1
|
Nakamura A, Matsumoto M. Role of polyamines in intestinal mucosal barrier function. Semin Immunopathol 2025; 47:9. [PMID: 39836273 PMCID: PMC11750915 DOI: 10.1007/s00281-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
The intestinal epithelium is a rapidly self-renewing tissue; the rapid turnover prevents the invasion of pathogens and harmful components from the intestinal lumen, preventing inflammation and infectious diseases. Intestinal epithelial barrier function depends on the epithelial cell proliferation and junctions, as well as the state of the immune system in the lamina propria. Polyamines, particularly putrescine, spermidine, and spermine, are essential for many cell functions and play a crucial role in mammalian cellular homeostasis, such as that of cell growth, proliferation, differentiation, and maintenance, through multiple biological processes, including translation, transcription, and autophagy. Although the vital role of polyamines in normal intestinal epithelial cell growth and barrier function has been known since the 1980s, recent studies have provided new insights into this topic at the molecular level, such as eukaryotic initiation factor-5A hypusination and autophagy, with rapid advances in polyamine biology in normal cells using biological technologies. This review summarizes recent advances in our understanding of the role of polyamines in regulating normal, non-cancerous, intestinal epithelial barrier function, with a particular focus on intestinal epithelial renewal, cell junctions, and immune cell differentiation in the lamina propria.
Collapse
Affiliation(s)
- Atsuo Nakamura
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan
| | - Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan.
| |
Collapse
|
2
|
Graf LG, Moreno-Yruela C, Qin C, Schulze S, Palm GJ, Schmöker O, Wang N, Hocking DM, Jebeli L, Girbardt B, Berndt L, Dörre B, Weis DM, Janetzky M, Albrecht D, Zühlke D, Sievers S, Strugnell RA, Olsen CA, Hofmann K, Lammers M. Distribution and diversity of classical deacylases in bacteria. Nat Commun 2024; 15:9496. [PMID: 39489725 PMCID: PMC11532494 DOI: 10.1038/s41467-024-53903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Classical Zn2+-dependent deac(et)ylases play fundamental regulatory roles in life and are well characterized in eukaryotes regarding their structures, substrates and physiological roles. In bacteria, however, classical deacylases are less well understood. We construct a Generalized Profile (GP) and identify thousands of uncharacterized classical deacylases in bacteria, which are grouped into five clusters. Systematic structural and functional characterization of representative enzymes from each cluster reveal high functional diversity, including polyamine deacylases and protein deacylases with various acyl-chain type preferences. These data are supported by multiple crystal structures of enzymes from different clusters. Through this extensive analysis, we define the structural requirements of substrate selectivity, and discovered bacterial de-D-/L-lactylases and long-chain deacylases. Importantly, bacterial deacylases are inhibited by archetypal HDAC inhibitors, as supported by co-crystal structures with the inhibitors SAHA and TSA, and setting the ground for drug repurposing strategies to fight bacterial infections. Thus, we provide a systematic structure-function analysis of classical deacylases in bacteria and reveal the basis of substrate specificity, acyl-chain preference and inhibition.
Collapse
Affiliation(s)
- Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), EPFL, Lausanne, Switzerland
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Gottfried J Palm
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Ole Schmöker
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Nancy Wang
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Dianna M Hocking
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Leila Jebeli
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Britta Girbardt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Leona Berndt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Babett Dörre
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Daniel M Weis
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Markus Janetzky
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dirk Albrecht
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Richard A Strugnell
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
3
|
Schibalski RS, Shulha AS, Tsao BP, Palygin O, Ilatovskaya DV. The role of polyamine metabolism in cellular function and physiology. Am J Physiol Cell Physiol 2024; 327:C341-C356. [PMID: 38881422 PMCID: PMC11427016 DOI: 10.1152/ajpcell.00074.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Polyamines are molecules with multiple amino groups that are essential for cellular function. The major polyamines are putrescine, spermidine, spermine, and cadaverine. Polyamines are important for posttranscriptional regulation, autophagy, programmed cell death, proliferation, redox homeostasis, and ion channel function. Their levels are tightly controlled. High levels of polyamines are associated with proliferative pathologies such as cancer, whereas low polyamine levels are observed in aging, and elevated polyamine turnover enhances oxidative stress. Polyamine metabolism is implicated in several pathophysiological processes in the nervous, immune, and cardiovascular systems. Currently, manipulating polyamine levels is under investigation as a potential preventive treatment for several pathologies, including aging, ischemia/reperfusion injury, pulmonary hypertension, and cancer. Although polyamines have been implicated in many intracellular mechanisms, our understanding of these processes remains incomplete and is a topic of ongoing investigation. Here, we discuss the regulation and cellular functions of polyamines, their role in physiology and pathology, and emphasize the current gaps in knowledge and potential future research directions.
Collapse
Affiliation(s)
- Ryan S Schibalski
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Anastasia S Shulha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Betty P Tsao
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
4
|
Unaffected Li-Fraumeni Syndrome Carrier Parent Demonstrates Allele-Specific mRNA Stabilization of Wild-Type TP53 Compared to Affected Offspring. Genes (Basel) 2022; 13:genes13122302. [PMID: 36553570 PMCID: PMC9778056 DOI: 10.3390/genes13122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Li-Fraumeni Syndrome (LFS) is an autosomal dominant disorder where an oncogenic TP53 germline mutation is inherited by offspring of a carrier parent. p53 is a key tumor suppressor regulating cell cycle arrest in response to DNA damage. Unexpectedly, some mutant TP53 carriers remain unaffected, while their children develop cancer early in life. To begin unravelling this paradox, the response of dermal fibroblasts (dFb) isolated from a child with LFS was compared to those from her unaffected father after UV exposure. Phospho-Chk1[S345], a key activator of cell cycle arrest, was increased by UV induction in the LFS patient compared to their unaffected parent dFb. This result, along with previous findings of reduced CDKN1A/p21 UV induction in affected dFb, suggest that cell cycle dysregulation may contribute to cancer onset in the affected LFS subject but not the unaffected parent. Mutant p53 protein and its promoter binding affinity were also higher in dFb from the LFS patient compared to their unaffected parent. These results were as predicted based on decreased mutant TP53 allele-specific mRNA expression previously found in unaffected dFb. Investigation of the potential mechanism regulating this TP53 allele-specific expression found that, while epigenetic promoter methylation was not detectable, TP53 wild-type mRNA was specifically stabilized in the unaffected dFb. Hence, the allele-specific stabilization of wild-type TP53 mRNA may allow an unaffected parent to counteract genotoxic stress by means more characteristic of homozygous wild-type TP53 individuals than their affected offspring, providing protection from the oncogenesis associated with LFS.
Collapse
|
5
|
Xu X, Liu G, Jia G, Zhao H, Chen X, Wu C, Wang J. Effects of spermine on the proliferation and migration of porcine intestinal epithelial cells. Anim Biotechnol 2021; 34:253-260. [PMID: 34369303 DOI: 10.1080/10495398.2021.1955699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Whether spermine promotes the repair of porcine intestinal epithelium damage through Ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase C-γ1 (PLC-γ1) signaling remains unclear. The current study investigated the effects of spermine addition on the proliferation and migration of IPEC-J2 cells and the effects of Rac1/PLC-γ1 signaling on cell migration. We showed that the inhibitors of Rac1 (NSC-23766) and PLC-γ1 (U73122) reduced cell migration and decreased the protein levels of Rac1 and PLC-γ1 in the cells. Moreover, spermine promoted the proliferation and migration of the IPEC-J2 cells, that is, 1 µM spermine exhibited the best effect, and spermine treatment increased the protein levels of Rac1 and PLC-γ1. Further experiments showed that spermine treatment increased cell migration and enhanced Rac1 and PLC-γ1 protein levels, compared with NSC-23766 and U73122 treatments with spermine. In conclusion, spermine treatment promoted the repair of damaged porcine intestinal epithelium by accelerating cell proliferation and migration mediated by Rac1/PLC-γ1 signaling.
Collapse
Affiliation(s)
- Xiaomei Xu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China.,Key laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China.,Key laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China.,Key laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China.,Key laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China.,Key laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China.,Key laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Sagar NA, Tarafdar S, Agarwal S, Tarafdar A, Sharma S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med Sci (Basel) 2021; 9:44. [PMID: 34207607 PMCID: PMC8293435 DOI: 10.3390/medsci9020044] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Putrescine, spermine, and spermidine are the important polyamines (PAs), found in all living organisms. PAs are formed by the decarboxylation of amino acids, and they facilitate cell growth and development via different cellular responses. PAs are the integrated part of the cellular and genetic metabolism and help in transcription, translation, signaling, and post-translational modifications. At the cellular level, PA concentration may influence the condition of various diseases in the body. For instance, a high PA level is detrimental to patients suffering from aging, cognitive impairment, and cancer. The levels of PAs decline with age in humans, which is associated with different health disorders. On the other hand, PAs reduce the risk of many cardiovascular diseases and increase longevity, when taken in an optimum quantity. Therefore, a controlled diet is an easy way to maintain the level of PAs in the body. Based on the nutritional intake of PAs, healthy cell functioning can be maintained. Moreover, several diseases can also be controlled to a higher extend via maintaining the metabolism of PAs. The present review discusses the types, important functions, and metabolism of PAs in humans. It also highlights the nutritional role of PAs in the prevention of various diseases.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Swarnava Tarafdar
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Science, Rishikesh 249203, Uttarakhand, India;
| | - Surbhi Agarwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India;
| | - Sunil Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
| |
Collapse
|
7
|
Wang J, Tan B, Li J, Kong X, Tan M, Wu G. Regulatory role of l-proline in fetal pig growth and intestinal epithelial cell proliferation. ACTA ACUST UNITED AC 2020; 6:438-446. [PMID: 33364460 PMCID: PMC7750805 DOI: 10.1016/j.aninu.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/14/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
l-proline (Pro) is a precursor of ornithine, which is converted into polyamines via ornithine decarboxylase (ODC). Polyamines plays a key role in the proliferation of intestinal epithelial cells. The study investigated the effect of Pro on polyamine metabolism and cell proliferation on porcine enterocytes in vivo and in vitro. Twenty-four Huanjiang mini-pigs were randomly assigned into 1 of 3 groups and fed a basal diet that contained 0.77% alanine (Ala, iso-nitrogenous control), 1% Pro or 1% Pro + 0.0167% α-difluoromethylornithine (DFMO) from d 15 to 70 of gestation. The fetal body weight and number of fetuses per litter were determined, and the small and large intestines were obtained on d 70 ± 1.78 of gestation. The in vitro study was performed in intestinal porcine epithelial (IPEC-J2) cells cultured in Dulbecco's modified Eagle medium-high glucose (DMEM-H) containing 0 μmol/L Pro, 400 μmol/L Pro, or 400 μmol/L Pro + 10 mmol/L DFMO for 4 d. The results showed that maternal dietary supplementation with 1% Pro increased fetal weight; the protein and DNA concentrations of the fetal small intestine; and mRNA levels for potassium voltage-gated channel, shaker-related subfamily, member 1 (Kv1.1) in the fetal small and large intestines (P < 0.05). Supplementing Pro to either gilts or IPEC-J2 cells increased ODC protein abundances and polyamine concentrations in the fetal intestines and IPEC-J2 cells (P < 0.05). In comparison with the Pro group, the combined administration of Pro and DFMO reduced the expression of ODC protein and spermine concentration in the fetal intestine, as well as the concentrations of putrescine, spermidine and spermine in IPEC-J2 cells (P < 0.05). Meanwhile, the percentage of cells in the S-phase and the mRNA levels of proto-oncogenes c-fos and c-myc were increased in response to Pro supplementation, whereas depletion of cellular polyamines with DFMO increased tumor protein p53 (p53) mRNA levels (P < 0.05). Taken together, dietary supplementation with Pro improved fetal pig growth and intestinal epithelial cell proliferation via enhancing polyamine synthesis.
