1
|
Sirbu C. The Role of Endogenous Opioids in Cardioprotection. ADVANCES IN NEUROBIOLOGY 2024; 35:381-395. [PMID: 38874733 DOI: 10.1007/978-3-031-45493-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The opioid system involves opioid receptors (OPRs) and endogenous opioid peptides.This chapter will focus on the distribution of OPRs in the cardiovascular system, the expression pattern in the heart, the activation by opioid peptides, and the effects of OPRs activation with potential relevance in cardiovascular performance. In the heart, OPRs are co-expressed with beta adrenergic receptors (β-ARs) in the G-protein-coupled receptor (GPCR) superfamily, functionally cross-talk with β-Ars and modify catecholamine-induced effects. They are involved in cardiac contractility, energy metabolism, myocyte survival or death, vascular resistance. The effects of the opioid system in the regulation of systemic circulation at both the central and peripheral level are presented. The pathways are discussed under physiological (i.e., aging) and pathological conditions (atherosclerosis, heart failure, essential hypertension, ischemic stress). Stimulation of OPRs not only inhibits cardiac excitation-contraction coupling, but also protects the heart against hypoxic and ischemic injury. An enhanced sensitivity to opioids of endocrine organs and neuronal systems is operative in hypertensive patients. The opioid system can be pharmacologically engaged to selectively mimic these responses via cardiac and nervous signaling. The clinical opportunities for the use of cardioprotective effects of opioids require future investigations to provide more specific details of the impact on cardiac performance and electrophysiological properties.
Collapse
Affiliation(s)
- Cristina Sirbu
- Department of Cardiac Surgery and Transplantation, University Hospital Nancy-Brabois, Nancy, France
| |
Collapse
|
2
|
Sex/Gender- and Age-Related Differences in β-Adrenergic Receptor Signaling in Cardiovascular Diseases. J Clin Med 2022; 11:jcm11154280. [PMID: 35893368 PMCID: PMC9330499 DOI: 10.3390/jcm11154280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Sex differences in cardiovascular disease (CVD) are often recognized from experimental and clinical studies examining the prevalence, manifestations, and response to therapies. Compared to age-matched men, women tend to have reduced CV risk and a better prognosis in the premenopausal period. However, with menopause, this risk increases exponentially, surpassing that of men. Although several mechanisms have been provided, including sex hormones, an emerging role in these sex differences has been suggested for β-adrenergic receptor (β-AR) signaling. Importantly, β-ARs are the most important G protein-coupled receptors (GPCRs), expressed in almost all the cell types of the CV system, and involved in physiological and pathophysiological processes. Consistent with their role, for decades, βARs have been considered the first targets for rational drug design to fight CVDs. Of note, β-ARs are seemingly associated with different CV outcomes in females compared with males. In addition, even if there is a critical inverse correlation between β-AR responsiveness and aging, it has been reported that gender is crucially involved in this age-related effect. This review will discuss how β-ARs impact the CV risk and response to anti-CVD therapies, also concerning sex and age. Further, we will explore how estrogens impact β-AR signaling in women.
Collapse
|
3
|
Bourque K, Hawey C, Jones-Tabah J, Pétrin D, Martin RD, Ling Sun Y, Hébert TE. Measuring hypertrophy in neonatal rat primary cardiomyocytes and human iPSC-derived cardiomyocytes. Methods 2021; 203:447-464. [PMID: 34933120 DOI: 10.1016/j.ymeth.2021.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
In the heart, left ventricular hypertrophy is initially an adaptive mechanism that increases wall thickness to preserve normal cardiac output and function in the face of coronary artery disease or hypertension. Cardiac hypertrophy develops in response to pressure and volume overload but can also be seen in inherited cardiomyopathies. As the wall thickens, it becomes stiffer impairing the distribution of oxygenated blood to the rest of the body. With complex cellular signalling and transcriptional networks involved in the establishment of the hypertrophic state, several model systems have been developed to better understand the molecular drivers of disease. Immortalized cardiomyocyte cell lines, primary rodent and larger animal models have all helped understand the pathological mechanisms underlying cardiac hypertrophy. Induced pluripotent stem cell-derived cardiomyocytes are also used and have the additional benefit of providing access to human samples with direct disease relevance as when generated from patients suffering from hypertrophic cardiomyopathies. Here, we briefly review in vitro and in vivo model systems that have been used to model hypertrophy and provide detailed methods to isolate primary neonatal rat cardiomyocytes as well as to generate cardiomyocytes from human iPSCs. We also describe how to model hypertrophy in a "dish" using gene expression analysis and immunofluorescence combined with automated high-content imaging.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Cara Hawey
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Yi Ling Sun
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
4
|
Wright PT, Gorelik J, Harding SE. Electrophysiological Remodeling: Cardiac T-Tubules and ß-Adrenoceptors. Cells 2021; 10:cells10092456. [PMID: 34572106 PMCID: PMC8468945 DOI: 10.3390/cells10092456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/09/2023] Open
Abstract
Beta-adrenoceptors (βAR) are often viewed as archetypal G-protein coupled receptors. Over the past fifteen years, investigations in cardiovascular biology have provided remarkable insights into this receptor family. These studies have shifted pharmacological dogma, from one which centralized the receptor to a new focus on structural micro-domains such as caveolae and t-tubules. Important studies have examined, separately, the structural compartmentation of ion channels and βAR. Despite links being assumed, relatively few studies have specifically examined the direct link between structural remodeling and electrical remodeling with a focus on βAR. In this review, we will examine the nature of receptor and ion channel dysfunction on a substrate of cardiomyocyte microdomain remodeling, as well as the likely ramifications for cardiac electrophysiology. We will then discuss the advances in methodologies in this area with a specific focus on super-resolution microscopy, fluorescent imaging, and new approaches involving microdomain specific, polymer-based agonists. The advent of powerful computational modelling approaches has allowed the science to shift from purely empirical work, and may allow future investigations based on prediction. Issues such as the cross-reactivity of receptors and cellular heterogeneity will also be discussed. Finally, we will speculate as to the potential developments within this field over the next ten years.
Collapse
Affiliation(s)
- Peter T. Wright
- School of Life & Health Sciences, University of Roehampton, Holybourne Avenue, London SW15 4JD, UK;
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Sian E. Harding
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
- Correspondence:
| |
Collapse
|
5
|
De Jong KA, Nikolaev VO. Multifaceted remodelling of cAMP microdomains driven by different aetiologies of heart failure. FEBS J 2021; 288:6603-6622. [DOI: 10.1111/febs.15706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Kirstie A. De Jong
- Institute of Experimental Cardiovascular Research University Medical Center Hamburg‐Eppendorf Hamburg Germany
- German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck D‐20246 Hamburg Germany
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research University Medical Center Hamburg‐Eppendorf Hamburg Germany
- German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck D‐20246 Hamburg Germany
| |
Collapse
|
6
|
Sun X, Zhou M, Wen G, Huang Y, Wu J, Peng L, Jiang W, Yuan H, Lu Y, Cai J. Paroxetine Attenuates Cardiac Hypertrophy Via Blocking GRK2 and ADRB1 Interaction in Hypertension. J Am Heart Assoc 2020; 10:e016364. [PMID: 33372534 PMCID: PMC7955481 DOI: 10.1161/jaha.120.016364] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background ADRB1 (adrenergic receptor beta 1) responds to neuroendocrine stimulations, which have great implications in hypertension. GRK2 (G protein‐coupled receptor kinase 2) is an essential regulator for many G protein‐coupled receptors and subsequent cell signaling cascades, but its role as a regulator of ADRB1 and associated cardiac hypertrophy in hypertension remains to be elucidated. Methods and Results In this study, we found the expressions of GRK2 and ADRB1 in peripheral blood mononuclear cells were positively associated with blood pressure levels in hypertensive patients and with their expression in heart. In vitro evidence showed a direct interaction in ADRB1 and GRK2 and genetic depletion of GRK2 blocks epinephrine‐induced upregulation of hypertrophic and fibrotic genes in cardiomyocytes. Meanwhile, we discovered a selective serotonin reuptake inhibitor paroxetine specifically blockades GRK2 and ADRB1 interaction. In vivo, paroxetine treatment ameliorates hypertension‐induced cardiac hypertrophy, dysfunction, and fibrosis in animal models. We found that paroxetine suppressed sympathetic overdrive and increased the adrenergic receptor sensitivity to catecholamines. Paroxetine treatment also blocks epinephrine‐induced upregulation of hypertrophic and fibrotic genes as well as ADRB1 internalization in cardiomyocytes. Coadministration of paroxetine further potentiates metoprolol‐induced reductions in blood pressure and heart rate, further attenuating cardiac hypertrophy in spontaneously hypertensive rats. Furthermore, in patients with hypertension accompanied with depression, we observed that cardiac remodeling was less severe in those with paroxetine treatment compared with those with other types of anti‐depressive agents. Conclusions Paroxetine promotes ADRB1 sensitivity and attenuates cardiac hypertrophy partially via blocking GRK2‐mediated ADRB1 activation and internalization in the context of hypertension.
Collapse
Affiliation(s)
- Xuejing Sun
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China
| | - Mengli Zhou
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China
| | - Gaiyan Wen
- Department of Pharmacy Zhejiang Hospital Hangzhou China
| | - Yun Huang
- Ningbo Medical Center Lihuili Hospital Ningbo China
| | - Junru Wu
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China
| | - Liping Peng
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China
| | - Weihong Jiang
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China
| | - Hong Yuan
- The Center of Clinical Pharmacology The Third Xiangya HospitalCentral South University Changsha China
| | - Yao Lu
- The Center of Clinical Pharmacology The Third Xiangya HospitalCentral South University Changsha China
| | - Jingjing Cai
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China.,The Center of Clinical Pharmacology The Third Xiangya HospitalCentral South University Changsha China
| |
Collapse
|
7
|
A Role for Caveolin-3 in the Pathogenesis of Muscular Dystrophies. Int J Mol Sci 2020; 21:ijms21228736. [PMID: 33228026 PMCID: PMC7699313 DOI: 10.3390/ijms21228736] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Caveolae are the cholesterol-rich small invaginations of the plasma membrane present in many cell types including adipocytes, endothelial cells, epithelial cells, fibroblasts, smooth muscles, skeletal muscles and cardiac muscles. They serve as specialized platforms for many signaling molecules and regulate important cellular processes like energy metabolism, lipid metabolism, mitochondria homeostasis, and mechano-transduction. Caveolae can be internalized together with associated cargo. The caveolae-dependent endocytic pathway plays a role in the withdrawal of many plasma membrane components that can be sent for degradation or recycled back to the cell surface. Caveolae are formed by oligomerization of caveolin proteins. Caveolin-3 is a muscle-specific isoform, whose malfunction is associated with several diseases including diabetes, cancer, atherosclerosis, and cardiovascular diseases. Mutations in Caveolin-3 are known to cause muscular dystrophies that are collectively called caveolinopathies. Altered expression of Caveolin-3 is also observed in Duchenne’s muscular dystrophy, which is likely a part of the pathological process leading to muscle weakness. This review summarizes the major functions of Caveolin-3 in skeletal muscles and discusses its involvement in the pathology of muscular dystrophies.
