.1161/01.cir.0000109500.03050.7c] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Population-based studies have shown that exercise reduces cardiovascular morbidity and mortality. However, it is unknown whether these effects are solely a result of risk factor modification or whether exercise directly affects the homeostasis of the vessel wall. METHODS AND RESULTS We subjected 19-week-old apolipoprotein E (apoE)-knockout mice (apoE(-/-); n=25) to a 6-week training program on a motorized treadmill. The control group consisted of 17 sedentary mice. After 3 weeks in the program, training and sedentary mice underwent carotid artery injury with ferric chloride. Training was then resumed for another 3 weeks. Exercise did not change body weight or lipid levels in apoE(-/-) mice but resulted in upregulated expression of nitric oxide synthase in the endothelium. Physical training did not significantly affect the thrombotic response to injury. However, morphometric analysis of vessels harvested 3 weeks after injury showed that neointima formation was reduced in the exercising group. This resulted in a lower intima/media ratio (0.29+/-0.03 versus 0.41+/-0.03 in sedentary mice; P=0.008) and less luminal stenosis (21+/-2.7% versus 33+/-2.3%; P=0.003). Importantly, exercise reduced the number of Mac-3-positive, oxidized LDL-containing macrophages in the vessel wall while increasing the content in collagen fibers (14.1+/-0.9% versus 4.8+/-0.8%; P<0.001). Plasminogen activator inhibitor-1, tissue factor, and fibrinogen were all significantly reduced in the lesions of trained mice. CONCLUSIONS In the apoE(-/-) mouse, exercise training reduces neointimal growth and stabilizes vascular lesions after injury. These effects appear to be at least partly independent of changes in lipid levels or the initial thrombotic response to injury.
Collapse
Affiliation(s)
- Marianne Pynn
- Georg August University of Goettingen, Department of Cardiology and Pulmonary Medicine, Robert-Koch-Strasse 40, D-37075 Goettingen, Germany
| | | | | | | |
Collapse
|
30
|
Kobayashi N, Tsuruya Y, Iwasawa T, Ikeda N, Hashimoto S, Yasu T, Ueba H, Kubo N, Fujii M, Kawakami M, Saito M. Exercise training in patients with chronic heart failure improves endothelial function predominantly in the trained extremities. Circ J 2003; 67:505-10. [PMID: 12808267 DOI: 10.1253/circj.67.505] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study investigates whether lower-limb dominant exercise training in patients with chronic heart failure (CHF) improves endothelial function primarily in the trained lower extremities or equally in the upper and lower extremities. Twenty-eight patients with CHF were randomized to the exercise or control group. The exercise group underwent cycle ergometer training for 3 months while controls continued an inactive sedentary lifestyle. Exercise capacity (6-min walk test) and flow-mediated vasodilation in the brachial and posterior tibial arteries were evaluated. After 3 months, walking performance increased only in the exercise group (488+/-16 to 501+/-14 m [control]; 497+/-23 to 567+/-39 m [exercise, p<0.05]). The flow-mediated vasodilation in the brachial arteries did not change in either group (4.2+/-0.5 to 4.5+/-0.4% [control]; 4.3+/-0.5 to 4.6+/-0.4% [exercise]), but that in the posterior tibial arteries increased only in the exercise group (4.1+/-0.5 to 4.1+/-0.3% [control]; 3.6+/-0.3 to 6.4+/-0.6% [exercise, p<0.01]). Cycle ergometer training improved flow-mediated vasodilation in the trained lower limbs, but not in the untrained upper limbs. Exercise training appears to correct endothelial dysfunction predominantly by a local effect in the trained extremities.
