1
|
Luo M, Jin T, Fang Y, Chen F, Zhu L, Bai J, Ding J. Signaling Pathways Involved in Acute Pancreatitis. J Inflamm Res 2025; 18:2287-2303. [PMID: 40230438 PMCID: PMC11995411 DOI: 10.2147/jir.s485804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/25/2025] [Indexed: 04/16/2025] Open
Abstract
Acute pancreatitis (AP) is a common digestive emergency with high morbidity and mortality. Over the past decade, significant progress has been made in understanding the mechanisms of AP, including oxidative stress, disruptions in calcium homeostasis, endoplasmic reticulum stress, inflammatory responses, and various forms of cell death. This review provides an overview of the typical signaling pathways involved and proposes the latest clinical translation prospects. These strategies are important for the early management of AP, preventing multi-organ injury, and improving the overall prognosis of the disease.
Collapse
Affiliation(s)
- Mengchen Luo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Ting Jin
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Yi Fang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Feng Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
2
|
Tsomidis I, Voumvouraki A, Kouroumalis E. The Pathogenesis of Pancreatitis and the Role of Autophagy. GASTROENTEROLOGY INSIGHTS 2024; 15:303-341. [DOI: 10.3390/gastroent15020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The pathogenesis of acute and chronic pancreatitis has recently evolved as new findings demonstrate a complex mechanism operating through various pathways. In this review, the current evidence indicating that several mechanisms act in concert to induce and perpetuate pancreatitis were presented. As autophagy is now considered a fundamental mechanism in the pathophysiology of both acute and chronic pancreatitis, the fundamentals of the autophagy pathway were discussed to allow for a better understanding of the pathophysiological mechanisms of pancreatitis. The various aspects of pathogenesis, including trypsinogen activation, ER stress and mitochondrial dysfunction, the implications of inflammation, and macrophage involvement in innate immunity, as well as the significance of pancreatic stellate cells in the development of fibrosis, were also analyzed. Recent findings on exosomes and the miRNA regulatory role were also presented. Finally, the role of autophagy in the protection and aggravation of pancreatitis and possible therapeutic implications were reviewed.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| |
Collapse
|
3
|
Deng W, Cao Z, Dong R, Yan Y, Jiang Q. Irisin inhibits CCK-8-induced TNF-α production via integrin αVβ5-NF-κB signaling pathways in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109245. [PMID: 38000652 DOI: 10.1016/j.fsi.2023.109245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Irisin, a secreted myokine generated by fibronectin type III domain-containing protein 5, has recently shown the potential to alleviate inflammation. Cholecystokinin-octapeptide (CCK-8) is closely associated with the inflammatory factor TNF-α, a central cytokine in inflammatory reactions. However, the interactions between irisin and CCK-8 in regulating TNF-α production and the underlying mechanism have not yet been elucidated. In the present study, irisin treatment inhibited the basal and the CCK-8-induced TNF-α production in vivo. Additionally, neutralizing circulating irisin using an irisin antiserum significantly augmented the CCK-8-induced stimulation of TNF-α levels. Moreover, the incubation of head kidney cells with irisin or CCK-8 has opposite effects on TNF-α secretion. Notably, irisin treatment inhibited basal and CCK-8-stimulated TNF-α release and gene transcription in head kidney cells. Mechanistically, the inhibitory actions of irisin on basal and CCK-8-induced TNF-α production could be negated by co-administered with the selective integrin αVβ5 inhibitor cilengitide. In addition, the inhibitory effect of irisin on basal and CCK-8-triggered TNF-α production could be abolished by the inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway. Furthermore, irisin impeded CCK-8-induced phosphorylation and degradation of IκBα, simultaneously inhibiting NF-κB phosphorylation, preventing its translocation into the nucleus, and suppressing its DNA-binding activity induced by CCK-8. Collectively, these results suggest that the inhibitory effect of irisin on TNF-α production caused by CCK-8 is mediated via the integrin αVβ5-NF-κB signaling pathways in tilapia.
Collapse
Affiliation(s)
- Wenjun Deng
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Zhikai Cao
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Rui Dong
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yisha Yan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Quan Jiang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
| |
Collapse
|
4
|
Elemam NM, Talaat IM, Maghazachi AA. CXCL10 Chemokine: A Critical Player in RNA and DNA Viral Infections. Viruses 2022; 14:2445. [PMID: 36366543 PMCID: PMC9696077 DOI: 10.3390/v14112445] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Chemokines constitute a group of small, secreted proteins that regulate leukocyte migration and contribute to their activation. Chemokines are crucial inflammatory mediators that play a key role in managing viral infections, during which the profile of chemokine expression helps shape the immune response and regulate viral clearance, improving clinical outcome. In particular, the chemokine ligand CXCL10 and its receptor CXCR3 were explored in a plethora of RNA and DNA viral infections. In this review, we highlight the expression profile and role of the CXCL10/CXCR3 axis in the host defense against a variety of RNA and DNA viral infections. We also discuss the interactions among viruses and host cells that trigger CXCL10 expression, as well as the signaling cascades induced in CXCR3 positive cells.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman Mamdouh Talaat
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Azzam A. Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
5
|
A review of the rationale for the testing of the calcineurin inhibitor tacrolimus for post-ERCP pancreatitis prevention. Pancreatology 2022; 22:678-682. [PMID: 35872075 DOI: 10.1016/j.pan.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/11/2022]
Abstract
Endoscopic retrograde cholangiopancreatography (ERCP) is commonly performed for the management of pancreaticobiliary disorders. The most troublesome ERCP-associated adverse event is post-ERCP pancreatitis (PEP), which occurs in up to 15% of all patients undergoing ERCP. A substantial body of preclinical data support a mechanistic rationale for calcineurin inhibitors in preventing PEP. The findings are coupled with recent clinical data suggesting lower rates of PEP in patients who concurrently use the calcineurin inhibitor tacrolimus (e.g., solid organ transplant recipients). In this review, we will firstly summarize data in support of testing the use of tacrolimus for PEP prophylaxis, either in combination with rectal indomethacin or by itself. Secondly, we propose that administering tacrolimus through the rectal route could be favorable for PEP prophylaxis over other routes of administration.
Collapse
|
6
|
Understanding Necroptosis in Pancreatic Diseases. Biomolecules 2022; 12:biom12060828. [PMID: 35740953 PMCID: PMC9221205 DOI: 10.3390/biom12060828] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Intermediate between apoptosis and necrosis, necroptosis is a regulated caspase-independent programmed cell death that induces an inflammatory response and mediates cancer development. As our understanding improves, its role in the physiopathology of numerous diseases, including pancreatic diseases, has been reconsidered, and especially in pancreatitis and pancreatic cancer. However, the exact pathogenesis remains elusive, even though some studies have been conducted on these diseases. Its unique mechanisms of action in diseases are expected to bring prospects for the treatment of pancreatic diseases. Therefore, it is imperative to further explore its molecular mechanism in pancreatic diseases in order to identify novel therapeutic options. This article introduces recent related research on necroptosis and pancreatic diseases, explores necroptosis-related molecular pathways, and provides a theoretical foundation for new therapeutic targets for pancreatic diseases.
Collapse
|
7
|
Wang Y, Li N, Wang Y, Zheng G, An J, Liu C, Wang Y, Liu Q. NF-κB/p65 Competes With Peroxisome Proliferator-Activated Receptor Gamma for Transient Receptor Potential Channel 6 in Hypoxia-Induced Human Pulmonary Arterial Smooth Muscle Cells. Front Cell Dev Biol 2021; 9:656625. [PMID: 34950652 PMCID: PMC8688744 DOI: 10.3389/fcell.2021.656625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Peroxisome proliferator-activated receptor gamma (PPARγ) has an anti-proliferation effect on pulmonary arterial smooth muscle cells (PASMCs) via the transient receptor potential channel (TRPC) and protects against pulmonary artery hypertension (PAH), whereas nuclear factor-kappa B (NF-κB) has pro-proliferation and pro-inflammation effects, which contributes to PAH. However, the association between them in PAH pathology remains unclear. Therefore, this study aimed to investigate this association and the mechanisms underlying TRPC1/6 signaling-mediated PAH. Methods: Human pulmonary arterial smooth muscle cells (hPASMCs) were transfected with p65 overexpressing (pcDNA-p65) and interfering plasmids (shp65) and incubated in normal and hypoxic conditions (4% O2 and 72 h). The effects of hypoxia and p65 expression on cell proliferation, invasion, apoptosis, [Ca2+]i, PPARγ, and TRPC1/6 expression were determined using Cell Counting Kit-8 (CCK-8), Transwell, Annexin V/PI, Fura-2/AM, and western blotting, respectively. In addition, the binding of p65 or PPARγ proteins to the TRPC6 promoter was validated using a dual-luciferase report assay, chromatin-immunoprecipitation-polymerase chain reaction (ChIP-PCR), and electrophoretic mobility shift assay (EMSA). Results: Hypoxia inhibited hPASMC apoptosis and promoted cell proliferation and invasion. Furthermore, it increased [Ca2+]i and the expression of TRPC1/6, p65, and Bcl-2 proteins. Moreover, pcDNA-p65 had similar effects on hypoxia treatment by increasing TRPC1/6 expression, [Ca2+]i, hPASMC proliferation, and invasion. The dual-luciferase report and ChIP-PCR assays revealed three p65 binding sites and two PPARγ binding sites on the promoter region of TRPC6. In addition, hypoxia treatment and shPPARγ promoted the binding of p65 to the TRPC6 promoter, whereas shp65 promoted the binding of PPARγ to the TRPC6 promoter. Conclusion: Competitive binding of NF-κB p65 and PPARγ to TRPC6 produced an anti-PAH effect.
Collapse
Affiliation(s)
- Yan Wang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Naijian Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingfeng Wang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- Department of Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
- *Correspondence: Yingfeng Wang,
| | - Guobing Zheng
- Prenatal Diagnosis Unit, Boai Hospital of Zhongshan, Zhongshan, China
| | - Jing An
- Department of Academic Research Office, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Chang Liu
- Department of Scientific Research Center, Southern Medical University, Guangzhou, China
| | - Yajie Wang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
- Southern Medical University Institute for Global Health and Sexually Transmitted Diseases, Guangzhou, China
| | - Qicai Liu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
The Involvement of CXC Motif Chemokine Ligand 10 (CXCL10) and Its Related Chemokines in the Pathogenesis of Coronary Artery Disease and in the COVID-19 Vaccination: A Narrative Review. Vaccines (Basel) 2021; 9:vaccines9111224. [PMID: 34835155 PMCID: PMC8623875 DOI: 10.3390/vaccines9111224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Coronary artery disease (CAD) and coronary heart disease (CHD) constitute two of the leading causes of death in Europe, USA and the rest of the world. According to the latest reports of the Iranian National Health Ministry, CAD is the main cause of death in Iranian patients with an age over 35 years despite a significant reduction in mortality due to early interventional treatments in the context of an acute coronary syndrome (ACS). Inflammation plays a fundamental role in coronary atherogenesis, atherosclerotic plaque formation, acute coronary thrombosis and CAD establishment. Chemokines are well-recognized mediators of inflammation involved in several bio-functions such as leucocyte migration in response to inflammatory signals and oxidative vascular injury. Different chemokines serve as chemo-attractants for a wide variety of cell types including immune cells. CXC motif chemokine ligand 10 (CXCL10), also known as interferon gamma-induced protein 10 (IP-10/CXLC10), is a chemokine with inflammatory features whereas CXC chemokine receptor 3 (CXCR3) serves as a shared receptor for CXCL9, 10 and 11. These chemokines mediate immune responses through the activation and recruitment of leukocytes, eosinophils, monocytes and natural killer (NK) cells. CXCL10, interleukin (IL-15) and interferon (IFN-g) are increased after a COVID-19 vaccination with a BNT162b2 mRNA (Pfizer/BioNTech) vaccine and are enriched by tumor necrosis factor alpha (TNF-α) and IL-6 after the second vaccination. The aim of the present study is the presentation of the elucidation of the crucial role of CXCL10 in the patho-physiology and pathogenesis of CAD and in identifying markers associated with the vaccination resulting in antibody development.