Collapse
|
8
|
Beta-3 adrenoceptors: A potential therapeutic target for heart disease. Eur J Pharmacol 2019; 858:172468. [DOI: 10.1016/j.ejphar.2019.172468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
|
9
|
Ashraf S, Hegazy YK, Harmancey R. Nuclear receptor subfamily 4 group A member 2 inhibits activation of ERK signaling and cell growth in response to β-adrenergic stimulation in adult rat cardiomyocytes. Am J Physiol Cell Physiol 2019; 317:C513-C524. [PMID: 31188636 PMCID: PMC6766613 DOI: 10.1152/ajpcell.00526.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sustained elevation of sympathetic activity is an important contributor to pathological cardiac hypertrophy, ventricular arrhythmias, and left ventricular contractile dysfunction in chronic heart failure. The orphan nuclear receptor NR4A2 is an immediate early-response gene activated in the heart under β-adrenergic stimulation. The goal of this study was to identify the transcriptional remodeling events induced by increased NR4A2 expression in cardiomyocytes and their impact on the physiological response of those cells to sustained β-adrenergic stimulation. Treatment of adult rat ventricular myocytes with isoproterenol induced a rapid (<4 h) increase in NR4A2 levels that was accompanied by a transient (<24 h) increase in nuclear localization of the transcription factor. Adenovirus-mediated overexpression of NR4A2 to similar levels modulated the expression of genes linked to adrenoceptor signaling, calcium signaling, cell growth and proliferation and counteracted the increase in protein synthesis rate and cell surface area mediated by chronic isoproterenol stimulation. Consistent with those findings, NR4A2 overexpression also blocked the phosphorylative activation of growth-related kinases ERK1/2, Akt, and p70 S6 kinase. Prominent among the transcriptional changes induced by NR4A2 was the upregulation of the dual-specificity phosphatases DUSP2 and DUSP14, two known inhibitors of ERK1/2. Pretreatment of NR4A2-overexpressing cardiomyocytes with the DUSP inhibitor BCI [(E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one] prevented the inhibition of ERK1/2 following isoproterenol stimulation. In conclusion, our results suggest that NR4A2 acts as a novel negative feedback regulator of the β-adrenergic receptor-mediated growth response in cardiomyocytes and this at least partly through DUSP-mediated inhibition of ERK1/2 signaling.
Collapse
Affiliation(s)
- Sadia Ashraf
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi.,Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yassmin K Hegazy
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi.,Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Romain Harmancey
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi.,Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
10
|
Khalilimeybodi A, Daneshmehr A, Sharif-Kashani B. Investigating β-adrenergic-induced cardiac hypertrophy through computational approach: classical and non-classical pathways. J Physiol Sci 2018; 68:503-520. [PMID: 28674776 PMCID: PMC10717155 DOI: 10.1007/s12576-017-0557-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/27/2017] [Indexed: 01/05/2023]
Abstract
The chronic stimulation of β-adrenergic receptors plays a crucial role in cardiac hypertrophy and its progression to heart failure. In β-adrenergic signaling, in addition to the well-established classical pathway, Gs/AC/cAMP/PKA, activation of non-classical pathways such as Gi/PI3K/Akt/GSK3β and Gi/Ras/Raf/MEK/ERK contribute in cardiac hypertrophy. The signaling network of β-adrenergic-induced hypertrophy is very complex and not fully understood. So, we use a computational approach to investigate the dynamic response and contribution of β-adrenergic mediators in cardiac hypertrophy. The proposed computational model provides insights into the effects of β-adrenergic classical and non-classical pathways on the activity of hypertrophic transcription factors CREB and GATA4. The results illustrate that the model captures the dynamics of the main signaling mediators and reproduces the experimental observations well. The results also show that despite the low portion of β2 receptors out of total cardiac β-adrenergic receptors, their contribution in the activation of hypertrophic mediators and regulation of β-adrenergic-induced hypertrophy is noticeable and variations in β1/β2 receptors ratio greatly affect the ISO-induced hypertrophic response. The model results illustrate that GSK3β deactivation after β-adrenergic receptor stimulation has a major influence on CREB and GATA4 activation and consequent cardiac hypertrophy. Also, it is found through sensitivity analysis that PKB (Akt) activation has both pro-hypertrophic and anti-hypertrophic effects in β-adrenergic signaling.
Collapse
Affiliation(s)
- Ali Khalilimeybodi
- Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Daneshmehr
- Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Babak Sharif-Kashani
- Department of Cardiology, Massih-Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Christoffersson J, Meier F, Kempf H, Schwanke K, Coffee M, Beilmann M, Zweigerdt R, Mandenius CF. A Cardiac Cell Outgrowth Assay for Evaluating Drug Compounds Using a Cardiac Spheroid-on-a-Chip Device. Bioengineering (Basel) 2018; 5:bioengineering5020036. [PMID: 29734702 PMCID: PMC6027518 DOI: 10.3390/bioengineering5020036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 01/09/2023] Open
Abstract
Three-dimensional (3D) models with cells arranged in clusters or spheroids have emerged as valuable tools to improve physiological relevance in drug screening. One of the challenges with cells cultured in 3D, especially for high-throughput applications, is to quickly and non-invasively assess the cellular state in vitro. In this article, we show that the number of cells growing out from human induced pluripotent stem cell (hiPSC)-derived cardiac spheroids can be quantified to serve as an indicator of a drug’s effect on spheroids captured in a microfluidic device. Combining this spheroid-on-a-chip with confocal high content imaging reveals easily accessible, quantitative outgrowth data. We found that effects on outgrowing cell numbers correlate to the concentrations of relevant pharmacological compounds and could thus serve as a practical readout to monitor drug effects. Here, we demonstrate the potential of this semi-high-throughput “cardiac cell outgrowth assay” with six compounds at three concentrations applied to spheroids for 48 h. The image-based readout complements end-point assays or may be used as a non-invasive assay for quality control during long-term culture.
Collapse
Affiliation(s)
- Jonas Christoffersson
- Division of Biotechnology, Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden.
| | - Florian Meier
- Boehringer Ingelheim Pharma GmbH and Co. KG, Nonclinical Drug Safety Germany, D-88397 Biberach an der Riss, Germany.
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Kristin Schwanke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Michelle Coffee
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Mario Beilmann
- Boehringer Ingelheim Pharma GmbH and Co. KG, Nonclinical Drug Safety Germany, D-88397 Biberach an der Riss, Germany.
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Carl-Fredrik Mandenius
- Division of Biotechnology, Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden.
| |
Collapse
|
12
|
Schirmer I, Bualeong T, Budde H, Cimiotti D, Appukuttan A, Klein N, Steinwascher P, Reusch P, Mügge A, Meyer R, Ladilov Y, Jaquet K. Soluble adenylyl cyclase: A novel player in cardiac hypertrophy induced by isoprenaline or pressure overload. PLoS One 2018; 13:e0192322. [PMID: 29466442 PMCID: PMC5821345 DOI: 10.1371/journal.pone.0192322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/22/2018] [Indexed: 12/29/2022] Open
Abstract
Aims In contrast to the membrane bound adenylyl cyclases, the soluble adenylyl cyclase (sAC) is activated by bicarbonate and divalent ions including calcium. sAC is located in the cytosol, nuclei and mitochondria of several tissues including cardiac muscle. However, its role in cardiac pathology is poorly understood. Here we investigate whether sAC is involved in hypertrophic growth using two different model systems. Methods and results In isolated adult rat cardiomyocytes hypertrophy was induced by 24 h β1-adrenoceptor stimulation using isoprenaline (ISO) and a β2-adrenoceptor antagonist (ICI118,551). To monitor hypertrophy cell size along with RNA/DNA- and protein/DNA ratios as well as the expression level of α-skeletal actin were analyzed. sAC activity was suppressed either by treatment with its specific inhibitor KH7 or by knockdown. Both pharmacological inhibition and knockdown blunted hypertrophic growth and reduced expression levels of α-skeletal actin in ISO/ICI treated rat cardiomyocytes. To analyze the underlying cellular mechanism expression levels of phosphorylated CREB, B-Raf and Erk1/2 were examined by western blot. The results suggest the involvement of B-Raf, but not of Erk or CREB in the pro-hypertrophic action of sAC. In wild type and sAC knockout mice pressure overload was induced by transverse aortic constriction. Hemodynamics, heart weight and the expression level of the atrial natriuretic peptide were analyzed. In accordance, transverse aortic constriction failed to induce hypertrophy in sAC knockout mice. Mechanistic analysis revealed a potential role of Erk1/2 in TAC-induced hypertrophy. Conclusion Soluble adenylyl cyclase might be a new pivotal player in the cardiac hypertrophic response either to long-term β1-adrenoceptor stimulation or to pressure overload.
Collapse
Affiliation(s)
- Ilona Schirmer
- Cardiology, Research Laboratory Molecular Cardiology, BG Bergmannsheil and St. Josef-Hospital, clinics of the Ruhr-University Bochum, Bochum, Germany
| | - Tippaporn Bualeong
- Institute of Physiology II, Hospital of the Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Heidi Budde
- Cardiology, Research Laboratory Molecular Cardiology, BG Bergmannsheil and St. Josef-Hospital, clinics of the Ruhr-University Bochum, Bochum, Germany
| | - Diana Cimiotti
- Cardiology, Research Laboratory Molecular Cardiology, BG Bergmannsheil and St. Josef-Hospital, clinics of the Ruhr-University Bochum, Bochum, Germany
| | - Avinash Appukuttan
- Clinical Pharmacology, Faculty of Medicine, Ruhr-University of Bochum, Bochum, Germany
| | - Nicole Klein
- Cardiology, Research Laboratory Molecular Cardiology, BG Bergmannsheil and St. Josef-Hospital, clinics of the Ruhr-University Bochum, Bochum, Germany
| | - Philip Steinwascher
- Cardiology, Research Laboratory Molecular Cardiology, BG Bergmannsheil and St. Josef-Hospital, clinics of the Ruhr-University Bochum, Bochum, Germany
| | - Peter Reusch
- Clinical Pharmacology, Faculty of Medicine, Ruhr-University of Bochum, Bochum, Germany
| | - Andreas Mügge
- Cardiology, Research Laboratory Molecular Cardiology, BG Bergmannsheil and St. Josef-Hospital, clinics of the Ruhr-University Bochum, Bochum, Germany
| | - Rainer Meyer
- Institute of Physiology II, Hospital of the Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Yury Ladilov
- Clinical Pharmacology, Faculty of Medicine, Ruhr-University of Bochum, Bochum, Germany
| | - Kornelia Jaquet
- Cardiology, Research Laboratory Molecular Cardiology, BG Bergmannsheil and St. Josef-Hospital, clinics of the Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
13
|
Compartmentalization of GPCR signalling controls unique cellular responses. Biochem Soc Trans 2016; 44:562-7. [DOI: 10.1042/bst20150236] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Indexed: 02/08/2023]
Abstract
With >800 members, G protein-coupled receptors (GPCRs) are the largest class of cell-surface signalling proteins, and their activation mediates diverse physiological processes. GPCRs are ubiquitously distributed across all cell types, involved in many diseases and are major drug targets. However, GPCR drug discovery is still characterized by very high attrition rates. New avenues for GPCR drug discovery may be provided by a recent shift away from the traditional view of signal transduction as a simple chain of events initiated from the plasma membrane. It is now apparent that GPCR signalling is restricted to highly organized compartments within the cell, and that GPCRs activate distinct signalling pathways once internalized. A high-resolution understanding of how compartmentalized signalling is controlled will probably provide unique opportunities to selectively and therapeutically target GPCRs.
