1
|
Zhang W, Ding D, Lu Y, Chen H, Jiang P, Zuo P, Wang G, Luo J, Yin Y, Luo J, Yin Y. Structural and functional insights into the lipid regulation of human anion exchanger 2. Nat Commun 2024; 15:759. [PMID: 38272905 PMCID: PMC10810954 DOI: 10.1038/s41467-024-44966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Anion exchanger 2 (AE2) is an electroneutral Na+-independent Cl-/HCO3- exchanger belongs to the SLC4 transporter family. The widely expressed AE2 participates in a variety of physiological processes, including transepithelial acid-base secretion and osteoclastogenesis. Both the transmembrane domains (TMDs) and the N-terminal cytoplasmic domain (NTD) are involved in regulation of AE2 activity. However, the regulatory mechanism remains unclear. Here, we report a 3.2 Å cryo-EM structure of the AE2 TMDs in complex with PIP2 and a 3.3 Å full-length mutant AE2 structure in the resting state without PIP2. We demonstrate that PIP2 at the TMD dimer interface is involved in the substrate exchange process. Mutation in the PIP2 binding site leads to the displacement of TM7 and further stabilizes the interaction between the TMD and the NTD. Reduced substrate transport activity and conformation similar to AE2 in acidic pH indicating the central contribution of PIP2 to the function of AE2.
Collapse
Affiliation(s)
- Weiqi Zhang
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Dian Ding
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yishuo Lu
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hongyi Chen
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Peijun Jiang
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Peng Zuo
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guangxi Wang
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Juan Luo
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianyuan Luo
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
2
|
Itoh R, Hatano N, Murakami M, Mitsumori K, Kawasaki S, Wakagi T, Kanzaki Y, Kojima H, Kawaai K, Mikoshiba K, Hamada K, Mizutani A. Both IRBIT and long-IRBIT bind to and coordinately regulate Cl -/HCO 3- exchanger AE2 activity through modulating the lysosomal degradation of AE2. Sci Rep 2021; 11:5990. [PMID: 33727633 PMCID: PMC7966362 DOI: 10.1038/s41598-021-85499-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/02/2021] [Indexed: 02/04/2023] Open
Abstract
Anion exchanger 2 (AE2) plays crucial roles in regulating cell volume homeostasis and cell migration. We found that both IRBIT and Long-IRBIT (L-IRBIT) interact with anion exchanger 2 (AE2). The interaction occurred between the conserved AHCY-homologous domain of IRBIT/L-IRBIT and the N-terminal cytoplasmic region of AE2. Interestingly, AE2 activity was reduced in L-IRBIT KO cells, but not in IRBIT KO cells. Moreover, AE2 activity was slightly increased in IRBIT/L-IRBIT double KO cells. These changes in AE2 activity resulted from changes in the AE2 expression level of each mutant cell, and affected the regulatory volume increase and cell migration. The activity and expression level of AE2 in IRBIT/L-IRBIT double KO cells were downregulated if IRBIT, but not L-IRBIT, was expressed again in the cells, and the downregulation was cancelled by the co-expression of L-IRBIT. The mRNA levels of AE2 in each KO cell did not change, and the downregulation of AE2 in L-IRBIT KO cells was inhibited by bafilomycin A1. These results indicate that IRBIT binding facilitates the lysosomal degradation of AE2, which is inhibited by coexisting L-IRBIT, suggesting a novel regulatory mode of AE2 activity through the binding of two homologous proteins with opposing functions.
Collapse
Affiliation(s)
- Ryo Itoh
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Naoya Hatano
- Division of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Momoko Murakami
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Kosuke Mitsumori
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Satoko Kawasaki
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Tomoka Wakagi
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Yoshino Kanzaki
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Hiroyuki Kojima
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Katsuhiko Mikoshiba
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Koichi Hamada
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Akihiro Mizutani
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
3
|
Trampert DC, van de Graaf SFJ, Jongejan A, Oude Elferink RPJ, Beuers U. Hepatobiliary acid-base homeostasis: Insights from analogous secretory epithelia. J Hepatol 2021; 74:428-441. [PMID: 33342564 DOI: 10.1016/j.jhep.2020.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/03/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
Many epithelia secrete bicarbonate-rich fluid to generate flow, alter viscosity, control pH and potentially protect luminal and intracellular structures from chemical stress. Bicarbonate is a key component of human bile and impaired biliary bicarbonate secretion is associated with liver damage. Major efforts have been undertaken to gain insight into acid-base homeostasis in cholangiocytes and more can be learned from analogous secretory epithelia. Extrahepatic examples include salivary and pancreatic duct cells, duodenocytes, airway and renal epithelial cells. The cellular machinery involved in acid-base homeostasis includes carbonic anhydrase enzymes, transporters of the solute carrier family, and intra- and extracellular pH sensors. This pH-regulatory system is orchestrated by protein-protein interactions, the establishment of an electrochemical gradient across the plasma membrane and bicarbonate sensing of the intra- and extracellular compartment. In this review, we discuss conserved principles identified in analogous secretory epithelia in the light of current knowledge on cholangiocyte physiology. We present a framework for cholangiocellular acid-base homeostasis supported by expression analysis of publicly available single-cell RNA sequencing datasets from human cholangiocytes, which provide insights into the molecular basis of pH homeostasis and dysregulation in the biliary system.
Collapse
Affiliation(s)
- David C Trampert
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Stan F J van de Graaf
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ronald P J Oude Elferink
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Ulrich Beuers
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Quade BN, Marshall A, Parker MD. pH dependence of the Slc4a11-mediated H + conductance is influenced by intracellular lysine residues and modified by disease-linked mutations. Am J Physiol Cell Physiol 2020; 319:C359-C370. [PMID: 32520610 DOI: 10.1152/ajpcell.00128.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
SLC4A11 is the only member of the SLC4 family that transports protons rather than bicarbonate. SLC4A11 is expressed in corneal endothelial cells, and its mutation causes corneal endothelial dystrophy, although the mechanism of pathogenesis is unknown. We previously demonstrated that the magnitude of the H+ conductance (Gm) mediated by SLC4A11 is increased by rises in intracellular as well as extracellular pH (pHi and pHe). To better understand this feature and whether it is altered in disease, we studied the pH dependence of wild-type and mutant mouse Slc4a11 expressed in Xenopus oocytes. Using voltage-clamp circuitry in conjunction with a H+-selective microelectrode and a microinjector loaded with NaHCO3, we caused incremental rises in oocyte pHi and measured the effect on Gm. We find that the rise of Gm has a steeper pHi dependence at pHe =8.50 than at pHe =7.50. Data gathered at pHe =8.50 can be fit to the Hill equation enabling the calculation of a pK value that reports pHi dependence. We find that mutation of lysine residues that are close to the first transmembrane span (TM1) causes an alkaline shift in pK. Furthermore, two corneal-dystrophy-causing mutations close to the extracellular end of TM1, E399K and T401K (E368K and T370K in mouse), cause an acidic shift in pK, while a third mutation in the fourth intracellular loop, R804H (R774H in mouse), causes an alkaline shift in pK. This is the first description of determinants of SLC4A11 pH dependence and the first indication that a shift in pH dependence could modify disease expressivity in some cases of corneal dystrophy.
Collapse
Affiliation(s)
- Bianca N Quade
- Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, New York
| | - Aniko Marshall
- Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, New York
| | - Mark D Parker
- Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, New York.,Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo: The State University of New York, Buffalo, New York.,State University of New York Eye Institute, University at Buffalo: The State University of New York, Buffalo, New York
| |
Collapse
|
5
|
Becker HM. Carbonic anhydrase IX and acid transport in cancer. Br J Cancer 2020; 122:157-167. [PMID: 31819195 PMCID: PMC7051959 DOI: 10.1038/s41416-019-0642-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/29/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Alterations in tumour metabolism and acid/base regulation result in the formation of a hostile environment, which fosters tumour growth and metastasis. Acid/base homoeostasis in cancer cells is governed by the concerted interplay between carbonic anhydrases (CAs) and various transport proteins, which either mediate proton extrusion or the shuttling of acid/base equivalents, such as bicarbonate and lactate, across the cell membrane. Accumulating evidence suggests that some of these transporters interact both directly and functionally with CAIX to form a protein complex coined the 'transport metabolon'. Transport metabolons formed between bicarbonate transporters and CAIX require CA catalytic activity and have a function in cancer cell migration and invasion. Another type of transport metabolon is formed by CAIX and monocarboxylate transporters. In this complex, CAIX functions as a proton antenna for the transporter, which drives the export of lactate and protons from the cell. Since CAIX is almost exclusively expressed in cancer cells, these transport metabolons might serve as promising targets to interfere with tumour pH regulation and energy metabolism. This review provides an overview of the current state of research on the function of CAIX in tumour acid/base transport and discusses how CAIX transport metabolons could be exploited in modern cancer therapy.
Collapse
Affiliation(s)
- Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559, Hannover, Germany.
| |
Collapse
|
6
|
Jobst-Schwan T, Klämbt V, Tarsio M, Heneghan JF, Majmundar AJ, Shril S, Buerger F, Ottlewski I, Shmukler BE, Topaloglu R, Hashmi S, Hafeez F, Emma F, Greco M, Laube GF, Fathy HM, Pohl M, Gellermann J, Milosevic D, Baum MA, Mane S, Lifton RP, Kane PM, Alper SL, Hildebrandt F. Whole exome sequencing identified ATP6V1C2 as a novel candidate gene for recessive distal renal tubular acidosis. Kidney Int 2019; 97:567-579. [PMID: 31959358 DOI: 10.1016/j.kint.2019.09.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022]
Abstract
Distal renal tubular acidosis is a rare renal tubular disorder characterized by hyperchloremic metabolic acidosis and impaired urinary acidification. Mutations in three genes (ATP6V0A4, ATP6V1B1 and SLC4A1) constitute a monogenic causation in 58-70% of familial cases of distal renal tubular acidosis. Recently, mutations in FOXI1 have been identified as an additional cause. Therefore, we hypothesized that further monogenic causes of distal renal tubular acidosis remain to be discovered. Panel sequencing and/or whole exome sequencing was performed in a cohort of 17 families with 19 affected individuals with pediatric onset distal renal tubular acidosis. A causative mutation was detected in one of the three "classical" known distal renal tubular acidosis genes in 10 of 17 families. The seven unsolved families were then subjected to candidate whole exome sequencing analysis. Potential disease causing mutations in three genes were detected: ATP6V1C2, which encodes another kidney specific subunit of the V-type proton ATPase (1 family); WDR72 (2 families), previously implicated in V-ATPase trafficking in cells; and SLC4A2 (1 family), a paralog of the known distal renal tubular acidosis gene SLC4A1. Two of these mutations were assessed for deleteriousness through functional studies. Yeast growth assays for ATP6V1C2 revealed loss-of-function for the patient mutation, strongly supporting ATP6V1C2 as a novel distal renal tubular acidosis gene. Thus, we provided a molecular diagnosis in a known distal renal tubular acidosis gene in 10 of 17 families (59%) with this disease, identified mutations in ATP6V1C2 as a novel human candidate gene, and provided further evidence for phenotypic expansion in WDR72 mutations from amelogenesis imperfecta to distal renal tubular acidosis.
