1
|
Richter EA, Bilan PJ, Klip A. A comprehensive view of muscle glucose uptake: regulation by insulin, contractile activity, and exercise. Physiol Rev 2025; 105:1867-1945. [PMID: 40173020 DOI: 10.1152/physrev.00033.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/07/2024] [Accepted: 03/08/2025] [Indexed: 04/04/2025] Open
Abstract
Skeletal muscle is the main site of glucose deposition in the body during meals and the major glucose utilizer during physical activity. Although in both instances the supply of glucose from the circulation to the muscle is of paramount importance, in most conditions the rate-limiting step in glucose uptake, storage, and utilization is the transport of glucose across the muscle cell membrane. This step is dependent upon the translocation of the insulin- and contraction-responsive glucose transporter GLUT4 from intracellular storage sites to the sarcolemma and T tubules. Here, we first analyze how glucose can traverse the capillary wall into the muscle interstitial space. We then review the molecular processes that regulate GLUT4 translocation in response to insulin and muscle contractions and the methodologies utilized to unravel them. We further discuss how physical activity and inactivity, respectively, lead to increased and decreased insulin action in muscle and touch upon sex differences in glucose metabolism. Although many key processes regulating glucose uptake in muscle are known, the advent of newer and bioinformatics tools has revealed further molecular signaling processes reaching a staggering level of complexity. Much of this molecular mapping has emerged from cellular and animal studies and more recently from application of a variety of -omics in human tissues. In the future, it will be imperative to validate the translatability of results drawn from experimental systems to human physiology.
Collapse
Affiliation(s)
- Erik A Richter
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Loos CMM, Urschel KL. Current understanding of insulin dysregulation and its relationship with carbohydrate and protein metabolism in horses. Domest Anim Endocrinol 2025; 92:106940. [PMID: 40073599 DOI: 10.1016/j.domaniend.2025.106940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Insulin dysregulation (ID) is a common metabolic disorder in horses, characterized by hyperinsulinemia and/or peripheral insulin resistance. The critical role of hyperinsulinemia in endocrinopathic laminitis has driven research into the insulinotropic effects of dietary nutrients and the reciprocal impact of ID on nutrient metabolism. The relationship between ID and carbohydrate metabolism has been extensively studied; however, the effects of ID on protein metabolism in horses remain largely unexplored. This review begins with an overview of the importance of insulin in the regulation of muscle protein synthesis and degradation and then examines the current understanding of the interplay between ID and protein and carbohydrate metabolism in horses. Horses with ID exhibit altered resting plasma amino acid concentrations and shifts in postprandial amino acid dynamics. Recent work illustrated that ID horses had higher levels of plasma amino acids following a protein meal and delayed postprandial clearance from the blood compared to non-ID horses. The postprandial muscle synthetic response does not seem to be diminished in ID horses, but alterations in key cellular signaling molecules have been reported. ID horses display a pronounced hyperinsulinemic response following the consumption of feeds providing a range of protein, non-structural carbohydrate, starch and water-soluble carbohydrate intakes. Recent studies have shown that ID horses have an increased postprandial incretin response, contributing to the observed hyperinsulinemia. To minimize the postprandial insulin response, thresholds for carbohydrate consumption have recently been proposed. Similar thresholds should be established for protein to aid in the refinement of nutritional strategies to manage ID horses.
Collapse
Affiliation(s)
- C M M Loos
- Versele-Laga, Cavalor Equine Nutrition, Belgium.
| | - K L Urschel
- University of Kentucky, Department of Animal and Food Sciences, Lexington, KY, USA
| |
Collapse
|
3
|
Scaffidi C, Srdic A, Konrad D, Wueest S. IL-27 increases energy storage in white adipocytes by enhancing glucose uptake and fatty acid esterification. Adipocyte 2023; 12:2276346. [PMID: 37948192 PMCID: PMC10773535 DOI: 10.1080/21623945.2023.2276346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
The cytokine interleukin (IL)-27 has been reported to induce thermogenesis in white adipocytes. However, it remains unknown whether IL-27-mediated adipocyte energy dissipation is paralleled by an elevated energy supply from lipids and/or carbohydrates. We hypothesized that IL-27 increases lipolysis and glucose uptake in white adipocytes, thereby providing substrates for thermogenesis. Unexpectedly, we found that treatment of 3T3-L1 adipocytes with IL-27 reduced intra- and extracellular free fatty acid (FFA) concentrations and that phosphorylation of hormone-sensitive lipase (HSL) was not affected by IL-27. These results were confirmed in subcutaneous white adipocytes. Further, application of IL-27 to 3T3-L1 adipocytes increased intracellular triglyceride (TG) content but not mitochondrial ATP production nor expression of enzymes involved in beta-oxidation indicating that elevated esterification rather than oxidation causes FFA disappearance. In addition, IL-27 significantly increased GLUT1 protein levels, basal glucose uptake as well as glycolytic ATP production, suggesting that increased glycolytic flux due to IL-27 provides the glycerol backbone for TG synthesis. In conclusion, our findings suggest IL-27 increases glucose uptake and TG deposition in white adipocytes.
Collapse
Affiliation(s)
- Chiara Scaffidi
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, University of Zurich, Zurich, Switzerland
| | - Annie Srdic
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, University of Zurich, Zurich, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Yin TC, Van Vranken JG, Srivastava D, Mittal A, Buscaglia P, Moore AE, Verdinez JA, Graham AE, Walsh SA, Acevedo MA, Kerns RJ, Artemyev NO, Gygi SP, Sebag JA. Insulin sensitization by small molecules enhancing GLUT4 translocation. Cell Chem Biol 2023; 30:933-942.e6. [PMID: 37453421 PMCID: PMC11191318 DOI: 10.1016/j.chembiol.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/06/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Insulin resistance (IR) is the root cause of type II diabetes, yet no safe treatment is available to address it. Using a high throughput compatible assay that measures real-time translocation of the glucose transporter glucose transporter 4 (GLUT4), we identified small molecules that potentiate insulin action. In vivo, these insulin sensitizers improve insulin-stimulated GLUT4 translocation, glucose tolerance, and glucose uptake in a model of IR. Using proteomic and CRISPR-based approaches, we identified the targets of those compounds as Unc119 proteins and solved the structure of Unc119 bound to the insulin sensitizer. This study identifies compounds that have the potential to be developed into diabetes treatment and establishes Unc119 proteins as targets for improving insulin sensitivity.
Collapse
Affiliation(s)
- Terry C Yin
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | | | - Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Ayushi Mittal
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Paul Buscaglia
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Autumn E Moore
- Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jissele A Verdinez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Aschleigh E Graham
- Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Susan A Walsh
- Small Animal Imaging Core, University of Iowa, Iowa City, IA 52242, USA
| | - Michael A Acevedo
- Small Animal Imaging Core, University of Iowa, Iowa City, IA 52242, USA
| | - Robert J Kerns
- Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Julien A Sebag
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
5
|
Beylerli O, Sufianova G, Shumadalova A, Zhang D, Gareev I. MicroRNAs-mediated regulation of glucose transporter (GLUT) expression in glioblastoma. Noncoding RNA Res 2022; 7:205-211. [PMID: 36157351 PMCID: PMC9467858 DOI: 10.1016/j.ncrna.2022.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022] Open
Abstract
Current knowledge about the role of microRNAs (miRNAs) in tumor glucose metabolism is growing, and a number of studies regularly confirm the impact miRNAs can have on glucose metabolism reprogramming in tumors. However, there remains a lack of understanding of the broader perspective on the role of miRNAs in energy reprogramming in glioblastoma. An important role in the metabolism of glucose is played by carrier proteins that ensure its transmembrane movement. Carrier proteins in mammalian cells are glucose transporters (GLUTs). In total, 12 types of GLUTs are distinguished, differing in localization, affinity for glucose and ability to regulate. The fact of increased consumption of glucose in tumors compared to non-proliferating normal tissues is known. Tumor cells need glucose to ensure their survival and growth, so the type of transport proteins like GLUT are critical for them. Previous studies have shown that GLUT-1 and GLUT-3 may play an important role in the development of some types of malignant tumors, including glioblastoma. In addition, there is evidence of how GLUT-1 and GLUT-3 expression is regulated by miRNAs in glioblastoma. Thus, the aim of this study is to highlight the role of specific miRNAs in modulating GLUT levels in order to take into account the use of miRNAs expression modulators as a useful strategy to increase the sensitivity of glioblastoma to current therapies.
Collapse
Affiliation(s)
- Ozal Beylerli
- Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Alina Shumadalova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Daming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ilgiz Gareev
- Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
6
|
Glucose enhances catecholamine-stimulated lipolysis via increased glycerol-3-phosphate synthesis in 3T3-L1 adipocytes and rat adipose tissue. Mol Biol Rep 2021; 48:6269-6276. [PMID: 34374898 DOI: 10.1007/s11033-021-06617-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND During lipolysis, triglyceride (TG) are hydrolyzed into a glycerol and fatty acids in adipocyte. A significant portion of the fatty acids are re-esterificated into TG, and this is a critical step in promoting lipolysis. Although glycerol-3-phosphate (G3P) is required for triglyceride synthesis in mammalian cell, the substrate for G3P synthesis during active lipolysis is not known. A recent study showed that the inhibition of glucose uptake reduces catecholamine-stimulated lipolysis, suggesting that glucose availability is important in lipolysis in adipocytes. We hypothesized that glucose might play an essential role in generating G3P and thereby promoting catecholamine-stimulated lipolysis in adipocytes. Therefore, we determined the effect of glucose availability on catecholamine-stimulated lipolysis in 3T3-L1 adipocytes and rat adipose tissue. METHODS AND RESULTS 3T3-L1 adipocytes and rat epididymal fat pads were cultured in a medium with/without glucose during stimulation by isoproterenol. Glycerol release was higher when adipocytes were cultured in a glucose-containing medium than that in a medium without glucose. Measurement of glucose uptake during catecholamine-stimulated lipolysis showed a slight, but significant increase in glucose uptake. We also compared glucose metabolism-related protein, such as glucose transporter 4, hexokinase, glycerol-3-phosphate dehydrogenase and lipase contents between fat tissues that play a critical role in active lipolysis. Epididymal fat exhibited higher lipolytic activity than inguinal fat because of higher lipase and glucose metabolism-related protein contents. CONCLUSION We demonstrated that catecholamine-stimulated lipolysis is enhanced in the presence of glucose, and suggests that glucose is one of the primary substrates for G3P in adipocytes during active lipolysis.