Collapse
|
14
|
Han C, Tomita H, Ohba T, Nishizaki K, Ogata Y, Matsuzaki Y, Sawamura D, Yanagisawa T, Osanai T, Imaizumi T, Matsubara A, Adachi T, Ono K, Okumura K, Murakami M. Modified sympathetic nerve regulation in AKAP5-null mice. Biochem Biophys Res Commun 2015; 469:897-902. [PMID: 26713362 DOI: 10.1016/j.bbrc.2015.12.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
Genetic analyses have revealed an important association between A-kinase anchoring proteins (AKAPs) and the intracellular calcium modulating system. AKAP5, also known as AKAP79/150, is an anchoring protein between PKA and voltage-dependent calcium channels, ryanodine receptor-2, phospholamban and other molecules. The aim of the present study was to elucidate the physiological importance of AKAP5 in the creation of cardiac rhythm using AKAP5-null mice. ECG analysis showed a normal sinus rhythm and a decreased responsiveness to isoproterenol in AKAP5-null mice compared with wild-type mice. Analysis of heart rate variability revealed that the R-R interval was unstable in AKAP5-null mutants and that the low-frequency components had decreased, indicating that the tonus of the sympathetic nervous system was affected. Furthermore, the atrium of the AKAP5-null mice showed a decreased positive inotropic response to isoproterenol, indicating the involvement of AKAP5 in a PKA-dependent pathway. Thus, our present study revealed that AKAP5 plays a significant role in the regulation of sympathetic nerve activities.
Collapse
Affiliation(s)
- Chong Han
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Hirofumi Tomita
- Department of Cardiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Takayoshi Ohba
- Department of Cellular Physiology, Akita University, Graduate School of Medicine, 1-1-1 Hondoh, Akita, 010-8543, Japan
| | - Kimitaka Nishizaki
- Department of Cardiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Yoshiki Ogata
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Yasushi Matsuzaki
- Department of Dermatology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Teruyuki Yanagisawa
- Department of Molecular Pharmacology, Tohoku University School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai, 980-8578, Japan
| | - Tomohiro Osanai
- Department of Cardiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Atsushi Matsubara
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Takeshi Adachi
- Department of Cellular Physiology, Akita University, Graduate School of Medicine, 1-1-1 Hondoh, Akita, 010-8543, Japan
| | - Kyoichi Ono
- Department of Cellular Physiology, Akita University, Graduate School of Medicine, 1-1-1 Hondoh, Akita, 010-8543, Japan
| | - Ken Okumura
- Department of Cardiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Manabu Murakami
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| |
Collapse
|
15
|
Gomez JF, Cardona K, Trenor B. Lessons learned from multi-scale modeling of the failing heart. J Mol Cell Cardiol 2015; 89:146-59. [PMID: 26476237 DOI: 10.1016/j.yjmcc.2015.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 12/26/2022]
Abstract
Heart failure constitutes a major public health problem worldwide. Affected patients experience a number of changes in the electrical function of the heart that predispose to potentially lethal cardiac arrhythmias. Due to the multitude of electrophysiological changes that may occur during heart failure, the scientific literature is complex and sometimes ambiguous, perhaps because these findings are highly dependent on the etiology, the stage of heart failure, and the experimental model used to study these changes. Nevertheless, a number of common features of failing hearts have been documented. Prolongation of the action potential (AP) involving ion channel remodeling and alterations in calcium handling have been established as the hallmark characteristics of myocytes isolated from failing hearts. Intercellular uncoupling and fibrosis are identified as major arrhythmogenic factors. Multi-scale computational simulations are a powerful tool that complements experimental and clinical research. The development of biophysically detailed computer models of single myocytes and cardiac tissues has contributed greatly to our understanding of processes underlying excitation and repolarization in the heart. The electrical, structural, and metabolic remodeling that arises in cardiac tissues during heart failure has been addressed from different computational perspectives to further understand the arrhythmogenic substrate. This review summarizes the contributions from computational modeling and simulation to predict the underlying mechanisms of heart failure phenotypes and their implications for arrhythmogenesis, ranging from the cellular level to whole-heart simulations. The main aspects of heart failure are presented in several related sections. An overview of the main electrophysiological and structural changes that have been observed experimentally in failing hearts is followed by the description and discussion of the simulation work in this field at the cellular level, and then in 2D and 3D cardiac structures. The implications for arrhythmogenesis in heart failure are also discussed including therapeutic measures, such as drug effects and cardiac resynchronization therapy. Finally, the future challenges in heart failure modeling and simulation will be discussed.
Collapse
Affiliation(s)
- Juan F Gomez
- Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada, al Ser Humano (I3BH), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Karen Cardona
- Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada, al Ser Humano (I3BH), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Beatriz Trenor
- Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada, al Ser Humano (I3BH), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
16
|
Wright PT, Nikolaev VO, O'Hara T, Diakonov I, Bhargava A, Tokar S, Schobesberger S, Shevchuk AI, Sikkel MB, Wilkinson R, Trayanova NA, Lyon AR, Harding SE, Gorelik J. Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling. J Mol Cell Cardiol 2014; 67:38-48. [PMID: 24345421 PMCID: PMC4266930 DOI: 10.1016/j.yjmcc.2013.12.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/28/2013] [Accepted: 12/06/2013] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to investigate whether caveolin-3 (Cav3) regulates localization of β2-adrenergic receptor (β2AR) and its cAMP signaling in healthy or failing cardiomyocytes. We co-expressed wildtype Cav3 or its dominant-negative mutant (Cav3DN) together with the Förster resonance energy transfer (FRET)-based cAMP sensor Epac2-camps in adult rat ventricular myocytes (ARVMs). FRET and scanning ion conductance microscopy were used to locally stimulate β2AR and to measure cytosolic cAMP. Cav3 overexpression increased the number of caveolae and decreased the magnitude of β2AR-cAMP signal. Conversely, Cav3DN expression resulted in an increased β2AR-cAMP response without altering the whole-cell L-type calcium current. Following local stimulation of Cav3DN-expressing ARVMs, β2AR response could only be generated in T-tubules. However, the normally compartmentalized β2AR-cAMP signal became diffuse, similar to the situation observed in heart failure. Finally, overexpression of Cav3 in failing myocytes led to partial β2AR redistribution back into the T-tubules. In conclusion, Cav3 plays a crucial role for the localization of β2AR and compartmentation of β2AR-cAMP signaling to the T-tubules of healthy ARVMs, and overexpression of Cav3 in failing myocytes can partially restore the disrupted localization of these receptors.
Collapse
Affiliation(s)
- Peter T Wright
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Viacheslav O Nikolaev
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK; Emmy Noether Group of the DFG, Department of Cardiology and Pneumology, Heart Research Center Göttingen, Georg August University, Göttingen, Germany
| | - Thomas O'Hara
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ivan Diakonov
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Anamika Bhargava
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Sergiy Tokar
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Sophie Schobesberger
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | | | - Markus B Sikkel
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Ross Wilkinson
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Natalia A Trayanova
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander R Lyon
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK; Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Sian E Harding
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
17
|
Li X, Nooh MM, Bahouth SW. Role of AKAP79/150 protein in β1-adrenergic receptor trafficking and signaling in mammalian cells. J Biol Chem 2013; 288:33797-33812. [PMID: 24121510 DOI: 10.1074/jbc.m113.470559] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase A-anchoring proteins (AKAPs) participate in the formation of macromolecular signaling complexes that include protein kinases, ion channels, effector enzymes, and G-protein-coupled receptors. We examined the role of AKAP79/150 (AKAP5) in trafficking and signaling of the β1-adrenergic receptor (β1-AR). shRNA-mediated down-regulation of AKAP5 in HEK-293 cells inhibited the recycling of the β1-AR. Recycling of the β1-AR in AKAP5 knockdown cells was rescued by shRNA-resistant AKAP5. However, truncated mutants of AKAP5 with deletions in the domains involved in membrane targeting or in binding to calcineurin or PKA failed to restore the recycling of the β1-AR, indicating that full-length AKAP5 was required. Furthermore, recycling of the β1-AR in rat neonatal cardiac myocytes was dependent on targeting the AKAP5-PKA complex to the C-terminal tail of the β1-AR. To analyze the role of AKAP5 more directly, recycling of the β1-AR was determined in ventricular myocytes from AKAP5(-/-) mice. In AKAP5(-/-) myocytes, the agonist-internalized β1-AR did not recycle, except when full-length AKAP5 was reintroduced. These data indicate that AKAP5 exerted specific and profound effects on β1-AR recycling in mammalian cells. Biochemical or real time FRET-based imaging of cyclic AMP revealed that deletion of AKAP5 sensitized the cardiac β1-AR signaling pathway to isoproterenol. Moreover, isoproterenol-mediated increase in contraction rate, surface area, or expression of β-myosin heavy chains was significantly greater in AKAP5(-/-) myocytes than in AKAP5(+/+) myocytes. These results indicate a significant role for the AKAP5 scaffold in signaling and trafficking of the β1-AR in cardiac myocytes and mammalian cells.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163
| | - Mohammed M Nooh
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163
| | - Suleiman W Bahouth
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163.
