1
|
Brook MS. Investigating muscle protein synthesis using deuterium oxide: The impact of dietary protein interventions across the lifespan. Exp Physiol 2025. [PMID: 40275632 DOI: 10.1113/ep092016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/14/2025] [Indexed: 04/26/2025]
Abstract
This review highlights recent advancements in our understanding of muscle protein synthesis (MPS) across the lifespan, with a focus on dietary protein strategies to support muscle health. Given that skeletal muscle is crucial for whole-body metabolism, movement and independence, maintaining muscle mass throughout life is essential. However, the gradual decline in muscle mass and strength with age, known as sarcopenia, represents a significant health concern. Muscle mass is regulated by the balance of MPS and muscle protein breakdown, with dietary protein intake playing a central role in stimulating MPS and maintaining a positive protein balance. Much of our current understanding of protein intake, specifically its quantity, quality and distribution, comes from stable isotope-labelled amino acid methods. These techniques, however, are limited by time constraints and controlled settings, providing only brief snapshots of MPS dynamics. The use of deuterium oxide (D₂O) has provided new insights, enabling long-term measures of muscle protein metabolism in free-living conditions. Measurements of longer-term MPS using D₂O suggest that older adults might benefit from protein intakes of >1.2 g/kg/day to enhance MPS. Additionally, replacing protein in the diet with higher-quality sources or enriching lower protein intakes with leucine can further increase MPS. Nevertheless, discrepancies remain regarding optimal protein requirements and the long-term efficacy of supplementing with enriched suboptimal protein doses. The continued application of D₂O in dietary protein research has the potential to provide further insights into the prolonged effects of various protein strategies on muscle preservation across the lifespan.
Collapse
Affiliation(s)
- Matthew S Brook
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK
- NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Antonio J, Evans C, Ferrando AA, Stout JR, Antonio B, Cinteo H, Harty P, Arent SM, Candow DG, Forbes SC, Kerksick CM, Pereira F, Gonzalez D, Kreider RB. Common questions and misconceptions about protein supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr 2024; 21:2341903. [PMID: 38626029 PMCID: PMC11022925 DOI: 10.1080/15502783.2024.2341903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/07/2024] [Indexed: 04/18/2024] Open
Abstract
Protein supplementation often refers to increasing the intake of this particular macronutrient through dietary supplements in the form of powders, ready-to-drink shakes, and bars. The primary purpose of protein supplementation is to augment dietary protein intake, aiding individuals in meeting their protein requirements, especially when it may be challenging to do so through regular food (i.e. chicken, beef, fish, pork, etc.) sources alone. A large body of evidence shows that protein has an important role in exercising and sedentary individuals. A PubMed search of "protein and exercise performance" reveals thousands of publications. Despite the considerable volume of evidence, it is somewhat surprising that several persistent questions and misconceptions about protein exist. The following are addressed: 1) Is protein harmful to your kidneys? 2) Does consuming "excess" protein increase fat mass? 3) Can dietary protein have a harmful effect on bone health? 4) Can vegans and vegetarians consume enough protein to support training adaptations? 5) Is cheese or peanut butter a good protein source? 6) Does consuming meat (i.e., animal protein) cause unfavorable health outcomes? 7) Do you need protein if you are not physically active? 8) Do you need to consume protein ≤ 1 hour following resistance training sessions to create an anabolic environment in skeletal muscle? 9) Do endurance athletes need additional protein? 10) Does one need protein supplements to meet the daily requirements of exercise-trained individuals? 11) Is there a limit to how much protein one can consume in a single meal? To address these questions, we have conducted a thorough scientific assessment of the literature concerning protein supplementation.
Collapse
Affiliation(s)
- Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| | - Cassandra Evans
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| | - Arny A. Ferrando
- University of Arkansas for Medical Sciences, Department of Geriatrics, Little Rock, AR, USA
| | - Jeffrey R. Stout
- University of Central Florida, School of Kinesiology and Rehabilitation Science, Orlando, FL, USA
| | - Brandi Antonio
- University of Central Florida, School of Kinesiology and Rehabilitation Science, Orlando, FL, USA
| | - Harry Cinteo
- Lindenwood University, Exercise and Performance Nutrition Laboratory, St. Charles, MO, USA
| | - Patrick Harty
- Lindenwood University, Exercise and Performance Nutrition Laboratory, St. Charles, MO, USA
| | - Shawn M. Arent
- University of South Carolina, Department of Exercise Science, Arnold School of Public Health, Columbia, SC, USA
| | - Darren G. Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, Canada
| | - Scott C. Forbes
- Brandon University, Department of Physical Education, Faculty of Education, Brandon, MB, Canada
| | - Chad M. Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, St. Charles, MO, USA
| | - Flavia Pereira
- Keiser University, Exercise and Sport Science, West Palm Beach Flagship Campus, West Palm Beach, FL, USA
| | - Drew Gonzalez
- Texas A&M University, Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| | - Richard B. Kreider
- Texas A&M University, Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| |
Collapse
|
3
|
Grosicki GJ, Dhurandhar NV, Unick JL, Arent SM, Thomas JG, Lofton H, Shepherd MC, Kiel J, Coleman C, Jonnalagadda SS. Sculpting Success: The Importance of Diet and Physical Activity to Support Skeletal Muscle Health during Weight Loss with New Generation Anti-Obesity Medications. Curr Dev Nutr 2024; 8:104486. [PMID: 39624804 PMCID: PMC11609469 DOI: 10.1016/j.cdnut.2024.104486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 01/03/2025] Open
Abstract
Obesity is a public health crisis, with prevalence rates tripling over the past 60 y. Although lifestyle modifications, such as diet and physical activity, remain the first-line treatments, recent anti-obesity medications (AOMs) have been shown to achieve greater reductions in body weight and fat mass. However, AOMs also reduce fat-free mass, including skeletal muscle, which has been demonstrated to account for 20% to 50% of total weight loss. This can equate to ∼6 kg or 10% of total lean mass after 12-18 mo, a loss comparable to a decade of human aging. Despite questions surrounding the clinical relevance of weight loss-induced muscle loss, the importance of adopting lifestyle behaviors such as eating a protein-rich diet and incorporating regular resistance training to support skeletal muscle health, long-term weight loss maintenance, and overall well-being among AOM users should be encouraged. Herein, we provide a rationale for the clinical significance of minimizing weight-loss-induced lean mass loss and emphasize the integration of diet and physical activity into AOM clinical care. Owing to a lack of published findings on diet and physical activity supporting skeletal muscle health with AOMs, specifically, we lean on findings from large-scale clinical weight loss and diet and exercise trials to draw evidence-based recommendations for strategies to protect skeletal muscle. We conclude by identifying gaps in the literature and emphasizing the need for future experimental research to optimize skeletal muscle and whole-body health through a balance of pharmacotherapy and healthy habits.
Collapse
Affiliation(s)
- Gregory J Grosicki
- Department of Scientific and Clinical Affairs, Medifast, Inc, Baltimore, MD, United States
| | - Nikhil V Dhurandhar
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| | - Jessica L Unick
- The Miriam Hospital Weight Control and Diabetes Research Center, Providence, RI, United States
- Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Shawn M Arent
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States
| | - J Graham Thomas
- The Miriam Hospital Weight Control and Diabetes Research Center, Providence, RI, United States
- Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Holly Lofton
- New York University Grossman School of Medicine, New York, NY, United States
| | - Madelyn C Shepherd
- Department of Scientific and Clinical Affairs, Medifast, Inc, Baltimore, MD, United States
| | - Jessica Kiel
- Department of Scientific and Clinical Affairs, Medifast, Inc, Baltimore, MD, United States
| | - Christopher Coleman
- Department of Scientific and Clinical Affairs, Medifast, Inc, Baltimore, MD, United States
| | - Satya S Jonnalagadda
- Department of Scientific and Clinical Affairs, Medifast, Inc, Baltimore, MD, United States
| |
Collapse
|
4
|
Chang CH, Lin CY, Lo YL, Lin TY, Hung CY, Hsieh MH, Fang YF, Huang HY, Lin SM, Lin HC. Higher protein intake may benefit in patients with prolonged mechanical ventilation. Front Nutr 2024; 11:1449240. [PMID: 39498410 PMCID: PMC11533934 DOI: 10.3389/fnut.2024.1449240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Background Patients with prolonged mechanical ventilation (PMV) is usually associated with muscle wasting and diaphragm weakness, resulting in high medical costs and mortality. Adequate energy and protein intake were beneficial in sarcopenia patients. We aimed to investigate the impact of protein intake in weaning parameters in patients with PMV. Materials and methods We enrolled patients with PMV (mechanical ventilation ≥6 h/day for ≥21 days) from a respiratory care center (RCC) of a tertiary medical center from December 2020 to October 2022, and classified them into weaning success and weaning failure groups. The patients' characteristics, nutrition records, weaning parameters and outcomes were analyzed. Results A total of 289 patients were included (mean age 73.5 years). Of the 289 patients, 149 were weaned successfully and 140 were not. The average protein intake was higher in the weaning success group than in the weaning failure group (1.22 ± 0.320 versus 0.99 ± 0.332 g/kg/day, p < 0.001). No significant differences were noted in the average calorie intake and whey protein intake between the two groups. RSBI <90 breaths/min/L (OR = 2.38, p = 0.045), serum albumin at 4th week ≥3 g/dL (OR = 2.89, p = 0.027), daily protein intake ≥1.01 g/kg/day (OR = 8.10, p < 0.001), PaO2/FiO2 (PF) ratio ≥ 300 (OR = 2.56, p = 0.027) were independent predictors for weaning from ventilator. Weak positive correlations were found between average protein intake with PF ratio (r = 0.1576, p = 0.0227) and PaO2 (r = 0.13359, p = 0.0497). Conclusion Daily protein intake had positively correlated with PF ratio and had independently benefit for weaning in patients with PMV.
Collapse
Affiliation(s)
- Chiung-Hsin Chang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Yu Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Lun Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Yu Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Yiu Hung
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Heng Hsieh
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yueh-Fu Fang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Yu Huang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, New Taipei City Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei City, Taiwan
| | - Shu-Min Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Chyuan Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
5
|
Li J, Wang Y, Liu F, Miao Y. Effect of Protein Supplementation Combined With Resistance Training in Gait Speed in Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Aging Phys Act 2024; 32:668-678. [PMID: 38753309 DOI: 10.1123/japa.2023-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND We aimed to evaluate the effectiveness of the combination of protein supplementation and resistance training (RT), compared with RT alone or combined with a placebo, in improving gait speed. METHODS We searched PubMed, Web of Science, Cochrane Library, and SPORTDiscus databases, and 18 randomized controlled trials with 1,147 older participants were included for meta-analysis. Data were pooled as the effect sizes (Hedges' g) with 95% confidence interval (CI) of the gait speed (in meters per second). The random-effect meta-analysis, subgroup analyses, meta-regression, and sensitivity analysis were conducted. RESULTS The combination of protein supplementation and RT significantly improved gait speed (Hedges' g: 0.52 m/s, 95% confidence interval [0.17, 0.86], p = .005; I2 = 86.5%) compared with the RT alone. The subgroup analyses revealed that the significant improvement in gait speed postprotein intervention plus RT was observed only in participants who consumed protein after RT (Hedges' g: 0.90 m/s, 95% confidence interval [0.46, 1.33], p = .001; I2 = 79.6%). The pooled result did not significantly change after excluding any single study at one time or excluding smaller studies with large effect sizes. CONCLUSIONS Protein supplementation combined with RT could significantly improve the gait speed of older adults compared with RT alone. This positive effect is more pronounced in people who consume protein after RT.
