1
|
Xie D, Shen Z, Yang L, Zhou D, Li C, Liu F. Global, regional, and national burden of type 2 diabetes mellitus attributable to particulate matter pollution from 1990 to 2021: An analysis of the global burden of disease study 2021. Diabetes Res Clin Pract 2024; 218:111934. [PMID: 39557297 DOI: 10.1016/j.diabres.2024.111934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
AIMS The study uses GBD 2021 data to measure the type 2 diabetes mellitus (T2DM) burden linked to particulate matter pollution (PM2.5) exposure, highlighting environmental factors as rising contributors to the disease. METHODS We used advanced methods like Joinpoint regression and decomposition analysis to track PM2.5 exposure's effects on T2DM, analyzing its burden by Socio-demographic indices (SDI) to find high-risk areas for targeted interventions. RESULTS In 2021, the global burden of T2DM attributable to PM2.5 exposure reached 12,904,493 DALYs, a substantial increase from 1990. The age-standardized mortality rates (ASMR) and age-standardized death rates (ASDR) showed an upward trend, with males exhibiting a higher disease burden than females. The burden was highest in lower SDI quintiles, with faster growth rates in ASDR and ASMR compared to higher SDI regions. The population attributable fractions (PAFs) for ASDR and ASMR due to PM2.5 were 17.07 % and 17.47 %, respectively, with higher PAFs in lower SDI regions. CONCLUSION Our results show that air pollution significantly affects global T2DM rates, necessitating policies to lower PM2.5 and boost health system resilience. Ongoing monitoring and research are key to crafting strategies against pollution's health effects.
Collapse
Affiliation(s)
- Diya Xie
- Department of General Surgery, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian 350009, China
| | - Zhang Shen
- Department of Gynecology, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian 350000, China
| | - Lihang Yang
- Department of Endocrinology, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian 350000, China
| | - Daosen Zhou
- Department of General Surgery, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian 350009, China
| | - Cheng Li
- Department of General Surgery, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian 350009, China
| | - Fengmin Liu
- Department of Endocrinology, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian 350000, China.
| |
Collapse
|
2
|
Zhang K, Tian L, Sun Q, Lv J, Ding R, Yu Y, Li Y, Duan J. Constructing an adverse outcome pathway framework for the impact of maternal exposure to PM 2.5 on liver development and injury in offspring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104585. [PMID: 39489199 DOI: 10.1016/j.etap.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Ambient fine particulate matter (PM2.5) is a significant contributor to air pollution. PM2.5 exposure poses a substantial hazard to public health. In recent years, the adverse effects of maternal PM2.5 exposure on fetal health have gradually gained public attention. As the largest organ in the body, the liver has many metabolic and secretory functions. Liver development, as well as factors that interfere with its growth and function, are of concern. This review utilized the adverse outcome pathway (AOP) framework as the analytical approach to demonstrate the link between maternal PM2.5 exposure and potential neonatal liver injury from the molecular to the population level. The excessive generation of reactive oxygen species (ROS), subsequent endoplasmic reticulum (ER) stress, and oxidative stress were regarded as the essential components in this framework, as they could trigger adverse developmental outcomes in the offspring through DNA damage, autophagy dysfunction, mitochondrial injury, and other pathways. To the best of our knowledge, this is the first article based on an AOP framework that elaborates on the influence of maternal exposure to PM2.5 on liver injury occurrence and adverse effects on liver development in offspring. Therefore, this review offered mechanistic insights into the developmental toxicity of PM2.5 in the liver, which provided a valuable basis for future studies and prevention strategies.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Li Tian
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Jianong Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Bin Pan, Xie Y, Shao W, Fang X, Han D, Li J, Hong X, Tu W, Shi J, Yang M, Tian F, Xia M, Hu J, Ren J, Kan H, Xu Y, Li W. Prenatal exposure to PM 2.5 disturbs the glucose metabolism of offspring fed with high-fat diet in a gender-dependent manner. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117404. [PMID: 39615301 DOI: 10.1016/j.ecoenv.2024.117404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Studies have shown that maternal exposure to PM2.5 could potentially disrupt glucose and lipid metabolism in offspring supplied with high-fat diet, yet whether this effect is gender-dependent or not and the underlying biological mechanisms are not well understood. In our current research, female ICR mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CAP) before and during pregnancy. The offspring mice were fed with control diet (CD) or high-fat diet (HFD) for 9 weeks, and their metabolic conditions were analyzed. Our findings reveal that maternal exposure to PM2.5 induced glucose intolerance and insulin resistance in female offspring fed with HFD but not in males. Specifically, hepatic insulin resistance as indicated by significantly decreased AKT phosphorylation (p-AKT) level, changed liver structure as indicated by increased ballooning and steatosis based on H&E staining images, and impaired liver function as indicated by up-regulated ALT activity were observed in HFD-fed female offspring from CAP-exposed mothers in comparison to those from FA-exposed ones. Further analysis indicated that these impacts of prenatal PM2.5 exposure on glucose metabolism in offspring may result from disturbed gluconeogenesis and induced inflammatory response in liver. Our research underscores that prenatal PM2.5 exposure induces glucose metabolism abnormalities in offspring fed with HFD in a gender-dependent manner, and the liver potentially serves as a key player in mediating these effects of maternal PM2.5 exposure.
Collapse
Affiliation(s)
- Bin Pan
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of pharmacy, Fudan University, Shanghai 200237, China; Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuanting Xie
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenpu Shao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xinyi Fang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jingyu Li
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xiaoqing Hong
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenyue Tu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jiayi Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of pharmacy, Fudan University, Shanghai 200237, China
| | - Mingjun Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of pharmacy, Fudan University, Shanghai 200237, China
| | - Fang Tian
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of pharmacy, Fudan University, Shanghai 200237, China
| | - Minjie Xia
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of pharmacy, Fudan University, Shanghai 200237, China
| | - Jingying Hu
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of pharmacy, Fudan University, Shanghai 200237, China
| | - Jianke Ren
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of pharmacy, Fudan University, Shanghai 200237, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of pharmacy, Fudan University, Shanghai 200237, China.
