1
|
Mir FA, Abdesselem HB, Cyprian F, Iskandarani A, Doudin A, Shraim MA, Alkhalaf BM, Alkasem M, Abdalhakam I, Bensmail I, Al Halabi HA, Taheri S, Abou-Samra AB. Metabolically Healthy Obesity Is Characterized by a Distinct Proteome Signature. Int J Mol Sci 2025; 26:2262. [PMID: 40076884 PMCID: PMC11901089 DOI: 10.3390/ijms26052262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 03/14/2025] Open
Abstract
Obesity is commonly associated with metabolic diseases including type 2 diabetes, hypertension, and dyslipidemia. Moreover, individuals with obesity are at increased risk of cardiovascular disease. However, a subgroup of individuals within the obese population presents without concurrent metabolic disorders. Even though this group has a stable metabolic status and does not exhibit overt metabolic disease, this status may be transient; these individuals may have subclinical metabolic derangements. To investigate the latter hypothesis, an analysis of the proteome signature was conducted. Plasma samples from 27 subjects with obesity but without an associated metabolic disorder (obesity only (OBO)) and 15 lean healthy control (LHC) subjects were examined. Fasting samples were subjected to Olink proteomics analysis targeting 184 proteins enriched in cardiometabolic and inflammation pathways. Our results distinctly delineated two groups with distinct plasma protein expression profiles. Specifically, a total of 24 proteins were differentially expressed in individuals with obesity compared to LHC. Among these, 13 proteins were downregulated, whereas 11 proteins were upregulated. The pathways that were upregulated in the OBO group were related to chemoattractant activity, growth factor activity, G protein-coupled receptor binding, chemokine activity, and cytokine activity, whereas the pathways that were downregulated include regulation of T cell differentiation, leukocyte differentiation, reproductive system development, inflammatory response, neutrophil, lymphocyte, monocyte and leukocyte chemotaxis, and neutrophil migration. The study identifies several pathways that are altered in individuals with obesity compared to healthy control subjects. These findings provide valuable insights into the underlying mechanisms, potentially paving the way for the identification of therapeutic targets aimed at improving metabolic health in individuals with obesity.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Houari B. Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Farhan Cyprian
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Ahmad Iskandarani
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Asmma Doudin
- Laboratory of Immunoregulation, Research Department, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| | - Mutasem AbdelRahim Shraim
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Bader M. Alkhalaf
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Meis Alkasem
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Ibrahem Abdalhakam
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Hamza A. Al Halabi
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Shahrad Taheri
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
- National Obesity Treatment Center, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar
- Weil Cornell Medicine—Qatar, Doha P.O. Box 24144, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
- National Obesity Treatment Center, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar
- Weil Cornell Medicine—Qatar, Doha P.O. Box 24144, Qatar
| |
Collapse
|
2
|
Chu H, Shan Y, Jiang C, Zhong Y, Liu Z, Fang X, Yang Z. PNMA1 is a novel immune modulator and therapeutic target in hepatocellular carcinoma linked to bile acid metabolism. Sci Rep 2025; 15:738. [PMID: 39754028 PMCID: PMC11698831 DOI: 10.1038/s41598-024-84368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Hepatocellular carcinoma (HCC) necessitates innovative prognostic biomarkers and therapeutic targets. By investigating PNMA1 in HCC via the TCGA and GEO databases and our clinical data, we found that its overexpression is associated with worse survival. The relevance of PNMA1 extends to immune factors such as M1 macrophages, CD8+ T cells, and immune checkpoints. Mechanistically, PNMA1 shapes a suppressive tumor microenvironment strongly linked to bile acid metabolism. It promotes tumor progression via immune inhibition and PI3K-AKT pathway activation. Notably, PNMA1 has emerged as a promising therapeutic target for tyrosine kinase inhibitors, as confirmed by reduced IC50 values and molecular docking. Experimental knockdown of PNMA1 hindered HepG2 cell proliferation and migration. Furthermore, PNMA1 is a pivotal HCC biomarker and therapeutic target with a focus on cancer progression, immune modulation, and bile acid metabolism.
Collapse
Affiliation(s)
- Hongyu Chu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yuezhan Shan
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Chengwei Jiang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin, China
| | - Yumin Zhong
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zijing Liu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Zhaoying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
3
|
Gonzalez E, Lee MD, Tierney BT, Lipieta N, Flores P, Mishra M, Beckett L, Finkelstein A, Mo A, Walton P, Karouia F, Barker R, Jansen RJ, Green SJ, Weging S, Kelliher J, Singh NK, Bezdan D, Galazska J, Brereton NJB. Spaceflight alters host-gut microbiota interactions. NPJ Biofilms Microbiomes 2024; 10:71. [PMID: 39209868 PMCID: PMC11362537 DOI: 10.1038/s41522-024-00545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The ISS rodent habitat has provided crucial insights into the impact of spaceflight on mammals, inducing symptoms characteristic of liver disease, insulin resistance, osteopenia, and myopathy. Although these physiological responses can involve the microbiome on Earth, host-microbiota interactions during spaceflight are still being elucidated. We explore murine gut microbiota and host gene expression in the colon and liver after 29 and 56 days of spaceflight using multiomics. Metagenomics revealed significant changes in 44 microbiome species, including relative reductions in bile acid and butyrate metabolising bacteria like Extibacter muris and Dysosmobacter welbionis. Functional prediction indicate over-representation of fatty acid and bile acid metabolism, extracellular matrix interactions, and antibiotic resistance genes. Host gene expression described corresponding changes to bile acid and energy metabolism, and immune suppression. These changes imply that interactions at the host-gut microbiome interface contribute to spaceflight pathology and that these interactions might critically influence human health and long-duration spaceflight feasibility.
Collapse
Affiliation(s)
- E Gonzalez
- Microbiome Unit, Canadian Centre for Computational Genomics, Department of Human Genetics, McGill University, Montréal, Canada
- Centre for Microbiome Research, McGill University, Montréal, Canada
| | - M D Lee
- Exobiology Branch, NASA Ames Research Centre, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - B T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - N Lipieta
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - P Flores
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA
| | - M Mishra
- Grossman School of Medicine, New York University, New York, USA
| | - L Beckett
- University of Nottingham, Nottingham, NG7 2RD, UK
| | - A Finkelstein
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - A Mo
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - P Walton
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - F Karouia
- Exobiology Branch, NASA Ames Research Centre, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Centre for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - R Barker
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Yuri GmbH, Wiesentalstr. 40, 88074, Meckenbeuren, Germany
- University of Wisconsin-Madison, Madison, WI, USA
| | - R J Jansen
- Department of Public Health, North Dakota State University, Fargo, ND, USA
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, USA
| | - S J Green
- Genomics and Microbiome Core Facility, Rush University Medical Centre, 1653 W. Congress Parkway, Chicago, IL, 60612, USA
| | - S Weging
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - J Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - N K Singh
- Department of Industrial Relations, Division of Occupational Safety and Health, Oakland, USA
| | - D Bezdan
- University of Wisconsin-Madison, Madison, WI, USA
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Centre Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - J Galazska
- Space Biosciences Research Branch, NASA Ames Research Centre, Moffett Field, CA, USA
| | - N J B Brereton
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Nndwammbi AAT, Dongola TH, Shonhai A, Mokoena F, Pooe OJ, Simelane MBC. Ursolic acid acetate and iso-mukaadial acetate bind to Plasmodium falciparum Hsp90, abrogating its chaperone function in vitro. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5179-5192. [PMID: 38252299 PMCID: PMC11166764 DOI: 10.1007/s00210-024-02944-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
Plasmodium falciparum is the most lethal malaria parasite. Increasing incidences of drug resistance of P. falciparum have prompted the need for discovering new and effective antimalarial compounds with an alternative mode of action. Heat shock protein 90 (PfHsp90) facilitates protein folding and is a promising antimalarial drug target. We have previously reported that iso-mukaadial acetate (IMA) and ursolic acid acetate (UAA) exhibit antimalarial activity. We investigated the abilities of IMA and UAA to bind PfHsp90 by molecular docking and dynamics simulations. The in silico predictions were validated by biochemical assays conducted on recombinant PfHsp90. The interaction between the ligands and PfHsp90 was evaluated using ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FTIR), and surface plasmon resonance (SPR) analysis. The results obtained by docking calculations and MD dynamics simulation predicted that UAA and IMA preferentially bound to PfHsp90 via the N-terminal domain, with UAA binding more stable than IMA. UV-vis-based data suggest that PfHsp90 harbors buried aromatic amino acids, which were exposed in the presence of either IMA or UAA. In addition, data obtained using FTIR suggested that IMA and UAA destabilized the secondary structure of PfHsp90. Of the two compounds, UAA bound to PfHsp90 within the micromolar range based on surface plasmon resonance (SPR)-based binding assay. Furthermore, both compounds disrupted the holdase chaperone function of PfHsp90 as the chaperone failed to suppress heat-induced aggregation of the model proteins, malate dehydrogenase (MDH), luciferase, and citrate synthase in vitro. In addition, both compounds lowered the ATPase activity of PfHsp90. The molecular dynamics simulation analysis indicated that the docked complexes were mostly stable for 100 ns, validating the data obtained through the biochemical assays. Altogether, this study expands the repository of antiplasmodial compounds that have PfHsp90 among their possible targets.
Collapse
Affiliation(s)
- Andani A T Nndwammbi
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Johannesburg, 2006, South Africa
| | | | - Addmore Shonhai
- Department of Biochemistry & Microbiology, University of Venda, Thohoyandou, South Africa
| | - Fortunate Mokoena
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North West University, Mmabatho, South Africa
| | - Ofentse J Pooe
- School of Life Sciences, University of KwaZulu-Natal, Durban, Westville, 4000, South Africa
| | - Mthokozisi B C Simelane
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Johannesburg, 2006, South Africa.
| |
Collapse
|
5
|
Zheng L, Shen J, Han X, Jin C, Chen X, Yao J. High rumen degradable starch diet induced blood bile acids profile changes and hepatic inflammatory response in dairy goats. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:121-129. [PMID: 37808950 PMCID: PMC10556040 DOI: 10.1016/j.aninu.2023.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 10/10/2023]
Abstract
The objective of this study was to reveal the effect of rumen degradable starch (RDS) on bile acid metabolism and liver transcription in dairy goats using metabolomics and transcriptomics. Eighteen Guanzhong dairy goats of a similar weight and production level (body weight = 45.8 ± 1.54 kg, milk yield = 1.75 ± 0.08 kg, and second parity) were randomly assigned to 3 treatment groups where they were fed a low RDS (LRDS, RDS = 20.52% DM) diet, medium RDS (MRDS, RDS = 22.15% DM) diet, or high RDS (HRDS, RDS = 24.88% DM) diet, respectively. The goats were fed with the experimental diets for 5 weeks. On the last day of the experiment, all goats were anesthetized, and peripheral blood and liver tissue samples were collected. The peripheral blood samples were used in metabolomic analysis and white blood cell (WBC) count, whereas the liver tissue samples were used in transcriptomic analysis. Based on the metabolomics results, the relative abundances of primary bile acids in the peripheral blood were significantly reduced in the group that was fed the HRDS diet (P < 0.05). The WBC count was significantly increased in the HRDS group compared with that in the LRDS and MRDS groups (P < 0.01), indicating that there was inflammation in the HRDS group. Transcriptomic analysis showed that 4 genes related to bile acid secretion (genes: MDR1, RXRα, AE2, SULT2A1) were significantly downregulated in the HRDS group. In addition, genes related to the immune response were upregulated in the HRDS group, suggesting the HRDS diet induced a hepatic inflammatory response mediated by lipopolysaccharides (LPS) (gene: LBP), activated the Toll-like receptor 4 binding (genes: S100A8, S100A9) and the NF-kappa B signaling pathway (genes: LOC106503980, LOC108638497, CD40, LOC102180880, LOC102170970, LOC102175177, LBP, LOC102168903, LOC102185461, LY96 and CXCL8), triggered inflammation and complement responses (genes: C1QB, C1QC, and CFD). The HRDS diet induced a hepatic inflammatory response may be mediated by activating the Toll-like receptor 4 binding and NF-kappa B signaling pathway after free LPS entered the liver. The changes of bile acids profile in blood and the down-regulation of 4 key genes (MDR1, RXRα, AE2, SULT2A1) involved in bile secretion in liver are probably related to liver inflammation.