| |
Collapse
|
18
|
Cannavo A, Liccardo D, Koch WJ. Targeting cardiac β-adrenergic signaling via GRK2 inhibition for heart failure therapy. Front Physiol 2013; 4:264. [PMID: 24133451 PMCID: PMC3783981 DOI: 10.3389/fphys.2013.00264] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/06/2013] [Indexed: 12/23/2022] Open
Abstract
Cardiac cells, like those of the other tissues, undergo regulation through membrane-bound proteins known as G protein-coupled receptors (GPCRs). β-adrenergic receptors (βARs) are key GPCRs expressed on cardiomyocytes and their role is crucial in cardiac physiology since they regulate inotropic and chronotropic responses of the sympathetic nervous system (SNS). In compromised conditions such as heart failure (HF), chronic βAR hyperstimulation occurs via SNS activation resulting in receptor dysregulation and down-regulation and consequently there is a marked reduction of myocardial inotropic reserve and continued loss of pump function. Data accumulated over the last two decades indicates that a primary culprit in initiating and maintain βAR dysfunction in the injured and stressed heart is GPCR kinase 2 (GRK2), which was originally known as βARK1 (for βAR kinase). GRK2 is up-regulated in the failing heart due to chronic SNS activity and targeting this kinase has emerged as a novel therapeutic strategy in HF. Indeed, its inhibition or genetic deletion in several disparate animal models of HF including a pre-clinical pig model has shown that GRK2 targeting improves functional and morphological parameters of the failing heart. Moreover, non-βAR properties of GRK2 appear to also contribute to its pathological effects and thus, its inhibition will likely complement existing therapies such as βAR blockade. This review will explore recent research regarding GRK2 inhibition; in particular it will focus on the GRK2 inhibitor peptide known as βARKct, which represents new hope in the treatment against HF progression.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Center for Translational Medicine, Department of Pharmacology, Temple UniversityPhiladelphia, PA, USA
| | - Daniela Liccardo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of NaplesNaples, Italy
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Temple UniversityPhiladelphia, PA, USA
| |
Collapse
|
19
|
Passariello CL, Gottardi D, Cetrullo S, Zini M, Campana G, Tantini B, Pignatti C, Flamigni F, Guarnieri C, Caldarera CM, Stefanelli C. Evidence that AMP-activated protein kinase can negatively modulate ornithine decarboxylase activity in cardiac myoblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:800-7. [PMID: 22230191 DOI: 10.1016/j.bbamcr.2011.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 01/11/2023]
Abstract
The responses of AMP-activated protein kinase (AMPK) and Ornithine decarboxylase (ODC) to isoproterenol have been examined in H9c2 cardiomyoblasts, AMPK represents the link between cell growth and energy availability whereas ODC, the key enzyme in polyamine biosynthesis, is essential for all growth processes and it is thought to have a role in the development of cardiac hypertrophy. Isoproterenol rapidly induced ODC activity in H9c2 cardiomyoblasts by promoting the synthesis of the enzyme protein and this effect was counteracted by inhibitors of the PI3K/Akt pathway. The increase in enzyme activity became significant between 15 and 30min after the treatment. At the same time, isoproterenol stimulated the phosphorylation of AMPKα catalytic subunits (Thr172), that was associated to an increase in acetyl coenzyme A carboxylase (Ser72) phosphorylation. Downregulation of both α1 and α2 isoforms of the AMPK catalytic subunit by siRNA to knockdown AMPK enzymatic activity, led to superinduction of ODC in isoproterenol-treated cardiomyoblasts. Downregulation of AMPKα increased ODC activity even in cells treated with other adrenergic agonists and in control cells. Analogue results were obtained in SH-SY5Y neuroblastoma cells transfected with a shRNA construct against AMPKα. In conclusion, isoproterenol quickly activates in H9c2 cardiomyoblasts two events that seem to contrast one another. The first one, an increase in ODC activity, is linked to cell growth, whereas the second, AMPK activation, is a homeostatic mechanism that negatively modulates the first. The modulation of ODC activity by AMPK represents a mechanism that may contribute to control cell growth processes.
Collapse
|
20
|
Louch WE, Sheehan KA, Wolska BM. Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol 2011; 51:288-98. [PMID: 21723873 PMCID: PMC3164875 DOI: 10.1016/j.yjmcc.2011.06.012] [Citation(s) in RCA: 372] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/13/2011] [Accepted: 06/06/2011] [Indexed: 12/30/2022]
Abstract
Since techniques for cardiomyocyte isolation were first developed 35 years ago, experiments on single myocytes have yielded great insight into their cellular and sub-cellular physiology. These studies have employed a broad range of techniques including electrophysiology, calcium imaging, cell mechanics, immunohistochemistry and protein biochemistry. More recently, techniques for cardiomyocyte culture have gained additional importance with the advent of gene transfer technology. While such studies require a high quality cardiomyocyte population, successful cell isolation and maintenance during culture remain challenging. In this review, we describe methods for the isolation of adult and neonatal ventricular myocytes from rat and mouse heart. This discussion outlines general principles for the beginner, but also provides detailed specific protocols and advice for common caveats. We additionally review methods for short-term myocyte culture, with particular attention given to the importance of substrate and media selection, and describe time-dependent alterations in myocyte physiology that should be anticipated. Gene transfer techniques for neonatal and adult cardiomyocytes are also reviewed, including methods for transfection (liposome, electroporation) and viral-based gene delivery.
Collapse
Affiliation(s)
- William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital Ullevaal, Oslo, Norway
- Centre for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Katherine A. Sheehan
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Beata M. Wolska
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Medicine, Section of Cardiology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
21
|
Hinrichs S, Heger J, Schreckenberg R, Wenzel S, Euler G, Arens C, Bader M, Rosenkranz S, Caglayan E, Schlüter KD. Controlling cardiomyocyte length: the role of renin and PPAR-{gamma}. Cardiovasc Res 2010; 89:344-52. [PMID: 20884641 DOI: 10.1093/cvr/cvq313] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIMS Renin and peroxisome proliferator-activated receptor (PPAR-γ) interact directly with cardiomyocytes and influence protein synthesis. We investigated their effects and interaction on the size of cardiomyocytes. METHODS AND RESULTS Effects of renin and PPAR-γ activation were studied in cultured adult rat ventricular cardiomyocytes, transgenic mice with a cardiomyocyte-restricted knockout of PPAR-γ, and transgenic rats overexpressing renin, TGR(mRen2)27. The length and width of cardiomyocytes were analysed 24 h after administration of factors. Renin caused an unexpected effect on the length of cardiomyocytes that was inhibited by mannose-6-phosphate and monensin, but not by administration of glucose-6-phosphate. Endothelin-1 used as a classical pro-hypertrophic agonist increased cell width but not cell length. Renin caused an activation of p38 and p42/44 mitogen-activated protein (MAP) kinases. The latter activation was impaired by mannose-6-phosphate. Inhibition of p42/44 but not of p38 MAP kinase activation attenuated the effect of renin on cell length. In contrast, activation of PPAR-γ reduced cell length. Feeding wild-type mice with pioglitazone, a PPAR-γ agonist, reduced cell length. Cardiomyocytes isolated from PPAR-γ knockout mice were longer, and their length was not affected by pioglitazone. Cardiomyocytes isolated from TGR(mRen2)27 rats were longer than those of non-transgenic littermates. Cell length was reduced by feeding these mice with pioglitazone. Pioglitazone affected cell length independent of blood pressure. CONCLUSION The length of cardiomyocytes is controlled by the activation of cardiac-specific mannose-6-phosphate/insulin-like growth factor II receptors and activation of PPAR-γ. This type of cell size modification differs from that of any other known pro-hypertrophic agonists.
Collapse
Affiliation(s)
- Söhnke Hinrichs
- Physiologisches Institut, Justus-Liebig Universität Giessen, Aulweg 149, 35392 Gießen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ho D, Yan L, Iwatsubo K, Vatner DE, Vatner SF. Modulation of beta-adrenergic receptor signaling in heart failure and longevity: targeting adenylyl cyclase type 5. Heart Fail Rev 2010; 15:495-512. [PMID: 20658186 PMCID: PMC3655553 DOI: 10.1007/s10741-010-9183-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite remarkable advances in therapy, heart failure remains a leading cause of morbidity and mortality. Although enhanced beta-adrenergic receptor stimulation is part of normal physiologic adaptation to either the increase in physiologic demand or decrease in cardiac function, chronic beta-adrenergic stimulation has been associated with increased mortality and morbidity in both animal models and humans. For example, overexpression of cardiac Gsalpha or beta-adrenergic receptors in transgenic mice results in enhanced cardiac function in young animals, but with prolonged overstimulation of this pathway, cardiomyopathy develops in these mice as they age. Similarly, chronic sympathomimetic amine therapy increases morbidity and mortality in patients with heart failure. Conversely, the use of beta-blockade has proven to be of benefit and is currently part of the standard of care for heart failure. It is conceivable that interrupting distal mechanisms in the beta-adrenergic receptor-G protein-adenylyl cyclase pathway may also provide targets for future therapeutic modalities for heart failure. Interestingly, there are two major isoforms of adenylyl cyclase (AC) in the heart (type 5 and type 6), which may exert opposite effects on the heart, i.e., cardiac overexpression of AC6 appears to be protective, whereas disruption of type 5 AC prolongs longevity and protects against cardiac stress. The goal of this review is to summarize the paradigm shift in the treatment of heart failure over the past 50 years from administering sympathomimetic amine agonists to administering beta-adrenergic receptor antagonists, and to explore the basis for a novel therapy of inhibiting type 5 AC.
Collapse
Affiliation(s)
- David Ho
- Department of Cell Biology and Molecular Medicine and The Cardiovascular Research Institute, University of Medicine & Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, MSB G609, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
23
|
Ha CH, Kim JY, Zhao J, Wang W, Jhun BS, Wong C, Jin ZG. PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 2010; 107:15467-72. [PMID: 20716686 PMCID: PMC2932618 DOI: 10.1073/pnas.1000462107] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dynamic nucleocytoplasmic shuttling of class IIa histone deacetylases (HDACs) is a fundamental mechanism regulating gene transcription. Recent studies have identified several protein kinases that phosphorylate HDAC5, leading to its exportation from the nucleus. However, the negative regulatory mechanisms for HDAC5 nuclear exclusion remain largely unknown. Here we show that cAMP-activated protein kinase A (PKA) specifically phosphorylates HDAC5 and prevents its export from the nucleus, leading to suppression of gene transcription. PKA interacts directly with HDAC5 and phosphorylates HDAC5 at serine 280, an evolutionarily conserved site. Phosphorylation of HDAC5 by PKA interrupts the association of HDAC5 with protein chaperone 14-3-3 and hence inhibits stress signal-induced nuclear export of HDAC5. An HDAC5 mutant that mimics PKA-dependent phosphorylation localizes in the nucleus and acts as a dominant inhibitor for myocyte enhancer factor 2 transcriptional activity. Molecular manipulations of HDAC5 show that PKA-phosphorylated HDAC5 inhibits cardiac fetal gene expression and cardiomyocyte hypertrophy. Our findings identify HDAC5 as a substrate of PKA and reveal a cAMP/PKA-dependent pathway that controls HDAC5 nucleocytoplasmic shuttling and represses gene transcription. This pathway may represent a mechanism by which cAMP/PKA signaling modulates a wide range of biological functions and human diseases such as cardiomyopathy.
Collapse
Affiliation(s)
- Chang Hoon Ha
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Ji Young Kim
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Jinjing Zhao
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Weiye Wang
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Bong Sook Jhun
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Chelsea Wong
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
24
|
RGS2 inhibits beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Cell Signal 2010; 22:1231-9. [PMID: 20362664 DOI: 10.1016/j.cellsig.2010.03.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 02/26/2010] [Accepted: 03/25/2010] [Indexed: 11/21/2022]
Abstract
The chronic stimulation of certain G protein-coupled receptors promotes cardiomyocyte hypertrophy and thus plays a pivotal role in the development of human heart failure. The beta-adrenergic receptors (beta-AR) are unique among these in that they signal via Gs, whereas others, such as the alpha1-adrenergic (alpha1-AR) and endothelin-1 (ET-1) receptors, predominantly act through Gq. In this study, we investigated the potential role of regulator of G protein signalling 2 (RGS2) in modulating the hypertrophic effects of the beta-AR agonist isoproterenol (ISO) in rat neonatal ventricular cardiomyocytes. We found that ISO-induced hypertrophy in rat neonatal ventricular myocytes was accompanied by the selective upregulation of RGS2 mRNA, with little or no change in RGS1, RGS3, RGS4 or RGS5. The adenylyl cyclase activator forskolin had a similar effect suggesting that it was mediated through cAMP production. To study the role of RGS2 upregulation in beta-AR-dependent hypertrophy, cardiomyocytes were infected with adenovirus encoding RGS2 and assayed for cell growth, markers of hypertrophy, and beta-AR signalling. ISO-induced increases in cell surface area were virtually eliminated by the overexpression of RGS2, as were increases in alpha-skeletal actin and atrial natriuretic peptide. RGS2 overexpression also significantly attenuated ISO-induced extracellular signal-regulated kinases 1 and 2 (ERK1/2) and Akt activation, which may account for, or contribute to, its observed antihypertrophic effects. In contrast, RGS2 overexpression significantly activated JNK MAP kinase, while decreasing the potency but not the maximal effect of ISO on cAMP accumulation. In conclusion, the present results suggest that RGS2 negatively regulates hypertrophy induced by beta-AR activation and thus may play a protective role in cardiac hypertrophy.