Collapse
|
7
|
Benninghoff T, Espelage L, Eickelschulte S, Zeinert I, Sinowenka I, Müller F, Schöndeling C, Batchelor H, Cames S, Zhou Z, Kotzka J, Chadt A, Al-Hasani H. The RabGAPs TBC1D1 and TBC1D4 Control Uptake of Long-Chain Fatty Acids Into Skeletal Muscle via Fatty Acid Transporter SLC27A4/FATP4. Diabetes 2020; 69:2281-2293. [PMID: 32868338 DOI: 10.2337/db20-0180] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022]
Abstract
The two closely related RabGTPase-activating proteins (RabGAPs) TBC1D1 and TBC1D4 play a crucial role in the regulation of GLUT4 translocation in response to insulin and contraction in skeletal muscle. In mice, deficiency in one or both RabGAPs leads to reduced insulin- and contraction-stimulated glucose uptake and to elevated fatty acid (FA) uptake and oxidation in both glycolytic and oxidative muscle fibers without altering mitochondrial copy number and the abundance of proteins for oxidative phosphorylation. Here we present evidence for a novel mechanism of skeletal muscle lipid utilization involving the two RabGAPs and the FA transporter SLC27A4/FATP4. Both RabGAPs control the uptake of saturated and unsaturated long-chain FAs (LCFAs) into skeletal muscle and knockdown (Kd) of a subset of RabGAP substrates, Rab8, Rab10, or Rab14, decreased LCFA uptake into these cells. In skeletal muscle from Tbc1d1 and Tbc1d4 knockout animals, SLC27A4/FATP4 abundance was increased and depletion of SLC27A4/FATP4 but not FAT/CD36 completely abrogated the enhanced FA oxidation in RabGAP-deficient skeletal muscle and cultivated C2C12 myotubes. Collectively, our data demonstrate that RabGAP-mediated control of skeletal muscle lipid metabolism converges with glucose metabolism at the level of downstream RabGTPases and involves regulated transport of LCFAs via SLC27A4/FATP4.
Collapse
Affiliation(s)
- Tim Benninghoff
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Samaneh Eickelschulte
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Isabel Zeinert
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Isabelle Sinowenka
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Frank Müller
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Christina Schöndeling
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Hannah Batchelor
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Sandra Cames
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Zhou Zhou
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Jörg Kotzka
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| |
Collapse
|
8
|
Rezaei Farimani A, Goodarzi MT, Saidijam M, Yadegarazari R, Zarei S, Asadi S. Effect of resveratrol on SNARE proteins expression and insulin resistance in skeletal muscle of diabetic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 22:1408-1414. [PMID: 32133058 PMCID: PMC7043870 DOI: 10.22038/ijbms.2019.13988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective(s): Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex proteins are involved in membrane trafficking. The expression of isoforms of SNAP-23, syntaxin-4, and VAMP-2 is significantly done in skeletal muscles; they control GLUT4 trafficking. It is believed that type 2 diabetes could be caused by the modifications in the expression of SNARE complex proteins. The purpose of this study was to evaluate the effect of resveratrol on the expression of these proteins in type 2 diabetes. Materials and Methods: Forty male Wistar rats were selected. Streptozotocin and nicotinamide were applied for the induction of type 2 diabetes. The animals were divided into five groups. Healthy and diabetic groups were set as control; resveratrol (1, 5, and 10 mg/kg body weight) was applied to treat the three groups of diabetic rats for 30 days. Real-time qRT-PCR was applied to evaluate the expression of SNARE complex proteins. Results: There is a link between diabetes and insulin resistance and up-regulation of SNARE proteins expression. Resveratrol improved hyperglycemia and insulin resistance along with a non-significant reduction in the expression of SNARE proteins. Conclusion: Increased expression of SNARE proteins was possibly a compensatory mechanism in response to insulin resistance in the skeletal muscles of diabetic rats. Resveratrol non-significantly reduced the expression of SNARE proteins by enhancing insulin sensitivity, where this effect was dose-dependent. Thus, higher doses of resveratrol and longer intervention periods could probably be more effective. Another molecular mechanism of the anti-diabetic properties of resveratrol was identified with an effect on the expression of SNARE proteins.
Collapse
Affiliation(s)
- Azam Rezaei Farimani
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taghi Goodarzi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Yadegarazari
- Department of Molecular Medicine and Genetics, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sadegh Zarei
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Soheila Asadi
- Department of Clinical Biochemistry, Facultyl of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Wu J, Cheng D, Liu L, Lv Z, Liu K. TBC1D15 affects glucose uptake by regulating GLUT4 translocation. Gene 2018; 683:210-215. [PMID: 30316925 DOI: 10.1016/j.gene.2018.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/06/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
Abstract
Glucose transport into skeletal muscle is mediated by the principal glucose transporter protein, GLUT4, which can be transported from intracellular vesicles to the cytoplasmic membrane, and the translocation of GLUT4 vesicles requires a variety of Rab proteins. Previously we reported a new type of TBC1D15 from C. plagiosum with Rab-GAP activity for Rab7. Here we reported that TBC1D15 regulated glucose uptake by affecting the translocation of GLUT4 through late endosomal pathway. When TBC1D15 was knocked out by CRISPR/Cas9, a significant reduction in 2-NBDG uptake was observed, and the total amount of GLUT4 was significantly reduced in TBC1D15-/- cells compared to that in WT cells. Furthermore, concentrated distribution of Rab7 in Lamp1-decorated late endosome/lysosome and an increase in co-localization between GLUT4 and Rab7 was observed in TBC1D15-/- cells. These results suggested that TBC1D15 served as a master regulator in GLUT4 translocation and further affected GLUT4-mediated glucose uptake.
Collapse
Affiliation(s)
- Jia Wu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Dandan Cheng
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Li Liu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Zhengbing Lv
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Kuancheng Liu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China.
| |
Collapse
|
10
|
Tokarz VL, MacDonald PE, Klip A. The cell biology of systemic insulin function. J Cell Biol 2018; 217:2273-2289. [PMID: 29622564 PMCID: PMC6028526 DOI: 10.1083/jcb.201802095] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022] Open
Abstract
Insulin is the paramount anabolic hormone, promoting carbon energy deposition in the body. Its synthesis, quality control, delivery, and action are exquisitely regulated by highly orchestrated intracellular mechanisms in different organs or "stations" of its bodily journey. In this Beyond the Cell review, we focus on these five stages of the journey of insulin through the body and the captivating cell biology that underlies the interaction of insulin with each organ. We first analyze insulin's biosynthesis in and export from the β-cells of the pancreas. Next, we focus on its first pass and partial clearance in the liver with its temporality and periodicity linked to secretion. Continuing the journey, we briefly describe insulin's action on the blood vasculature and its still-debated mechanisms of exit from the capillary beds. Once in the parenchymal interstitium of muscle and adipose tissue, insulin promotes glucose uptake into myofibers and adipocytes, and we elaborate on the intricate signaling and vesicle traffic mechanisms that underlie this fundamental function. Finally, we touch upon the renal degradation of insulin to end its action. Cellular discernment of insulin's availability and action should prove critical to understanding its pivotal physiological functions and how their failure leads to diabetes.
Collapse
Affiliation(s)
- Victoria L Tokarz
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Wasik AA, Lehtonen S. Glucose Transporters in Diabetic Kidney Disease-Friends or Foes? Front Endocrinol (Lausanne) 2018; 9:155. [PMID: 29686650 PMCID: PMC5900043 DOI: 10.3389/fendo.2018.00155] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a common cause of end-stage renal disease worldwide. DKD manifests as an increased urinary protein excretion (albuminuria). Multiple studies have shown that insulin resistance correlates with the development of albuminuria in non-diabetic and diabetic patients. There is also accumulating evidence that glomerular epithelial cells or podocytes are insulin sensitive and that insulin signaling in podocytes is essential for maintaining normal kidney function. At the cellular level, the mechanisms leading to the development of insulin resistance include mutations in the insulin receptor gene, impairments in the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway, or perturbations in the trafficking of glucose transporters (GLUTs), which mediate the uptake of glucose into cells. Podocytes express several GLUTs, including GLUT1, GLUT2, GLUT3, GLUT4, and GLUT8. Of these, the most studied ones are GLUT1 and GLUT4, both shown to be insulin responsive in podocytes. In the basal state, GLUT4 is preferentially located in perinuclear and cytosolic vesicular structures and to a lesser extent at the plasma membrane. After insulin stimulation, GLUT4 is sorted into GLUT4-containing vesicles (GCVs) that translocate to the plasma membrane. GCV trafficking consists of several steps, including approaching of the GCVs to the plasma membrane, tethering, and docking, after which the lipid bilayers of the GCVs and the plasma membrane fuse, delivering GLUT4 to the cell surface for glucose uptake into the cell. Studies have revealed novel molecular regulators of the GLUT trafficking in podocytes and unraveled unexpected roles for GLUT1 and GLUT4 in the development of DKD, summarized in this review. These findings pave the way for better understanding of the mechanistic pathways associated with the development and progression of DKD and aid in the development of new treatments for this devastating disease.