Collapse
Affiliation(s)
- Jing Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bi'e Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiangfeng Kong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Minjie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Xing PY, Pettersson S, Kundu P. Microbial Metabolites and Intestinal Stem Cells Tune Intestinal Homeostasis. Proteomics 2020; 20:e1800419. [PMID: 31994831 DOI: 10.1002/pmic.201800419] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Microorganisms that colonize the gastrointestinal tract, collectively known as the gut microbiota, are known to produce small molecules and metabolites that significantly contribute to host intestinal development, functions, and homeostasis. Emerging insights from microbiome research reveal that gut microbiota-derived signals and molecules influence another key player maintaining intestinal homeostasis-the intestinal stem cell niche, which regulates epithelial self-renewal. In this review, the literature on gut microbiota-host crosstalk is surveyed, highlighting the effects of gut microbial metabolites on intestinal stem cells. The production of various classes of metabolites, their actions on intestinal stem cells are discussed and, finally, how the production and function of metabolites are modulated by aging and dietary intake is commented upon.
Collapse
Affiliation(s)
- Peter Yuli Xing
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.,Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, South Spine, Level B3, Block S2-B3a, Singapore, 639798, Singapore
| | - Sven Pettersson
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, SE, 17 177, Stockholm, Sweden
| | - Parag Kundu
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.,The Center for Microbes, Development and Health, Laboratory for Microbiota-Host Interactions, Institute Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building, Shanghai, 200031, China
| |
Collapse
|
9
|
Bae DH, Lane DJR, Jansson PJ, Richardson DR. The old and new biochemistry of polyamines. Biochim Biophys Acta Gen Subj 2018; 1862:2053-2068. [PMID: 29890242 DOI: 10.1016/j.bbagen.2018.06.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.
Collapse
Affiliation(s)
- Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
10
|
Rossi G, Cerquetella M, Scarpona S, Pengo G, Fettucciari K, Bassotti G, Jergens AE, Suchodolski JS. Effects of probiotic bacteria on mucosal polyamines levels in dogs with IBD and colonic polyps: a preliminary study. Benef Microbes 2018; 9:247-255. [PMID: 29022381 DOI: 10.3920/bm2017.0024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Spermine (SPM) and its precursor putrescine (PUT), regulated by ornithine decarboxylase (ODC) and diamino-oxidase (DAO), are polyamines required for cell growth and proliferation. Only a few studies have investigated the anti-inflammatory and tumour inhibitory properties of probiotics on mucosal polyamine levels. We investigated the effects of a high concentration multistrain probiotic for human use on colonic polyamine biosynthesis in dogs. Histological sections (inflammatory bowel disease, n=10; polyposis, n=5) were assessed after receiving 112 to 225×109 lyophilised bacteria daily for 60 days at baseline (T0) and 30 days after treatment end (T90). Histology scores, expression of PUT, SPM, ODC and DAO, and a clinical activity index (CIBDAI) were compared at T0 and T90. In polyps, cellular proliferation (Ki-67 expression), and apoptosis (caspase-3 protein expression) were also evaluated. After treatment, in inflammatory bowel disease significant decreases were observed for CIBDAI (P=0.006) and histology scores (P<0.001); PUT, SPM and ODC expression increased (P<0.01). In polyps, a significant decrease in polyamine levels, ODC activity, and Ki-67, and a significant increase in caspase-3 positivity and DAO expression (P=0.005) was noted. Our results suggest potential anti-proliferative and anti-inflammatory effects of the probiotic mixture in polyps and inflammation, associated with reduced mucosal infiltration and up-regulation of PUT, SPM, and ODC levels.
Collapse
Affiliation(s)
- G Rossi
- 1 School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Macerata (MC), Italy
| | - M Cerquetella
- 1 School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Macerata (MC), Italy
| | - S Scarpona
- 1 School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Macerata (MC), Italy
| | - G Pengo
- 2 Clinic 'St. Antonio', Strada Statale 415, km 38,50, 26020 Madignano (CR), Italy
| | - K Fettucciari
- 3 Department of Experimental Medicine, University of Perugia School of Medicine, Piazzale Lucio Severi 1-8, 06123 Perugia, Italy
| | - G Bassotti
- 4 Gastroenterology and Hepatology Section, Department of Medicine, University of Perugia School of Medicine, Santa Maria della Misericordia Hospital, Piazzale Menghini 1, 06156 San Sisto, Italy
| | - A E Jergens
- 5 College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr., Ames, IA 50010, USA
| | - J S Suchodolski
- 6 Gastrointestinal Laboratory, Texas A&M University, 4474 TAMU, College Station, TX 77843, USA
| |
Collapse
|
11
|
Arruabarrena-Aristorena A, Zabala-Letona A, Carracedo A. Oil for the cancer engine: The cross-talk between oncogenic signaling and polyamine metabolism. SCIENCE ADVANCES 2018; 4:eaar2606. [PMID: 29376126 PMCID: PMC5783676 DOI: 10.1126/sciadv.aar2606] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/28/2017] [Indexed: 05/09/2023]
Abstract
The study of metabolism has provided remarkable information about the biological basis and therapeutic weaknesses of cancer cells. Classic biochemistry established the importance of metabolic alterations in tumor biology and revealed the importance of various metabolite families to the tumorigenic process. We have evidence of the central role of polyamines, small polycatonic metabolites, in cell proliferation and cancer growth from these studies. However, how cancer cells activate this metabolic pathway and the molecular cues behind the oncogenic action of polyamines has remained largely obscure. In contrast to the view of metabolites as fuel (anabolic intermediates) for cancer cells, polyamines are better defined as the oil that lubricates the cancer engine because they affect the activity of biological processes. Modern research has brought back to the limelight this metabolic pathway, providing a strong link between genetic, metabolic, and signaling events in cancer. In this review, we enumerate and discuss current views of the regulation and activity of polyamine metabolism in tumor cell biology.
Collapse
Affiliation(s)
| | - Amaia Zabala-Letona
- CIC bioGUNE, Bizkaia Technology Park, 801A Building, 48160 Derio, Bizkaia, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Avenida Monforte de Lemos, Madrid, Spain
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, 801A Building, 48160 Derio, Bizkaia, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Avenida Monforte de Lemos, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
| |
Collapse
|
12
|
Gulappa T, Menon B, Menon KMJ. LHCGR Expression During Follicle Stimulating Hormone-Induced Follicle Growth Is Negatively Regulated by Eukaryotic Initiation Factor 5A. Endocrinology 2017; 158:2672-2679. [PMID: 28605466 PMCID: PMC5551546 DOI: 10.1210/en.2017-00113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/06/2017] [Indexed: 01/01/2023]
Abstract
We have shown that the transient changes in the expression of luteinizing hormone/choriogonadotropin receptor (LHCGR) messenger RNA (mRNA) during the ovarian cycle occurs, at least in part, through a posttranscriptional mechanism involving an LHCGR mRNA-binding protein (LRBP). Eukaryotic initiation factor 5A (eIF5A), an LRBP-interacting protein, participates in this process. eIF5A undergoes hypusination, a unique posttranslational modification that is necessary for its functions. This study examined the role of eIF5A in follicle-stimulating hormone (FSH)-induced LHCGR expression during follicular growth. Treatment of primary cultures of rat granulosa cells with FSH and 17β-estradiol (E2) showed a time-dependent increase in LHCGR mRNA expression. Conversely, inhibition of endogenous hypusination of eIF5A using N1-guanyl-1,7-diaminoheptane (GC7), a hypusination inhibitor, showed a greater increase in LHCGR mRNA expression over that produced by FSH and E2 alone. Further studies were carried out to determine the mechanism by which inhibition of hypusination of eIF5A causes an increase in LHCGR mRNA expression. Because LHCGR expression is negatively regulated by LRBP, the effect of inhibiting hypusination of eIF5A on LRBP expression was examined. The results showed a decrease in the expression of LRBP mRNA and protein when hypusination of eIF5A was inhibited by GC7. Because LRBP promotes LHCGR mRNA degradation, the results of this study support the notion that by inhibiting eIF5A hypusination, FSH reduces the expression of LRBP. This increases LHCGR mRNA expression by abrogating the inhibitory action of LRBP.
Collapse
Affiliation(s)
- Thippeswamy Gulappa
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Bindu Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - K M J Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
13
|
Ghisalberti CA, Borzì RM, Cetrullo S, Flamigni F, Cairo G. Soft TCPTP Agonism-Novel Target to Rescue Airway Epithelial Integrity by Exogenous Spermidine. Front Pharmacol 2016; 7:147. [PMID: 27375482 PMCID: PMC4892113 DOI: 10.3389/fphar.2016.00147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
A reparative approach of disrupted epithelium in obstructive airway diseases, namely asthma and chronic obstructive pulmonary disease (COPD), may afford protection and long-lasting results compared to conventional therapies, e.g., corticosteroids or immunosuppressant drugs. Here, we propose the polyamine spermidine as a novel therapeutic agent in airways diseases, based on a recently identified mode of action: T-cell protein tyrosine phosphatase (TCPTP) agonism. It may include and surpass single-inhibitors of stress and secondary growth factor pathway signaling, i.e., the new medicinal chemistry in lung diseases. Enhanced polyamine biosynthesis has been charged with aggravating prognosis by competing for L-arginine at detriment of nitric oxide (NO) synthesis with bronchoconstrictive effects. Although excess spermine, a higher polyamine, is harmful to airways physiology, spermidine can pivot the cell homeostasis during stress conditions by the activation of TCPTP. In fact, the dephosphorylating activity of TCPTP inhibits the signaling cascade that leads to the expression of genes involved in detachment and epithelial-to-mesenchymal transition (EMT), and increases the expression of adhesion and tight junction proteins, thereby enhancing the barrier functionality in inflammation-prone tissues. Moreover, a further beneficial effect of spermidine may derive from its ability to promote autophagy, possibly in a TCPTP-dependent way. Since doses of spermidine in the micromolar range are sufficient to activate TCPTP, low amounts of spermidine administered in sustained release modality may provide an optimal pharmacologic profile for the treatment of obstructive airway diseases.