Collapse
Affiliation(s)
- Juan Li
- College of Arts and Physical education, Nanchang Normal College of Applied Technology, Nanchang, JX, China
| | - Yahai Wang
- College of Arts and Physical education, Nanchang Normal College of Applied Technology, Nanchang, JX, China
| | - Fang Liu
- School of Public Health, Wuhan University, Wuhan, HUB, China
| | - Yu Miao
- School of Sports Science, Tamburi University, Bangkok, Thailand
| |
Collapse
|
6
|
Monteyne AJ, West S, Stephens FB, Wall BT. Reconsidering the pre-eminence of dietary leucine and plasma leucinemia for predicting the stimulation of postprandial muscle protein synthesis rates. Am J Clin Nutr 2024; 120:7-16. [PMID: 38705358 PMCID: PMC11251220 DOI: 10.1016/j.ajcnut.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
The regulation of postprandial muscle protein synthesis (MPS) with or without physical activity has been an intensely studied area within nutrition and physiology. The leucine content of dietary protein and the subsequent plasma leucinemia it elicits postingestion is often considered the primary drivers of the postprandial MPS response. This concept, generally known as the leucine "trigger" hypothesis, has also been adopted within more applied aspects of nutrition. Our view is that recent evidence is driving a more nuanced picture of the regulation of postprandial MPS by revealing a compelling dissociation between ingested leucine or plasma leucinemia and the magnitude of the postprandial MPS response. Much of this lack of coherence has arisen as experimental progress has demanded relevant studies move beyond reliance on isolated amino acids and proteins to use increasingly complex protein-rich meals, whole foods, and mixed meals. Our overreliance on the centrality of leucine in this field has been reflected in 2 recent systematic reviews. In this perspective, we propose a re-evaluation of the pre-eminent role of these leucine variables in the stimulation of postprandial MPS. We view the development of a more complex intellectual framework now a priority if we are to see continued progress concerning the mechanistic regulation of postprandial muscle protein turnover, but also consequential from an applied perspective when evaluating the value of novel dietary protein sources.
Collapse
Affiliation(s)
- Alistair J Monteyne
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sam West
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
7
|
Bird SP, Nienhuis M, Biagioli B, De Pauw K, Meeusen R. Supplementation Strategies for Strength and Power Athletes: Carbohydrate, Protein, and Amino Acid Ingestion. Nutrients 2024; 16:1886. [PMID: 38931241 PMCID: PMC11206787 DOI: 10.3390/nu16121886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
It is a common belief amongst strength and power athletes that nutritional supplementation strategies aid recovery by shifting the anabolic/catabolic profile toward anabolism. Factors such as nutrient quantity, nutrient quality, and nutrient timing significantly impact upon the effectiveness of nutritional strategies in optimizing the acute responses to resistance exercise and the adaptive response to resistance training (i.e., muscle growth and strength expression). Specifically, the aim of this review is to address carbohydrates (CHOs), protein (PRO), and/or amino acids (AAs) supplementation strategies, as there is growing evidence suggesting a link between nutrient signaling and the initiation of protein synthesis, muscle glycogen resynthesis, and the attenuation of myofibrillar protein degradation following resistance exercise. Collectively, the current scientific literature indicates that nutritional supplementation strategies utilizing CHO, PRO, and/or AA represents an important approach aimed at enhancing muscular responses for strength and power athletes, primarily increased muscular hypertrophy and enhanced strength expression. There appears to be a critical interaction between resistance exercise and nutrient-cell signaling associated with the principle of nutrient timing (i.e., pre-exercise, during, and post-exercise). Recommendations for nutritional supplementation strategies to promote muscular responses for strength and athletes are provided.
Collapse
Affiliation(s)
- Stephen P. Bird
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia
- Centre for Health Research, University of Southern Queensland, Ipswich, QLD 4305, Australia
| | - Mitch Nienhuis
- Movement Science, Grand Valley State University, Allendale, MI 49401, USA
| | - Brian Biagioli
- Kinesiology and Sport Sciences, School of Education and Human Development, University of Miami, Coral Gables, FL 33146, USA
| | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy Research Group (MFYS), Vrije Universiteit Brussel, 1050 Brussel, Belgium
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Romain Meeusen
- Human Physiology and Sports Physiotherapy Research Group (MFYS), Vrije Universiteit Brussel, 1050 Brussel, Belgium
- Department of Sports, Recreation, Exercise and Sciences, University of the Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
8
|
McKenna CF, Askow AT, Paulussen KJM, Salvador AF, Fang HY, Ulanov AV, Li Z, Paluska SA, Beals JW, Jäger R, Purpura M, Burd NA. Postabsorptive and postprandial myofibrillar protein synthesis rates at rest and after resistance exercise in women with postmenopause. J Appl Physiol (1985) 2024; 136:1388-1399. [PMID: 38385186 PMCID: PMC11368540 DOI: 10.1152/japplphysiol.00886.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
Feeding and resistance exercise stimulate myofibrillar protein synthesis (MPS) rates in healthy adults. This anabolic characterization of "healthy adults" has been namely focused on males. Therefore, the purpose of this study was to examine the temporal responses of MPS and anabolic signaling to resistance exercise alone or combined with the ingestion of protein in postmenopausal females and compare postabsorptive rates with young females. Sixteen females [60 ± 7 yr; body mass index (BMI) = 26 ± 12 kg·m-2] completed an acute bout of unilateral resistance exercise before consuming either: a fortified whey protein supplement (WHEY) or water. Participants received primed continuous infusions of L-[ring-13C6]phenylalanine with bilateral muscle biopsies before and after treatment ingestion at 2 h and 4 h in nonexercised and exercised legs. Resistance exercise transiently increased MPS above baseline at 0-2 h in the water condition (P = 0.007). Feeding after resistance exercise resulted in a late phase (2-4 h) increase in MPS in the WHEY condition (P = 0.005). In both conditions, resistance exercise did not enhance the cumulative (0-4 h) MPS response. In the nonexercised leg, MPS did not differ at 0-2 h, 2-4 h, or 0-4 h of the measurement periods (all, P > 0.05). Likewise, there were no changes in the phosphorylation of p70S6K, AMPKα, or total and phosphorylated yes-associated protein on Ser127. Finally, postabsorptive MPS was lower in premenopausal versus postmenopausal females (P = 0.023). Our results demonstrate that resistance exercise-induced changes in MPS are temporally regulated, but do not result in greater cumulative (0-4 h) MPS in postmenopausal women.NEW & NOTEWORTHY An adequate quality and quantity of skeletal muscle is relevant to support physical performance and metabolic health. Muscle protein synthesis (MPS) is an established remodeling marker, which can be hypertrophic or nonhypertrophic. Importantly, protein ingestion and resistance exercise are two strategies that support healthy muscle by stimulating MPS. Our study shows postmenopause modulates baseline MPS that may diminish the MPS response to the fundamental anabolic stimuli of protein ingestion and resistance exercise in older females.
Collapse
Affiliation(s)
- Colleen F McKenna
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Andrew T Askow
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Kevin J M Paulussen
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Amadeo F Salvador
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Hsin-Yu Fang
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Scott A Paluska
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Joseph W Beals
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Ralf Jäger
- Increnovo LLC, Milwaukee, Wisconsin, United States
| | | | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
9
|
He W, Connolly ED, Cross HR, Wu G. Dietary protein and amino acid intakes for mitigating sarcopenia in humans. Crit Rev Food Sci Nutr 2024; 65:2538-2561. [PMID: 38803274 DOI: 10.1080/10408398.2024.2348549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Adult humans generally experience a 0.5-1%/year loss in whole-body skeletal muscle mass and a reduction of muscle strength by 1.5-5%/year beginning at the age of 50 years. This results in sarcopenia (aging-related progressive losses of skeletal muscle mass and strength) that affects 10-16% of adults aged ≥ 60 years worldwide. Concentrations of some amino acids (AAs) such as branched-chain AAs, arginine, glutamine, glycine, and serine are reduced in the plasma of older than young adults likely due to insufficient protein intake, reduced protein digestibility, and increased AA catabolism by the portal-drained viscera. Acute, short-term, or long-term administration of some of these AAs or a mixture of proteinogenic AAs can enhance blood flow to skeletal muscle, activate the mechanistic target of rapamycin cell signaling pathway for the initiation of muscle protein synthesis, and modulate the metabolic activity of the muscle. In addition, some AA metabolites such as taurine, β-alanine, carnosine, and creatine have similar physiological effects on improving muscle mass and function in older adults. Long-term adequate intakes of protein and the AA metabolites can aid in mitigating sarcopenia in elderly adults. Appropriate combinations of animal- and plant-sourced foods are most desirable to maintain proper dietary AA balance.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Erin D Connolly
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - H Russell Cross
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Pradhan R, Dieterich W, Natarajan A, Schwappacher R, Reljic D, Herrmann HJ, Neurath MF, Zopf Y. Influence of Amino Acids and Exercise on Muscle Protein Turnover, Particularly in Cancer Cachexia. Cancers (Basel) 2024; 16:1921. [PMID: 38791998 PMCID: PMC11119313 DOI: 10.3390/cancers16101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer cachexia is a multifaceted syndrome that impacts individuals with advanced cancer. It causes numerous pathological changes in cancer patients, such as inflammation and metabolic dysfunction, which further diminish their quality of life. Unfortunately, cancer cachexia also increases the risk of mortality in affected individuals, making it an important area of focus for cancer research and treatment. Several potential nutritional therapies are being tested in preclinical and clinical models for their efficacy in improving muscle metabolism in cancer patients. Despite promising results, no special nutritional therapies have yet been validated in clinical practice. Multiple studies provide evidence of the benefits of increasing muscle protein synthesis through an increased intake of amino acids or protein. There is also increasing evidence that exercise can reduce muscle atrophy by modulating protein synthesis. Therefore, the combination of protein intake and exercise may be more effective in improving cancer cachexia. This review provides an overview of the preclinical and clinical approaches for the use of amino acids with and without exercise therapy to improve muscle metabolism in cachexia.