| |
Collapse
|
4
|
Zhang S, Li X, Zhang L, Zhang Z, Li X, Xing Y, Wenger JC, Long X, Bao Z, Qi X, Han Y, Prévôt ASH, Cao J, Chen Y. Disease types and pathogenic mechanisms induced by PM 2.5 in five human systems: An analysis using omics and human disease databases. ENVIRONMENT INTERNATIONAL 2024; 190:108863. [PMID: 38959566 DOI: 10.1016/j.envint.2024.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Atmospheric fine particulate matter (PM2.5) can harm various systems in the human body. Due to limitations in the current understanding of epidemiology and toxicology, the disease types and pathogenic mechanisms induced by PM2.5 in various human systems remain unclear. In this study, the disease types induced by PM2.5 in the respiratory, circulatory, endocrine, and female and male urogenital systems have been investigated and the pathogenic mechanisms identified at molecular level. The results reveal that PM2.5 is highly likely to induce pulmonary emphysema, reperfusion injury, malignant thyroid neoplasm, ovarian endometriosis, and nephritis in each of the above systems respectively. The most important co-existing gene, cellular component, biological process, molecular function, and pathway in the five systems targeted by PM2.5 are Fos proto-oncogene (FOS), extracellular matrix, urogenital system development, extracellular matrix structural constituent conferring tensile strength, and ferroptosis respectively. Differentially expressed genes that are significantly and uniquely targeted by PM2.5 in each system are BTG2 (respiratory), BIRC5 (circulatory), NFE2L2 (endocrine), TBK1 (female urogenital) and STAT1 (male urogenital). Important disease-related cellular components, biological processes, and molecular functions are specifically induced by PM2.5. For example, response to wounding, blood vessel morphogenesis, body morphogenesis, negative regulation of response to endoplasmic reticulum stress, and response to type I interferon are the top uniquely existing biological processes in each system respectively. PM2.5 mainly acts on key disease-related pathways such as the PD-L1 expression and PD-1 checkpoint pathway in cancer (respiratory), cell cycle (circulatory), apoptosis (endocrine), antigen processing and presentation (female urogenital), and neuroactive ligand-receptor interaction (male urogenital). This study provides a novel analysis strategy for elucidating PM2.5-related disease types and is an important supplement to epidemiological investigation. It clarifies the risks of PM2.5 exposure, elucidates the pathogenic mechanisms, and provides scientific support for promoting the precise prevention and treatment of PM2.5-related diseases.
Collapse
Affiliation(s)
- Shumin Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiaomeng Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Liru Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Zhengliang Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; School of Public Health, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xuan Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; School of Public Health, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yan Xing
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - John C Wenger
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Xin Long
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhier Bao
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xin Qi
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yan Han
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, Villigen, PSI 5232, Switzerland
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
5
|
Abel ED, Gloyn AL, Evans-Molina C, Joseph JJ, Misra S, Pajvani UB, Simcox J, Susztak K, Drucker DJ. Diabetes mellitus-Progress and opportunities in the evolving epidemic. Cell 2024; 187:3789-3820. [PMID: 39059357 PMCID: PMC11299851 DOI: 10.1016/j.cell.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Diabetes, a complex multisystem metabolic disorder characterized by hyperglycemia, leads to complications that reduce quality of life and increase mortality. Diabetes pathophysiology includes dysfunction of beta cells, adipose tissue, skeletal muscle, and liver. Type 1 diabetes (T1D) results from immune-mediated beta cell destruction. The more prevalent type 2 diabetes (T2D) is a heterogeneous disorder characterized by varying degrees of beta cell dysfunction in concert with insulin resistance. The strong association between obesity and T2D involves pathways regulated by the central nervous system governing food intake and energy expenditure, integrating inputs from peripheral organs and the environment. The risk of developing diabetes or its complications represents interactions between genetic susceptibility and environmental factors, including the availability of nutritious food and other social determinants of health. This perspective reviews recent advances in understanding the pathophysiology and treatment of diabetes and its complications, which could alter the course of this prevalent disorder.
Collapse
Affiliation(s)
- E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Department of Genetics, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua J Joseph
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, and Imperial College NHS Trust, London, UK
| | - Utpal B Pajvani
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Tain YL, Hsu CN. The Impact of the Aryl Hydrocarbon Receptor on Antenatal Chemical Exposure-Induced Cardiovascular-Kidney-Metabolic Programming. Int J Mol Sci 2024; 25:4599. [PMID: 38731818 PMCID: PMC11083012 DOI: 10.3390/ijms25094599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Early life exposure lays the groundwork for the risk of developing cardiovascular-kidney-metabolic (CKM) syndrome in adulthood. Various environmental chemicals to which pregnant mothers are commonly exposed can disrupt fetal programming, leading to a wide range of CKM phenotypes. The aryl hydrocarbon receptor (AHR) has a key role as a ligand-activated transcription factor in sensing these environmental chemicals. Activating AHR through exposure to environmental chemicals has been documented for its adverse impacts on cardiovascular diseases, hypertension, diabetes, obesity, kidney disease, and non-alcoholic fatty liver disease, as evidenced by both epidemiological and animal studies. In this review, we compile current human evidence and findings from animal models that support the connection between antenatal chemical exposures and CKM programming, focusing particularly on AHR signaling. Additionally, we explore potential AHR modulators aimed at preventing CKM syndrome. As the pioneering review to present evidence advocating for the avoidance of toxic chemical exposure during pregnancy and deepening our understanding of AHR signaling, this has the potential to mitigate the global burden of CKM syndrome in the future.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
7
|
Jetton TL, Galbraith OT, Peshavaria M, Bonney EA, Holmén BA, Fukagawa NK. Sex-specific metabolic adaptations from in utero exposure to particulate matter derived from combustion of petrodiesel and biodiesel fuels. CHEMOSPHERE 2024; 346:140480. [PMID: 37879369 PMCID: PMC10841900 DOI: 10.1016/j.chemosphere.2023.140480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Maternal exposure to particulate matter derived from diesel exhaust has been shown to cause metabolic dysregulation, neurological problems, and increased susceptibility to diabetes in the offspring. Diesel exhaust is a major source of air pollution and the use of biodiesel (BD) and its blends have been progressively increasing throughout the world; however, studies on the health impact of BD vs. petrodiesel combustion-generated exhaust have been controversial in part, due to differences in the chemical and physical nature of the associated particulate matter (PM). To explore the long-term impact of prenatal exposure, pregnant mice were exposed to PM generated by combustion of petrodiesel (B0) and a 20% soy BD blend (B20) by intratracheal instillation during embryonic days 9-17 and allowed to deliver. Offspring were then followed for 52 weeks. We found that mother's exposure to B0 and B20 PM manifested in striking sex-specific phenotypes with respect to metabolic adaptation, maintenance of glucose homeostasis, and medial hypothalamic glial cell makeup in the offspring. The data suggest PM exposure limited to a narrower critical developmental window may be compensated for by the mother and/or the fetus by altered metabolic programming in a marked sex-specific and fuel-derived PM-specific manner, leading to sex-specific risk for diseases related to environmental exposure later in life.