Collapse
|
9
|
Egberts JH, Raza GS, Wilgus C, Teyssen S, Kiehne K, Herzig KH. Release of Cholecystokinin from Rat Intestinal Mucosal Cells and the Enteroendocrine Cell Line STC-1 in Response to Maleic and Succinic Acid, Fermentation Products of Alcoholic Beverages. Int J Mol Sci 2020; 21:ijms21020589. [PMID: 31963306 PMCID: PMC7013850 DOI: 10.3390/ijms21020589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Alcoholic beverages stimulate pancreatic enzyme secretions by inducing cholecystokinin (CCK) release. CCK is the major stimulatory hormone of pancreatic exocrine secretions, secreted from enteroendocrine I-cells of the intestine. Fermentation products of alcoholic beverages, such as maleic and succinic acids, influence gastric acid secretions. We hypothesize that maleic and succinic acids stimulate pancreatic exocrine secretions during beer and wine ingestion by increasing CCK secretions. Therefore, the effects of maleic and succinic acids on CCK release were studied in duodenal mucosal cells and the enteroendocrine cell line STC-1. Mucosal cells were perfused for 30 min with 5 min sampling intervals, STC-1 cells were studied under static incubation for 15 min, and supernatants were collected for CCK measurements. Succinate and maleate-induced CCK release were investigated. Succinate and maleate doses dependently stimulated CCK secretions from mucosal cells and STC-1 cells. Diltiazem, a calcium channel blocker, significantly inhibited succinate and maleate-induced CCK secretions from mucosal cells and STC-1 cells. Maleate and succinate did not show cytotoxicity in STC-1 cells. Our results indicate that succinate and maleate are novel CCK-releasing factors in fermented alcoholic beverages and could contribute to pancreatic exocrine secretions and their pathophysiology.
Collapse
Affiliation(s)
- Jan-Hendrik Egberts
- University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (J.-H.E.); (C.W.); (K.K.)
| | - Ghulam Shere Raza
- Research Unit of Biomedicine, University of Oulu, 90014 Oulu, Finland;
| | - Cornelia Wilgus
- University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (J.-H.E.); (C.W.); (K.K.)
| | | | - Karlheinz Kiehne
- University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (J.-H.E.); (C.W.); (K.K.)
| | - Karl-Heinz Herzig
- University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (J.-H.E.); (C.W.); (K.K.)
- Research Unit of Biomedicine, University of Oulu, 90014 Oulu, Finland;
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Medical Research Center Oulu and Oulu University Hospital, 90014 Oulu, Finland
- Correspondence:
| |
Collapse
|
10
|
Effect of Docosahexaenoic Acid on Ca 2+ Signaling Pathways in Cerulein-Treated Pancreatic Acinar Cells, Determined by RNA-Sequencing Analysis. Nutrients 2019; 11:nu11071445. [PMID: 31248019 PMCID: PMC6682875 DOI: 10.3390/nu11071445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/06/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022] Open
Abstract
Intracellular Ca2+ homeostasis is commonly disrupted in acute pancreatitis. Sustained Ca2+ release from internal stores in pancreatic acinar cells (PACs), mediated by inositol triphosphate receptor (IP3R) and the ryanodine receptor (RyR), plays a key role in the initiation and propagation of acute pancreatitis. Pancreatitis induced by cerulein, an analogue of cholecystokinin, causes premature activation of digestive enzymes and enhanced accumulation of cytokines and Ca2+ in the pancreas and, as such, it is a good model of acute pancreatitis. High concentrations of the omega-3 fatty acid docosahexaenoic acid (DHA) inhibit inflammatory signaling pathways and cytokine expression in PACs treated with cerulein. In the present study, we determined the effect of DHA on key regulators of Ca2+ signaling in cerulein-treated pancreatic acinar AR42 J cells. The results of RNA-Sequencing (RNA-Seq) analysis showed that cerulein up-regulates the expression of IP3R1 and RyR2 genes, and that pretreatment with DHA blocks these effects. The results of real-time PCR confirmed that DHA inhibits cerulein-induced IP3R1 and RyR2 gene expression, and demonstrated that DHA pre-treatment decreases the expression of the Relb gene, which encodes a component of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcriptional activator complex, and the c-fos gene, which encodes a component of activator protein-1 (AP-1) transcriptional activator complex. Taken together, DHA inhibits mRNA expression of IP3R1, RyR2, Relb, and c-fos, which is related to Ca2+ network in cerulein-stimulated PACs.
Collapse
|
11
|
Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Tóth M. Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology 2019; 156:1951-1968.e1. [PMID: 30660731 PMCID: PMC6903413 DOI: 10.1053/j.gastro.2018.11.081] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
Since the discovery of the first trypsinogen mutation in families with hereditary pancreatitis, pancreatic genetics has made rapid progress. The identification of mutations in genes involved in the digestive protease-antiprotease pathway has lent additional support to the notion that pancreatitis is a disease of autodigestion. Clinical and experimental observations have provided compelling evidence that premature intrapancreatic activation of digestive proteases is critical in pancreatitis onset. However, disease course and severity are mostly governed by inflammatory cells that drive local and systemic immune responses. In this article, we review the genetics, cell biology, and immunology of pancreatitis with a focus on protease activation pathways and other early events.
Collapse
Affiliation(s)
- Julia Mayerle
- Medical Department II, University Hospital, LMU, Munich, Germany,Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Eszter Hegyi
- Institute for Translational Medicine, University of Pécs, Hungary
| | - Georg Beyer
- Medical Department II, University Hospital, LMU, Munich, Germany
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118
| |
Collapse
|
12
|
Jeong YK, Lee S, Lim JW, Kim H. Docosahexaenoic Acid Inhibits Cerulein-Induced Acute Pancreatitis in Rats. Nutrients 2017; 9:E744. [PMID: 28704954 PMCID: PMC5537858 DOI: 10.3390/nu9070744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is an important regulator in the pathogenesis of acute pancreatitis (AP). Reactive oxygen species induce activation of inflammatory cascades, inflammatory cell recruitment, and tissue damage. NF-κB regulates inflammatory cytokine gene expression, which induces an acute, edematous form of pancreatitis. Protein kinase C δ (PKCδ) activates NF-κB as shown in a mouse model of cerulein-induced AP. Docosahexaenoic acid (DHA), an ω-3 fatty acid, exerts anti-inflammatory and antioxidant effects in various cells and tissues. This study investigated whether DHA inhibits cerulein-induced AP in rats by assessing pancreatic edema, myeloperoxidase activity, levels of lipid peroxide and IL-6, activation of NF-κB and PKCδ, and by histologic observation. AP was induced by intraperitoneal injection (i.p.) of cerulein (50 μg/kg) every hour for 7 h. DHA (13 mg/kg) was administered i.p. for three days before AP induction. Pretreatment with DHA reduced cerulein-induced activation of NF-κB, PKCδ, and IL-6 in pancreatic tissues of rats. DHA suppressed pancreatic edema and decreased the abundance of lipid peroxide, myeloperoxidase activity, and inflammatory cell infiltration into the pancreatic tissues of cerulein-stimulated rats. Therefore, DHA may help prevent the development of pancreatitis by suppressing the activation of NF-κB and PKCδ, expression of IL-6, and oxidative damage to the pancreas.
Collapse
Affiliation(s)
- Yoo Kyung Jeong
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Sle Lee
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
13
|
Díaz-Rúa R, García-Ruiz E, Caimari A, Palou A, Oliver P. Sustained exposure to diets with an unbalanced macronutrient proportion alters key genes involved in energy homeostasis and obesity-related metabolic parameters in rats. Food Funct 2015; 5:3117-31. [PMID: 25266916 DOI: 10.1039/c4fo00429a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have investigated the effects of long term intake of two unbalanced diets (rich in fat -HF- or protein -HP-) administered under isocaloric conditions to a control balanced diet (pair-feeding) to adult rats. Isocaloric intake of a HF diet did not affect the body weight but increased adiposity, liver-fat deposition, and induced insulin resistance. Gene expression changes in the liver and adipose tissue (increased lipolytic and decreased lipogenic gene expression) could try to compensate for increased adiposity. The HP diet decreased caloric intake, the body weight, the size of subcutaneous adipocytes, and circulating cholesterol. Higher insulin levels apparently not related to insulin resistance were observed. Changes at the gene expression level reflected an adaptation to lower diet carbohydrate content and to the use of amino acids as the energy source. The kidney size increased in HP-fed animals but serum creatinine was not affected. Circulating TNF-alpha levels were higher in both dietary models. Thus, a long-term increase in dietary fat proportion produces alterations related to metabolic syndrome even in the absence of increased body weight, whereas an increase in diet protein content reduces the body weight but alters metabolic parameters and kidney size which could be linked to an increased risk of suffering from different pathologies.
Collapse
Affiliation(s)
- Rubén Díaz-Rúa
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain.
| | | | | | | | | |
Collapse
|
14
|
Bhatia V, Rastellini C, Han S, Aronson JF, Greeley GH, Falzon M. Acinar cell-specific knockout of the PTHrP gene decreases the proinflammatory and profibrotic responses in pancreatitis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G533-49. [PMID: 25035110 PMCID: PMC4154118 DOI: 10.1152/ajpgi.00428.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatitis is a necroinflammatory disease with acute and chronic manifestations. Accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic pancreatitis (CP). Pancreatic parathyroid hormone-related protein (PTHrP) levels are elevated in a mouse model of cerulein-induced AP. Here, we show elevated PTHrP levels in mouse models of pancreatitis induced by chronic cerulein administration and pancreatic duct ligation. Because acinar cells play a major role in the pathophysiology of pancreatitis, mice with acinar cell-specific targeted disruption of the Pthrp gene (PTHrP(Δacinar)) were generated to assess the role of acinar cell-secreted PTHrP in pancreatitis. These mice were generated using Cre-LoxP technology and the acinar cell-specific elastase promoter. PTHrP(Δacinar) exerted protective effects in cerulein and pancreatic duct ligation models, evident as decreased edema, histological damage, amylase secretion, pancreatic stellate cell (PSC) activation, and extracellular matrix deposition. Treating acinar cells in vitro with cerulein increased IL-6 expression and NF-κB activity; these effects were attenuated in PTHrP(Δacinar) cells, as were the cerulein- and carbachol-induced elevations in amylase secretion. The cerulein-induced upregulation of procollagen I expression was lost in PSCs from PTHrP(Δacinar) mice. PTHrP immunostaining was elevated in human CP sections. The cerulein-induced upregulation of IL-6 and ICAM-1 (human acinar cells) and procollagen I (human PSCs) was suppressed by pretreatment with the PTH1R antagonist, PTHrP (7-34). These findings establish PTHrP as a novel mediator of inflammation and fibrosis associated with CP. Acinar cell-secreted PTHrP modulates acinar cell function via its effects on proinflammatory cytokine release and functions via a paracrine pathway to activate PSCs.
