1
|
Graham GV, Conlon JM, Abdel-Wahab YH, Flatt PR. Glucagon from the phylogenetically ancient paddlefish provides a template for the design of a long-acting peptide with effective anti-diabetic and anti-obesity activities. Eur J Pharmacol 2020; 878:173101. [PMID: 32320703 DOI: 10.1016/j.ejphar.2020.173101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
This study has examined the in vitro and in vivo anti-diabetic properties of the peptidase-resistant analogues [D-Ser2]palmitoyl-paddlefish glucagon and [D-Ser2]palmitoyl-lamprey glucagon. The peptides stimulated insulin release from BRIN-BD11 clonal β-cells and isolated mouse pancreatic islets and also enhanced cAMP production in cells transfected with the human GLP-1 receptor and with the human glucagon receptor. The insulinotropic actions of the peptides were attenuated in INS-1 cells lacking GLP-1 and glucagon receptors. [D-Ser2]palmitoyl-paddlefish glucagon stimulated proliferation of BRIN-BD11 cells and protected against cytokine-mediated apoptosis as effectively as GLP-1. The analogue was more effective than the native peptide or the lamprey glucagon analogue in acutely lowering blood glucose and elevating plasma insulin in lean mice even when administered up to 4 h before a glucose load. Twice daily administration of [D-Ser2]palmitoyl-paddlefish glucagon to high-fat fed mice over 21 days reduced food intake, body weight, non-fasting blood glucose and plasma insulin concentrations, as well as significantly improving glucose tolerance and insulin resistance and decreasing α-cell area and pancreatic insulin content. Islet expression of the Gcgr, Glp1r, Gipr and Slc2a2 (GLUT-2) genes significantly increased. These data demonstrate that long-acting peptide [D-Ser2]palmitoyl-paddlefish glucagon exerts beneficial metabolic properties in diabetic mice via Ggcr- and Glp1r-activated pathways and so shows potential as a template for further development into an agent for treatment of patients with obesity-related Type 2 diabetes.
Collapse
Affiliation(s)
- Galyna V Graham
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - J Michael Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK.
| | - Yasser H Abdel-Wahab
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Peter R Flatt
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| |
Collapse
|
2
|
Graham GV, McCloskey A, Abdel-Wahab YH, Conlon JM, Flatt PR. A long-acting, dual-agonist analogue of lamprey GLP-1 shows potent insulinotropic, β-cell protective, and anorexic activities and improves glucose homeostasis in high fat-fed mice. Mol Cell Endocrinol 2020; 499:110584. [PMID: 31539596 DOI: 10.1016/j.mce.2019.110584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/05/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
Peptidase-resistant analogues of GLP-1 peptides from sea lamprey and paddlefish ([D-Ala2]palmitoyl-lamprey GLP-1 and [D-Ala2]palmitoyl-paddlefish GLP-1) produced significant (P ≤ 0.05) and concentration-dependent increases in insulin release from BRIN-BD11 clonal β-cells and from isolated mouse islets. Both analogues retained the ability of the native peptides to activate both the GLP-1 receptor (GLP1R) and the glucagon receptor (GCGR). [D-Ala2]palmitoyl-lamprey GLP-1 significantly (P < 0.001) stimulated proliferation of BRIN-BD11 cells and protected against cytokine-induced apoptosis. Administration of the lamprey analogue (25 nmol/kg body weight) to lean mice up to 4 h before a glucose load improved glucose tolerance and increased plasma insulin concentrations. Twice daily administration of the lamprey GLP-1 analogue to high fat-fed mice for 21 days decreased body weight, food intake, and circulating glucose and insulin concentrations. The analogue significantly improved glucose tolerance and insulin sensitivity with beneficial effects on islet β-cell area and insulin secretory responsiveness. Islet gene expression of Glp1r, Gcgr and Gipr significantly increased. The lamprey GLP-1 analogue shows therapeutic promise for treatment of patients with obesity-related Type 2 diabetes.