Collapse
Affiliation(s)
- Nobuhiko Kobayashi
- Cardiovascular Division, Omiya Medical Center, Jichi Medical School, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Peschel T, Niebauer J. Role of pro-atherogenic adhesion molecules and inflammatory cytokines in patients with coronary artery disease and diabetes mellitus type 2. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2003; 53:78-85. [PMID: 12717696 DOI: 10.1002/cyto.b.10026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Accelerated progression of atherosclerosis in coronary, carotid, cerebral, and peripheral arteries is a phenomenon observed in diabetes mellitus. Pathophysiologic mechanisms are slowly being understood. Pro-atherogenic adhesion molecules and inflammatory cytokines are involved in this process. This review addresses current concepts of atherogenesis and focuses on alterations of adhesion molecule and cytokine expression and their regulation in diabetic patients. Molecules are being discussed in both the normoglycemic and hyperglycemic states, with a focus on their atherogenic role in diabetes mellitus. Understanding the mechanisms that underlie disease progression will help to identify high-risk patients, which is a prerequisite for new treatment strategies aiming at an attenuation of disease progression in diabetic patients.
Collapse
|
32
|
Shlyonsky VG, Mies F, Sariban-Sohraby S. Epithelial sodium channel activity in detergent-resistant membrane microdomains. Am J Physiol Renal Physiol 2003; 284:F182-8. [PMID: 12388391 DOI: 10.1152/ajprenal.00216.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of epithelial Na(+) selective channels is modulated by various factors, with growing evidence that membrane lipids also participate in the regulation. In the present study, Triton X-100 extracts of whole cells and of apical membrane-enriched preparations from cultured A6 renal epithelial cells were floated on continuous-sucrose-density gradients. Na(+) channel protein, probed by immunostaining of Western blots, was detected in the high-density fractions of the gradients (between 18 and 30% sucrose), which contain the detergent-soluble material but also in the lighter, detergent-resistant 16% sucrose fraction. Single amiloride-sensitive Na(+) channel activity, recorded after incorporation of reconstituted proteoliposomes into lipid bilayers, was exclusively localized in the 16% sucrose fraction. In accordance with other studies, high- and low-density fractions of sucrose gradients likely represent membrane domains with different lipid contents. However, exposure of the cells to cholesterol-depleting or sphingomyelin-depleting agents did not affect transepithelial Na(+) current, single-Na(+) channel activity, or the expression of Na(+) channel protein. This is the first reconstitution study of native epithelial Na(+) channels, which suggests that functional channels are compartmentalized in discrete domains within the plane of the apical cell membrane.
Collapse
Affiliation(s)
- Vadim G Shlyonsky
- Laboratory of Physiology and Physiopathology, Université Libre de Bruxelles, Belgium
| | | | | |
Collapse
|
33
|
Affiliation(s)
- Kerry J Stewart
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA.
| | | | | | | |
Collapse
|
34
|
Abstract
Hormone replacement therapy is now the standard of care for amelioration of the symptoms of menopause and prevention of osteoporosis. More recently, it has been appreciated that hormone replacement may also have beneficial effects on the brain. This review will contrast the biologic data showing that estrogen has significant neuroprotectant effects on the brain, with data from cross-sectional and epidemiologic studies of women showing that hormone replacement may have beneficial effects for cognition in aging. Together, studies suggest that the temporal pattern of hormone replacement may be critical for maintaining cognitive health in aging.
Collapse
Affiliation(s)
- Jeri S Janowsky
- Departments of Neurology and Behavioral Neuroscience, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97201, USA.