Collapse
Affiliation(s)
- Vandanajay Bhatia
- 1Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas;
| | | | - Song Han
- 2Department of Surgery, University of Texas Medical Branch, Galveston, Texas;
| | - Judith F. Aronson
- 3Department of Pathology, University of Texas Medical Branch, Galveston, Texas; and
| | - George H. Greeley
- 2Department of Surgery, University of Texas Medical Branch, Galveston, Texas;
| | - Miriam Falzon
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas; Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
15
|
Orabi AI, Muili KA, Javed TA, Jin S, Jayaraman T, Lund FE, Husain SZ. Cluster of differentiation 38 (CD38) mediates bile acid-induced acinar cell injury and pancreatitis through cyclic ADP-ribose and intracellular calcium release. J Biol Chem 2013; 288:27128-27137. [PMID: 23940051 DOI: 10.1074/jbc.m113.494534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aberrant Ca(2+) signals within pancreatic acinar cells are an early and critical feature in acute pancreatitis, yet it is unclear how these signals are generated. An important mediator of the aberrant Ca(2+) signals due to bile acid exposure is the intracellular Ca(2+) channel ryanodine receptor. One putative activator of the ryanodine receptor is the nucleotide second messenger cyclic ADP-ribose (cADPR), which is generated by an ectoenzyme ADP-ribosyl cyclase, CD38. In this study, we examined the role of CD38 and cADPR in acinar cell Ca(2+) signals and acinar injury due to bile acids using pharmacologic inhibitors of CD38 and cADPR as well as mice deficient in Cd38 (Cd38(-/-)). Cytosolic Ca(2+) signals were imaged using live time-lapse confocal microscopy in freshly isolated mouse acinar cells during perifusion with the bile acid taurolithocholic acid 3-sulfate (TLCS; 500 μM). To focus on intracellular Ca(2+) release and to specifically exclude Ca(2+) influx, cells were perifused in Ca(2+)-free medium. Cell injury was assessed by lactate dehydrogenase leakage and propidium iodide uptake. Pretreatment with either nicotinamide (20 mM) or the cADPR antagonist 8-Br-cADPR (30 μM) abrogated TLCS-induced Ca(2+) signals and cell injury. TLCS-induced Ca(2+) release and cell injury were reduced by 30 and 95%, respectively, in Cd38-deficient acinar cells compared with wild-type cells (p < 0.05). Cd38-deficient mice were protected against a model of bile acid infusion pancreatitis. In summary, these data indicate that CD38-cADPR mediates bile acid-induced pancreatitis and acinar cell injury through aberrant intracellular Ca(2+) signaling.
Collapse
Affiliation(s)
| | | | | | | | - Thottala Jayaraman
- Departments of Internal Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35213
| | | |
Collapse
|
16
|
Mishra V, Cline R, Noel P, Karlsson J, Baty CJ, Orlichenko L, Patel K, Trivedi RN, Husain SZ, Acharya C, Durgampudi C, Stolz DB, Navina S, Singh VP. Src Dependent Pancreatic Acinar Injury Can Be Initiated Independent of an Increase in Cytosolic Calcium. PLoS One 2013; 8:e66471. [PMID: 23824669 PMCID: PMC3688910 DOI: 10.1371/journal.pone.0066471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/07/2013] [Indexed: 12/12/2022] Open
Abstract
Several deleterious intra-acinar phenomena are simultaneously triggered on initiating acute pancreatitis. These culminate in acinar injury or inflammatory mediator generation in vitro and parenchymal damage in vivo. Supraphysiologic caerulein is one such initiator which simultaneously activates numerous signaling pathways including non-receptor tyrosine kinases such as of the Src family. It also causes a sustained increase in cytosolic calcium- a player thought to be crucial in regulating deleterious phenomena. We have shown Src to be involved in caerulein induced actin remodeling, and caerulein induced changes in the Golgi and post-Golgi trafficking to be involved in trypsinogen activation, which initiates acinar cell injury. However, it remains unclear whether an increase in cytosolic calcium is necessary to initiate acinar injury or if injury can be initiated at basal cytosolic calcium levels by an alternate pathway. To study the interplay between tyrosine kinase signaling and calcium, we treated mouse pancreatic acinar cells with the tyrosine phosphatase inhibitor pervanadate. We studied the effect of the clinically used Src inhibitor Dasatinib (BMS-354825) on pervanadate or caerulein induced changes in Src activation, trypsinogen activation, cell injury, upstream cytosolic calcium, actin and Golgi morphology. Pervanadate, like supraphysiologic caerulein, induced Src activation, redistribution of the F-actin from its normal location in the sub-apical area to the basolateral areas, and caused antegrade fragmentation of the Golgi. These changes, like those induced by supraphysiologic caerulein, were associated with trypsinogen activation and acinar injury, all of which were prevented by Dasatinib. Interestingly, however, pervanadate did not cause an increase in cytosolic calcium, and the caerulein induced increase in cytosolic calcium was not affected by Dasatinib. These findings suggest that intra-acinar deleterious phenomena may be initiated independent of an increase in cytosolic calcium. Other players resulting in acinar injury along with the Src family of tyrosine kinases remain to be explored.
Collapse
Affiliation(s)
- Vivek Mishra
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rachel Cline
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Pawan Noel
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jenny Karlsson
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Catherine J. Baty
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lidiya Orlichenko
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Krutika Patel
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ram Narayan Trivedi
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sohail Z. Husain
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Chathur Acharya
- Department of Medicine, University of Pittsburgh Medical Center, Passavant, Pennsylvania, United States of America
| | - Chandra Durgampudi
- Department of Medicine, University of Pittsburgh Medical Center, Passavant, Pennsylvania, United States of America
| | - Donna B. Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah Navina
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Vijay P. Singh
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Muili KA, Jin S, Orabi AI, Eisses JF, Javed TA, Le T, Bottino R, Jayaraman T, Husain SZ. Pancreatic acinar cell nuclear factor κB activation because of bile acid exposure is dependent on calcineurin. J Biol Chem 2013; 288:21065-21073. [PMID: 23744075 DOI: 10.1074/jbc.m113.471425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biliary pancreatitis is the most common etiology of acute pancreatitis, accounting for 30-60% of cases. A dominant theory for the development of biliary pancreatitis is the reflux of bile into the pancreatic duct and subsequent exposure to pancreatic acinar cells. Bile acids are known to induce aberrant Ca(2+) signals in acinar cells as well as nuclear translocation of NF-κB. In this study, we examined the role of the downstream Ca(2+) target calcineurin on NF-κB translocation. Freshly isolated mouse acinar cells were infected for 24 h with an adenovirus expressing an NF-κB luciferase reporter. The bile acid taurolithocholic acid-3-sulfate caused NF-κB activation at concentrations (500 μm) that were associated with cell injury. We show that the NF-κB inhibitor Bay 11-7082 (1 μm) blocked translocation and injury. Pretreatment with the Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, the calcineurin inhibitors FK506 and cyclosporine A, or use of acinar cells from calcineurin Aβ-deficient mice each led to reduced NF-κB activation with taurolithocholic acid-3-sulfate. Importantly, these manipulations did not affect LPS-induced NF-κB activation. A critical upstream regulator of NF-κB activation is protein kinase C, which translocates to the membranes of various organelles in the active state. We demonstrate that pharmacologic and genetic inhibition of calcineurin blocks translocation of the PKC-δ isoform. In summary, bile-induced NF-κB activation and acinar cell injury are mediated by calcineurin, and a mechanism for this important early inflammatory response appears to be upstream at the level of PKC translocation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rita Bottino
- Internal Medicine, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Thotalla Jayaraman
- Internal Medicine, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | | |
Collapse
|
18
|
Gukovsky I, Li N, Todoric J, Gukovskaya A, Karin M. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology 2013; 144:1199-209.e4. [PMID: 23622129 PMCID: PMC3786712 DOI: 10.1053/j.gastro.2013.02.007] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 02/05/2013] [Accepted: 02/13/2013] [Indexed: 12/11/2022]
Abstract
Inflammation and autophagy are cellular defense mechanisms. When these processes are deregulated (deficient or overactivated) they produce pathologic effects, such as oxidative stress, metabolic impairments, and cell death. Unresolved inflammation and disrupted regulation of autophagy are common features of pancreatitis and pancreatic cancer. Furthermore, obesity, a risk factor for pancreatitis and pancreatic cancer, promotes inflammation and inhibits or deregulates autophagy, creating an environment that facilitates the induction and progression of pancreatic diseases. However, little is known about how inflammation, autophagy, and obesity interact to promote exocrine pancreatic disorders. We review the roles of inflammation and autophagy, and their deregulation by obesity, in pancreatic diseases. We discuss the connections among disordered pathways and important areas for future research.
Collapse
Affiliation(s)
- Ilya Gukovsky
- Veterans Affairs Greater Los Angeles Healthcare System, California, USA
| | | | | | | | | |
Collapse
|
19
|
Ahmadi Z, Arababadi MK, Hassanshahi G. CXCL10 Activities, Biological Structure, and Source Along with Its Significant Role Played in Pathophysiology of Type I Diabetes Mellitus. Inflammation 2012; 36:364-71. [DOI: 10.1007/s10753-012-9555-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Wang M, Xie R, Liu R, Jia X, Bao Y, Liu X. Expression of cholecystokinin-1 receptor is correlated with proteinuria in human diabetic nephropathy. Endocrine 2012; 42:329-34. [PMID: 22396142 DOI: 10.1007/s12020-012-9630-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
This study aimed to examine the expression of cholecystokinin-1 receptor (CCK-1R) in the kidneys of type 2 diabetic nephropathy (DN) and the correlation of CCK-1R mRNA and proteinuria. Localization of CCK-1R in kidney of diabetic patient with nephropathy was examined by immunohistochemistry and in situ hybridization. The glomeruli did not express CCK-1R in either control or diabetic nephropathic kidneys. However, the expressions of CCK-1R protein and mRNA in tubules were significantly increased in DN, which had no relationship with the severity of DN. Furthermore, there was a positive correlation between the percentage of cells positive for CCK-1R mRNA and the degree of proteinuria. Increased CCK-1R expression could be demonstrated in the tubules and the CCK-1R might be implicated in the development of proteinuria in human DN.