Collapse
|
25
|
Zhang GX, Kimura S, Murao K, Yu X, Obata K, Matsuyoshi H, Takaki M. Effects of Angiotensin Type I Receptor Blockade on the Cardiac Raf/MEK/ERK Cascade Activated via Adrenergic Receptors. J Pharmacol Sci 2010; 113:224-33. [DOI: 10.1254/jphs.09336fp] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
26
|
Saeedi R, Saran VV, Wu SSY, Kume ES, Paulson K, Chan APK, Parsons HL, Wambolt RB, Dyck JRB, Brownsey RW, Allard MF. AMP-activated protein kinase influences metabolic remodeling in H9c2 cells hypertrophied by arginine vasopressin. Am J Physiol Heart Circ Physiol 2009; 296:H1822-32. [DOI: 10.1152/ajpheart.00396.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Substrate use switches from fatty acids toward glucose in pressure overload-induced cardiac hypertrophy with an acceleration of glycolysis being characteristic. The activation of AMP-activated protein kinase (AMPK) observed in hypertrophied hearts provides one potential mechanism for the acceleration of glycolysis. Here, we directly tested the hypothesis that AMPK causes the acceleration of glycolysis in hypertrophied heart muscle cells. The H9c2 cell line, derived from the embryonic rat heart, was treated with arginine vasopressin (AVP; 1 μM) to induce a cellular model of hypertrophy. Rates of glycolysis and oxidation of glucose and palmitate were measured in nonhypertrophied and hypertrophied H9c2 cells, and the effects of inhibition of AMPK were determined. AMPK activity was inhibited by 6-[4-(2-piperidin-1- yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrrazolo-[1,5-a]pyrimidine (compound C) or by adenovirus-mediated transfer of dominant negative AMPK. Compared with nonhypertrophied cells, glycolysis was accelerated and palmitate oxidation was reduced with no significant alteration in glucose oxidation in hypertrophied cells, a metabolic profile similar to that of intact hypertrophied hearts. Inhibition of AMPK resulted in the partial reduction of glycolysis in AVP-treated hypertrophied H9c2 cells. Acute exposure of H9c2 cells to AVP also activated AMPK and accelerated glycolysis. These elevated rates of glycolysis were not altered by AMPK inhibition but were blocked by agents that interfere with Ca2+ signaling, including extracellular EGTA, dantrolene, and 2-aminoethoxydiphenyl borate. We conclude that the acceleration of glycolysis in AVP-treated hypertrophied heart muscle cells is partially dependent on AMPK, whereas the acute glycolytic effects of AVP are AMPK independent and at least partially Ca2+ dependent.
Collapse
|
27
|
Effect of preischemic beta-adrenoceptor stimulation on postischemic contractile dysfunction. Life Sci 2009; 84:437-43. [PMID: 19302819 DOI: 10.1016/j.lfs.2009.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 12/10/2008] [Accepted: 01/21/2009] [Indexed: 11/20/2022]
Abstract
AIMS Short periods of preischemic beta-adrenoceptor stimulation protect hearts against postischemic left ventricular dysfunction. It was the aim of this study to decide whether this procedure mimics ischemic preconditioning by the generation of preischemic hemodynamic and energetic stress or whether it represents an endogenous phenomenon and to investigate the influence of age and hypertension. MAIN METHODS Isolated rat hearts were investigated ex vivo by Langendorff perfusion and exposed to an established ischemia/reperfusion protocol (45 min no-flow ischemia and 90 min reperfusion). Left ventricular developed pressure (LVDP), rate pressure product, and +/-dP/dt were analyzed. KEY FINDINGS Isoprenaline concentration dependently increased LVDP up to 40+/-15 mm Hg (approximately EC(50) of 9.9+/-0.5 nM). Isoprenaline given prior to ischemia attenuated the subsequent postischemic ventricular dysfunction (approximately EC(50) of 1.4+/-0.2 pM). However, concentrations high enough to improve LVDP in normoxic hearts did not improve postischemic recovery albeit a significant reduction of hypercontraction-induced cell damage. The effect on functional recovery was attenuated by atenolol, H89, and wortmannin suggesting that beta-adrenoceptor stimulation, protein kinase A, and PI 3-kinase activation are involved. The effect was conserved in hearts from 13 month old rats but lost in age-matched spontaneously hypertensive rats. SIGNIFICANCE The study identifies preischemic beta-adrenoceptor stimulation as a pharmacological preconditioning protocol that does not simply mimic classical ischemic preconditioning by induction of hemodynamic or energetic stress prior to a prolonged ischemic period. The observed loss of effectiveness in hypertensives may contribute to the reduced ischemic tolerance of hypertensives.
Collapse
|
28
|
Jaffré F, Bonnin P, Callebert J, Debbabi H, Setola V, Doly S, Monassier L, Mettauer B, Blaxall BC, Launay JM, Maroteaux L. Serotonin and angiotensin receptors in cardiac fibroblasts coregulate adrenergic-dependent cardiac hypertrophy. Circ Res 2008; 104:113-23. [PMID: 19023134 DOI: 10.1161/circresaha.108.180976] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
By mimicking sympathetic stimulation in vivo, we previously reported that mice globally lacking serotonin 5-HT(2B) receptors did not develop isoproterenol-induced left ventricular hypertrophy. However, the exact cardiac cell type(s) expressing 5-HT(2B) receptors (cardiomyocytes versus noncardiomyocytes) involved in pathological heart hypertrophy was never addressed in vivo. We report here that mice expressing the 5-HT(2B) receptor solely in cardiomyocytes, like global 5-HT(2B) receptor-null mice, are resistant to isoproterenol-induced cardiac hypertrophy and dysfunction, as well as to isoproterenol-induced increases in cytokine plasma-levels. These data reveal a key role of noncardiomyocytes in isoproterenol-induced hypertrophy in vivo. Interestingly, we show that primary cultures of angiotensinogen null adult cardiac fibroblasts are releasing cytokines on stimulation with either angiotensin II or serotonin, but not in response to isoproterenol stimulation, demonstrating a critical role of angiotensinogen in adrenergic-dependent cytokine production. We then show a functional interdependence between AT(1)Rs and 5-HT(2B) receptors in fibroblasts by revealing a transinhibition mechanism that may involve heterodimeric receptor complexes. Both serotonin- and angiotensin II-dependent cytokine production occur via a Src/heparin-binding epidermal growth factor-dependent transactivation of epidermal growth factor receptors in cardiac fibroblasts, supporting a common signaling pathway. Finally, we demonstrate that 5-HT(2B) receptors are overexpressed in hearts from patients with congestive heart failure, this overexpression being positively correlated with cytokine and norepinephrine plasma levels. Collectively, these results reveal for the first time that interactions between AT(1) and 5-HT(2B) receptors coexpressed by noncardiomyocytes are limiting key events in adrenergic agonist-induced, angiotensin-dependent cardiac hypertrophy. Accordingly, antagonists of 5-HT(2B) receptors might represent novel therapeutics for sympathetic overstimulation-dependent heart failure.
Collapse
MESH Headings
- Adult
- Angiotensin II/deficiency
- Angiotensin II/physiology
- Angiotensin II/toxicity
- Animals
- Cells, Cultured/metabolism
- Cytokines/blood
- Cytokines/metabolism
- ErbB Receptors/physiology
- Female
- Fibroblasts/drug effects
- Fibroblasts/physiology
- Heart Failure/chemically induced
- Heart Failure/drug therapy
- Heart Failure/pathology
- Heart Failure/physiopathology
- Heparin-binding EGF-like Growth Factor
- Humans
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Intercellular Signaling Peptides and Proteins/physiology
- Isoproterenol/toxicity
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Middle Aged
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Norepinephrine/physiology
- Protein Interaction Mapping
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Serotonin, 5-HT2B/physiology
- Serotonin 5-HT2 Receptor Antagonists
- Serotonin Antagonists/therapeutic use
- Signal Transduction/drug effects
- src-Family Kinases/antagonists & inhibitors
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- Fabrice Jaffré
- Institut National de Santé et de Recherche Médicale, U839, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Métrich M, Lucas A, Gastineau M, Samuel JL, Heymes C, Morel E, Lezoualc’h F. Epac Mediates β-Adrenergic Receptor–Induced Cardiomyocyte Hypertrophy. Circ Res 2008; 102:959-65. [DOI: 10.1161/circresaha.107.164947] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiac hypertrophy is promoted by adrenergic overactivation and can progress to heart failure, a leading cause of mortality worldwide. Although cAMP is among the most well-known signaling molecules produced by β-adrenergic receptor stimulation, its mechanism of action in cardiac hypertrophy is not fully understood. The identification of Epac (exchange protein directly activated by cAMP) proteins as novel sensors for cAMP has broken the dogma surrounding cAMP and protein kinase A. However, their role and regulation in the mature heart remain to be defined. Here, we show that cardiac hypertrophy induced by thoracic aortic constriction increases Epac1 expression in rat myocardium. Adult ventricular myocytes isolated from banded animals display an exaggerated cellular growth in response to Epac activation. At the molecular level, Epac1 hypertrophic effects are independent of its classic effector, Rap1, but rather involve the small GTPase Ras, the phosphatase calcineurin, and Ca
2+
/calmodulin-dependent protein kinase II. Importantly, we find that in response to β-adrenergic receptor stimulation, Epac1 activates Ras and induces adult cardiomyocyte hypertrophy in a cAMP-dependent but protein kinase A–independent manner. Knockdown of Epac1 strongly reduces β-adrenergic receptor–induced hypertrophic program. Finally, we report for the first time that Epac1 is mainly expressed in human heart as compared with Epac2 isoform and is increased in heart failure. Taken together, our data demonstrate that the guanine nucleotide exchange factor Epac1 contributes to the hypertrophic effect of β-adrenergic receptor in a protein kinase A–independent fashion and may, therefore, represent a novel therapeutic target for the treatment of cardiac disorders.