Collapse
Affiliation(s)
- Lixin Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Newhope Dairy Co., Ltd, Chengdu, China
| | - Jing Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoying Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chunjia Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Gan C, Wang J, Wang Y, Martínez-Chávez A, Hillebrand M, de Vries N, Beukers J, Lebre MC, Wagenaar E, Rosing H, Klarenbeek S, Bleijerveld OB, Song JY, Altelaar M, Beijnen JH, Schinkel AH. Natural deletion of mouse carboxylesterases Ces1c/d/e impacts drug metabolism and metabolic syndrome development. Biomed Pharmacother 2023; 164:114956. [PMID: 37267638 DOI: 10.1016/j.biopha.2023.114956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/12/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023] Open
Abstract
Mammalian carboxylesterase 1 enzymes can hydrolyze many xenobiotic chemicals and endogenous lipids. We here identified and characterized a mouse strain (FVB/NKI) in which three of the eight Ces1 genes were spontaneously deleted, removing Ces1c and Ces1e partly, and Ces1d entirely. We studied the impact of this Ces1c/d/e deficiency on drug and lipid metabolism and homeostasis. Ces1c/d/e-/- mice showed strongly impaired conversion of the anticancer prodrug irinotecan to its active metabolite SN-38 in plasma, spleen and lung. Plasma hydrolysis of the oral anticancer prodrug capecitabine to 5-DFCR was also profoundly reduced in Ces1c/d/e-/- mice. Our findings resolved previously unexplained FVB/NKI pharmacokinetic anomalies. On a medium-fat diet, Ces1c/d/e-/- female mice exhibited moderately higher body weight, mild inflammation in gonadal white adipose tissue (gWAT), and increased lipid load in brown adipose tissue (BAT). Ces1c/d/e-/- males showed more pronounced inflammation in gWAT and an increased lipid load in BAT. On a 5-week high-fat diet exposure, Ces1c/d/e deficiency predisposed to developing obesity, enlarged and fatty liver, glucose intolerance and insulin resistance, with severe inflammation in gWAT and increased lipid load in BAT. Hepatic proteomics analysis revealed that the acute phase response, involved in the dynamic cycle of immunometabolism, was activated in these Ces1c/d/e-/- mice. This may contribute to the obesity-related chronic inflammation and adverse metabolic disease in this strain. While Ces1c/d/e deficiency clearly exacerbated metabolic syndrome development, long-term (18-week) high-fat diet exposure overwhelmed many, albeit not all, observed phenotypic differences.
Collapse
Affiliation(s)
- Changpei Gan
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Jing Wang
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Yaogeng Wang
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Alejandra Martínez-Chávez
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands; Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Michel Hillebrand
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Niels de Vries
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Joke Beukers
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Maria C Lebre
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Els Wagenaar
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology Facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Onno B Bleijerveld
- Proteomics Core Facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Ji-Ying Song
- Experimental Animal Pathology Facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Maarten Altelaar
- Proteomics Core Facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, and Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands; Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands; Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CS, the Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands.
| |
Collapse
|
7
|
Bentley C, Hazeldine J, Bravo L, Taylor AE, Gilligan LC, Shaheen F, Acharjee A, Gkoutos G, Foster MA, Arlt W, Lord JM. The ultra-acute steroid response to traumatic injury: a cohort study. Eur J Endocrinol 2023; 188:7049580. [PMID: 36809311 DOI: 10.1093/ejendo/lvad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/21/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVE Trauma-induced steroid changes have been studied post-hospital admission, resulting in a lack of understanding of the speed and extent of the immediate endocrine response to injury. The Golden Hour study was designed to capture the ultra-acute response to traumatic injury. DESIGN We conducted an observational cohort study including adult male trauma patients <60 years, with blood samples drawn ≤1 h of major trauma by pre-hospital emergency responders. METHODS We recruited 31 adult male trauma patients (mean age 28 [range 19-59] years) with a mean injury severity score (ISS) of 16 (IQR 10-21). The median time to first sample was 35 (range 14-56) min, with follow-up samples collected 4-12 and 48-72 h post-injury. Serum steroids in patients and age- and sex-matched healthy controls (HCs) (n = 34) were analysed by tandem mass spectrometry. RESULTS Within 1 h of injury, we observed an increase in glucocorticoid and adrenal androgen biosynthesis. Cortisol and 11-hydroxyandrostendione increased rapidly, whilst cortisone and 11-ketoandrostenedione decreased, reflective of increased cortisol and 11-oxygenated androgen precursor biosynthesis by 11β-hydroxylase and increased cortisol activation by 11β-hydroxysteroid dehydrogenase type 1. Active classic gonadal androgens testosterone and 5α-dihydrotestosterone decreased, whilst the active 11-oxygenated androgen 11-ketotestosterone maintained pre-injury levels. CONCLUSIONS Changes in steroid biosynthesis and metabolism occur within minutes of traumatic injury. Studies that address whether ultra-early changes in steroid metabolism are associated with patient outcomes are now required.
Collapse
Affiliation(s)
- Conor Bentley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TT, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TT, United Kingdom
| | - Laura Bravo
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Fozia Shaheen
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Animesh Acharjee
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TT, United Kingdom
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, United Kingdom
| | - George Gkoutos
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TT, United Kingdom
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, United Kingdom
- Medical Research Council Health Data Research UK (HDR), United Kingdom
| | - Mark A Foster
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TT, United Kingdom
- Royal Centre for Defence Medicine, Birmingham Research Park, Birmingham B15 2SQ, United Kingdom
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
- National Institute for Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, United Kingdom
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TT, United Kingdom
- National Institute for Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, United Kingdom
| |
Collapse
|
8
|
Zhao J, Yang Q, Liu Z, Xu P, Tian L, Yan J, Li K, Lin B, Bian L, Xi Z, Liu X. The impact of subchronic ozone exposure on serum metabolome and the mechanisms of abnormal bile acid and arachidonic acid metabolisms in the liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114573. [PMID: 36701875 DOI: 10.1016/j.ecoenv.2023.114573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 06/17/2023]
Abstract
Ambient ozone (O3) pollution can induce respiratory and cardiovascular toxicity. However, its impact on the metabolome and the underlying mechanisms remain unclear. This study first investigated the serum metabolite changes in rats exposed to 0.5 ppm O3 for 3 months using untargeted metabolomic approach. Results showed chronic ozone exposure significantly altered the serum levels of 34 metabolites with potential increased risk of digestive, respiratory and cardiovascular disease. Moreover, bile acid synthesis and secretion, and arachidonic acid (AA) metabolism became the most prominent affected metabolic pathways after O3 exposure. Further studies on the mechanisms found that the elevated serum toxic bile acid was not due to the increased biosynthesis in the liver, but the reduced reuptake from the portal vein to hepatocytes owing to repressed Ntcp and Oatp1a1, and the decreased bile acid efflux in hepatocytes as a results of inhibited Bsep, Ostalpha and Ostbeta. Meanwhile, decreased expressions of detoxification enzyme of SULT2A1 and the important regulators of FXR, PXR and HNF4α also contributed to the abnormal bile acids. In addition, O3 promoted the conversion of AA into thromboxane A2 (TXA2) and 20-hydroxyarachidonic acid (20-HETE) in the liver by up-regulation of Fads2, Cyp4a and Tbxas1 which resulting in decreased AA and linoleic acid (LA), and increased thromboxane B2 (TXB2) and 20-HETE in the serum. Furthermore, apparent hepatic chronic inflammation, fibrosis and abnormal function were found in ozone-exposed rats. These results indicated chronic ozone exposure could alter serum metabolites by interfering their metabolism in the liver, and inducing liver injury to aggravate metabolic disorders.
Collapse
Affiliation(s)
- Jiao Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Qingcheng Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Zhiyuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Pengfei Xu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| |
Collapse
|
9
|
Lin J, Kao TW, Cheng YC, Fan KC, Huang YC, Liu CW. Dehydroepiandrosterone status and efficacy of dehydroepiandrosterone supplementation for bone health in anorexia nervosa: A systematic review and meta-analysis. Int J Eat Disord 2022; 55:733-746. [PMID: 35460091 DOI: 10.1002/eat.23714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study was designed to determine the status of dehydroepiandrosterone (DHEA) in women with anorexia nervosa (AN) and to assess the efficacy of DHEA supplementation as a treatment for bone health in women with AN. METHOD Studies were retrieved from the PubMed, Embase, Cochrane Library, MEDLINE, and Scopus databases from inception to February 14, 2022. Observational studies that compared serum DHEA levels between women with AN and healthy controls were included for meta-analysis, and randomized controlled trials (RCTs) that evaluated the effects of DHEA supplementation on bone mass were reviewed. RESULTS Meta-analysis of 15 cross-sectional studies revealed that patients with AN had significantly elevated serum DHEA levels (mean difference (MD) = 311.63 ng/dl; 95% confidence interval (CI), 78.01-545.25) and reduced DHEAS levels (MD = -24.90 μg/dl; 95% CI, -41.72 to -8.07) compared with healthy controls. A systematic review of seven RCTs found that DHEA monotherapy does not improve bone mineral density (BMD) compared with placebo after adjusting for weight gain. While the combination of DHEA and conjugated oral contraceptives has led to increased bone strength and decreased bone loss, the beneficial effect appears to be limited to older adolescents and adults with closed physes. Potential detrimental effects on BMD were identified in younger adolescents with open physes in one study. DISCUSSION Due to the lack of apparent benefit of DHEA in women with AN and its potential detrimental effect on BMD in young patients with AN, current evidence does not support the use of DHEA. PUBLIC SIGNIFICANCE This study demonstrates that women with anorexia nervosa have abnormal levels of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS), which have been suggested by previous studies to play a role in the development of low bone density in this condition. However, current evidence does not support the use of DHEA as a treatment to preserve bone health in patients with anorexia nervosa given the lack of clear benefit following its use and also because of a potential detrimental effect on bone mineral density in young patients with anorexia nervosa.