Collapse
Affiliation(s)
- Galyna V Graham
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Andrew McCloskey
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Yasser H Abdel-Wahab
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
3
|
Graham GV, Conlon JM, Abdel-Wahab YH, Flatt PR. Glucagon-like peptides-1 from phylogenetically ancient fish show potent anti-diabetic activities by acting as dual GLP1R and GCGR agonists. Mol Cell Endocrinol 2019; 480:54-64. [PMID: 30312651 DOI: 10.1016/j.mce.2018.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/24/2022]
Abstract
Glucagon-like peptides-1 (GLP-1)from phylogenetically ancient fish (lamprey, dogfish, ratfish, paddlefish and bowfin) and from a teleost, the rainbow trout produced concentration-dependent stimulations of insulin release from clonal β-cells and isolated mouse islets. Lamprey and paddlefish GLP-1 were the most potent and effective. Incubation of BRIN-BD11 cells with GLP-1 receptor (GLP1R) antagonist, exendin-4 (9-39) attenuated insulinotropic activity of all peptides whereas glucagon receptor (GCGR) antagonist [des-His1,Pro4,Glu9] glucagon amide significantly decreased the activities of lamprey and paddlefish GLP-1 only. The GIP receptor antagonist GIP (6-30) Cex-K40 [Pal] attenuated the activity of bowfin GLP-1. All peptides (1 μM) produced significant increases in cAMP concentration in CHL cells transfected with GLP1R but only lamprey and paddlefish GLP-1 stimulated cAMP production in HEK293 cells transfected with GCGR. Intraperitoneal administration of lamprey and paddlefish GLP-1 (25 nmol/kg body weight) in mice produced significant decreases in blood glucose and increased insulin concentrations comparable to the effects of human GLP-1. Lamprey and paddlefish GLP-1 display potent insulinotropic activity in vitro and glucose-lowering activity in vivo that is mediated through GLP1R and GCGR so that these peptides may constitute templates for design of new antidiabetic drugs.
Collapse
Affiliation(s)
- Galyna V Graham
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK.
| | - Yasser H Abdel-Wahab
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
4
|
Graham GV, Conlon JM, Abdel-Wahab YH, Flatt PR. Glucagon-related peptides from phylogenetically ancient fish reveal new approaches to the development of dual GCGR and GLP1R agonists for type 2 diabetes therapy. Peptides 2018; 110:19-29. [PMID: 30391422 DOI: 10.1016/j.peptides.2018.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022]
Abstract
The insulinotropic and antihyperglycaemic properties of glucagons from the sea lamprey (Petromyzontiformes), paddlefish (Acipenseriformes) and trout (Teleostei) and oxyntomodulin from dogfish (Elasmobranchii) and ratfish (Holocephali) were compared with those of human glucagon and GLP-1 in mammalian test systems. All fish peptides produced concentration-dependent stimulation of insulin release from BRIN-BD11 rat and 1.1 B4 human clonal β-cells and isolated mouse islets. Paddlefish glucagon was the most potent and effective peptide. The insulinotropic activity of paddlefish glucagon was significantly (P < 0.01) decreased after incubating BRIN-BD11 cells with the GLP1R antagonist, exendin-4(9-39) and the GCGR antagonist [des-His1,Pro4, Glu9] glucagon amide but GIPR antagonist, GIP(6-30)Cex-K40[palmitate] was without effect. Paddlefish and lamprey glucagons and dogfish oxyntomodulin (10 nmol L-1) produced significant (P < 0.01) increases in cAMP concentration in Chinese hamster lung (CHL) cells transfected with GLP1R and human embryonic kidney (HEK293) cells transfected with GCGR. The insulinotropic activity of paddlefish glucagon was attenuated in CRISPR/Cas9-engineered GLP1R knock-out INS-1 cells but not in GIPR knock-out cells. Intraperitoneal administration of all fish peptides, except ratfish oxyntomodulin, to mice together with a glucose load produced significant (P < 0.05) decreases in plasma glucose concentrations and paddlefish glucagon produced a greater release of insulin compared with GLP-1. Paddlefish glucagon shares the sequences Glu15-Glu16 and Glu24-Trp25-Leu26-Lys27-Asn28-Gly29 with the potent GLP1R agonist, exendin-4 so may be regarded as a naturally occurring, dual-agonist hybrid peptide that may serve as a template design of new drugs for type 2 diabetes therapy.
Collapse
Affiliation(s)
- Galyna V Graham
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - J Michael Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK.