Collapse
Affiliation(s)
- Carlo A Ghisalberti
- Department of Biomedical Sciences for Health, University of MilanMilan, Italy; TixupharmaMilan, Italy
| | - Rosa M Borzì
- Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopaedic Institute Bologna, Italy
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences, University of Bologna Bologna, Italy
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, University of Bologna Bologna, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan Milan, Italy
| |
Collapse
|
14
|
Motawi TMK, Sadik NAH, Shaker OG, Ghaleb MH. Elevated serum microRNA-122/222 levels are potential diagnostic biomarkers in Egyptian patients with chronic hepatitis C but not hepatic cancer. Tumour Biol 2016; 37:9865-74. [DOI: 10.1007/s13277-016-4884-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/18/2016] [Indexed: 12/12/2022] Open
|
15
|
Natural polyamines inhibit the migration of preosteoclasts by attenuating Ca2+-PYK2-Src-NFATc1 signaling pathways. Amino Acids 2014; 46:2605-14. [PMID: 25216923 DOI: 10.1007/s00726-014-1797-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/25/2014] [Indexed: 10/24/2022]
Abstract
Natural polyamines have numerous biological activities. Several studies have reported their beneficial role in bone metabolism, but their mode of action is not fully understood. Bone diseases such as osteoporosis, which is characterized by impaired bone structure and low bone mass, are caused by an increased number of osteoclasts and/or overactivation of osteoclastogenesis. Osteoclast differentiation is a multi-complex procedure involving the following sequential steps: differentiation-migration-fusion-resorption. In this study, we found that putrescine, spermidine or spermine inhibited the RANKL-mediated migration of preosteoclasts. Furthermore, the RANKL-mediated activation of the Src-PYK2 signaling axis and of transcription factors such as NF-κB and NFATc1 was prevented by each polyamine. Anti-osteoclastogenic and anti-migration activities of polyamines were confirmed by evaluating their potential to downregulate the mRNA expression levels of osteoclastogenesis-related genes such as OSCAR, TRAP, cathepsin K and c-Src, and genes related to fusion and/or migration of preosteoclasts. Moreover, ATP-mediated elevation of cytosolic free Ca(2+) concentration ([Ca(2+)]i) was strongly inhibited by each polyamine, indicating the involvement of [Ca(2+)]i in the anti-fusion activities of polyamines. In conclusion, polyamines could exhibit anti-osteoclastogenic activity by inhibiting the migration of preosteoclasts via the Ca(2+)-PYK2-Src-NFATc1 signaling axis.
Collapse
|
16
|
Stabilization of p53 Is Involved in Quercetin-Induced Cell Cycle Arrest and Apoptosis in HepG2 Cells. Biosci Biotechnol Biochem 2014; 72:797-804. [DOI: 10.1271/bbb.70680] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Manna SK, Tanaka N, Krausz KW, Haznadar M, Xue X, Matsubara T, Bowman ED, Fearon ER, Harris CC, Shah YM, Gonzalez FJ. Biomarkers of coordinate metabolic reprogramming in colorectal tumors in mice and humans. Gastroenterology 2014; 146:1313-1324. [PMID: 24440673 PMCID: PMC3992178 DOI: 10.1053/j.gastro.2014.01.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS There are no robust noninvasive methods for colorectal cancer screening and diagnosis. Metabolomic and gene expression analyses of urine and tissue samples from mice and humans were used to identify markers of colorectal carcinogenesis. METHODS Mass spectrometry-based metabolomic analysis of urine and tissues from wild-type C57BL/6J and Apc(Min/+) mice, as well as from mice with azoxymethane-induced tumors, was employed in tandem with gene expression analysis. Metabolic profiling was also performed on colon tumor and adjacent nontumor tissues from 39 patients. The effects of β-catenin activity on metabolic profiles were assessed in mice with colon-specific disruption of Apc. RESULTS Thirteen markers were found in urine associated with development of colorectal tumors in Apc(Min/+) mice. Metabolites related to polyamine metabolism, nucleic acid metabolism, and methylation, identified tumor-bearing mice with 100% accuracy, and also accurately identified mice with polyps. Changes in gene expression in tumor samples from mice revealed that derangement of metabolites were a reflection of coordinate metabolic reprogramming in tumor tissue. Similar changes in urinary metabolites were observed in mice with azoxymethane-induced tumors and in mice with colon-specific activation of β-catenin. The metabolic alterations indicated by markers in urine, therefore, appear to occur during early stages of tumorigenesis, when cancer cells are proliferating. In tissues from patients, tumors had stage-dependent increases in 17 metabolites associated with the same metabolic pathways identified in mice. Ten metabolites that were increased in tumor tissues, compared with nontumor tissues (proline, threonine, glutamic acid, arginine, N1-acetylspermidine, xanthine, uracil, betaine, symmetric dimethylarginine, and asymmetric-dimethylarginine), were also increased in urine from tumor-bearing mice. CONCLUSIONS Gene expression and metabolomic profiles of urine and tissue samples from mice with colorectal tumors and of colorectal tumor samples from patients revealed pathways associated with derangement of specific metabolic pathways that are indicative of early-stage tumor development. These urine and tissue markers might be used in early detection of colorectal cancer.
Collapse
MESH Headings
- Animals
- Azoxymethane
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/urine
- Cell Proliferation
- Chromatography, Reverse-Phase
- Colorectal Neoplasms/chemically induced
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/urine
- Disease Models, Animal
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- Genes, APC
- High-Throughput Screening Assays
- Humans
- Metabolomics/methods
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Staging
- Predictive Value of Tests
- Protein Interaction Mapping
- Protein Interaction Maps
- Real-Time Polymerase Chain Reaction
- Reproducibility of Results
- Spectrometry, Mass, Electrospray Ionization
Collapse
Affiliation(s)
- Soumen K Manna
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Majda Haznadar
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Xiang Xue
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Tsutomu Matsubara
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Elise D Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Eric R Fearon
- Departments of Internal Medicine, Pathology and Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
18
|
Manna SK, Krausz KW, Bonzo JA, Idle JR, Gonzalez FJ. Metabolomics reveals aging-associated attenuation of noninvasive radiation biomarkers in mice: potential role of polyamine catabolism and incoherent DNA damage-repair. J Proteome Res 2013; 12:2269-81. [PMID: 23586774 PMCID: PMC3678303 DOI: 10.1021/pr400161k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Development of methods for rapid screening and stratification of subjects after exposure is an integral part of countermeasures against radiation. The potential demographic and exposure history-related heterogeneity of exposed populations warrants robust biomarkers that withstand and reflect such differences. In this study, the effect of aging and repeated exposure on the metabolic response to sublethal irradiation was examined in mice using UPLC-ESI-QTOF mass spectrometry. Aging attenuated postexposure elevation in excretions of DNA damage biomarkers as well as N(1)-acetylspermidine. Although N(1)-acetylspermidine and 2'-deoxyuridine elevation was highly correlated in all age groups, xanthine and N(1)-acetylspermidine elevation was poorly correlated in older mice. These results may reflect the established decline in DNA damage-repair efficiency associated with aging and indicate a novel role for polyamine metabolism in the process. Although repeated irradiation at long intervals did not affect the elevation of N(1)-acetylspermidine, 2'-deoxyuridine, and xanthine, it did significantly attenuate the elevation of 2'-deoxycytidine and thymidine compared to a single exposure. However, these biomarkers were found to identify exposed subjects with accuracy ranging from 82% (xanthosine) to 98% (2'-deoxyuridine), irrespective of their age and exposure history. This indicates that metabolic biomarkers can act as robust noninvasive signatures of sublethal radiation exposure.
Collapse
Affiliation(s)
- Soumen K. Manna
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20852
| | - Kristopher W. Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20852
| | - Jessica A. Bonzo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20852
| | - Jeffrey R. Idle
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20852
- Hepatology Research Unit, Department of Clinical Research, University of Bern, Bern Switzerland
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20852
| |
Collapse
|
19
|
Non-digestible fraction of beans (Phaseolus vulgarisL.) modulates signalling pathway genes at an early stage of colon cancer in Sprague–Dawley rats. Br J Nutr 2012; 108 Suppl 1:S145-54. [DOI: 10.1017/s0007114512000785] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Colorectal cancer is one of the most common causes of morbidity and mortality in Western countries, the second cause of cancer mortality in the USA and a major public health problem in Mexico. A diet rich in legumes is directly related to the prevention of colon cancer, showing an inverse relationship with the development of colorectal adenomas in human subjects. The present study shows the results of molecular changes involved in theTp53pathway at an early stage in the distal colon tissue of azoxymethane (AOM)-induced colon cancer in rats evaluated by PCR array after exposure to diets containing the non-digestible fraction (NDF) of cooked bean (cultivar Bayo Madero). Significant differences were detected in seventy-two genes of theTp53-mediated signalling pathway involved in apoptosis, cell-cycle regulation and arrest, inhibition of proliferation and inflammation, and DNA repair.Tp53,Gadd45a,Cdkn1aandBaxwere highly expressed (9·3-, 18·3-, 5·5- and 3·5-fold, respectively) in the NDF+AOM group, whereasCdc25c,Ccne2,E2f1andBcl2were significantly suppressed ( − 9·2-, − 2·6-, − 18·4- and − 3·5-fold, respectively), among other genes, compared with the AOM group, suggesting that chemoprevention of aberrant crypt foci results from a combination of cell-cycle arrest in G1/S and G2/M phases and cell death by apoptotic induction. We demonstrate that the NDF from common bean modulates gene expression profiles in the colon tissue of AOM-induced rats, contributing to the chemoprotective effect of common bean on early-stage colon cancer.