Collapse
Affiliation(s)
- James Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Wan Kao
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chih Cheng
- Research center of big data and meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan
- Institute of Epidemiology and Preventive Medicine, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Kang-Chih Fan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Huang
- Research center of big data and meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Dermatology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Che-Wei Liu
- Research center of big data and meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedics, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
10
|
Huang Y, Xie Y, Yang D, Xiong M, Chen X, Wu D, Wang Q, Chen H, Zheng L, Huang K. Histone demethylase UTX aggravates acetaminophen overdose induced hepatotoxicity through dual mechanisms. Pharmacol Res 2022; 175:106021. [PMID: 34883214 DOI: 10.1016/j.phrs.2021.106021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/21/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
Acetaminophen (APAP) overdose is a major cause of acute liver failure, while the underlying mechanisms of APAP hepatotoxicity are not fully understood. Recently, emerging evidence suggests that epigenetic enzymes play roles in APAP-induced liver injury. Here, we found that Utx (ubiquitously transcribed tetratricopeptide repeat, X chromosome, also known as KDM6A), a X-linked histone demethylase which removes the di- and tri-methyl groups from histone H3K27, was markedly induced in the liver of APAP-overdosed female mice. Hepatic deletion of Utx suppressed APAP overdose-induced hepatotoxicity in female but not male mice. RNA-sequencing analysis suggested that Utx deficiency in female mice upregulated antitoxic phase II conjugating enzymes, including sulfotransferase family 2 A member 1 (Sult2a1), thus reduces the amount of toxic APAP metabolites in injured liver; while Utx deficiency also alleviated ER stress through downregulating transcription of ER stress genes including Atf4, Atf3, and Chop. Mechanistically, Utx promoted transcription of ER stress related genes in a demethylase activity-dependent manner, while repressed Sult2a1 expression through mediating H3K27ac levels independent of its demethylase activity. Moreover, overexpression of Sult2a1 in the liver of female mice rescued APAP-overdose induced liver injury. Together, our results indicated a novel UTX-Sult2a1 axis for the prevention or treatment of APAP-induced liver injury.
Collapse
Affiliation(s)
- Yixue Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yunhao Xie
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dong Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingrui Xiong
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingrui Chen
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Di Wu
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qing Wang
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
11
|
Tang J, Chen LR, Chen KH. The Utilization of Dehydroepiandrosterone as a Sexual Hormone Precursor in Premenopausal and Postmenopausal Women: An Overview. Pharmaceuticals (Basel) 2021; 15:46. [PMID: 35056103 PMCID: PMC8781653 DOI: 10.3390/ph15010046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
Dehydroepiandrosterone (DHEA), and its metabolite, dehydroepiandrosterone sulfate ester (DHEAS), are the most abundant circulating steroid hormones, and are synthesized in the zona reticularis of the adrenal cortex, in the gonads, and in the brain. The precise physiological role of DHEA and DHEAS is not yet fully understood, but these steroid hormones can act as androgens, estrogens, and neurosteroids, and perform many roles in the human body. Since both levels decline with age, use of DHEA supplements have gained more attention due to being advertised as an antidote to aging in postmenopausal women, who may have concerns on age-related diseases and overall well-being. However, current research has not reached an overall consensus on the effects of DHEA on postmenopausal women. This overview is a summary of the current literature, addressing the metabolic pathway for DHEA synthesis and utilization, as well as the effects of DHEA on premenopausal and postmenopausal women with disease states and other factors. As for the therapeutic effects on menopausal syndrome and other age-related diseases, several studies have found that DHEA supplementations can alleviate vasomotor symptoms, preserve the integrity of the immune system, reduce bone loss, and increase muscle mass. Intravaginal DHEA has shown significant beneficial effects in menopausal women with severe vulvovaginal symptoms. On the other hand, DHEA supplements have not shown definitive effects in cardiovascular disease, adrenal insufficiency, insulin sensitivity, and cognition. Due to inadequate sample sizes and treatment durations of current studies, it is difficult to assess the safety and efficacy of DHEA and draw reliable conclusions for the physiological role, the optimal dosage, and the effects on premenopausal and postmenopausal women; therefore, the study of DHEA warrants future investigation. Further research into the roles of these steroid hormones may bring us closer to a therapeutic option in the future.
Collapse
Affiliation(s)
- Justine Tang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Li-Ru Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 104, Taiwan;
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Kuo-Hu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 231, Taiwan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|
12
|
Wang K, Chan YC, So PK, Liu X, Feng L, Cheung WT, Lee SST, Au SWN. Structure of mouse cytosolic sulfotransferase SULT2A8 provides insight into sulfonation of 7α-hydroxyl bile acids. J Lipid Res 2021; 62:100074. [PMID: 33872606 PMCID: PMC8134075 DOI: 10.1016/j.jlr.2021.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Cytosolic sulfotransferases (SULTs) catalyze the transfer of a sulfonate group from the cofactor 3'-phosphoadenosine 5'-phosphosulfate to a hydroxyl (OH) containing substrate and play a critical role in the homeostasis of endogenous compounds, including hormones, neurotransmitters, and bile acids. In human, SULT2A1 sulfonates the 3-OH of bile acids; however, bile acid metabolism in mouse is dependent on a 7α-OH sulfonating SULT2A8 via unknown molecular mechanisms. In this study, the crystal structure of SULT2A8 in complex with adenosine 3',5'-diphosphate and cholic acid was resolved at a resolution of 2.5 Å. Structural comparison with human SULT2A1 reveals different conformations of substrate binding loops. In addition, SULT2A8 possesses a unique substrate binding mode that positions the target 7α-OH of the bile acid close to the catalytic site. Furthermore, mapping of the critical residues by mutagenesis and enzyme activity assays further highlighted the importance of Lys44 and His48 for enzyme catalysis and Glu237 in loop 3 on substrate binding and stabilization. In addition, limited proteolysis and thermal shift assays suggested that the cofactor and substrates have protective roles in stabilizing SULT2A8 protein. Together, the findings unveil the structural basis of bile acid sulfonation targeting 7α-OH and shed light on the functional diversity of bile acid metabolism across species.
Collapse
Affiliation(s)
- Kai Wang
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Yan-Chun Chan
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Xing Liu
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lu Feng
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wing-Tai Cheung
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Susanna Sau-Tuen Lee
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shannon Wing-Ngor Au
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong; Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
13
|
CDK4/6 Inhibitors in Breast Cancer Treatment: Potential Interactions with Drug, Gene, and Pathophysiological Conditions. Int J Mol Sci 2020; 21:ijms21176350. [PMID: 32883002 PMCID: PMC7504705 DOI: 10.3390/ijms21176350] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Palbociclib, ribociclib, and abemaciclib belong to the third generation of cyclin-dependent kinases inhibitors (CDKis), an established therapeutic class for advanced and metastatic breast cancer. Interindividual variability in the therapeutic response of CDKis has been reported and some individuals may experience increased and unexpected toxicity. This narrative review aims at identifying the factors potentially concurring at this variability for driving the most appropriate and tailored use of CDKis in the clinic. Specifically, concomitant medications, pharmacogenetic profile, and pathophysiological conditions could influence absorption, distribution, metabolism, and elimination pharmacokinetics. A personalized therapeutic approach taking into consideration all factors potentially contributing to an altered pharmacokinetic/pharmacodynamic profile could better drive safe and effective clinical use.
Collapse
|
14
|
Foster MA, Taylor AE, Hill NE, Bentley C, Bishop J, Gilligan LC, Shaheen F, Bion JF, Fallowfield JL, Woods DR, Bancos I, Midwinter MM, Lord JM, Arlt W. Mapping the Steroid Response to Major Trauma From Injury to Recovery: A Prospective Cohort Study. J Clin Endocrinol Metab 2020; 105:dgz302. [PMID: 32101296 PMCID: PMC7043227 DOI: 10.1210/clinem/dgz302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/31/2020] [Indexed: 12/31/2022]
Abstract
CONTEXT Survival rates after severe injury are improving, but complication rates and outcomes are variable. OBJECTIVE This cohort study addressed the lack of longitudinal data on the steroid response to major trauma and during recovery. DESIGN We undertook a prospective, observational cohort study from time of injury to 6 months postinjury at a major UK trauma centre and a military rehabilitation unit, studying patients within 24 hours of major trauma (estimated New Injury Severity Score (NISS) > 15). MAIN OUTCOME MEASURES We measured adrenal and gonadal steroids in serum and 24-hour urine by mass spectrometry, assessed muscle loss by ultrasound and nitrogen excretion, and recorded clinical outcomes (ventilator days, length of hospital stay, opioid use, incidence of organ dysfunction, and sepsis); results were analyzed by generalized mixed-effect linear models. FINDINGS We screened 996 multiple injured adults, approached 106, and recruited 95 eligible patients; 87 survived. We analyzed all male survivors <50 years not treated with steroids (N = 60; median age 27 [interquartile range 24-31] years; median NISS 34 [29-44]). Urinary nitrogen excretion and muscle loss peaked after 1 and 6 weeks, respectively. Serum testosterone, dehydroepiandrosterone, and dehydroepiandrosterone sulfate decreased immediately after trauma and took 2, 4, and more than 6 months, respectively, to recover; opioid treatment delayed dehydroepiandrosterone recovery in a dose-dependent fashion. Androgens and precursors correlated with SOFA score and probability of sepsis. CONCLUSION The catabolic response to severe injury was accompanied by acute and sustained androgen suppression. Whether androgen supplementation improves health outcomes after major trauma requires further investigation.
Collapse
Affiliation(s)
- Mark A Foster
- NIHR-Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, UK
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, University of Birmingham, Birmingham, UK
| | - Neil E Hill
- Section of Investigative Medicine, Imperial College London, UK
| | - Conor Bentley
- NIHR-Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, UK
| | - Jon Bishop
- NIHR-Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, UK
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, University of Birmingham, Birmingham, UK
| | - Fozia Shaheen
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, University of Birmingham, Birmingham, UK
| | - Julian F Bion
- Intensive Care Medicine, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - David R Woods
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, UK
- Leeds Beckett University, Leeds, UK
| | - Irina Bancos
- Division of Endocrinology, Metabolism and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mark M Midwinter
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Janet M Lord
- NIHR-Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
15
|
Li D, Knox B, Chen S, Wu L, Tolleson WH, Liu Z, Yu D, Guo L, Tong W, Ning B. MicroRNAs hsa-miR-495-3p and hsa-miR-486-5p suppress basal and rifampicin-induced expression of human sulfotransferase 2A1 (SULT2A1) by facilitating mRNA degradation. Biochem Pharmacol 2019; 169:113617. [PMID: 31445882 DOI: 10.1016/j.bcp.2019.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022]
Abstract
Drug metabolizing enzymes mediate biotransformation of drugs and play an essential role in drug efficacy and toxicity. Human sulfotransferases are a superfamily of Phase II detoxification enzymes that metabolize a wide spectrum of endogenous compounds and xenobiotics. SULT2A1 is one of the most abundant hepatic sulfotransferases and it catalyzes the sulfate conjugation of many endogenous substrates, such as bile acids and steroids. In the current study, we utilized a systematic approach by combining a series of computational analyses and in vitro methods to identify miRNAs that repress SULT2A1 expression post-transcriptionally. Our in silico analyses predicted miRNA response elements for hsa-miR-495-3p and hsa-miR-486-5p within the 3'-UTR of SULT2A1 mRNA and the levels of these miRNAs were inversely correlated with that of SULT2A1 mRNA in human liver. Using fluorescence-based RNA electrophoretic mobility shift assays, we found that hsa-miR-495-3p and hsa-miR-486-5p interacted directly with the SULT2A1 3'-UTR. The activity of a luciferase reporter gene construct containing sequences from the SULT2A1 3-UTR was suppressed by hsa-miR-486-5p and hsa-miR-495-3p. Furthermore, gain- and loss-of-function assays demonstrated that hsa-miR-486-5p and hsa-miR-495-3p negatively modulate basal and rifampicin-induced expression of SULT2A1 in HepG2 cells by decreasing mRNA stability.