Collapse
Affiliation(s)
- Thomas L Jetton
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, USA.
| | - Oban T Galbraith
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, USA
| | - Mina Peshavaria
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, USA
| | | | - Britt A Holmén
- Larner College of Medicine, Department of Civil & Environmental Engineering, College of Engineering and Mathematical Sciences, USA
| | - Naomi K Fukagawa
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, USA; University of Vermont, Burlington, VT 05405, USA; USDA-ARS, Beltsville Human Nutrition Research Center, Beltsville, MD 20705-2350, USA
| |
Collapse
|
8
|
Friedman C, Dabelea D, Glueck DH, Allshouse WB, Adgate JL, Keller KP, Martenies SE, Magzamen S, Starling AP. Early-life exposure to residential black carbon and childhood cardiometabolic health. ENVIRONMENTAL RESEARCH 2023; 239:117285. [PMID: 37832765 PMCID: PMC10842121 DOI: 10.1016/j.envres.2023.117285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/08/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Early life exposure to air pollution, such as particulate matter ≤2.5 μm (PM2.5), may be associated with obesity and adverse cardiometabolic health outcomes in childhood. However, the toxicity of PM2.5 varies according to its chemical composition. Black carbon (BC) is a constituent of PM2.5, but few studies have examined its impact on childhood cardiometabolic health. Therefore, we examined relationships between prenatal and early childhood exposure to BC and markers of adiposity and cardiometabolic health in early childhood. METHODS This study included 578 mother-child pairs enrolled in the Healthy Start study (2009-2014) living in the Denver-metro area. Using a spatiotemporal prediction model, we assessed average residential black carbon levels during pregnancy and in the year prior to the early childhood follow-up visit at approximately 5 years old. We estimated associations between prenatal and early childhood BC and indicators of adiposity and cardiometabolic biomarkers in early childhood (mean 4.8 years; range, 4.0, 8.3), using linear regression. RESULTS We found higher early childhood BC was associated with higher percent fat mass, fat mass index, insulin, and homeostatic model assessment for insulin resistance (HOMA-IR), and lower leptin and waist circumference at approximately 5 years old, after adjusting for covariates. For example, per interquartile range (IQR) increase in early childhood BC (IQR, 0.49 μg/m3) there was 3.32% higher fat mass (95% CI; 2.05, 4.49). Generally, we did not find consistent evidence of associations between prenatal BC and cardiometabolic health outcomes in early childhood, except for an inverse association between prenatal BC and adiponectin, an adipocyte-secreted hormone typically inversely associated with adiposity. CONCLUSIONS Higher early childhood, but not in utero, ambient concentrations of black carbon, a component of air pollution, were associated with greater adiposity and altered insulin homeostasis at approximately 5 years old. Future studies should examine whether these changes persist later in life.
Collapse
Affiliation(s)
- Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kayleigh P Keller
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Sheena E Martenies
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Koshko L, Scofield S, Debarba L, Stilgenbauer L, Fakhoury P, Jayarathne H, Perez-Mojica JE, Griggs E, Lempradl A, Sadagurski M. Prenatal benzene exposure in mice alters offspring hypothalamic development predisposing to metabolic disease in later life. CHEMOSPHERE 2023; 330:138738. [PMID: 37084897 PMCID: PMC10199724 DOI: 10.1016/j.chemosphere.2023.138738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Maternal exposure to environmental contaminants during pregnancy poses a significant threat to a developing fetus, as these substances can easily cross the placenta and disrupt the neurodevelopment of offspring. Specifically, the hypothalamus is essential in the regulation of metabolism, notably during critical windows of development. An abnormal hormonal and inflammatory milieu during development can trigger persistent changes in the function of hypothalamic circuits, leading to long-lasting effects on the body's energy homeostasis and metabolism. We recently demonstrated that gestational exposure to clinically relevant levels of benzene induces severe metabolic dysregulation in the offspring. Given the central role of the hypothalamus in metabolic control, we hypothesized that prenatal exposure to benzene impacts hypothalamic development, contributing to the adverse metabolic effects in the offspring. C57BL/6JB dams were exposed to benzene at 50 ppm in the inhalation chambers exclusively during pregnancy (from E0.5 to E19). Transcriptomic analysis of the exposed offspring at postnatal day 21 (P21) revealed hypothalamic changes in genes related to metabolic regulation, inflammation, and neurodevelopment exclusively in males. Moreover, the hypothalamus of prenatally benzene-exposed male offspring displayed alterations in orexigenic and anorexigenic projections, impairments in leptin signaling, and increased microgliosis. Additional exposure to benzene during lactation did not promote further microgliosis or astrogliosis in the offspring, while the high-fat diet (HFD) challenge in adulthood exacerbated glucose metabolism and hypothalamic inflammation in benzene-exposed offspring of both sexes. These findings reveal the persistent adverse effects of prenatal benzene exposure on hypothalamic circuits and neuroinflammation, predisposing the offspring to long-lasting metabolic health conditions.