| | - Yasser H Abdel-Wahab
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Peter R Flatt
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
5
|
Graham GV, Conlon JM, Abdel-Wahab YH, Gault VA, Flatt PR. Evaluation of the insulinotropic and glucose-lowering actions of zebrafish GIP in mammalian systems: Evidence for involvement of the GLP-1 receptor. Peptides 2018; 100:182-189. [PMID: 29157578 DOI: 10.1016/j.peptides.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022]
Abstract
The insulinotropic properties of zebrafish GIP (zfGIP) were assessed in vitro using clonal pancreatic β-cell lines and isolated mouse islets and acute effects on glucose tolerance and insulin release in vivo were evaluated in mice. The peptide produced a dose-dependent increase in the rate of insulin release from BRIN-BD11 rat clonal β-cells at concentrations ≥30nM. Insulin release from 1.1 B4 human clonal β-cells and mouse islets was significantly increased by zfGIP (10nM and 1μM). The in vitro insulinotropic activity of zfGIP was decreased after incubating BRIN-BD11 cells with the GLP-1 receptor antagonist, exendin-4(9-39) (p<0.001) and the GIP receptor antagonist, GIP (6-30) Cex-K40[Pal] (p<0.05) but the glucagon receptor antagonist [des-His1,Pro4,Glu9]glucagon amide was without effect. zfGIP (10nM and 1μM) produced significant increases in cAMP concentration in CHL cells transfected with the human GLP-1 receptor but was without effect on HEK293 cells transfected with the human glucagon receptor. Conversely, zfGIP, but not human GIP, significantly stimulated insulin release from CRISPR/Cas9-engineered INS-1 clonal β-cells from which the GIP receptor had been deleted. Intraperitoneal administration of zfGIP (25 and 75nmol/kg body weight) to mice together with an intraperitoneal glucose load (18mmol/kg body weight) produced a significant decrease in plasma glucose concentrations concomitant with an increase in insulin concentrations. The study provides evidence that the insulinotropic action of zfGIP in mammalian systems involves activation of both the GLP-1 and the GIP receptors but not the glucagon receptor.
Collapse
Affiliation(s)
- Galyna V Graham
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Yasser H Abdel-Wahab
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
6
|
Bhat VK, Kerr BD, Vasu S, Flatt PR, Gault VA. A DPP-IV-resistant triple-acting agonist of GIP, GLP-1 and glucagon receptors with potent glucose-lowering and insulinotropic actions in high-fat-fed mice. Diabetologia 2013; 56:1417-24. [PMID: 23503814 DOI: 10.1007/s00125-013-2892-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/01/2013] [Indexed: 01/12/2023]
Abstract
AIMS/HYPOTHESIS We designed a chemically modified, enzyme-resistant peptide with triple-acting properties based on human glucagon with amino acid substitutions aligned to strategic positions in the sequence of glucose-dependent insulinotropic polypeptide (GIP). METHODS Y(1)-dA(2)-I(12)-N(17)-V(18)-I(27)-G(28,29)-glucagon (termed YAG-glucagon) was incubated with dipeptidylpeptidase IV (DPP-IV) to assess stability, BRIN-BD11 cells to evaluate insulin secretion, and receptor-transfected cells to examine cAMP production. Acute glucose-lowering and insulinotropic properties of YAG-glucagon were assessed in National Institutes of Health (NIH) Swiss mice, while longer-term actions on glucose homeostasis, insulin secretion, food intake and body weight were examined in high-fat-fed mice. RESULTS YAG-glucagon was resistant to DPP-IV, increased in vitro insulin secretion (1.5-3-fold; p < 0.001) and stimulated cAMP production in GIP receptor-, glucagon-like peptide-1 (GLP-1) receptor- and glucagon receptor-transfected cells. Plasma glucose levels were significantly reduced (by 51%; p < 0.01) and insulin concentrations increased (1.2-fold; p < 0.01) after acute injection of YAG-glucagon in NIH Swiss mice. Acute actions were countered by established GIP, GLP-1 and glucagon antagonists. In high-fat-fed mice, twice-daily administration of YAG-glucagon for 14 days reduced plasma glucose (40% reduction; p < 0.01) and increased plasma insulin concentrations (1.8-fold; p < 0.05). Glycaemic responses were markedly improved (19-48% reduction; p < 0.05) and insulin secretion enhanced (1.5-fold; p < 0.05) after a glucose load, which were independent of changes in insulin sensitivity, food intake and body weight. CONCLUSIONS/INTERPRETATION YAG-glucagon is a DPP-IV-resistant triple agonist of GIP, GLP-1 and glucagon receptors and exhibits beneficial biological properties suggesting that it may hold promise for treatment of type 2 diabetes.