Collapse
|
20
|
Zou T, Rao JN, Liu L, Xiao L, Cui YH, Jiang Z, Ouyang M, Donahue JM, Wang JY. Polyamines inhibit the assembly of stress granules in normal intestinal epithelial cells regulating apoptosis. Am J Physiol Cell Physiol 2012; 303:C102-11. [PMID: 22555848 DOI: 10.1152/ajpcell.00009.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyamines regulate multiple signaling pathways and are implicated in many aspects of cellular functions, but the exact molecular processes governed by polyamines remain largely unknown. In response to environmental stress, repression of translation is associated with the assembly of stress granules (SGs) that contain a fraction of arrested mRNAs and are thought to function as mRNA storage. Here we show that polyamines modulate the assembly of SGs in normal intestinal epithelial cells (IECs) and that induced SGs following polyamine depletion are implicated in the protection of IECs against apoptosis. Increasing the levels of cellular polyamines by ectopic overexpression of the ornithine decarboxylase gene decreased cytoplasmic levels of SG-signature constituent proteins eukaryotic initiation factor 3b and T-cell intracellular antigen-1 (TIA-1)-related protein and repressed the assembly of SGs induced by exposure to arsenite-induced oxidative stress. In contrast, depletion of cellular polyamines by inhibiting ornithine decarboxylase with α-difluoromethylornithine increased cytoplasmic eukaryotic initiation factor 3b and TIA-1 related protein abundance and enhanced arsenite-induced SG assembly. Polyamine-deficient cells also exhibited an increase in resistance to tumor necrosis factor-α/cycloheximide-induced apoptosis, which was prevented by inhibiting SG formation with silencing SG resident proteins Sort1 and TIA-1. These results indicate that the elevation of cellular polyamines represses the assembly of SGs in normal IECs and that increased SGs in polyamine-deficient cells are crucial for increased resistance to apoptosis.
Collapse
Affiliation(s)
- Tongtong Zou
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Coburn LA, Gong X, Singh K, Asim M, Scull BP, Allaman MM, Williams CS, Rosen MJ, Washington MK, Barry DP, Piazuelo MB, Casero RA, Chaturvedi R, Zhao Z, Wilson KT. L-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis. PLoS One 2012; 7:e33546. [PMID: 22428068 PMCID: PMC3299802 DOI: 10.1371/journal.pone.0033546] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/11/2012] [Indexed: 12/27/2022] Open
Abstract
Inflammatory bowel disease (IBD), consisting of Crohn's disease and ulcerative colitis (UC), results in substantial morbidity and is difficult to treat. New strategies for adjunct therapies are needed. One candidate is the semi-essential amino acid, L-arginine (L-Arg), a complementary medicine purported to be an enhancer of immunity and vitality in the lay media. Using dextran sulfate sodium (DSS) as a murine colonic injury and repair model with similarities to human UC, we assessed the effect of L-Arg, as DSS induced increases in colonic expression of the y(+) cationic amino acid transporter 2 (CAT2) and L-Arg uptake. L-Arg supplementation improved the clinical parameters of survival, body weight loss, and colon weight, and reduced colonic permeability and the number of myeloperoxidase-positive neutrophils in DSS colitis. Luminex-based multi-analyte profiling demonstrated that there was a marked reduction in proinflammatory cytokine and chemokine expression with L-Arg treatment. Genomic analysis by microarray demonstrated that DSS-treated mice supplemented with L-Arg clustered more closely with mice not exposed to DSS than to those receiving DSS alone, and revealed that multiple genes that were upregulated or downregulated with DSS alone exhibited normalization of expression with L-Arg supplementation. Additionally, L-Arg treatment of mice with DSS colitis resulted in increased ex vivo migration of colonic epithelial cells, suggestive of increased capacity for wound repair. Because CAT2 induction was sustained during L-Arg treatment and inducible nitric oxide (NO) synthase (iNOS) requires uptake of L-Arg for generation of NO, we tested the effect of L-Arg in iNOS(-/-) mice and found that its benefits in DSS colitis were eliminated. These preclinical studies indicate that L-Arg supplementation could be a potential therapy for IBD, and that one mechanism of action may be functional enhancement of iNOS activity.
Collapse
Affiliation(s)
- Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Intestinal gene expression in pigs: effects of reduced feed intake during weaning and potential impact of dietary components. Nutr Res Rev 2011; 24:155-75. [DOI: 10.1017/s0954422411000047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The weaning transition is characterised by morphological, histological and microbial changes, often leading to weaning-associated disorders. These intestinal changes can partly be ascribed to the lack of luminal nutrition arising from the reduced feed intake common in pigs after weaning. It is increasingly becoming clear that changes in the supply with enteral nutrients may have major impacts on intestinal gene expression. Furthermore, the major dietary constituents, i.e. carbohydrates, fatty acids and amino acids, participate in the regulation of intestinal gene expression. However, nutrients may also escape digestion by mammalian enzymes in the upper gastrointestinal tract. These nutrients can be used by the microflora, resulting in the production of bacterial metabolites, for example, SCFA, which may affect intestinal gene expression indirectly. The present review provides an insight on possible effects of reduced feed intake on intestinal gene expression, as it may occur post-weaning. Detailed knowledge on effects of reduced feed intake on intestinal gene expression may help to understand weaning-associated intestinal dysfunctions and diseases. Examples are given of intestinal genes which may be altered in their expression due to supply with specific nutrients. In that way, gene expression could be modulated by dietary means, thereby acting as a potential therapeutic tool. This could be achieved, for example, by influencing genes coding for digestive or absorptive proteins, thus optimising digestive function and metabolism, but also with regard to immune response, or by influencing proliferative processes, thereby enhancing mucosal repair. This would be of special interest when designing a diet to overcome weaning-associated problems.
Collapse
|
23
|
Yu TX, Wang PY, Rao JN, Zou T, Liu L, Xiao L, Gorospe M, Wang JY. Chk2-dependent HuR phosphorylation regulates occludin mRNA translation and epithelial barrier function. Nucleic Acids Res 2011; 39:8472-87. [PMID: 21745814 PMCID: PMC3201881 DOI: 10.1093/nar/gkr567] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Occludin is a transmembrane tight junction (TJ) protein that plays an important role in TJ assembly and regulation of the epithelial barrier function, but the mechanisms underlying its post-transcriptional regulation are unknown. The RNA-binding protein HuR modulates the stability and translation of many target mRNAs. Here, we investigated the role of HuR in the regulation of occludin expression and therefore in the intestinal epithelial barrier function. HuR bound the 3′-untranslated region of the occludin mRNA and enhanced occludin translation. HuR association with the occludin mRNA depended on Chk2-dependent HuR phosphorylation. Reduced HuR phosphorylation by Chk2 silencing or by reduction of Chk2 through polyamine depletion decreased HuR-binding to the occludin mRNA and repressed occludin translation, whereas Chk2 overexpression enhanced (HuR/occludin mRNA) association and stimulated occludin expression. In mice exposed to septic stress induced by cecal ligation and puncture, Chk2 levels in the intestinal mucosa decreased, associated with an inhibition of occludin expression and gut barrier dysfunction. These results indicate that HuR regulates occludin mRNA translation through Chk2-dependent HuR phosphorylation and that this influence is crucial for maintenance of the epithelial barrier integrity in the intestinal tract.
Collapse
Affiliation(s)
- Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Xiao L, Cui YH, Rao JN, Zou T, Liu L, Smith A, Turner DJ, Gorospe M, Wang JY. Regulation of cyclin-dependent kinase 4 translation through CUG-binding protein 1 and microRNA-222 by polyamines. Mol Biol Cell 2011; 22:3055-69. [PMID: 21737690 PMCID: PMC3164454 DOI: 10.1091/mbc.e11-01-0069] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The amino acid-derived polyamines are organic cations that are essential for growth in all mammalian cells, but their exact roles at the molecular level remain largely unknown. Here we provide evidence that polyamines promote the translation of cyclin-dependent kinase 4 (CDK4) by the action of CUG-binding protein 1 (CUGBP1) and microRNA-222 (miR-222) in intestinal epithelial cells. Both CUGBP1 and miR-222 were found to bind the CDK4 mRNA coding region and 3'-untranslated region and repressed CDK4 translation synergistically. Depletion of cellular polyamines increased cytoplasmic CUGBP1 abundance and miR-222 levels, induced their associations with the CDK4 mRNA, and inhibited CDK4 translation, whereas increasing the levels of cellular polyamines decreased CDK4 mRNA interaction with CUGBP1 and miR-222, in turn inducing CDK4 expression. Polyamine-deficient cells exhibited an increased colocalization of tagged CDK4 mRNA with processing bodies; this colocalization was abolished by silencing CUGBP1 and miR-222. Together, our findings indicate that polyamine-regulated CUGBP1 and miR-222 modulate CDK4 translation at least in part by altering the recruitment of CDK4 mRNA to processing bodies.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kolotilin I, Koltai H, Bar-Or C, Chen L, Nahon S, Shlomo H, Levin I, Reuveni M. Expressing yeast SAMdc gene confers broad changes in gene expression and alters fatty acid composition in tomato fruit. PHYSIOLOGIA PLANTARUM 2011; 142:211-23. [PMID: 21338368 DOI: 10.1111/j.1399-3054.2011.01458.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Tomato (Solanum lycopersicum) fruits expressing a yeast S-adenosyl methionine decarboxylase (ySAMdc) gene under control of a ripening-induced promoter show altered phytonutrient content and broad changes in gene expression. Genome-wide transcriptional alterations in pericarp tissues of the ySAMdc-expressing fruits are shown. Consistent with the ySAMdc expression pattern from the ripening-induced promoter, very minor transcriptional alterations were detected at the mature green developmental stage. At the breaker and red stages, altered levels of numerous transcripts were observed with a general tendency toward upregulation in the transgenic fruits. Ontological analysis of up- and downregulated transcript groups revealed various affected metabolic processes, mainly carbohydrate and amino acid metabolism, and protein synthesis, which appeared to be intensified in the ripening transgenic fruits. Other functional ontological categories of altered transcripts represented signal transduction, transcription regulation, RNA processing, molecular transport and stress response, as well as metabolism of lipids, glycans, xenobiotics, energy, cofactors and vitamins. In addition, transcript levels of genes encoding structural enzymes for several biosynthetic pathways showed strong correlations to levels of specific metabolites that displayed altered levels in transgenic fruits. Increased transcript levels of fatty acid biosynthesis enzymes were accompanied by a change in the fatty acid profile of transgenic fruits, most notably increasing ω-3 fatty acids at the expense of other lipids. Thus, SAMdc is a prime target in manipulating the nutritional value of tomato fruits. Combined with analyses of selected metabolites in the overripe fruits, a model of enhanced homeostasis of the pericarp tissue in the polyamine-accumulating tomatoes is proposed.