Collapse
Affiliation(s)
- Rashmita Pradhan
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Walburga Dieterich
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anirudh Natarajan
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Raphaela Schwappacher
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dejan Reljic
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hans J. Herrmann
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
| | - Yurdagül Zopf
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
11
|
Fountotos R, Lauck S, Piazza N, Martucci G, Arora R, Asgar A, Forcillo J, Kouz R, Labinaz M, Lamy A, Peterson M, Wijeysundera H, Masse L, Ouimet MC, Polderman J, Webb J, Afilalo J. Protein and Exercise to Reverse Frailty in Older Men and Women Undergoing Transcatheter Aortic Valve Replacement: Design of the PERFORM-TAVR Trial. Can J Cardiol 2024; 40:267-274. [PMID: 38052302 DOI: 10.1016/j.cjca.2023.11.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023] Open
Abstract
Despite the high procedural success of transcatheter aortic valve replacement (TAVR), 2 out of 5 older adults report poor physical performance and health-related quality of life (HRQOL) in the ensuing months, particularly those with frailty. There has yet to be a trial examining the synergistic effects of exercise and protein supplementation to counteract frailty and improve patient-centred outcomes following TAVR. The PERFORM-TAVR trial is a multicentre parallel-group randomised clinical trial that is enrolling 200 frail older adults ≥ 70 years of age undergoing TAVR. Patients will be randomly allocated to 1 of 2 treatment groups: standard-of-care lifestyle education (control group) or protein-rich oral nutritional supplement for 4 weeks before TAVR with the addition of home-based supervised exercise sessions for 12 weeks after TAVR (intervention group). The primary outcome will be physical performance as measured by a blinded observer using the Short Physical Performance Battery at 3 months. Secondary outcomes at 3, 6, and 12 months will include HRQOL, as measured by the Short-Form 36 Physical and Mental Component summary scores, and a composite safety end point. The PERFORM-TAVR trial is testing a novel frailty intervention in older adults undergoing TAVR to optimise recovery and downstream HRQOL. This represents a potential paradigm shift that highlights the value of assessing and treating patients' frailty in parallel with their underlying heart valve disease. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT03522454.
Collapse
|
12
|
Xiang Q, Xiong J, Zhao ZJ, Zhou T, Wu J, Chen X. Walking exercise through smartphone application plus branched-chain amino acid supplementation benefits skeletal muscle mass and strength in liver cirrhosis: A prospective control trial. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:183-192. [PMID: 37220789 PMCID: PMC10872727 DOI: 10.1055/a-2075-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
INTRODUCTION AND OBJECTIVES Whether a combination of exercise and branched-chain amino acid (BCAA) supplementation was more beneficial than those given alone in sarcopenia related to liver cirrhosis (LC) is unknown. Widely used smartphone applications provide continuous and easily expandable management of chronic liver disease (CLD). This study is to investigate the effects of unsupervised walking exercise using WeChat combined with BCAA supplementation on skeletal muscle mass and strength in LC. MATERIALS AND METHODS The 127 LC patients of Child-Pugh A/B were assigned to group A (BCAA supplements, n=42), group B (walking exercise, n=43) and group C (walking exercise plus BCAA supplements, n=42). Laboratory data, average daily steps, serum BCAA, skeletal muscle mass index (SMI) and grip strength were analyzed pre- and 3 months after interventions. RESULTS Of the 124 patients who completed interventions, albumin and daily steps were significantly increased in all groups (p=0.0001). Post-intervention BCAA were significantly elevated in group A (A vs B, p=0.001) and C (C vs B, p=0.012;). While post-intervention daily steps in group B (B vs A, p=0.0001) and C (C vs A, p=0.0001) were higher. Grip strength (C vs A, p=0.020; C vs B, p=0.036) and SMI (C vs A, p=0.035; C vs B, p=0.012) were increased in group C. Prevalence of sarcopenia was significantly decreased in group C (p=0.015). CONCLUSIONS A combination of unsupervised walking exercise using smartphone applications and BCAA supplementation might be an effective and safe treatment for cirrhosis patients with Child-Pugh A/B to improve skeletal muscle mass and strength or to prevent progress of sarcopenia.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Gastroenterology, Sixth People’s Hospital of Chengdu, Chengdu, China
| | - Jing Xiong
- Department of Gastroenterology, Sixth People’s Hospital of Chengdu, Chengdu, China
| | - Zhi jing Zhao
- Department of Gastroenterology, Sixth People’s Hospital of Chengdu, Chengdu, China
| | - Ting Zhou
- Department of Gastroenterology, Sixth People’s Hospital of Chengdu, Chengdu, China
| | - Jun Wu
- Department of Gastroenterology, Sixth People’s Hospital of Chengdu, Chengdu, China
| | - Xia Chen
- Department of Gastroenterology, Sixth People’s Hospital of Chengdu, Chengdu, China
| |
Collapse
|
13
|
Amawi A, AlKasasbeh W, Jaradat M, Almasri A, Alobaidi S, Hammad AA, Bishtawi T, Fataftah B, Turk N, Saoud HA, Jarrar A, Ghazzawi H. Athletes' nutritional demands: a narrative review of nutritional requirements. Front Nutr 2024; 10:1331854. [PMID: 38328685 PMCID: PMC10848936 DOI: 10.3389/fnut.2023.1331854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
Nutrition serves as the cornerstone of an athlete's life, exerting a profound impact on their performance and overall well-being. To unlock their full potential, athletes must adhere to a well-balanced diet tailored to their specific nutritional needs. This approach not only enables them to achieve optimal performance levels but also facilitates efficient recovery and reduces the risk of injuries. In addition to maintaining a balanced diet, many athletes also embrace the use of nutritional supplements to complement their dietary intake and support their training goals. These supplements cover a wide range of options, addressing nutrient deficiencies, enhancing recovery, promoting muscle synthesis, boosting energy levels, and optimizing performance in their respective sports or activities. The primary objective of this narrative review is to comprehensively explore the diverse nutritional requirements that athletes face to optimize their performance, recovery, and overall well-being. Through a thorough literature search across databases such as PubMed, Google Scholar, and Scopus, we aim to provide evidence-based recommendations and shed light on the optimal daily intakes of carbohydrates, protein, fats, micronutrients, hydration strategies, ergogenic aids, nutritional supplements, and nutrient timing. Furthermore, our aim is to dispel common misconceptions regarding sports nutrition, providing athletes with accurate information and empowering them in their nutritional choices.
Collapse
Affiliation(s)
- Adam Amawi
- Department of Exercise Science and Kinesiology, School of Sport Science, The University of Jordan, Amman, Jordan
| | - Walaa AlKasasbeh
- Department of Physical and Health Education, Faculty of Educational Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Manar Jaradat
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Amani Almasri
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Sondos Alobaidi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Aya Abu Hammad
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Taqwa Bishtawi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Batoul Fataftah
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Nataly Turk
- Department of Family and Community Medicine, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Hassan Al Saoud
- Department of Exercise Science and Kinesiology, School of Sport Science, The University of Jordan, Amman, Jordan
| | - Amjad Jarrar
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Oxford Brookes Center for Nutrition and Health, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Hadeel Ghazzawi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| |
Collapse
|
14
|
Ferrando AA, Wolfe RR, Hirsch KR, Church DD, Kviatkovsky SA, Roberts MD, Stout JR, Gonzalez DE, Sowinski RJ, Kreider RB, Kerksick CM, Burd NA, Pasiakos SM, Ormsbee MJ, Arent SM, Arciero PJ, Campbell BI, VanDusseldorp TA, Jager R, Willoughby DS, Kalman DS, Antonio J. International Society of Sports Nutrition Position Stand: Effects of essential amino acid supplementation on exercise and performance. J Int Soc Sports Nutr 2023; 20:2263409. [PMID: 37800468 PMCID: PMC10561576 DOI: 10.1080/15502783.2023.2263409] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of literature surrounding the effects of essential amino acid (EAA) supplementation on skeletal muscle maintenance and performance. This position stand is intended to provide a scientific foundation to athletes, dietitians, trainers, and other practitioners as to the benefits of supplemental EAA in both healthy and resistant (aging/clinical) populations. EAAs are crucial components of protein intake in humans, as the body cannot synthesize them. The daily recommended intake (DRI) for protein was established to prevent deficiencies due to inadequate EAA consumption. The following conclusions represent the official position of the Society: 1. Initial studies on EAAs' effects on skeletal muscle highlight their primary role in stimulating muscle protein synthesis (MPS) and turnover. Protein turnover is critical for replacing degraded or damaged muscle proteins, laying the metabolic foundation for enhanced functional performance. Consequently, research has shifted to examine the effects of EAA supplementation - with and without the benefits of exercise - on skeletal muscle maintenance and performance. 2. Supplementation with free-form EAAs leads to a quick rise in peripheral EAA concentrations, which in turn stimulates MPS. 3. The safe upper limit of EAA intake (amount), without inborn metabolic disease, can easily accommodate additional supplementation. 4. At rest, stimulation of MPS occurs at relatively small dosages (1.5-3.0 g) and seems to plateau at around 15-18 g. 5. The MPS stimulation by EAAs does not require non-essential amino acids. 6. Free-form EAA ingestion stimulates MPS more than an equivalent amount of intact protein. 7. Repeated EAA-induced MPS stimulation throughout the day does not diminish the anabolic effect of meal intake. 8. Although direct comparisons of various formulas have yet to be investigated, aging requires a greater proportion of leucine to overcome the reduced muscle sensitivity known as "anabolic resistance." 9. Without exercise, EAA supplementation can enhance functional outcomes in anabolic-resistant populations. 10. EAA requirements rise in the face of caloric deficits. During caloric deficit, it's essential to meet whole-body EAA requirements to preserve anabolic sensitivity in skeletal muscle.