| |
Collapse
|
35
|
Hill WG, An B, Johnson JP. Endogenously expressed epithelial sodium channel is present in lipid rafts in A6 cells. J Biol Chem 2002; 277:33541-4. [PMID: 12167633 DOI: 10.1074/jbc.c200309200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial sodium channel (ENaC) present in the kidney collecting duct, distal colon, and the lung is responsible for salt reabsorption and whole body volume regulation. It is composed of three homologous subunits, alpha, beta, and gamma, and mutations to these subunits can lead to the salt wasting disease pseudohypoaldosteronism type I, associated with decreased channel density at the plasma membrane or to the hypertensive disorder, Liddle's syndrome, in which channel residency time at the plasma membrane is enhanced. Regulation of ENaC trafficking and turnover is therefore critical to sodium homeostasis. In this study we examined whether ENaC is present in the cholesterol-enriched microdomains commonly called lipid rafts, in the endogenously expressing A6 cell line. We demonstrate that a fraction of alpha, beta, and gamma ENaC is present in detergent-insoluble membranes, that subunits exist in membranes that float on discontinuous sucrose density gradients, and that methyl-beta-cyclodextrin treatment causes a redistribution of ENaC subunits to higher density membranes. Furthermore, chronic aldosterone stimulation results in a shift in the membrane density of all three subunits. Biotinylation of apical membrane proteins revealed that ENaC is present in lipid rafts on the plasma membrane. In conclusion, these results show that ENaC is present in lipid rafts both intracellularly and on the cell surface. Raft association may be important for trafficking and/or function of the channel.
Collapse
Affiliation(s)
- Warren G Hill
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, A1222 Scaife Hall, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
36
|
Niebauer J, Tsao PS, Lin PS, Pratt RE, Cooke JP. Cholesterol-induced upregulation of angiotensin II and its effects on monocyte-endothelial interaction and superoxide production. Vasc Med 2002; 6:133-8. [PMID: 11789966 DOI: 10.1177/1358836x0100600302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Atherogenesis involves an early endothelial dysfunction hallmarked by elevated free radical production and increased adhesiveness for monocytes. It was hypothesized that activation of the tissue renin angiotensin system may contribute to the endothelial alteration. To test this hypothesis, thoracic aortae were isolated from normocholesterolemic (NC; n = 6) and hypercholesterolemic (HC; n = 6; diet: 0.5% cholesterol; 6 weeks) New Zealand white rabbits, and incubated for 2 h with the angiotensin II (Ang II) receptor antagonist Sar-1,Ile-8-Ang II, the antioxidant pyrolidine dithiocarbamate (PDTC) and the protein kinase C (PKC) antagonist staurosporin. Superoxide production from aortic segments was measured by lucigenin-enhanced chemiluminescence. In comparison to the normocholesterolemic state, hypercholesterolemia led to a significant increase in superoxide production (221 +/- 44%, p < 0.02); this was reduced by ex vivo treatment of the vessel segment with Ang II-antagonist (to 130 +/- 29%; p < 0.04 vs HC), or PKC-antagonist (to 86 +/- 26%; p < 0.001 vs HC), or PDTC (to 103 +/- 27%; p < 0.02 vs HC). Monocyte-endothelial interaction was assessed by functional binding assay. When compared to normocholesterolemic rabbits, hypercholesterolemia led to a twofold increase in monocyte binding (74 +/- 13 vs 37 +/- 4 monocytoid cells per high power field (m/hpf); p < 0.03). The Ang II-antagonist and the PKC-antagonist led to a normalization of monocyte-endothelial binding (Ang II-antagonist: 37 +/- 9 m/hpf; PKC-antagonist: 41 +/- 17 m/hpf; p < 0.05). In conclusion, these results indicate that hypercholesterolemia activates the tissue renin angiotensin system, which results in an increased endothelial production of superoxide and monocyte adhesiveness. Ang II-antagonist inhibits free radical production and monocyte adhesion through a mechanism which may include PKC.