Collapse
Affiliation(s)
- Mingao Wang
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | | | | | | | | | | |
Collapse
|
21
|
Zhang H, Cai CZ, Zhang XQ, Li T, Jia XY, Li BL, Song L, Ma XJ. Breviscapine attenuates acute pancreatitis by inhibiting expression of PKCα and NF-κB in pancreas. World J Gastroenterol 2011; 17:1825-1830. [PMID: 21528054 PMCID: PMC3080716 DOI: 10.3748/wjg.v17.i14.1825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/11/2011] [Accepted: 01/18/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To study the effect of breviscapine (Bre) on activity of protein kinase Cα (PKCα) and nuclear factor (NF)-κB in pancreas, and the mechanism of Bre attenuating acute pancreatitis (AP). METHODS One hundred and eight rats were randomly divided into acute necrotizing pancreatitis (ANP) group, Bre group (ANP + Bre group) and sham operation (SO) group, 36 rats in each group. ANP model was induced by a retrograde injection of 4% sodium deoxycholate into the bilio-pancreatic duct. Fifteen minutes after the ANP model was induced, the rats in Bre group were intraperitoneally injected with Bre (0.4 mg/100 g body weight or 0.1 mL/100 g body weight). Survival time and mortality of rats were calculated. Serum amylase and malondialdehyde levels were measured, volume of ascites was recorded and morphology of pancreas and lung was evaluated at 1, 5 and 10 h, after the ANP model was induced, respectively. Expressions of PKCα and subunit p65 of NF-κB in pancreas were detected by immunohistochemistry and Western blotting. RESULTS The life span of rats was longer and the mortality was lower in Bre group than in ANP group 13.51 ± 5.46 vs. 25.36 ± 8.11 (P < 0.05). The amylase and MDA levels as well as the volume of ascites were lower and the pathological changes in pancreas and lung were less in Bre group than ANP group (P < 0.05), indicating that the pancreatitis is less severe in Bre group than ANP group. The activation of PKCα and NF-κB p65 in pancreas was induced rapidly and reached their peak at 1 h or 5 h after ANP, but their activity in Bre group was significantly inhibited. CONCLUSION Bre exerts its therapeutic effect on AP by inhibiting the activation of PKCα and NF-κB p65 in pancreas.
Collapse
|
22
|
Role of endoplasmic reticulum stress in cystic fibrosis-related airway inflammatory responses. Ann Am Thorac Soc 2011; 7:387-94. [PMID: 21030518 DOI: 10.1513/pats.201001-017aw] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic airway infection and inflammation are hallmarks of cystic fibrosis (CF) pulmonary disease. The altered airway environment resulting from infection and inflammation can affect the innate defense of the airway epithelia. Luminal bacterial and inflammatory stimuli trigger an adaptation in human airway epithelia, characterized by a hyperinflammatory response to inflammatory mediators, which is mediated by an expansion of the endoplasmic reticulum (ER) and its Ca(2+) stores. Recent studies demonstrated that a form of ER stress, the unfolded protein response (UPR), is activated in airway epithelia by bacterial infection-induced airway inflammation. UPR-dependent signaling is responsible for the ER Ca(2+) store expansion-mediated amplification of airway inflammatory responses. These studies highlight the functional importance of the UPR in airway inflammation and suggest that targeting the UPR may be a therapeutic strategy for airway diseases typified by chronic inflammation. This article reviews the contribution of airway epithelia to airway inflammatory responses, discusses how expansion of the ER Ca(2+) stores in inflamed airway epithelia contributes to airway inflammation, describes the functional role of the UPR in these processes, and discusses how UPR activation might be relevant for CF airways inflammatory disease.
Collapse
|
23
|
Orlichenko LS, Behari J, Yeh TH, Liu S, Stolz DB, Saluja AK, Singh VP. Transcriptional regulation of CXC-ELR chemokines KC and MIP-2 in mouse pancreatic acini. Am J Physiol Gastrointest Liver Physiol 2010; 299:G867-76. [PMID: 20671197 PMCID: PMC2957341 DOI: 10.1152/ajpgi.00177.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neutrophils and their chemoattractants, the CXC-ELR chemokines keratinocyte cytokine (KC) and macrophage inflammatory protein-2 (MIP-2), play a critical role in pancreatitis. While acute pancreatitis is initiated in acinar cells, it is unclear if these are a source of CXC-ELR chemokines. KC and MIP-2 have NF-κB, activator protein-1 (AP-1) sites in their promoter regions. However, previous studies have shown increased basal and reduced caerulein-induced AP-1 activation in harvested pancreatic tissue in vitro, which limits interpreting the caerulein-induced response. Moreover, recent studies suggest that NF-κB silencing in acinar cells alone may not be sufficient to reduce inflammation in acute pancreatitis. Thus the aim of this study was to determine whether acinar cells are a source of KC and MIP-2 and to understand their transcriptional regulation. Primary overnight-cultured murine pancreatic acini were used after confirming their ability to replicate physiological and pathological acinar cell responses. Upstream signaling resulting in KC, MIP-2 upregulation was studied along with activation of the transcription factors NF-κB and AP-1. Cultured acini replicated critical responses to physiological and pathological caerulein concentrations. KC and MIP-2 mRNA levels increased in response to supramaximal but not to physiological caerulein doses. This upregulation was calcium and protein kinase C (PKC), but not cAMP, dependent. NF-κB inhibition completely prevented upregulation of KC but not MIP-2. Complete suppression of MIP-2 upregulation required dual inhibition of NF-κB and AP-1. Acinar cells are a likely source of KC and MIP-2 upregulation during pancreatitis. This upregulation is dependent on calcium and PKC. MIP-2 upregulation requires both NF-κB and AP-1 in these cells. Thus dual inhibition of NF-κB and AP-1 may be a more successful strategy to reduce inflammation in pancreatitis than targeting NF-κB alone.
Collapse
Affiliation(s)
| | | | | | | | - Donna B. Stolz
- 2Cell Biology and Physiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; and
| | - Ashok K. Saluja
- 3Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
24
|
Twait E, Williard DE, Samuel I. Dominant negative p38 mitogen-activated protein kinase expression inhibits NF-kappaB activation in AR42J cells. Pancreatology 2010; 10:119-28. [PMID: 20453549 PMCID: PMC2899148 DOI: 10.1159/000290656] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 02/13/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND The role of the p38 mitogen-activated protein (MAP) kinase in acute pancreatitis pathogenesis is controversial. We hypothesize that p38 plays a role in regulating NF-kappaB activation in exocrine pancreatic cells. METHODS AR42J cells incorporating an NF-kappaB-responsive luciferase reporter, with and without adenoviral transduction of DNp38, were stimulated with cholecystokinin (CCK) or tumor necrosis factor-alpha (TNF-alpha) prior to measuring NF-kappaB activation. RESULTS CCK- or TNF-alpha-stimulated NF-kappaB-dependent gene transcription (luciferase assay) was substantially subdued by DNp38 expression. These findings were confirmed by electrophoretic mobility shift assay. Nuclear translocation of the p65 NF-kappaB subunit following agonist stimulation was evident (supershift). Characterization studies showed excellent adenoviral infection efficiency and cell viability in our AR42J cell model. Agonist-stimulated dose- and time-dependent p38 activation, with inhibition by DNp38 expression, was also confirmed. CONCLUSION The p38 MAP kinase regulates NF-kappaB pathway activation in exocrine pancreatic cells, and thus potentially plays a role in the mechanism of acute pancreatitis pathogenesis..
Collapse
Affiliation(s)
| | | | - Isaac Samuel
- *Isaac Samuel, MD, FRCS, FACS, Department of Surgery, VAMC & UI CCOM, 200 Hawkins Drive, 4625 JCP (Surgery), Iowa City, IA 52242 (USA), Tel. +1 319 356 7359, Fax +1 319 356 8378, E-Mail
| |
Collapse
|
25
|
Smedlund K, Tano JY, Vazquez G. The Constitutive Function of Native TRPC3 Channels Modulates Vascular Cell Adhesion Molecule-1 Expression in Coronary Endothelial Cells Through Nuclear Factor κB Signaling. Circ Res 2010; 106:1479-88. [DOI: 10.1161/circresaha.109.213314] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale
:
Upregulation of endothelial vascular cell adhesion molecule (VCAM)-1 and the subsequent increase in monocyte recruitment constitute critical events in atherogenesis. We have recently shown that in human coronary artery endothelial cells (HCAECs) regulated expression of VCAM-1 depends, to a significant extent, on expression and function of the Ca
2+
-permeable channel transient receptor potential canonical (TRPC)3, regardless of the ability of the stimulatory signal to induce regulated Ca
2+
influx, leading to the hypothesis that TRPC3 constitutive, rather than regulated function, contributes to the underlying signaling mechanism.
Objective
:
The present studies addressed this important question and gathered mechanistic insight on the signaling coupling constitutive TRPC3 function to VCAM-1 expression.
Methods and Results
:
In HCAECs, maneuvers that prevent Ca
2+
influx or knockdown of TRPC3 markedly reduced tumor necrosis factor (TNF)α-induced VCAM-1 and monocyte adhesion. TNFα also induced TRPC3 expression and TRPC3-mediated constitutive cation influx and currents. Stable (HEK293 cells) or transient (HCAECs) overexpression of TRPC3 enhanced TNFα-induced VCAM-1 compared to wild-type cells. IκBα phosphorylation/degradation was reduced by TRPC3 knockdown and increased by channel overexpression. Inhibition of calmodulin completely prevented nuclear factor κB activation, whereas blocking calmodulin-dependent kinases or NADPH oxidases rendered partial inhibition.
Conclusions
:
Our findings indicate that in HCAECs expression of VCAM-1 and monocyte adhesion depend, to a significant extent, on TRPC3 constitutive function through a signaling mechanism that requires constitutive TRPC3-mediated Ca
2+
influx for proper activation of nuclear factor κB, presumably through Ca
2+
-dependent activation of the calmodulin/calmodulin-dependent kinase axis.