Collapse
Affiliation(s)
- Arny A. Ferrando
- University of Arkansas for Medical Sciences, Center for Translational Research in Aging and Longevity, Department of Geriatrics, Little Rock, AR, USA
| | - Robert R. Wolfe
- University of Arkansas for Medical Sciences, Center for Translational Research in Aging and Longevity, Department of Geriatrics, Little Rock, AR, USA
| | - Katie R. Hirsch
- University of South Carolina, Department of Exercise Science, Arnold School of Public Health, Columbia, SC, USA
| | - David D. Church
- University of Arkansas for Medical Sciences, Center for Translational Research in Aging and Longevity, Department of Geriatrics, Little Rock, AR, USA
| | - Shiloah A. Kviatkovsky
- University of Arkansas for Medical Sciences, Center for Translational Research in Aging and Longevity, Department of Geriatrics, Little Rock, AR, USA
| | | | - Jeffrey R. Stout
- University of Central Florida, School of Kinesiology and Rehabilitation Sciences, Orlando, FL, USA
| | - Drew E. Gonzalez
- Texas A&M University, Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Ryan J. Sowinski
- Texas A&M University, Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Richard B. Kreider
- Texas A&M University, Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Chad M. Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, St Charles, MO, USA
| | - Nicholas A. Burd
- University of Illinois Urbana-Champaign, Department of Kinesiology and Community Health, Urbana, IL, USA
| | - Stefan M. Pasiakos
- National Institutes of Health, Office of Dietary Supplements, Bethesda, MD, USA
| | - Michael J. Ormsbee
- Florida State University, Institute of Sports Sciences and Medicine, Nutrition and Integrative Physiology, Tallahassee, FL, USA
| | - Shawn M. Arent
- University of South Carolina, Department of Exercise Science, Arnold School of Public Health, Columbia, SC, USA
| | - Paul J. Arciero
- University of Pittsburgh, Department of Sports Medicine and Nutrition, Pittsburgh, PA, USA
- Skidmore College, Health and Physiological Sciences, Saratoga Springs, NY, USA
| | - Bill I. Campbell
- University of South Florida, Performance & Physique Enhancement Laboratory, Tampa, FL, USA
| | - Trisha A. VanDusseldorp
- Bonafede Health, LLC, JDS Therapeutics, Harrison, NY, USA
- Jacksonville University, Department of Health and Exercise Sciences, Jacksonville, FL, USA
| | | | - Darryn S. Willoughby
- University of Mary Hardin-Baylor, Human Performance Lab, School of Exercise and Sport Science, Belton, TX, USA
| | - Douglas S. Kalman
- Nova Southeastern University, Dr. Kiran C Patel College of Osteopathic Medicine, Department of Nutrition, Davie, FL, USA
| | - Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| |
Collapse
|
15
|
Pavis GF, Abdelrahman DR, Murton AJ, Wall BT, Stephens FB, Dirks ML. Short-term disuse does not affect postabsorptive or postprandial muscle protein fractional breakdown rates. J Cachexia Sarcopenia Muscle 2023; 14:2064-2075. [PMID: 37431714 PMCID: PMC10570083 DOI: 10.1002/jcsm.13284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The decline in postabsorptive and postprandial muscle protein fractional synthesis rates (FSR) does not quantitatively account for muscle atrophy during uncomplicated, short-term disuse, when atrophy rates are the highest. We sought to determine whether 2 days of unilateral knee immobilization affects mixed muscle protein fractional breakdown rates (FBR) during postabsorptive and simulated postprandial conditions. METHODS Twenty-three healthy, male participants (age: 22 ± 1 year; height: 179 ± 1 cm; body mass: 73.4 ± 1.5 kg; body mass index 22.8 ± 0.5 kg·m-2 ) took part in this randomized, controlled study. After 48 h of unilateral knee immobilization, primed continuous intravenous l-[15 N]-phenylalanine and l-[ring-2 H5 ]-phenylalanine infusions were used for parallel determinations of FBR and FSR, respectively, in a postabsorptive (saline infusion; FAST) or simulated postprandial state (67.5 mg·kg body mass-1 ·h-1 amino acid infusion; FED). Bilateral m. vastus lateralis biopsies from the control (CON) and immobilized (IMM) legs, and arterialized-venous blood samples, were collected throughout. RESULTS Amino acid infusion rapidly increased plasma phenylalanine (59 ± 9%), leucine (76 ± 5%), isoleucine (109 ± 7%) and valine (42 ± 4%) concentrations in FED only (all P < 0.001), which was sustained for the remainder of infusion. Serum insulin concentrations peaked at 21.8 ± 2.2 mU·L-1 at 15 min in FED only (P < 0.001) and were 60% greater in FED than FAST (P < 0.01). Immobilization did not influence FBR in either FAST (CON: 0.150 ± 0.018; IMM: 0.143 ± 0.017%·h-1 ) or FED (CON: 0.134 ± 0.012; IMM: 0.160 ± 0.018%·h-1 ; all effects P > 0.05). However, immobilization decreased FSR (P < 0.05) in both FAST (0.071 ± 0.004 vs. 0.086 ± 0.007%·h-1 ; IMM vs CON, respectively) and FED (0.066 ± 0.016 vs. 0.119 ± 0.016%·h-1 ; IMM vs CON, respectively). Consequently, immobilization decreased net muscle protein balance (P < 0.05) and to a greater extent in FED (CON: -0.012 ± 0.025; IMM: -0.095 ± 0.023%·h-1 ; P < 0.05) than FAST (CON: -0.064 ± 0.020; IMM: -0.072 ± 0.017%·h-1 ). CONCLUSIONS We conclude that merely 2 days of leg immobilization does not modulate postabsorptive and simulated postprandial muscle protein breakdown rates. Instead, under these conditions the muscle negative muscle protein balance associated with brief periods of experimental disuse is driven near exclusively by reduced basal muscle protein synthesis rates and anabolic resistance to amino acid administration.
Collapse
Affiliation(s)
- George F. Pavis
- Nutritional Physiology Research Group, Public Health & Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Doaa R. Abdelrahman
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Sealy Center of AgingUniversity of Texas Medical BranchGalvestonTXUSA
| | - Andrew J. Murton
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Sealy Center of AgingUniversity of Texas Medical BranchGalvestonTXUSA
| | - Benjamin T. Wall
- Nutritional Physiology Research Group, Public Health & Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Francis B. Stephens
- Nutritional Physiology Research Group, Public Health & Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Marlou L. Dirks
- Nutritional Physiology Research Group, Public Health & Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
16
|
Kwon HE, Ko N, Yuk D, Choi SW, Koh SE. Improved Muscle Mass and Function With Protein Supplementation in Older Adults With Sarcopenia: A Meta-Analysis. Ann Rehabil Med 2023; 47:358-366. [PMID: 37907227 PMCID: PMC10620490 DOI: 10.5535/arm.23076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE : To systematically review the effects of protein supplementation in older adults with sarcopenia. METHODS : A systematic literature search was conducted in PubMed, Cochrane Library, and Embase databases until May 2023. The inclusion criteria were as follows: (1) randomized controlled trials with a quantitative study design; (2) studies with a study group of older adults with sarcopenia; (3) studies comparing muscle mass, muscle strength, and performance of older adults with sarcopenia after protein supplementation; and (4) studies published up to May 2023. RESULTS : Six retrospective comparative studies, including 715 patients, met the inclusion criteria. The nutritional supplementation group exhibited significant improvement in appendicular skeletal muscle mass (standardized mean difference [SMD]=0.41; 95% confidence interval [CI], 0.24-0.58; p<0.001; I2=1%), while handgrip strength (SMD=0.37; 95% CI, -0.32-1.07; p=0.29; I2=94%) and Short Physical Performance Battery (SPPB) (SMD=0.35; 95% CI, -0.47-1.18; p=0.40; I2=94%) showed a tendency for improvement. CONCLUSION : Nutritional supplementation with protein increased appendicular muscle mass in older adults with sarcopenia and improved handgrip strength and SPPB scores.
Collapse
Affiliation(s)
- Hyo Eun Kwon
- Department of Rehabilitation Medicine, Konkuk University Medical Center, and Konkuk University School of Medicine, Konkuk University, Seoul, Korea
| | - Nayeon Ko
- Department of Rehabilitation Medicine, Konkuk University Medical Center, and Konkuk University School of Medicine, Konkuk University, Seoul, Korea
| | - Doyoung Yuk
- Department of Rehabilitation Medicine, Konkuk University Medical Center, and Konkuk University School of Medicine, Konkuk University, Seoul, Korea
| | - Seo Won Choi
- Department of Rehabilitation Medicine, Konkuk University Medical Center, and Konkuk University School of Medicine, Konkuk University, Seoul, Korea
| | - Seong-Eun Koh
- Department of Rehabilitation Medicine, Konkuk University Medical Center, and Konkuk University School of Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
17
|
Tezze C, Sandri M, Tessari P. Anabolic Resistance in the Pathogenesis of Sarcopenia in the Elderly: Role of Nutrition and Exercise in Young and Old People. Nutrients 2023; 15:4073. [PMID: 37764858 PMCID: PMC10535169 DOI: 10.3390/nu15184073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The development of sarcopenia in the elderly is associated with many potential factors and/or processes that impair the renovation and maintenance of skeletal muscle mass and strength as ageing progresses. Among them, a defect by skeletal muscle to respond to anabolic stimuli is to be considered. Common anabolic stimuli/signals in skeletal muscle are hormones (insulin, growth hormones, IGF-1, androgens, and β-agonists such epinephrine), substrates (amino acids such as protein precursors on top, but also glucose and fat, as source of energy), metabolites (such as β-agonists and HMB), various biochemical/intracellular mediators), physical exercise, neurogenic and immune-modulating factors, etc. Each of them may exhibit a reduced effect upon skeletal muscle in ageing. In this article, we overview the role of anabolic signals on muscle metabolism, as well as currently available evidence of resistance, at the skeletal muscle level, to anabolic factors, from both in vitro and in vivo studies. Some indications on how to augment the effects of anabolic signals on skeletal muscle are provided.
Collapse
Affiliation(s)
- Caterina Tezze
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Paolo Tessari
- Department of Medicine, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
18
|
West S, Monteyne AJ, Whelehan G, van der Heijden I, Abdelrahman DR, Murton AJ, Finnigan TJA, Stephens FB, Wall BT. Ingestion of mycoprotein, pea protein, and their blend support comparable postexercise myofibrillar protein synthesis rates in resistance-trained individuals. Am J Physiol Endocrinol Metab 2023; 325:E267-E279. [PMID: 37529834 PMCID: PMC10655824 DOI: 10.1152/ajpendo.00166.2023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Pea protein is an attractive nonanimal-derived protein source to support dietary protein requirements. However, although high in leucine, a low methionine content has been suggested to limit its anabolic potential. Mycoprotein has a complete amino acid profile which, at least in part, may explain its ability to robustly stimulate myofibrillar protein synthesis (MyoPS) rates. We hypothesized that an inferior postexercise MyoPS response would be seen following ingestion of pea protein compared with mycoprotein, which would be (partially) rescued by blending the two sources. Thirty-three healthy, young [age: 21 ± 1 yr, body mass index (BMI): 24 ± 1 kg·m-2] and resistance-trained participants received primed, continuous infusions of l-[ring-2H5]phenylalanine and completed a bout of whole body resistance exercise before ingesting 25 g of protein from mycoprotein (MYC, n = 11), pea protein (PEA, n = 11), or a blend (39% MYC, 61% PEA) of the two (BLEND, n = 11). Blood and muscle samples were taken pre-, 2 h, and 4 h postexercise/protein ingestion to assess postabsorptive and postprandial postexercise myofibrillar protein fractional synthetic rates (FSRs). Protein ingestion increased plasma essential amino acid and leucine concentrations (time effect; P < 0.0001), but more rapidly in BLEND and PEA compared with MYC (time × condition interaction; P < 0.0001). From similar postabsorptive values (MYC, 0.026 ± 0.008%·h-1; PEA, 0.028 ± 0.007%·h-1; BLEND, 0.026 ± 0.006%·h-1), resistance exercise and protein ingestion increased myofibrillar FSRs (time effect; P < 0.0001) over a 4-h postprandial period (MYC, 0.076 ± 0.004%·h-1; PEA, 0.087 ± 0.01%·h-1; BLEND, 0.085 ± 0.01%·h-1), with no differences between groups (all; P > 0.05). These data show that all three nonanimal-derived protein sources have utility in supporting postexercise muscle reconditioning.NEW & NOTEWORTHY This study provides evidence that pea protein (PEA), mycoprotein (MYC), and their blend (BLEND) can support postexercise myofibrillar protein synthesis rates following a bout of whole body resistance exercise. Furthermore, these data suggest that a methionine deficiency in pea may not limit its capacity to stimulate an acute increase in muscle protein synthesis (MPS).