Collapse
Affiliation(s)
- Tilman Jobst-Schwan
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Verena Klämbt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maureen Tarsio
- Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY
| | - John F Heneghan
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Amar J Majmundar
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Florian Buerger
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Isabel Ottlewski
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Boris E Shmukler
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Seema Hashmi
- Department of Pediatric Nephrology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Farkhanda Hafeez
- Department of Pediatric Nephrology, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Francesco Emma
- Department of Pediatric Subspecialties, Division of Nephrology, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Marcella Greco
- Department of Pediatric Subspecialties, Division of Nephrology, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Guido F Laube
- Nephrology Unit, University Children's Hospital, Zürich, Switzerland
| | - Hanan M Fathy
- Pediatric Nephrology Unit, Alexandria Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Martin Pohl
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jutta Gellermann
- Department of Pediatrics, University Children's Hospital of Berlin, University Hospital Berlin Charité, Berlin, Germany
| | - Danko Milosevic
- University of Zagreb School of Medicine, Zagreb University Hospital Center, Zagreb, Croatia
| | - Michelle A Baum
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA; Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA; Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY
| | - Seth L Alper
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Bernardino RL, Carrageta DF, Sousa M, Alves MG, Oliveira PF. pH and male fertility: making sense on pH homeodynamics throughout the male reproductive tract. Cell Mol Life Sci 2019; 76:3783-3800. [PMID: 31165202 PMCID: PMC11105638 DOI: 10.1007/s00018-019-03170-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
In the male reproductive tract, ionic equilibrium is essential to maintain normal spermatozoa production and, hence, the reproductive potential. Among the several ions, HCO3- and H+ have a central role, mainly due to their role on pH homeostasis. In the male reproductive tract, the major players in pH regulation and homeodynamics are carbonic anhydrases (CAs), HCO3- membrane transporters (solute carrier 4-SLC4 and solute carrier 26-SLC26 family transporters), Na+-H+ exchangers (NHEs), monocarboxylate transporters (MCTs) and voltage-gated proton channels (Hv1). CAs and these membrane transporters are widely distributed throughout the male reproductive tract, where they play essential roles in the ionic balance of tubular fluids. CAs are the enzymes responsible for the production of HCO3- which is then transported by membrane transporters to ensure the maturation, storage, and capacitation of the spermatozoa. The transport of H+ is carried out by NHEs, Hv1, and MCTs and is essential for the electrochemical balance and for the maintenance of the pH within the physiological limits along the male reproductive tract. Alterations in HCO3- production and transport of ions have been associated with some male reproductive dysfunctions. Herein, we present an up-to-date review on the distribution and role of the main intervenient on pH homeodynamics in the fluids throughout the male reproductive tract. In addition, we discuss their relevance for the establishment of the male reproductive potential.
Collapse
Affiliation(s)
- Raquel L Bernardino
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - David F Carrageta
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Marco G Alves
- Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal.
- i3S-Institute for Innovation and Health Research, University of Porto, Porto, Portugal.
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
8
|
Rodrigues PM, Perugorria MJ, Santos-Laso A, Bujanda L, Beuers U, Banales JM. Primary biliary cholangitis: A tale of epigenetically-induced secretory failure? J Hepatol 2018; 69:1371-1383. [PMID: 30193962 DOI: 10.1016/j.jhep.2018.08.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022]
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease associated with autoimmune-related destruction of small to medium size intrahepatic bile ducts. The aetiology of PBC is unknown and its pathogenesis remains obscure. Both genetic variants and environmental factors have been linked to increased PBC susceptibility, with other alterations known to cooperate in disease pathobiology. Increasing evidence indicates the presence of epigenetic abnormalities in PBC, particularly alterations of cholangiocellular microRNAs (miRNAs or miRs). This review highlights and discusses the most relevant epigenetic alterations found in patients with PBC, focusing on the role of miR-506 in the promotion of cholestasis and immune activation.
Collapse
Affiliation(s)
- Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Alvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology & Hepatology, Amsterdam Gastroenterology and Metabolism, AMC, Amsterdam, The Netherlands
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
9
|
Adam A, Deimel S, Pardo-Medina J, García-Martínez J, Konte T, Limón MC, Avalos J, Terpitz U. Protein Activity of the Fusarium fujikuroi Rhodopsins CarO and OpsA and Their Relation to Fungus-Plant Interaction. Int J Mol Sci 2018; 19:ijms19010215. [PMID: 29324661 PMCID: PMC5796164 DOI: 10.3390/ijms19010215] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/23/2017] [Accepted: 01/08/2018] [Indexed: 01/25/2023] Open
Abstract
Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus.
Collapse
Affiliation(s)
- Alexander Adam
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, D-97074 Würzburg, Germany; (A.A.); (S.D.)
| | - Stephan Deimel
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, D-97074 Würzburg, Germany; (A.A.); (S.D.)
| | - Javier Pardo-Medina
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain; (J.P.-M.); (J.G.-M.); (M.C.L.); (J.A.)
| | - Jorge García-Martínez
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain; (J.P.-M.); (J.G.-M.); (M.C.L.); (J.A.)
| | - Tilen Konte
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Sl-1000 Ljubljana, Slovenia;
| | - M. Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain; (J.P.-M.); (J.G.-M.); (M.C.L.); (J.A.)
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain; (J.P.-M.); (J.G.-M.); (M.C.L.); (J.A.)
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, D-97074 Würzburg, Germany; (A.A.); (S.D.)
- Correspondence: ; Tel.: +49-931-31-84226
| |
Collapse
|
10
|
Extracellular Cl(-) regulates human SO4 (2-)/anion exchanger SLC26A1 by altering pH sensitivity of anion transport. Pflugers Arch 2016; 468:1311-32. [PMID: 27125215 DOI: 10.1007/s00424-016-1823-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/03/2016] [Accepted: 04/07/2016] [Indexed: 12/16/2022]
Abstract
Genetic deficiency of the SLC26A1 anion exchanger in mice is known to be associated with hyposulfatemia and hyperoxaluria with nephrolithiasis, but many aspects of human SLC26A1 function remain to be explored. We report here the functional characterization of human SLC26A1, a 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS)-sensitive, electroneutral sodium-independent anion exchanger transporting sulfate, oxalate, bicarbonate, thiosulfate, and (with divergent properties) chloride. Human SLC26A1-mediated anion exchange differs from that of its rodent orthologs in its stimulation by alkaline pHo and inhibition by acidic pHo but not pHi and in its failure to transport glyoxylate. SLC26A1-mediated transport of sulfate and oxalate is highly dependent on allosteric activation by extracellular chloride or non-substrate anions. Extracellular chloride stimulates apparent V max of human SLC26A1-mediated sulfate uptake by conferring a 2-log decrease in sensitivity to inhibition by extracellular protons, without changing transporter affinity for extracellular sulfate. In contrast to SLC26A1-mediated sulfate transport, SLC26A1-associated chloride transport is activated by acid pHo, shows reduced sensitivity to DIDS, and exhibits cation dependence of its DIDS-insensitive component. Human SLC26A1 resembles SLC26 paralogs in its inhibition by phorbol ester activation of protein kinase C (PKC), which differs in its undiminished polypeptide abundance at or near the oocyte surface. Mutation of SLC26A1 residues corresponding to candidate anion binding site-associated residues in avian SLC26A5/prestin altered anion transport in patterns resembling those of prestin. However, rare SLC26A1 polymorphic variants from a patient with renal Fanconi Syndrome and from a patient with nephrolithiasis/calcinosis exhibited no loss-of-function phenotypes consistent with disease pathogenesis.
Collapse
|
11
|
Liu Y, Yang J, Chen LM. Structure and Function of SLC4 Family [Formula: see text] Transporters. Front Physiol 2015; 6:355. [PMID: 26648873 PMCID: PMC4664831 DOI: 10.3389/fphys.2015.00355] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
The solute carrier SLC4 family consists of 10 members, nine of which are [Formula: see text] transporters, including three Na(+)-independent Cl(-)/[Formula: see text] exchangers AE1, AE2, and AE3, five Na(+)-coupled [Formula: see text] transporters NBCe1, NBCe2, NBCn1, NBCn2, and NDCBE, as well as "AE4" whose Na(+)-dependence remains controversial. The SLC4 [Formula: see text] transporters play critical roles in pH regulation and transepithelial movement of electrolytes with a broad range of demonstrated physiological relevances. Dysfunctions of these transporters are associated with a series of human diseases. During the past decades, tremendous amount of effort has been undertaken to investigate the topological organization of the SLC4 transporters in the plasma membrane. Based upon the proposed topology models, mutational and functional studies have identified important structural elements likely involved in the ion translocation by the SLC4 transporters. In the present article, we review the advances during the past decades in understanding the structure and function of the SLC4 transporters.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
12
|
H95 Is a pH-Dependent Gate in Aquaporin 4. Structure 2015; 23:2309-2318. [PMID: 26585511 DOI: 10.1016/j.str.2015.08.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/17/2015] [Accepted: 08/19/2015] [Indexed: 11/21/2022]
Abstract
Aquaporin 4 (AQP4) is a transmembrane protein from the aquaporin family and is the predominant water channel in the mammalian brain. The regulation of permeability of this protein could be of potential therapeutic use to treat various forms of damage to the nervous tissue. In this work, based on data obtained from in silico and in vitro studies, a pH sensitivity that regulates the osmotic water permeability of AQP4 is demonstrated. The results indicate that AQP4 has increased water permeability at conditions of low pH in atomistic computer simulations and experiments carried out on Xenopus oocytes expressing AQP4. With molecular dynamics simulations, this effect was traced to a histidine residue (H95) located in the cytoplasmic lumen of AQP4. A mutant form of AQP4, in which H95 was replaced with an alanine (H95A), loses sensitivity to cytoplasmic pH changes in in vitro osmotic water permeability, thereby substantiating the in silico work.
Collapse
|
13
|
Garnett JP, Hickman E, Tunkamnerdthai O, Cuthbert AW, Gray MA. Protein phosphatase 1 coordinates CFTR-dependent airway epithelial HCO3- secretion by reciprocal regulation of apical and basolateral membrane Cl(-)-HCO3- exchangers. Br J Pharmacol 2015; 168:1946-60. [PMID: 23215877 DOI: 10.1111/bph.12085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 11/14/2012] [Accepted: 12/01/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Our recent studies on human airway serous-like Calu-3 cells showed that cAMP agonists stimulated a HCO3(-) rich secretion containing up to 80 mM HCO3(-). This alkaline secretion relied on a coordinated switch in the activity of distinct Cl(-)-HCO3(-) anion exchangers (AE) located at different regions of the cell. At the apical membrane, cAMP agonists activated the electroneutral AE pendrin (SLC26A4), together with cystic fibrosis transmembrane conductance regulator (CFTR), while at the basolateral membrane the agonists inhibited AE2 (SLC4A2). However, the underlying mechanism(s) that orchestrates this cAMP-dependent switch in AE activity has not been elucidated. EXPERIMENTAL APPROACH Apical and basolateral Cl(-)-HCO3(-) exchange was assessed by measuring Cl(-)-dependent changes in intracellular pH (pH(i)). KEY RESULTS We show that protein phosphatase 1 (PP1), together with CFTR, play central roles in this reciprocal regulation of AE activity. Activation of pendrin by cAMP agonists, but not inhibition of the basolateral exchanger, was protein kinase A-dependent. Knocking down CFTR expression, or blocking its activity with GlyH-101, led to incomplete inhibition of the basolateral AE by cAMP, supporting a role for CFTR in this process. Addition of the PP1/2A inhibitor, okadaic acid, but not the PP2A specific inhibitor fostreicin, mimicked the effect of cAMP stimulation. Furthermore, okadaic acid-treated Calu-3 monolayers produced a more alkaline fluid than untreated cells, which was comparable with that produced by cAMP stimulation. CONCLUSIONS AND IMPLICATIONS These results identify PP1 as a novel regulator of AE activity which, in concert with CFTR, coordinates events at both apical and basolateral membranes, crucial for efficient HCO3(-) secretion from Calu-3 cells.