Collapse
|
12
|
Effect of Bisphenol-A (BPA) on insulin signal transduction and GLUT4 translocation in gastrocnemius muscle of adult male albino rat. Int J Biochem Cell Biol 2017; 90:38-47. [PMID: 28739533 DOI: 10.1016/j.biocel.2017.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 01/22/2023]
Abstract
Environmental estrogens bind to estrogen receptors, mimic estrogenic actions, and have adverse effects on human health like Bisphenol - A (BPA) which is used as a monomer in the production of polycarbonate plastics (PC) and epoxy resins which are used in variety of canned foods. Skeletal muscle plays an essential role in maintaining systemic glucose metabolism. In the present study, we investigated the possible effects of BPA on insulin signalling molecules and GLUT4 translocation in the gastrocnemius muscle of adult male rat. Rats were divided into four groups - Group I: Control (vehicle-corn oil treated), Group II, III and IV were administered with BPA (10, 100 and 400mg/kg b.wt/day, respectively) through oral gavage. Fasting blood glucose level of BPA treated groups showed a significant increase, oral glucose tolerance and insulin tolerance were also impaired in these animals. BPA significantly decreased the protein levels of insulin signalling molecules like IR, IRS-1, Akt, AS160 and its phosphorylated forms and blunts GLUT4 translocation by altering the levels of v- and t- SNARE proteins that assist the translocation process, thereby decreasing glucose uptake and oxidation in the gastrocnemius muscle. These results suggest that BPA has detrimental effects on insulin signalling molecules and GLUT4 translocation in the gastrocnemius muscle and thus impairs glucose homeostasis.
Collapse
|
13
|
Qin X, You H, Cao F, Wu Y, Peng J, Pang J, Xu H, Chen Y, Chen L, Vitek MP, Li F, Sun X, Jiang Y. Apolipoprotein E Mimetic Peptide Increases Cerebral Glucose Uptake by Reducing Blood-Brain Barrier Disruption after Controlled Cortical Impact in Mice: An 18F-Fluorodeoxyglucose PET/CT Study. J Neurotrauma 2016; 34:943-951. [PMID: 27411737 DOI: 10.1089/neu.2016.4485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Traumatic brain injury (TBI) disrupts the blood-brain barrier (BBB) and reduces cerebral glucose uptake. Vascular endothelial growth factor (VEGF) is believed to play a key role in TBI, and COG1410 has demonstrated neuroprotective activity in several models of TBI. However, the effects of COG1410 on VEGF and glucose metabolism following TBI are unknown. The current study aimed to investigate the expression of VEGF and glucose metabolism effects in C57BL/6J male mice subjected to experimental TBI. The results showed that controlled cortical impact (CCI)-induced vestibulomotor deficits were accompanied by increases in brain edema and the expression of VEGF, with a decrease in cerebral glucose uptake. COG1410 treatment significantly improved vestibulomotor deficits and glucose uptake and produced decreases in VEGF in the pericontusion and ipsilateral hemisphere of injury, as well as in brain edema and neuronal degeneration compared with the control group. These data support that COG1410 may have potential as an effective drug therapy for TBI.
Collapse
Affiliation(s)
- Xinghu Qin
- 1 Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University , Luzhou, China .,2 Department of Neurosurgery, People's Hospital of Deyang City , Deyang, China
| | - Hong You
- 3 Department of Oncology, People's Hospital of Deyang City , Deyang, China
| | - Fang Cao
- 4 Department of Cerebrovascular Disease, the Affiliated Hospital of Zunyi Medical College , Zunyi, China
| | - Yue Wu
- 5 Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Jianhua Peng
- 1 Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University , Luzhou, China
| | - Jinwei Pang
- 1 Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University , Luzhou, China
| | - Hong Xu
- 2 Department of Neurosurgery, People's Hospital of Deyang City , Deyang, China
| | - Yue Chen
- 1 Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University , Luzhou, China
| | - Ligang Chen
- 1 Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University , Luzhou, China
| | - Michael P Vitek
- 6 Department of Medicine (Neurology), Duke University Medical Center , Medicine, Durham, North Carolina
| | - Fengqiao Li
- 7 Cognosci, Inc., Research Triangle Park , North Carolina
| | - Xiaochuan Sun
- 5 Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Yong Jiang
- 1 Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University , Luzhou, China
| |
Collapse
|
14
|
Glade MJ, Smith K. A glance at … exercise and glucose uptake. Nutrition 2015; 31:893-7. [PMID: 25933500 DOI: 10.1016/j.nut.2014.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Affiliation(s)
| | - Kyl Smith
- Progressive Laboratories Inc., Irving, Texas
| |
Collapse
|
15
|
Contreras-Ferrat A, Lavandero S, Jaimovich E, Klip A. Calcium signaling in insulin action on striated muscle. Cell Calcium 2014; 56:390-6. [PMID: 25224502 DOI: 10.1016/j.ceca.2014.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 02/07/2023]
Abstract
Striated muscles (skeletal and cardiac) are major physiological targets of insulin and this hormone triggers complex signaling pathways regulating cell growth and energy metabolism. Insulin increases glucose uptake into muscle cells by stimulating glucose transporter (GLUT4) translocation from intracellular compartments to the cell surface. The canonical insulin-triggered signaling cascade controlling this process is constituted by well-mapped tyrosine, lipid and serine/threonine phosphorylation reactions. In parallel to these signals, recent findings reveal insulin-dependent Ca(2+) mobilization in skeletal muscle cells and cardiomyocytes. Specifically, insulin activates the sarco-endoplasmic reticulum (SER) channels that release Ca(2+) into the cytosol i.e., the Ryanodine Receptor (RyR) and the inositol 1,4,5-triphosphate receptor (IP3R). In skeletal muscle cells, a rapid, insulin-triggered Ca(2+) release occurs through RyR, that is brought about upon S-glutathionylation of cysteine residues in the channel by reactive oxygen species (ROS) produced by the early activation of the NADPH oxidase (NOX2). In cardiomyocytes insulin induces a fast and transient increase in cytoplasmic [Ca(2+)]i trough L-type Ca(2+) channels activation. In both cell types, a relatively slower Ca(2+) release also occurs through IP3R activation, and is required for GLUT4 translocation and glucose uptake. The insulin-dependent Ca(2+) released from IP3R of skeletal muscle also promotes mitochondrial Ca(2+) uptake. We review here these actions of insulin on intracellular Ca(2+) channel activation and their impact on GLUT4 traffic in muscle cells, as well as other implications of insulin-dependent Ca(2+) release from the SER.
Collapse
Affiliation(s)
- A Contreras-Ferrat
- Center for Molecular Studies of the Cell (CEMC), Faculty of Medicine, Chile; Advanced Center for Chronic Disease (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Chile; Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile.
| | - S Lavandero
- Center for Molecular Studies of the Cell (CEMC), Faculty of Medicine, Chile; Advanced Center for Chronic Disease (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Chile
| | - E Jaimovich
- Center for Molecular Studies of the Cell (CEMC), Faculty of Medicine, Chile
| | - A Klip
- The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| |
Collapse
|
16
|
Klip A, Sun Y, Chiu TT, Foley KP. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. Am J Physiol Cell Physiol 2014; 306:C879-86. [DOI: 10.1152/ajpcell.00069.2014] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle is the major tissue disposing of dietary glucose, a function regulated by insulin-elicited signals that impart mobilization of GLUT4 glucose transporters to the plasma membrane. This phenomenon, also central to adipocyte biology, has been the subject of intense and productive research for decades. We focus on muscle cell studies scrutinizing insulin signals and vesicle traffic in a spatiotemporal manner. Using the analogy of an integrated circuit to approach the intersection between signal transduction and vesicle mobilization, we identify signaling relays (“software”) that engage structural/mechanical elements (“hardware”) to enact the rapid mobilization and incorporation of GLUT4 into the cell surface. We emphasize how insulin signal transduction switches from tyrosine through lipid and serine phosphorylation down to activation of small G proteins of the Rab and Rho families, describe key negative regulation step of Rab GTPases through the GTPase-activating protein activity of the Akt substrate of 160 kDa (AS160), and focus on the mechanical effectors engaged by Rabs 8A and 10 (the molecular motor myosin Va), and the Rho GTPase Rac1 (actin filament branching and severing through Arp2/3 and cofilin). Finally, we illustrate how actin filaments interact with myosin 1c and α-Actinin4 to promote vesicle tethering as preamble to fusion with the membrane.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and
- Department of Biochemistry, The University of Toronto, Ontario, Canada
| | - Yi Sun
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and
| | - Tim Ting Chiu
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and
- Department of Biochemistry, The University of Toronto, Ontario, Canada
| | - Kevin P. Foley
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and
- Department of Biochemistry, The University of Toronto, Ontario, Canada
| |
Collapse
|
17
|
Abstract
Lung surfactant is crucial for reducing the surface tension of alveolar space, thus preventing the alveoli from collapse. Lung surfactant is synthesized in alveolar epithelial type II cells and stored in lamellar bodies before being released via the fusion of lamellar bodies with the apical plasma membrane. SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors) play an essential role in membrane fusion. We have previously demonstrated the requirement of t-SNARE (target SNARE) proteins, syntaxin 2 and SNAP-23 (N-ethylmaleimide-sensitive factor-attachment protein 23), in regulated surfactant secretion. Here, we characterized the distribution of VAMPs (vesicle-associated membrane proteins) in rat lung and alveolar type II cells. VAMP-2, -3 and -8 are shown in type II cells at both mRNA and protein levels. VAMP-2 and -8 were enriched in LB (lamellar body) fraction. Immunochemistry studies indicated that VAMP-2 was co-localized with the LB marker protein, LB-180. Functionally, the cytoplasmic domain of VAMP-2, but not VAMP-8 inhibited surfactant secretion in type II cells. We suggest that VAMP-2 is the v-SNARE (vesicle SNARE) involved in regulated surfactant secretion.
Collapse
|
18
|
Ramalingam L, Oh E, Thurmond DC. Novel roles for insulin receptor (IR) in adipocytes and skeletal muscle cells via new and unexpected substrates. Cell Mol Life Sci 2013; 70:2815-34. [PMID: 23052216 PMCID: PMC3556358 DOI: 10.1007/s00018-012-1176-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/21/2012] [Accepted: 09/18/2012] [Indexed: 01/30/2023]
Abstract
The insulin signaling pathway regulates whole-body glucose homeostasis by transducing extracellular signals from the insulin receptor (IR) to downstream intracellular targets, thus coordinating a multitude of biological functions. Dysregulation of IR or its signal transduction is associated with insulin resistance, which may culminate in type 2 diabetes. Following initial stimulation of IR, insulin signaling diverges into different pathways, activating multiple substrates that have roles in various metabolic and cellular processes. The integration of multiple pathways arising from IR activation continues to expand as new IR substrates are identified and characterized. Accordingly, our review will focus on roles for IR substrates as they pertain to three primary areas: metabolism/glucose uptake, mitogenesis/growth, and aging/longevity. While IR functions in a seemingly pleiotropic manner in many cell types, through these three main roles in fat and skeletal muscle cells, IR multi-tasks to regulate whole-body glucose homeostasis to impact healthspan and lifespan.