Collapse
Affiliation(s)
- Sam West
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Gráinne Whelehan
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Ino van der Heijden
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States
- Sealy Center of Aging, University of Texas Medical Branch, Galveston, Texas, United States
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States
- Sealy Center of Aging, University of Texas Medical Branch, Galveston, Texas, United States
| | | | - Francis B Stephens
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
19
|
Wilkinson K, Koscien CP, Monteyne AJ, Wall BT, Stephens FB. Association of postprandial postexercise muscle protein synthesis rates with dietary leucine: A systematic review. Physiol Rep 2023; 11:e15775. [PMID: 37537134 PMCID: PMC10400406 DOI: 10.14814/phy2.15775] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Dietary protein ingestion augments post (resistance) exercise muscle protein synthesis (MPS) rates. It is thought that the dose of leucine ingested within the protein (leucine threshold hypothesis) and the subsequent plasma leucine variables (leucine trigger hypothesis; peak magnitude, rate of rise, and total availability) determine the magnitude of the postprandial postexercise MPS response. METHODS A quantitative systematic review was performed extracting data from studies that recruited healthy adults, applied a bout of resistance exercise, ingested a bolus of protein within an hour of exercise, and measured plasma leucine concentrations and MPS rates (delta change from basal). RESULTS Ingested leucine dose was associated with the magnitude of the MPS response in older, but not younger, adults over acute (0-2 h, r2 = 0.64, p = 0.02) and the entire postprandial (>2 h, r2 = 0.18, p = 0.01) period. However, no single plasma leucine variable possessed substantial predictive capacity over the magnitude of MPS rates in younger or older adults. CONCLUSION Our data provide support that leucine dose provides predictive capacity over postprandial postexercise MPS responses in older adults. However, no threshold in older adults and no plasma leucine variable was correlated with the magnitude of the postexercise anabolic response.
Collapse
Affiliation(s)
- Kiera Wilkinson
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Christopher P. Koscien
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Alistair J. Monteyne
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Benjamin T. Wall
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Francis B. Stephens
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| |
Collapse
|
20
|
Bagheri R, Shakibaee A, Camera DM, Sobhani V, Ghobadi H, Nazar E, Fakhari H, Dutheil F. Effects of 8 weeks of resistance training in combination with a high protein diet on body composition, muscular performance, and markers of liver and kidney function in untrained older ex-military men. Front Nutr 2023; 10:1205310. [PMID: 37457969 PMCID: PMC10342203 DOI: 10.3389/fnut.2023.1205310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background The effects of a high protein diet in combination with chronic resistance training (RT) on skeletal muscle adaptation responses in untrained older ex-military men is unknown. Therefore, we compared the effects of 8 weeks of RT in combination with either a high (1.6 g/kg/d) or low protein diet (0.8 g/kg/d) on body composition [skeletal muscle mass (SMM) and body fat percentage (BFP)], muscular strength, power, and endurance (upper and lower body), markers of liver [alanine transaminase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT)] and kidney (creatinine and urea) function, and lipid profile low-density lipoprotein (LDL), high-density lipoprotein (HDL), and cholesterol levels in a cohort of healthy, untrained older ex-military males. Methods Forty healthy untrained older ex-military males (age: 61 ± 2 yr, body mass index: 23.2 ± 1.3 kg.m-2) performed 8 weeks (three sessions·w-1) of RT with either 1.6 g/kg/d (RHP; n = 20) or 0.8 g/kg/d of protein (RLP; n = 20). Body composition (assessed by Inbody 720), muscular strength (1-RM for chest and leg press), power (Wingate test), endurance (75% 1-RM for chest and leg press), and markers of liver and kidney function (biochemical kits) were assessed pre and post-intervention. Results SMM and muscular strength (upper and lower body) increased post-intervention in both groups and were significantly greater in RHP compared to RLP, while muscular power increased to the same extent in both groups (p < 0.05) with no between-group differences (p > 0.05). In contrast, there were no post-intervention changes in muscular endurance, HDL, and BFP remained in either group (p > 0.05). ALT and creatinine significantly increased in RHP compared to RLP while GGT, AST, and urea only increased in the RLP group (p < 0.05). LDL and cholesterol significantly decreased in both groups (p < 0.05). Conclusion A daily intake of 1.6 g/kg/d protein was superior to 0.8 g/kg/d (current recommended daily intake) for promoting greater improvements in SMM and muscle strength and thus may be a more suitable level of intake for promoting such adaptive responses. Notwithstanding observed between-group differences in ALT and creatinine and the fact that levels remained within normal ranges, it is feasible to conclude that this daily protein intake is efficacious and well tolerated by healthy, untrained older ex-military males.
Collapse
Affiliation(s)
- Reza Bagheri
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Shakibaee
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Donny M. Camera
- Department of Health and Biostatistics, Swinburne University, Melbourne, VIC, Australia
| | - Vahid Sobhani
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Ghobadi
- Department of Exercise Physiology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Eisa Nazar
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Fakhari
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Fred Dutheil
- CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
21
|
Vinci P, Di Girolamo FG, Mangogna A, Mearelli F, Nunnari A, Fiotti N, Giordano M, Bareille MP, Biolo G. Early lean mass sparing effect of high-protein diet with excess leucine during long-term bed rest in women. Front Nutr 2022; 9:976818. [PMID: 36505255 PMCID: PMC9729546 DOI: 10.3389/fnut.2022.976818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Muscle inactivity leads to muscle atrophy. Leucine is known to inhibit protein degradation and to promote protein synthesis in skeletal muscle. We tested the ability of a high-protein diet enriched with branched-chain amino acids (BCAAs) to prevent muscle atrophy during long-term bed rest (BR). We determined body composition (using dual energy x-ray absorptiometry) at baseline and every 2-weeks during 60 days of BR in 16 healthy young women. Nitrogen (N) balance was assessed daily as the difference between N intake and N urinary excretion. The subjects were randomized into two groups: one received a conventional diet (1.1 ± 0.03 g protein/kg, 4.9 ± 0.3 g leucine per day) and the other a high protein, BCAA-enriched regimen (1.6 ± 0.03 g protein-amino acid/kg, 11.4 ± 0.6 g leucine per day). There were significant BR and BR × diet interaction effects on changes in lean body mass (LBM) and N balance throughout the experimental period (repeated measures ANCOVA). During the first 15 days of BR, lean mass decreased by 4.1 ± 0.9 and 2.4 ± 2.1% (p < 0.05) in the conventional and high protein-BCAA diet groups, respectively, while at the end of the 60-day BR, LBM decreased similarly in the two groups by 7.4 ± 0.7 and 6.8 ± 2.4%. During the first 15 days of BR, mean N balance was 2.5 times greater (p < 0.05) in subjects on the high protein-BCAA diet than in those on the conventional diet, while we did not find significant differences during the following time intervals. In conclusion, during 60 days of BR in females, a high protein-BCAA diet was associated with an early protein-LBM sparing effect, which ceased in the medium and long term.
Collapse
Affiliation(s)
- Pierandrea Vinci
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Filippo Giorgio Di Girolamo
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy,Hospital Pharmacy, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Filippo Mearelli
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Alessio Nunnari
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Nicola Fiotti
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Sciences, University of Campania L. Vanvitelli, Naples, Italy
| | | | - Gianni Biolo
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy,*Correspondence: Gianni Biolo,
| |
Collapse
|
22
|
Zhou J, Tu J, Wang L, Yang L, Yang G, Zhao S, Zeng X, Qiao S. Free Amino Acid-Enriched Diets Containing Rapidly but Not Slowly Digested Carbohydrate Promote Amino Acid Absorption from Intestine and Net Fluxes across Skeletal Muscle of Pigs. J Nutr 2022; 152:2471-2482. [PMID: 36774113 DOI: 10.1093/jn/nxac165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2022] [Accepted: 07/19/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The approach to matching appropriate carbohydrates alongside free amino acids to achieve optimal muscle growth remains unclear. OBJECTIVES We investigated whether the consumption of a diet containing rapidly digested carbohydrate and free amino acids can enhance intestinal absorption and muscular uptake of amino acids in pigs. METHOD Twelve barrows (28 kg; 11 wk old) with catheters installed in the portal vein, mesenteric vein, femoral artery, and femoral vein were randomly assigned to consume 1 of 2 free amino acid-enriched diets (3.34%) containing rapidly [waxy corn starch (WCS)] or slowly [pea starch (PS)] digested carbohydrate for 27 d. Blood was collected to determine the fluxes of plasma glucose and amino acids across the portal vein and the hindlimb muscle. Dietary in vitro carbohydrate digestive rates were also determined. Data were analyzed using repeated-measures (time × group) ANOVA. RESULTS Carbohydrate in vitro cumulative digestibility at 30 and 240 min was 69.00% and 95.25% for WCS and 23.25% and 81.15% for PS, respectively. The animal experiment presented WCS increased individual amino acids (lysine, 0.67 compared with 0.53 mmol/min; threonine, 0.40 compared with 0.29 mmol/min; isoleucine, 0.33 compared with 0.22 mmol/min; glutamate, 0.51 compared with 0.35 mmol/min; and proline, 0.51 compared with 0.27 mmol/min), essential amino acid (EAA; 3.26 compared with 2.65 mmol/min), and branched-chain amino acid (BCAA; 0.86 compared with 0.65 mmol/min) fluxes across the portal vein during 8 h postprandial, as well as individual amino acids (isoleucine, 0.08 compared with 0.02 mmol/min; leucine, 0.06 compared with 0.02 mmol/min; and glutamine, 0.44 compared with 0.25 mmol/min), EAA (0.50 compared with 0.21 mmol/min), and BCAA (0.17 compared with 0.06 mmol/min) net fluxes across the hindlimb muscle during 8 h postprandial compared with PS (P < 0.05). CONCLUSIONS A diet containing rapidly digested carbohydrate and free amino acids can promote intestinal absorption and net fluxes across hindlimb muscle of amino acids in pigs.