Collapse
Affiliation(s)
- Lisa Koshko
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | - Sydney Scofield
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | - Lucas Debarba
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | - Lukas Stilgenbauer
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | - Patrick Fakhoury
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | - Hashan Jayarathne
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | | | - Ellen Griggs
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Marianna Sadagurski
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA.
| |
Collapse
|
10
|
Kutlar Joss M, Boogaard H, Samoli E, Patton AP, Atkinson R, Brook J, Chang H, Haddad P, Hoek G, Kappeler R, Sagiv S, Smargiassi A, Szpiro A, Vienneau D, Weuve J, Lurmann F, Forastiere F, Hoffmann BH. Long-Term Exposure to Traffic-Related Air Pollution and Diabetes: A Systematic Review and Meta-Analysis. Int J Public Health 2023; 68:1605718. [PMID: 37325174 PMCID: PMC10266340 DOI: 10.3389/ijph.2023.1605718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Objectives: We report results of a systematic review on the health effects of long-term traffic-related air pollution (TRAP) and diabetes in the adult population. Methods: An expert Panel appointed by the Health Effects Institute conducted this systematic review. We searched the PubMed and LUDOK databases for epidemiological studies from 1980 to July 2019. TRAP was defined based on a comprehensive protocol. Random-effects meta-analyses were performed. Confidence assessments were based on a modified Office for Health Assessment and Translation (OHAT) approach, complemented with a broader narrative synthesis. We extended our interpretation to include evidence published up to May 2022. Results: We considered 21 studies on diabetes. All meta-analytic estimates indicated higher diabetes risks with higher exposure. Exposure to NO2 was associated with higher diabetes prevalence (RR 1.09; 95% CI: 1.02; 1.17 per 10 μg/m3), but less pronounced for diabetes incidence (RR 1.04; 95% CI: 0.96; 1.13 per 10 μg/m3). The overall confidence in the evidence was rated moderate, strengthened by the addition of 5 recently published studies. Conclusion: There was moderate evidence for an association of long-term TRAP exposure with diabetes.
Collapse
Affiliation(s)
- Meltem Kutlar Joss
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | | | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Richard Atkinson
- Population Health Research Institute, St. George’s University of London, London, United Kingdom
| | - Jeff Brook
- Occupational and Environmental Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Howard Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Pascale Haddad
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Ron Kappeler
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sharon Sagiv
- Center for Environmental Research and Children’s Health, Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Audrey Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - Adam Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Fred Lurmann
- Sonoma Technology, Inc., Petaluma, CA, United States
| | - Francesco Forastiere
- Faculty of Medicine, School of Public Health, Imperial College, London, United Kingdom
| | - Barbara H. Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Bosch AJT, Rohm TV, AlAsfoor S, Low AJY, Keller L, Baumann Z, Parayil N, Stawiski M, Rachid L, Dervos T, Mitrovic S, Meier DT, Cavelti-Weder C. Lung versus gut exposure to air pollution particles differentially affect metabolic health in mice. Part Fibre Toxicol 2023; 20:7. [PMID: 36895000 PMCID: PMC9996885 DOI: 10.1186/s12989-023-00518-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Air pollution has emerged as an unexpected risk factor for diabetes. However, the mechanism behind remains ill-defined. So far, the lung has been considered as the main target organ of air pollution. In contrast, the gut has received little scientific attention. Since air pollution particles can reach the gut after mucociliary clearance from the lungs and through contaminated food, our aim was to assess whether exposure deposition of air pollution particles in the lung or the gut drive metabolic dysfunction in mice. METHODS To study the effects of gut versus lung exposure, we exposed mice on standard diet to diesel exhaust particles (DEP; NIST 1650b), particulate matter (PM; NIST 1649b) or phosphate-buffered saline by either intratracheal instillation (30 µg 2 days/week) or gavage (12 µg 5 days/week) over at least 3 months (total dose of 60 µg/week for both administration routes, equivalent to a daily inhalation exposure in humans of 160 µg/m3 PM2.5) and monitored metabolic parameters and tissue changes. Additionally, we tested the impact of the exposure route in a "prestressed" condition (high-fat diet (HFD) and streptozotocin (STZ)). RESULTS Mice on standard diet exposed to particulate air pollutants by intratracheal instillation developed lung inflammation. While both lung and gut exposure resulted in increased liver lipids, glucose intolerance and impaired insulin secretion was only observed in mice exposed to particles by gavage. Gavage with DEP created an inflammatory milieu in the gut as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. In contrast, liver and adipose inflammation markers were not increased. Beta-cell secretory capacity was impaired on a functional level, most likely induced by the inflammatory milieu in the gut, and not due to beta-cell loss. The differential metabolic effects of lung and gut exposures were confirmed in a "prestressed" HFD/STZ model. CONCLUSIONS We conclude that separate lung and gut exposures to air pollution particles lead to distinct metabolic outcomes in mice. Both exposure routes elevate liver lipids, while gut exposure to particulate air pollutants specifically impairs beta-cell secretory capacity, potentially instigated by an inflammatory milieu in the gut.
Collapse
Affiliation(s)
- Angela J T Bosch
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Theresa V Rohm
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Shefaa AlAsfoor
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Andy J Y Low
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Lena Keller
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Zora Baumann
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Neena Parayil
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Marc Stawiski
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Leila Rachid
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Thomas Dervos
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Sandra Mitrovic
- Department of Laboratory Medicine, University Hospital Basel, 4031, Basel, Switzerland
| | - Daniel T Meier
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Claudia Cavelti-Weder
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland. .,Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland. .,Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Rämistrasse 100, 8009, Zurich, Switzerland.
| |
Collapse
|
12
|
Koshko L, Scofield S, Debarba L, Stilgenbauer L, Sacla M, Fakhoury P, Jayarathne H, Perez-Mojica JE, Griggs E, Lempradl A, Sadagurski M. Prenatal benzene exposure alters offspring hypothalamic development predisposing to metabolic disease in later life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522910. [PMID: 36711607 PMCID: PMC9881982 DOI: 10.1101/2023.01.05.522910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The hypothalamus is essential in the regulation of metabolism, notably during critical windows of development. An abnormal hormonal and inflammatory milieu during development can trigger persistent changes in the function of hypothalamic circuits, leading to long-lasting effects on the body’s energy homeostasis and metabolism. We recently demonstrated that gestational exposure to benzene at smoking levels induces severe metabolic dysregulation in the offspring. Given the central role of the hypothalamus in metabolic control, we hypothesized that prenatal exposure to benzene impacts hypothalamic development, contributing to the adverse metabolic effects in the offspring. C57BL/6JB dams were exposed to benzene in the inhalation chambers exclusively during pregnancy (from E0.5 to E19). The transcriptome analysis of the offspring hypothalamus at postnatal day 21 (P21) revealed changes in genes related to metabolic regulation, inflammation, and neurodevelopment exclusively in benzene-exposed male offspring. Moreover, the hypothalamus of prenatally benzene-exposed male offspring displayed alterations in orexigenic and anorexigenic projections, impairments in leptin signaling, and increased microgliosis. Additional exposure to benzene during lactation did not promote further microgliosis or astrogliosis in the offspring, while the high-fat diet (HFD) challenge in adulthood exacerbated glucose metabolism and hypothalamic inflammation in benzene-exposed offspring of both sexes. These findings reveal the persistent impact of prenatal benzene exposure on hypothalamic circuits and neuroinflammation, predisposing the offspring to long-lasting metabolic health conditions.