Collapse
Affiliation(s)
- Latha Ramalingam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Eunjin Oh
- Department of Pediatrics, Herman B Wells Center, Indiana University School of Medicine, Indianapolis, IN USA
| | - Debbie C. Thurmond
- Departments of Pediatrics, Biochemistry and Molecular Biology, and Cellular and Integrative Physiology, Herman B Wells Center, Indiana University School of Medicine, 635 Barnhill Drive MS 2031, Indianapolis, IN 46202 USA
| |
Collapse
|
19
|
Garrido-Sanchez L, Escote X, Coin-Aragüez L, Fernandez-Garcia JC, El Bekay R, Vendrell J, Garcia-Fuentes E, Tinahones FJ. Munc18c in adipose tissue is downregulated in obesity and is associated with insulin. PLoS One 2013; 8:e63937. [PMID: 23700440 PMCID: PMC3659121 DOI: 10.1371/journal.pone.0063937] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/09/2013] [Indexed: 02/07/2023] Open
Abstract
Objective Munc18c is associated with glucose metabolism and could play a relevant role in obesity. However, little is known about the regulation of Munc18c expression. We analyzed Munc18c gene expression in human visceral (VAT) and subcutaneous (SAT) adipose tissue and its relationship with obesity and insulin. Materials and Methods We evaluated 70 subjects distributed in 12 non-obese lean subjects, 23 overweight subjects, 12 obese subjects and 23 nondiabetic morbidly obese patients (11 with low insulin resistance and 12 with high insulin resistance). Results The lean, overweight and obese persons had a greater Munc18c gene expression in adipose tissue than the morbidly obese patients (p<0.001). VAT Munc18c gene expression was predicted by the body mass index (B = −0.001, p = 0.009). In SAT, no associations were found by different multiple regression analysis models. SAT Munc18c gene expression was the main determinant of the improvement in the HOMA-IR index 15 days after bariatric surgery (B = −2148.4, p = 0.038). SAT explant cultures showed that insulin produced a significant down-regulation of Munc18c gene expression (p = 0.048). This decrease was also obtained when explants were incubated with liver X receptor alpha (LXRα) agonist, either without (p = 0.038) or with insulin (p = 0.050). However, Munc18c gene expression was not affected when explants were incubated with insulin plus a sterol regulatory element-binding protein-1c (SREBP-1c) inhibitor (p = 0.504). Conclusions Munc18c gene expression in human adipose tissue is down-regulated in morbid obesity. Insulin may have an effect on the Munc18c expression, probably through LXRα and SREBP-1c.
Collapse
Affiliation(s)
- Lourdes Garrido-Sanchez
- Endocrinology and Diabetes Unit, Joan XXIII University Hospital, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Tarragona, Spain
| | - Xavier Escote
- Endocrinology and Diabetes Unit, Joan XXIII University Hospital, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Tarragona, Spain
| | - Leticia Coin-Aragüez
- Servicio de Endocrinología y Nutrición, Hospital Clínico Virgen de la Victoria, Malaga, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
| | | | - Rajaa El Bekay
- Servicio de Endocrinología y Nutrición, Hospital Clínico Virgen de la Victoria, Malaga, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
- Instituto de Investigaciones Biomédicas de Málaga (IBIMA), Málaga, Spain
| | - Joan Vendrell
- Endocrinology and Diabetes Unit, Joan XXIII University Hospital, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Tarragona, Spain
| | - Eduardo Garcia-Fuentes
- Ciber Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
- Instituto de Investigaciones Biomédicas de Málaga (IBIMA), Málaga, Spain
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario Carlos Haya, Malaga, Spain
- * E-mail: (EGF); (FT)
| | - Francisco J. Tinahones
- Servicio de Endocrinología y Nutrición, Hospital Clínico Virgen de la Victoria, Malaga, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
- * E-mail: (EGF); (FT)
| |
Collapse
|
20
|
Kitagishi Y, Matsuda S. RUFY, Rab and Rap Family Proteins Involved in a Regulation of Cell Polarity and Membrane Trafficking. Int J Mol Sci 2013; 14:6487-98. [PMID: 23519112 PMCID: PMC3634510 DOI: 10.3390/ijms14036487] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 12/15/2022] Open
Abstract
Cell survival, homeostasis and cell polarity rely on the control of membrane trafficking pathways. The RUN domain (comprised of the RPIP8, UNC-14, and NESCA proteins) has been suggested to be implicated in small GTPase-mediated membrane trafficking and cell polarity. Accumulating evidence supports the hypothesis that the RUN domain-containing proteins might be responsible for an interaction with a filamentous network linked to actin cytoskeleton and/or microtubules. In addition, several downstream molecules of PI3K are involved in regulation of the membrane trafficking by interacting with vesicle-associated RUN proteins such as RUFY family proteins. In this review, we summarize the background of RUN domain research with an emphasis on the interaction between RUN domain proteins including RUFY proteins (designated as RUN and FYVE domain-containing proteins) and several small GTPases with respect to the regulation of cell polarity and membrane trafficking on filamentous network.
Collapse
Affiliation(s)
- Yasuko Kitagishi
- Department of Environmental Health Science, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | | |
Collapse
|
21
|
Jambaldorj B, Terada E, Hosaka T, Kishuku Y, Tomioka Y, Iwashima K, Hirata Y, Teshigawara K, Thi Kim Le C, Nakagawa T, Harada N, Sakai T, Sakaue H, Matsumoto T, Funaki M, Takahashi A, Nakaya Y. Cysteine string protein 1 (CSP1) modulates insulin sensitivity by attenuating glucose transporter 4 (GLUT4) vesicle docking with the plasma membrane. THE JOURNAL OF MEDICAL INVESTIGATION 2013; 60:197-204. [DOI: 10.2152/jmi.60.197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Bayasgalan Jambaldorj
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Eri Terada
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Toshio Hosaka
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Yuka Kishuku
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Yukiko Tomioka
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Kaori Iwashima
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Yohko Hirata
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Kiyoshi Teshigawara
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Chung Thi Kim Le
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Tadahiko Nakagawa
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Nagakatsu Harada
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Tohru Sakai
- Department of Public Health and Applied Nutrition, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Toshio Matsumoto
- Department of Medicine and Bioregulatory Sciences, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Makoto Funaki
- Clinical Research Center for Diabetes, Tokushima University Hospital
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Yutaka Nakaya
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| |
Collapse
|
22
|
Williams AA, Selvaraj J, Srinivasan C, Sathish S, Rajesh P, Balaji V, Arunakaran J, Balasubramanian K. Protective role of lycopene against Aroclor 1254-induced changes on GLUT4 in the skeletal muscles of adult male rat. Drug Chem Toxicol 2012; 36:320-8. [PMID: 23035738 DOI: 10.3109/01480545.2012.720991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aroclor 1254 is the commercial mixture of highly toxic environmental pollutant, polychlorinated biphenyls (PCBs). Being immensely durable, it is extensively used and widely distributed. Studies show that Aroclor 1254 causes a variety of adverse health effects through free radical generation. The present investigation was designed to check the effect of Aroclor 1254 on the glucose transporter protein, GLUT4, which plays a key role in glucose homeostasis. The protective role of lycopene against the adverse effect of Aroclor 1254 was also tested. Group 1 rats received corn oil as vehicle and served as control. Groups 2, 3, and 4 were administered with Aroclor 1254 [2 mg kg(-1) body weight (b.w.) day(-1)] intraperitoneally for 30 days. Groups 3 and 4 received lycopene (2 and 4 mg kg(-1) b.w. day(-1), respectively) orally in addition to Aroclor 1254. After 30 days, animals were euthanized and the skeletal muscles were dissected to determine the following parameters: GLUT4 messenger RNA (mRNA), GLUT4 protein (both plasma membrane and cytosolic fractions), and (14)C-2-deoxyglucose uptake. Though there was no change in GLUT4 mRNA and fasting plasma glucose levels, Aroclor 1254 significantly decreased the GLUT4 protein level in both the subcellular fractions of the gracilis and triceps muscles. Most important, (14)C-2-deoxyglucose uptake showed a significant decrease in Aroclor 1254 alone treated rats, and Aroclor 1254 plus 4 mg lycopene supplementation treatment maintained the same at par with control. Thus, Aroclor 1254 has adverse effects on GLUT4 translocation and (14)C-2-deoxyglucose uptake, and lycopene administered along with Aroclor 1254 has a protective role over it.
Collapse
Affiliation(s)
- Anne Augustine Williams
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences,University of Madras, Taramani, Chennai, India
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ramalingam L, Oh E, Yoder SM, Brozinick JT, Kalwat MA, Groffen AJ, Verhage M, Thurmond DC. Doc2b is a key effector of insulin secretion and skeletal muscle insulin sensitivity. Diabetes 2012; 61:2424-32. [PMID: 22698913 PMCID: PMC3447898 DOI: 10.2337/db11-1525] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 04/02/2012] [Indexed: 11/13/2022]
Abstract
Exocytosis of intracellular vesicles, such as insulin granules, is carried out by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins. An additional regulatory protein, Doc2b (double C2 domain), has recently been implicated in exocytosis from clonal β-cells and 3T3-L1 adipocytes. Here, we investigated the role of Doc2b in insulin secretion, insulin sensitivity, and the maintenance of whole-body glucose homeostasis. Doc2b heterozygous (Doc2b(+/-)) and homozygous (Doc2b(-/-)) knockout mice exhibited significant whole-body glucose intolerance and peripheral insulin resistance, compared with wild-type littermates. Correspondingly, Doc2b(+/-) and Doc2b(-/-) mice exhibited decreased responsiveness of pancreatic islets to glucose in vivo, with significant attenuation of both phases of insulin secretion ex vivo. Peripheral insulin resistance correlated with ablated insulin-stimulated glucose uptake and GLUT4 vesicle translocation in skeletal muscle from Doc2b-deficient mice, which was coupled to impairments in Munc18c-syntaxin 4 dissociation and in SNARE complex assembly. Hence, Doc2b is a key positive regulator of Munc18c-syntaxin 4-mediated insulin secretion as well as of insulin responsiveness in skeletal muscle, and thus a key effector for glucose homeostasis in vivo. Doc2b's actions in glucose homeostasis may be related to its ability to bind Munc18c and/or directly promote fusion of insulin granules and GLUT4 vesicles in a stimulus-dependent manner.