Collapse
Affiliation(s)
- Kathryn Smedlund
- From the Department of Physiology and Pharmacology (K.S., J.-Y.T., G.V.) and Center for Diabetes and Endocrine Research (G.V.), University of Toledo College of Medicine, Ohio
| | - Jean-Yves Tano
- From the Department of Physiology and Pharmacology (K.S., J.-Y.T., G.V.) and Center for Diabetes and Endocrine Research (G.V.), University of Toledo College of Medicine, Ohio
| | - Guillermo Vazquez
- From the Department of Physiology and Pharmacology (K.S., J.-Y.T., G.V.) and Center for Diabetes and Endocrine Research (G.V.), University of Toledo College of Medicine, Ohio
| |
Collapse
|
26
|
Ghrelin inhibits the development of acute pancreatitis and nuclear factor kappaB activation in pancreas and liver. Pancreas 2009; 38:752-7. [PMID: 19506532 DOI: 10.1097/mpa.0b013e3181a86b74] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To investigate the influence of ghrelin on the development of severe acute pancreatitis (SAP) and the expression of nuclear factor kappaB (NF-kappaB) p65 in the pancreas and liver. METHODS Severe acute pancreatitis was induced in rat by sodium taurocholate injection in the pancreaticobiliary duct. Ghrelin was administrated twice at the dose 10 or 20 nmol/kg per injection, respectively. Then, serum amylase activity; serum tumor necrosis factor alpha, interleukin 1beta, and interleukin 6 concentrations; and morphological signs of pancreatitis and hepatic damage were measured. Meanwhile, determination of pancreatic and hepatic NF-kappaB p65 expression was performed by Western blotting and immunohistochemistry. RESULTS The serumal parameters increased, and morphological damages were observed in the pancreas and liver in SAP rats. Nuclear factor kappaB p65 expression was significantly higher in the pancreas and liver than sham-operated rats (P < 0.05). Treatment with ghrelin attenuated the morphological damages, and reduced the serumal parameters. Nuclear factor kappaB p65 expression was also significantly reduced by ghrelin (P < 0.05), both in the pancreas and liver. CONCLUSIONS Ghrelin inhibits the development of acute pancreatitis induced by sodium taurocholate. It exerts the therapeutic effects through inhibiting NF-kappaB expression, thereby blocks the inflammatory signal transduction pathway and reduces the release of inflammatory media and cytokines.
Collapse
|
27
|
Magnone M, Bruzzone S, Guida L, Damonte G, Millo E, Scarfì S, Usai C, Sturla L, Palombo D, De Flora A, Zocchi E. Abscisic acid released by human monocytes activates monocytes and vascular smooth muscle cell responses involved in atherogenesis. J Biol Chem 2009; 284:17808-17818. [PMID: 19332545 PMCID: PMC2719419 DOI: 10.1074/jbc.m809546200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/18/2009] [Indexed: 01/08/2023] Open
Abstract
Abscisic acid (ABA) is a phytohormone recently identified as a new endogenous pro-inflammatory hormone in human granulocytes. Here we report the functional activation of human monocytes and vascular smooth muscle cells by ABA. Incubation of monocytes with ABA evokes an intracellular Ca2+ rise through the second messenger cyclic ADP-ribose, leading to NF-kappaB activation and consequent increase of cyclooxygenase-2 expression and prostaglandin E2 production and enhanced release of MCP-1 (monocyte chemoattractant protein-1) and of metalloprotease-9, all events reportedly involved in atherogenesis. Moreover, monocytes release ABA when exposed to thrombin-activated platelets, a condition occurring at the injured vascular endothelium; monocyte-derived ABA behaves as an autocrine and paracrine pro-inflammatory hormone-stimulating monocyte migration and MCP-1 release, as well as vascular smooth muscle cells migration and proliferation. These results, and the presence of ABA in human arterial plaques at a 10-fold higher concentration compared with normal arterial tissue, identify ABA as a new signal molecule involved in the development of atherosclerosis and suggest a possible new target for anti-atherosclerotic therapy.
Collapse
Affiliation(s)
- Mirko Magnone
- From the Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 1, 16132 Genova
| | - Santina Bruzzone
- From the Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 1, 16132 Genova
- the Advanced Biotechnology Center, Largo Rosanna Benzi 1, 16132 Genova
| | - Lucrezia Guida
- From the Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 1, 16132 Genova
| | - Gianluca Damonte
- From the Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 1, 16132 Genova
| | - Enrico Millo
- From the Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 1, 16132 Genova
| | - Sonia Scarfì
- From the Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 1, 16132 Genova
- the Advanced Biotechnology Center, Largo Rosanna Benzi 1, 16132 Genova
| | - Cesare Usai
- the Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova, and
| | - Laura Sturla
- From the Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 1, 16132 Genova
| | - Domenico Palombo
- the Vascular and Endovascular Surgery Unit, San Martino Hospital, 16132 Genova, Italy
| | - Antonio De Flora
- From the Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 1, 16132 Genova
| | - Elena Zocchi
- From the Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 1, 16132 Genova
- the Advanced Biotechnology Center, Largo Rosanna Benzi 1, 16132 Genova
| |
Collapse
|
28
|
Yuan J, Lugea A, Zheng L, Gukovsky I, Edderkaoui M, Rozengurt E, Pandol SJ. Protein kinase D1 mediates NF-kappaB activation induced by cholecystokinin and cholinergic signaling in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1190-201. [PMID: 18845574 PMCID: PMC2604803 DOI: 10.1152/ajpgi.90452.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 10/05/2008] [Indexed: 02/07/2023]
Abstract
The transcription factor NF-kappaB plays a critical role in inflammatory and cell death responses during acute pancreatitis. Previous studies in our laboratory demonstrated that protein kinase C (PKC) isoforms PKCdelta and epsilon are key regulators of NF-kappaB activation induced by cholecystokinin-8 (CCK-8), tumor necrosis factor-alpha, and ethanol. However, the downstream participants in regulating NF-kappaB activation in exocrine pancreas remain poorly understood. Here, we demonstrate that protein kinase D1 (PKD1) is a key downstream target of PKCdelta and PKCepsilon in pancreatic acinar cells stimulated by two major secretagogues, CCK-8 and the cholinergic agonist carbachol (CCh), and that PKD1 is necessary for NF-kappaB activation induced by CCK-8 and CCh. Both CCK-8 and CCh dose dependently induced a rapid and striking activation of PKD1 in rat pancreatic acinar cells, as measured by in vitro kinase assay and by phosphorylation at PKD1 activation loop (Ser744/748) or autophosphorylation site (Ser916). The phosphorylation and activation of PKD1 correlated with NF-kappaB activity stimulated by CCK-8 or CCh, as measured by NF-kappaB DNA binding. Either inhibition of PKCdelta or epsilon by isoform-specific inhibitory peptides, genetic deletion of PKCdelta and epsilon in pancreatic acinar cells, or knockdown of PKD1 by using small interfering RNAs in AR42J cells resulted in a marked decrease in PKD1 and NF-kappaB activation stimulated by CCK-8 or CCh. Conversely, overexpression of PKD1 resulted in augmentation of CCK-8- and CCh-stimulated NF-kappaB activation. Finally, the kinetics of PKD1 and NF-kappaB activation during cerulein-induced rat pancreatitis showed that both PKD1 and NF-kappaB activation were early events during acute pancreatitis and that their time courses of response were similar. Our results identify PKD1 as a novel early convergent point for PKCdelta and epsilon in the signaling pathways mediating NF-kappaB activation in pancreatitis.
Collapse
Affiliation(s)
- Jingzhen Yuan
- Veterans Affairs Greater Los Angeles Healthcare System, West Los Angeles VA Healthcare Center, Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Relationship between carbachol hyperstimulation-induced pancreatic intracellular trypsinogen and NF-kappa B activation in rats in vitro. ACTA ACUST UNITED AC 2008; 28:69-72. [PMID: 18278461 DOI: 10.1007/s11596-008-0117-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Indexed: 10/19/2022]
Abstract
The relationship between intracellular trypsinogen activation and NF-kappa B activation in rat pancreatic acinar cells induced by M3 cholinergic receptor agonist (carbachol) hyperstimulation was studied. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, the active protease inhibitor (pefabloc) and NF-kappa B inhibitor (PDTC) in vitro. Intracellular trypsin activity was measured by using a fluorogenic substrate. The activity of NF-kappa B was monitored by using electrophoretic mobility shift assay. The results showed that after pretreatment with 2 mmol/L pefabloc, the activities of trypsin and NF-kappa B in pancreatic acinar cells treated with high concentrations of carbachol (10(-3) mol/L) in vitro was significantly decreased as compared with control group (P<0.01). The addition of 10(-2) mol/L PDTC resulted in a significant decrease of NF-kappa B activities in pancreatic acinar cells after treated with high concentrations of carbachol (10(-3) mol/L) in vitro, but the intracellular trypsinogen activity was not obviously inhibited (P>0.05). It was concluded that intracellular trypsinogen activation is likely involved in the regulation of high concentrations of carbachol-induced NF-kappa B activation in pancreatic acinar cells in vitro. NF-kappa B activation is likely not necessary for high concentrations of carbachol-induced trypsinogen activation in pancreatic acinar cells in vitro.
Collapse
|
30
|
Ait-Ali D, Turquier V, Tanguy Y, Thouënnon E, Ghzili H, Mounien L, Derambure C, Jégou S, Salier JP, Vaudry H, Eiden LE, Anouar Y. Tumor necrosis factor (TNF)-alpha persistently activates nuclear factor-kappaB signaling through the type 2 TNF receptor in chromaffin cells: implications for long-term regulation of neuropeptide gene expression in inflammation. Endocrinology 2008; 149:2840-52. [PMID: 18292192 PMCID: PMC2408812 DOI: 10.1210/en.2007-1192] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chromaffin cells of the adrenal medulla elaborate and secrete catecholamines and neuropeptides for hormonal and paracrine signaling in stress and during inflammation. We have recently documented the action of the cytokine TNF-alpha on neuropeptide secretion and biosynthesis in isolated bovine chromaffin cells. Here, we demonstrate that the type 2 TNF-alpha receptor (TNF-R2) mediates TNF-alpha signaling in chromaffin cells via activation of nuclear factor (NF)-kappaB. Microarray and suppression subtractive hybridization have been used to identify TNF-alpha target genes in addition to those encoding the neuropeptides galanin, vasoactive intestinal polypeptide, and secretogranin II in chromaffin cells. TNF-alpha, acting through the TNF-R2, causes an early up-regulation of NF-kappaB, long-lasting induction of the NF-kappaB target gene inhibitor kappaB (IkappaB), and persistent stimulation of other NF-kappaB-associated genes including mitogen-inducible gene-6 (MIG-6), which acts as an IkappaB signaling antagonist, and butyrate-induced transcript 1. Consistent with long-term activation of the NF-kappaB signaling pathway, delayed induction of neuropeptide gene transcription by TNF-alpha in chromaffin cells is blocked by an antagonist of NF-kappaB signaling. TNF-alpha-dependent signaling in neuroendocrine cells thus leads to a unique, persistent mode of NF-kappaB activation that features long-lasting transcription of both IkappaB and MIG-6, which may play a role in the long-lasting effects of TNF-alpha in regulating neuropeptide output from the adrenal, a potentially important feedback station for modulating long-term cytokine effects in inflammation.