Collapse
Affiliation(s)
- J Niebauer
- Division of Cardiovascular Medicine, Stanford University, CA 94305-5246, USA
| | | | | | | | | |
Collapse
|
37
|
Hanwell D, Ishikawa T, Saleki R, Rotin D. Trafficking and cell surface stability of the epithelial Na+ channel expressed in epithelial Madin-Darby canine kidney cells. J Biol Chem 2002; 277:9772-9. [PMID: 11773057 DOI: 10.1074/jbc.m110904200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apically located epithelial Na(+) channel (alphabetagamma-ENaC) plays a key role in the regulation of salt and fluid transport in the kidney and other epithelia, yet its mode of trafficking to the plasma membrane and its cell surface stability in mammalian cells are poorly understood. Because the expression of ENaC in native tissues/cells is very low, we generated epithelial Madin-Darby canine kidney (MDCK) cells stably expressing alphabetagamma-ENaC, where each subunit is tagged differentially at the intracellular C terminus and the beta-subunit is also Myc-tagged at the ectodomain (alpha(HA)beta(Myc,T7)gamma(FLAG)). ENaC expression in these cells was verified by immunoblotting with antibodies to the tags, and patch clamp analysis has confirmed that the tagged channel is functional. Moreover, using electron microscopy, we demonstrated apical, but not basal, membrane localization of ENaC in these cells. The glycosylation pattern of the intracellular pool of ENaC revealed peptide N-glycosidase F and endoglycosidase H sensitivity. Surprisingly, the cell surface pool of ENaC, analyzed by surface biotinylation, was also core glycosylated and lacked detectable endoglycosidase H-resistant channels. Extraction of the channel from cells in Triton X-100 demonstrated that both intracellular and cell surface pools of ENaC are largely soluble. Moreover, floatation assays to analyze the presence of ENaC in lipid rafts showed that both intracellular and cell surface pools of this channel are not associated with rafts. We have shown previously that the total cellular pool of ENaC is turned over rapidly (t(1/2) approximately 1-2 h). Using cycloheximide treatment and surface biotinylation we now demonstrate that the cell surface pool of ENaC has a similarly short half-life (t(1/2) approximately 1 h), unlike the long half-life reported recently for the Xenopus A6 cells. Collectively, these results help elucidate key aspects of ENaC trafficking and turnover rates in mammalian kidney epithelial cells.
Collapse
Affiliation(s)
- David Hanwell
- Hospital for Sick Children and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
38
|
Roselli CE, Klosterman S, Resko JA. Anatomic relationships between aromatase and androgen receptor mRNA expression in the hypothalamus and amygdala of adult male cynomolgus monkeys. J Comp Neurol 2001; 439:208-23. [PMID: 11596049 DOI: 10.1002/cne.1343] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study mapped the regional locations of cells expressing cytochrome P450 aromatase (P450AROM) and androgen receptor (AR) mRNAs in the adult male macaque hypothalamus and amygdala by in situ hybridization histochemistry using monkey-specific cRNA probes. High densities of P450AROM and AR mRNA-containing neurons were observed in discrete hypothalamic areas involved in the regulation of gonadotropin secretion and reproductive behavior. P450AROM mRNA-containing neurons were most abundant in the medial preoptic nucleus, bed nucleus of the stria terminalis, and anterior hypothalamic area, whereas AR mRNA-containing neurons were most numerous in the ventromedial nucleus, arcuate nucleus, and tuberomamillary nucleus. Moderate to heavily labeled P450AROM mRNA-containing cells were present in the cortical and medial amygdaloid nuclei, which are known to have strong reciprocal inputs with the hypothalamus. Heavily labeled P450AROM mRNA-containing cells were found in the accessory basal amygdala nucleus, which projects to the cingulate cortex and hippocampus, areas that are important in the expression of emotional behaviors and memory processing. In contrast to P450AROM, the highest density of AR mRNA labeling in the temporal lobe was associated with the cortical amygdaloid nucleus and the pyramidal cells of the hippocampus. All areas that contained P450AROM mRNA-expressing cells also contained AR mRNA-expressing cells, but there were areas in which AR mRNA was expressed but not P450AROM mRNA. The apparent relative differences in the expression of P450AROM and AR mRNA-containing neurons within the monkey brain suggests that T acts through different signaling pathways in specific brain areas or within different cells from the same region.