Collapse
Affiliation(s)
- Igor Kolotilin
- Vegetable Research Department, Institute of Plant Sciences, ARO Volcani Center, Bet Dagan, Israel
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Rao N. Jaladanki
- University of Maryland School of Medicine and Baltimore Veterans Affairs Medical Center
| | - Jian-Ying Wang
- University of Maryland School of Medicine and Baltimore Veterans Affairs Medical Center
| |
Collapse
|
27
|
Polyamines regulate the stability of JunD mRNA by modulating the competitive binding of its 3' untranslated region to HuR and AUF1. Mol Cell Biol 2010; 30:5021-32. [PMID: 20805360 DOI: 10.1128/mcb.00807-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polyamines critically regulate all mammalian cell growth and proliferation by mechanisms such as the repression of growth-inhibitory proteins, including JunD. Decreasing the levels of cellular polyamines stabilizes JunD mRNA without affecting its transcription, but the exact mechanism whereby polyamines regulate JunD mRNA degradation has not been elucidated. RNA-binding proteins HuR and AUF1 associate with labile mRNAs bearing AU-rich elements located in the 3' untranslated regions (3'-UTRs) and modulate their stability. Here, we show that JunD mRNA is a target of HuR and AUF1 and that polyamines modulate JunD mRNA degradation by altering the competitive binding of HuR and AUF1 to the JunD 3'-UTR. The depletion of cellular polyamines enhanced HuR binding to JunD mRNA and decreased the levels of JunD transcript associated with AUF1, thus stabilizing JunD mRNA. The silencing of HuR increased AUF1 binding to the JunD mRNA, decreased the abundance of HuR-JunD mRNA complexes, rendered the JunD mRNA unstable, and prevented increases in JunD mRNA and protein in polyamine-deficient cells. Conversely, increasing the cellular polyamines repressed JunD mRNA interaction with HuR and enhanced its association with AUF1, resulting in an inhibition of JunD expression. These results indicate that polyamines modulate the stability of JunD mRNA in intestinal epithelial cells through HuR and AUF1 and provide new insight into the molecular functions of cellular polyamines.
Collapse
|
28
|
Post-transcriptional regulation of MEK-1 by polyamines through the RNA-binding protein HuR modulating intestinal epithelial apoptosis. Biochem J 2010; 426:293-306. [PMID: 20001965 DOI: 10.1042/bj20091459] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MEK-1 [MAPK (mitogen-activated protein kinase) kinase-1] is an important signal transducing enzyme that is implicated in many aspects of cellular functions. In the present paper, we report that cellular polyamines regulate MEK-1 expression at the post-transcriptional level through the RNA-binding protein HuR (Hu-antigen R) in IECs (intestinal epithelial cells). Decreasing the levels of cellular polyamines by inhibiting ODC (ornithine decarboxylase) stabilized MEK-1 mRNA and promoted its translation through enhancement of the interaction between HuR and the 3'-untranslated region of MEK-1 mRNA, whereas increasing polyamine levels by ectopic ODC overexpression destabilized the MEK-1 transcript and repressed its translation by reducing the abundance of HuR-MEK-1 mRNA complex; neither intervention changed MEK-1 gene transcription via its promoter. HuR silencing rendered the MEK-1 mRNA unstable and inhibited its translation, thus preventing increases in MEK-1 mRNA and protein in polyamine-deficient cells. Conversely, HuR overexpression increased MEK-1 mRNA stability and promoted its translation. Inhibition of MEK-1 expression by MEK-1 silencing or HuR silencing prevented the increased resistance of polyamine-deficient cells to apoptosis. Moreover, HuR overexpression did not protect against apoptosis if MEK-1 expression was silenced. These results indicate that polyamines destabilize the MEK-1 mRNA and repress its translation by inhibiting the association between HuR and the MEK-1 transcript. Our findings indicate that MEK-1 is a key effector of the HuR-elicited anti-apoptotic programme in IECs.
Collapse
|
29
|
Hong SKS, Maltz BE, Coburn LA, Slaughter JC, Chaturvedi R, Schwartz DA, Wilson KT. Increased serum levels of L-arginine in ulcerative colitis and correlation with disease severity. Inflamm Bowel Dis 2010; 16:105-11. [PMID: 19637336 PMCID: PMC2795785 DOI: 10.1002/ibd.21035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND L-arginine (L-Arg) is a semi-essential amino acid that is the substrate for both nitric oxide and polyamine synthesis. Cellular uptake of L-Arg is an active transport process that is subject to competitive inhibition by L-ornithine (L-Orn) and L-lysine (L-Lys). We investigated L-Arg utilization in patients with ulcerative colitis (UC). METHODS Serum was collected from 14 normal controls and 22 UC patients with pancolitis of moderate or severe activity by histopathology score. The Mayo Disease Activity Index (DAI) and endoscopy subscore were assessed. Serum amino acid levels were measured by high-performance liquid chromatography. Arginine availability index (AAI) was defined as [L-Arg]/([L-Orn] + [L-Lys]). RESULTS Serum L-Arg levels were significantly associated with histopathologic grade (P = 0.001). L-Arg levels were increased in subjects with severe colitis when compared to those with moderate colitis or normal mucosa. L-Orn + L-Lys levels were also increased in severe colitis, so that AAI was not significantly increased. L-Arg levels were also strongly associated with the endoscopy subscore (P < 0.001). There was a strong correlation between DAI and L-Arg levels (r = 0.656, P < 0.001). CONCLUSIONS Serum L-Arg levels correlate with UC disease severity but availability is not increased due to competitive inhibition by L-Orn and L-Lys. Our findings suggest that L-Arg uptake by cells in the inflamed colon is defective, which may contribute to the pathogenesis of UC. Studies delineating the mechanism of uptake inhibition could enhance our understanding of UC or lead to novel treatment options.
Collapse
Affiliation(s)
- Shih-Kuang S. Hong
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Brad E. Maltz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Lori A. Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - James C. Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rupesh Chaturvedi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - David A. Schwartz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA,Correspondence: Keith T. Wilson, M.D., Vanderbilt University School of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, 2215B Garland Ave., 1030C MRB IV, Nashville, TN 37232-0252, Phone 615-343-5675, Fax 615-343-6229,
| |
Collapse
|
30
|
Zhang X, Zou T, Rao JN, Liu L, Xiao L, Wang PY, Cui YH, Gorospe M, Wang JY. Stabilization of XIAP mRNA through the RNA binding protein HuR regulated by cellular polyamines. Nucleic Acids Res 2009; 37:7623-37. [PMID: 19825980 PMCID: PMC2794158 DOI: 10.1093/nar/gkp755] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/26/2009] [Accepted: 08/27/2009] [Indexed: 12/23/2022] Open
Abstract
The X chromosome-linked inhibitor of apoptosis protein (XIAP) is the most potent intrinsic caspase inhibitor and plays an important role in the maintenance of intestinal epithelial integrity. The RNA binding protein, HuR, regulates the stability and translation of many target transcripts. Here, we report that HuR associated with both the 3'-untranslated region and coding sequence of the mRNA encoding XIAP, stabilized the XIAP transcript and elevated its expression in intestinal epithelial cells. Ectopic HuR overexpression or elevated cytoplasmic levels of endogenous HuR by decreasing cellular polyamines increased [HuR/XIAP mRNA] complexes, in turn promoting XIAP mRNA stability and increasing XIAP protein abundance. Conversely, HuR silencing in normal and polyamine-deficient cells rendered the XIAP mRNA unstable, thus reducing the steady state levels of XIAP. Inhibition of XIAP expression by XIAP silencing or by HuR silencing reversed the resistance of polyamine-deficient cells to apoptosis. Our findings demonstrate that HuR regulates XIAP expression by stabilizing its mRNA and implicates HuR-mediated XIAP in the control of intestinal epithelial apoptosis.
Collapse
Affiliation(s)
- Xian Zhang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Tongtong Zou
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Jaladanki N. Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Peng-Yuan Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Yu-Hong Cui
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
31
|
Liu L, Rao JN, Zou T, Xiao L, Wang PY, Turner DJ, Gorospe M, Wang JY. Polyamines regulate c-Myc translation through Chk2-dependent HuR phosphorylation. Mol Biol Cell 2009; 20:4885-98. [PMID: 19812253 DOI: 10.1091/mbc.e09-07-0550] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
All mammalian cells depend on polyamines for normal growth and proliferation, but the exact roles of polyamines at the molecular level remain largely unknown. The RNA-binding protein HuR modulates the stability and translation of many target mRNAs. Here, we show that in rat intestinal epithelial cells (IECs), polyamines enhanced HuR association with the 3'-untranslated region of the c-Myc mRNA by increasing HuR phosphorylation by Chk2, in turn promoting c-Myc translation. Depletion of cellular polyamines inhibited Chk2 and reduced the affinity of HuR for c-Myc mRNA; these effects were completely reversed by addition of the polyamine putrescine or by Chk2 overexpression. In cells with high content of cellular polyamines, HuR silencing or Chk2 silencing reduced c-Myc translation and c-Myc expression levels. Our findings demonstrate that polyamines regulate c-Myc translation in IECs through HuR phosphorylation by Chk2 and provide new insight into the molecular functions of cellular polyamines.
Collapse
Affiliation(s)
- Lan Liu
- Cell Biology Group, Department of Surgery, and Department of Pathology, University of Maryland School of Medicine and Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Doller A, Pfeilschifter J, Eberhardt W. Signalling pathways regulating nucleo-cytoplasmic shuttling of the mRNA-binding protein HuR. Cell Signal 2008; 20:2165-73. [DOI: 10.1016/j.cellsig.2008.05.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 05/12/2008] [Indexed: 11/16/2022]
|
33
|
Chen J, Xiao L, Rao JN, Zou T, Liu L, Bellavance E, Gorospe M, Wang JY. JunD represses transcription and translation of the tight junction protein zona occludens-1 modulating intestinal epithelial barrier function. Mol Biol Cell 2008; 19:3701-12. [PMID: 18562690 PMCID: PMC2526696 DOI: 10.1091/mbc.e08-02-0175] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 05/30/2008] [Accepted: 06/09/2008] [Indexed: 01/22/2023] Open
Abstract
The AP-1 transcription factor JunD is highly expressed in intestinal epithelial cells, but its exact role in maintaining the integrity of intestinal epithelial barrier remains unknown. The tight junction (TJ) protein zonula occludens (ZO)-1 links the intracellular domain of TJ-transmembrane proteins occludin, claudins, and junctional adhesion molecules to many cytoplasmic proteins and the actin cytoskeleton and is crucial for assembly of the TJ complex. Here, we show that JunD negatively regulates expression of ZO-1 and is implicated in the regulation of intestinal epithelial barrier function. Increased JunD levels by ectopic overexpression of the junD gene or by depleting cellular polyamines repressed ZO-1 expression and increased epithelial paracellular permeability. JunD regulated ZO-1 expression at the levels of transcription and translation. Transcriptional repression of ZO-1 by JunD was mediated through cAMP response element-binding protein-binding site within its proximal region of the ZO-1-promoter, whereas induced JunD inhibited ZO-1 mRNA translation by enhancing the interaction of the ZO-1 3'-untranslated region with RNA-binding protein T cell-restricted intracellular antigen 1-related protein. These results indicate that JunD is a biological suppressor of ZO-1 expression in intestinal epithelial cells and plays a critical role in maintaining epithelial barrier function.