Collapse
Affiliation(s)
- James P Garnett
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
14
|
Sharp K, Crampin E, Sneyd J. A spatial model of fluid recycling in the airways of the lung. J Theor Biol 2015; 382:198-215. [PMID: 26169010 DOI: 10.1016/j.jtbi.2015.06.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022]
Abstract
The genetic disease cystic fibrosis (CF) is a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, and results in viscous mucus and impaired mucociliary clearance leading to chronic recurring pulmonary infections. Although extensive experimental research has been conducted over the last few decades, CF lung pathophysiology remains controversial. There are two competing explanations for the observed depletion of periciliary liquid (PCL) in CF lungs. The low volume hypothesis assumes fluid hyperabsorption through surface epithelia due to an over-active epithelial Na(+) channel (ENaC), and the low secretion hypothesis assumes inspissated mucins secreted from glands due to lack of serous fluid secreted from gland acini. We present a spatial mathematical model that reflects in vivo fluid recycling via submucosal gland (SMG) secretion, and absorption through surface epithelia. We then test the model in CF conditions by increasing ENaC open probability and decreasing SMG flux while simultaneously reducing CFTR open probability. Increasing ENaC activity only results in increased fluid absorption across surface epithelia, as seen in in vitro experiments. However, combining potential CF mechanisms results in markedly less fluid absorbed while providing the largest reduction in PCL volume, suggesting that a compromise in gland fluid secretion dominates over increased ENaC activity to decrease the amount of fluid transported transcellularly in CF lungs in vivo. Model results also indicate that a spatial model is necessary for an accurate calculation of total fluid transport, as the effects of spatial gradients can be severe, particularly in close proximity to the SMGs.
Collapse
Affiliation(s)
- Katie Sharp
- Department of Mathematics, University of Auckland, 23 Princes St, Auckland CBD, Auckland 1010, New Zealand.
| | - Edmund Crampin
- Department of Biomedical Engineering, Level 4, University of Melbourne, Parkville 3010, Victoria, Australia
| | - James Sneyd
- Department of Mathematics, University of Auckland, 23 Princes St, Auckland CBD, Auckland 1010, New Zealand
| |
Collapse
|
15
|
Alka K, Casey JR. Bicarbonate transport in health and disease. IUBMB Life 2014; 66:596-615. [PMID: 25270914 DOI: 10.1002/iub.1315] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/10/2014] [Indexed: 12/28/2022]
Abstract
Bicarbonate (HCO3(-)) has a central place in human physiology as the waste product of mitochondrial energy production and for its role in pH buffering throughout the body. Because bicarbonate is impermeable to membranes, bicarbonate transport proteins are necessary to enable control of bicarbonate levels across membranes. In humans, 14 bicarbonate transport proteins, members of the SLC4 and SLC26 families, function by differing transport mechanisms. In addition, some anion channels and ZIP metal transporters contribute to bicarbonate movement across membranes. Defective bicarbonate transport leads to diseases, including systemic acidosis, brain dysfunction, kidney stones, and hypertension. Altered expression levels of bicarbonate transporters in patients with breast, colon, and lung cancer suggest an important role of these transporters in cancer.
Collapse
Affiliation(s)
- Kumari Alka
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
16
|
Molecular cloning and functional characterization of zebrafish Slc4a3/Ae3 anion exchanger. Pflugers Arch 2014; 466:1605-18. [PMID: 24668450 DOI: 10.1007/s00424-014-1494-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/24/2014] [Accepted: 03/04/2014] [Indexed: 12/15/2022]
Abstract
The zebrafish genome encodes two slc4a1 genes, one expressed in erythroid tissues and the other in the HR (H(+)-ATPase-rich) type of embryonic skin ionocytes, and two slc4a2 genes, one in proximal pronephric duct and the other in several extrarenal tissues of the embryo. We now report cDNA cloning and functional characterization of zebrafish slc4a3/ae3 gene products. The single ae3 gene on chromosome 9 generates at least two low-abundance ae3 transcripts differing only in their 5'-untranslated regions and encoding a single definitive Ae3 polypeptide of 1170 amino acids. The 7 kb upstream of the apparent initiator Met in ae3 exon 3 comprises multiple diverse, mobile repeat elements which disrupt and appear to truncate the Ae3 N-terminal amino acid sequence that would otherwise align with brain Ae3 of other species. Embryonic ae3 mRNA expression was detected by whole mount in situ hybridization only in fin buds at 24-72 hpf, but was detectable by RT-PCR across a range of embryonic and adult tissues. Epitope-tagged Ae3 polypeptide was expressed at or near the surface of Xenopus oocytes, and mediated low rates of DIDS-sensitive (36)Cl(-)/Cl(-) exchange in influx and efflux assays. As previously reported for Ae2 polypeptides, (36)Cl(-) transport by Ae3 was inhibited by both extracellular and intracellular acidic pH, and stimulated by alkaline pH. However, zebrafish Ae3 differed from Ae2 polypeptides in its insensitivity to NH4Cl and to hypertonicity. We conclude that multiple repeat elements have disrupted the 5'-end of the zebrafish ae3 gene, associated with N-terminal truncation of the protein and reduced anion transport activity.
Collapse
|
17
|
Concepcion AR, Salas JT, Sarvide S, Sáez E, Ferrer A, López M, Portu A, Banales JM, Hervás-Stubbs S, Oude Elferink RPJ, Prieto J, Medina JF. Anion exchanger 2 is critical for CD8(+) T cells to maintain pHi homeostasis and modulate immune responses. Eur J Immunol 2014; 44:1341-51. [PMID: 24515893 DOI: 10.1002/eji.201344218] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/24/2013] [Accepted: 02/04/2014] [Indexed: 01/11/2023]
Abstract
Mitogenic stimulation of lymphocytes involves alkalinization of intracellular pH (pHi ). Subsequent pHi regulation may involve HCO3 (-) extrusion through Cl(-) /HCO3 (-) exchangers and/or Na(+) -HCO3 (-) co-transporters with acid-loading capability. Abnormalities in these mechanisms could result in immune dysfunctions, as suggested by the CD8(+) T-cell expansion encountered in mice lacking Ae2 (a widely expressed acid loader with electroneutral and Na(+) -independent Cl(-) /HCO3 (-) anion-exchange activity). Here we report that CD8(+) T cells but not CD4(+) T cells or other lymphocyte populations, are crucially dependent on Ae2 for pHi regulation. While total lymphocytes (including isolated CD4(+) T cells) exhibit Ae1 expression and Na(+) -HCO3 (-) co-transport with acidifying potential, CD8(+) T cells lack these acid-loading mechanisms. In Ae2-KO mice, CD4(+) but not CD8(+) T cells upregulate these potential Ae2 surrogates. As a consequence, Ae2-KO CD8(+) T cells exhibit alkalinized pHi , and dramatically increase their pHi upon CD3 stimulation. Moreover, stimulated Ae2-deficient CD8(+) T cells show enhanced intracellular production of IL-2 and membrane expression of its receptor IL-2Rα, together with increased cell proliferation and activation. These findings demonstrate that CD8(+) T cells are critically dependent on Ae2 for pHi homeostasis and tuning of cell proliferation and activation. Ae2 thus constitutes a novel target to modulate CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Axel R Concepcion
- Center for Applied Medical Research (CIMA), Clinic and School of Medicine University of Navarra, Pamplona, Spain; CIBERehd, the "Carlos III" Institute of Health, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Concepcion AR, Lopez M, Ardura-Fabregat A, Medina JF. Role of AE2 for pHi regulation in biliary epithelial cells. Front Physiol 2014; 4:413. [PMID: 24478713 PMCID: PMC3894451 DOI: 10.3389/fphys.2013.00413] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/27/2013] [Indexed: 12/31/2022] Open
Abstract
The Cl−/HCO−3anion exchanger 2 (AE2) is known to be involved in intracellular pH (pHi) regulation and transepithelial acid-base transport. Early studies showed that AE2 gene expression is reduced in liver biopsies and blood mononuclear cells from patients with primary biliary cirrhosis (PBC), a disease characterized by chronic non-suppurative cholangitis associated with antimitochondrial antibodies (AMA) and other autoimmune phenomena. Microfluorimetric analysis of the Cl−/HCO−3 anion exchange (AE) in isolated cholangiocytes showed that the cAMP-stimulated AE activity is diminished in PBC compared to both healthy and diseased controls. More recently, it was found that miR-506 is upregulated in cholangiocytes of PBC patients and that AE2 may be a target of miR-506. Additional evidence for a pathogenic role of AE2 dysregulation in PBC was obtained with Ae2−/−a,b mice, which develop biochemical, histological, and immunologic alterations that resemble PBC (including development of serum AMA). Analysis of HCO−3 transport systems and pHi regulation in cholangiocytes from normal and Ae2−/−a,b mice confirmed that AE2 is the transporter responsible for the Cl−/HCO−3exchange in these cells. On the other hand, both Ae2+/+a,b and Ae2−/−a,b mouse cholangiocytes exhibited a Cl−-independent bicarbonate transport system, essentially a Na+-bicarbonate cotransport (NBC) system, which could contribute to pHi regulation in the absence of AE2.
Collapse
Affiliation(s)
- Axel R Concepcion
- Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), School of Medicine, University of Navarra, and Ciberehd Pamplona, Spain
| | - María Lopez
- Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), School of Medicine, University of Navarra, and Ciberehd Pamplona, Spain
| | - Alberto Ardura-Fabregat
- Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), School of Medicine, University of Navarra, and Ciberehd Pamplona, Spain
| | - Juan F Medina
- Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), School of Medicine, University of Navarra, and Ciberehd Pamplona, Spain
| |
Collapse
|
19
|
Cordat E, Reithmeier RA. Structure, Function, and Trafficking of SLC4 and SLC26 Anion Transporters. CURRENT TOPICS IN MEMBRANES 2014; 73:1-67. [DOI: 10.1016/b978-0-12-800223-0.00001-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Abstract
Tightly coupled exchange of Na(+) for H(+) occurs across the surface membrane of virtually all living cells. For years, the underlying molecular entity was unknown and the full physiological significance of the exchange process was not appreciated, but much knowledge has been gained in the last two decades. We now realize that, unlike most of the other transporters that specialize in supporting one specific function, Na(+)/H(+) exchangers (NHE) participate in a remarkable assortment of physiological processes, ranging from pH homeostasis and epithelial salt transport, to systemic and cellular volume regulation. In parallel, we have learned a great deal about the biochemistry and molecular biology of Na(+)/H(+) exchange. Indeed, it has now become apparent that exchange is mediated not by one, but by a diverse family of related yet distinct carriers (antiporters) sometimes present in different cell types and located in various intracellular compartments. Each one of these has unique structural features that dictate its functional role and mode of regulation. The biological relevance of Na(+)/H(+) exchange is emphasized by its evolutionary conservation; analogous exchangers are present from bacteria to man. Because of its wide distribution and versatile function, Na(+)/H(+) exchange has attracted an enormous amount of interest and therefore generated a vast literature. The vastness and complexity of the field has been compounded by the multiplicity of NHE isoforms. For reasons of space and in the spirit of this series, this overview is restricted to the family of mammalian NHEs.
Collapse
Affiliation(s)
- John Orlowski
- Department of Physiology, McGill University, Montreal, Canada
| | | |
Collapse
|
21
|
Shnitsar V, Li J, Li X, Calmettes C, Basu A, Casey JR, Moraes TF, Reithmeier RAF. A substrate access tunnel in the cytosolic domain is not an essential feature of the solute carrier 4 (SLC4) family of bicarbonate transporters. J Biol Chem 2013; 288:33848-33860. [PMID: 24121512 DOI: 10.1074/jbc.m113.511865] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Anion exchanger 1 (AE1; Band 3; SLC4A1) is the founding member of the solute carrier 4 (SLC4) family of bicarbonate transporters that includes chloride/bicarbonate AEs and Na(+)-bicarbonate co-transporters (NBCs). These membrane proteins consist of an amino-terminal cytosolic domain involved in protein interactions and a carboxyl-terminal membrane domain that carries out the transport function. Mutation of a conserved arginine residue (R298S) in the cytosolic domain of NBCe1 (SLC4A4) is linked to proximal renal tubular acidosis and results in impaired transport function, suggesting that the cytosolic domain plays a role in substrate permeation. Introduction of single and double mutations at the equivalent arginine (Arg(283)) and at an interacting glutamate (Glu(85)) in the cytosolic domain of human AE1 (cdAE1) had no effect on the cell surface expression or the transport activity of AE1 expressed in HEK-293 cells. In addition, the membrane domain of AE1 (mdAE1) efficiently mediated anion transport. A 2.1-Å resolution crystal structure of cdΔ54AE1 (residues 55-356 of cdAE1) lacking the amino-terminal and carboxyl-terminal disordered regions, produced at physiological pH, revealed an extensive hydrogen-bonded network involving Arg(283) and Glu(85). Mutations at these residues affected the pH-dependent conformational changes and stability of cdΔ54AE1. As these structural alterations did not impair functional expression of AE1, the cytosolic and membrane domains operate independently. A substrate access tunnel within the cytosolic domain is not present in AE1 and therefore is not an essential feature of the SLC4 family of bicarbonate transporters.