Collapse
Affiliation(s)
- V K Bhat
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | | | | | | | | |
Collapse
|
7
|
A novel GIP-oxyntomodulin hybrid peptide acting through GIP, glucagon and GLP-1 receptors exhibits weight reducing and anti-diabetic properties. Biochem Pharmacol 2013; 85:1655-62. [DOI: 10.1016/j.bcp.2013.03.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 12/13/2022]
|
8
|
Jackson MA, Caputo N, Castle JR, David LL, Roberts CT, Ward WK. Stable liquid glucagon formulations for rescue treatment and bi-hormonal closed-loop pancreas. Curr Diab Rep 2012; 12:705-10. [PMID: 22972416 PMCID: PMC3970213 DOI: 10.1007/s11892-012-0320-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Small doses of glucagon given subcutaneously in the research setting by an automated system prevent most cases of hypoglycemia in persons with diabetes. However, glucagon is very unstable and cannot be kept in a portable pump. Glucagon rapidly forms amyloid fibrils, even within the first day after reconstitution. Aggregation eventually leads to insoluble gels, which occlude pump catheters. Fibrillation occurs rapidly at acid pH, but is absent or minimal at alkaline pH values of ~10. Glucagon also degrades over time; this problem is greater at alkaline pH. Several studies suggest that its primary degradative pathway is deamidation, which results in a conversion of asparagine to aspartic acid. A cell-based assay for glucagon bioactivity that assesses glucagon receptor (GluR) activation can screen promising glucagon formulations. However, mammalian hepatocytes are usually problematic as they can lose GluR expression during culture. Assays for cyclic AMP (cAMP) or its downstream effector, protein kinase A (PKA), in engineered cell systems, are more reliable and suitable for inexpensive, high-throughput assessment of bioactivity.
Collapse
Affiliation(s)
- Melanie A Jackson
- Oregon Health and Science University (OHSU), 3181 SW Sam Jackson Park Road, OP05DC, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Krilov L, Nguyen A, Miyazaki T, Unson CG, Williams R, Lee NH, Ceryak S, Bouscarel B. Dual mode of glucagon receptor internalization: role of PKCα, GRKs and β-arrestins. Exp Cell Res 2011; 317:2981-94. [PMID: 22001118 DOI: 10.1016/j.yexcr.2011.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/29/2011] [Accepted: 10/01/2011] [Indexed: 10/17/2022]
Abstract
Glucagon levels are elevated in diabetes and some liver diseases. Increased glucagon secretion leads to abnormal stimulation of glucagon receptors (GRs) and consequent elevated glucose production in the liver. Blocking glucagon receptor signaling has been proposed as a potential treatment option for diabetes and other conditions associated with hyperglycemia. Elucidating mechanisms of GR desensitization and downregulation may help identify new drug targets besides GR itself. The present study explores the mechanisms of GR internalization and the role of PKCα, GPCR kinases (GRKs) and β-arrestins therein. We have reported previously that PKCα mediates GR phosphorylation and desensitization. While the PKC agonist, PMA, did not affect GR internalization when tested alone, it increased glucagon-mediated GR internalization by 25-40% in GR-expressing HEK-293 cells (HEK-GR cells). In both primary hepatocytes and HEK-GR cells, glucagon treatment recruited PKCα to the plasma membrane where it colocalized with GR. We also observed that overexpression of GRK2, GRK3, or GRK5 enhanced GR internalization. In addition, we found that GR utilizes both clathrin- and caveolin-mediated endocytosis in HEK-GR cells. Glucagon triggered translocation of both β-arrestin1 and β-arrestin2 from the cytosol to the perimembrane region, and overexpression of β-arrestin1 and β-arrestin2 increased GR internalization. Furthermore, both β-arrestin1 and β-arrestin2 colocalized with GR and with Cav-1, suggesting the possible involvement of these arrestins in GR internalization.
Collapse
Affiliation(s)
- Lada Krilov
- Gastroenterology Research Laboratory, Digestive Diseases Center, Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Krilov L, Nguyen A, Miyazaki T, Unson CG, Bouscarel B. Glucagon receptor recycling: role of carboxyl terminus, beta-arrestins, and cytoskeleton. Am J Physiol Cell Physiol 2008; 295:C1230-7. [PMID: 18787074 DOI: 10.1152/ajpcell.00240.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glucagon receptor (GR) activity and expression are altered in several diseases, including Type 2 diabetes. Previously, we investigated the mechanism of GR desensitization and internalization. The present study focused on the fate of internalized GR. Using both hamster hepatocytes and human embryonic kidney (HEK)-293 cells, we showed that internalized GR recycled to the plasma membrane within 30-60 min following stimulation of the cells with 100 nM glucagon. In HEK-293 cells and during recycling, GR colocalized with Rab4, Rab11, beta-arrestin1, beta-arrestin2, and actin filaments, in the cytosolic and/or perinuclear domains. Glucagon treatment triggered redistribution of actin filaments from the plasma membrane to the cytosol. GR coimmunoprecipitated with beta-actin in both hepatocytes and HEK-293 cells. Downregulation of beta-arrestin1 and beta-arrestin2 or disruption of the cytoskeleton inhibited recycling, but not internalization of GR. Deletion of the GR carboxyl-terminal 70 amino acids abolished internalization of GR in response to glucagon while deletion of the last 40 amino acids only did not affect GR internalization and recycling. After exposure of the cells to either high concentrations or prolonged duration of glucagon, GR colocalized with lysosomes. GR degradation was inhibited by lysosomal, but not proteosomal, inhibitors. In conclusion, GR recycles through Rab4- and Rab11- positive vesicles. The actin cytoskeleton, beta-arrestin1, beta-arrestin2, and the receptor's carboxyl terminus are involved in recycling. Prolonged stimulation with glucagon targets GR for degradation in lysosomes. Therefore, the present study provides a better understanding of the GR recycling mechanism, which could become useful in the treatment of certain diseases, including diabetes.