Collapse
Affiliation(s)
- Jie Chen
- *Cell Biology Group, Department of Surgery and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201; and
| | - Lan Xiao
- *Cell Biology Group, Department of Surgery and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201; and
| | - Jaladanki N. Rao
- *Cell Biology Group, Department of Surgery and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201; and
| | - Tongtong Zou
- *Cell Biology Group, Department of Surgery and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201; and
| | - Lan Liu
- *Cell Biology Group, Department of Surgery and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201; and
| | - Emily Bellavance
- *Cell Biology Group, Department of Surgery and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201; and
| | - Myriam Gorospe
- Laboratory of Cellular and Molecular Biology, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Jian-Ying Wang
- *Cell Biology Group, Department of Surgery and
- Department of Pathology, University of Maryland School of Medicine and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201; and
| |
Collapse
|
34
|
Polyamines modulate the subcellular localization of RNA-binding protein HuR through AMP-activated protein kinase-regulated phosphorylation and acetylation of importin alpha1. Biochem J 2008; 409:389-98. [PMID: 17919121 DOI: 10.1042/bj20070860] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyamines are required for maintenance of intestinal epithelial integrity, and a decrease in cellular polyamines increases the cytoplasmic levels of RNA-binding protein HuR stabilizing p53 and nucleophosmin mRNAs, thus inhibiting IEC (intestinal epithelial cell) proliferation. The AMPK (AMP-activated protein kinase), an enzyme involved in responding to metabolic stress, was recently found to be implicated in regulating the nuclear import of HuR. Here, we provide evidence showing that polyamines modulate subcellular localization of HuR through AMPK-regulated phosphorylation and acetylation of Impalpha1 (importin alpha1) in IECs. Decreased levels of cellular polyamines as a result of inhibiting ODC (ornithine decarboxylase) with DFMO (D,L-alpha-difluoromethylornithine) repressed AMPK activity and reduced Impalpha1 levels, whereas increased levels of polyamines as a result of ODC overexpression induced both AMPK and Impalpha1 levels. AMPK activation by overexpression of the AMPK gene increased Impalpha1 but reduced the cytoplasmic levels of HuR in control and polyamine-deficient cells. IECs overexpressing wild-type Impalpha1 exhibited a decrease in cytoplasmic HuR abundance, while cells overexpressing Impalpha1 proteins bearing K22R (lacking acetylation site), S105A (lacking phosphorylation site) or K22R/S105A (lacking both sites) mutations displayed increased levels of cytoplasmic HuR. Ectopic expression of these Impalpha1 mutants also prevented the increased levels of cytoplasmic HuR following polyamine depletion. These results indicate that polyamine-mediated AMPK activation triggers HuR nuclear import through phosphorylation and acetylation of Impalpha1 in IECs and that polyamine depletion increases cytoplasmic levels of HuR as a result of inactivation of the AMPK-driven Impalpha1 pathway.
Collapse
|
35
|
Lescoat G, Chantrel-Groussard K, Pasdeloup N, Nick H, Brissot P, Gaboriau F. Antiproliferative and apoptotic effects in rat and human hepatoma cell cultures of the orally active iron chelator ICL670 compared to CP20: a possible relationship with polyamine metabolism. Cell Prolif 2007; 40:755-67. [PMID: 17877614 PMCID: PMC6495977 DOI: 10.1111/j.1365-2184.2007.00468.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE Iron loading has been observed to have a hyperproliferative effect on hepatocytes in vitro and on tumour cells in vivo; removal of this iron being required to induce antitumour activity. MATERIAL AND METHODS Antiproliferative effects of orally active tridentate iron chelator ICL670 (deferasirox) and bidentate iron chelator CP20 (deferiprone), mediated through the chelation of intracellular iron, were compared in rat hepatoma cell line FAO and human hepatoma cell line HUH7. RESULTS In FAO cell cultures, we have shown that ICL670 decreased cell viability and DNA replication and induced apoptosis more efficiently than an iron-binding equivalent concentration of CP20. Moreover, ICL670 decreased significantly the number of the cells in G(2)-M phase. In the HUH7 cell cultures, ICL670 and a four-time higher iron-binding equivalent concentration of CP20, decreased cell viability and DNA replication in the same range. CP20 increased the number of the cells in G(2)-M phase. However, ICL670 inhibited polyamine biosynthesis by decreasing ornithine decarboxylase mRNA level; in contrast, CP20 increased polyamine biosynthesis, particularly putrescine level, by stimulating spermidine-spermine N(1)-acetyl transferase activity that could activate the polyamine retro-conversion pathway. By mass spectrometry, we observed that ICL670 cellular uptake was six times higher than CP20. CONCLUSIONS These results suggest that ICL670 has a powerful antitumoural effect and blocks cell proliferation in neoplastic cells by a pathway different from that of CP20 and may constitute a potential adjuvant drug for anticancer therapy.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Base Sequence
- Benzoates/pharmacokinetics
- Benzoates/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Chemotherapy, Adjuvant
- DNA Primers/genetics
- DNA Replication/drug effects
- Deferasirox
- Deferiprone
- Humans
- Iron Chelating Agents/pharmacokinetics
- Iron Chelating Agents/pharmacology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Polyamines/metabolism
- Pyridones/pharmacokinetics
- Pyridones/pharmacology
- Rats
- Triazoles/pharmacokinetics
- Triazoles/pharmacology
Collapse
Affiliation(s)
- G Lescoat
- Inserm, U522, Rennes, F-35000, Rennes cedex, France.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Owing to their high turnover, the intestinal mucosal cells have a particularly high requirement for polyamines. Therefore, they are an excellent charcol for the study of polyamine function in rapid physiological growth and differentiation. After a cursory introduction to the major aspects of polyamine metabolism, regulation, and mode of action, we discuss the contribution of the polyamines to the maintenance of normal gut function, the maturation of the intestinal mucosa, and its repair after injuries. Repletion of cellular polyamine pools with (D,L)-2-(difluoromethyl)ornithine has considerably improved our understanding of how the polyamines are involved in the regulation of normal and neoplastic growth. Unfortunately, the attempts to exploit polyamine metabolism as a cancer therapeutic target have not yet been successful. However, the selective inactivation of ornithine decarboxylase appears to be a promising chemopreventive method in familial adenomatous polyposis. Presumably, it relies on the fact that ornithine decarboxylase is a critical regulator of the proliferative response of the protooncogene c-myc, but not of its apoptotic response.
Collapse
Affiliation(s)
- Nikolaus Seiler
- INSERM U682, Université Louis Pasteur EA3430, Faculty of Medicine, Laboratory of Nutritional Cancer Prevention, IRCAD, Strasbourg, France
| | | |
Collapse
|
37
|
Xiao L, Rao JN, Zou T, Liu L, Marasa BS, Chen J, Turner DJ, Zhou H, Gorospe M, Wang JY. Polyamines regulate the stability of activating transcription factor-2 mRNA through RNA-binding protein HuR in intestinal epithelial cells. Mol Biol Cell 2007; 18:4579-90. [PMID: 17804813 PMCID: PMC2043536 DOI: 10.1091/mbc.e07-07-0675] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Maintenance of intestinal mucosal epithelial integrity requires polyamines that modulate the expression of various genes involved in cell proliferation and apoptosis. Recently, polyamines were shown to regulate the subcellular localization of the RNA-binding protein HuR, which stabilizes its target transcripts such as nucleophosmin and p53 mRNAs. The activating transcription factor-2 (ATF-2) mRNA encodes a member of the ATF/CRE-binding protein family of transcription factors and was computationally predicted to be a target of HuR. Here, we show that polyamines negatively regulate ATF-2 expression posttranscriptionally and that polyamine depletion stabilizes ATF-2 mRNA by enhancing the interaction of the 3'-untranslated region (UTR) of ATF-2 with cytoplasmic HuR. Decreasing cellular polyamines by inhibiting ornithine decarboxylase (ODC) with alpha-difluoromethylornithine increased the levels of ATF-2 mRNA and protein, whereas increasing polyamines by ectopic ODC overexpression repressed ATF-2 expression. Polyamine depletion did not alter transcription via the ATF-2 gene promoter but increased the stability of ATF-2 mRNA. Increased cytoplasmic HuR in polyamine-deficient cells formed ribonucleoprotein complexes with the endogenous ATF-2 mRNA and specifically bound to 3'-UTR of ATF-2 mRNA on multiple nonoverlapping 3'-UTR segments. Adenovirus-mediated HuR overexpression elevated ATF-2 mRNA and protein levels, whereas HuR silencing rendered the ATF-2 mRNA unstable and prevented increases in ATF-2 mRNA and protein. Furthermore, inhibition of ATF-2 expression prevented the increased resistance of polyamine-deficient cells to apoptosis induced by treatment with tumor necrosis factor-alpha and cycloheximide. These results indicate that polyamines modulate the stability of ATF-2 mRNA by altering cytoplasmic HuR levels and that polyamine-modulated ATF-2 expression plays a critical role in regulating epithelial apoptosis.