Collapse
Affiliation(s)
- Volodymyr Shnitsar
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jing Li
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Xuyao Li
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charles Calmettes
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Arghya Basu
- Department of Biochemistry and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Joseph R Casey
- Department of Biochemistry and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
22
|
Reimold FR, Stewart AK, Stolpe K, Heneghan JF, Shmukler BE, Alper SL. Substitution of transmembrane domain Cys residues alters pH(o)-sensitive anion transport by AE2/SLC4A2 anion exchanger. Pflugers Arch 2012; 465:839-51. [PMID: 23271450 DOI: 10.1007/s00424-012-1196-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/19/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
Abstract
AE2/SLC4A2 is the most widely expressed of the Na(+)-independent SLC4 Cl(-)/HCO3 (-) exchangers and is essential for postnatal survival, but its structure remains unknown. We have generated and expressed a mouse AE2 construct devoid of transmembrane domain cysteine (Cys) residues, mAE2Cys-less, to enhance the utility of Cys-substitution mutagenesis for structural and structure-function studies of mAE2. mAE2Cys-less expressed in Xenopus oocytes exhibited partial reduction of stilbene disulfonate-sensitive anion exchange activity. This activity was independent of the mAE2 N-terminal cytosolic domain and was accompanied by near-normal surface expression, without change in K 1/2 for extracellular Cl(-). mAE2Cys-less exhibited wildtype activation of anion exchange by hypertonicity and by NH4Cl, and wildtype inhibition of anion exchange by acidic intracellular pH (pHi) in the absence of NH4 (+). However, inhibition of anion exchange by extracellular pH (pHo) exhibited an alkaline shifted pHo(50) value of at least 0.6-0.7 pH units. Although SO4 (2-) transport by mAE2Cys-less resembled wildtype mAE2 in its stimulation by acidic pHo, the absence of transmembrane domain Cys residues abrogated activation of oxalate transport by acidic pHo. The contrasting enhancement of SO4 (2-) transport by alkaline pHo in the mAE1 anion translocation pathway mutant E699Q (Am J Physiol Cell Physiol 295: C302) was phenocopied by the corresponding mutant E1007Q in both AE2 and AE2Cys-less. However, the absence of transmembrane domain Cys residues exacerbated the reduced basal anion transport function exhibited by this and other missense substitutions at AE2 residue E1007. AE2Cys-less will be a valuable experimental tool for structure-function studies of the SLC4 gene family, but its utility for studies of AE2 regulation by extracellular pH must be evaluated in the context of its alkaline-shifted pHo sensitivity, resembling that of AE2 gastric parietal cell variant AE2c1.
Collapse
Affiliation(s)
- Fabian R Reimold
- Renal Division and Molecular and Vascular Medicine Division, Beth Israel Deaconess Medical Center, 99 Brookline Avenue, RN-380F, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
23
|
Akbas F, Aydin Z. Boric acid increases the expression levels of human anion exchanger genes SLC4A2 and SLC4A3. GENETICS AND MOLECULAR RESEARCH 2012; 11:847-54. [PMID: 22576912 DOI: 10.4238/2012.april.3.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Boron is an important micronutrient in plants and animals. The role of boron in living systems includes coordinated regulation of gene expression, growth and proliferation of higher plants and animals. There are several well-defined genes associated with boron transportation and tolerance in plants and these genes show close homology with human anion exchanger genes. Mutation of these genes also characterizes some genetic disorders. We investigated the toxic effects of boric acid on HEK293 cells and mRNA expression of anion exchanger (SLC4A1, SLC4A2 and SLC4A3) genes. Cytotoxicity of boric acid at different concentrations was tested by using the methylthiazolyldiphenyl-tetrazolium bromide assay. Gene expression profiles were examined using quantitative real-time PCR. In the HEK293 cells, the nontoxic upper concentration of boric acid was 250 μM; more than 500 μM caused cytotoxicity. The 250 μM boric acid concentration increased gene expression level of SLC4A2 up to 8.6-fold and SLC4A3 up to 2.6-fold, after 36-h incubation. There was no significant effect of boric acid on SLC4A1 mRNA expression levels.
Collapse
Affiliation(s)
- F Akbas
- Department of Genetics and Bioengineering, Faculty of Engineering, Fatih University, Büyükcekmece, Istanbul, Turkey.
| | | |
Collapse
|
24
|
Dürr KL, Tavraz NN, Friedrich T. Control of gastric H,K-ATPase activity by cations, voltage and intracellular pH analyzed by voltage clamp fluorometry in Xenopus oocytes. PLoS One 2012; 7:e33645. [PMID: 22448261 PMCID: PMC3308979 DOI: 10.1371/journal.pone.0033645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/14/2012] [Indexed: 11/24/2022] Open
Abstract
Whereas electrogenic partial reactions of the Na,K-ATPase have been studied in depth, much less is known about the influence of the membrane potential on the electroneutrally operating gastric H,K-ATPase. In this work, we investigated site-specifically fluorescence-labeled H,K-ATPase expressed in Xenopus oocytes by voltage clamp fluorometry to monitor the voltage-dependent distribution between E1P and E2P states and measured Rb+ uptake under various ionic and pH conditions. The steady-state E1P/E2P distribution, as indicated by the voltage-dependent fluorescence amplitudes and the Rb+ uptake activity were highly sensitive to small changes in intracellular pH, whereas even large extracellular pH changes affected neither the E1P/E2P distribution nor transport activity. Notably, intracellular acidification by approximately 0.5 pH units shifted V0.5, the voltage, at which the E1P/E2P ratio is 50∶50, by −100 mV. This was paralleled by an approximately two-fold acceleration of the forward rate constant of the E1P→E2P transition and a similar increase in the rate of steady-state cation transport. The temperature dependence of Rb+ uptake yielded an activation energy of ∼90 kJ/mol, suggesting that ion transport is rate-limited by a major conformational transition. The pronounced sensitivity towards intracellular pH suggests that proton uptake from the cytoplasmic side controls the level of phosphoenzyme entering the E1P→E2P conformational transition, thus limiting ion transport of the gastric H,K-ATPase. These findings highlight the significance of cellular mechanisms contributing to increased proton availability in the cytoplasm of gastric parietal cells. Furthermore, we show that extracellular Na+ profoundly alters the voltage-dependent E1P/E2P distribution indicating that Na+ ions can act as surrogates for protons regarding the E2P→E1P transition. The complexity of the intra- and extracellular cation effects can be rationalized by a kinetic model suggesting that cations reach the binding sites through a rather high-field intra- and a rather low-field extracellular access channel, with fractional electrical distances of ∼0.5 and ∼0.2, respectively.
Collapse
Affiliation(s)
| | | | - Thomas Friedrich
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
25
|
Stewart AK, Shmukler BE, Vandorpe DH, Rivera A, Heneghan JF, Li X, Hsu A, Karpatkin M, O'Neill AF, Bauer DE, Heeney MM, John K, Kuypers FA, Gallagher PG, Lux SE, Brugnara C, Westhoff CM, Alper SL. Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S. Am J Physiol Cell Physiol 2011; 301:C1325-43. [PMID: 21849667 PMCID: PMC3233792 DOI: 10.1152/ajpcell.00054.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 08/11/2011] [Indexed: 11/22/2022]
Abstract
Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li(+) and (86)Rb(+), with secondarily increased (86)Rb(+) influx sensitive to ouabain and to bumetanide. Increased RhAG-associated (14)C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of Li(+), (86)Rb(+), and (14)C-MA were pharmacologically distinct, and Li(+) uptakes associated with RhAG and RhAG F65S were differentially inhibited by NH(4)(+) and Gd(3+). RhAG-expressing oocytes were acidified and depolarized by 5 mM bath NH(3)/NH(4)(+), but alkalinized and depolarized by subsequent bath exposure to 5 mM methylammonium chloride (MA/MA(+)). RhAG F65S-expressing oocytes exhibited near-wild-type responses to NH(4)Cl, but MA/MA(+) elicited attenuated alkalinization and strong hyperpolarization. Expression of RhAG or RhAG F65S increased steady-state cation currents unaltered by bath Li(+) substitution or bath addition of 5 mM NH(4)Cl or MA/MA(+). These oocyte studies suggest that 1) RhAG expression increases oocyte transport of NH(3)/NH(4)(+) and MA/MA(+); 2) RhAG F65S exhibits gain-of-function phenotypes of increased cation conductance/permeability, and loss-of-function phenotypes of decreased and modified MA/MA(+) transport, and decreased NH(3)/NH(4)(+)-associated depolarization; and 3) RhAG transports NH(3)/NH(4)(+) and MA/MA(+) by distinct mechanisms, and/or the substrates elicit distinct cellular responses. Thus, RhAG F65S is a loss-of-function mutation for amine transport. The altered oocyte intracellular pH, membrane potential, and currents associated with RhAG or RhAG F65S expression may reflect distinct transport mechanisms.
Collapse
Affiliation(s)
- Andrew K Stewart
- Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Reimold FR, Heneghan JF, Stewart AK, Zelikovic I, Vandorpe DH, Shmukler BE, Alper SL. Pendrin function and regulation in Xenopus oocytes. Cell Physiol Biochem 2011; 28:435-50. [PMID: 22116357 DOI: 10.1159/000335106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2011] [Indexed: 01/24/2023] Open
Abstract
SLC26A4/PDS mutations cause Pendred Syndrome and non-syndromic deafness. but some aspects of function and regulation of the SLC26A4 polypeptide gene product, pendrin, remain controversial or incompletely understood. We have therefore extended the functional analysis of wildtype and mutant pendrin in Xenopus oocytes, with studies of isotopic flux, electrophysiology, and protein localization. Pendrin mediated electroneutral, pH-insensitive, DIDS-insensitive anion exchange, with extracellular K((1/2)) (in mM) of 1.9 (Cl(-)), 1.8 (I(-)), and 0.9 (Br(-)). The unusual phenotype of Pendred Syndrome mutation E303Q (loss-of-function with normal surface expression) prompted systematic mutagenesis at position 303. Only mutant E303K exhibited loss-of-function unrescued by forced overexpression. Mutant E303C was insensitive to charge modification by methanethiosulfonates. The corresponding mutants SLC26A2 E336Q, SLC26A3 E293Q, and SLC26A6 E298Q exhibited similar loss-of-function phenotypes, with wildtype surface expression also documented for SLC26A2 E336Q. The strong inhibition of wildtype SLC26A2, SLC26A3, and SLC26A6 by phorbol ester contrasts with its modest inhibition of pendrin. Phorbol ester inhibition of SLC26A2, SLC26A3, and SLC26A6 was blocked by coexpressed kinase-dead PKCδ but was without effect on pendrin. Mutation of SLC26A2 serine residues conserved in PKCδ -sensitive SLC26 proteins but absent from pendrin failed to reduce PKCδ sensitivity of SLC26A2 (190).