Collapse
Affiliation(s)
- Junyan Zhou
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, PR China; Beijing Bio-feed additives Key Laboratory, Beijing, PR China
| | - Jiayu Tu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, PR China; Beijing Bio-feed additives Key Laboratory, Beijing, PR China
| | - Lu Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, PR China; Beijing Bio-feed additives Key Laboratory, Beijing, PR China
| | - Lijie Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, PR China; Beijing Bio-feed additives Key Laboratory, Beijing, PR China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, PR China; Beijing Bio-feed additives Key Laboratory, Beijing, PR China
| | - Shengjun Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, PR China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, PR China; Beijing Bio-feed additives Key Laboratory, Beijing, PR China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, PR China; Beijing Bio-feed additives Key Laboratory, Beijing, PR China.
| |
Collapse
|
23
|
Mazzulla M, Hodson N, West DWD, Kumbhare DA, Moore DR. A non-invasive 13CO2 breath test detects differences in anabolic sensitivity with feeding and heavy resistance exercise in healthy young males: a randomized control trial. Appl Physiol Nutr Metab 2022; 47:860-870. [PMID: 35609328 DOI: 10.1139/apnm-2021-0808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There are limited tools to measure anabolic sensitivity non-invasively in response to acute physiological stimuli, which represents a challenge for research in free-living settings and vulnerable populations. We tested the ability of a stable isotope breath test to detect changes in leucine oxidation (OX) and leucine retention (intake - OX) across a range of anabolic sensitivities. Healthy males ingested a beverage containing 0.25 g·kg-1 protein and 0.75 g·kg-1 carbohydrate with the leucine content enriched to 5% with L-[1-13C]leucine at rest (FED) or after a bout of resistance exercise (EXFED), with a parallel group consuming only the tracer (FAST). Concurrent primed-constant infusions of L-[5,5,5-2H3]leucine revealed high peripheral bioavailability for FED (~81%), EXFED (~80%), and FAST (~117%). After beverage ingestion, whole-body protein synthesis was greater in FED and EXFED than FAST. OX was greater in FED and EXFED than FAST, with EXFED lower than FED. Leucine retention demonstrated expected physiological differences in anabolic sensitivity (EXFED > FED > FAST). We demonstrated that a non-invasive breath test based on an amino acid (leucine) that is preferentially metabolized in peripheral (muscle) tissues can detect differences in anabolic sensitivity. Future studies could examine this test within a variety of populations experiencing muscle growth or atrophy. Novelty Bullets • An oral L-[1-13C]leucine breath test can detect greater anabolic sensitivity after feeding and resistance exercise. • This tool may be applied in growing (e.g., children) or wasting (e.g. aging) populations where invasive procedures are not possible.
Collapse
Affiliation(s)
| | - Nathan Hodson
- University of Toronto, 7938, Faculty of Kinesiology and Physical Education, Toronto, Ontario, Canada;
| | - Daniel W D West
- University of Toronto, 7938, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, 7961, Toronto, Ontario, Canada;
| | - Dinesh A Kumbhare
- Toronto Rehabilitation Institute, 7961, Medicine, Toronto, Ontario, Canada.,University of Toronto Faculty of Kinesiology and Physical Education, 177420, Toronto, Ontario, Canada;
| | - Daniel R Moore
- CAN, 7641, Department of Exercise Sciences, Stockholm, Sweden;
| |
Collapse
|
24
|
Nunes EA, Stokes T, McKendry J, Currier BS, Phillips SM. Disuse-induced skeletal muscle atrophy in disease and non-disease states in humans: mechanisms, prevention, and recovery strategies. Am J Physiol Cell Physiol 2022; 322:C1068-C1084. [PMID: 35476500 DOI: 10.1152/ajpcell.00425.2021] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decreased skeletal muscle contractile activity (disuse) or unloading leads to muscle mass loss, also known as muscle atrophy. The balance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB) is the primary determinant of skeletal muscle mass. A reduced mechanical load on skeletal muscle is one of the main external factors leading to muscle atrophy. However, endocrine and inflammatory factors can act synergistically in catabolic states, amplifying the atrophy process and accelerating its progression. Additionally, older individuals display aging-induced anabolic resistance, which can predispose this population to more pronounced effects when exposed to periods of reduced physical activity or mechanical unloading. Different cellular mechanisms contribute to the regulation of muscle protein balance during skeletal muscle atrophy. This review summarizes the effects of muscle disuse on muscle protein balance and the molecular mechanisms involved in muscle atrophy in the absence or presence of disease. Finally, a discussion of the current literature describing efficient strategies to prevent or improve the recovery from muscle atrophy is also presented.
Collapse
Affiliation(s)
- Everson A Nunes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.,Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Brad S Currier
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
25
|
Effect of Combined Protein-Enriched Enteral Nutrition and Early Cycle Ergometry in Mechanically Ventilated Critically Ill Patients—A Pilot Study. Nutrients 2022; 14:nu14081589. [PMID: 35458151 PMCID: PMC9027967 DOI: 10.3390/nu14081589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Cycle ergometry (CE) is a method of exercise used in clinical practice. Limited data demonstrate its effectiveness in critically ill patients. We aimed to evaluate the combination of CE and a high-protein diet in critically ill patients. Methods: This was an open label pilot trial comparing conventional physiotherapy with enteral nutrition (EN) (control, Group 1), CE with EN (Group 2), and CE with protein-enriched EN (Group 3). The primary outcome was length of ventilation (LOV). Secondary outcomes were intensive care unit (ICU) mortality, length of ICU stay (ICU LOS), length of hospital stay (Hospital LOS), and rate of re-intubation. Results: Per protocol, 41 ICU patients were enrolled. Thirteen patients were randomized to Group 1 (control), fourteen patients to Group 2, and fourteen patients to Group 3 (study groups). We found no statistically significant difference in LOV between the study arms (14.2 ± 9.6 days, 15.8 ± 7.1 days, and 14.9 ± 9.4 days, respectively, p = 0.89). Secondary outcomes did not demonstrate any significant differences between arms. Conclusions: In this pilot trial, CE combined with either standard EN or protein-enriched EN was not associated with better clinical outcomes, as compared to conventional physiotherapy with standard EN. Larger trials are needed in order to further evaluate this combination.
Collapse
|
26
|
Xu LB, Mei TT, Cai YQ, Chen WJ, Zheng SX, Wang L, Chen XD, Huang YS. Correlation Between Components of Malnutrition Diagnosed by Global Leadership Initiative on Malnutrition Criteria and the Clinical Outcomes in Gastric Cancer Patients: A Propensity Score Matching Analysis. Front Oncol 2022; 12:851091. [PMID: 35311068 PMCID: PMC8927073 DOI: 10.3389/fonc.2022.851091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Malnutrition is recognized as a risk factor for poor outcome in patients with gastric cancer (GC). In 2018, the Global Leadership Initiative on Malnutrition (GLIM) published standardized criteria for the diagnosis of malnutrition. Our aim was to investigate whether any of the components of the GLIM diagnostic criteria were related to worse clinical outcomes in patients with GC. Methods This study analyzed patients with GC who underwent radical gastrectomy in our hospital between 2014 and 2019. A preoperative nutritional assessment was performed for each patient. Matching was based on the presence of three GLIM components: high weight loss (WL), low body mass index (BMI), and low skeletal muscle index (SMI). Results The analysis included 1,188 patients, including 241 (20.3%) with high WL, 156 (13.1%) with low BMI, and 355 (29.9%) with low SMI. Before matching, patients who met the GLIM component criteria were mostly associated with older age, low nutritional reserves, and late tumor progression. After matching, the clinical characteristics of the three cohorts were balanced. In the matched queue, the survival prognosis of the high WL group was worse than that of the non-WL group, and the postoperative complication rate was higher in the low SMI group than in the normal SMI group (P <0.05). In addition, the clinical outcomes in the low and normal BMI groups were similar (P >0.05). Conclusion Of the GLIM criteria, high WL and low SMI may be associated with poor clinical outcomes in patients with GC, while a low BMI may not be associated with outcome.
Collapse
Affiliation(s)
- Li-Bin Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting-Ting Mei
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Qi Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wen-Jing Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Si-Xin Zheng
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Wang
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Dong Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yun-Shi Huang
- Department of Trauma & Emergency Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Kirwan RP, Mazidi M, Rodríguez García C, Lane KE, Jafari A, Butler T, Perez de Heredia F, Davies IG. Protein interventions augment the effect of resistance exercise on appendicular lean mass and handgrip strength in older adults: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2022; 115:897-913. [PMID: 34673936 DOI: 10.1093/ajcn/nqab355] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/19/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Increased protein intake is suggested as a strategy to slow or reverse the loss of muscle mass and strength observed in sarcopenia, but results from studies that directly tested this possibility have been inconsistent. OBJECTIVES We assessed the evidence on the effects of whole protein supplementation or higher-protein diets, without the use of amino acids or supplements known to stimulate hypertrophy, alone or in combination with resistance exercise (RE) interventions, on lean body mass (LBM) and strength in older adults. METHODS A systematic search was conducted using PubMed, Medline, Web of Science, and Cochrane CENTRAL databases from January 1990 to July 2021. Randomized controlled trials that assessed the effects of protein supplementation and/or higher-protein dietary interventions in older adults (mean age ≥50 y) on total LBM, appendicular lean mass (ALM), and handgrip (HG) and knee extension (KE) strength were included. RESULTS Twenty-eight studies were identified. In pooled analysis, compared with lower protein controls, protein supplementation did not have a significant positive effect on total LBM [weighted mean difference in change (WMD): 0.34; 95% CI: -0.21, 0.89; I2 = 90.01%], ALM (WMD: 0.4; 95% CI: -0.01, 0.81; I2 = 90.38%), HG strength (WMD: 0.69; 95% CI: -0.69, 2.06; I2 = 94.52%), or KE strength (WMD: 1.88; 95% CI: -0.6, 4.35; I2 = 95.35%). However, in interventions that used also RE, statistically significant positive effects of protein were observed for ALM (WMD: 0.54; 95% CI: 0.03, 1.05; I2 = 89.76%) and HG (WMD: 1.71; 95% CI: 0.12, 3.30; I2 = 88.71%). Meta-regression revealed no significant association between age, per-meal protein dose, duration, and baseline protein intake with change in any outcome. Subgroup analysis revealed the statistically significant effects on ALM occurred only in sarcopenic/frail populations (WMD: 0.88; 95% CI: 0.51, 1.25; I2 = 79.0%). Most studies (n = 22) had some risk of bias. CONCLUSIONS In older adults performing RE, increased protein intake leads to greater ALM and HG strength compared with lower protein controls. Without RE, protein has no additional benefit on changes in total LBM, ALM, or HG strength.