Collapse
Affiliation(s)
- Latha Ramalingam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Eunjin Oh
- Department of Pediatrics, Herman B Wells Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephanie M. Yoder
- Department of Pediatrics, Herman B Wells Center, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Michael A. Kalwat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alexander J. Groffen
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, the Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, the Netherlands
| | - Debbie C. Thurmond
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pediatrics, Herman B Wells Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
24
|
Boguslavsky S, Chiu T, Foley KP, Osorio-Fuentealba C, Antonescu CN, Bayer KU, Bilan PJ, Klip A. Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles. Mol Biol Cell 2012; 23:4065-78. [PMID: 22918957 PMCID: PMC3469521 DOI: 10.1091/mbc.e12-04-0263] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding-deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells.
Collapse
Affiliation(s)
- Shlomit Boguslavsky
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The adipocyte enlargement is associated with an increase in the cytoplasmic lipid content, but how the plasma membrane area follows this increase is poorly understood. We monitored single-cell membrane surface area fluctuations, which mirror the dynamics of exocytosis and endocytosis. We employed the patch-clamp technique to measure membrane capacitance (C(m)), a parameter linearly related to the plasma membrane area. Specifically, we studied whether insulin affects membrane area dynamics in adipocytes. A five-minute cell exposure to insulin increased resting C(m) by 12 ± 4%; in controls the change in C(m) was not different from zero. We measured cell diameter of isolated rat adipocytes microscopically. Twenty-four hour exposure of cells to insulin resulted in a significant increase in cell diameter by 5.1 ± 0.6%. We conclude that insulin induces membrane area increase, which may in chronic hyperinsulinemia promote the enlargement of plasma membrane area, acting in concert with other insulin-mediated metabolic effects on adipocytes.
Collapse
Affiliation(s)
- H H Chowdhury
- Laboratory of Neuroendocrinology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
26
|
Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes. Physiol Rev 2012; 92:1317-58. [DOI: 10.1152/physrev.00041.2011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Collapse
Affiliation(s)
- Elise Balse
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David F. Steele
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Alain Coulombe
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David Fedida
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Stéphane N. Hatem
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
MacKrell JG, Cartee GD. A novel method to measure glucose uptake and myosin heavy chain isoform expression of single fibers from rat skeletal muscle. Diabetes 2012; 61:995-1003. [PMID: 22396201 PMCID: PMC3331778 DOI: 10.2337/db11-1299] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Skeletal muscle includes many individual fibers with diverse phenotypes. A barrier to understanding muscle glucose uptake at the cellular level has been the absence of a method to measure glucose uptake by single fibers from mammalian skeletal muscle. This study's primary objective was to develop a procedure to measure glucose uptake by single fibers from rat skeletal muscle. Rat epitrochlearis muscles were incubated ex vivo with [(3)H]-2-deoxy-d-glucose, with or without insulin or AICAR, before isolation of ~10-30 single fibers from each muscle. Fiber type (myosin heavy chain [MHC] isoform) and glucose uptake were determined for each single fiber. Insulin-stimulated glucose uptake (which was cytochalasin B inhibitable) varied according to MHC isoform expression, with ~2-fold greater values for IIA versus IIB or IIX fibers and ~1.3-fold greater for hybrid (IIB/X) versus IIB fibers. In contrast, AICAR-stimulated glucose uptake was ~1.5-fold greater for IIB versus IIA fibers. A secondary objective was to assess insulin resistance of single fibers from obese versus lean Zucker rats. Genotype differences were observed for insulin-stimulated glucose uptake and inhibitor κB (IκB)-β abundance in single fibers (obese less than lean), with decrements for glucose uptake (44-58%) and IκB-β (25-32%) in each fiber type. This novel method creates a unique opportunity for future research focused on understanding muscle glucose uptake at the cellular level.
Collapse
Affiliation(s)
- James G. MacKrell
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Gregory D. Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
- Corresponding author: Gregory D. Cartee,
| |
Collapse
|
28
|
Sáinz N, Rodríguez A, Catalán V, Becerril S, Ramírez B, Lancha A, Burgos-Ramos E, Gómez-Ambrosi J, Frühbeck G. Leptin reduces the expression and increases the phosphorylation of the negative regulators of GLUT4 traffic TBC1D1 and TBC1D4 in muscle of ob/ob mice. PLoS One 2012; 7:e29389. [PMID: 22253718 PMCID: PMC3253781 DOI: 10.1371/journal.pone.0029389] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 11/28/2011] [Indexed: 02/01/2023] Open
Abstract
Leptin improves insulin sensitivity in skeletal muscle. Our goal was to determine whether proteins controlling GLUT4 traffic are altered by leptin deficiency and in vivo leptin administration in skeletal muscle of wild type and ob/ob mice. Leptin-deficient ob/ob mice were divided in three groups: control, leptin-treated (1 mg/kg/d) and leptin pair-fed ob/ob mice. Microarray analysis revealed that 1,546 and 1,127 genes were regulated by leptin deficiency and leptin treatment, respectively. Among these, we identified 24 genes involved in intracellular vesicle-mediated transport in ob/ob mice. TBC1 domain family, member 1 (Tbc1d1), a negative regulator of GLUT4 translocation, was up-regulated (P = 0.001) in ob/ob mice as compared to wild types. Importantly, leptin treatment reduced the transcript levels of Tbc1d1 (P<0.001) and Tbc1d4 (P = 0.004) in the leptin-treated ob/ob as compared to pair-fed ob/ob animals. In addition, phosphorylation levels of TBC1D1 and TBC1D4 were enhanced in leptin-treated ob/ob as compared to control ob/ob (P = 0.015 and P = 0.023, respectively) and pair-fed ob/ob (P = 0.036 and P = 0.034, respectively) mice. Despite similar GLUT4 protein expression in wild type and ob/ob groups a different immunolocalization of this protein was evidenced in muscle sections. Leptin treatment increased GLUT4 immunoreactivity in gastrocnemius and extensor digitorum longus sections of leptin-treated ob/ob mice. Moreover, GLUT4 protein detected in immunoprecipitates from TBC1D4 was reduced by leptin replacement compared to control ob/ob (P = 0.013) and pair-fed ob/ob (P = 0.037) mice. Our findings suggest that leptin enhances the intracellular GLUT4 transport in skeletal muscle of ob/ob animals by reducing the expression and activity of the negative regulators of GLUT4 traffic TBC1D1 and TBC1D4.
Collapse
Affiliation(s)
- Neira Sáinz
- Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Andoni Lancha
- Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Emma Burgos-Ramos
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
- * E-mail:
| |
Collapse
|
29
|
Armani A, Marzolla V, Rosano GMC, Fabbri A, Caprio M. Phosphodiesterase type 5 (PDE5) in the adipocyte: a novel player in fat metabolism? Trends Endocrinol Metab 2011; 22:404-11. [PMID: 21741267 DOI: 10.1016/j.tem.2011.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 12/19/2022]
Abstract
Phosphodiesterase type 5 (PDE5) is expressed in many tissues (e.g. heart, lung, pancreas, penis) and plays a specific role in hydrolyzing cyclic guanosine monophosphate (cGMP). In adipocytes, cGMP regulates crucial functions by activating cGMP-dependent protein kinase (PKG). Interestingly, PDE5 was recently identified in adipose tissue, although its role remains unclear. Its inhibition, however, was recently shown to affect adipose differentiation and aromatase function. This review summarizes evidence supporting a role for the PDE5-regulated cGMP/PKG system in adipose tissue and its effects on adipocyte function. A better elucidation of the role of PDE5 in the adipocyte could reveal new therapeutic strategies for fighting obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Andrea Armani
- Center for Clinical and Basic Research, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) San Raffaele Pisana, Rome, Italy
| | | | | | | | | |
Collapse
|
30
|
Increased expression of the tail-anchored membrane protein SLMAP in adipose tissue from type 2 Tally Ho diabetic mice. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:421982. [PMID: 21785580 PMCID: PMC3137969 DOI: 10.1155/2011/421982] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/05/2011] [Indexed: 11/17/2022]
Abstract
The tail-anchored membrane protein, sarcolemmal membrane associated protein (SLMAP) is encoded to a single gene that maps to the chromosome 3p14 region and has also been reported in certain diabetic populations. Our previous studies with db/db mice shown that a deregulation of SLMAP expression plays an important role in type 2 diabetes. Male Tally Ho mice were bred to present with either normoglycemia (NG) or hyperglycemia (HG). Abdominal adipose tissue from male Tally Ho mice of the HG group was found to have a significantly lower expression of the membrane associated glucose transporter-4 (GLUT-4) and higher expression of SLMAP compared to tissue from NG mice. There were 3 isoforms expressed in the abdominal adipose tissue, but only 45 kDa isoform of SLMAP was associated with the GLUT-4 revealed by immunoprecipitation data. Knock down studies using SLMAP siRNA with adipocytes resulted in a significant reduction in SLMAP and a decrease in glucose uptake. Thus, SLMAP may be an important regulator of glucose uptake or involved in GLUT-4 fusion/translocation into the plasma membrane of mouse abdominal adipose tissue and changes in SLMAP expression are linked to hyperglycemia and diabetes.