Collapse
Affiliation(s)
- Fabian R Reimold
- Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Stewart AK, Shmukler BE, Vandorpe DH, Reimold F, Heneghan JF, Nakakuki M, Akhavein A, Ko S, Ishiguro H, Alper SL. SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization. Am J Physiol Cell Physiol 2011; 301:C289-303. [PMID: 21593449 PMCID: PMC3154555 DOI: 10.1152/ajpcell.00089.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/17/2011] [Indexed: 01/02/2023]
Abstract
The secretin-stimulated human pancreatic duct secretes HCO(3)(-)-rich fluid essential for normal digestion. Optimal stimulation of pancreatic HCO(3)(-) secretion likely requires coupled activities of the cystic fibrosis transmembrane regulator (CFTR) anion channel and apical SLC26 Cl(-)/HCO(3)(-) exchangers. However, whereas stimulated human and guinea pig pancreatic ducts secrete ∼140 mM HCO(3)(-) or more, mouse and rat ducts secrete ∼40-70 mM HCO(3)(-). Moreover, the axial distribution and physiological roles of SLC26 anion exchangers in pancreatic duct secretory processes remain controversial and may vary among mammalian species. Thus the property of high HCO(3)(-) secretion shared by human and guinea pig pancreatic ducts prompted us to clone from guinea pig pancreatic duct cDNAs encoding Slc26a3, Slc26a6, and Slc26a11 polypeptides. We then functionally characterized these anion transporters in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. In Xenopus oocytes, gpSlc26a3 mediated only Cl(-)/Cl(-) exchange and electroneutral Cl(-)/HCO(3)(-) exchange. gpSlc26a6 in Xenopus oocytes mediated Cl(-)/Cl(-) exchange and bidirectional exchange of Cl(-) for oxalate and sulfate, but Cl(-)/HCO(3)(-) exchange was detected only in HEK 293 cells. gpSlc26a11 in Xenopus oocytes exhibited pH-dependent Cl(-), oxalate, and sulfate transport but no detectable Cl(-)/HCO(3)(-) exchange. The three gpSlc26 anion transporters exhibited distinct pharmacological profiles of (36)Cl(-) influx, including partial sensitivity to CFTR inhibitors Inh-172 and GlyH101, but only Slc26a11 was inhibited by PPQ-102. This first molecular and functional assessment of recombinant SLC26 anion transporters from guinea pig pancreatic duct enhances our understanding of pancreatic HCO(3)(-) secretion in species that share a high HCO(3)(-) secretory output.
Collapse
Affiliation(s)
- Andrew K Stewart
- Renal Division and Vascular Biology Center, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Alper SL, Stewart AK, Vandorpe DH, Clark JS, Horack RZ, Simpson JE, Walker NM, Clarke LL. Native and recombinant Slc26a3 (downregulated in adenoma, Dra) do not exhibit properties of 2Cl-/1HCO3- exchange. Am J Physiol Cell Physiol 2010; 300:C276-86. [PMID: 21068358 DOI: 10.1152/ajpcell.00366.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The recent proposal that Dra/Slc26a3 mediates electrogenic 2Cl(-)/1HCO(3)(-) exchange suggests a required revision of classical concepts of electroneutral Cl(-) transport across epithelia such as the intestine. We investigated 1) the effect of endogenous Dra Cl(-)/HCO(3)(-) activity on apical membrane potential (V(a)) of the cecal surface epithelium using wild-type (WT) and knockout (KO) mice; and 2) the electrical properties of Cl(-)/(OH(-))HCO(3)(-) exchange by mouse and human orthologs of Dra expressed in Xenopus oocytes. Ex vivo (36)Cl(-) fluxes and microfluorometry revealed that cecal Cl(-)/HCO(3)(-) exchange was abolished in the Dra KO without concordant changes in short-circuit current. In microelectrode studies, baseline V(a) of Dra KO surface epithelium was slightly hyperpolarized relative to WT but depolarized to the same extent as WT during luminal Cl(-) substitution. Subsequent studies indicated that Cl(-)-dependent V(a) depolarization requires the anion channel Cftr. Oocyte studies demonstrated that Dra-mediated exchange of intracellular Cl(-) for extracellular HCO(3)(-) is accompanied by slow hyperpolarization and a modest outward current, but that the steady-state current-voltage relationship is unaffected by Cl(-) removal or pharmacological blockade. Further, Dra-dependent (36)Cl(-) efflux was voltage-insensitive in oocytes coexpressing the cation channels ENaC or ROMK. We conclude that 1) endogenous Dra and recombinant human/mouse Dra orthologs do not exhibit electrogenic 2Cl(-)/1HCO(3)(-) exchange; and 2) acute induction of Dra Cl(-)/HCO(3)(-) exchange is associated with secondary membrane potential changes representing homeostatic responses. Thus, participation of Dra in coupled NaCl absorption and in uncoupled HCO(3)(-) secretion remains compatible with electroneutrality of these processes, and with the utility of electroneutral transport models for predicting epithelial responses in health and disease.
Collapse
Affiliation(s)
- Seth L Alper
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Islam MM, Hossain MA, Jannat R, Munemasa S, Nakamura Y, Mori IC, Murata Y. Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA. PLANT & CELL PHYSIOLOGY 2010; 51:1721-30. [PMID: 20739306 DOI: 10.1093/pcp/pcq131] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Abscisic acid (ABA)- and methyl jasmonate (MeJA)-induced stomatal closure are accompanied by cytosolic alkalization in guard cells. However, it remains to be clarified how the alkalization functions in not only ABA signaling but also MeJA. We investigated cytosolic alkalization in guard cells during ABA-, MeJA- and Ca(2+)-induced stomatal closure of wild type, abi1-1, abi2-1, ost1-2 and coi1 using a pH-sensitive fluorescent dye, BCECF-AM. ABA induced cytosolic alkalization in guard cells of wild-type and coi1 but not in ost1-2 guard cells whereas MeJA elicited cytosolic alkalization in wild-type and ost1-2 guard cells but not in coi1. Neither ABA nor MeJA induced cytosolic alkalization in abi1-1 and abi2-1 guard cells. Exogenous Ca(2+) induced stomatal closure accompanied by cytosolic alkalization in guard cells of wild-type, abi1-1, abi2-1, ost1-2 and coi1 plants. An agent to acidify cytosol, butyrate, suppressed Ca(2+)-induced cytosolic alkalization and ABA-, MeJA- and Ca(2+)-induced cytosolic Ca(2+) oscillation in wild-type guard cells to prevent stomatal closure. These results indicate that cytosolic alkalization and cytosolic Ca(2+) oscillation coordinately function in ABA and MeJA signaling in Arabidopsis guard cells.
Collapse
Affiliation(s)
- Mohammad Mahbub Islam
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Falkenberg CV, Jakobsson E. A biophysical model for integration of electrical, osmotic, and pH regulation in the human bronchial epithelium. Biophys J 2010; 98:1476-85. [PMID: 20409466 DOI: 10.1016/j.bpj.2009.11.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 11/11/2009] [Accepted: 11/19/2009] [Indexed: 12/14/2022] Open
Abstract
A dynamical biophysical model for the functioning of an epithelium is presented. This model integrates the electrical and osmotic behaviors of the epithelium, taking into account intracellular conditions. The specific tissue modeled is the human bronchial epithelium, which is of particular interest, as it is the location of the most common lethal symptoms of cystic fibrosis. The model is implemented in a modular form to facilitate future application of the code to other epithelial tissue by inputting different transporters, channels, and geometric parameters. The model includes pH regulation as an integral component of overall regulation of epithelial function, through the interdependence of pH, bicarbonate concentration, and current. The procedures for specification, the validation of the model, and parametric studies are presented using available experimental data of cultured human bronchial epithelium. Parametric studies are performed to elucidate a), the contribution of basolateral chloride channels to the short-circuit current functional form, and b), the role that regulation of basolateral potassium conductance plays in epithelial function.
Collapse
Affiliation(s)
- Cibele V Falkenberg
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | |
Collapse
|
31
|
Lee S, Lee HJ, Yang HS, Thornell IM, Bevensee MO, Choi I. Sodium-bicarbonate cotransporter NBCn1 in the kidney medullary thick ascending limb cell line is upregulated under acidic conditions and enhances ammonium transport. Exp Physiol 2010; 95:926-37. [PMID: 20591978 DOI: 10.1113/expphysiol.2010.053967] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, we examined the effect of bicarbonate transporters on ammonium/ammonia uptake in the medullary thick ascending limb cell line ST-1. Cells were treated with 1 mm ouabain and 0.2 mM bumetanide to minimize carrier-mediated NH(4)(+) transport, and the intracellular accumulation of (14)C-methylammonium/methylammonia ((14)C-MA) was determined. In CO(2)/HCO(3)(-)-free solution, cells at normal pH briefly accumulated (14)C-MA over 7 min and reached a plateau. In CO(2)/HCO(3)(-) solution, however, cells markedly accumulated (14)C-MA over the experimental period of 30 min. This CO(2)/HCO(3)(-)-dependent accumulation was reduced by the bicarbonate transporter blocker, 4,4-diisothiocyanatostilbene-2,2-disulfonate (DIDS; 0.5 mM). Replacing Cl(-) with gluconate reduced the accumulation, but the reduction was more substantial in the presence of DIDS. Incubation of cells at pH 6.8 (adjusted with NaHCO(3) in 5% CO(2)) for 24 h lowered the mean steady-state intracellular pH to 6.96, significantly lower than 7.28 for control cells. The presence of DIDS reduced (14)C-MA accumulation in control conditions but had no effect after acidic incubation. Immunoblotting showed that NBCn1 was upregulated after acidic incubation and in NH(4)Cl-containing media. The Cl(-)-HCO(3)(-) exchanger AE2 was present, but its expression remained unaffected by acidic incubation. Expressed in Xenopus oocytes, NBCn1 increased carrier-mediated (14)C-MA transport, which was abolished by replacing Na(+). Two-electrode voltage clamp of oocytes exhibited negligible current after NH(4)Cl application. These results suggest that DIDS-sensitive HCO(3)(-) extrusion normally governs NH(4)(+)/NH(3) uptake in the medullary thick ascending limb cells. We propose that, in acidic conditions, DIDS-sensitive HCO(3)(-) extrusion is inactivated, while NBCn1 is upregulated to stimulate NH(4)(+) transport.
Collapse
Affiliation(s)
- Soojung Lee
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
32
|
Dubreuil RR, Das A, Base C, Mazock GH. The Drosophila Anion Exchanger (DAE) lacks a detectable interaction with the spectrin cytoskeleton. J Negat Results Biomed 2010; 9:5. [PMID: 20573195 PMCID: PMC2901199 DOI: 10.1186/1477-5751-9-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/23/2010] [Indexed: 01/20/2023] Open
Abstract
Background Current models suggest that the spectrin cytoskeleton stabilizes interacting ion transport proteins at the plasma membrane. The human erythrocyte anion exchanger (AE1) was the first membrane transport protein found to be associated with the spectrin cytoskeleton. Here we evaluated a conserved anion exchanger from Drosophila (DAE) as a marker for studies of the downstream effects of spectrin cytoskeleton mutations. Results Sequence comparisons established that DAE belongs to the SLC4A1-3 subfamily of anion exchangers that includes human AE1. Striking sequence conservation was observed in the C-terminal membrane transport domain and parts of the N-terminal cytoplasmic domain, but not in the proposed ankyrin-binding site. Using an antibody raised against DAE and a recombinant transgene expressed in Drosophila S2 cells DAE was shown to be a 136 kd plasma membrane protein. A major site of expression was found in the stomach acid-secreting region of the larval midgut. DAE codistributed with an infolded subcompartment of the basal plasma membrane of interstitial cells. However, spectrin did not codistribute with DAE at this site or in anterior midgut cells that abundantly expressed both spectrin and DAE. Ubiquitous knockdown of DAE with dsRNA eliminated antibody staining and was lethal, indicating that DAE is an essential gene product in Drosophila. Conclusions Based on the lack of colocalization and the lack of sequence conservation at the ankyrin-binding site, it appears that the well-characterized interaction between AE1 and the spectrin cytoskeleton in erythrocytes is not conserved in Drosophila. The results establish a pattern in which most of the known interactions between the spectrin cytoskeleton and the plasma membrane in mammals do not appear to be conserved in Drosophila.