Collapse
Affiliation(s)
- Djida Ait-Ali
- Institut National de la Santé et de la Recherche Médicale Unité 413, University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Criddle DN, McLaughlin E, Murphy JA, Petersen OH, Sutton R. The pancreas misled: signals to pancreatitis. Pancreatology 2007; 7:436-46. [PMID: 17898533 DOI: 10.1159/000108960] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Indexed: 12/11/2022]
Abstract
Acute pancreatitis is an increasingly common and sometimes severe disease for which there is little specific therapy. Chronic pancreatitis is a common and grossly debilitating sequel that is largely irreversible, whatever treatment is adopted. In the face of these burdens, the absence of specific treatments is a spur to research. The acinar cell is the primary target of injury from alcohol metabolites, bile, hyperlipidaemia, hyperstimulation and other causes. These induce abnormal, prolonged, global, cytosolic calcium signals, the prevention of which also prevents premature digestive enzyme activation, cytokine expression, vacuole formation and acinar cell necrosis. Such agents increase calcium entry through the plasma membrane and/or increase calcium release from intracellular stores, shown to result from effects on calcium channels and calcium pumps, or their energy supply. A multitude of signalling mechanisms are activated, diverted or disrupted, including secretory mechanisms, lysosomal regulators, inflammatory mediators, cell survival and cell death pathways, together with or separately from calcium. While recent discoveries have increased insight and suggest prophylaxis or treatment targets, more work is required to define the mechanisms and interactions of cell signalling pathways in the pathogenesis of pancreatitis.
Collapse
Affiliation(s)
- David N Criddle
- MRC Group, Physiological Laboratory, University of Liverpool, Liverpool, UK
| | | | | | | | | |
Collapse
|
32
|
Rengifo-Cam W, Umar S, Sarkar S, Singh P. Antiapoptotic effects of progastrin on pancreatic cancer cells are mediated by sustained activation of nuclear factor-{kappa}B. Cancer Res 2007; 67:7266-74. [PMID: 17671195 DOI: 10.1158/0008-5472.can-07-1206] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Progastrin (PG) exerts proliferative and antiapoptotic effects on intestinal epithelial and colon cancer cells via Annexin II (ANX-II). In here, we show that ANX-II similarly mediates proliferative and antiapoptotic effects of PG on a pancreatic cancer cell line, AR42J. The role of several signaling molecules was examined in delineating the biological activity of PG. PG (0.1-1.0 nmol/L) caused a significant increase (2- to 5-fold) in the phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt (Thr(308)), p38 mitogen-activated protein kinase (MAPK; Thr(180)/Tyr(182)), extracellular signal-regulated kinases (ERK; Thr(202)/Tyr(204)), IkappaB kinase alpha/beta (IKKalpha/beta; Ser(176)/(180)), IkappaBalpha (Ser(32)), and p65 nuclear factor-kappaB (NF-kappaB; Ser(536)). Inhibition of p44/42 ERKs (PD98059), p38 MAPK (SB203580), Akt, and PI3K (LY294002), individually or combined, partially reversed antiapoptotic effects of PG. The kinetics of phosphorylation of IKKalpha/beta in response to PG matched the kinetics of phosphorylation and degradation of IkappaBalpha and correlated with phosphorylation, nuclear translocation, and activation of p65 NF-kappaB. NF-kappaB essential modulator-binding domain peptide (an inhibitor of IKKalpha/beta) effectively blocked the activity of p65 NF-kappaB in response to PG. Activation of p65 NF-kappaB, in response to PG, was 70% to 80% dependent on phosphorylation of MAPK/ERK and PI3K/Akt molecules. Down-regulation of p65 NF-kappaB by specific small interfering RNA resulted in the loss of antiapoptotic effects of PG on AR42J cells. These studies show for the first time that the canonical pathway of activation of p65 NF-kappaB mediates antiapoptotic effects of PG. Therefore, targeting PG and/or p65 NF-kappaB may be useful for treating cancers, which are dependent on autocrine or circulating PGs for their growth.
Collapse
Affiliation(s)
- William Rengifo-Cam
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | |
Collapse
|
33
|
|
34
|
Abstract
This paper provides a summary of the effects of alcohol abuse on the pathobiologic responses that occur during acute and chronic pancreatitis considering both the human disease and animal/tissue models. The effects are multiple and include ones on cell death leading to necrosis; on inflammation resulting in a sensitized response to pancreatic stress; and fibrosis through effects of ethanol on pancreatic stellate cells and the plasminogen system. Although the effects of alcohol are multiple and complex, it is likely that a combination of a few key effects on these pathobiologic responses drive the increased sensitivity of the pancreas to acute pancreatitis with pancreatic stress and the promotion of chronic pancreatitis with pancreatic injury occurring during acute pancreatitis.
Collapse
Affiliation(s)
- Stephen J Pandol
- Department of Medicine, University of California, Department of Veterans Affairs, Los Angeles, California, USA.
| | | |
Collapse
|
35
|
Shi C, Zhao X, Wang X, Zhao L, Andersson R. Potential effects of PKC or protease inhibitors on acute pancreatitis-induced tissue injury in rats. Vascul Pharmacol 2007; 46:406-411. [PMID: 17347056 DOI: 10.1016/j.vph.2007.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 04/20/2006] [Indexed: 12/20/2022]
Abstract
BACKGROUND Acute pancreatitis (AP) is still one of the severe diseases, that cause the development of multiple organ dysfunction with a high mortality. Effective therapies for AP are still limited, mainly due to unclear mechanisms by which AP initiates both pancreatic and extrapancreatic organ injury. METHODS Protease inhibitors (aprotinin, pefabloc, trypsin inhibitor) and PKC inhibitors (polymyxin B, staurosporine) were administrated 30 min before induction of AP in rats. To investigate the pancreatic, systemic and lung inflammatory response and injury, plasma IL-6 and IL-10, pancreatic and pulmonary myeloperoxidase (MPO) levels, pancreatic protease activity and phospholipase A(2) (PLA(2)) activity in ascites were measured 3 and 6 h after AP induction. RESULTS Pretreatment with protease inhibitors significantly prevented from AP-increased plasma levels of IL-10, pancreatic and pulmonary levels of MPO, pancreatic protease activity and the catalytic activity of PLA(2) in ascites. PKC inhibitors significantly reduced pancreatic and pulmonary levels of MPO and pancreatic protease activity. CONCLUSION Inhibition of proteases in AP may be helpful in ameliorating the inflammatory reaction in both pancreatic and extrapancreatic tissues, where neutrophil involvement may be regulated by PKC and proteases.
Collapse
Affiliation(s)
- Changbin Shi
- Department of Surgery, Clinical Sciences, Lund University Hospital, SE-221 85 Lund, Sweden
| | | | | | | | | |
Collapse
|
36
|
Verhaeghe C, Remouchamps C, Hennuy B, Vanderplasschen A, Chariot A, Tabruyn SP, Oury C, Bours V. Role of IKK and ERK pathways in intrinsic inflammation of cystic fibrosis airways. Biochem Pharmacol 2007; 73:1982-94. [PMID: 17466952 DOI: 10.1016/j.bcp.2007.03.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/19/2007] [Accepted: 03/19/2007] [Indexed: 11/26/2022]
Abstract
In cystic fibrosis (CF) patients, pulmonary inflammation is a major cause of morbidity and mortality and may precede bacterial colonization. The aim of the present study was to investigate the molecular mechanisms underlying intrinsic inflammation in cystic fibrosis airways. Using different cystic fibrosis cell models, we first demonstrated that, beside a high constitutive nuclear factor of kappaB (NF-kappaB) activity, CF cells showed a higher activator protein-1 (AP-1) activity as compared to their respective control cells. Gene expression profiles, confirmed by RT-PCR and ELISA, showed over-expression of numerous NF-kappaB and AP-1-dependent pro-inflammatory genes in CF cells in comparison with control cells. Activation of NF-kappaB was correlated with higher inhibitor of kappaB kinase (IKK) activity. In addition, Bio-plex phosphoprotein assays revealed higher extracellular signal-regulated kinase (ERK) phosphorylation in CFT-2 cells. Inhibition of this kinase strongly decreased expression of pro-inflammatory genes coding for growth-regulated proteins (Gro-alpha, Gro-beta and Gro-gamma) and interleukins (IL-1beta, IL-6 and IL-8). Moreover, inhibition of secreted interleukin-1beta (IL-1beta) and basic fibroblast growth factor (bFGF) with neutralizing antibodies reduced pro-inflammatory gene expression. Our data thus demonstrated for the first time that the absence of functional cystic fibrosis transmembrane conductance regulator (CFTR) at the plasma membrane leads to an intrinsic AP-1, in addition to NF-kappaB, activity and consequently to a pro-inflammatory state sustained through autocrine factors such as IL-1beta and bFGF.
Collapse
Affiliation(s)
- Catherine Verhaeghe
- Units of Medical Chemistry and Human Genetics (GIGA-R), University of Liège, CHU Sart-Tilman B35, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Savković V, Gantzer H, Reiser U, Selig L, Gaiser S, Sack U, Klöppel G, Mössner J, Keim V, Horn F, Bödeker H. Clusterin is protective in pancreatitis through anti-apoptotic and anti-inflammatory properties. Biochem Biophys Res Commun 2007; 356:431-7. [PMID: 17359935 DOI: 10.1016/j.bbrc.2007.02.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2007] [Accepted: 02/27/2007] [Indexed: 11/26/2022]
Abstract
Clusterin is overexpressed in pancreas during the acute phase of pancreatitis. We intended to clarify the role of clusterin expression in stressed exocrine pancreas. We performed in vitro experiments in transfected AR4-2J cells with modified expression levels of clusterin and in vivo studies in clusterin-deficient mice. AR4-2J cells were exposed to agents mimicking cell-stress during pancreatitis (cerulein, hydrogen peroxide, staurosporine or lysophosphatidylcholine). Clusterin-overexpressing AR4-2J cells showed higher viability after cell stress and accordingly reduced rates of apoptosis and lessened caspase-3 activation. Blockage of endogenous clusterin expression reduced viability and enhanced apoptosis. Presence of clusterin reduced NF-kappaB activation and expression of the NF-kappaB target genes TNF-alpha and MOB-1 under cell stress. Clusterin-deficient mice showed a more severe course of acute experimental pancreatitis with enhanced rates of apoptosis and inflammatory cell infiltration. We concluded that clusterin was protective during inflammation of exocrine pancreas because of its anti-apoptotic and anti-inflammatory functions.