Collapse
|
31
|
Lin J, Razak NN, Pretty CG, Le Compte A, Docherty P, Parente JD, Shaw GM, Hann CE, Geoffrey Chase J. A physiological Intensive Control Insulin-Nutrition-Glucose (ICING) model validated in critically ill patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2011; 102:192-205. [PMID: 21288592 DOI: 10.1016/j.cmpb.2010.12.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/30/2010] [Accepted: 12/08/2010] [Indexed: 05/30/2023]
Abstract
Intensive insulin therapy (IIT) and tight glycaemic control (TGC), particularly in intensive care unit (ICU), are the subjects of increasing and controversial debate in recent years. Model-based TGC has shown potential in delivering safe and tight glycaemic management, all the while limiting hypoglycaemia. A comprehensive, more physiologically relevant Intensive Control Insulin-Nutrition-Glucose (ICING) model is presented and validated using data from critically ill patients. Two existing glucose-insulin models are reviewed and formed the basis for the ICING model. Model limitations are discussed with respect to relevant physiology, pharmacodynamics and TGC practicality. Model identifiability issues are carefully considered for clinical settings. This article also contains significant reference to relevant physiology and clinical literature, as well as some references to the modeling efforts in this field. Identification of critical constant population parameters was performed in two stages, thus addressing model identifiability issues. Model predictive performance is the primary factor for optimizing population parameter values. The use of population values are necessary due to the limited clinical data available at the bedside in the clinical control scenario. Insulin sensitivity, S(I), the only dynamic, time-varying parameter, is identified hourly for each individual. All population parameters are justified physiologically and with respect to values reported in the clinical literature. A parameter sensitivity study confirms the validity of limiting time-varying parameters to S(I) only, as well as the choices for the population parameters. The ICING model achieves median fitting error of <1% over data from 173 patients (N=42,941 h in total) who received insulin while in the ICU and stayed for ≥ 72 h. Most importantly, the median per-patient 1-h ahead prediction error is a very low 2.80% [IQR 1.18, 6.41%]. It is significant that the 75th percentile prediction error is within the lower bound of typical glucometer measurement errors of 7-12%. These results confirm that the ICING model is suitable for developing model-based insulin therapies, and capable of delivering real-time model-based TGC with a very tight prediction error range. Finally, the detailed examination and discussion of issues surrounding model-based TGC and existing glucose-insulin models render this article a mini-review of the state of model-based TGC in critical care.
Collapse
Affiliation(s)
- Jessica Lin
- Department of Medicine, University of Otago Christchurch, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jewell JL, Oh E, Ramalingam L, Kalwat MA, Tagliabracci VS, Tackett L, Elmendorf JS, Thurmond DC. Munc18c phosphorylation by the insulin receptor links cell signaling directly to SNARE exocytosis. ACTA ACUST UNITED AC 2011; 193:185-99. [PMID: 21444687 PMCID: PMC3082181 DOI: 10.1083/jcb.201007176] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
SNARE complex assembly and mobilization of GLUT4 vesicles is coordinated through direct targeting of Munc18c by the insulin receptor tyrosine kinase. How the Sec1/Munc18–syntaxin complex might transition to form the SNARE core complex remains unclear. Toward this, Munc18c tyrosine phosphorylation has been correlated with its dissociation from syntaxin 4. Using 3T3-L1 adipocytes subjected to small interfering ribonucleic acid reduction of Munc18c as a model of impaired insulin-stimulated GLUT4 vesicle exocytosis, we found that coordinate expression of Munc18c–wild type or select phosphomimetic Munc18c mutants, but not phosphodefective mutants, restored GLUT4 vesicle exocytosis, suggesting a requirement for Munc18c tyrosine phosphorylation at Tyr219 and Tyr521. Surprisingly, the insulin receptor (IR) tyrosine kinase was found to target Munc18c at Tyr521 in vitro, rapidly binding and phosphorylating endogenous Munc18c within adipocytes and skeletal muscle. IR, but not phosphatidylinositol 3-kinase, activation was required. Altogether, we identify IR as the first known tyrosine kinase for Munc18c as part of a new insulin-signaling step in GLUT4 vesicle exocytosis, exemplifying a new model for the coordination of SNARE assembly and vesicle mobilization events in response to a single extracellular stimulus.
Collapse
Affiliation(s)
- Jenna L Jewell
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells. Proc Natl Acad Sci U S A 2010; 107:19909-14. [PMID: 21041651 DOI: 10.1073/pnas.1009523107] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle is the primary site of dietary glucose disposal, a function that depends on insulin-mediated exocytosis of GLUT4 vesicles to its cell surface. In skeletal muscle and adipocytes, this response involves Akt signaling to the Rab-GAP (GTPase-activating protein) AS160/TBC1D4. Intriguingly, the AS160-targeted Rabs appear to differ, with Rab8A participating in GLUT4 exocytosis in muscle cells and Rab10 in adipocytes, and their activation by insulin is unknown. Rabs 8A, 10, and 13 belong to the same subfamily of Rab-GTPases. Here we show that insulin promotes GTP loading of Rab13 and Rab8A but not Rab10 in rat L6 muscle cells, Rab8A activation preceding that of Rab13. siRNA-mediated Rab13 knockdown blocked the insulin-induced increase of GLUT4 at the muscle cell surface that was rescued by a Rab13 ortholog but not by Rab8A. Constitutively active AS160 lowered basal and insulin-stimulated levels of surface GLUT4, effects that were reversed by overexpressing Rab8A or Rab13, suggesting that both Rabs are targets of AS160-GAP activity in the context of GLUT4 traffic. Rab13 had a broader intracellular distribution compared with the perinuclear restriction of Rab8A, and insulin promoted Rab13 colocalization with GLUT4 at the cell periphery. We conclude that Rab13 and Rab8A are Rab-GTPases activated by insulin, and that downstream of AS160 they regulate traffic of GLUT4 vesicles, possibly acting at distinct steps and sites. These findings close in on the series of events regulating muscle GLUT4 traffic in response to insulin, crucial for whole-body glucose homeostasis.
Collapse
|
34
|
Jewell JL, Oh E, Thurmond DC. Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for Munc18c and syntaxin 4. Am J Physiol Regul Integr Comp Physiol 2010; 298:R517-31. [PMID: 20053958 DOI: 10.1152/ajpregu.00597.2009] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Type 2 diabetes has been coined "a two-hit disease," as it involves specific defects of glucose-stimulated insulin secretion from the pancreatic beta cells in addition to defects in peripheral tissue insulin action required for glucose uptake. Both of these processes, insulin secretion and glucose uptake, are mediated by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein core complexes composed of syntaxin, SNAP-23/25, and VAMP proteins. The SNARE core complex is regulated by the Sec1/Munc18 (SM) family of proteins, which selectively bind to their cognate syntaxin isoforms with high affinity. The process of insulin secretion uses multiple Munc18-syntaxin isoform pairs, whereas insulin action in the peripheral tissues appears to use only the Munc18c-syntaxin 4 pair. Importantly, recent reports have linked obesity and Type 2 diabetes in humans with changes in protein levels and single nucleotide polymorphisms (SNPs) of Munc18 and syntaxin isoforms relevant to these exocytotic processes, although the molecular mechanisms underlying the observed phenotypes remain incomplete (5, 104, 144). Given the conservation of these proteins in two seemingly disparate processes and the need to design and implement novel and more effective clinical interventions, it will be vitally important to delineate the mechanisms governing these conserved SNARE-mediated exocytosis events. Thus, we provide here an up-to-date historical review of advancements in defining the roles and molecular mechanisms of Munc18-syntaxin complexes in the pathophysiology of Type 2 diabetes.
Collapse
Affiliation(s)
- Jenna L Jewell
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
35
|
Glatz JFC, Luiken JJFP, Bonen A. Membrane Fatty Acid Transporters as Regulators of Lipid Metabolism: Implications for Metabolic Disease. Physiol Rev 2010; 90:367-417. [DOI: 10.1152/physrev.00003.2009] [Citation(s) in RCA: 515] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long-chain fatty acids and lipids serve a wide variety of functions in mammalian homeostasis, particularly in the formation and dynamic properties of biological membranes and as fuels for energy production in tissues such as heart and skeletal muscle. On the other hand, long-chain fatty acid metabolites may exert toxic effects on cellular functions and cause cell injury. Therefore, fatty acid uptake into the cell and intracellular handling need to be carefully controlled. In the last few years, our knowledge of the regulation of cellular fatty acid uptake has dramatically increased. Notably, fatty acid uptake was found to occur by a mechanism that resembles that of cellular glucose uptake. Thus, following an acute stimulus, particularly insulin or muscle contraction, specific fatty acid transporters translocate from intracellular stores to the plasma membrane to facilitate fatty acid uptake, just as these same stimuli recruit glucose transporters to increase glucose uptake. This regulatory mechanism is important to clear lipids from the circulation postprandially and to rapidly facilitate substrate provision when the metabolic demands of heart and muscle are increased by contractile activity. Studies in both humans and animal models have implicated fatty acid transporters in the pathogenesis of diseases such as the progression of obesity to insulin resistance and type 2 diabetes. As a result, membrane fatty acid transporters are now being regarded as a promising therapeutic target to redirect lipid fluxes in the body in an organ-specific fashion.
Collapse
Affiliation(s)
- Jan F. C. Glatz
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Joost J. F. P. Luiken
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Arend Bonen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
36
|
Abstract
Type 2 diabetes mellitus (T2DM) affects a large population worldwide. T2DM is a complex heterogeneous group of metabolic disorders including hyperglycemia and impaired insulin action and/or insulin secretion. T2DM causes dysfunctions in multiple organs or tissues. Current theories of T2DM include a defect in insulin-mediated glucose uptake in muscle, a dysfunction of the pancreatic beta-cells, a disruption of secretory function of adipocytes, and an impaired insulin action in liver. The etiology of human T2DM is multifactorial, with genetic background and physical inactivity as two critical components. The pathogenesis of T2DM is not fully understood. Animal models of T2DM have been proved to be useful to study the pathogenesis of, and to find a new therapy for, the disease. Although different animal models share similar characteristics, each mimics a specific aspect of genetic, endocrine, metabolic, and morphologic changes that occur in human T2DM. The purpose of this review is to provide the recent progress and current theories in T2DM and to summarize animal models for studying the pathogenesis of the disease.