Collapse
Affiliation(s)
- Ronald R Dubreuil
- Dept. of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA.
| | | | | | | |
Collapse
|
33
|
Piermarini PM, Grogan LF, Lau K, Wang L, Beyenbach KW. A SLC4-like anion exchanger from renal tubules of the mosquito (Aedes aegypti): evidence for a novel role of stellate cells in diuretic fluid secretion. Am J Physiol Regul Integr Comp Physiol 2009; 298:R642-60. [PMID: 20042685 DOI: 10.1152/ajpregu.00729.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transepithelial fluid secretion across the renal (Malpighian) tubule epithelium of the mosquito (Aedes aegypti) is energized by the vacuolar-type (V-type) H(+)-ATPase and not the Na(+)-K(+)-ATPase. Located at the apical membrane of principal cells, the V-type H(+)-ATPase translocates protons from the cytoplasm to the tubule lumen. Secreted protons are likely to derive from metabolic H(2)CO(3), which raises questions about the handling of HCO(3)(-) by principal cells. Accordingly, we tested the hypothesis that a Cl/HCO(3) anion exchanger (AE) related to the solute-linked carrier 4 (SLC4) superfamily mediates the extrusion of HCO(3)(-) across the basal membrane of principal cells. We began by cloning from Aedes Malpighian tubules a full-length cDNA encoding an SLC4-like AE, termed AeAE. When expressed heterologously in Xenopus oocytes, AeAE is both N- and O-glycosylated and mediates Na(+)-independent intracellular pH changes that are sensitive to extracellular Cl(-) concentration and to DIDS. In Aedes Malpighian tubules, AeAE is expressed as two distinct forms: one is O-glycosylated, and the other is N-glycosylated. Significantly, AeAE immunoreactivity localizes to the basal regions of stellate cells but not principal cells. Concentrations of DIDS that inhibit AeAE activity in Xenopus oocytes have no effects on the unstimulated rates of fluid secretion mediated by Malpighian tubules as measured by the Ramsay assay. However, in Malpighian tubules stimulated with kinin or calcitonin-like diuretic peptides, DIDS reduces the diuretic rates of fluid secretion to basal levels. In conclusion, Aedes Malpighian tubules express AeAE in the basal region of stellate cells, where this transporter may participate in producing diuretic rates of transepithelial fluid secretion.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
34
|
Lörinczi É, Verhoefen MK, Wachtveitl J, Woerner AC, Glaubitz C, Engelhard M, Bamberg E, Friedrich T. Voltage- and pH-Dependent Changes in Vectoriality of Photocurrents Mediated by Wild-type and Mutant Proteorhodopsins upon Expression in Xenopus Oocytes. J Mol Biol 2009; 393:320-41. [DOI: 10.1016/j.jmb.2009.07.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/15/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
|
35
|
Stewart AK, Kurschat CE, Vaughan-Jones RD, Alper SL. Putative re-entrant loop 1 of AE2 transmembrane domain has a major role in acute regulation of anion exchange by pH. J Biol Chem 2008; 284:6126-39. [PMID: 19103596 DOI: 10.1074/jbc.m802051200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Normal pH sensitivity of the SLC4A2/AE2 anion exchanger requires transmembrane domain (TMD) amino acid (aa) residues not conserved in the homologous but relatively pH-insensitive SLC4A1/AE1 polypeptide. We tested the hypothesis that the nonconserved aa cluster 1075DKPK1078 within the first putative re-entrant loop (RL1) of AE2 TMD contributes to pH sensor function by studying anion exchange function of AE2 mutants in which these and other RL1 aa were systematically substituted with corresponding RL1 aa from AE1. Regulation of Cl-/Cl- and Cl-/HCO(-)3 exchange by intracellular pH (pHi) or extracellular pH (pHo) was measured as 4,4'-di-isothiocyanatostilbene-2,2' disulfonic acid-sensitive 36Cl- efflux from Xenopus oocytes. AE2 RL1 mutants 1075AAAQ1078 and 1075AAAQN1079 showed reduced pHi sensitivity and pHo sensitivity was acid-shifted by approximately 1 pH unit. Individual mutants D1075A and P1077A exhibited moderately altered pH sensitivity, whereas a range of substitutions at conserved AE2 Ile-1079 substantially altered sensitivity to pHo and/or pHi. Substitution of the complete AE1 RL1 with AE2 RL1 failed to confer AE2-like pH sensitivity onto AE1. Replacement, however, of AE1 RL1 763SGPGAAAQ770 with AE2 1071VAPGDKPK1078 restored pHi sensitivity to the chimera AE2(1-920)/AE1(613-929) without affecting its low sensitivity to pHo. The results show that acute regulation of AE2 by pH requires RL1 of the TMD. We propose that critical segments of RL1 constitute part of an AE2 pH sensor that, together with residues within the N-terminal half of the TMD, constrain the AE2 polypeptide in a conformation required for regulation of anion exchange by pHi.
Collapse
Affiliation(s)
- Andrew K Stewart
- Department of Medicine, Harvard Medical School, and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
36
|
Vaughan-Jones RD, Spitzer KW, Swietach P. Intracellular pH regulation in heart. J Mol Cell Cardiol 2008; 46:318-31. [PMID: 19041875 DOI: 10.1016/j.yjmcc.2008.10.024] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 10/11/2008] [Indexed: 12/14/2022]
Abstract
Intracellular pH (pHi) is an important modulator of cardiac excitation and contraction, and a potent trigger of electrical arrhythmia. This review outlines the intracellular and membrane mechanisms that control pHi in the cardiac myocyte. We consider the kinetic regulation of sarcolemmal H+, OH- and HCO3- transporters by pH, and by receptor-coupled intracellular signalling systems. We also consider how activity of these pHi effector proteins is coordinated spatially in the myocardium by intracellular mobile buffer shuttles, gap junctional channels and carbonic anhydrase enzymes. Finally, we review the impact of pHi regulatory proteins on intracellular Ca2+ signalling, and their participation in clinical disorders such as myocardial ischaemia, maladaptive hypertrophy and heart failure. Such multiple effects emphasise the fundamental role that pHi regulation plays in the heart.
Collapse
Affiliation(s)
- Richard D Vaughan-Jones
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, Parks Road, OX1 3PT, UK.
| | | | | |
Collapse
|
37
|
Chernova MN, Stewart AK, Barry PN, Jennings ML, Alper SL. Mouse Ae1 E699Q mediates SO42-i/anion-o exchange with [SO42-]i-dependent reversal of wild-type pHo sensitivity. Am J Physiol Cell Physiol 2008; 295:C302-12. [PMID: 18480299 DOI: 10.1152/ajpcell.00109.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The SLC4A1/AE1 gene encodes the electroneutral Cl(-)/HCO(3)(-) exchanger of erythrocytes and renal type A intercalated cells. AE1 mutations cause familial spherocytic and stomatocytic anemias, ovalocytosis, and distal renal tubular acidosis. The mutant mouse Ae1 polypeptide E699Q expressed in Xenopus oocytes cannot mediate Cl(-)/HCO(3)(-) exchange or (36)Cl(-) efflux but exhibits enhanced dual sulfate efflux mechanisms: electroneutral exchange of intracellular sulfate for extracellular sulfate (SO(4)(2-)(i)/SO(4)(2-)(o) exchange), and electrogenic exchange of intracellular sulfate for extracellular chloride (SO(4)(2-)(i)/Cl(-)(o) exchange). Whereas wild-type AE1 mediates 1:1 H(+)/SO(4)(2-) cotransport in exchange for either Cl(-) or for the H(+)/SO(4)(2-) ion pair, mutant Ae1 E699Q transports sulfate without cotransport of protons, similar to human erythrocyte AE1 in which the corresponding E681 carboxylate has been chemically converted to the alcohol (hAE1 E681OH). We now show that in contrast to the normal cis-stimulation by protons of wild-type AE1-mediated SO(4)(2-) transport, both SO(4)(2-)(i)/Cl(-)(o) exchange and SO(4)(2-)(i)/SO(4)(2-)(o) exchange mediated by mutant Ae1 E699Q are inhibited by acidic pH(o) and activated by alkaline pH(o). hAE1 E681OH displays a similarly altered pH(o) dependence of SO(4)(2-)(i)/Cl(-)(o) exchange. Elevated [SO(4)(2-)](i) increases the K(1/2) of Ae1 E699Q for both extracellular Cl(-) and SO(4)(2-), while reducing inhibition of both exchange mechanisms by acid pH(o). The E699Q mutation also leads to increased potency of self-inhibition by extracellular SO(4)(2-). Study of the Ae1 E699Q mutation has revealed the existence of a novel pH-regulatory site of the Ae1 polypeptide and should continue to provide valuable paths toward understanding substrate selectivity and self-inhibition in SLC4 anion transporters.
Collapse
Affiliation(s)
- Marina N Chernova
- Molecular and Vascular Medicine Unit, Beth Israel Deaconess Med. Ctr., 330 Brookline Ave., Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
38
|
Mardones P, Medina JF, Elferink RPJO. Activation of cyclic AMP Signaling in Ae2-deficient mouse fibroblasts. J Biol Chem 2008; 283:12146-53. [PMID: 18319251 DOI: 10.1074/jbc.m710590200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anion exchanger 2 (AE2, SLC4A2) is a ubiquitously expressed membrane solute carrier that regulates intracellular pH (pH(i)) by exchanging cytosolic bicarbonate for extracellular chloride. We used fibroblasts from Ae2-deficient (Ae2(a,b)(-/-)) mice to study the effects of an alkaline shift in resting intracellular pH (pH(i)) on the activation of cAMP signaling and gene expression. Ae2(a,b)(-/-) fibroblasts show increased pH(i) (by 0.22 +/- 0.03 unit) compared with wild type cells at extracellular pH (pH(o)) 7.4 and 37 degrees C. This shift in resting pH(i) is associated with an up-regulation of bicarbonate-activated soluble adenylyl cyclase expression, increased cAMP production, Creb phosphorylation, inducible cAMP early repressor 1 mRNA expression, and impaired activation of c-Fos transcription by forskolin. These results highlight the importance of bicarbonate transport via Ae2 in maintaining pH(i) homeostasis in cultured mouse fibroblasts and unveil the role of cAMP in the cellular response to chronic alkalization, which putatively includes an inducible cAMP early repressor 1-mediated attenuation of phosphorylated Creb activity.
Collapse
Affiliation(s)
- Pablo Mardones
- Academic Medical Center Liver Center, Academic Medical Center, University of Amsterdam, 1105 BK, Amsterdam, The Netherlands
| | | | | |
Collapse
|
39
|
Nicola PA, Taylor CJ, Wang S, Barrand MA, Hladky SB. Transport activities involved in intracellular pH recovery following acid and alkali challenges in rat brain microvascular endothelial cells. Pflugers Arch 2008; 456:801-12. [PMID: 18214525 DOI: 10.1007/s00424-007-0441-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 12/22/2007] [Indexed: 11/25/2022]
Abstract
Transport activities involved in intracellular pH (pH(i)) recovery after acid or alkali challenge were investigated in cultured rat brain microvascular endothelial cells by monitoring pH(i) using a pH-sensitive dye. Following relatively small acid loads with pH(i) approximately 6.5, HCO(-)(3) influx accounted for most of the acid extrusion from the cell with both Cl(-)-independent and Cl(-)-dependent, Na(+)-dependent transporters involved. The Cl(-)-independent component has the same properties as the NBC-like transporter previously shown to account for most of the acid extrusion near the resting pH(i). Following large acid loads with pH(i) < 6.5, most of the acid extrusion was mediated by Na(+)/H(+) exchange, the rate of which was steeply dependent on pH(i). Concanamycin A, an inhibitor of V-type ATPase, had no effect on the rates of acid extrusion. Following an alkali challenge, the major component of the acid loading leading to recovery of pH(i) occurred by Cl(-)/HCO(-)(3) exchange. This exchange had the same properties as the AE-like transporter previously identified as a major acid loader near resting pH(i). These acid-loading and acid-extruding transport mechanisms together with the Na(+), K(+), ATPase may be sufficient to account not only for pH(i) regulation in brain endothelial cells but also for the net secretion of HCO(-)(3) across the blood-brain barrier.