Collapse
Affiliation(s)
- C E Roselli
- Department of Physiology & Pharmacology, Oregon Health Science University, Portland, Oregon 97201-3098, USA.
| | | | | |
Collapse
|
39
|
Murphy AZ, Hoffman GE. Distribution of gonadal steroid receptor-containing neurons in the preoptic-periaqueductal gray-brainstem pathway: a potential circuit for the initiation of male sexual behavior. J Comp Neurol 2001; 438:191-212. [PMID: 11536188 DOI: 10.1002/cne.1309] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The present study used anterograde and retrograde tract tracing techniques to examine the organization of the medial preoptic-periaqueductal gray-nucleus paragigantocellularis pathway in the male rat. The location of neurons containing estrogen (alpha subtype; ER alpha) and androgen receptors (AR) were also examined. We report here that injection of the anterograde tracer biotinylated dextran amine (BDA) into the medial preoptic (MPO) produced dense labeling within the periaqueductal gray (PAG); anterogradely labeled fibers terminated in close juxtaposition to neurons retrogradely labeled from the nucleus paragigantocellularis (nPGi). Dual immunostaining for Fluoro-Gold (FG) and ER alpha or FG and AR showed that over one-third of MPO efferents to the PAG contain receptors for either estrogen or androgen. In addition, approximately 50% of PAG neurons retrogradely labeled from the nPGi were immunoreactive for either ER alpha or AR. These results are the first to establish an MPO-->PAG-->nPGi circuit and further indicate that gonadal steroids can influence neuronal synaptic activity within these sites. We reported previously that nPGi reticulospinal neurons terminate preferentially within the motoneuronal pools of the lumbosacral spinal cord that innervate the pelvic viscera. Together, we propose that the MPO-->PAG-->nPGi circuit forms the final common pathway whereby MPO neural output results in the initiation and maintenance of male copulatory reflexes.
Collapse
Affiliation(s)
- A Z Murphy
- Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
40
|
Abstract
The epithelial Na(+) channel (ENaC) plays a key role in the regulation of Na(+) and water absorption in several epithelia, including those of the distal nephron, distal colon, and lung. Accordingly, mutations in ENaC leading to reduced or increased channel activity cause human diseases such as pseudohypoaldosteronism type I or Liddle's syndrome, respectively. The gain of ENaC function in Liddle's syndrome is associated with increased activity and stability of the channel at the plasma membrane. Thus understanding the regulation of channel processing and trafficking to and stability at the cell surface is of fundamental importance. This review describes some of the recent advances in our understanding of ENaC trafficking, including the role of glycosylation, ENaC solubility in nonionic detergent, targeting signal(s) and hormones. It also describes the regulation of ENaC stability at the cell surface and the roles of the ubiquitin ligase Nedd4 (and ubiquitination) and clathrin-mediated endocytosis in that regulation.
Collapse
Affiliation(s)
- D Rotin
- Program in Cell Biology and Biochemistry, The Hospital for Sick Children, University of Toronto, 555 University Ave., Toronto, Ontario, Canada, M5G 1X8.
| | | | | |
Collapse
|
41
|
In vivo structure-function analyses of Caenorhabditis elegans MEC-4, a candidate mechanosensory ion channel subunit. J Neurosci 2000. [PMID: 10729338 DOI: 10.1523/jneurosci.20-07-02575.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanosensory signaling mediated by mechanically gated ion channels constitutes the basis for the senses of touch and hearing and contributes fundamentally to the development and homeostasis of all organisms. Despite this profound importance in biology, little is known of the molecular identities or functional requirements of mechanically gated ion channels. We report a genetically based structure-function analysis of the candidate mechanotransducing channel subunit MEC-4, a core component of a touch-sensing complex in Caenorhabditis elegans and a member of the DEG/ENaC superfamily. We identify molecular lesions in 40 EMS-induced mec-4 alleles and further probe residue and domain function using site-directed approaches. Our analysis highlights residues and subdomains critical for MEC-4 activity and suggests possible roles of these in channel assembly and/or function. We describe a class of substitutions that disrupt normal channel activity in touch transduction but remain permissive for neurotoxic channel hyperactivation, and we show that expression of an N-terminal MEC-4 fragment interferes with in vivo channel function. These data advance working models for the MEC-4 mechanotransducing channel and identify residues, unique to MEC-4 or the MEC-4 degenerin subfamily, that might be specifically required for mechanotransducing function. Because many other substitutions identified by our study affect residues conserved within the DEG/ENaC channel superfamily, this work also provides a broad view of structure-function relations in the superfamily as a whole. Because the C. elegans genome encodes representatives of a large number of eukaryotic channel classes, we suggest that similar genetic-based structure-activity studies might be generally applied to generate insight into the in vivo function of diverse channel types.