Collapse
Affiliation(s)
- Dongying Li
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Bridgett Knox
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Si Chen
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Leihong Wu
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR 72079, USA
| | - William H Tolleson
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Zhichao Liu
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Dianke Yu
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Lei Guo
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Weida Tong
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Baitang Ning
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
16
|
Abstract
Sulfur is present in the amino acids cysteine and methionine and in a large range of essential coenzymes and cofactors and is therefore essential for all organisms. It is also a constituent of sulfate esters in proteins, carbohydrates, and numerous cellular metabolites. The sulfation and desulfation reactions modifying a variety of different substrates are commonly known as sulfation pathways. Although relatively little is known about the function of most sulfated metabolites, the synthesis of activated sulfate used in sulfation pathways is essential in both animal and plant kingdoms. In humans, mutations in the genes encoding the sulfation pathway enzymes underlie a number of developmental aberrations, and in flies and worms, their loss-of-function is fatal. In plants, a lower capacity for synthesizing activated sulfate for sulfation reactions results in dwarfism, and a complete loss of activated sulfate synthesis is also lethal. Here, we review the similarities and differences in sulfation pathways and associated processes in animals and plants, and we point out how they diverge from bacteria and yeast. We highlight the open questions concerning localization, regulation, and importance of sulfation pathways in both kingdoms and the ways in which findings from these "red" and "green" experimental systems may help reciprocally address questions specific to each of the systems.
Collapse
Affiliation(s)
- Süleyman Günal
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| | - Rebecca Hardman
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany.
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom.
| |
Collapse
|
17
|
Tian X, Wang C, Dong P, An Y, Zhao X, Jiang W, Wang G, Hou J, Feng L, Wang Y, Ge G, Huo X, Ning J, Ma X. Arenobufagin is a novel isoform-specific probe for sensing human sulfotransferase 2A1. Acta Pharm Sin B 2018; 8:784-794. [PMID: 30245965 PMCID: PMC6146385 DOI: 10.1016/j.apsb.2018.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/20/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023] Open
Abstract
Human cytosolic sulfotransferase 2A1 (SULT2A1) is an important phase II metabolic enzyme. The detection of SULT2A1 is helpful for the functional characterization of SULT2A1 and diagnosis of its related diseases. However, due to the overlapping substrate specificity among members of the sulfotransferase family, it is difficult to develop a probe substrate for selective detection of SULT2A1. In the present study, through characterization of the sulfation of series of bufadienolides, arenobufagin (AB) was proved as a potential probe substrate for SULT2A1 with high sensitivity and specificity. Subsequently, the sulfation of AB was characterized by experimental and molecular docking studies. The sulfate-conjugated metabolite was identified as AB-3-sulfate. The sulfation of AB displayed a high selectivity for SULT2A1 which was confirmed by in vitro reaction phenotyping assays. The sulfation of AB by human liver cytosols and recombinant SULT2A1 both obeyed Michaelis-Menten kinetics, with similar kinetic parameters. Molecular docking was performed to understand the interaction between AB and SULT2A1, in which the lack of interaction with Met-137 and Tyr-238 of SULT2A1 made it possible to eliminate substrate inhibition of AB sulfation. Finally, the probe was successfully used to determine the activity of SULT2A1 and its isoenzymes in tissue preparations of human and laboratory animals.
Collapse
Affiliation(s)
- Xiangge Tian
- Academy of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Second Affliated Hospital, Dalian Medical University, Dalian 116044, China
- Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Chao Wang
- Academy of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Second Affliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Peipei Dong
- Academy of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Second Affliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Yue An
- Academy of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Second Affliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xinyu Zhao
- Academy of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Second Affliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Weiru Jiang
- Academy of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Second Affliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Gang Wang
- Academy of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Second Affliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Jie Hou
- Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Lei Feng
- Academy of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Second Affliated Hospital, Dalian Medical University, Dalian 116044, China
- Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Yan Wang
- Academy of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Second Affliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Guangbo Ge
- Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Xiaokui Huo
- Academy of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Second Affliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Jing Ning
- Academy of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Second Affliated Hospital, Dalian Medical University, Dalian 116044, China
- Corresponding author at: College of Pharmacy, Research Institute of Integrated Traditional and Western Medicine, Dalian Medical University, Western 9 Lvshun South Road, Dalian 116044, China. Tel./fax: +86 411 86110419.
| | - Xiaochi Ma
- Academy of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Second Affliated Hospital, Dalian Medical University, Dalian 116044, China
- Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
- Corresponding author at: College of Pharmacy, Research Institute of Integrated Traditional and Western Medicine, Dalian Medical University, Western 9 Lvshun South Road, Dalian 116044, China. Tel./fax: +86 411 86110419.
| |
Collapse
|
18
|
Foster PA, Mueller JW. SULFATION PATHWAYS: Insights into steroid sulfation and desulfation pathways. J Mol Endocrinol 2018; 61:T271-T283. [PMID: 29764919 DOI: 10.1530/jme-18-0086] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Abstract
Sulfation and desulfation pathways represent highly dynamic ways of shuttling, repressing and re-activating steroid hormones, thus controlling their immense biological potency at the very heart of endocrinology. This theme currently experiences growing research interest from various sides, including, but not limited to, novel insights about phospho-adenosine-5'-phosphosulfate synthase and sulfotransferase function and regulation, novel analytics for steroid conjugate detection and quantification. Within this review, we will also define how sulfation pathways are ripe for drug development strategies, which have translational potential to treat a number of conditions, including chronic inflammatory diseases and steroid-dependent cancers.
Collapse
Affiliation(s)
- Paul A Foster
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
19
|
Redan BW, Buhman KK, Novotny JA, Ferruzzi MG. Altered Transport and Metabolism of Phenolic Compounds in Obesity and Diabetes: Implications for Functional Food Development and Assessment. Adv Nutr 2016; 7:1090-1104. [PMID: 28140326 PMCID: PMC5105043 DOI: 10.3945/an.116.013029] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Interest in the application of phenolic compounds from the diet or supplements for the prevention of chronic diseases has grown substantially, but the efficacy of such approaches in humans is largely dependent on the bioavailability and metabolism of these compounds. Although food and dietary factors have been the focus of intense investigation, the impact of disease states such as obesity or diabetes on their absorption, metabolism, and eventual efficacy is important to consider. These factors must be understood in order to develop effective strategies that leverage bioactive phenolic compounds for the prevention of chronic disease. The goal of this review is to discuss the inducible metabolic systems that may be influenced by disease states and how these effects impact the bioavailability and metabolism of dietary phenolic compounds. Because current studies generally report that obesity and/or diabetes alter the absorption and excretion of these compounds, this review includes a description of the absorption, conjugation, and excretion pathways for phenolic compounds and how they are potentially altered in disease states. A possible mechanism that will be discussed related to the modulation of phenolic bioavailability and metabolism may be linked to increased inflammatory status from increased amounts of adipose tissue or elevated plasma glucose concentrations. Although more studies are needed, the translation of benefits derived from dietary phenolic compounds to individuals with obesity or diabetes may require the consideration of dosing strategies or be accompanied by adjunct therapies to improve the bioavailability of these compounds.
Collapse
Affiliation(s)
- Benjamin W Redan
- Interdepartmental Nutrition Program, Department of Nutrition Science, and
| | - Kimberly K Buhman
- Interdepartmental Nutrition Program, Department of Nutrition Science, and
| | - Janet A Novotny
- USDA–Agricultural Research Service Food Components and Health Laboratory, Beltsville, MD
| | - Mario G Ferruzzi
- Interdepartmental Nutrition Program, Department of Nutrition Science, and .,Department of Food Science, Purdue University, West Lafayette, IN; and
| |
Collapse
|
20
|
Suiko M, Kurogi K, Hashiguchi T, Sakakibara Y, Liu MC. Updated perspectives on the cytosolic sulfotransferases (SULTs) and SULT-mediated sulfation. Biosci Biotechnol Biochem 2016; 81:63-72. [PMID: 27649811 DOI: 10.1080/09168451.2016.1222266] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The cytosolic sulfotransferases (SULTs) are Phase II detoxifying enzymes that mediate the sulfate conjugation of numerous xenobiotic molecules. While the research on the SULTs has lagged behind the research on Phase I cytochrome P-450 enzymes and other Phase II conjugating enzymes, it has gained more momentum in recent years. This review aims to summarize information obtained in several fronts of the research on the SULTs, including the range of the SULTs in different life forms, concerted actions of the SULTs and other Phase II enzymes, insights into the structure-function relationships of the SULTs, regulation of SULT expression and activity, developmental expression of SULTs, as well as the use of a zebrafish model for studying the developmental pharmacology/toxicology.
Collapse
Affiliation(s)
- Masahito Suiko
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan
| | - Katsuhisa Kurogi
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan.,b Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences , University of Toledo Health Science Campus , Toledo , OH , USA
| | - Takuyu Hashiguchi
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan
| | - Yoichi Sakakibara
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan
| | - Ming-Cheh Liu
- b Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences , University of Toledo Health Science Campus , Toledo , OH , USA
| |
Collapse
|
21
|
Kosters A, Abebe DF, Felix JC, Dawson PA, Karpen SJ. Inflammation-associated upregulation of the sulfated steroid transporter Slc10a6 in mouse liver and macrophage cell lines. Hepatol Res 2016; 46:794-803. [PMID: 26510996 PMCID: PMC4851596 DOI: 10.1111/hepr.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022]
Abstract
AIM Slc10a6, an incompletely characterized member of the SLC10A bile acid transporter family, was one of the most highly induced RNA transcripts identified in a screen for inflammation-responsive genes in mouse liver. This study aimed to elucidate a role for Slc10a6 in hepatic inflammation. METHODS Mice were treated with lipopolysaccharide (LPS; 2 mg/kg) or interleukin (IL)-1β (5 mg/kg) for various time points. Cells were treated with LPS (1 μg/mL) at various time points, with cell signaling inhibitors, nuclear receptor ligands and Slc10a6 substrates. All mRNA levels were determined by quantitative polymerase chain reaction. RESULTS Slc10a6 mRNA levels were upregulated in mouse liver at 2 h (7-fold), 4 h (100-fold) and 16 h (50-fold) after LPS treatment, and 35-fold by the cytokine IL-1β (4 h). Both absence of the nuclear receptor Fxr and pretreating mice with the synthetic retinoid X receptor-α ligand LG268 attenuated the LPS upregulation of Slc10a6 mRNA by 60-75%. In vitro, Slc10a6 mRNA was induced 30-fold by LPS in mouse RAW264.7 macrophages in a time-dependent manner (maximum at 8 h). The Slc10a6 substrate dehydroepiandrosterone sulfate (DHEAS) enhanced LPS induction of CCL5 mRNA, a pro-inflammatory chemokine, by 50% in RAW264.7 cells. This effect was abrogated in the presence of anti-inflammatory nuclear receptor ligands 9-cis-retinoic acid and dexamethasone. CONCLUSION Dramatic upregulation of Slc10a6 mRNA by LPS combined with enhanced LPS stimulation of CCL5 expression by the Slc10a6 substrate DHEAS in macrophages suggests that Slc10a6 function contributes to the hepatic inflammatory response.