Collapse
Affiliation(s)
- Mélanie Métrich
- From Inserm (M.M., A.L., M.G., E.M., F.L.), U769, Signalisation et Physiopathologie Cardiaque, Châtenay-Malabry; Univ Paris-Sud (M.M., A.L., M.G., E.M., F.L.), Faculté de Pharmacie, IFR141, UMR-S769, Châtenay-Malabry; Inserm (J.-L.S., C.H.), U689, Centre de Recherche Cardiovasculaire, Paris; and Université D. Diderot (J.-L.S., C.H.), Paris, France
| | - Alexandre Lucas
- From Inserm (M.M., A.L., M.G., E.M., F.L.), U769, Signalisation et Physiopathologie Cardiaque, Châtenay-Malabry; Univ Paris-Sud (M.M., A.L., M.G., E.M., F.L.), Faculté de Pharmacie, IFR141, UMR-S769, Châtenay-Malabry; Inserm (J.-L.S., C.H.), U689, Centre de Recherche Cardiovasculaire, Paris; and Université D. Diderot (J.-L.S., C.H.), Paris, France
| | - Monique Gastineau
- From Inserm (M.M., A.L., M.G., E.M., F.L.), U769, Signalisation et Physiopathologie Cardiaque, Châtenay-Malabry; Univ Paris-Sud (M.M., A.L., M.G., E.M., F.L.), Faculté de Pharmacie, IFR141, UMR-S769, Châtenay-Malabry; Inserm (J.-L.S., C.H.), U689, Centre de Recherche Cardiovasculaire, Paris; and Université D. Diderot (J.-L.S., C.H.), Paris, France
| | - Jane-Lise Samuel
- From Inserm (M.M., A.L., M.G., E.M., F.L.), U769, Signalisation et Physiopathologie Cardiaque, Châtenay-Malabry; Univ Paris-Sud (M.M., A.L., M.G., E.M., F.L.), Faculté de Pharmacie, IFR141, UMR-S769, Châtenay-Malabry; Inserm (J.-L.S., C.H.), U689, Centre de Recherche Cardiovasculaire, Paris; and Université D. Diderot (J.-L.S., C.H.), Paris, France
| | - Christophe Heymes
- From Inserm (M.M., A.L., M.G., E.M., F.L.), U769, Signalisation et Physiopathologie Cardiaque, Châtenay-Malabry; Univ Paris-Sud (M.M., A.L., M.G., E.M., F.L.), Faculté de Pharmacie, IFR141, UMR-S769, Châtenay-Malabry; Inserm (J.-L.S., C.H.), U689, Centre de Recherche Cardiovasculaire, Paris; and Université D. Diderot (J.-L.S., C.H.), Paris, France
| | - Eric Morel
- From Inserm (M.M., A.L., M.G., E.M., F.L.), U769, Signalisation et Physiopathologie Cardiaque, Châtenay-Malabry; Univ Paris-Sud (M.M., A.L., M.G., E.M., F.L.), Faculté de Pharmacie, IFR141, UMR-S769, Châtenay-Malabry; Inserm (J.-L.S., C.H.), U689, Centre de Recherche Cardiovasculaire, Paris; and Université D. Diderot (J.-L.S., C.H.), Paris, France
| | - Frank Lezoualc’h
- From Inserm (M.M., A.L., M.G., E.M., F.L.), U769, Signalisation et Physiopathologie Cardiaque, Châtenay-Malabry; Univ Paris-Sud (M.M., A.L., M.G., E.M., F.L.), Faculté de Pharmacie, IFR141, UMR-S769, Châtenay-Malabry; Inserm (J.-L.S., C.H.), U689, Centre de Recherche Cardiovasculaire, Paris; and Université D. Diderot (J.-L.S., C.H.), Paris, France
| |
Collapse
|
30
|
Bell D, Zhao YY, Devine AB, McDermott BJ. Influence of atenolol and nifedipine on nitric-oxide deficient cardiomyocyte hypertrophy and expression of the cardio-endocrine peptide intermedin and its receptor components. Cell Physiol Biochem 2008; 21:203-14. [PMID: 18209487 DOI: 10.1159/000113870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial ischemia, oxidative stress and hypertrophy; expression of adrenomedullin (AM) and intermedin (IMD) and their receptor activity modifying proteins (RAMPs 1-3) is augmented in cardiomyocytes, indicating that the myocardial AM/ IMD system may be activated in response to pressure loading and ischemic insult. The aim was to examine effects on (i) parameters of cardiomyocyte hypertrophy and on (ii) expression of AM and IMD and their receptor components in NO-deficient cardiomyocytes of an intervention chosen specifically for ability to alleviate pressure loading and ischemic injury concurrently. METHODS The NO synthesis inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 35 mg.kg(-1).day(-1)) was given to rats for 8 weeks, with/ without concurrent administration of beta-adrenoceptor antagonist, atenolol (25 mg.kg(-1).day(-1)) / calcium channel blocker, nifedipine (20mg.kg(-1).day(-1)). RESULTS In L-NAME treated rats, atenolol / nifedipine abolished increases in systolic blood pressure and plasma AM and IMD levels and in left ventricular cardiomyocytes: (i) normalized increased cell width and mRNA expression of hypertrophic (sk-alpha-actin) and cardio-endocrine (ANP, BNP, ET) genes; (ii) normalized augmented membrane protein oxidation; (iii) normalized mRNA expression of AM, IMD, RAMP1, RAMP2 and RAMP3. CONCLUSIONS normalization of blood pressure and membrane oxidant status together with prevention of hypertrophy and normalization of the augmented expression of AM, IMD and their receptor components in NO-deficient cardiomyocytes by atenolol / nifedipine supports involvement of both pressure loading and ischemic insult in stimulating cardiomyocyte hypertrophy and induction of these counter-regulatory peptides and their receptor components. Attenuation of augmented expression of IMD in this model cannot however be explained simply by prevention of cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- David Bell
- Cardiovascular Research Group, Division of Medicine and Therapeutics, School of Medicine and Dentistry, The Queen's University of Belfast, Belfast, Northern Ireland, UK.
| | | | | | | |
Collapse
|
31
|
Peter PS, Brady JE, Yan L, Chen W, Engelhardt S, Wang Y, Sadoshima J, Vatner SF, Vatner DE. Inhibition of p38 alpha MAPK rescues cardiomyopathy induced by overexpressed beta 2-adrenergic receptor, but not beta 1-adrenergic receptor. J Clin Invest 2007; 117:1335-43. [PMID: 17446930 PMCID: PMC1849986 DOI: 10.1172/jci29576] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 02/13/2007] [Indexed: 01/12/2023] Open
Abstract
We examined the role of p38alpha MAPK in mediating cardiomyopathy in mice overexpressing beta(1)-adrenergic receptor (beta(1)-AR) or beta(2)-AR by mating them with dominant-negative p38alpha (DNp38alpha) MAPK mice. Both beta(1)-AR and beta(2)-AR Tg mice had enhanced LV ejection fraction (LVEF) as young adults and developed similar cardiomyopathy at 11-15 months, characterized by reduced LVEF, myocyte hypertrophy, fibrosis, and apoptosis. We inhibited p38alpha MAPK by mating beta(1)-AR Tg and beta(2)-AR Tg mice with DNp38alpha MAPK mice, which rescued the depressed LVEF and reduced apoptosis and fibrosis in bigenic beta(2)-AR x DNp38alpha MAPK mice, but not bigenic beta(1)-AR x DNp38alpha MAPK mice, and failed to reduce myocyte hypertrophy in either group. G(salpha) was increased in both beta(1)-AR Tg and beta(2)-AR Tg mice and was still present in bigenic beta(1)-AR x DNp38alpha MAPK mice, but not bigenic beta(2)-AR x DNp38alpha MAPK mice. This suggests that p38alpha MAPK is one critical downstream signal for the development of cardiomyopathy following chronic beta(2)-AR stimulation, but other kinases may be more important in ameliorating the adverse effects of chronic beta(1)-AR stimulation.
Collapse
MESH Headings
- Animals
- Cardiomyopathies/drug therapy
- Cardiomyopathies/enzymology
- Cardiomyopathies/genetics
- Cardiomyopathies/metabolism
- MAP Kinase Signaling System/genetics
- Mice
- Mice, Transgenic
- Mitogen-Activated Protein Kinase 14/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 14/genetics
- Mitogen-Activated Protein Kinase 14/physiology
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/physiology
- Receptors, Adrenergic, beta-2/biosynthesis
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/physiology
Collapse
Affiliation(s)
- Pallavi S. Peter
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA.
Rudolf Virchow Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.
Department of Anesthesiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jennifer E. Brady
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA.
Rudolf Virchow Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.
Department of Anesthesiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Lin Yan
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA.
Rudolf Virchow Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.
Department of Anesthesiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Wei Chen
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA.
Rudolf Virchow Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.
Department of Anesthesiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Stefan Engelhardt
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA.
Rudolf Virchow Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.
Department of Anesthesiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Yibin Wang
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA.
Rudolf Virchow Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.
Department of Anesthesiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA.
Rudolf Virchow Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.
Department of Anesthesiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Stephen F. Vatner
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA.
Rudolf Virchow Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.
Department of Anesthesiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Dorothy E. Vatner
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA.
Rudolf Virchow Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.
Department of Anesthesiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
32
|
Osadchii OE. Cardiac hypertrophy induced by sustained β-adrenoreceptor activation: pathophysiological aspects. Heart Fail Rev 2007; 12:66-86. [PMID: 17387610 DOI: 10.1007/s10741-007-9007-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
Cardiac hypertrophy is promoted by adrenergic over-activation and represents an independent risk factor for cardiovascular morbidity and mortality. The basic knowledge about mechanisms by which sustained adrenergic activation promotes myocardial growth, as well as understanding how structural changes in hypertrophied myocardium could affect myocardial function has been acquired from studies using an animal model of chronic systemic beta-adrenoreceptor agonist administration. Sustained beta-adrenoreceptor activation was shown to enhance the synthesis of myocardial proteins, an effect mediated via stimulation of myocardial growth factors, up-regulation of nuclear proto-oncogenes, induction of cardiac oxidative stress, as well as activation of mitogen-activated protein kinases and phosphatidylinositol 3-kinase. Sustained beta-adrenoreceptor activation contributes to impaired cardiac autonomic regulation as evidenced by blunted parasympathetically-mediated cardiovascular reflexes as well as abnormal storage of myocardial catecholamines. Catecholamine-induced cardiac hypertrophy is associated with reduced contractile responses to adrenergic agonists, an effect attributed to downregulation of myocardial beta-adrenoreceptors, uncoupling of beta-adrenoreceptors and adenylate cyclase, as well as modifications of downstream cAMP-mediated signaling. In compensated cardiac hypertrophy, these changes are associated with preserved or even enhanced basal ventricular systolic function due to increased sarcoplasmic reticulum Ca(2+) content and Ca(2+)-induced sarcoplasmic reticulum Ca(2+) release. The increased availability of Ca(2+) to maintain cardiomyocyte contraction is attributed to prolongation of the action potential due to inhibition of the transient outward potassium current as well as stimulation of the reverse mode of the Na(+)-Ca(2+) exchange. Further progression of cardiac hypertrophy towards heart failure is due to abnormalities in Ca(2+) handling, necrotic myocardial injury, and increased myocardial stiffness due to interstitial fibrosis.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Cardiology Group, School of Clinical Sciences, University Clinical Departments, University of Liverpool, The Duncan Building, Daulby Street, Liverpool, L69 3GA, UK.
| |
Collapse
|
33
|
ten Hove M, Jansen MA, Nederhoff MGJ, Van Echteld CJA. Combined blockade of the Na+ channel and the Na+/H+ exchanger virtually prevents ischemic Na+ overload in rat hearts. Mol Cell Biochem 2006; 297:101-10. [PMID: 17102905 DOI: 10.1007/s11010-006-9334-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 08/30/2006] [Indexed: 11/26/2022]
Abstract
Blocking either the Na(+) channel or the Na(+)/H(+) exchanger (NHE) has been shown to reduce Na(+) and Ca(2+) overload during myocardial ischemia and reperfusion, respectively, and to improve post-ischemic contractile recovery. The effect of combined blockade of both Na(+) influx routes on ionic homeostasis is unknown and was tested in this study. [Na(+)](i), pH(i) and energy-related phosphates were measured using simultaneous (23)Na- and (31)P-NMR spectroscopy in isolated rat hearts. Eniporide (3 muM) and/or lidocaine (200 muM) were administered during 5 min prior to 40 min of global ischemia and 40 min of drug free reperfusion to block the NHE and the Na(+) channel, respectively. Lidocaine reduced the rise in [Na(+)](i) during the first 10 min of ischemia, followed by a rise with a rate similar to the one found in untreated hearts. Eniporide reduced the ischemic Na(+) influx during the entire ischemic period. Administration of both drugs resulted in a summation of the effects found in the lidocaine and eniporide groups. Contractile recovery and infarct size were significantly improved in hearts treated with both drugs, although not significantly different from hearts treated with either one of them.