Collapse
Affiliation(s)
- Yi Lin
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | |
Collapse
|
37
|
Myosin IIA participates in docking of Glut4 storage vesicles with the plasma membrane in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2009; 391:995-9. [PMID: 19968963 DOI: 10.1016/j.bbrc.2009.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 12/02/2009] [Indexed: 01/27/2023]
Abstract
In adipocytes and myocytes, insulin stimulation translocates glucose transporter 4 (Glut4) storage vesicles (GSVs) from their intracellular storage sites to the plasma membrane (PM) where they dock with the PM. Then, Glut4 is inserted into the PM and initiates glucose uptake into these cells. Previous studies using chemical inhibitors demonstrated that myosin II participates in fusion of GSVs and the PM and increase in the intrinsic activity of Glut4. In this study, the effect of myosin IIA on GSV trafficking was examined by knocking down myosin IIA expression. Myosin IIA knockdown decreased both glucose uptake and exposures of myc-tagged Glut4 to the cell surface in insulin-stimulated cells, but did not affect insulin signal transduction. Interestingly, myosin IIA knockdown failed to decrease insulin-dependent trafficking of Glut4 to the PM. Moreover, in myosin IIA knockdown cells, insulin-stimulated binding of GSV SNARE protein, vesicle-associated membrane protein 2 (VAMP2) to PM SNARE protein, syntaxin 4 was inhibited. These data suggest that myosin IIA plays a role in insulin-stimulated docking of GSVs to the PM in 3T3-L1 adipocytes through SNARE complex formation.
Collapse
|
38
|
Klip A. The many ways to regulate glucose transporter 4. Appl Physiol Nutr Metab 2009; 34:481-7. [PMID: 19448718 DOI: 10.1139/h09-047] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glucose uptake into skeletal muscle is primarily mediated by glucose transporter 4 (GLUT4). The number of GLUT4 polypeptides at the surface of muscle cells rises rapidly in response to insulin, contraction, depolarization, or energy deprivation. However, distinct mechanisms underlie the gain in surface GLUT4 in each case. Insulin promotes its exocytosis to the membrane, regulating vesicle movement, tethering, docking, and fusion. In contrast, muscle contraction, depolarization, and energy demand reduce GLUT4 endocytosis. The signals involved in each case also differ. Insulin utilizes Akt, Rabs, and selective actin remodelling, whereas depolarization and energy deprivation engage AMP-activated protein kinase and Ca2+-dependent signals. GLUT4 internalizes via 2 major routes that involve dynamin, but only one requires clathrin. The clathrin-independent route is slowed down by energy deprivation, and is regulated by AMP-activated protein kinase. In addition to regulation of the exocytic and endocytic movement of GLUT4, glucose uptake is also modulated through changes in the transporter's intrinsic activity. The glycolytic enzymes glyceraldehyde-3-dehydrogenase and hexokinase II contribute to such regulation, through differential binding to GLUT4.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
39
|
Muretta JM, Mastick CC. How insulin regulates glucose transport in adipocytes. VITAMINS AND HORMONES 2009; 80:245-86. [PMID: 19251041 DOI: 10.1016/s0083-6729(08)00610-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Insulin stimulates glucose storage and metabolism by the tissues of the body, predominantly liver, muscle and fat. Storage in muscle and fat is controlled to a large extent by the rate of facilitative glucose transport across the plasma membrane of the muscle and fat cells. Insulin controls this transport. Exactly how remains debated. Work presented in this review focuses on the pathways responsible for the regulation of glucose transport by insulin. We present some historical work to show how the prevailing model for regulation of glucose transport by insulin was originally developed, then some more recent data challenging this model. We finish describing a unifying model for the control of glucose transport, and some very recent data illustrating potential molecular machinery underlying this regulation. This review is meant to give an overview of our current understanding of the regulation of glucose transport through the regulation of the trafficking of Glut4, highlighting important questions that remain to be answered. A more detailed treatment of specific aspects of this pathway can be found in several excellent recent reviews (Brozinick et al., 2007 Hou and Pessin, 2007; Huang and Czech, 2007;Larance et al., 2008 Sakamoto and Holman, 2008; Watson and Pessin, 2007; Zaid et al., 2008)One of the main objectives of this review is to discuss the results of the experiments measuring the kinetics of Glut4 movement between subcellular compartments in the context of our emerging model of the Glut4 trafficking pathway.
Collapse
Affiliation(s)
- Joseph M Muretta
- Department of Biochemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
40
|
Pauli JR, Cintra DE, Souza CTD, Ropelle ER. Novos mecanismos pelos quais o exercício físico melhora a resistência à insulina no músculo esquelético. ACTA ACUST UNITED AC 2009; 53:399-408. [DOI: 10.1590/s0004-27302009000400003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/06/2009] [Indexed: 01/22/2023]
Abstract
O prejuízo no transporte de glicose estimulada por insulina no músculo constitui um defeito crucial para o estabelecimento da intolerância à glicose e do diabetes tipo 2. Por outro lado, é notório o conhecimento de que tanto o exercício aeróbio agudo quanto o crônico podem ter efeitos benéficos na ação da insulina em estados de resistência à insulina. No entanto, pouco se sabe sobre os efeitos moleculares pós-exercício sobre a sinalização da insulina no músculo esquelético. Assim, esta revisãoapresenta novos entendimentos sobre os mecanismos por meio dos quais o exercício agudo restaura a sensibilidade à insulina, com destaque ao importante papel que proteínas inflamatórias e a S-nitrosação possuem sobre a regulação de proteínas da via de sinalização da insulina no músculo esquelético.
Collapse
Affiliation(s)
- José Rodrigo Pauli
- Universidade Federal de São Paulo, Brasil; Universidade do Extremo Sul Catarinense, Brasil
| | | | | | | |
Collapse
|
41
|
Saita S, Shirane M, Natume T, Iemura SI, Nakayama KI. Promotion of neurite extension by protrudin requires its interaction with vesicle-associated membrane protein-associated protein. J Biol Chem 2009; 284:13766-13777. [PMID: 19289470 DOI: 10.1074/jbc.m807938200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protrudin is a protein that contains a Rab11-binding domain and a FYVE (lipid-binding) domain and that functions to promote neurite formation through interaction with the GDP-bound form of Rab11. Protrudin also contains a short sequence motif designated FFAT (two phenylalanines in an acidic tract), which in other proteins has been shown to mediate binding to vesicle-associated membrane protein-associated protein (VAP). We now show that protrudin associates and colocalizes with VAP-A, an isoform of VAP expressed in the endoplasmic reticulum. Both the interaction between protrudin and VAP-A as well as the induction of process formation by protrudin were markedly inhibited by mutation of the FFAT motif. Furthermore, depletion of VAP-A by RNA interference resulted in mislocalization of protrudin as well as in inhibition of neurite outgrowth induced by nerve growth factor in rat pheochromocytoma PC12 cells. These defects resulting from depletion of endogenous rat VAP-A in PC12 cells were corrected by forced expression of (RNA interference-resistant) human VAP-A but not by VAP-A mutants that have lost the ability to interact with protrudin. These results suggest that VAP-A is an important regulator both of the subcellular localization of protrudin and of its ability to stimulate neurite outgrowth.
Collapse
Affiliation(s)
- Shotaro Saita
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Michiko Shirane
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Tohru Natume
- National Institutes of Advanced Industrial Science, Kohtoh-ku, Tokyo 135-0064, Japan
| | - Shun-Ichiro Iemura
- National Institutes of Advanced Industrial Science, Kohtoh-ku, Tokyo 135-0064, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
42
|
Lanner JT, Bruton JD, Assefaw-Redda Y, Andronache Z, Zhang SJ, Severa D, Zhang ZB, Melzer W, Zhang SL, Katz A, Westerblad H. Knockdown of TRPC3 with siRNA coupled to carbon nanotubes results in decreased insulin‐mediated glucose uptake in adult skeletal muscle cells. FASEB J 2009; 23:1728-38. [DOI: 10.1096/fj.08-116814] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Johanna T. Lanner
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Joseph D. Bruton
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Yohannes Assefaw-Redda
- School of Information and Communication TechnologyRoyal Institute of TechnologyStockholmSweden
| | | | - Shi-Jin Zhang
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Denise Severa
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Zhi-Bin Zhang
- School of Information and Communication TechnologyRoyal Institute of TechnologyStockholmSweden
| | - Werner Melzer
- Institut fÜr Angewandte PhysiologieUniversität UlmUlmGermany
| | - Shi-Li Zhang
- Institut fÜr Angewandte PhysiologieUniversität UlmUlmGermany
| | - Abram Katz
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Håkan Westerblad
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
43
|
Pooley RD, Moynihan KL, Soukoulis V, Reddy S, Francis R, Lo C, Ma LJ, Bader DM. Murine CENPF interacts with syntaxin 4 in the regulation of vesicular transport. J Cell Sci 2008; 121:3413-21. [PMID: 18827011 DOI: 10.1242/jcs.032847] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Syntaxin 4 is a component of the SNARE complex that regulates membrane docking and fusion. Using a yeast two-hybrid screen, we identify a novel interaction between syntaxin 4 and cytoplasmic murine CENPF, a protein previously demonstrated to associate with the microtubule network and SNAP-25. The binding domain for syntaxin 4 in CENPF was defined by yeast two-hybrid assay and co-immunoprecipitation. Confocal analyses in cell culture reveal a high degree of colocalization between endogenously expressed proteins in interphase cells. Additionally, the endogenous SNARE proteins can be isolated as a complex with CENPF in immunoprecipitation experiments. Further analyses demonstrate that murine CENPF and syntaxin 4 colocalize with components of plasma membrane recycling: SNAP-25 and VAMP2. Depletion of endogenous CENPF disrupts GLUT4 trafficking whereas expression of a dominant-negative form of CENPF inhibits cell coupling. Taken together, these studies demonstrate that CENPF provides a direct link between proteins of the SNARE system and the microtubule network and indicate a diverse role for murine CENPF in vesicular transport.