Collapse
Affiliation(s)
- Astrid Kosters
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta GA, 30322
| | - Demesew F. Abebe
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta GA, 30322
| | - Julio C. Felix
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Paul A. Dawson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta GA, 30322
| | - Saul J. Karpen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta GA, 30322
| |
Collapse
|
22
|
Guo Y, Hu B, Xie Y, Billiar TR, Sperry JL, Huang M, Xie W. Regulation of drug-metabolizing enzymes by local and systemic liver injuries. Expert Opin Drug Metab Toxicol 2016; 12:245-51. [PMID: 26751558 DOI: 10.1517/17425255.2016.1139574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Drug metabolism and disposition are critical in maintaining the chemical and functional homeostasis of xenobiotics/drugs and endobiotics. The liver plays an essential role in drug metabolism and disposition due to its abundant expression of drug-metabolizing enzymes (DMEs) and transporters. There is growing evidence to suggest that many hepatic and systemic diseases can affect drug metabolism and disposition by regulating the expression and/or activity of DMEs and transporters in the liver. AREAS COVERED This review focuses on the recent progress on the regulation of DMEs by local and systemic liver injuries. Liver ischemia and reperfusion (I/R) and sepsis are used as examples of local and systemic injury, respectively. The reciprocal effect of the expression and activity of DMEs on animals' sensitivity to local and systemic liver injuries is also discussed. EXPERT OPINION Local and systemic liver injuries have a major effect on the expression and activity of DMEs in the liver. Understanding the disease effect on DMEs is clinically important due to the concern of disease-drug interactions. Future studies are necessary to understand the mechanism by which liver injury regulates DMEs. Human studies are also urgently needed in order to determine whether the results in animals can be replicated in human patients.
Collapse
Affiliation(s)
- Yan Guo
- a Center for Pharmacogenetics and Department of Pharmaceutical Sciences , University of Pittsburgh , Pittsburgh , PA , USA.,b Department of Pathology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Bingfang Hu
- a Center for Pharmacogenetics and Department of Pharmaceutical Sciences , University of Pittsburgh , Pittsburgh , PA , USA.,c Institute of Clinical Pharmacology , Sun Yat-Sen University , Guangzhou , China
| | - Yang Xie
- a Center for Pharmacogenetics and Department of Pharmaceutical Sciences , University of Pittsburgh , Pittsburgh , PA , USA
| | - Timothy R Billiar
- d Department of Surgery , University of Pittsburgh , Pittsburgh , PA , USA
| | - Jason L Sperry
- d Department of Surgery , University of Pittsburgh , Pittsburgh , PA , USA
| | - Min Huang
- c Institute of Clinical Pharmacology , Sun Yat-Sen University , Guangzhou , China
| | - Wen Xie
- a Center for Pharmacogenetics and Department of Pharmaceutical Sciences , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
23
|
VAŇKOVÁ M, HILL M, VELÍKOVÁ M, VČELÁK J, VACÍNOVÁ G, LUKÁŠOVÁ P, VEJRAŽKOVÁ D, DVOŘÁKOVÁ K, RUSINA R, HOLMEROVÁ I, JAROLÍMOVÁ E, VAŇKOVÁ H, BENDLOVÁ B. Reduced Sulfotransferase SULT2A1 Activity in Patients With Alzheimer´s Disease. Physiol Res 2015; 64:S265-73. [DOI: 10.33549/physiolres.933160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Steroids are important components in the pathophysiology of Alzheimer’s disease (AD). Although their role has been studied, the corresponding metabolomic data is limited. In the present study we evaluate the role of steroid sulfotransferase SULT2A1 in the pathophysiology of AD on the basis of circulating steroids (measured by GC-MS), in which the sulfation catalyzed by SULT2A1 dominates over glucuronidation (pregnenolone/sulfate, DHEA/sulfate, androstenediol/sulfate and 5α-reduced pregnane and androstane catabolites). To estimate a general trend of SUL2A1 activity in AD patients we compared the ratios of steroid conjugates to their unconjugated counterparts (C/U) in controls (11 men and 22 women) and AD patients (18 men and 16 women) for individual circulating steroids after adjustment for age and BMI using ANCOVA model including the factors AD status and gender. Decreased C/U ratio for the C19 steroids demonstrate an association between attenuated sulfation of C19 steroids in adrenal zona reticularis and the pathophysiology of AD.
Collapse
Affiliation(s)
- M. VAŇKOVÁ
- Institute of Endocrinology, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
25
|
Shohat-Tal A, Sen A, Barad DH, Kushnir V, Gleicher N. Genetics of androgen metabolism in women with infertility and hypoandrogenism. Nat Rev Endocrinol 2015; 11:429-41. [PMID: 25942654 DOI: 10.1038/nrendo.2015.64] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypoandrogenism in women with low functional ovarian reserve (LFOR, defined as an abnormally low number of small growing follicles) adversely affects fertility. The androgen precursor dehydroepiandrosterone (DHEA) is increasingly used to supplement treatment protocols in women with LFOR undergoing in vitro fertilization. Due to differences in androgen metabolism, however, responses to DHEA supplementation vary between patients. In addition to overall declines in steroidogenic capacity with advancing age, genetic factors, which result in altered expression or enzymatic function of key steroidogenic proteins or their upstream regulators, might further exacerbate variations in the conversion of DHEA to testosterone. In this Review, we discuss in vitro studies and animal models of polymorphisms and gene mutations that affect the conversion of DHEA to testosterone and attempt to elucidate how these variations affect female hormone profiles. We also discuss treatment options that modulate levels of testosterone by targeting the expression of steroidogenic genes. Common variants in genes encoding DHEA sulphotransferase, aromatase, steroid 5α-reductase, androgen receptor, sex-hormone binding globulin, fragile X mental retardation protein and breast cancer type 1 susceptibility protein have been implicated in androgen metabolism and, therefore, can affect levels of androgens in women. Short of screening for all potential genetic variants, hormonal assessments of patients with low testosterone levels after DHEA supplementation facilitate identification of underlying genetic defects. The genetic predisposition of patients can then be used to design individualized fertility treatments.
Collapse
Affiliation(s)
- Aya Shohat-Tal
- Center for Human Reproduction, 21 E. 69th Street, New York, NY 10021, USA
| | - Aritro Sen
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - David H Barad
- Center for Human Reproduction, 21 E. 69th Street, New York, NY 10021, USA
| | - Vitaly Kushnir
- Center for Human Reproduction, 21 E. 69th Street, New York, NY 10021, USA
| | - Norbert Gleicher
- Center for Human Reproduction, 21 E. 69th Street, New York, NY 10021, USA
| |
Collapse
|
26
|
Dkhil MA, Al-Quraishy S, Abdel-Baki AA, Ghanjati F, Arauzo-Bravo MJ, Delic D, Wunderlich F. Epigenetic modifications of gene promoter DNA in the liver of adult female mice masculinized by testosterone. J Steroid Biochem Mol Biol 2015; 145:121-30. [PMID: 25448745 DOI: 10.1016/j.jsbmb.2014.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 12/17/2022]
Abstract
Testosterone (T) is known to masculinize the female phenotype of the liver, evidenced as up- and down-regulated expressions of male- and female-predominant genes, respectively, involved in hepatic metabolism. This study is aimed at identifying epigenetic modifications of promoters of these differently expressed genes in the liver after masculinization by T of adult female C57BL/6 mice using methylated DNA immunoprecipitation and NimbleGen microarrays. Among the 17,354 promoters examined, 82 promoters in the liver have been identified to be significantly changed by T (p<0.05), with 47 and 35 promoters exhibiting increased and decreased DNA methylation, respectively. Most of these promoters display the changes of DNA methylation in their Ups-regions, which are between +500 and +2000 bp upstream from the transcription start site (TSS) of the genes. Less T-induced modifications have been detected in the Cor-regions of the promoters, i.e., +500 to -500 bp around the TSS. Only 13 and 7 Cor-promoters are hyper- and hypo-methylated, respectively, among which are 10 hyper- and 5 hypo-methylated promoters of genes with annotated functions. Surprisingly, the promoters are largely unmethylated in those genes whose expression has been previously found to be permanently deregulated by T in the liver, as e.g. the T-upregulated male-predominant genes Cyp7b1, Cyp2d9, Cyp4a10, Ugt2b1, Ugt2b38, Hsd3b5, Slco1a1 as well as the T-downregulated female-predominant genes Cyp2b9, Cyp2b13, Cyp3a41, Cyp3a44, Fmo3, Sult2a2, respectively. Though methylatable, the promoter DNA of Ar, Esr1, and Esr2 remained unaffected by T. However, T decreases DNA-methylation of the Cor-promoter region of Ddc encoding the AR-coactivator dopa decarboxylase. Among the identified 15 Cor-promoters of genes with annotated functions are also those of Defb43, Cst11, and Sele involved in innate immunity. Our data support the view that T may exert long-lasting epigenetic effects on functions of the liver-inherent immune system.
Collapse
Affiliation(s)
- Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Abdel-Azeem Abdel-Baki
- Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Foued Ghanjati
- Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University, Duesseldorf, Germany
| | - Marcos J Arauzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastion, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Denis Delic
- Department of Biology, Heinrich-Heine-University, Duesseldorf, Germany; Boehringer-Ingelheim, Biberach, Germany
| | - Frank Wunderlich
- Department of Biology, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
27
|
Mihály J, Sonntag D, Krebiehl G, Szegedi A, Töröcsik D, Rühl R. Steroid concentrations in patients with atopic dermatitis: reduced plasma dehydroepiandrosterone sulfate and increased cortisone levels. Br J Dermatol 2014; 172:285-8. [PMID: 24974914 DOI: 10.1111/bjd.13219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J Mihály
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
28
|
Wunderlich F, Al-Quraishy S, Dkhil MA. Liver-inherent immune system: its role in blood-stage malaria. Front Microbiol 2014; 5:559. [PMID: 25408684 PMCID: PMC4219477 DOI: 10.3389/fmicb.2014.00559] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022] Open
Abstract
The liver is well known as that organ which is obligately required for the intrahepatocyte development of the pre-erythrocytic stages of the malaria-causative agent Plasmodium. However, largely neglected is the fact that the liver is also a central player of the host defense against the morbidity- and mortality-causing blood stages of the malaria parasites. Indeed, the liver is equipped with a unique immune system that acts locally, however, with systemic impact. Its main “antipodal” functions are to recognize and to generate effective immunoreactivity against pathogens on the one hand, and to generate tolerance to avoid immunoreactivity with “self” and harmless substances as dietary compounds on the other hand. This review provides an introductory survey of the liver-inherent immune system: its pathogen recognition receptors including Toll-like receptors (TLRs) and its major cell constituents with their different facilities to fight and eliminate pathogens. Then, evidence is presented that the liver is also an essential organ to overcome blood-stage malaria. Finally, we discuss effector responses of the liver-inherent immune system directed against blood-stage malaria: activation of TLRs, acute phase response, phagocytic activity, cytokine-mediated pro- and anti-inflammatory responses, generation of “protective” autoimmunity by extrathymic T cells and B-1 cells, and T cell-mediated repair of liver injuries mainly produced by malaria-induced overreactions of the liver-inherent immune system.