Collapse
Affiliation(s)
- Michiel ten Hove
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
34
|
Nikolaev VO, Bünemann M, Schmitteckert E, Lohse MJ, Engelhardt S. Cyclic AMP Imaging in Adult Cardiac Myocytes Reveals Far-Reaching β
1
-Adrenergic but Locally Confined β
2
-Adrenergic Receptor–Mediated Signaling. Circ Res 2006; 99:1084-91. [PMID: 17038640 DOI: 10.1161/01.res.0000250046.69918.d5] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
β
1
- and β
2
-adrenergic receptors (βARs) are known to differentially regulate cardiomyocyte contraction and growth. We tested the hypothesis that these differences are attributable to spatial compartmentation of the second messenger cAMP. Using a fluorescent resonance energy transfer (FRET)-based approach, we directly monitored the spatial and temporal distribution of cAMP in adult cardiomyocytes. We developed a new cAMP-FRET sensor (termed HCN2-camps) based on a single cAMP binding domain of the hyperpolarization activated cyclic nucleotide-gated potassium channel 2 (HCN2). Its cytosolic distribution, high dynamic range, and sensitivity make HCN2-camps particularly well suited to monitor subcellular localization of cardiomyocyte cAMP. We generated HCN2-camps transgenic mice and performed single-cell FRET imaging on freshly isolated cardiomyocytes. Whole-cell superfusion with isoproterenol showed a moderate elevation of cAMP. Application of various phosphodiesterase (PDE) inhibitors revealed stringent control of cAMP through PDE4>PDE2>PDE3. The β
1
AR-mediated cAMP signals were entirely dependent on PDE4 activity, whereas β
2
AR-mediated cAMP was under control of multiple PDE isoforms. β
1
AR subtype–specific stimulation yielded ≈2-fold greater cAMP responses compared with selective β
2
-subtype stimulation, even on treatment with the nonselective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX) (ΔFRET, 17.3±1.3% [β
1
AR] versus 8.8±0.4% [β
2
AR]). Treatment with pertussis toxin to inactivate G
i
did not affect cAMP production. Localized β
1
AR stimulation generated a cAMP gradient propagating throughout the cell, whereas local β
2
AR stimulation did not elicit marked cAMP diffusion. Our data reveal that in adult cardiac myocytes, β
1
ARs induce far-reaching cAMP signals, whereas β
2
AR-induced cAMP remains locally confined.
Collapse
|
35
|
Nakayama S, Ito Y, Sato S, Kamijo A, Liu HN, Kajioka S. Tyrosine kinase inhibitors and ATP modulate the conversion of smooth muscle L-type Ca2+ channels toward a second open state. FASEB J 2006; 20:1492-4. [PMID: 16738256 DOI: 10.1096/fj.05-5049fje] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Properties of smooth and cardiac L-type Ca2+ channels differ prominently in several physiological aspects, including sympathetic modulation. To assess the possible underlying mechanisms, we applied the whole cell patch-clamp technique to guinea pig detrusor smooth muscle cells, in which only L-type Ca2+ channel currents are observed in practice. During depolarization to large positive potentials, the conformation of the majority of L-type Ca2+ channels is converted from the normal (O1) to a second open state (O2), which undergoes little inactivation during depolarization. Extracellular application of genistein, a known tyrosine kinase inhibitor, significantly attenuated the voltage-dependent conversion of Ca2+ channels to O2, accompanied by reduction of availability, whereas genistin, an inactive analog, had little effect. In the absence of ATP in the patch pipette, intracellular application of either genistein or tyrphostin-47 suppressed the conversion to O2. Computer calculation revealed that the acceleration of the O1 to an inactivated state qualitatively reconstructs the unique effects of PTK inhibitors antagonized by ATP. We concluded that under normal conditions smooth muscle L-type Ca2+ channels are already modulated by tyrosine-kinase and ATP-related mechanism(s) and thereby easily achieve the second conversion, which yields voltage-dependent modulation of L-type Ca2+ current analogous to that in cardiac myocytes during beta-adrenoceptor stimulation.
Collapse
Affiliation(s)
- Shinsuke Nakayama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Marina Prendes MG, García JV, Testoni G, Fernández MA, Perazzo JC, Savino EA, Varela A. Influence of fasting on the effects of dimethylamiloride and oxfenicine on ischaemic-reperfused rat hearts. Arch Physiol Biochem 2006; 112:31-36. [PMID: 16754201 DOI: 10.1080/13813450500500357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To assess whether glycolysis, Na+-H+ exchange and oxidation of fatty acid derived from endogenous lipolysis are involved in the beneficial effects of 24-h fasting on the ischaemic - reperfused heart, it was studied the effects of inhibiting Na+ - H+ exchange using 10 muM dimethylamiloride and fatty acid oxidation using 2 mM oxfenicine, on the functional activity, lactate production and cell viability measured with tetrazolium stain. Since fasting accelerates heart fatty acid oxidation, data were compared to those from fed rats; using Langendorff perfused (glucose 10 mM) hearts of 250-350 g Wistar rats exposed to 25 min ischaemia - 30 min reperfusion. Fasting reduced the ischaemic rise of end diastolic pressure (contracture), improved recovery of contraction and lowered lactate production in comparison with the fed whereas cellular viability was similar in both groups. Dimethylamiloride improved the recovery of contraction (fed control 24 +/- 9%, fed treated 68 +/- 11%, P < 0.05 at the end of reperfusion), attenuated the contracture (fed control 40 +/- 9%, fed treated 24 +/- 11%, P < 0.05 at the beginning of reperfusion) and reduced lactate production in the fed group and increased cellular viability in both groups (fed control 21 +/- 6%, fed treated 69 +/- 7%, P < 0.05, and fasted control 18 +/- 7%, fasted treated 53 +/- 8%, P < 0.05). Oxfenicine reduced the recovery of contraction (fasted control 88 +/- 6%, fasted treated 60 +/- 11%, P < 0.05) and increased lactate production of fasted group and attenuated the contracture in the fed. These data suggest that beneficial effects of fasting owe, at least in part, to a lowered glycolysis probably secondary to the increased fatty acid oxidation and to the accumulation of energy supplying acyl esters. Dimethylamiloride slowing of glycolysis might explain functional improvement, whereas it seems unrelated to the protection on cell viability.
Collapse
Affiliation(s)
- M G Marina Prendes
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires and IQUIMEFA-CONICET, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
37
|
Salameh A, Frenzel C, Boldt A, Rassler B, Glawe I, Schulte J, Mühlberg K, Zimmer HG, Pfeiffer D, Dhein S. Subchronic alpha- and beta-adrenergic regulation of cardiac gap junction protein expression. FASEB J 2006; 20:365-7. [PMID: 16352648 DOI: 10.1096/fj.05-4871fje] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gap junction channels are essential for intercellular electrical communication in the heart. The most important cardiac gap junction proteins are connexin43 (predominantly) (Cx43), connexin40 (Cx40), and in early developmental stages connexin45. Since catecholamines play an important role in cardiac (patho)physiology, we wanted to elucidate whether catecholamines may affect expression of Cx43 and Cx40. Cultured neonatal rat cardiomyocytes were exposed for 24 h to increasing concentrations of noradrenaline (1-10000 nM) (physiological agonist at alpha and beta-adrenoceptors), resulting in significantly increased Cx43-expression, while Cx40 was unaffected. In further experiments cells were incubated with either phenylephrine (alpha-adrenergic agonist) or isoproterenol (beta-adrenergic agonist) (0.1-1000 nM) for 24 h. Both catecholamines lead to a concentration-dependent increase in Cx43 protein and mRNA expression (EC50: 10-20 nM). Inhibition experiments showed that the phenylephrine effect was transduced via PKC, while the isoproterenol effect was mediated by PKA. Dual whole-cell voltage clamp demonstrated that increased Cx43-expression was accompanied by significant increases in gap junction current. In additional in vivo experiments, adult rats were subjected to 24-h infusion of isoproterenol or phenylephrine showing again significant increase in Cx43 but not Cx40. Adrenergic stimulation of cardiomyocytes can enhance Cx43 expression thereby increasing cellular coupling, indicating a possible role for catecholamines in the regulation of cardiac gap junction expression in cardiac disease.
Collapse
Affiliation(s)
- A Salameh
- Medizinische Klinik I, Abteilung Kardiologie, Universitätsklinik Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zheng M, Hou R, Han Q, Xiao RP. Different regulation of ERK1/2 activation by beta-adrenergic receptor subtypes in adult mouse cardiomyocytes. Heart Lung Circ 2006; 13:179-83. [PMID: 16352191 DOI: 10.1016/j.hlc.2004.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 02/16/2004] [Accepted: 02/25/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Increasing evidence suggests that stimulation of beta-adrenergic receptor (betaAR) activates mitogen-activated protein kinases (MAPKs), particularly extracellular signal-regulated kinase (ERK1/2) which is involved in the regulation of a multitude of cellular processes. However, the subtype-specific effects of betaAR stimulation on MAPKs remain to be elucidated. AIMS In the present study, we determined whether beta(1)AR and beta(2)AR differ in regulating ERK1/2 activation in the myocardium. METHODS To avoid complicated interactions between betaAR subtypes, we separately expressed either beta(1)AR or beta(2)AR using adenoviral gene transfer in adult mouse cardiac myocytes from beta(1)beta(2) double knockout mice. RESULTS Stimulation of beta(1)AR by isoproterenol markedly increased ERK phosphorylation and activity by 2.1-fold in a time-dependent manner. In contrast, stimulation of beta(2)AR slightly decreased ERK activation. Furthermore, pretreatment of cells with pertussis toxin to disrupt Gi function did not affect the inhibitory effect of beta(2)AR on ERK1/2. CONCLUSIONS We have shown that stimulation of cardiac betaAR subtypes differentially regulates ERK activation in adult mouse cardiomyocytes.