Collapse
Affiliation(s)
- Vuk Savković
- Medizinische Klinik und Poliklinik 2, Universitätsklinikum Leipzig AöR, Ph.-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Stephen J Pandol
- Department of Medicine, Department of Veterans Affairs and University of California, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
39
|
Valdés JA, Hidalgo J, Galaz JL, Puentes N, Silva M, Jaimovich E, Carrasco MA. NF-kappaB activation by depolarization of skeletal muscle cells depends on ryanodine and IP3 receptor-mediated calcium signals. Am J Physiol Cell Physiol 2007; 292:C1960-70. [PMID: 17215326 DOI: 10.1152/ajpcell.00320.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Depolarization of skeletal muscle cells by either high external K(+) or repetitive extracellular field potential pulses induces calcium release from internal stores. The two components of this release are mediated by either ryanodine receptors or inositol 1,4,5-trisphosphate (IP(3)) receptors and show differences in kinetics, amplitude, and subcellular localization. We have reported that the transcriptional regulators including ERKs, cAMP/Ca(2+)-response element binding protein, c-fos, c-jun, and egr-1 are activated by K(+)-induced depolarization and that their activation requires IP(3)-dependent calcium release. We presently describe the activation of the nuclear transcription factor NF-kappaB in response to depolarization by either high K(+) (chronic) or electrical pulses (fluctuating). Calcium transients of relative short duration activate an NF-kappaB reporter gene to an intermediate level, whereas long-lasting calcium increases obtained by prolonged electrical stimulation protocols of various frequencies induce maximal activation of NF-kappaB. This activation is independent of extracellular calcium, whereas calcium release mediated by either ryanodine or IP(3) receptors contribute in all conditions tested. NF-kappaB activation is mediated by IkappaBalpha degradation and p65 translocation to the nucleus. Partial blockade by N-acetyl-l-cysteine, a general antioxidant, suggests the participation of reactive oxygen species. Calcium-dependent signaling pathways such as those linked to calcineurin and PKC also contribute to NF-kappaB activation by depolarization, as assessed by blockade through pharmacological agents. These results suggest that NF-kappaB activation in skeletal muscle cells is linked to membrane depolarization and depends on the duration of elevated intracellular calcium. It can be regulated by sequential activation of calcium release mediated by the ryanodine and by IP(3) receptors.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Animals, Newborn
- Calcineurin/metabolism
- Calcium/metabolism
- Calcium Signaling
- Cell Line
- Electric Stimulation
- I-kappa B Proteins/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Kinetics
- Membrane Potentials
- Mice
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myoblasts, Skeletal/metabolism
- NF-KappaB Inhibitor alpha
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Potassium/metabolism
- Promoter Regions, Genetic
- Protein Kinase C/metabolism
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Ryanodine Receptor Calcium Release Channel/metabolism
- Transcription Factor RelA/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Juan Antonio Valdés
- Centro Fondo Nacional de Investigación en Areas Prioritarias de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
40
|
Ribeiro CMP. The role of intracellular calcium signals in inflammatory responses of polarised cystic fibrosis human airway epithelia. Drugs R D 2006; 7:17-31. [PMID: 16620134 DOI: 10.2165/00126839-200607010-00002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hyperinflammatory host responses to bacterial infection have been postulated to be a key step in the pathogenesis of cystic fibrosis (CF) lung disease. Previous studies have indicated that the CF airway epithelium itself contributes to the hyperinflammation of CF airways via an excessive inflammatory response to bacterial infection. However, it has been controversial whether the hyperinflammation of CF epithelia results from mutations in the CF transmembrane conductance regulator (CFTR) and/or is a consequence of persistent airways infection. Recent studies have demonstrated that intracellular calcium (Ca2+i) signals consequent to activation of apical G protein-coupled receptors (GPCRs) by pro-inflammatory mediators are increased in CF airway epithelia. Because of the relationship between Ca2+i mobilisation and inflammatory responses, the mechanism for the increased Ca2+i signals in CF was investigated and found to result from endoplasmic reticulum (ER) Ca2+ store expansion. The ER Ca2+ store expansion imparts a hyperinflammatory phenotype to chronically infected airway epithelia as a result of the larger Ca2+i mobilisation coupled to an excessive inflammatory response following GPCR activation. The ER expansion is not dependent on ER retention of misfolded DeltaF508 CFTR, but reflects an epithelial response acquired following persistent luminal airway infection. With respect to the mechanism of ER expansion in CF, the current view is that chronic airway epithelial infection triggers an unfolded protein response as a result of the increased flux of newly synthesised inflammatory mediators and defensive factors into the ER compartment. This unfolded protein response is coupled to X-box binding protein 1 (XBP-1) mRNA splicing and transcription of genes associated with the expansion of the protein-folding capacity of the ER (e.g. increases in ER chaperones and ER membranes). These studies have revealed a novel adaptive response in chronically infected airway epithelia, where the increased protein secretory capacity serves to promote epithelial homeostasis by increasing both the secretory and the reparative capacity of the cell. In addition, the increased ER-derived Ca2+i signaling allows the epithelia to amplify its inflammatory responses to infectious agents and exogenous toxicants. This review is devoted to a discussion of these recent findings and their implication for Ca2+i-dependent hyperinflammatory responses in CF airways.
Collapse
Affiliation(s)
- Carla Maria Pedrosa Ribeiro
- Cystic Fibrosis/Pulmonary Research and Treatment Center and the Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 25799, USA.
| |
Collapse
|
41
|
Satoh A, Gukovskaya AS, Reeve JR, Shimosegawa T, Pandol SJ. Ethanol sensitizes NF-kappaB activation in pancreatic acinar cells through effects on protein kinase C-epsilon. Am J Physiol Gastrointest Liver Physiol 2006; 291:G432-8. [PMID: 16574982 DOI: 10.1152/ajpgi.00579.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although ethanol abuse is the most common cause of pancreatitis, the mechanism of alcohol's effect on the pancreas is not well understood. Previously, we demonstrated that in vitro ethanol treatment of pancreatic acinar cells augmented the CCK-8-induced activation of NF-kappaB, a key signaling system involved in the inflammatory response of pancreatitis. In the present study, we determine the role for individual PKC isoforms in the sensitizing effect of ethanol on NF-kappaB activation. Dispersed rat pancreatic acini were treated with and without ethanol and then stimulated with CCK-8; 100 nM CCK-8 caused both NF-kappaB and PKC-delta, -epsilon, and -zeta activation, whereas 0.1 nM CCK-8 did not increase PKC-epsilon, PKC-zeta, or NF-kappaB activity. CCK-8 (0.1 nM) did activate PKC-delta. PKC-epsilon activator alone did not cause NF-kappaB activation; however, together with 0.1 nM CCK-8, it caused NF-kappaB activation. Ethanol activated PKC-epsilon without affecting other PKC isoforms or NF-kappaB activity. Of note, stimulation of acini with ethanol and 0.1 nM CCK-8 resulted in the activation of PKC-delta, PKC-epsilon, and NF-kappaB. The NF-kappaB activation to 0.1 nM CCK-8 in ethanol-pretreated acini was inhibited by both PKC-delta inhibitor and PKC-epsilon inhibitor. Taken together, these results demonstrate the different modes of activation of PKC isoforms and NF-kappaB in acini stimulated with ethanol, high-dose CCK-8, and low-dose CCK-8, and furthermore suggest that activation of both PKC-epsilon and -delta is required for NF-kappaB activation. These results suggest that ethanol enhances the CCK-8-induced NF-kappaB activation at least in part through its effects on PKC-epsilon.
Collapse
Affiliation(s)
- Akihiko Satoh
- VA Greater L.A. Healthcare System, West L.A. Healthcare Center, Bldg. 258, Rm. 340, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Cholecystokinin and gastrin receptors (CCK1R and CCK2R) are G protein-coupled receptors that have been the subject of intensive research in the last 10 years with corresponding advances in the understanding of their functioning and physiology. In this review, we first describe general properties of the receptors, such as the different signaling pathways used to exert short- and long-term effects and the structural data that explain their binding properties, activation, and regulation. We then focus on peripheral cholecystokinin receptors by describing their tissue distribution and physiological actions. Finally, pathophysiological peripheral actions of cholecystokinin receptors and their relevance in clinical disorders are reviewed.
Collapse
Affiliation(s)
- Marlène Dufresne
- Institut National de la Santé et de la Recherche Médicale U. 531, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, France
| | | | | |
Collapse
|
43
|
Raraty MGT, Murphy JA, Mcloughlin E, Smith D, Criddle D, Sutton R. Mechanisms of acinar cell injury in acute pancreatitis. Scand J Surg 2005; 94:89-96. [PMID: 16111088 DOI: 10.1177/145749690509400202] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Acute pancreatitis has many causes, all leading to a common pathway of changes within the pancreatic acinar cell. Key amongst these changes is premature intracellular activation of digestive enzymes but this is also accompanied by the appearance of cytosolic vacuoles, co-localization of digestive and lysosomal enzymes, activation of NF-kappaB, and release of pro-inflammatory cytokines. The exact mechanism responsible for enzyme activation remains the subject of much research effort and not a little debate, however it is clear that all of these changes are triggered by an abnormal, sustained rise in cytosolic calcium concentration, which is itself dependent both on release of calcium from endoplasmic reticulum stores and uptake from the extracellular milieu. Activated enzymes are directly damaging to the acinar cell themselves, but recruitment of circulating neutrophils leads to further cellular damage. Cytokines and neutrophil activation are also responsible for the systemic inflammatory response typically seen in severe acute pancreatitis.
Collapse
Affiliation(s)
- M G T Raraty
- Division of Surgery and Oncology, University of Liverpool, Liverpool L69 3BX, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Acute pancreatitis is a common clinical condition. It is a disease of variable severity in which some patients experience mild, self-limited attacks while others manifest a severe, highly morbid, and frequently lethal attack. The exact mechanisms by which diverse etiological factors induce an attack are still unclear. It is generally believed that the earliest events in acute pancreatitis occur within acinar cells. Acinar cell injury early in acute pancreatitis leads to a local inflammatory reaction. If this inflammatory reaction is marked, it leads to a systemic inflammatory response syndrome (SIRS). An excessive SIRS leads to distant organ damage and multiple organ dysfunction syndrome (MODS). MODS associated with acute pancreatitis is the primary cause of morbidity and mortality in this condition. Recent studies have established the role played by inflammatory mediators in the pathogenesis of acute pancreatitis and the resultant MODS. At the same time, recent research has demonstrated the importance of acinar cell death in the form of apoptosis and necrosis as a determinant of pancreatitis severity. In this review, we will discuss about our current understanding of the pathophysiology of acute pancreatitis.
Collapse
Affiliation(s)
- Madhav Bhatia
- Department of Pharmacology, National University of Singapore, Singapore.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ribeiro CMP, Paradiso AM, Schwab U, Perez-Vilar J, Jones L, O'neal W, Boucher RC. Chronic airway infection/inflammation induces a Ca2+i-dependent hyperinflammatory response in human cystic fibrosis airway epithelia. J Biol Chem 2005; 280:17798-806. [PMID: 15746099 DOI: 10.1074/jbc.m410618200] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hyperinflammatory responses to infection have been postulated as a component of cystic fibrosis (CF) lung disease. Studies have linked intracellular calcium (Ca(2+)(i)) mobilization with inflammatory responses in several systems. We have reported that the pro-inflammatory mediator bradykinin (BK) promotes larger Ca(2+)(i) signals in CF compared with normal bronchial epithelia, a response that reflects endoplasmic reticulum (ER)/Ca(2+) store expansion induced by chronic luminal airway infection/inflammation. The present study investigated whether CF airway epithelia were hyperinflammatory and, if so, whether the hyperinflammatory CF phenotype was linked to larger Ca(2+) stores in the ER. We found that DeltaF508 CF bronchial epithelia were hyperinflammatory as defined by an increased basal and mucosal BK-induced interleukin (IL)-8 secretion. However, the CF hyperinflammation expressed in short-term (6-11-day-old) primary cultures of DeltaF508 bronchial epithelia was lost in long-term (30-40-day-old) primary cultures of DeltaF508 bronchial epithelia, indicating this response was independent of mutant cystic fibrosis transmembrane conductance regulator. Exposure of 30-40-day-old cultures of normal airway epithelia to supernatant from mucopurulent material (SMM) from CF airways reproduced the increased basal and mucosal BK-stimulated IL-8 secretion of short-term CF cultures. The BK-triggered increased IL-8 secretion in SMM-treated cultures was mediated by an increased Ca(2+)(i) mobilization consequent to an ER expansion associated with increases in protein synthesis (total, cytokines, and antimicrobial factors). The increased ER-dependent, Ca(2+)(i)-mediated hyperinflammatory epithelial response may represent a general beneficial airway epithelial adaptation to transient luminal infection. However, in CF airways, the Ca(2+)(i)-mediated hyperinflammation may be ineffective in promoting the eradication of infection in thickened mucus and, consequently, may have adverse effects in the lung.