Collapse
Affiliation(s)
- Frank Wunderlich
- Department of Biology, Heinrich-Heine-University , Düsseldorf, Germany
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia ; Department of Zoology and Entomology, Faculty of Science, Helwan University , Cairo, Egypt
| |
Collapse
|
29
|
Huang C, Zhou T, Chen Y, Sun T, Zhang S, Chen G. Estrogen-related receptor ERRα regulation of human hydroxysteroid sulfotransferase (SULT2A1) gene expression in human Caco-2 cells. J Biochem Mol Toxicol 2014; 28:32-8. [PMID: 24038886 DOI: 10.1002/jbt.21520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/14/2013] [Accepted: 08/22/2013] [Indexed: 01/17/2023]
Abstract
Human hydroxysteroid sulfotransferase, SULT2A1, is important for xenobiotic detoxification and the maintenance of hydroxysteroid homeostasis. Our published report suggested that estrogen-related receptor ERRα downregulates SULT2A1 in Hep G2 cells. The results shown in this study suggest that ERRα upregulates SULT2A1 transcription in Caco-2 cells. The deletion analysis suggested that SULT2A1 promoter region between -65 and -44 is important for this upregulation. Our further investigation suggested that ERRα binding element, ERRE51, mediates ERRα activation of SULT2A1 promoter transcription in Caco-2 cells. The interaction of ERRE51 with ERRα was confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation analysis. Results also suggest that the difference of constitutive androstane receptor transcription levels in Hep G2 and Caco-2 cells at least partially contribute to the cell type dependent ERRα modulation of SULT2A1 promoter transcription. ERRα regulates human SULT2A1 transcription by competing with other nuclear receptors binding to the DNA-promoter region.
Collapse
Affiliation(s)
- Chaoqun Huang
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Vinken M, Landesmann B, Goumenou M, Vinken S, Shah I, Jaeschke H, Willett C, Whelan M, Rogiers V. Development of an Adverse Outcome Pathway From Drug-Mediated Bile Salt Export Pump Inhibition to Cholestatic Liver Injury. Toxicol Sci 2013; 136:97-106. [DOI: 10.1093/toxsci/kft177] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
31
|
Yalcin EB, More V, Neira KL, Lu ZJ, Cherrington NJ, Slitt AL, King RS. Downregulation of sulfotransferase expression and activity in diseased human livers. Drug Metab Dispos 2013; 41:1642-50. [PMID: 23775849 PMCID: PMC3876809 DOI: 10.1124/dmd.113.050930] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/13/2013] [Indexed: 12/23/2022] Open
Abstract
Sulfotransferase (SULT) function has been well studied in healthy human subjects by quantifying mRNA and protein expression and determining enzyme activity with probe substrates. However, it is not well known if sulfotransferase activity changes in metabolic and liver disease, such as diabetes, steatosis, or cirrhosis. Sulfotransferases have significant roles in the regulation of hormones and excretion of xenobiotics. In the present study of normal subjects with nonfatty livers and patients with steatosis, diabetic cirrhosis, and alcoholic cirrhosis, we sought to determine SULT1A1, SULT2A1, SULT1E1, and SULT1A3 activity and mRNA and protein expression in human liver tissue. In general, sulfotransferase activity decreased significantly with severity of liver disease from steatosis to cirrhosis. Specifically, SULT1A1 and SULT1A3 activities were lower in disease states relative to nonfatty tissues. Alcoholic cirrhotic tissues further contained lower SULT1A1 and 1A3 activities than those affected by either of the two other disease states. SULT2A1, on the other hand, was only reduced in alcoholic cirrhotic tissues. SULT1E1 was reduced both in diabetic cirrhosis and in alcoholic cirrhosis tissues, relative to nonfatty liver tissues. In conclusion, the reduced levels of sulfotransferase expression and activity in diseased versus nondiseased liver tissue may alter the metabolism and disposition of xenobiotics and affect homeostasis of endobiotic sulfotransferase substrates.
Collapse
Affiliation(s)
- Emine B Yalcin
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Haring R, Wallaschofski H, Teumer A, Kroemer H, Taylor AE, Shackleton CHL, Nauck M, Völker U, Homuth G, Arlt W. A SULT2A1 genetic variant identified by GWAS as associated with low serum DHEAS does not impact on the actual DHEA/DHEAS ratio. J Mol Endocrinol 2013; 50:73-7. [PMID: 23132913 PMCID: PMC3535724 DOI: 10.1530/jme-12-0185] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DHEA is the major precursor of human sex steroid synthesis and is inactivated via sulfonation to DHEAS. A previous genome-wide association study related the single nucleotide polymorphism (SNP) rs2637125, located near the coding region of DHEA sulfotransferase, SULT2A1, to serum DHEAS concentrations. However, the functional relevance of this SNP with regard to DHEA sulfonation is unknown. Using data from 3300 participants of the population-based cohort Study of Health in Pomerania, we identified 43 individuals being homozygote for the minor allele of the SNP rs2637125 (AA) and selected two sex- and age-matched individuals with AG and GG genotype (n=172) respectively. Steroid analysis including measurement of serum DHEA and DHEAS was carried out by liquid chromatography/mass spectrometry, employing steroid oxime analysis for enhancing the sensitivity of DHEA detection. We applied quantile regression models to compare median hormone levels across SULT2A1 genotypes. Median comparisons by SULT2A1 genotype (AA vs AG and GG genotypes respectively) showed no differences in the considered hormones including DHEAS, DHEA, androstenedione, as well as cortisol and cortisone concentrations. SULT2A1 genotype also had no effect on the DHEA/DHEAS ratio. Sex-stratified analyses, as well as alternative use of the SULT2A1 SNP rs182420, yielded similar negative results. Genetic variants of SULT2A1 do not appear to have an effect on individual DHEA and DHEAS concentrations or the DHEA/DHEAS ratio as a marker of DHEA sulfonation capacity.
Collapse
Affiliation(s)
- Robin Haring
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The cytosolic sulfotransferases (SULTs) are a multigene family of enzymes that catalyze the transfer of a sulfonate group from the physiologic sulfate donor, 3'-phosphoadenosine-5'-phosphosulfate, to a nucleophilic substrate to generate a polar product that is more amenable to elimination from the body. As catalysts of both xenobiotic and endogenous metabolism, the SULTs are major points of contact between the external and physiological environments, and modulation of SULT-catalyzed metabolism can not only affect xenobiotic disposition, but it can also alter endogenous metabolic processes. Therefore, it is not surprising that SULT expression is regulated by numerous members of the nuclear receptor (NR) superfamily that function as sensors of xenobiotics as well as endogenous molecules, such as fatty acids, bile acids, and oxysterols. These NRs include the peroxisome proliferator-activated receptors, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, liver X receptors, farnesoid X receptor, retinoid-related orphan receptors, and estrogen-related receptors. This review summarizes current information about NR regulation of SULT expression. Because species differences in SULT subfamily composition and tissue-, sex-, development-, and inducer-dependent regulation are prominent, these differences will be emphasized throughout the review. In addition, because of the central role of the SULTs in cellular physiology, the effect of NR-mediated SULT regulation on physiological and pathophysiological processes will be discussed. Gaps in current knowledge that require further investigation are also highlighted.
Collapse
Affiliation(s)
- Melissa Runge-Morris
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
34
|
Mebis L, Eerdekens A, Güiza F, Princen L, Derde S, Vanwijngaerden YM, Vanhorebeek I, Darras VM, Van den Berghe G, Langouche L. Contribution of nutritional deficit to the pathogenesis of the nonthyroidal illness syndrome in critical illness: a rabbit model study. Endocrinology 2012; 153:973-84. [PMID: 22166982 DOI: 10.1210/en.2011-1411] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Both starvation and critical illness are hallmarked by changes in circulating thyroid hormone parameters with typically low T(3) concentrations in the absence of elevated TSH. This constellation is labeled nonthyroidal illness (NTI). Because critical illness is often accompanied by anorexia and a failing gastrointestinal tract, the NTI of critical illness may be confounded by nutrient deficiency. In an experimental study performed in a rabbit model, we investigated the impact of nutritional deficit on the NTI of sustained critical illness. Critically ill rabbits were randomly allocated to parenteral nutrition (moderate dose 270 kcal/d) initiated on the day after injury and continued until d 7 of illness or to infusing a similar volume of dextrose 1.4% (14 kcal/d). With early parenteral nutrition during illness, the decrease in serum T(3) observed with fasting was reversed, whereas the fall in T(4) was not significantly affected. The rise in T(3) with parenteral nutrition paralleled an increase of liver and kidney type-1 and a decrease of liver and kidney type-3 deiodinase activity and an increase in circulating and central leptin. Nuclear staining of constitutive androstane receptor and its downstream expression of sulfotransferases were reduced in fasting ill animals. TRH expression in the hypothalamus was not different in fasted and fed ill rabbits, although circulating TSH levels were higher with feeding. In conclusion, in this rabbit model of sustained critical illness, reduced circulating T(3), but not T(4), levels could be prevented by parenteral nutrition, which may be mediated by leptin and its actions on tissue deiodinase activity.
Collapse
Affiliation(s)
- Liese Mebis
- Laboratory of Intensive Care Medicine, University of Leuven, Herestraat 49, bus 503, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gene expression in rabbit appendices infected with Eimeria coecicola. Vet Parasitol 2011; 186:222-8. [PMID: 22154972 DOI: 10.1016/j.vetpar.2011.11.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 12/17/2022]
Abstract
Eimeria coecicola causes intestinal coccidiosis in rabbits and, thereby, enormous economic losses in rabbit farms. Here, we investigate the final target site of E. coecicola, the appendix of rabbits, at the level of gene expression. Rabbits, orally infected with E. coecicola, begin to shed parasitic oocysts with their feces on day 5 p.i., and approximately 1.1 million oocysts are maximally shedded on day 7 p.i. At maximal shedding, the appendix has increased in size by about 2-3-folds and reveals increased hemorrhage which is associated with increases in nitrite/nitrate, malondialdehyde and catalase activity and a decrease in glutathione. Agilent 2-color oligo whole rabbit genome microarray, in combination with quantitative real-time PCR, detects 45 and 36 genes whose expression is more than 2-fold up- and down-regulated, respectively, by E. coecicola infection on day 7 p.i. The most dramatic increase by approximately 50-fold reveals the mRNA of the pro- and anti-inflammatory pleiotropic cytokine interleukin 6 (IL-6), whereas the largest decrease by approximately 13-fold is detected for mRNAs encoding for DBP, SULT3A1, CRP and glutathione-S transferase. Also, there are up- and down-regulations in the expression of genes encoding diverse regions of antibodies. Our data suggest that IL-6 plays a central role in the infection of the appendix of rabbits by E. coecicola, presumably involved in both pathological injuries, host defences and healing processes.