Collapse
Affiliation(s)
- Pieris A Nicola
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | | | | | | |
Collapse
|
40
|
Stewart AK, Kurschat CE, Vaughan-Jones RD, Shmukler BE, Alper SL. Acute regulation of mouse AE2 anion exchanger requires isoform-specific amino acid residues from most of the transmembrane domain. J Physiol 2007; 584:59-73. [PMID: 17690150 PMCID: PMC2277056 DOI: 10.1113/jphysiol.2007.136119] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The widely expressed anion exchanger polypeptide AE2/SLC4A2 is acutely inhibited by acidic intracellular (pH(i)), by acidic extracellular pH (pH(o)), and by the calmodulin inhibitor, calmidazolium, whereas it is acutely activated by NH(4)(+). The homologous erythroid/kidney AE1/SLC4A1 polypeptide is insensitive to these regulators. Each of these AE2 regulatory responses requires the presence of AE2's C-terminal transmembrane domain (TMD). We have now measured (36)Cl(-) efflux from Xenopus oocytes expressing bi- or tripartite AE2-AE1 chimeras to define TMD subregions in which AE2-specific sequences contribute to acute regulation. The chimeric AE polypeptides were all functional at pH(o) 7.4, with the sole exception of AE2((1-920))/AE1((613-811))/AE2((1120-1237)). Reciprocal exchanges of the large third extracellular loops were without effect. AE2 regulation by pH(i), pH(o) and NH(4)(+) was retained after substitution of C-terminal AE2 amino acids 1120-1237 (including the putative second re-entrant loop, two TM spans and the cytoplasmic tail) with the corresponding AE1 sequence. In contrast, the presence of this AE2 C-terminal sequence was both necessary and sufficient for inhibition by calmidazolium. All other tested TMD substitutions abolished AE2 pH(i) sensitivity, abolished or severely attenuated sensitivity to pH(o) and removed sensitivity to NH(4)(+). Loss of AE2 pH(i) sensitivity was not rescued by co-expression of a complementary AE2 sequence within separate full-length chimeras or AE2 subdomains. Thus, normal regulation of AE2 by pH and other ligands requires AE2-specific sequence from most regions of the AE2 TMD, with the exceptions of the third extracellular loop and a short C-terminal sequence. We conclude that the individual TMD amino acid residues previously identified as influencing acute regulation of AE2 exert that influence within a regulatory structure requiring essential contributions from multiple regions of the AE2 TMD.
Collapse
Affiliation(s)
- A K Stewart
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
41
|
Stewart AK, Kurschat CE, Alper SL. Role of nonconserved charged residues of the AE2 transmembrane domain in regulation of anion exchange by pH. Pflugers Arch 2007; 454:373-84. [PMID: 17492309 DOI: 10.1007/s00424-007-0220-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 01/15/2007] [Accepted: 01/22/2007] [Indexed: 11/29/2022]
Abstract
The ubiquitous AE2/SLC4A2 anion exchanger is acutely and independently regulated by intracellular (pH(i)) and extracellular pH (pH(o)), whereas the closely related AE1/SLC4A1 of the red cell and renal intercalated cell is relatively pH-insensitive. We have investigated the contribution of nonconserved charged residues within the C-terminal transmembrane domain (TMD) of AE2 to regulation by pH through mutation to the corresponding AE1 residues. AE2-mediated Cl(-)/Cl(-) exchange was measured as 4,4'-di-isothiocyanatostilbene-2,2'-disulfonic acid-sensitive (36)Cl(-) efflux from Xenopus oocytes by varying pH(i) at constant pH(o), and by varying pH(o) at near-constant pH(i). All mutations of nonconserved charged residues of the AE2 TMD yielded functional protein, but mutations of some conserved charged residues (R789E, R1056A, R1134C) reduced or abolished function. Individual mutation of AE2 TMD residues R921, F922, P1077, and R1107 exhibited reduced pH(i) sensitivity compared to wt AE2, whereas TMD mutants K1153R, R1155K, R1202L displayed enhanced sensitivity to acidic pH(i). In addition, pH(o) sensitivity was significantly acid- shifted when nonconserved AE2 TMD residues E981, K982, and D1075 were individually converted to the corresponding AE1 residues. These results demonstrate that multiple conserved charged residues are important for basal transport function of AE2 and that certain nonconserved charged residues of the AE2 TMD are essential for wild-type regulation of anion exchange by pH(i) and pH(o).
Collapse
Affiliation(s)
- A K Stewart
- Molecular and Vascular Medicine Unit and Renal Unit, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | |
Collapse
|
42
|
Stewart AK, Kurschat CE, Burns D, Banger N, Vaughan-Jones RD, Alper SL. Transmembrane domain histidines contribute to regulation of AE2-mediated anion exchange by pH. Am J Physiol Cell Physiol 2007; 292:C909-18. [PMID: 17005605 DOI: 10.1152/ajpcell.00265.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activity of the AE2/SLC4A2 anion exchanger is modulated acutely by pH, influencing the transporter's role in regulation of intracellular pH (pHi) and epithelial solute transport. In Xenopus oocytes, heterologous AE2-mediated Cl−/Cl−and Cl−/HCO3−exchange are inhibited by acid pHior extracellular pH (pHo). We have investigated the importance to pH sensitivity of the eight histidine (His) residues within the AE2 COOH-terminal transmembrane domain (TMD). Wild-type mouse AE2-mediated Cl−/Cl−exchange, measured as DIDS-sensitive36Cl−efflux from Xenopus oocytes, was experimentally altered by varying pHiat constant pHoor varying pHo. Pretreatment of oocytes with the His modifier diethylpyrocarbonate (DEPC) reduced basal36Cl−efflux at pHo7.4 and acid shifted the pHovs. activity profile of wild-type AE2, suggesting that His residues might be involved in pH sensing. Single His mutants of AE2 were generated and expressed in oocytes. Although mutation of H1029 to Ala severely reduced transport and surface expression, other individual His mutants exhibited wild-type or near-wild-type levels of Cl−transport activity with retention of pHosensitivity. In contrast to the effects of DEPC on wild-type AE2, pHosensitivity was significantly alkaline shifted for mutants H1144Y and H1145A and the triple mutants H846/H849/H1145A and H846/H849/H1160A. Although all functional mutants retained sensitivity to pHi, pHisensitivity was enhanced for AE2 H1145A. The simultaneous mutation of five or more His residues, however, greatly decreased basal AE2 activity, consistent with the inhibitory effects of DEPC modification. The results show that multiple TMD His residues contribute to basal AE2 activity and its sensitivity to pHiand pHo.
Collapse
Affiliation(s)
- A K Stewart
- Beth Israel Deaconess Medical Center, 330 Brookline Ave., E/RW763, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Anion exchanger 2 (AE2) mediates the exchange of C1-/HCO3- across the plasma membrane and plays a role in the regulation of intracellular pH. The present study showed that AE2 protein expression was upregulated immediately after exposure to either low (0.5 micromol/l) or high (1 and 2 micromol/l) concentrations of arsenic trioxide. This suggests that arsenic trioxide may act via regulation of intracellular pH. Changing the culture pH in NB4 cells modulated the degradation of promyelocytic leukaemia-retinoic acid receptor-alpha (PML-RARalpha), PML and RARalpha, which supported this hypothesis. DIDS (4,4'-diisothiocyanodihydrostilbene-2,2'-disulphonic acid) inhibited AE2 function, preventing the arsenic trioxide-induced degradation of RARalpha and low concentration showed synergistic effects on the expression of CD11c, which is related with cell differentiation. In addition, DIDS rescued the cells from 1 micromol/l arsenic trioxide-induced apoptosis. In conclusion, AE2 mediated the action of arsenic trioxide via regulation of intracellular pH and a novel pathway for the mechanism of action of arsenic trioxide is reported.
Collapse
Affiliation(s)
- Xiao-Yan Pan
- Department of Pathophysiology, Shanghai Jiao Tong University, School of Medicine
| | | | | | | | | |
Collapse
|
44
|
Tsunoda SP, Ewers D, Gazzarrini S, Moroni A, Gradmann D, Hegemann P. H+ -pumping rhodopsin from the marine alga Acetabularia. Biophys J 2006; 91:1471-9. [PMID: 16731558 PMCID: PMC1518632 DOI: 10.1529/biophysj.106.086421] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 05/18/2006] [Indexed: 11/18/2022] Open
Abstract
An opsin-encoding cDNA was cloned from the marine alga Acetabularia acetabulum. The cDNA was expressed in Xenopus oocytes into functional Acetabularia rhodopsin (AR) mediating H+ carried outward photocurrents of up to 1.2 microA with an action spectrum maximum at 518 nm (AR518). AR is the first ion-pumping rhodopsin found in a plant organism. Steady-state photocurrents of AR are always positive and rise sigmoidally from negative to positive transmembrane voltages. Numerous kinetic details (amplitudes and time constants), including voltage-dependent recovery of the dark state after light-off, are documented with respect to their sensitivities to light, internal and external pH, and the transmembrane voltage. The results are analyzed by enzyme kinetic formalisms using a simplified version of the known photocycle of bacteriorhodopsin (BR). Blue-light causes a shunt of the photocycle under H+ reuptake from the extracellular side. Similarities and differences of AR with BR are pointed out. This detailed electrophysiological characterization highlights voltage dependencies in catalytic membrane processes of this eukaryotic, H+ -pumping rhodopsin and of microbial-type rhodopsins in general.
Collapse
Affiliation(s)
- Satoshi P Tsunoda
- Experimentelle Biophysik, Fachbereich für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Knauf F, Mohebbi N, Teichert C, Herold D, Rogina B, Helfand S, Gollasch M, Luft F, Aronson P. The life-extending gene Indy encodes an exchanger for Krebs-cycle intermediates. Biochem J 2006; 397:25-9. [PMID: 16608441 PMCID: PMC1479758 DOI: 10.1042/bj20060409] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A longevity gene called Indy (for 'I'm not dead yet'), with similarity to mammalian genes encoding sodium-dicarboxylate cotransporters, was identified in Drosophila melanogaster. Functional studies in Xenopus oocytes showed that INDY mediates the flux of dicarboxylates and citrate across the plasma membrane, but the specific transport mechanism mediated by INDY was not identified. To test whether INDY functions as an anion exchanger, we examined whether substrate efflux is stimulated by transportable substrates added to the external medium. Efflux of [14C]citrate from INDY-expressing oocytes was greatly accelerated by the addition of succinate to the external medium, indicating citrate-succinate exchange. The succinate-stimulated [14C]citrate efflux was sensitive to inhibition by DIDS (4,4'-di-isothiocyano-2,2'-disulphonic stilbene), as demonstrated previously for INDY-mediated succinate uptake. INDY-mediated efflux of [14C]citrate was also stimulated by external citrate and oxaloacetate, indicating citrate-citrate and citrate-oxaloacetate exchange. Similarly, efflux of [14C]succinate from INDY-expressing oocytes was stimulated by external citrate, alpha-oxoglutarate and fumarate, indicating succinate-citrate, succinate-alpha-oxoglutarate and succinate-fumarate exchange respectively. Conversely, when INDY-expressing Xenopus oocytes were loaded with succinate and citrate, [14C]succinate uptake was markedly stimulated, confirming succinate-succinate and succinate-citrate exchange. Exchange of internal anion for external citrate was markedly pH(o)-dependent, consistent with the concept that citrate is co-transported with a proton. Anion exchange was sodium-independent. We conclude that INDY functions as an exchanger of dicarboxylate and tricarboxylate Krebs-cycle intermediates. The effect of decreasing INDY activity, as in the long-lived Indy mutants, may be to alter energy metabolism in a manner that favours lifespan extension.