Collapse
Affiliation(s)
- Lan Xiao
- *Cell Biology Group, Department of Surgery, and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Jaladanki N. Rao
- *Cell Biology Group, Department of Surgery, and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Tongtong Zou
- *Cell Biology Group, Department of Surgery, and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Lan Liu
- *Cell Biology Group, Department of Surgery, and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Bernard S. Marasa
- *Cell Biology Group, Department of Surgery, and
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jie Chen
- *Cell Biology Group, Department of Surgery, and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Douglas J. Turner
- *Cell Biology Group, Department of Surgery, and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298; and
| | - Myriam Gorospe
- Laboratory of Cellular and Molecular Biology, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Jian-Ying Wang
- *Cell Biology Group, Department of Surgery, and
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| |
Collapse
|
38
|
Chen J, Rao JN, Zou T, Liu L, Marasa BS, Xiao L, Zeng X, Turner DJ, Wang JY. Polyamines are required for expression of Toll-like receptor 2 modulating intestinal epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 2007; 293:G568-76. [PMID: 17600044 DOI: 10.1152/ajpgi.00201.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Toll-like receptors (TLRs) allow mammalian intestinal epithelium to detect various microbes and activate innate immunity after infection. TLR2 and TLR4 have been identified in intestinal epithelial cells (IECs) as fundamental components of the innate immune response to bacterial pathogens, but the exact mechanism involved in control of TLR expression remains unclear. Polyamines are implicated in a wide variety of biological functions, and regulation of cellular polyamines is a central convergence point for the multiple signaling pathways driving different epithelial cell functions. The current study determined whether polyamines regulate TLR expression, thereby modulating intestinal epithelial barrier function. Depletion of cellular polyamines by inhibiting ornithine decarboxylase (ODC) with alpha-difluoromethylornithine decreased levels of TLR2 mRNA and protein, whereas increased polyamines by ectopic overexpression of the ODC gene enhanced TLR2 expression. Neither intervention changed basal levels of TLR4. Exposure of normal IECs to low-dose (5 microg/ml) LPS increased ODC enzyme activity and stimulated expression of TLR2 but not TLR4, while polyamine depletion prevented this LPS-induced TLR2 expression. Decreased TLR2 in polyamine-deficient cells was associated with epithelial barrier dysfunction. In contrast, increased TLR2 by the low dose of LPS enhanced epithelial barrier function, which was abolished by inhibition of TLR2 expression with specific, small interfering RNA. These results indicate that polyamines are necessary for TLR2 expression and that polyamine-induced TLR2 activation plays an important role in regulating epithelial barrier function.
Collapse
Affiliation(s)
- Jie Chen
- Department of Surgery, Baltimore Veterans Affairs Medical Center, 10 North Greene Street, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shoji Y, Osman W, Zilliacus J. Polyamine-modulated factor 1 represses glucocorticoid receptor activity. Biochem Biophys Res Commun 2007; 361:176-81. [PMID: 17637456 DOI: 10.1016/j.bbrc.2007.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/05/2007] [Accepted: 07/05/2007] [Indexed: 01/14/2023]
Abstract
Polyamine-modulated factor 1 (PMF-1) has been reported to interact with NF-E2 related factor 2 (Nrf-2) and activate the polyamine-induced transcription of spermidine/spermine N(1)-acetyltransferase (SSAT) gene. Polyamines are important regulators of cell growth and cell death and have been implicated in glucocorticoid-induced apoptosis. In the present study, we have identified and characterized new functional binding partners for PMF-1. Our results demonstrate that PMF-1 binds to the glucocorticoid receptor (GR). PMF-1 also represses glucocorticoid-induced transcription. Furthermore, we show that PMF-1 has an intrinsic repression activity, which could contribute to the repressive effect on GR. PMF-1 can also interact with the GR corepressor, receptor-interacting protein 140 (RIP140), but does not further enhance the repressive effect of RIP140. Our results suggest that PMF-1 has a broader function in regulation of genes and can contribute to glucocorticoid signaling.
Collapse
Affiliation(s)
- Yutaka Shoji
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 86 Huddinge, Sweden
| | | | | |
Collapse
|
40
|
Zhang AH, Rao JN, Zou T, Liu L, Marasa BS, Xiao L, Chen J, Turner DJ, Wang JY. p53-Dependent NDRG1 expression induces inhibition of intestinal epithelial cell proliferation but not apoptosis after polyamine depletion. Am J Physiol Cell Physiol 2007; 293:C379-89. [PMID: 17442733 DOI: 10.1152/ajpcell.00547.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Normal intestinal mucosal growth requires polyamines that regulate expression of various genes involved in cell proliferation, growth arrest, and apoptosis. Our previous studies have shown that polyamine depletion stabilizes p53, resulting in inhibition of intestinal epithelial cell (IEC) proliferation, but the exact downstream targets of induced p53 are still unclear. The NDRG1 (N- myc downregulated gene-1) gene encodes a growth-related protein, and its transcription can be induced in response to stress. The current study tests the hypothesis that induced p53 inhibits IEC proliferation by upregulating NDRG1 expression following polyamine depletion. Depletion of cellular polyamines by inhibiting ornithine decarboxylase (ODC) with α-difluoromethylornithine not only induced p53 but also increased NDRG1 transcription as indicated by induction of the NDRG1 promoter activity and increased levels of NDRG1 mRNA and protein, all of which were prevented by using specific p53 siRNA and in cells with a targeted deletion of p53. In contrast, increased levels of cellular polyamines by ectopic expression of the ODC gene decreased p53 and repressed expression of NDRG1. Consistently, polyamine depletion-induced activation of the NDRG1-promoter was decreased when p53-binding sites within the NDRG1 proximal promoter region were deleted. Ectopic expression of the wild-type NDRG1 gene inhibited DNA synthesis and decreased final cell numbers regardless of the presence or absence of endogenous p53, whereas silencing NDRG1 promoted cell growth. However, overexpression of NDRG1 failed to directly induce cell death and to alter susceptibility to apoptosis induced by tumor necrosis factor-α/cycloheximide. These results indicate that NDRG1 is one of the direct mediators of induced p53 following polyamine depletion and that p53-dependent NDRG1 expression plays a critical role in the negative control of IEC proliferation.
Collapse
Affiliation(s)
- Ai-Hong Zhang
- Dept. of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Freeman LC, Narvaez DF, McCoy A, von Stein FB, Young S, Silver K, Ganta S, Koch D, Hunter R, Gilmour RF, Lillich JD. Depolarization and decreased surface expression of K+ channels contribute to NSAID-inhibition of intestinal restitution. Biochem Pharmacol 2007; 74:74-85. [PMID: 17499219 PMCID: PMC3269908 DOI: 10.1016/j.bcp.2007.03.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/24/2007] [Accepted: 03/26/2007] [Indexed: 12/21/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) contribute to gastrointestinal ulcer formation by inhibiting epithelial cell migration and mucosal restitution; however, the drug-affected signaling pathways are poorly defined. We investigated whether NSAID inhibition of intestinal epithelial migration is associated with depletion of intracellular polyamines, depolarization of membrane potential (E(m)) and altered surface expression of K(+) channels. Epithelial cell migration in response to the wounding of confluent IEC-6 and IEC-Cdx2 monolayers was reduced by indomethacin (100 microM), phenylbutazone (100 microM) and NS-398 (100 microM) but not by SC-560 (1 microM). NSAID-inhibition of intestinal cell migration was not associated with depletion of intracellular polyamines. Treatment of IEC-6 and IEC-Cdx2 cells with indomethacin, phenylbutazone and NS-398 induced significant depolarization of E(m), whereas treatment with SC-560 had no effect on E(m). The E(m) of IEC-Cdx2 cells was: -38.5+/-1.8 mV under control conditions; -35.9+/-1.6 mV after treatment with SC-560; -18.8+/-1.2 mV after treatment with indomethacin; and -23.7+/-1.4 mV after treatment with NS-398. Whereas SC-560 had no significant effects on the total cellular expression of K(v)1.4 channel protein, indomethacin and NS-398 decreased not only the total cellular expression of K(v)1.4, but also the cell surface expression of both K(v)1.4 and K(v)1.6 channel subunits in IEC-Cdx2. Both K(v)1.4 and K(v)1.6 channel proteins were immunoprecipitated by K(v)1.4 antibody from IEC-Cdx2 lysates, indicating that these subunits co-assemble to form heteromeric K(v) channels. These results suggest that NSAID inhibition of epithelial cell migration is independent of polyamine-depletion, and is associated with depolarization of E(m) and decreased surface expression of heteromeric K(v)1 channels.
Collapse
Affiliation(s)
- LC Freeman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506
| | - DF Narvaez
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, 66506
| | - A McCoy
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, 66506
| | - FB von Stein
- Department of Biomedical Sciences, Cornell University, Ithaca NY 14853
| | - S Young
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506
| | - K Silver
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, 66506
| | - S. Ganta
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506
| | - D Koch
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506
| | - R Hunter
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506
| | - RF Gilmour
- Department of Biomedical Sciences, Cornell University, Ithaca NY 14853
| | - JD Lillich
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, 66506
| |
Collapse
|
42
|
Wang JY. Polyamines and mRNA stability in regulation of intestinal mucosal growth. Amino Acids 2007; 33:241-52. [PMID: 17404803 DOI: 10.1007/s00726-007-0518-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
The mammalian intestinal epithelium is a rapidly self-renewing tissue in the body, and its homeostasis is preserved through strict regulation of epithelial cell proliferation, growth arrest, and apoptosis. Polyamines are necessary for normal intestinal mucosal growth and decreasing cellular polyamines inhibits cell proliferation and disrupts epithelial integrity. An increasing body of evidence indicates that polyamines regulate intestinal epithelial cell renewal by virtue of their ability to modulate expression of various genes and that growth inhibition following polyamine depletion results primarily from the activation of growth-inhibiting genes rather than a simple decrease in expression of growth-promoting genes. In this review article, we will focus on changes in expression of growth-inhibiting genes following polyamine depletion and further analyze in some detail the mechanisms through which mRNA stability is regulated by RNA-binding proteins.
Collapse
Affiliation(s)
- J-Y Wang
- Cell Biology Group, Departments of Surgery and Pathology, University of Maryland School of Medicine and Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
| |
Collapse
|
43
|
Basuroy UK, Gerner EW. Emerging concepts in targeting the polyamine metabolic pathway in epithelial cancer chemoprevention and chemotherapy. J Biochem 2007; 139:27-33. [PMID: 16428316 DOI: 10.1093/jb/mvj022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The polyamines are important molecules governing cell proliferation, survival and apoptosis. Consistent with their elevated levels in cancer, they have been shown to mediate tumor promotion and progression. Cellular and tissue polyamine pools and metabolic flux are regulated by a number of processes. Neoplastic transformation is accompanied with an increase in biosynthesis, decreased catabolism and elevated uptake of exogenous polyamines. Effective strategies for cancer chemoprevention and chemotherapy, targeting the polyamine metabolic pathway will likely require a combination of agents acting at multiple sites of this pathway. Genetic variability affecting expression of the ornithine decarboxylase gene suggests an association between ODC expression and cancer risk, and prediction of response to treatment in certain epithelial cancers.