Collapse
|
36
|
Huang C, Zhou T, Chen Y, Sun T, Zhang S, Chen G. Estrogen-related receptor ERRα-mediated downregulation of human hydroxysteroid sulfotransferase (SULT2A1) in Hep G2 cells. Chem Biol Interact 2011; 192:264-71. [PMID: 21513704 PMCID: PMC3111048 DOI: 10.1016/j.cbi.2011.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/30/2011] [Accepted: 04/07/2011] [Indexed: 01/14/2023]
Abstract
Hydroxysteroid sulfotransferase SULT2A1 catalyzes the sulfation of hydroxysteroids and xenobiotics. It plays an important role in the detoxification of hydroxyl-containing xenobiotics and in the regulation of the biological activities of hydroxysteroids. ERRα is an orphan member of the nuclear receptor superfamily that is closely related to estrogen receptor alpha (ERα). Here we report that the mRNA expression of human SULT2A1 was suppressed by ERRα in Hep G2 cells. To investigate the mechanisms of this regulation, the effects of ERRα on human SULT2A1 promoter transcription in Hep G2 cells were investigated. Reporter luciferase assay results showed that ERRα significantly represses human SULT2A1 promoter transcription in Hep G2 cells. Deletion analysis indicated that human SULT2A1 promoter region between positions -188 and -130 is necessary for its repression by ERRα in Hep G2 cells. The 5' DNA -188 to -130 region of human SULT2A1 contains IR2 and DR4 hormone response elements and two putative ERRα response elements (ERREs) (ERRE188: GCAAGCTCA and ERRE155: ATAAGTTCA). Interestingly, ERRE188 overlaps with the IR2 element and ERRE155 overlaps with the DR4 element. Our further investigation demonstrated that ERRα represses human SULT2A1 promoter transcription by competing with other nuclear receptors for binding to IR2 or DR4 elements. The interaction of ERRE188 and ERRE155 elements with ERRα was confirmed by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis. Our results suggest that ERRα may play an important role in regulating the metabolism of drugs and xenobiotics and in regulating endogenous hydroxysteroid activities via the regulation of SULT2A1.
Collapse
Affiliation(s)
- Chaoqun Huang
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078 USA
| | - Tianyan Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Yue Chen
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078 USA
| | - Teng Sun
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078 USA
| | - Shufen Zhang
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078 USA
| | - Guangping Chen
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078 USA
| |
Collapse
|
37
|
Huang C, Zhou T, Chen Y, Zhang S, Chen G. (-)Epicatechin Regulation of Hydroxysteroid Sulfotransferase STa (rSULT2A1) Expression in Female Rat Steroidogenic Tissues. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jpt.2011.349.360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Gehrau R, Maluf D, Archer K, Stravitz R, Suh J, Le N, Mas V. Molecular pathways differentiate hepatitis C virus (HCV) recurrence from acute cellular rejection in HCV liver recipients. Mol Med 2011; 17:824-33. [PMID: 21519635 DOI: 10.2119/molmed.2011.00072] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/19/2011] [Indexed: 12/11/2022] Open
Abstract
Acute cellular rejection (ACR) and hepatitis C virus (HCV) recurrence (HCVrec) are common complications after liver transplantation (LT) in HCV patients, who share common clinical and histological features, making a differential diagnosis difficult. Fifty-three liver allograft samples from unique HCV LT recipients were studied using microarrays, including a training set (n = 32) and a validation set (n = 19). Two no-HCV-ACR samples from LT recipients were also included. Probe set intensity values were obtained using the robust multiarray average method (RMA) method. Analysis of variance identified statistically differentially expressed genes (P ≤ 0.005). The limma package was used to fit the mixed-effects models using a restricted maximum likelihood procedure. The last absolute shrinkage and selection operator (LASSO) model was fit with HCVrec versus ACR as the dependent variable predicted. N-fold cross-validation was performed to provide an unbiased estimate of generalization error. A total of 179 probe sets were differentially expressed among groups, with 71 exclusive genes between HCVrec and HCV-ACR. No differences were found within ACR group (HCV-ACR vs. no-HCV-ACR). Supervised clustering analysis displayed two clearly independent groups, and no-HCV-ACR clustered within HCV-ACR. HCVrec-related genes were associated with a cytotoxic T-cell profile, and HCV-ACR-related genes were associated with the inflammatory response. The best-fitting LASSO model classifier accuracy, including 15 genes, has an accuracy of 100% in the training set. N-fold cross-validation accuracy was 78.1%, and sensitivity, specificity and positive and negative predictive values were 50.0%, 90.9%, 71.4% and 80.0%, respectively. Arginase type II (ARG2), ethylmalonic encephalopathy 1 (ETHE1), transmembrane protein 176A (TMEM176A) and TMEM176B genes were significantly confirmed in the validation set. A molecular signature capable of distinguishing HCVrec and ACR in HCV LT recipients was identified and validated.
Collapse
Affiliation(s)
- Ricardo Gehrau
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Radović B, Hussong R, Gerhäuser C, Meinl W, Frank N, Becker H, Köhrle J. Xanthohumol, a prenylated chalcone from hops, modulates hepatic expression of genes involved in thyroid hormone distribution and metabolism. Mol Nutr Food Res 2010; 54 Suppl 2:S225-35. [PMID: 20461738 DOI: 10.1002/mnfr.200900489] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present study, we analyzed the influence of xanthohumol (XN) on thyroid hormone (TH) distribution and metabolism in rats. A potent and selective competition of XN for thyroxine (T4) binding to transthyretin (IC(50)=1 microM at 1.7 nM [(125)I]T4) was found in human and rat sera in vitro. Female rats treated orally with XN showed increased hepatic expression of T4-binding globulin and decreased transthyretin and albumin. Thyrotropin levels and hepatic type 1 deiodinase activity were moderately increased. Northern blot analysis revealed diminished expression of liver sulfotransferase (Sult1a1) and uridine-diphosphate glucuronosyltransferase (Ugt1a1) after XN treatment. The transcript levels of constitutive androstane receptor (CAR), known to be involved in regulation of enzymes metabolizing hormones, drugs and xenobiotics, was lower in rats treated with >10 mg XN/kg body weight per day. Immunoblot analysis indicates reduced amounts of CAR protein. The phenobarbital-inducible cytochrome P450 mRNA level was decreased in rats treated with >10 mg XN/kg/day, in agreement with reduced CAR protein. Although only moderate changes in TH serum levels were observed, the XN-dependent altered expression of components involved in TH homeostasis might be important not only for hormone metabolism, but also for hepatic phase I and II elimination of drug metabolites and xenobiotics.
Collapse
Affiliation(s)
- Branislav Radović
- Institut für Experimentelle Endokrinologie & Endokrinologisches Forschungs-Centrum EnForCé, Charité Universitätsmedizin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Delić D, Dkhil M, Al-Quraishy S, Wunderlich F. Hepatic miRNA expression reprogrammed by Plasmodium chabaudi malaria. Parasitol Res 2010; 108:1111-21. [DOI: 10.1007/s00436-010-2152-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/29/2010] [Indexed: 01/23/2023]
|
41
|
Determination of the key innate genes related to individual variation in carbon tetrachloride-induced hepatotoxicity using a pre-biopsy procedure. Toxicol Appl Pharmacol 2009; 239:55-63. [DOI: 10.1016/j.taap.2009.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/21/2009] [Accepted: 05/15/2009] [Indexed: 01/17/2023]
|
42
|
Krücken J, Delić D, Pauen H, Wojtalla A, El-Khadragy M, Dkhil MA, Mossmann H, Wunderlich F. Augmented particle trapping and attenuated inflammation in the liver by protective vaccination against Plasmodium chabaudi malaria. Malar J 2009; 8:54. [PMID: 19341445 PMCID: PMC2679048 DOI: 10.1186/1475-2875-8-54] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 04/02/2009] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND To date all efforts to develop a malaria vaccine have failed, reflecting the still fragmentary knowledge about protective mechanisms against malaria. In order to evaluate if vaccination changes responses of the anti-malaria effectors spleen and liver to blood stage malaria, BALB/c mice succumbing to infection with Plasmodium chabaudi were compared to those surviving after vaccination. METHODS Mice were vaccinated with host cell plasma membranes isolated from P. chabaudi-infected erythrocytes. Hepatic and splenic capacity to trap particulate material was determined after injection of fluorescent polystyrol beads. Hepatic gene expression was measured using real-time RT-PCR and Northern blotting. RESULTS Survival of BALB/c mice was raised from 0% to 80% and peak parasitaemia was decreased by about 30% by vaccination. Vaccination boosted particle trapping capacity of the liver during crisis when splenic trapping is minimal due to spleen 'closing'. It also attenuated malaria-induced inflammation, thus diminishing severe damages and hence liver failure. Vaccination increased hepatic IFN-gamma production but mitigated acute phase response. Vaccination has a complex influence on infection-induced changes in expression of hepatic nuclear receptors (CAR, FXR, RXR, and PXR) and of the metabolic enzymes Sult2a and Cyp7a1. Although vaccination decreased CAR mRNA levels and prevented Cyp7a1 suppression by the CAR ligand 1,2-bis [2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) on day 8 p.i., Sult2a-induction by TCPOBOP was restored. CONCLUSION These data support the view that the liver is an essential effector site for a vaccine against blood stage malaria: vaccination attenuates malaria-induced inflammation thus improving hepatic metabolic activity and particle trapping activity of the liver.
Collapse
Affiliation(s)
- Jürgen Krücken
- Institute for Parasitology, University of Veterinary Medicine Foundation, Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Mulder J, Karpen SJ, Tietge UJF, Kuipers F. Nuclear receptors: mediators and modifiers of inflammation-induced cholestasis. FRONT BIOSCI-LANDMRK 2009; 14:2599-630. [PMID: 19273222 PMCID: PMC4085779 DOI: 10.2741/3400] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammation-induced cholestasis (IIC) is a frequently occurring phenomenon. A central role in its pathogenesis is played by nuclear receptors (NRs). These ligand-activated transcription factors not only regulate basal expression of hepatobiliary transport systems, but also mediate adaptive responses to inflammation and possess anti-inflammatory characteristics. The latter two functions may be exploited in the search for new treatments for IIC as well as for cholestasis in general. Current knowledge of the pathogenesis of IIC and the dual role NRs in this process are reviewed. Special interest is given to the use of NRs as potential targets for intervention.