Collapse
Affiliation(s)
- Felix Knauf
- *Franz Volhard Clinic at the Max Delbruck Center, HELIOS Kliniken – Berlin, Medical Faculty of the Charité, Humboldt University, D-13125 Berlin, Germany
- †Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8029, U.S.A
- ‡Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8029, U.S.A
| | - Nilufar Mohebbi
- *Franz Volhard Clinic at the Max Delbruck Center, HELIOS Kliniken – Berlin, Medical Faculty of the Charité, Humboldt University, D-13125 Berlin, Germany
| | - Carsten Teichert
- *Franz Volhard Clinic at the Max Delbruck Center, HELIOS Kliniken – Berlin, Medical Faculty of the Charité, Humboldt University, D-13125 Berlin, Germany
| | - Diana Herold
- *Franz Volhard Clinic at the Max Delbruck Center, HELIOS Kliniken – Berlin, Medical Faculty of the Charité, Humboldt University, D-13125 Berlin, Germany
| | - Blanka Rogina
- §Department of Genetics and Developmental Biology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, U.S.A
| | - Stephen Helfand
- §Department of Genetics and Developmental Biology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, U.S.A
| | - Maik Gollasch
- *Franz Volhard Clinic at the Max Delbruck Center, HELIOS Kliniken – Berlin, Medical Faculty of the Charité, Humboldt University, D-13125 Berlin, Germany
| | - Friedrich C. Luft
- *Franz Volhard Clinic at the Max Delbruck Center, HELIOS Kliniken – Berlin, Medical Faculty of the Charité, Humboldt University, D-13125 Berlin, Germany
| | - Peter S. Aronson
- †Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8029, U.S.A
- ‡Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8029, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Pushkin A, Kurtz I. SLC4 base (HCO3 -, CO3 2-) transporters: classification, function, structure, genetic diseases, and knockout models. Am J Physiol Renal Physiol 2006; 290:F580-99. [PMID: 16461757 DOI: 10.1152/ajprenal.00252.2005] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In prokaryotic and eukaryotic organisms, biochemical and physiological processes are sensitive to changes in H(+) activity. For these processes to function optimally, a variety of proteins have evolved that transport H(+)/base equivalents across cell and organelle membranes, thereby maintaining the pH of various intracellular and extracellular compartments within specific limits. The SLC4 family of base (HCO(3)(-), CO(3)(2(-))) transport proteins plays an essential role in mediating Na(+)- and/or Cl(-)-dependent base transport in various tissues and cell types in mammals. In addition to pH regulation, specific members of this family also contribute to vectorial transepithelial base transport in several organ systems including the kidney, pancreas, and eye. The importance of these transporters in mammalian cell biology is highlighted by the phenotypic abnormalities resulting from spontaneous SLC4 mutations in humans and targeted deletions in murine knockout models. This review focuses on recent advances in our understanding of the molecular organization and functional properties of SLC4 transporters and their role in disease.
Collapse
Affiliation(s)
- Alexander Pushkin
- Division of Nephrology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, 10833 Le Conte Avenue, Rm. 7-155 Factor Bldg., Los Angeles, CA 90095, USA
| | | |
Collapse
|
47
|
Kurschat CE, Shmukler BE, Jiang L, Wilhelm S, Kim EH, Chernova MN, Kinne RKH, Stewart AK, Alper SL. Alkaline-shifted pH Sensitivity of AE2c1-mediated Anion Exchange Reveals Novel Regulatory Determinants in the AE2 N-terminal Cytoplasmic Domain. J Biol Chem 2006; 281:1885-96. [PMID: 16286476 DOI: 10.1074/jbc.m509734200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mouse anion exchanger AE2/SLC4A2 Cl(-)/HCO(-)(3) exchanger is essential to post-weaning life. AE2 polypeptides regulate pH(i), chloride concentration, cell volume, and transepithelial ion transport in many tissues. Although the AE2a isoform has been extensively studied, the function and regulation of the other AE2 N-terminal variant mRNAs of mouse (AE2b1, AE2b2, AE2c1, and AE2c2) have not been examined. We now present an extended analysis of AE2 variant mRNA tissue distribution and function. We show in Xenopus oocytes that all AE2 variant polypeptides except AE2c2 mediated Cl(-) transport are subject to inhibition by acidic pH(i) and to activation by hypertonicity and NH(+)(4). However, AE2c1 differs from AE2a, AE2b1, and AE2b2 in its alkaline-shifted pH(o)((50)) (7.70 +/- 0.11 versus 6.80 +/- 0.05), suggesting the presence of a novel AE2a pH-sensitive regulatory site between amino acids 99 and 198. Initial N-terminal deletion mutagenesis restricted this site to the region between amino acids 120 and 150. Further analysis identified AE2a residues 127-129, 130-134, and 145-149 as jointly responsible for the difference in pH(o)((50)) between AE2c1 and the longer AE2a, AE2b1, and AE2b2 polypeptides. Thus, AE2c1 exhibits a unique pH(o) sensitivity among the murine AE2 variant polypeptides, in addition to a unique tissue distribution. Physiological coexpression of AE2c1 with other AE2 variant polypeptides in the same cell should extend the range over which changing pH(o) can regulate AE2 transport activity.
Collapse
Affiliation(s)
- Christine E Kurschat
- Molecular and Vascular Medicine and Renal Units, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shmukler BE, Kurschat CE, Ackermann GE, Jiang L, Zhou Y, Barut B, Stuart-Tilley AK, Zhao J, Zon LI, Drummond IA, Vandorpe DH, Paw BH, Alper SL. Zebrafish slc4a2/ae2 anion exchanger: cDNA cloning, mapping, functional characterization, and localization. Am J Physiol Renal Physiol 2005; 289:F835-49. [PMID: 15914778 DOI: 10.1152/ajprenal.00122.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although the zebrafish has been used increasingly for the study of pronephric kidney development, studies of renal ion transporters and channels of the zebrafish remain few. We report the cDNA cloning and characterization of the AE2 anion exchanger ortholog from zebrafish kidney, slc4a2/ae2. The ae2 gene in linkage group 2 encodes a polypeptide of 1,228 aa exhibiting 64% aa identity with mouse AE2a. The exon-intron boundaries of the zebrafish ae2 gene are nearly identical to those of the rodent and human genes. Whole-mount in situ hybridization detects ae2 mRNA in prospective midbrain as early as the five-somite stage, then later in the pronephric primordia and the forming pronephric duct, where it persists through 72 h postfertilization (hpf). Zebrafish Ae2 expressed in Xenopus laevis oocytes mediates Na(+)-independent, electroneutral (36)Cl(-)/Cl(-) exchange moderately sensitive to inhibition by DIDS, is inhibited by acidic intracellular pH and by acidic extracellular pH, but activated by (acidifying) ammonium and by hypertonicity. Zebrafish Ae2 also mediates Cl(-)/HCO(3)(-) exchange in X. laevis oocytes and accumulates in or near the plasma membrane in transfected HEK-293 cells. In 24-48 hpf zebrafish embryos, the predominant but not exclusive localization of Ae2 polypeptide is the apical membrane of pronephric duct epithelial cells. Thus Ae2 resembles its mammalian orthologs in function, mechanism, and acute regulation but differs in its preferentially apical expression in kidney. These results will inform tests of the role of Ae2 in zebrafish kidney development and function.
Collapse
Affiliation(s)
- Boris E Shmukler
- Molecular Medicine and Renal Units, Beth Israel Deaconess Med. Ctr. E/RW763, 330 Brookline Ave., Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Stewart AK, Kerr N, Chernova MN, Alper SL, Vaughan-Jones RD. Acute pH-dependent Regulation of AE2-mediated Anion Exchange Involves Discrete Local Surfaces of the NH2-terminal Cytoplasmic Domain. J Biol Chem 2004; 279:52664-76. [PMID: 15452108 DOI: 10.1074/jbc.m408108200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously defined in the NH2-terminal cytoplasmic domain of the mouse AE2/SLC4A2 anion exchanger a critical role for the highly conserved amino acids (aa) 336-347 in determining wild-type pH sensitivity of anion transport. We have now engineered hexa-Ala ((A)6) and individual amino acid substitutions to investigate the importance to pH-dependent regulation of AE2 activity of the larger surrounding region of aa 312-578. 4,4'-Diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-sensitive 36Cl- efflux from AE2-expressing Xenopus oocytes was monitored during changes in pHi or pHo in HEPES-buffered and in 5% CO2/HCO3- -buffered conditions. Wild-type AE2-mediated 36Cl- efflux was profoundly inhibited at low pHo, with a pHo(50) value = 6.75 +/- 0.05 and was stimulated up to 10-fold by intracellular alkalinization. Individual mutation of several amino acid residues at non-contiguous sites preceding or following the conserved sequence aa 336-347 attenuated pHi and/or pHo sensitivity of 36Cl- efflux. The largest attenuation of pH sensitivity occurred with the AE2 mutant (A)6357-362. This effect was phenocopied by AE2 H360E, suggesting a crucial role for His360. Homology modeling of the three-dimensional structure of the AE2 NH2-terminal cytoplasmic domain (based on the structure of the corresponding region of human AE1) predicts that those residues shown by mutagenesis to be functionally important define at least one localized surface region necessary for regulation of AE2 activity by pH.
Collapse
Affiliation(s)
- Andrew K Stewart
- Burdon Sanderson Cardiac Science Centre, University Laboratory of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Chernova MN, Jiang L, Friedman DJ, Darman RB, Lohi H, Kere J, Vandorpe DH, Alper SL. Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants: differences in anion selectivity, regulation, and electrogenicity. J Biol Chem 2004; 280:8564-80. [PMID: 15548529 DOI: 10.1074/jbc.m411703200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The unusually low 78% amino acid identity between the orthologous human SLC26A6 and mouse slc26a6 polypeptides prompted systematic comparison of their anion transport functions in Xenopus oocytes. Multiple human SLC26A6 variant polypeptides were also functionally compared. Transport was studied as unidirectional fluxes of (36)Cl(-), [(14)C]oxalate, and [(35)S]sulfate; as net fluxes of HCO(3)(-) by fluorescence ratio measurement of intracellular pH; as current by two-electrode voltage clamp; and as net Cl(-) flux by fluorescence intensity measurement of relative changes in extracellular and intracellular [Cl(-)]. Four human SLC26A6 polypeptide variants each exhibited rates of bidirectional [(14)C]oxalate flux, Cl(-)/HCO(3)(-) exchange, and Cl(-)/OH(-) exchange nearly equivalent to those of mouse slc26a6. Cl(-)/HCO(3)(-) exchange by both orthologs was cAMP-sensitive, further enhanced by coexpressed wild type cystic fibrosis transmembrane regulator but inhibited by cystic fibrosis transmembrane regulator DeltaF508. However, the very low rates of (36)Cl(-) and [(35)S]sulfate transport by all active human SLC26A6 isoforms contrasted with the high rates of the mouse ortholog. Human and mouse orthologs also differed in patterns of acute regulation. Studies of human-mouse chimeras revealed cosegregation of the high (36)Cl(-) transport phenotype with the transmembrane domain of mouse slc26a6. Mouse slc26a6 and human SLC26A6 each mediated electroneutral Cl(-)/HCO(3)(-) and Cl(-)/OH(-) exchange. In contrast, whereas Cl(-)/oxalate exchange by mouse slc26a6 was electrogenic, that mediated by human SLC26A6 appeared electroneutral. The increased currents observed in oocytes expressing either mouse or human ortholog were pharmacologically distinct from the accompanying monovalent anion exchange activities. The human SLC26A6 polypeptide variants SLC26A6c and SLC26A6d were inactive as transporters of oxalate, sulfate, and chloride. Thus, the orthologous mouse and human SLC26A6 proteins differ in anion selectivity, transport mechanism, and acute regulation, but both mediate electroneutral Cl(-)/HCO(3)(-) exchange.
Collapse
Affiliation(s)
- Marina N Chernova
- Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|