Collapse
Affiliation(s)
- Richard P Kirwan
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Mohsen Mazidi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Carmen Rodríguez García
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Katie E Lane
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Alireza Jafari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Tom Butler
- School of Applied Health and Social Care and Social Work, Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, UK
| | - Fatima Perez de Heredia
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
28
|
Pavis GF, Jameson TSO, Blackwell JR, Fulford J, Abdelrahman DR, Murton AJ, Alamdari N, Mikus CR, Wall BT, Stephens FB. Daily protein-polyphenol ingestion increases daily myofibrillar protein synthesis rates and promotes early muscle functional gains during resistance training. Am J Physiol Endocrinol Metab 2022; 322:E231-E249. [PMID: 35037473 PMCID: PMC8897029 DOI: 10.1152/ajpendo.00328.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/03/2023]
Abstract
Factors underpinning the time-course of resistance-type exercise training (RET) adaptations are not fully understood. This study hypothesized that consuming a twice-daily protein-polyphenol beverage (PPB; n = 15; age, 24 ± 1 yr; BMI, 22.3 ± 0.7 kg·m-2) previously shown to accelerate recovery from muscle damage and increase daily myofibrillar protein synthesis (MyoPS) rates would accelerate early (10 sessions) improvements in muscle function and potentiate quadriceps volume and muscle fiber cross-sectional area (fCSA) following 30 unilateral RET sessions in healthy, recreationally active, adults. Versus isocaloric placebo (PLA; n = 14; age, 25 ± 2 yr; BMI, 23.9 ± 1.0 kg·m-2), PPB increased 48 h MyoPS rates after the first RET session measured using deuterated water (2.01 ± 0.15 vs. 1.51 ± 0.16%·day-1, respectively; P < 0.05). In addition, PPB increased isokinetic muscle function over 10 sessions of training relative to the untrained control leg (%U) from 99.9 ± 1.8 pretraining to 107.2 ± 2.4%U at session 10 (vs. 102.6 ± 3.9 to 100.8 ± 2.4%U at session 10 in PLA; interaction P < 0.05). Pre to posttraining, PPB increased type II fCSA (PLA: 120.8 ± 8.2 to 109.5 ± 8.6%U; PPB: 92.8 ± 6.2 to 108.4 ± 9.7%U; interaction P < 0.05), but the gain in quadriceps muscle volume was similar between groups. Similarly, PPB did not further increase peak isometric torque, muscle function, or MyoPS measured posttraining. This suggests that although PPB increases MyoPS and early adaptation, it may not influence longer term adaptations to unilateral RET.NEW & NOTEWORTHY Using a unilateral model of resistance training, we show for the first time that a protein-polyphenol beverage increases initial rates of myofibrillar protein synthesis and promotes early functional improvements. Following a prolonged period of training, this strategy also increases type II fiber hypertrophy and causes large individual variation in gains in quadricep muscle cross-sectional area.
Collapse
Affiliation(s)
- George F Pavis
- Nutritional Physiology Research Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Tom S O Jameson
- Nutritional Physiology Research Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Jamie R Blackwell
- Nutritional Physiology Research Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Jonathan Fulford
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
- Sealy Center of Aging, University of Texas Medical Branch, Galveston, Texas
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
- Sealy Center of Aging, University of Texas Medical Branch, Galveston, Texas
| | | | | | - Benjamin T Wall
- Nutritional Physiology Research Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Nutritional Physiology Research Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
29
|
Hermans WJH, Fuchs CJ, Hendriks FK, Houben LHP, Senden JM, Verdijk LB, van Loon LJC. Cheese Ingestion Increases Muscle Protein Synthesis Rates Both at Rest and During Recovery from Exercise in Healthy, Young Males: A Randomized Parallel-group Trial. J Nutr 2022; 152:1022-1030. [PMID: 36967159 PMCID: PMC8971000 DOI: 10.1093/jn/nxac007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/06/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background Protein ingestion increases muscle protein synthesis rates. The food matrix in which protein is provided can strongly modulate the postprandial muscle protein synthetic response. So far, the muscle protein synthetic response to the ingestion of whole foods remains largely unexplored. Objectives To compare the impact of ingesting 30 g protein provided as milk protein or cheese on postprandial plasma amino acid concentrations and muscle protein synthesis rates at rest and during recovery from exercise in vivo in young males. Methods In this randomized, parallel-group intervention trial, 20 healthy males aged 18–35 y ingested 30 g protein provided as cheese or milk protein concentrate following a single-legged resistance-type exercise session consisting of 12 sets of leg press and leg extension exercises. Primed, continuous intravenous L-[ring-13C6]-phenylalanine infusions were combined with the collection of blood and muscle tissue samples to assess postabsorptive and 4-h postprandial muscle protein synthesis rates at rest and during recovery from exercise. Data were analyzed using repeated measures Time × Group (× Leg) ANOVA. Results Plasma total amino acid concentrations increased after protein ingestion (Time: P < 0.001), with 38% higher peak concentrations following milk protein than cheese ingestion (Time × Group: P < 0.001). Muscle protein synthesis rates increased following both cheese and milk protein ingestion from 0.037 ± 0.014 to 0.055 ± 0.018%·h–1 and 0.034 ± 0.008 to 0.056 ± 0.010%·h–1 at rest and even more following exercise from 0.031 ± 0.010 to 0.067 ± 0.013%·h–1 and 0.030 ± 0.008 to 0.063 ± 0.010%·h–1, respectively (Time: all P < 0.05; Time × Leg: P = 0.002), with no differences between cheese and milk protein ingestion (Time × Group: both P > 0.05). Conclusion Cheese ingestion increases muscle protein synthesis rates both at rest and during recovery from exercise. The postprandial muscle protein synthetic response to the ingestion of cheese or milk protein does not differ when 30 g protein is ingested at rest or during recovery from exercise in healthy, young males.
Collapse
Affiliation(s)
- Wesley J H Hermans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Cas J Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Floris K Hendriks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Lisanne H P Houben
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
30
|
Kim HK, Chijiki H, Fukazawa M, Okubo J, Ozaki M, Nanba T, Higashi S, Shioyama M, Takahashi M, Nakaoka T, Shibata S. Supplementation of Protein at Breakfast Rather Than at Dinner and Lunch Is Effective on Skeletal Muscle Mass in Older Adults. Front Nutr 2022; 8:797004. [PMID: 34993224 PMCID: PMC8724572 DOI: 10.3389/fnut.2021.797004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023] Open
Abstract
Background: The effects of different intake patterns of meal protein on muscle mass have not been clarified. We cross-sectionally and longitudinally examined the effect of different timing of protein intake on sarcopenia-related factors in older adults. Methods: This cross-sectional study 1 included 219 (male, n = 69, female, n = 150) elderly subjects aged ≥65 years. Subjects who consumed more protein at breakfast than at dinner were grouped into the morning group (MG, n = 76; male, n = 26; female, n = 50), and those who consumed more protein at dinner than at breakfast were grouped into the evening group (EG, n = 143; male, n = 43; female, n = 100). In cross-sectional study 2-1 (female, n = 125), the subjects were classified into four groups according to the number of meals with sufficient protein intake. In cross-sectional studies 2-2 (female, n = 125) and 2-3 (female, n = 27), the subjects were classified into eight groups and three groups according to whether they had consumed sufficient protein at three meals; sarcopenia-related factors were compared. The intervention study was a placebo-controlled, double-blind, randomized controlled trial that included 40 elderly women with low daily breakfast protein intake. The subjects were divided into four groups: morning protein and placebo intake groups and evening protein and placebo intake groups. Each group consumed the test food (containing 10 g milk protein) or placebo in the morning or evening for 12 weeks. Blood indices and physical function were assessed before and after the intervention. Results: Comparing all subjects, MG showed significantly higher handgrip strength than did EG (P < 0.05). The higher ratio of morning protein intake relative to the total protein intake, the better the muscle mass (r = 0.452, P < 0.05) and handgrip strength (r = 0.383, P < 0.05). The intervention study showed an increase in muscle mass with the intake of milk protein in the morning rather than in the evening (P < 0.05). Conclusions: Protein intake at breakfast might have relatively stronger effects on skeletal muscle mass than at lunch and dinner.
Collapse
Affiliation(s)
- Hyeon-Ki Kim
- Faculty of Science and Engineering, Waseda University, Shinjuku City, Japan
| | - Hanako Chijiki
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku City, Japan
| | - Mayuko Fukazawa
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku City, Japan
| | - Jin Okubo
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku City, Japan
| | - Mamiho Ozaki
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku City, Japan
| | - Takuya Nanba
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku City, Japan
| | | | | | - Masaki Takahashi
- Institute for Liberal Arts, Tokyo Institute of Technology, Meguro City, Japan
| | | | - Shigenobu Shibata
- Faculty of Science and Engineering, Waseda University, Shinjuku City, Japan
| |
Collapse
|
31
|
Strategies to Prevent Sarcopenia in the Aging Process: Role of Protein Intake and Exercise. Nutrients 2021; 14:nu14010052. [PMID: 35010928 PMCID: PMC8746908 DOI: 10.3390/nu14010052] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Sarcopenia is one of the main issues associated with the process of aging. Characterized by muscle mass loss, it is triggered by several conditions, including sedentary habits and negative net protein balance. According to World Health Organization, it is expected a 38% increase in older individuals by 2025. Therefore, it is noteworthy to establish recommendations to prevent sarcopenia and several events and comorbidities associated with this health issue condition. In this review, we discuss the role of these factors, prevention strategies, and recommendations, with a focus on protein intake and exercise.
Collapse
|
32
|
Omega-3 supplementation during unilateral resistance exercise training in older women: A within subject and double-blind placebo-controlled trial. Clin Nutr ESPEN 2021; 46:394-404. [PMID: 34857226 PMCID: PMC8629763 DOI: 10.1016/j.clnesp.2021.09.729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
Background & aims The skeletal muscle anabolic effects of n-3 polyunsaturated fatty acids (n-3 PUFA) appear favoured towards women; a property that could be exploited in older women who typically exhibit poor muscle growth responses to resistance exercise training (RET). Here we sought to generate novel insights into the efficacy and mechanisms of n-3 PUFA alongside short-term RET in older women. Methods We recruited 16 healthy older women (Placebo n = 8 (PLA): 67±1y, n-3 PUFA n = 8: 64±1y) to a randomised double-blind placebo-controlled trial (n-3 PUFA; 3680 mg/day versus PLA) of 6 weeks fully-supervised progressive unilateral RET (i.e. 6 × 8 reps, 75% 1-RM, 3/wk−1). Strength was assessed by knee extensor 1-RM and isokinetic dynamometry ∼ every 10 d. Thigh fat free mass (TFFM) was measured by DXA at 0/3/6 weeks. Bilateral vastus lateralis (VL) biopsies at 0/2/4/6 weeks with deuterium oxide (D2O) dosing were used to determine MPS responses for 0–2 and 4–6 weeks. Further, fibre cross sectional area (CSA), myonuclei number and satellite cell (SC) number were assessed, alongside muscle anabolic/catabolic signalling via immunoblotting. Results RET increased 1-RM equally in the trained leg of both groups (+23 ± 5% n-3 PUFA vs. +25 ± 5% PLA (both P < 0.01)) with no significant increase in maximum voluntary contraction (MVC) (+10 ± 6% n-3 PUFA vs. +13 ± 5% PLA). Only the n-3 PUFA group increased TFFM (3774 ± 158 g to 3961 ± 151 g n-3 PUFA (P < 0.05) vs. 3406 ± 201 g to 3561 ± 170 PLA) and type II fibre CSA (3097 ± 339 μm2 to 4329 ± 264 μm2 n-3 PUFA (P < 0.05) vs. 2520 ± 316 μm2 to 3467 ± 303 μm2 in PL) with RET. Myonuclei number increased equally in n-3 PUFA and PLA in both type I and type II fibres, with no change in SC number. N-3 PUFA had no added benefit on muscle protein synthesis (MPS), however, during weeks 4–6 of RET, absolute synthesis rates (ASR) displayed a trend to increase with n-3 PUFA only (5.6 ± 0.3 g d−1 to 7.1 ± 0.5 g d−1 n-3 PUFA (P = 0.09) vs. 5.5 ± 0.5 g d−1 to 6.5 ± 0.5 g d−1 PLA). Further, the n-3 PUFA group displayed greater 4EBP1 activation after acute RE at 6 weeks. Conclusion n3-PUFA enhanced RET gains in muscle mass through type II fibre hypertrophy, with data suggesting a role for MPS rather than via SC recruitment. As such, the present study adds to a literature base illustrating the apparent enhancement of muscle hypertrophy with RET in older women fed adjuvant n3-PUFA.