Collapse
Affiliation(s)
- Ming Zheng
- Institute of Cardiovascular Sciences, Peking University, Beijing 100083, PR China.
| | | | | | | |
Collapse
|
39
|
Xiao RP, Zhu W, Zheng M, Chakir K, Bond R, Lakatta EG, Cheng H. Subtype-specific beta-adrenoceptor signaling pathways in the heart and their potential clinical implications. Trends Pharmacol Sci 2004; 25:358-65. [PMID: 15219978 DOI: 10.1016/j.tips.2004.05.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rui-Ping Xiao
- Laboratory of Cardiovascular Science, National Institute on Aging/NIH, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Dent MR, Dhalla NS, Tappia PS. Phospholipase C gene expression, protein content, and activities in cardiac hypertrophy and heart failure due to volume overload. Am J Physiol Heart Circ Physiol 2004; 287:H719-27. [PMID: 15072958 DOI: 10.1152/ajpheart.01107.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Volume overload due to arteriovenous (AV) shunt results in cardiac hypertrophy followed by the progression to heart failure. The phosphoinositide phospholipase C (PLC) converts phosphatidylinositol 4,5-bisphosphate (PIP(2)) to 1,2-diacylglycerol (DAG) and inositol (1,4,5)-trisphosphate (IP(3)), which are known to influence cardiac function. Therefore, we examined the time course of changes in DAG and IP(3) as well as PLC isozyme gene expression, protein content, and activities in cardiac hypertrophy and heart failure induced by AV shunt in Sprague-Dawley rats by the needle technique. An increase in the left ventricle (LV)-to-body weight ratio demonstrated that LV hypertrophy was established at 4 wk after the induction of the shunt. PLC-beta(1) activity was increased two- and sevenfold at 3 days and 1 and 2 wk after the induction of volume overload, respectively. These changes were associated with increases in the mRNA and sarcolemmal (SL) protein content; however, no changes in PLC-beta(1) were detected at 4 wk. On the other hand, a significant increase in PLC-gamma(1) activity as well as mRNA and SL protein was seen at 3 days and 4 wk. A progressive decrease in PLC-delta(1) activity with concomitant reductions in the gene expression and SL protein abundance was detected during 1 to 4 wk. Activity of gamma(1)- and delta(1)-isozymes was significantly depressed during the 8- and 16-wk time points, whereas beta(1)-isozyme was increased significantly during these time points. A progressive decrease in the SL PIP(2) content was observed during cardiac hypertrophy and heart failure. Our findings indicate that PLC isozyme signaling processes are increased in hypertrophy and decreased in heart failure due to volume overload.
Collapse
Affiliation(s)
- Melissa R Dent
- Department of Physiology, Faculty of Medicine, St Boniface General Hospital Research Centre University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | | | | |
Collapse
|
41
|
Abstract
BACKGROUND PDE3 cyclic nucleotide phosphodiesterases have important roles in regulating cAMP- and cGMP-mediated signaling. Drugs that inhibit these enzymes raise cAMP and cGMP content in cardiac and vascular smooth muscle and increase the phosphorylation of proteins by cAMP- and cGMP-dependent protein kinases (PK-A and PK-G), thereby eliciting inotropic and vasodilatory responses. METHODS Although these actions are beneficial acutely in patients with dilated cardiomyopathy, long-term use of these agents was shown in several clinical trials to increase mortality. Several new clinical studies, however, suggest PDE3 inhibitors may be safe and effective when used in conjunction with beta-adrenergic receptor antagonists, whereas new studies at the cellular and molecular levels indicate that there are several isoforms of these enzymes in cardiac and vascular myocytes that are likely to regulate cAMP content in different intracellular compartments. CONCLUSIONS Both sets of observations suggest that PDE3 inhibition may be refined to allow more selective effects on phosphorylation of PK-A substrates, possibly allowing the beneficial effects of PDE3 inhibition to be separated from the adverse long-term consequences of their use.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Adrenergic beta-Antagonists/therapeutic use
- Cardiomyopathy, Dilated/drug therapy
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/physiopathology
- Cyclic Nucleotide Phosphodiesterases, Type 3
- Humans
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phosphodiesterase Inhibitors/therapeutic use
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Matthew A Movsesian
- VA Salt Lake City Health Care System, Departments of Internal Medicine (Cardiology) and Pharmacology, University of Utah, Salt Lake City, Utah 84148, USA
| |
Collapse
|
42
|
Movsesian MA, Alharethi R. Inhibitors of cyclic nucleotide phosphodiesterase PDE3 as adjunct therapy for dilated cardiomyopathy. Expert Opin Investig Drugs 2002; 11:1529-36. [PMID: 12437500 DOI: 10.1517/13543784.11.11.1529] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
PDE3 cyclic nucleotide phosphodiesterases are important in cyclic AMP (cAMP) and possibly cyclic GMP-mediated signalling in cardiac and vascular smooth muscle myocytes. Drugs that inhibit these enzymes have inotropic and vasodilatory actions that have proven useful in the short-term treatment of contractile failure and pulmonary hypertension in dilated cardiomyopathy (both ischaemic and idiopathic). With long-term usage, however, these drugs appear to increase mortality in treated patients through an as yet undetermined mechanism that is in some way attributable to an increase in intracellular cAMP content in cardiac myocytes. Several recent clinical trials have raised the possibility that these drugs may be used to advantage in dilated cardiomyopathy when they are administered in combination with beta-adrenoceptor antagonists, which act to lower intracellular cAMP content. In this review, the relevant basic and clinical data are examined and the possible justification for the combination of two therapies with seemingly opposite effects on intracellular cAMP content is considered.
Collapse
Affiliation(s)
- Matthew A Movsesian
- Cardiology Section, VA Salt Lake City Health Care System, 500 Foothill Boulevard, Salt Lake City, UT 84148, USA
| | | |
Collapse
|
43
|
Turner LR, Premo DA, Gibbs BJ, Hearthway ML, Motsko M, Sappington A, Walker L, Mullendore ME, Chew HG. Adaptations to iron deficiency: cardiac functional responsiveness to norepinephrine, arterial remodeling, and the effect of beta-blockade on cardiac hypertrophy. BMC PHYSIOLOGY 2002; 2:1. [PMID: 11818034 PMCID: PMC65049 DOI: 10.1186/1472-6793-2-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2001] [Accepted: 01/09/2002] [Indexed: 11/30/2022]
Abstract
BACKGROUND Iron deficiency (ID) results in ventricular hypertrophy, believed to involve sympathetic stimulation. We hypothesized that with ID 1) intravenous norepinephrine would alter heart rate (HR) and contractility, 2) abdominal aorta would be larger and more distensible, and 3) the beta-blocker propanolol would reduce hypertrophy. METHODS 1) 30 CD rats were fed an ID or replete diet for 1 week or 1 month. Norepinephrine was infused via jugular vein; pressure was monitored at carotid artery. Saline infusions were used as a control. The pressure trace was analyzed for HR, contractility, systolic and diastolic pressures. 2) Abdominal aorta catheters inflated the aorta, while digital microscopic images were recorded at stepwise pressures to measure arterial diameter and distensibility. 3) An additional 10 rats (5 ID, 5 control) were given a daily injection of propanolol or saline. After 1 month, the hearts were excised and weighed. RESULTS Enhanced contractility, but not HR, was associated with ID hypertrophic hearts. Systolic and diastolic blood pressures were consistent with an increase in arterial diameter associated with ID. Aortic diameter at 100 mmHg and distensibility were increased with ID. Propanolol was associated with an increase in heart to body mass ratio. CONCLUSIONS ID cardiac hypertrophy results in an increased inotropic, but not chronotropic response to the sympathetic neurotransmitter, norepinephrine. Increased aortic diameter is consistent with a flow-dependent vascular remodeling; increased distensibility may reflect decreased vascular collagen content. The failure of propanolol to prevent hypertrophy suggests that ID hypertrophy is not mediated via beta-adrenergic neurotransmission.
Collapse
Affiliation(s)
- Lexa Rae Turner
- Department of Biological Sciences R.A. Henson School of Science and Technology Salisbury State University Salisbury, MD 21801, USA
| | - Daniel Aaron Premo
- Department of Biological Sciences R.A. Henson School of Science and Technology Salisbury State University Salisbury, MD 21801, USA
| | - Brett Jason Gibbs
- Department of Biological Sciences R.A. Henson School of Science and Technology Salisbury State University Salisbury, MD 21801, USA
| | - Megan Lesley Hearthway
- Department of Biological Sciences R.A. Henson School of Science and Technology Salisbury State University Salisbury, MD 21801, USA
| | - Madelyne Motsko
- Department of Biological Sciences R.A. Henson School of Science and Technology Salisbury State University Salisbury, MD 21801, USA
| | - Andrea Sappington
- Department of Biological Sciences R.A. Henson School of Science and Technology Salisbury State University Salisbury, MD 21801, USA
| | - LeeAnn Walker
- Department of Biological Sciences R.A. Henson School of Science and Technology Salisbury State University Salisbury, MD 21801, USA
| | - Michael Eugene Mullendore
- Department of Biological Sciences R.A. Henson School of Science and Technology Salisbury State University Salisbury, MD 21801, USA
| | - Herbert George Chew
- Department of Biological Sciences R.A. Henson School of Science and Technology Salisbury State University Salisbury, MD 21801, USA
| |
Collapse
|
44
|
Steinberg SF. G protein-coupled receptor kinases: gotta real kure for heart failure? J Am Coll Cardiol 2001; 38:541-5. [PMID: 11499750 DOI: 10.1016/s0735-1097(01)01376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Morisco C, Zebrowski DC, Vatner DE, Vatner SF, Sadoshima J. Beta-adrenergic cardiac hypertrophy is mediated primarily by the beta(1)-subtype in the rat heart. J Mol Cell Cardiol 2001; 33:561-73. [PMID: 11181023 DOI: 10.1006/jmcc.2000.1332] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myocardial beta-adrenergic receptors (beta -ARs) consist of beta(1)- and beta(2)-subtypes, which mediate distinct signaling mechanisms. We examined which beta-AR subtype mediates cardiac hypertrophy. The beta(2)-subtype is predominant in neonatal rat cardiac myocytes (beta(1), 36%vbeta(2), 64%), while the beta(1)-subtype predominates in the adult rat heart (59%v 41%). Stimulation of cultured cardiac myocytes in vitro with isoproterenol (ISO), an agonist for beta(1)- and beta(2)-ARs, caused hypertrophy of myocytes along with increases in transcription of atrial natriuretic factor (ANF) and actin reorganization. All of these ISO-mediated myocyte responses in vitro were inhibited by a beta(1)-AR antagonist, betaxolol, but not by a beta(2)-AR antagonist, ICI 118551. Pertussis toxin failed to affect ISO-induced increases in total protein/DNA content and ANF transcription in vitro. ISO increased LV weight/body weight and ANF transcription in the adult rat in vivo, which were also inhibited by betaxolol but not by ICI 118551. These results suggest that beta -AR stimulated hypertrophy is mediated by the beta(1)-subtype and by a pertussis toxin-insensitive mechanism
Collapse
MESH Headings
- Adrenergic beta-1 Receptor Antagonists
- Adrenergic beta-2 Receptor Antagonists
- Adrenergic beta-Agonists/pharmacology
- Animals
- Animals, Newborn
- Atrial Natriuretic Factor/metabolism
- Cardiomegaly/metabolism
- Cell Size
- Cells, Cultured
- Heart
- Heart Ventricles/cytology
- Heart Ventricles/metabolism
- Isoproterenol/pharmacology
- Proteins/metabolism
- Rats
- Rats, Wistar
- Receptors, Adrenergic, beta-1/biosynthesis
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/biosynthesis
- Receptors, Adrenergic, beta-2/metabolism
Collapse
Affiliation(s)
- C Morisco
- Cardiovascular Research Institute and Department of Medicine, University of Medicine and Dentistry of New Jersey, Hackensack, NJ, USA
| | | | | | | | | |
Collapse
|