Collapse
|
13
|
Akhetova N, Zhangentkhan A, Bolshakova S, Beissova A. FRUCTOSAMINE VALUES IN MONITORING COMPENSATION AND EFFICACY OF DIABETES MELLITUS TREATMENT. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2023; 51:350-357. [PMID: 37756455 DOI: 10.36740/merkur202304109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
OBJECTIVE Aim: The relevance of the study is determined by the objective of finding an optimal type of diagnostics of carbohydrate metabolism, that would assess the condition of a diabetic patient undergoing treatment. The purpose of the study is to create a model for monitoring the efficacy of diabetes mellitus treatment by determining the fructosamine levels. PATIENTS AND METHODS Materials and Methods: The methods for investigating the highlighted issue are clinical examination and laboratory diagnosis of diabetic patients to measure the state of carbon metabolism using ion-exchange chromatography to determine glycated haemoglobin levels and an automatic colorimetric method to determine fructosamine levels. RESULTS Results: The study presents certain values of fructosamine over the level of changes in the state of patients with diabetes mellitus, reflecting the progress from the treatment in the compensation of carbohydrate metabolism, which allows creating a model of diagnostic values of the fructosamine levels, according to which the efficacy of treatment of diabetes mellitus, the state of progress of the disease in its compensation or decompensation are determined at a qualitative level. CONCLUSION Conclusions: This allows for the timely adaptive corrective therapeutic and preventive measures to be carried out by medical personnel, who, using values, will monitor the efficacy of treatment in each patient once every three weeks, as this will determine the influence of the type of conducted treatment or other factors aimed at compensating for pathogenetic and clinical manifestations of the disease, which makes the identified fructosamine criteria an important component in the treatment of diabetes mellitus, and indirectly allows to improve the life quality of this patient population, thus bringing a practical solution to the challenge facing the healthcare sector.
Collapse
Affiliation(s)
- Natalya Akhetova
- DEPARTMENT OF ENDOCRINOLOGY, ASFENDIYAROV KAZAKH NATIONAL MEDICAL UNIVERSITY, ALMATY, REPUBLIC OF KAZAKHSTAN
| | - Abylaiuly Zhangentkhan
- DEPARTMENT OF ENDOCRINOLOGY, ASFENDIYAROV KAZAKH NATIONAL MEDICAL UNIVERSITY, ALMATY, REPUBLIC OF KAZAKHSTAN
| | - Svetlana Bolshakova
- DEPARTMENT OF ENDOCRINOLOGY, ASFENDIYAROV KAZAKH NATIONAL MEDICAL UNIVERSITY, ALMATY, REPUBLIC OF KAZAKHSTAN
| | - Ainagul Beissova
- DIABETES CENTER, "AAA" MEDICAL CLINIC, ALMATY, REPUBLIC OF KAZAKHSTAN ; AL FARABI KAZAKH NATIONAL UNIVERSITY, ALMATY, REPUBLIC OF KAZAKHSTAN
| |
Collapse
|
14
|
Predisposed obesity and long-term metabolic diseases from maternal exposure to fine particulate matter (PM2.5) — A review of its effect and potential mechanisms. Life Sci 2022; 310:121054. [DOI: 10.1016/j.lfs.2022.121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
15
|
Sex-Dependent Responses to Maternal Exposure to PM2.5 in the Offspring. Antioxidants (Basel) 2022; 11:antiox11112255. [PMID: 36421441 PMCID: PMC9686974 DOI: 10.3390/antiox11112255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Particulate matter (PM) with a diameter of 2.5 μm or less (PM2.5) can cross the blood-placental barrier causing adverse foetal outcomes. However, the impact of maternal exposure to low-levels of PM2.5 on liver health and the metabolic profile is unclear. This study aimed to investigate hepatic responses to long-term gestational low-dose PM2.5 exposure, and whether the removal of PM after conception can prevent such effects. Method: Female Balb/c mice (8 weeks) were exposed to PM2.5 (5 μg/day) for 6 weeks prior to mating, during gestation and lactation to model living in a polluted environment (PM group). In a sub-group, PM2.5 exposure was stopped post-conception to model mothers moving to areas with clean air (pre-gestation, Pre) group. Livers were studied in 13-week old offspring. Results: Female offspring in both PM and Pre groups had increased liver triglyceride and glycogen levels, glucose intolerance, but reduced serum insulin and insulin resistance. Male offspring from only the Pre group had increased liver and serum triglycerides, increased liver glycogen, glucose intolerance and higher fasting glucose level. Markers of oxidative stress and inflammation were increased in females from PM and Pre groups. There was also a significant sex difference in the hepatic response to PM2.5 with differential changes in several metabolic markers identified by proteomic analysis. Conclusions: Maternal PM exposure exerted sex-dependent effects on liver health with more severe impacts on females. The removal of PM2.5 during gestation provided limited protection in the offspring’s metabolism regardless of sex.