Collapse
Affiliation(s)
- Jaap Mulder
- Department of Pediatrics Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | | | | | | |
Collapse
|
44
|
Dawson PA, Gardiner B, Lee S, Grimmond S, Markovich D. Kidney transcriptome reveals altered steroid homeostasis in NaS1 sulfate transporter null mice. J Steroid Biochem Mol Biol 2008; 112:55-62. [PMID: 18790054 DOI: 10.1016/j.jsbmb.2008.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/04/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
Sulfate is essential for human growth and development, and circulating sulfate levels are maintained by the NaS1 sulfate transporter which is expressed in the kidney. Previously, we generated a NaS1-null (Nas1(-/-)) mouse which exhibits hyposulfatemia. In this study, we investigated the kidney transcriptome of Nas1(-/-) mice. We found increased (n=25) and decreased (n=60) mRNA levels of genes with functional roles that include sulfate transport and steroid metabolism. Corticosteroid-binding globulin was the most up-regulated gene (110% increase) in Nas1(-/-) mouse kidney, whereas the sulfate anion transporter-1 (Sat1) was among the most down-regulated genes (>or=50% decrease). These findings led us to investigate the circulating and urinary steroid levels of Nas1(-/-) and Nas1(+/+) mice, which revealed reduced blood levels of corticosterone ( approximately 50% decrease), dehydroepiandrosterone (DHEA, approximately 30% decrease) and DHEA-sulfate ( approximately 40% decrease), and increased urinary corticosterone ( approximately 16-fold increase) and DHEA ( approximately 40% increase) levels in Nas1(-/-) mice. Our data suggest that NaS1 is essential for maintaining a normal metabolic state in the kidney and that loss of NaS1 function leads to reduced circulating steroid levels and increased urinary steroid excretion.
Collapse
Affiliation(s)
- Paul Anthony Dawson
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia.
| | | | | | | | | |
Collapse
|
45
|
Abstract
One of the more controversial areas in critical care in recent decades relates to the issue of adrenal insufficiency and its treatment in critically ill patients. There is no consensus on which patients to test for adrenal insufficiency, which tests to use and how to interpret them, whether to use corticosteroids, and, if so, who to treat and with what dose. This review illustrates the complexity and diversity of pathophysiological changes in glucocorticoid secretion, metabolism, and action and how these are affected by various types of illness. It will review adrenal function testing and give guidance on corticosteroid replacement regimens based on current published literature. There remain inherent difficulties in interpreting the effects of glucocorticoid replacement during critical illness because of the diversity of effects of glucocorticoids on various tissues. Investigation and treatment will depend on whether the likely cause of corticosteroid insufficiency is adrenal or central in origin.
Collapse
Affiliation(s)
- Mark Stuart Cooper
- Department of Endocrinology, Division of Medical Sciences, Institute of Biomedical Research, The University of Birmingham, United Kingdom.
| | | |
Collapse
|
46
|
Alnouti Y, Klaassen CD. Regulation of sulfotransferase enzymes by prototypical microsomal enzyme inducers in mice. J Pharmacol Exp Ther 2008; 324:612-21. [PMID: 17993606 DOI: 10.1124/jpet.107.129650] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
In the present study, the regulation of the mRNA of 11 sulfotransferases (Sults) and two 3'-phosphoadenosine 5'-phosphosulfate synthase (PAPSs) isozymes by 15 microsomal enzyme inducers (MEI) in livers of male mice and five MEIs in livers of female mice was examined. These MEIs represent the transcriptionally mediated pathways: aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), constitutive androstane receptor (CAR), peroxisomal proliferator-activated receptor alpha (PPARalpha), and NF-E2-related factor 2 (Nrf2). AhR ligands suppress the expression of Sults, especially the Sult1 isoenzymes in female mice. CAR activators up-regulate several Sults and PAPSs2 in female but not in male mice. PXR ligands cause marked induction of Sult1e1 in male, Sult2a1/2a2 in female, and PAPSs2 in both male and female mice. PPARalpha ligands do not have a marked effect on Sult expression in males, but they tend to suppress the expression of several Sult isoforms in female mice. Nrf2 activators appear to induce the mRNA expression of Sults in male and have mixed effects in female mice. In silico analysis indicated the presence of putative binding sites for all five transcription factors in the promoter region of many Sult and PAPSs isoforms. In conclusion, induction of Sults by typical MEIs is not as marked as the induction of P450 enzymes in mice. In addition to gender differences in basal expression of Sults, there is also a marked gender difference in the inducibility of various Sult isoenzymes in mice by MEIs.
Collapse
Affiliation(s)
- Yazen Alnouti
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA
| | | |
Collapse
|
47
|
Kohjitani A, Fuda H, Hanyu O, Strott CA. Regulation of SULT2B1a (pregnenolone sulfotransferase) expression in rat C6 glioma cells: Relevance of AMPA receptor-mediated NO signaling. Neurosci Lett 2008; 430:75-80. [DOI: 10.1016/j.neulet.2007.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 09/29/2007] [Accepted: 10/16/2007] [Indexed: 12/24/2022]
|
48
|
Kang HS, Angers M, Beak JY, Wu X, Gimble JM, Wada T, Xie W, Collins JB, Grissom SF, Jetten AM. Gene expression profiling reveals a regulatory role for ROR alpha and ROR gamma in phase I and phase II metabolism. Physiol Genomics 2007; 31:281-94. [PMID: 17666523 DOI: 10.1152/physiolgenomics.00098.2007] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinoid-related orphan receptors alpha (ROR alpha) and gamma (ROR gamma) are both expressed in liver; however, their physiological functions in this tissue have not yet been clearly defined. The ROR alpha1 and ROR gamma 1 isoforms, but not ROR alpha 4, show an oscillatory pattern of expression during circadian rhythm. To obtain insight into the physiological functions of ROR receptors in liver, we analyzed the gene expression profiles of livers from WT, ROR alpha-deficient staggerer (sg) mice (ROR alpha(sg/sg)), ROR gamma(-/-), and ROR alpha(sg/sg)ROR gamma(-/-) double knockout (DKO) mice by microarray analysis. DKO mice were generated to study functional redundancy between ROR alpha and ROR gamma. These analyses demonstrated that ROR alpha and ROR gamma affect the expression of a number of genes. ROR alpha and ROR gamma are particularly important in the regulation of genes encoding several phase I and phase II metabolic enzymes, including several 3beta-hydroxysteroid dehydrogenases, cytochrome P450 enzymes, and sulfotransferases. In addition, our results indicate that ROR alpha and ROR gamma each affect the expression of a specific set of genes but also exhibit functional redundancy. Our study shows that ROR alpha and ROR gamma receptors influence the regulation of several metabolic pathways, including those involved in the metabolism of steroids, bile acids, and xenobiotics, suggesting that RORs are important in the control of metabolic homeostasis.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/metabolism
- Cells, Cultured/metabolism
- Circadian Rhythm/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Female
- Gene Expression Profiling
- Hepatocytes/metabolism
- Lipid Metabolism/genetics
- Liver/metabolism
- Metabolic Networks and Pathways/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Neurologic Mutants
- Nuclear Receptor Subfamily 1, Group F, Member 1
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Retinoic Acid/deficiency
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/physiology
- Receptors, Thyroid Hormone/deficiency
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/physiology
- Recombinant Fusion Proteins/metabolism
- Steroids/metabolism
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transfection
- Xenobiotics/metabolism
Collapse
Affiliation(s)
- Hong Soon Kang
- Cell Biology Section, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Westerink WMA, Schoonen WGEJ. Phase II enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol In Vitro 2007; 21:1592-602. [PMID: 17716855 DOI: 10.1016/j.tiv.2007.06.017] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 06/06/2007] [Accepted: 06/27/2007] [Indexed: 11/22/2022]
Abstract
The HepG2 cell line is a valuable tool for screening for cytotoxicity in the early phase of pharmaceutical development. Some compounds which produce reactive and toxic metabolites, are classified as being toxic in HepG2 cells. In contrast, other compounds, which are toxic in primary human hepatocytes, are not toxic in HepG2 cells. A difference in metabolism between HepG2 cells and primary human hepatocytes might be the reason. To investigate this, cytochrome P450 and Phase II enzyme levels were characterized. In the present study the focus is on Phase II enzyme metabolism. Transcript levels of UDP-glucuronosyl transferases (UGTs), sulfotransferases (SULTs), glutathione S-transferases (GSTs), N-acetyltransferase-1 (NAT1) and epoxide hydrolase (EPHX1) were measured with quantitative PCR in HepG2 cells and cryopreserved primary human hepatocytes. Levels of SULT1A1, 1A2, 1E1, 1A2, and 2A1, microsomal GST 1, GST mu1, NAT1, and EPHX1 in HepG2 cells were almost similar to levels in primary human hepatocytes. In contrast, levels of UGT1A1 and 1A6 transcripts were between 10- and more than 1000-fold higher in the primary hepatocytes. The regulatory processes of Phase II enzymes by the aryl hydrocarbon receptor, pregnane X receptor and constitutive androstane receptor were studied in HepG2 cells and appeared quite similar to those in primary human hepatocytes. Due to the involvement of Phase II enzymes in the toxication of some compounds, HepG2 cells can be a valuable cellular system to predict toxicity for these compounds. On the other hand, the normal expression of most Phase II enzymes in combination with the lower expression of cytochrome P450 enzymes in HepG2 cells might result in an underestimation of toxicity for several compounds. Compared to primary human hepatocytes, HepG2 cells are a relatively easy-to-handle tool to study the up-regulation of Phase II enzymes.
Collapse
Affiliation(s)
- Walter M A Westerink
- Department of Pharmacology, NV Organon, Molenstraat 110, 5340 BH Oss, The Netherlands
| | | |
Collapse
|
50
|
Chen X, Zhang J, Baker SM, Chen G. Human constitutive androstane receptor mediated methotrexate induction of human dehydroepiandrosterone sulfotransferase (hSULT2A1). Toxicology 2006; 231:224-33. [PMID: 17276571 PMCID: PMC1919471 DOI: 10.1016/j.tox.2006.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/15/2006] [Accepted: 12/05/2006] [Indexed: 01/01/2023]
Abstract
Sulfotransferases (SULTs) catalyzed sulfation is important in the regulation of biological activities of hormones and neurotransmitters, the metabolism of drugs, and the detoxification of xenobiotic toxicants. Sulfation also leads to the bioactivation of procarcinogens. Human dehydroepiandrosterone sulfotransferase (hSULT2A1) is a major SULT catalyzing the sulfation of hydroxysteroids and xenobiotic alcohols. Our previous studies had shown that the anti-folate drug methotrexate (MTX) can up-regulate several major isoforms of human SULTs. To determine the mechanisms controlling the regulation of hSULT2A1, the 5'-flanking region of hSULT2A1 was constructed into the pGL3-Basic luciferase reporter vector. The transcriptional regulation mechanism of hSULT2A1 promoter was studied using Caco-2 cell line based on the reporter gene assay. Nuclear receptor co-transfection results indicated that human constitutive androstane receptor (hCAR) and human retinoid X receptor alpha (hRXRalpha) were involved in the transcriptional regulation of hSULT2A1. RNA interference experiments further proved the role of hCAR in hSULT2A1 regulation. Progressive promoter deletion, DNA sequence alignment, and site directed promoter mutation results suggested that an imperfect inverted repeat DNA motif, IR2 (-186AGCTCAGATGACCC-173), within the hSULT2A1 promoter region mediated the hSULT2A1 induction by MTX. Furthermore, electrophoretic mobility shift assay and super shift assay were employed to characterize the interactions of hCAR and hRXRalpha with the IR2 element. In summary, we identified an IR2 DNA cis-element located at -186/-173 of hSULT2A1 promoter region; the IR2 element mediates the MTX induction of hSULT2A1 through interacting with hCAR and hRXRalpha.
Collapse
Affiliation(s)
- Xinrong Chen
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | |
Collapse
|