Collapse
Affiliation(s)
- Lada Krilov
- Gastroenterology Research Laboratory. Digestive Diseases Center, Dept. of Biochemistry and Molecular Biology, George Washington Univ., 2300 Eye St. NW, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
11
|
Yano Y, Rodrígues AC, de Bragança AC, Andrade LC, Magaldi AJ. PKC stimulated by glucagon decreases UT-A1 urea transporter expression in rat IMCD. Pflugers Arch 2008; 456:1229-37. [PMID: 18449563 DOI: 10.1007/s00424-008-0478-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/12/2008] [Accepted: 02/17/2008] [Indexed: 11/29/2022]
Abstract
It is well-known that glucagon increases fractional excretion of urea in rats after a protein intravenous infusion. This effect was investigated by using: (a) in vitro microperfusion technique to measure [(14)C]-urea permeability (Pu x 10(-5)cm/s) in inner medullary collecting ducts (IMCD) from normal rats in the presence of 10(-7)M of glucagon and in the absence of vasopressin and (b) immunoblot techniques to determine urea transporter expression in tubule suspension incubated with the same glucagon concentration. Seven groups of IMCDs (n = 47) were studied. Our results revealed that: (a) glucagon decreased urea reabsorption dose-dependently; (b) the glucagon antagonist des-His(1)-[Glu(9)], blocked the glucagon action but not vasopressin action; (c) the phorbol myristate acetate, decreased urea reabsorption but (d) staurosporin, restored its effect; e) staurosporin decreased glucagon action, and finally, (f) glucagon decreased UT-A1 expression. We can conclude that glucagon reduces UT-A1 expression via a glucagon receptor by stimulating PKC.
Collapse
Affiliation(s)
- Yuristella Yano
- Laboratório de Pesquisa Básica-LIM 12, Hospital das Clínicas da Faculdade de Medicina-Nefrologia, Universidade de São Paulo, Av Dr Arnaldo, 455, São Paulo, SP, 01246-903, Brasil
| | | | | | | | | |
Collapse
|
12
|
Davé V, Childs T, Whitsett JA. Nuclear Factor of Activated T Cells Regulates Transcription of the Surfactant Protein D Gene (Sftpd) via Direct Interaction with Thyroid Transcription Factor-1 in Lung Epithelial Cells. J Biol Chem 2004; 279:34578-88. [PMID: 15173172 DOI: 10.1074/jbc.m404296200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Surfactant protein D (SP-D) plays critical roles in host defense, surfactant homeostasis, and pulmonary immunomodulation. Here, we identify a role of nuclear factor of activated T cells (NFATs) in regulation of murine SP-D gene (Sftpd) transcription. An NFAT-dependent enhancer modulated by NFATs or calcineurin and sensitive to cyclosporin was identified in the Sftpd promoter. Ionomycin and phorbol 12-myristate 13-acetate further increased the activity of this enhancer, whereas VIVIT, a potent NFAT inhibitor peptide, selectively interfered with the calcineurin-NFAT interaction and abolished enhancer function. Gel supershift and DNase I protection assays identified DNA elements that bind NFAT in the Sftpd promoter. Calcineurin and NFATc3 proteins were detected in the embryonic and adult mouse lung epithelium, and the mRNA expression profiles of the NFATs were similar in immortalized mouse lung epithelial cells and alveolar epithelial type II cells. NFATc3 and TTF-1 activated the Sftpd promoter, synergized transcription, co-immunoprecipitated from mouse lung epithelial cells, and physically interacted in vitro. Components of the calcineurin/NFAT pathway were identified in respiratory epithelial cells of the lung that potentially augment rapid assembly of a multiprotein transcription complex on Sftpd promoter inducing SP-D expression.
Collapse
Affiliation(s)
- Vrushank Davé
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| | | | | |
Collapse
|