Collapse
Affiliation(s)
- Upal K Basuroy
- Biochemistry and Molecular and Cellular Biology Gradaute Program, University of Arizona, Tucson, AZ 85724, USA
| | | |
Collapse
|
44
|
|
45
|
Mattoo AK, Sobolev AP, Neelam A, Goyal RK, Handa AK, Segre AL. Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen-carbon interactions. PLANT PHYSIOLOGY 2006; 142:1759-70. [PMID: 17041034 PMCID: PMC1676058 DOI: 10.1104/pp.106.084400] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 10/06/2006] [Indexed: 05/12/2023]
Abstract
Polyamines are ubiquitous aliphatic amines that have been implicated in myriad processes, but their precise biochemical roles are not fully understood. We have carried out metabolite profiling analyses of transgenic tomato (Solanum lycopersicum) fruit engineered to accumulate the higher polyamines spermidine (Spd) and spermine (Spm) to bring an insight into the metabolic processes that Spd/Spm regulate in plants. NMR spectroscopic analysis revealed distinct metabolite trends in the transgenic and wild-type/azygous fruits ripened off the vine. Distinct metabolites (glutamine, asparagine, choline, citrate, fumarate, malate, and an unidentified compound A) accumulated in the red transgenic fruit, while the levels of valine, aspartic acid, sucrose, and glucose were significantly lower as compared to the control (wild-type and azygous) red fruit. The levels of isoleucine, glucose, gamma-aminobutyrate, phenylalanine, and fructose remained similar in the nontransgenic and transgenic fruits. Statistical treatment of the metabolite variables distinguished the control fruits from the transgenic fruit and provided credence to the pronounced, differential metabolite profiles seen during ripening of the transgenic fruits. The pathways involved in the nitrogen sensing/signaling and carbon metabolism seem preferentially activated in the high Spd/Spm transgenics. The metabolite profiling analysis suggests that Spd and Spm are perceived as nitrogenous metabolites by the fruit cells, which in turn results in the stimulation of carbon sequestration. This is seen manifested in higher respiratory activity and up-regulation of phosphoenolpyruvate carboxylase and NADP-dependent isocitrate dehydrogenase transcripts in the transgenic fruit compared to controls, indicating high metabolic status of the transgenics even late in fruit ripening.
Collapse
Affiliation(s)
- Autar K Mattoo
- Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Sustainable Agricultural Systems Laboratory, Beltsville, Maryland 20705-2350, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Liu L, Guo X, Rao J, Zou T, Marasa B, Chen J, Greenspon J, Casero R, Wang JY. Polyamine-modulated c-Myc expression in normal intestinal epithelial cells regulates p21Cip1 transcription through a proximal promoter region. Biochem J 2006; 398:257-67. [PMID: 16706751 PMCID: PMC1550304 DOI: 10.1042/bj20060217] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Maintenance of intestinal mucosal epithelial integrity requires cellular polyamines that regulate expression of various genes involved in cell proliferation, growth arrest and apoptosis. Our previous studies have shown that polyamines are essential for expression of the c-myc gene and that polyamine-induced c-Myc plays a critical role in stimulation of normal IEC (intestinal epithelial cell) proliferation, but the exact downstream targets of induced c-Myc are still unclear. The p21Cip1 protein is a major player in cell cycle control, which is primarily regulated at the transcriptional level. The current study was designed to determine whether induced c-Myc stimulates normal IEC proliferation by repressing p21Cip1 transcription following up-regulation of polyamines. Overexpression of the ODC (ornithine decarboxylase) gene increased levels of cellular polyamines, induced c-Myc expression and inhibited p21Cip1 transcription, as indicated by repression of p21Cip1 promoter activity and a decrease in p21Cip1 protein levels. In contrast, depletion of cellular polyamines by inhibiting ODC enzyme activity with alpha-difluoromethylornithine decreased c-Myc, but increased p21Cip1 transcription. Ectopic expression of wild-type c-myc not only inhibited basal levels of p21Cip1 transcription in control cells, but also prevented increased p21Cip1 in polyamine-deficient cells. Experiments using different p21Cip1 promoter mutants showed that transcriptional repression of p21Cip1 by c-Myc was mediated through Miz-1- and Sp1-binding sites within the proximal region of the p21Cip1 promoter in normal IECs. These findings confirm that p21Cip1 is one of the direct mediators of induced c-Myc following increased polyamines and that p21Cip1 repression by c-Myc is implicated in stimulation of normal IEC proliferation.
Collapse
Affiliation(s)
- Lan Liu
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- †Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Xin Guo
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- †Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Jaladanki N. Rao
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- †Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Tongtong Zou
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- †Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Bernard S. Marasa
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
| | - Jie Chen
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- †Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Jose Greenspon
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
| | - Robert A. Casero
- §Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, U.S.A
| | - Jian-Ying Wang
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- †Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
- ‡Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
47
|
Tantini B, Fiumana E, Cetrullo S, Pignatti C, Bonavita F, Shantz LM, Giordano E, Muscari C, Flamigni F, Guarnieri C, Stefanelli C, Caldarera CM. Involvement of polyamines in apoptosis of cardiac myoblasts in a model of simulated ischemia. J Mol Cell Cardiol 2006; 40:775-82. [PMID: 16678846 DOI: 10.1016/j.yjmcc.2006.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 02/21/2006] [Accepted: 03/02/2006] [Indexed: 11/17/2022]
Abstract
Apoptotic cell death of cardiomyocytes is involved in several cardiovascular diseases including ischemia, hypertrophy, and heart failure. The polyamines putrescine, spermidine, and spermine are polycations absolutely required for cell growth and division. However, increasing evidence indicates that polyamines, cell growth, and cell death can be tightly connected. In this paper, we have studied the involvement of polyamines in apoptosis of H9c2 cardiomyoblasts in a model of simulated ischemia. H9c2 cells were exposed to a condition of simulated ischemia, consisting of hypoxia plus serum deprivation, that induces apoptosis. The activity of ornithine decarboxylase, the rate limiting enzyme of polyamine biosynthesis that synthesizes putrescine, is rapidly and transiently induced in ischemic cells, reaching a maximum after 3 h, and leading to increased polyamine levels. Pharmacological inhibition of ornithine decarboxylase by alpha-difluoromethylornithine (DFMO) depletes H9c2 cardiomyoblasts of polyamines and protects the cells against ischemia-induced apoptosis. DFMO inhibits several of the molecular events of apoptosis that follow simulated ischemia, such as the release of cytochrome c from mitochondria, caspase activation, downregulation of Bcl-xL, and DNA fragmentation. The protective effect of DFMO is lost when exogenous putrescine is provided to the cells, indicating a specific role of polyamine synthesis in the development of apoptosis in this model of simulated ischemia. In cardiomyocytes obtained from transgenic mice overexpressing ornithine decarboxylase in the heart, caspase activation is dramatically increased following induction of apoptosis, with respect to cardiomyocytes from control mice, confirming a proapoptotic effect of polyamines. It is presented for the first time evidence of the involvement of polyamines in apoptosis of ischemic cardiac cells and the beneficial effect of DFMO treatment. In conclusion, this finding may suggest novel pharmacological approaches for the protection of cardiomyocytes injury caused by ischemia.
Collapse
Affiliation(s)
- Benedetta Tantini
- Department of Biochemistry G. Moruzzi, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zou T, Mazan-Mamczarz K, Rao JN, Liu L, Marasa BS, Zhang AH, Xiao L, Pullmann R, Gorospe M, Wang JY. Polyamine depletion increases cytoplasmic levels of RNA-binding protein HuR leading to stabilization of nucleophosmin and p53 mRNAs. J Biol Chem 2006; 281:19387-94. [PMID: 16690610 DOI: 10.1074/jbc.m602344200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polyamines are essential for maintaining normal intestinal epithelial integrity, an effect that relies, at least in part, on their ability to keep low levels of nucleophosmin (NPM) and p53 mRNAs. The RNA-binding protein HuR associates with the p53 mRNA, as reported previously, and with the NPM mRNA, computationally predicted to be a target of HuR. Here, we show that HuR binds the NPM and p53 3'-untranslated regions and stabilizes these mRNAs in polyamine-depleted intestinal epithelial cells. Depletion of cellular polyamines by inhibiting ornithine decarboxylase with alpha-difluoromethylornithine dramatically enhanced the cytoplasmic abundance of HuR, whereas ectopic ornithine decarboxylase overexpression decreased cytoplasmic HuR; neither intervention changed whole-cell HuR levels. HuR was found to specifically bind the 3'-untranslated regions of NPN and p53 mRNAs. HuR silencing rendered the NPM and p53 mRNAs unstable and prevented increases in NPM and p53 mRNA and protein in polyamine-deficient cells. These results indicate that polyamines modulate cytoplasmic HuR levels in intestinal epithelial cells, in turn controlling the stability of the NPM and p53 mRNAs and influencing NPM and p53 protein levels.
Collapse
Affiliation(s)
- Tongtong Zou
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zimmermann N, Rothenberg ME. The arginine-arginase balance in asthma and lung inflammation. Eur J Pharmacol 2006; 533:253-62. [PMID: 16458291 DOI: 10.1016/j.ejphar.2005.12.047] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 12/13/2005] [Indexed: 02/05/2023]
Abstract
Asthma, a complex chronic inflammatory pulmonary disorder, is on the rise despite intense ongoing research underscoring the need for new scientific inquiry. Using global microarray analysis, we have recently uncovered that asthmatic responses involve metabolism of arginine by arginase. We found that the cationic amino acid transporter (CAT)2, arginase I, and arginase II were particularly prominent among the allergen-induced gene transcripts. These genes are key regulators of critical processes associated with asthma including airway tone, cell hyperplasia and collagen deposition, respectively. Furthermore, systemic arginine levels and arginine metabolism via nitric oxide synthase (NOS) can have profound effect on lung inflammation. This review focuses on the current body of knowledge on l-arginine metabolism in asthma and lung inflammation.
Collapse
Affiliation(s)
- Nives Zimmermann
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, OH 45229, USA
| | | |
Collapse
|
50
|
Abstract
The natural polyamines putrescine, spermidine and spermine are in multiple ways involved in cell growth and the maintenance of cell viability. In the course of the last 15 years more and more evidence hinted also at roles in gene regulation. It is therefore not surprising that the polyamines are involved in events inherent to genetically programmed cell death. Following inhibition of ornithine decarboxylase, a key step in polyamine biosynthesis, numerous links have been identified between the polyamines and apoptotic pathways. Examples of activation and prevention of apoptosis due to polyamine depletion are known for several cell lines. Elevation of polyamine concentrations may lead to apoptosis or to malignant transformation. These observations are discussed in the present review, together with possible mechanisms of action of the polyamines. Contradictory results and incomplete information blur the picture and complicate interpretation. Since, however, much interest is focussed at present on all aspects of programmed cell death, a considerable progress in the elucidation of polyamine functions in apoptotic signalling pathways is expected, even though enormous difficulties oppose pinpointing specific interactions of the polyamines with pro- and anti-apoptotic factors. Such situation is quite common in polyamine research.
Collapse
Affiliation(s)
- Nikolaus Seiler
- Laboratory of Nutritional Cancer Prevention, Institut de Recherche Contre les Cancers de l'Appareil Digestif (IRCAD), Strasbourg Cedex, 67091, France.
| | | |
Collapse
|