Collapse
Affiliation(s)
- Ryan D Pooley
- Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Randhawa VK, Ishikura S, Talior-Volodarsky I, Cheng AWP, Patel N, Hartwig JH, Klip A. GLUT4 vesicle recruitment and fusion are differentially regulated by Rac, AS160, and Rab8A in muscle cells. J Biol Chem 2008; 283:27208-19. [PMID: 18650435 DOI: 10.1074/jbc.m804282200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Insulin increases glucose uptake into muscle by enhancing the surface recycling of GLUT4 transporters. In myoblasts, insulin signals bifurcate downstream of phosphatidylinositol 3-kinase into separate Akt and Rac/actin arms. Akt-mediated Rab-GAP AS160 phosphorylation and Rac/actin are required for net insulin gain of GLUT4, but the specific steps (vesicle recruitment, docking or fusion) regulated by Rac, actin dynamics, and AS160 target Rab8A are unknown. In L6 myoblasts expressing GLUT4myc, blocking vesicle fusion by tetanus toxin cleavage of VAMP2 impeded GLUT4myc membrane insertion without diminishing its build-up at the cell periphery. Conversely, actin disruption by dominant negative Rac or Latrunculin B abolished insulin-induced surface and submembrane GLUT4myc accumulation. Expression of non-phosphorylatable AS160 (AS160-4P) abrogated membrane insertion of GLUT4myc and partially reduced its cortical build-up, an effect magnified by selective Rab8A knockdown. We propose that insulin-induced actin dynamics participates in GLUT4myc vesicle retention beneath the membrane, whereas AS160 phosphorylation is essential for GLUT4myc vesicle-membrane docking/fusion and also contributes to GLUT4myc cortical availability through Rab8A.
Collapse
Affiliation(s)
- Varinder K Randhawa
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Tian W, Ma C, Liu Y, Xu T. An efficient co-expression and purification system for the complex of Stx4 and C-terminal domain of Synip. Biochem Biophys Res Commun 2008; 371:366-70. [PMID: 18439908 DOI: 10.1016/j.bbrc.2008.04.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/13/2008] [Indexed: 10/22/2022]
Abstract
Synip and Stx4 complex plays a key role in GLUT4 vesicle trafficking and fusion with plasma membrane. The interaction of Synip with Stx4 prevents interaction of VAMP2 located in GLUT4 vesicle with Stx4 in basal state. Insulin induces the dissociation of the Synip and Stx4 complex, and then triggers VAMP2 to interact with Stx4 to form the SNARE complex, thus promoting the vesicle fusion. In this report, we adopt a novel system for co-expression of the Synip and Stx4 by using two common vectors pGEX6p-1 and pET28a(+) to investigate their expression, purification, and interaction. Through this co-expression system, we successfully co-expressed the Synip and Stx4 complex with high yield, and co-purified at an approximate 1:1 molar ratio with high purity (95%). We also demonstrate that the 1-28 residues of Stx4 are dispensable for interaction with Synip using this co-expression system.
Collapse
Affiliation(s)
- Wei Tian
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | |
Collapse
|
46
|
Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J 2008; 413:201-15. [DOI: 10.1042/bj20080723] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Glucose entry into muscle cells is precisely regulated by insulin, through recruitment of GLUT4 (glucose transporter-4) to the membrane of muscle and fat cells. Work done over more than two decades has contributed to mapping the insulin signalling and GLUT4 vesicle trafficking events underpinning this response. In spite of this intensive scientific research, there are outstanding questions that continue to challenge us today. The present review summarizes the knowledge in the field, with emphasis on the latest breakthroughs in insulin signalling at the level of AS160 (Akt substrate of 160 kDa), TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) and their target Rab proteins; in vesicle trafficking at the level of vesicle mobilization, tethering, docking and fusion with the membrane; and in the participation of the cytoskeleton to achieve optimal temporal and spatial location of insulin-derived signals and GLUT4 vesicles.
Collapse
|
47
|
Lev S, Ben Halevy D, Peretti D, Dahan N. The VAP protein family: from cellular functions to motor neuron disease. Trends Cell Biol 2008; 18:282-90. [PMID: 18468439 DOI: 10.1016/j.tcb.2008.03.006] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 03/24/2008] [Accepted: 03/31/2008] [Indexed: 01/10/2023]
Abstract
The VAMP-associated proteins (VAPs) are highly conserved integral endoplasmic reticulum membrane proteins implicated in diverse cellular functions, including the regulation of lipid transport and homeostasis, membrane trafficking, neurotransmitter release, stabilization of presynaptic microtubules, and the unfolded protein response. Recently, a single missense mutation within the human VAP-B gene was identified in three forms of familial motor neuron disease. In this review, we integrate results from studies of yeast, fly and mammalian VAPs that provide insight into the structural features of these proteins, the network of VAP-interacting proteins, their possible physiological functions, and their involvement in motor neuron disease.
Collapse
Affiliation(s)
- Sima Lev
- The Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
48
|
Selective regulation of the perinuclear distribution of glucose transporter 4 (GLUT4) by insulin signals in muscle cells. Eur J Cell Biol 2008; 87:337-51. [PMID: 18417252 DOI: 10.1016/j.ejcb.2008.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 01/28/2008] [Accepted: 02/06/2008] [Indexed: 01/31/2023] Open
Abstract
Insulin regulates glucose transporter 4 (GLUT4) availability at the surface of muscle and adipose cells. In L6 myoblasts, stably expressed GLUT4myc is detected mostly in a perinuclear region. In unstimulated cells, about half of perinuclear GLUT4myc colocalizes with the transferrin receptor (TfR). Insulin stimulation selectively decreased the perinuclear colocalization of GLUT4myc with TfR determined by 3D-reconstruction of fluorescence images. Perinuclear GLUT4myc adopted two main distributions defined morphometrically as 'conical' and 'concentric'. Insulin rapidly reduced the proportion of cells with conical in favor of concentric perinuclear GLUT4myc distributions in association with the gain in surface GLUT4myc. Upon removal of insulin, the GLUT4myc perinuclear distribution and surface levels reversed in parallel. In contrast, hypertonicity (which like insulin elevates surface GLUT4myc) did not elicit perinuclear GLUT4myc redistribution. Insulin also caused redistribution of perinuclear vesicle-associated membrane protein-2 (VAMP2), without alteration of perinuclear TfR and VAMP3. Inhibitory mutants of phosphatidylinositol-3 kinase (Deltap85) or Akt substrate AS160 (AS160-4P) prevented insulin-mediated perinuclear GLUT4myc redistribution. Tetanus toxin expression did not prevent the perinuclear GLUT4myc redistribution, suggesting that redistribution is independent of GLUT4myc fusion with the plasma membrane. We propose that insulin causes selective, dynamic relocalization of perinuclear GLUT4myc and VAMP2 and perinuclear GLUT4myc redistribution is a direct target of insulin-derived signals.
Collapse
|
49
|
Ishikura S, Koshkina A, Klip A. Small G proteins in insulin action: Rab and Rho families at the crossroads of signal transduction and GLUT4 vesicle traffic. Acta Physiol (Oxf) 2008; 192:61-74. [PMID: 18171430 DOI: 10.1111/j.1748-1716.2007.01778.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Insulin stimulates glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). GLUT4 cycles between the intracellular compartments and the plasma membrane. GLUT4 traffic-regulating insulin signals are largely within the insulin receptor-insulin receptor substrate-phosphatidylinositol 3-kinase (IR-IRS-PI3K) axis. In muscle cells, insulin signal bifurcates downstream of the PI3K into one arm leading to the activation of the Ser/Thr kinases Akt and atypical protein kinase C, and another leading to the activation of Rho family protein Rac1 leading to actin remodelling. Activated Akt inactivates AS160, a GTPase-activating protein for Rab family small G proteins. Here we review the roles of Rab and Rho proteins, particularly Rab substrates of AS160 and Rac1, in insulin-stimulated GLUT4 traffic. We discuss: (1) how distinct steps in GLUT4 traffic may be regulated by discrete Rab proteins, and (2) the importance of Rac1 activation in insulin-induced actin remodelling in muscle cells, a key element for the net gain in surface GLUT4.
Collapse
Affiliation(s)
- S Ishikura
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | |
Collapse
|
50
|
Muretta JM, Romenskaia I, Mastick CC. Insulin releases Glut4 from static storage compartments into cycling endosomes and increases the rate constant for Glut4 exocytosis. J Biol Chem 2007; 283:311-323. [PMID: 17967900 DOI: 10.1074/jbc.m705756200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In adipocytes, insulin triggers the redistribution of Glut4 from intracellular compartments to the plasma membrane. Two models have been proposed to explain the effect of insulin on Glut4 localization. In the first, termed dynamic exchange, Glut4 continually cycles between the plasma membrane and intracellular compartments in basal cells, and the major effect of insulin is through changes in the exocytic and endocytic rate constants, k(ex) and k(en). In the second model, termed static retention, Glut4 is packaged in specialized storage vesicles (GSVs) in basal cells and does not traffic through the plasma membrane or endosomes. Insulin triggers GSV exocytosis, increasing the amount of Glut4 in the actively cycling pool. Using a flow cytometry-based assay, we found that Glut4 is regulated by both static and dynamic retention mechanisms. In basal cells, 75-80% of the Glut4 is packaged in noncycling GSVs. Insulin increased the amount of Glut4 in the actively cycling pool 4-5-fold. Insulin also increased k(ex) in the cycling pool 3-fold. After insulin withdrawal, Glut4 is rapidly cleared from the plasma membrane (t((1/2)) of 20 min) by rapid adjustments in k(ex) and k(en) and recycled into static compartments. Complete recovery of the static pool required more than 3 h, however. We conclude that in fully differentiated confluent adipocytes, both the dynamic and static retention mechanisms are important for the regulation of plasma membrane Glut4 content. However, cell culture conditions affect Glut4 trafficking. For example, replating after differentiation inhibited the static retention of Glut4, which may explain differences in previous reports.
Collapse
Affiliation(s)
- Joseph M Muretta
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557
| | - Irina Romenskaia
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557
| | - Cynthia Corley Mastick
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557.
| |
Collapse
|