Collapse
|
42
|
Berdiev BK, Shlyonsky VG, Karlson KH, Stanton BA, Ismailov II. Gating of amiloride-sensitive Na(+) channels: subunit-subunit interactions and inhibition by the cystic fibrosis transmembrane conductance regulator. Biophys J 2000; 78:1881-94. [PMID: 10733968 PMCID: PMC1300782 DOI: 10.1016/s0006-3495(00)76737-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In search of the structural basis for gating of amiloride-sensitive Na(+) channels, kinetic properties of single homo and heterooligomeric ENaCs formed by the subunits with individual truncated cytoplasmic domains were studied in a cell-free planar lipid bilayer reconstitution system. Our results identify the N-terminus of the alpha-subunit as a major determinant of kinetic behavior of both homooligomeric and heterooligomeric ENaCs, although the carboxy-terminal domains of beta- and gamma-ENaC subunits play important role(s) in modulation of the kinetics of heterooligomeric channels. We also found that the cystic fibrosis transmembrane conductance regulator (CFTR) inhibits amiloride-sensitive channels, at least in part, by modulating their gating. Comparison of these data suggests that the modulatory effects of the beta- and gamma-ENaC subunits, and of the CFTR, may involve the same, or closely related, mechanism(s); namely, "locking" the heterooligomeric channels in their closed state. These mechanisms, however, do not completely override the gating mechanism of the alpha-channel.
Collapse
Affiliation(s)
- B K Berdiev
- Department of Physiology and Biophysics and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | | | |
Collapse
|
43
|
Kingwell BA. Nitric oxide as a metabolic regulator during exercise: effects of training in health and disease. Clin Exp Pharmacol Physiol 2000; 27:239-50. [PMID: 10779120 DOI: 10.1046/j.1440-1681.2000.03232.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Accumulating animal and human data suggest that nitric oxide (NO) is important for both coronary and peripheral haemodynamic control and metabolic regulation during performance of exercise. 2. While still controversial, NO of endothelial origin is thought to potentiate exercise-induced hyperaemia, both in the peripheral and coronary circulations. The mechanism of release may include both acetylcholine derived from the neuromuscular junction and vascular shear stress. 3. A splice variant of neuronal nitric oxide synthase (NOS), nNOSmicro, incorporating an extra 34 amino acids, is expressed in human skeletal muscle. In addition to being a potential modulator of blood flow, skeletal muscle-derived NO is an important regulator of muscle contraction and metabolism. In particular, recent human data indicate that NO modulates muscle glucose uptake during exercise, independently of blood flow. 4. Exercise training in healthy individuals promotes adaptations in the various NO systems, which can increase NO bioavailability through a variety of mechanisms, including increased NOS enzyme expression and activity. Such adaptations likely contribute to increased exercise capacity and protection from cardiovascular events. 5. Cardiovascular risk factors, including hypercholesterolaemia, hypertension, diabetes and smoking, as well as established disease, are associated with impairment of the various NO systems. Given that NO is an important signalling mechanism during exercise, such impairment may contribute to limitations in exercise capacity through inadequate coronary or peripheral blood delivery and via metabolic effects. 6. Exercise training in individuals with elevated cardiovascular risk or established disease can increase NO bioavailability and may represent an important mechanism by which exercise training provides benefit in the setting of secondary prevention.
Collapse
Affiliation(s)
- B A Kingwell
- Alfred and Baker Medical Unit, Baker Medical Research Institute, Prahran, Victoria, Australia.
| |
Collapse
|