Collapse
Affiliation(s)
- Carla M Pedrosa Ribeiro
- Cystic Fibrosis Center and Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Satoh A, Gukovskaya AS, Nieto JM, Cheng JH, Gukovsky I, Reeve JR, Shimosegawa T, Pandol SJ. PKC-delta and -epsilon regulate NF-kappaB activation induced by cholecystokinin and TNF-alpha in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2004; 287:G582-91. [PMID: 15117677 DOI: 10.1152/ajpgi.00087.2004] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although NF-kappaB plays an important role in pancreatitis, mechanisms underlying its activation remain unclear. We investigated the signaling pathways mediating NF-kappaB activation in pancreatic acinar cells induced by high-dose cholecystokinin-8 (CCK-8), which causes pancreatitis in rodent models, and TNF-alpha, which contributes to inflammatory responses of pancreatitis, especially the role of PKC isoforms. We determined subcellular distribution and kinase activities of PKC isoforms and NF-kappaB activation in dispersed rat pancreatic acini. We applied isoform-specific, cell-permeable peptide inhibitors to assess the role of individual PKC isoforms in NF-kappaB activation. Both CCK-8 and TNF-alpha activated the novel isoforms PKC-delta and -epsilon and the atypical isoform PKC-zeta but not the conventional isoform PKC-alpha. Inhibition of the novel PKC isoforms but not the conventional or the atypical isoform resulted in the prevention of NF-kappaB activation induced by CCK-8 and TNF-alpha. NF-kappaB activation by CCK-8 and TNF-alpha required translocation but not tyrosine phosphorylation of PKC-delta. Activation of PKC-delta, PKC-epsilon, and NF-kappaB with CCK-8 involved both phosphatidylinositol-specific PLC and phosphatidylcholine (PC)-specific PLC, whereas with TNF-alpha they only required PC-specific PLC for activation. Results indicate that CCK-8 and TNF-alpha initiate NF-kappaB activation by different PLC pathways that converge at the novel PKCs (delta and epsilon) to mediate NF-kappaB activation in pancreatic acinar cells. These findings suggest a key role for the novel PKCs in pancreatitis.
Collapse
Affiliation(s)
- Akihiko Satoh
- Research Center for Alcoholic Liver and Pancreatic Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Criddle DN, Raraty MGT, Neoptolemos JP, Tepikin AV, Petersen OH, Sutton R. Ethanol toxicity in pancreatic acinar cells: mediation by nonoxidative fatty acid metabolites. Proc Natl Acad Sci U S A 2004; 101:10738-43. [PMID: 15247419 PMCID: PMC490004 DOI: 10.1073/pnas.0403431101] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Indexed: 12/22/2022] Open
Abstract
Ethanol causes pancreatic damage by an unknown mechanism. Previously, we demonstrated that a sustained rise of the cytosolic Ca(2+) concentration ([Ca(2+)](i)) causes pancreatic acinar cell injury. Here we have investigated the effects of ethanol and its metabolites on Ca(2+) signaling in pancreatic acinar cells. Most cells exposed to ethanol (up to 850 mM) showed little or no increase in [Ca(2+)](i) (and never at concentrations <50 mM). During sustained exposure to 850 mM ethanol, acetylcholine (ACh) evoked a normal [Ca(2+)](i) elevation and following ACh removal there was a normal and rapid recovery to a low resting level. The oxidative metabolite acetaldehyde (up to 5 mM) had no effect, whereas the nonoxidative unsaturated metabolite palmitoleic acid ethyl ester (10-100 microM, added on top of 850 mM ethanol) induced sustained, concentration-dependent increases in [Ca(2+)](i) that were acutely dependent on external Ca(2+) and caused cell death. These actions were shared by the unsaturated metabolite arachidonic acid ethyl ester, the saturated equivalents palmitic and arachidic acid ethyl esters, and the fatty acid palmitoleic acid. In the absence of external Ca(2+), releasing all Ca(2+) from the endoplasmic reticulum by ACh (10 microM) or the specific Ca(2+) pump inhibitor thapsigargin (2 microM) prevented such Ca(2+) signal generation. We conclude that nonoxidative fatty acid metabolites, rather than ethanol itself, are responsible for the marked elevations of [Ca(2+)](i) that mediate toxicity in the pancreatic acinar cell and that these compounds act primarily by releasing Ca(2+) from the endoplasmic reticulum.
Collapse
Affiliation(s)
- David N Criddle
- Physiological Laboratory, Medical Research Council Secretory Control Research Group, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
Saraswathi V, Wu G, Toborek M, Hennig B. Linoleic acid-induced endothelial activation: role of calcium and peroxynitrite signaling. J Lipid Res 2004; 45:794-804. [PMID: 14993245 DOI: 10.1194/jlr.m300497-jlr200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypertriglyceridemia, an important risk factor of atherosclerosis, is associated with increased circulating free fatty acids. Research to date indicates that linoleic acid (LA), the major fatty acid in the American diet, may be atherogenic by activating vascular endothelial cells. However, the exact signaling mechanisms involved in LA-mediated proinflammatory events in endothelial cells still remain unclear. We previously reported increased superoxide formation after LA exposure in endothelial cells. The objective of the present investigation is to determine the role of calcium and peroxynitrite in mediating the proinflammatory effect of LA in vascular endothelial cells. LA exposure increased intracellular calcium, nitric oxide, and tetrahydrodiopterin levels as well as the expression of E-selectin. Inhibiting calcium signaling using 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid and heparin decreased the expression of E-selectin. Also, LA-mediated nuclear factor kappa B activation and E-selectin gene expression were suppressed by Mn (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (a superoxide scavenger), N(G)-monomethyl-l-arginine (an endothelial nitric oxide synthase inhibitor), and 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron (III) chloride (a peroxynitrite scavenger). LA exposure resulted in increased nitrotyrosine levels, as observed by Western blotting and immunofluorescence. Our data suggest that the proinflammatory effects of LA can be mediated through calcium and peroxynitrite signaling.
Collapse
Affiliation(s)
- Viswanathan Saraswathi
- Molecular and Cell Nutrition Laboratory, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
49
|
Siegmund E, Lüthen F, Kunert J, Weber H. Ethanol modifies the actin cytoskeleton in rat pancreatic acinar cells--comparison with effects of CCK. Pancreatology 2004; 4:12-21. [PMID: 14988654 DOI: 10.1159/000077023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 10/07/2003] [Indexed: 12/11/2022]
Abstract
BACKGROUND One of the early events leading to alcoholic pancreatitis seems to be the effect of ethanol on stimulus-secretion coupling. This study examines ethanol-induced modifications of filamentous actin (F-actin) content and localization in acini, the resulting alpha-amylase secretion and the role of protein kinase C (PKC) activity in these processes. METHODS Freshly isolated acini were treated with different concentrations of ethanol or cholecystokinin octapeptide (CCK-8) for different periods. F-actin was localized by confocal laser scanning microscopy; its quantity was determined fluorometrically, and the alpha-amylase secretion was measured. RESULTS Ethanol caused F-actin reorganization resembling the effects of supramaximal CCK-8 stimulation and of direct PKC activation by phorbol-12-myristate-13-acetate. The polyphasic time course of the F-actin content also resembled that under supramaximal CCK-8 stimulation and was counteracted by inhibition of PKC. The PKC inhibitor bisindolylmaleimide I did not increase the ethanol- induced alpha-amylase secretion, but the suboptimally CCK-8-stimulated secretion via high-affinity receptors. CONCLUSION Ethanol, like supramaximal CCK-8 concentrations, inhibits acinar secretion by reorganization of the actin cytoskeleton via PKC activation. This effect is suggested to be mediated by low-affinity CCK-A receptors. Together with the ethanol-induced stimulation of early steps of stimulus-secretion coupling, this may be a pancreas-damaging mechanism resembling that in experimental hyperstimulation pancreatitis.
Collapse
Affiliation(s)
- Eva Siegmund
- Institute of Clinical Chemistry and Pathobiochemistry, University of Rostock, Rostock, Germany.
| | | | | | | |
Collapse
|
50
|
Gukovskaya AS, Hosseini S, Satoh A, Cheng JH, Nam KJ, Gukovsky I, Pandol SJ. Ethanol differentially regulates NF-kappaB activation in pancreatic acinar cells through calcium and protein kinase C pathways. Am J Physiol Gastrointest Liver Physiol 2004; 286:G204-13. [PMID: 12958018 DOI: 10.1152/ajpgi.00088.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mechanisms of alcoholic pancreatitis remain unknown. Previously, we showed that ethanol feeding sensitizes rats to pancreatitis caused by CCK-8, at least in part, by augmenting activation of the proinflammatory transcription factor NF-kappaB. To elucidate the mechanism of sensitization, here we investigate the effect of ethanol on Ca(2+)- and PKC-mediated pathways of CCK-induced NF-kappaB activation using an in vitro system of rat pancreatic acini incubated with ethanol. Ethanol augmented CCK-8-induced activation of NF-kappaB, similar to our in vivo findings with ethanol-fed rats. In contrast, ethanol prevented NF-kappaB activation caused by thapsigargin, an agent that mobilizes intracellular Ca(2+) bypassing the receptor. Pharmacological analysis showed that NF-kappaB activation by thapsigargin but not by CCK-8 is mediated through the calcineurin pathway and that the inhibitory effect of ethanol on the thapsigargin-induced NF-kappaB activation could be through inhibiting this pathway. Ethanol augmented NF-kappaB activation induced by the phorbol ester PMA, a direct activator of PKC. Inhibitory analysis demonstrated that Ca(2+)-independent (novel and/or atypical) PKC isoforms are involved in NF-kappaB activation induced by both CCK-8 and PMA in cells treated and not treated with ethanol. The results indicate that ethanol differentially affects the Ca(2+)/calcineurin- and PKC-mediated pathways of NF-kappaB activation in pancreatic acinar cells. These effects may play a role in the ability of ethanol to sensitize pancreas to the inflammatory response and pancreatitis.
Collapse
Affiliation(s)
- Anna S Gukovskaya
- UCLA/VA Greater Los Angeles Healthcare System, West Los Angeles Center, Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | |
Collapse
|