Collapse
|
16
|
Ou K, Song J, Zhang S, Fang L, Lin L, Lan M, Chen M, Wang C. Prenatal exposure to a mixture of PAHs causes the dysfunction of islet cells in adult male mice: Association with type 1 diabetes mellitus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113695. [PMID: 35623150 DOI: 10.1016/j.ecoenv.2022.113695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been detected throughout the human body. Whether exposure to PAHs is associated with the incidence of type 1 diabetes mellitus should be investigated. To this end, pregnant mice were exposed to mixed PAHs (5, 50, or 500 μg/kg) once every other day during gestation. The adult male offspring displayed impaired glucose tolerance and reduced serum levels of glucagon and insulin. Immunohistochemical staining revealed increased numbers of apoptotic β-cells and a reduced β-cell mass in these males. The downregulated expression of pancreatic estrogen receptor α, androgen receptor, and transcription factor PDX1 was responsible for impacting β-cell development. The relatively reduced α-cell area was associated with downregulated ARX expression. The transcription of Isn2 and Gcg in pancreatic tissue was downregulated, which indicated that the function of β-cells and α-cells was impaired. Methylation levels in the Isn2 promotor were significantly elevated in mice prenatally exposed to 500 µg/kg PAHs, which was consistent with the change in its mRNA levels. The number of macrophages infiltrating islets was significantly increased, indicating that prenatal PAH exposure might reduce islet cell numbers in an autoimmune manner. This study shows that prenatal exposure to PAHs may promote the pathogenesis of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jialin Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Siqi Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Lesi Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Miaolin Lan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Meng Chen
- College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
17
|
Xu Y, Li Z, Liu Y, Pan B, Peng R, Shao W, Yang W, Chen M, Kan H, Ying Z, Zhang Y. Differential Roles of Water-Insoluble and Water-Soluble Fractions of Diesel Exhaust Particles in the Development of Adverse Health Effects Due to Chronic Instillation of Diesel Exhaust Particles. Chem Res Toxicol 2021; 34:2450-2459. [PMID: 34780166 DOI: 10.1021/acs.chemrestox.1c00199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ambient fine particulate matter (PM2.5) has a marked temporospatial variation in chemical composition, but how the composition of PM2.5 influences its toxicity remains elusive. To explore the roles of individual PM2.5 components in the pathogenesis following PM2.5 exposure, we prepared water-soluble (WS-DEP) and water-insoluble (WIS-DEP) fractions of diesel exhaust particles (DEP) and performed 15-week intratracheal instillation on C57Bl/6J mice using these fractions. Their effects on pulmonary and systemic inflammation, hepatic steatosis and insulin resistance, systemic glucose homeostasis, and gut microbiota were then assessed. Compared to control, instillation of DEP or WIS-DEP, but not WS-DEP, significantly increased pulmonary inflammatory scores and expression of inflammatory markers, bronchoalveolar lavage fluid cell number, and circulating pro-inflammatory cytokines. Consistently, DEP- or WIS-DEP-instilled but not WS-DEP-instilled mice versus control had significant hepatic steatosis and insulin resistance and systemic glucose intolerance. In contrast, instillation of WS-DEP versus instillation of WIS-DEP had effects on the gut microbiota more comparable to that of instillations of DEP. The pulmonary and systemic inflammation, hepatic steatosis and insulin resistance, and systemic glucose intolerance following chronic DEP instillation are all attributable to the WIS-DEP, suggesting that PM2.5 may have a solubility-dependent basal toxicity.
Collapse
Affiliation(s)
- Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhouzhou Li
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Ying Liu
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Bin Pan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Renzheng Peng
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenpu Shao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenhui Yang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Minjie Chen
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland 21202, United States
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland 21202, United States
| | - Yuhao Zhang
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.,Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Johnson NM, Hoffmann AR, Behlen JC, Lau C, Pendleton D, Harvey N, Shore R, Li Y, Chen J, Tian Y, Zhang R. Air pollution and children's health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ Health Prev Med 2021; 26:72. [PMID: 34253165 PMCID: PMC8274666 DOI: 10.1186/s12199-021-00995-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Particulate matter (PM), a major component of ambient air pollution, accounts for a substantial burden of diseases and fatality worldwide. Maternal exposure to PM during pregnancy is particularly harmful to children's health since this is a phase of rapid human growth and development. METHOD In this review, we synthesize the scientific evidence on adverse health outcomes in children following prenatal exposure to the smallest toxic components, fine (PM2.5) and ultrafine (PM0.1) PM. We highlight the established and emerging findings from epidemiologic studies and experimental models. RESULTS Maternal exposure to fine and ultrafine PM directly and indirectly yields numerous adverse birth outcomes and impacts on children's respiratory systems, immune status, brain development, and cardiometabolic health. The biological mechanisms underlying adverse effects include direct placental translocation of ultrafine particles, placental and systemic maternal oxidative stress and inflammation elicited by both fine and ultrafine PM, epigenetic changes, and potential endocrine effects that influence long-term health. CONCLUSION Policies to reduce maternal exposure and health consequences in children should be a high priority. PM2.5 levels are regulated, yet it is recognized that minority and low socioeconomic status groups experience disproportionate exposures. Moreover, PM0.1 levels are not routinely measured or currently regulated. Consequently, preventive strategies that inform neighborhood/regional planning and clinical/nutritional recommendations are needed to mitigate maternal exposure and ultimately protect children's health.
Collapse
Affiliation(s)
- Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA.
| | | | - Jonathan C Behlen
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Carmen Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Drew Pendleton
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Navada Harvey
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Ross Shore
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jingshu Chen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
19
|
Tao S, Xu Y, Chen M, Zhang H, Huang X, Li Z, Pan B, Peng R, Zhu Y, Kan H, Li W, Ying Z. Exposure to different fractions of diesel exhaust PM 2.5 induces different levels of pulmonary inflammation and acute phase response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111871. [PMID: 33422840 DOI: 10.1016/j.ecoenv.2020.111871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
AIM Ambient fine particulate matter (PM2.5) consists of various components, and their respective contributions to the toxicity of PM2.5 remains to be determined. To provide specific recommendations for preventing adverse effects due to PM2.5 pollution, we determined whether the induction of pulmonary inflammation, the putative pathogenesis for the morbidity and mortality due to PM2.5 exposure, was fractioned through solubility-dependent fractioning. METHODS In the present study, the water and heptane solubilities-dependent serial fractioning of diesel exhaust particulate matter (DEP), a prominent source of urban PM2.5 pollution, was performed. The pro-inflammatory actions of these resultant fractions were then determined using both an intratracheal instillation mouse model and cultured BEAS-2B cells, a human bronchial epithelial cell line. RESULTS Instillation of the water-insoluble, but not -soluble fraction elicited significant pulmonary inflammatory and acute phase responses, comparable to those induced by instillation of DEP. The water-insoluble fraction was further fractioned using heptane, a polar organic solvent, and instillation of heptane-insoluble, but not -soluble fraction elicited significant pulmonary inflammation and acute phase responses. Furthermore, we showed that DEP and water-insoluble DEP, but not water-soluble DEP, activated pro-inflammatory signaling in cultured BEAS-2B cells, ruling out the possibility that the solubility impacts the in vivo distribution and thus the pulmonary inflammatory response.
Collapse
Affiliation(s)
- Shimin Tao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Minjie Chen
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Haichang Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| | - Xingke Huang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Zhouzhou Li
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Bin Pan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Renzhen Peng
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yaning Zhu
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
20
|
Pan B, Chen M, Zhang X, Liang S, Qin X, Qiu L, Cao Q, Peng R, Tao S, Li Z, Zhu Y, Kan H, Xu Y, Ying Z. Hypothalamic-pituitary-adrenal axis mediates ambient PM 2.5 exposure-induced pulmonary inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111464. [PMID: 33075589 PMCID: PMC7775869 DOI: 10.1016/j.ecoenv.2020.111464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/08/2020] [Accepted: 10/03/2020] [Indexed: 05/06/2023]
Abstract
Ambient fine particulate matter (PM2.5) exposure correlates with adverse cardiometabolic effects. The underlying mechanisms have not yet been fully understood. Hypothalamic-pituitary-adrenal (HPA) axis, as the central stress response system, regulates cardiometabolic homeostasis and is implicated in the progression of various adverse health effects caused by inhalational airborne pollutant exposure. In this study, we investigated whether ambient PM2.5 exposure activates HPA axis and its effect mediating PM2.5-induced pulmonary inflammation. C57Bl/6 J mice were intratracheally instilled with different concentrations of diesel exhaust PM2.5 (DEP), and plasma was harvested at different times. Assessments of plasma stress hormones revealed that DEP instillation dose- and time-dependently increased mouse circulating corticosterone and adrenocorticotropic hormone (ACTH) levels, strongly supporting that DEP instillation activates HPA axis. To determine which components of DEP activate HPA axis, C57Bl/6J mice were intratracheally instilled with water-soluble and -insoluble fractions of DEP. Plasma analyses showed that water-insoluble but not -soluble fraction of DEP increased circulating corticosterone and ACTH levels. Consistently, concentrated ambient PM2.5 (CAP) exposure significantly increased mouse urine and hair corticosterone levels, corroborating the activation of HPA axis by ambient PM2.5. Furthermore, deletion of stress hormones by total bilateral adrenalectomy alleviated PM2.5-induced pulmonary inflammation, providing insights into the contribution of central neurohormonal mechanisms in modulating adverse health effects caused by exposure to PM2.5.
Collapse
Affiliation(s)
- Bin Pan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.
| | - Minjie Chen
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | - Xuan Zhang
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | - Shuai Liang
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | - Xiaobo Qin
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | - Lianglin Qiu
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | - Renzhen Peng
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.
| | - Shimin Tao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.
| | - Zhouzhou Li
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.
| | - Yaning Zhu
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, China.
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
21
|
Yang D, Qiu J, Qin A, Chen L, Yang Y, Huang Z, Qian J, Zhu W. Blood Glucose Level, Gestational Diabetes Mellitus and Maternal Birth Season: A Retrospective Cohort Study. Front Endocrinol (Lausanne) 2021; 12:793489. [PMID: 34975761 PMCID: PMC8716549 DOI: 10.3389/fendo.2021.793489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Previous evidence indicates that birth season is associated with type 2 diabetes in adults. However, information on the association of birth with gestational diabetes mellitus (GDM) is lacking. The present study explores the association between birth seasonality and GDM in East China. METHODS This retrospective cohort study was conducted at the International Peace Maternal and child health hospital between 2014 and 2019. A total of 79, 292 pregnant women were included in the study after excluding participants with previous GDM, stillbirth, polycystic ovary syndrome, and lack of GDM laboratory records. The multivariate logistic regression model was employed to estimate the odds ratio and 95% confidence interval. After log transformation of blood glucose level, the percentage change and 95% confidence interval were estimated by a multivariate linear model. RESULTS The risk of GDM among pregnant women born in spring, autumn, and winter was not significantly different compared to that among participants born in summer. Pregnant women born in autumn had significantly higher 1-hour postprandial blood glucose (PBG-1h) and 2-hour postprandial blood glucose (PBG-2h) levels than pregnant women born in summer. Compared to pregnant women born in August, the PBG-1h level of pregnant women born in October, November, and December increased significantly, whereas the PBG-2h levels of pregnant women born in November and December increased significantly. CONCLUSION Pregnant women born in autumn exhibit higher postprandial blood glucose levels during pregnancy than in those born in summer. The findings provide evidence that exposure to seasonal changes in early life may influence blood glucose metabolism during pregnancy.
Collapse
Affiliation(s)
- Dongjian Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingbo Qiu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - An Qin
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ya Yang
- Department of Infection control, Renji Hospital, School of Medicine, Shanghai Jiao tong University, Shanghai, China
| | - Zhen Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jieyan Qian
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Wei Zhu,
| |
Collapse
|
22
|
Impact of Sex and Age on the Mevalonate Pathway in the Brain: A Focus on Effects Induced by Maternal Exposure to Exogenous Compounds. Metabolites 2020; 10:metabo10080304. [PMID: 32722471 PMCID: PMC7463490 DOI: 10.3390/metabo10080304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
The mevalonate pathway produces cholesterol and other compounds crucial for numerous cellular processes. It is well known that age and sex modulate this pathway in the liver. Recently, similar effects were also noted in different brain areas, suggesting that alterations of the mevalonate pathway are at the root of marked sex-specific disparities in some neurodevelopmental disorders related to disturbed cholesterol homeostasis. Here, we show how the mevalonate pathway is modulated in a sex-, age- and region-specific manner, and how maternal exposure to exogenous compounds can disturb the regulation of this pathway in the brain, possibly inducing functional alterations.
Collapse
|
23
|
Cowell WJ, Brunst KJ, Malin AJ, Coull BA, Gennings C, Kloog I, Lipton L, Wright RO, Enlow MB, Wright RJ. Prenatal Exposure to PM2.5 and Cardiac Vagal Tone during Infancy: Findings from a Multiethnic Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107007. [PMID: 31663780 PMCID: PMC6867319 DOI: 10.1289/ehp4434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND The autonomic nervous system plays a key role in maintaining homeostasis and responding to external stimuli. In adults, exposure to fine particulate matter (PM2.5) has been associated with reduced heart rate variability (HRV), an indicator of cardiac autonomic control. OBJECTIVES Our goal was to investigate the associations of exposure to fine particulate matter (PM2.5) with HRV as an indicator of cardiac autonomic control during early development. METHODS We studied 237 maternal-infant pairs in a Boston-based birth cohort. We estimated daily residential PM2.5 using satellite data in combination with land-use regression predictors. In infants at 6 months of age, we measured parasympathetic nervous system (PNS) activity using continuous electrocardiogram monitoring during the Repeated Still-Face Paradigm, an experimental protocol designed to elicit autonomic reactivity in response to maternal interaction and disengagement. We used multivariable linear regression to examine average PM2.5 exposure across pregnancy in relation to PNS withdrawal and activation, indexed by changes in respiration-corrected respiratory sinus arrhythmia (RSAc)-an established metric of HRV that reflects cardiac vagal tone. We examined interactions with infant sex using cross-product terms. RESULTS In adjusted models we found that a 1-unit increase in PM2.5 (in micrograms per cubic meter) was associated with a 3.53% decrease in baseline RSAc (95% CI: -6.96, 0.02). In models examining RSAc change between episodes, higher PM2.5 was generally associated with reduced PNS withdrawal during stress and reduced PNS activation during recovery; however, these associations were not statistically significant. We did not observe a significant interaction between PM2.5 and sex. DISCUSSION Prenatal exposure to PM2.5 may disrupt cardiac vagal tone during infancy. Future research is needed to replicate these preliminary findings. https://doi.org/10.1289/EHP4434.
Collapse
Affiliation(s)
- Whitney J. Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kelly J. Brunst
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ashley J. Malin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Lianna Lipton
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Ambient air pollution is strongly linked to cardiovascular and respiratory diseases. We summarize available published evidence regarding similar associations with diabetes across the life course. RECENT FINDINGS We performed a life-course survey of the recent literature, including prenatal, gestational, childhood/adolescence, and adult exposures to air pollution. Oxidative stress is identified as a key factor in both metabolic dysfunction and the effects of air pollution exposure, especially from fossil fuel combustion products, providing a plausible mechanism for air pollution-diabetes associations. The global burden of diabetes attributed to air pollution exposure is substantial, with a recent estimate that ambient fine particulate matter (PM2.5) exposure contributes to more than 200,000 deaths from diabetes annually. There is a growing body of literature linking air pollution exposure during childhood and adulthood with diabetes etiology and related cardiometabolic biomarkers. A small number of studies found that exposure to air pollution during pregnancy is associated with elevated gestational diabetes risk among mothers. Studies examining prenatal air pollution exposure and diabetes risk among the offspring, as well as potential transgenerational effects of air pollution exposure, are very limited thus far. This review provides insight into how air pollutants affect diabetes and other metabolic dysfunction-related diseases across the different life stages.
Collapse
Affiliation(s)
- Chris C Lim
- School of Forestry and Environmental Sciences, Yale University, 195 Prospect Street, New Haven, CT, USA
| | - George D Thurston
- Department of Environmental Medicine, NYU School of Medicine, 341 East 25th Street, New York, NY, USA.
| |
Collapse
|
25
|
Cho CC, Hsieh WY, Tsai CH, Chen CY, Chang HF, Lin CS. In Vitro and In Vivo Experimental Studies of PM 2.5 on Disease Progression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1380. [PMID: 29966381 PMCID: PMC6068560 DOI: 10.3390/ijerph15071380] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/14/2022]
Abstract
Air pollution is a very critical issue worldwide, particularly in developing countries. Particulate matter (PM) is a type of air pollution that comprises a heterogeneous mixture of different particle sizes and chemical compositions. There are various sources of fine PM (PM2.5), and the components may also have different effects on people. The pathogenesis of PM2.5 in several diseases remains to be clarified. There is a long history of epidemiological research on PM2.5 in several diseases. Numerous studies show that PM2.5 can induce a variety of chronic diseases, such as respiratory system damage, cardiovascular dysfunction, and diabetes mellitus. However, the epidemiological evidence associated with potential mechanisms in the progression of diseases need to be proved precisely through in vitro and in vivo investigations. Suggested mechanisms of PM2.5 that lead to adverse effects and chronic diseases include increasing oxidative stress, inflammatory responses, and genotoxicity. The aim of this review is to provide a brief overview of in vitro and in vivo experimental studies of PM2.5 in the progression of various diseases from the last decade. The summarized research results could provide clear information about the mechanisms and progression of PM2.5-induced disease.
Collapse
Affiliation(s)
- Ching-Chang Cho
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
| | - Wen-Yeh Hsieh
- Division of Chest Medicine, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Chin-Hung Tsai
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Tungs' Taichung Metro Harbor Hospital, 699 Section 8, Taiwan Blvd., Taichung 435, Taiwan.
| | - Cheng-Yi Chen
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Hui-Fang Chang
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Endocrinology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
| |
Collapse
|
26
|
Howard SG. Developmental Exposure to Endocrine Disrupting Chemicals and Type 1 Diabetes Mellitus. Front Endocrinol (Lausanne) 2018; 9:513. [PMID: 30233498 PMCID: PMC6129584 DOI: 10.3389/fendo.2018.00513] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Exposure to endocrine disrupting chemicals (EDCs) may have implications for the development of type 1 diabetes mellitus (T1DM), especially if exposure occurs during development. Exposure to EDCs during fetal or early life can disrupt the development of both the immune system and the pancreatic beta cells, potentially increasing susceptibility to T1DM later in life. Developmental exposure to some EDCs can cause immune system dysfunction, increasing the risk of autoimmunity. In addition, developmental exposure to some EDCs can affect beta cell development and function, influencing insulin secretion. These changes may increase stress on the beta cells, and identify them as a target to the immune system. Developmental exposure to EDCs that disrupt metabolism by increasing insulin resistance or obesity may also stress the beta cells. Exposure to these EDCs during development may play a role in the pathogenesis of T1DM, and requires further research.
Collapse
|