Collapse
|
33
|
dos Santos LP, Santo RCDE, Ramis TR, Portes JKS, Chakr RMDS, Xavier RM. The effects of resistance training with blood flow restriction on muscle strength, muscle hypertrophy and functionality in patients with osteoarthritis and rheumatoid arthritis: A systematic review with meta-analysis. PLoS One 2021; 16:e0259574. [PMID: 34758045 PMCID: PMC8580240 DOI: 10.1371/journal.pone.0259574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Rheumatoid arthritis(RA) and osteoarthritis(OA) patients showed systemic manifestations that may lead to a reduction in muscle strength, muscle mass and, consequently, to a reduction in functionality. On the other hand, moderate intensity resistance training(MIRT) and high intensity resistance training(HIRT) are able to improve muscle strength and muscle mass in RA and OA without affecting the disease course. However, due to the articular manifestations caused by these diseases, these patients may present intolerance to MIRT or HIRT. Thus, the low intensity resistance training combined with blood flow restriction(LIRTBFR) may be a new training strategy for these populations. Objective To perform a systematic review with meta-analysis to verify the effects of LIRTBFR on muscle strength, muscle mass and functionality in RA and OA patients. Materials and methods A systematic review with meta-analysis of randomized clinical trials(RCTs), published in English, between 1957–2021, was conducted using MEDLINE(PubMed), Embase and Cochrane Library. The methodological quality was assessed using Physiotherapy Evidence Database scale. The risk of bias was assessed using RoB2.0. Mean difference(MD) or standardized mean difference(SMD) and 95% confidence intervals(CI) were pooled using a random-effects model. A P<0.05 was considered statistically significant. Results Five RCTs were included. We found no significant differences in the effects between LIRTBFR, MIRT and HIRT on muscle strength, which was assessed by tests of quadriceps strength(SMD = -0.01[-0.57, 0.54], P = 0.96; I² = 58%) and functionality measured by tests with patterns similar to walking(SMD = -0.04[-0.39, 0.31], P = 0.82; I² = 0%). Compared to HIRT, muscle mass gain after LIRTBFR was reported to be similar. When comparing LIRTBFR with low intensity resistance training without blood flow restriction(LIRT), the effect LIRTBFR was reported to be higher on muscle strength, which was evaluated by the knee extension test. Conclusion LIRTBFR appears to be a promising strategy for gains in muscle strength, muscle mass and functionality in a predominant sample of RA and OA women.
Collapse
Affiliation(s)
- Leonardo Peterson dos Santos
- Autoimmune Diseases Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Division of Rheumatology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
- Medical School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| | - Rafaela Cavalheiro do Espírito Santo
- Autoimmune Diseases Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Division of Rheumatology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
- Medical School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Rozales Ramis
- Exercise Research Laboratory (LAPEX), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Juliana Katarina Schoer Portes
- Autoimmune Diseases Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Division of Rheumatology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
- Medical School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael Mendonça da Silva Chakr
- Autoimmune Diseases Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Division of Rheumatology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
- Medical School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ricardo Machado Xavier
- Autoimmune Diseases Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Division of Rheumatology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
- Medical School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
34
|
Mazzulla M, Hodson N, Lees M, Scaife PJ, Smith K, Atherton PJ, Kumbhare D, Moore DR. LAT1 and SNAT2 Protein Expression and Membrane Localization of LAT1 Are Not Acutely Altered by Dietary Amino Acids or Resistance Exercise Nor Positively Associated with Leucine or Phenylalanine Incorporation in Human Skeletal Muscle. Nutrients 2021; 13:nu13113906. [PMID: 34836160 PMCID: PMC8624011 DOI: 10.3390/nu13113906] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
The influx of essential amino acids into skeletal muscle is primarily mediated by the large neutral amino acid transporter 1 (LAT1), which is dependent on the glutamine gradient generated by the sodium-dependent neutral amino acid transporter 2 (SNAT2). The protein expression and membrane localization of LAT1 may be influenced by amino acid ingestion and/or resistance exercise, although its acute influence on dietary amino acid incorporation into skeletal muscle protein has not been investigated. In a group design, healthy males consumed a mixed carbohydrate (0.75 g·kg-1) crystalline amino acid (0.25 g·kg-1) beverage enriched to 25% and 30% with LAT1 substrates L-[1-13C]leucine (LEU) and L-[ring-2H5]phenylalanine (PHE), respectively, at rest (FED: n = 7, 23 ± 5 y, 77 ± 4 kg) or after a bout of resistance exercise (EXFED: n = 7, 22 ± 2 y, 78 ± 11 kg). Postprandial muscle biopsies were collected at 0, 120, and 300 min to measure transporter protein expression (immunoblot), LAT1 membrane localization (immunofluorescence), and dietary amino acid incorporation into myofibrillar protein (ΔLEU and ΔPHE). Basal LAT1 and SNAT2 protein contents were correlated with each other (r = 0.55, p = 0.04) but their expression did not change across time in FED or EXFED (all, p > 0.05). Membrane localization of LAT1 did not change across time in FED or EXFED whether measured as outer 1.5 µm intensity or membrane-to-fiber ratio (all, p > 0.05). Basal SNAT2 protein expression was not correlated with ΔLEU or ΔPHE (all, p ≥ 0.05) whereas basal LAT1 expression was negatively correlated with ΔPHE in FED (r = -0.76, p = 0.04) and EXFED (r = -0.81, p = 0.03) but not ΔLEU (p > 0.05). Basal LAT1 membrane localization was not correlated with ΔLEU or ΔPHE (all, p > 0.05). Our results suggest that LAT1/SNAT2 protein expression and LAT1 membrane localization are not influenced by acute anabolic stimuli and do not positively influence the incorporation of dietary amino acids for de novo myofibrillar protein synthesis in healthy young males.
Collapse
Affiliation(s)
- Michael Mazzulla
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.M.); (N.H.); (M.L.)
| | - Nathan Hodson
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.M.); (N.H.); (M.L.)
| | - Matthew Lees
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.M.); (N.H.); (M.L.)
| | - Paula J. Scaife
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (P.J.S.); (K.S.); (P.J.A.)
| | - Kenneth Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (P.J.S.); (K.S.); (P.J.A.)
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (P.J.S.); (K.S.); (P.J.A.)
| | - Dinesh Kumbhare
- Department of Medicine, University of Toronto, Toronto, ON M5S 2C9, Canada;
| | - Daniel R. Moore
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.M.); (N.H.); (M.L.)
- Correspondence: ; Tel.: +1-(416)-946-4088
| |
Collapse
|
35
|
Moore DR. Protein Requirements for Master Athletes: Just Older Versions of Their Younger Selves. Sports Med 2021; 51:13-30. [PMID: 34515969 PMCID: PMC8566396 DOI: 10.1007/s40279-021-01510-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 12/24/2022]
Abstract
It is established that protein requirements are elevated in athletes to support their training and post-exercise recovery and adaptation, especially within skeletal muscle. However, research on the requirements for this macronutrient has been performed almost exclusively in younger athletes, which may complicate their translation to the growing population of Master athletes (i.e. > 35 years old). In contrast to older (> 65 years) untrained adults who typically demonstrate anabolic resistance to dietary protein as a primary mediator of the ‘normal’ age-related loss of muscle mass and strength, Master athletes are generally considered successful models of aging as evidenced by possessing similar body composition, muscle mass, and aerobic fitness as untrained adults more than half their age. The primary physiology changes considered to underpin the anabolic resistance of aging are precipitated or exacerbated by physical inactivity, which has led to higher protein recommendations to stimulate muscle protein synthesis in older untrained compared to younger untrained adults. This review puts forth the argument that Master athletes have similar muscle characteristics, physiological responses to exercise, and protein metabolism as young athletes and, therefore, are unlikely to have protein requirements that are different from their young contemporaries. Recommendations for protein amount, type, and pattern will be discussed for Master athletes to enhance their recovery from and adaptation to resistance and endurance training.
Collapse
Affiliation(s)
- Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, 100 Devonshire Place, Toronto, ON, M5S 2C9, Canada.
| |
Collapse
|
36
|
Church DD, Schutzler SE, Wolfe RR, Ferrando AA. Perioperative amino acid infusion reestablishes muscle net balance during total hip arthroplasty. Physiol Rep 2021; 9:e15055. [PMID: 34558214 PMCID: PMC8461212 DOI: 10.14814/phy2.15055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 11/24/2022] Open
Abstract
Surgery and anesthesia induce a catabolic response that leads to skeletal muscle protein loss. Previous investigations have observed positive effects of perioperative nutrition. Furthermore, the benefits of exogenous amino acids on muscle protein kinetics are well established. However, no investigation has focused on muscle protein kinetics with and without perioperative amino acid infusion. Thus, we aimed to assess the effect of perioperative amino acid (AA) infusion on muscle protein balance in individuals undergoing elective total hip arthroplasty (THA). Elective THA patients were randomized to undergo a metabolic study prior to surgery (n = 5; control [CON]), intraoperative AA infusion (n = 9), or no AA (n = 13; standard of care [SC]). The CON group was studied prior to surgery to provide nonoperative/non-anesthesia muscle protein kinetic reference values. The bolus infusion method with 13 C6 -phenylalanine injected at time 0, and [15 N]-phenylalanine 30 min later was used to calculate muscle protein synthesis (MPS), protein breakdown (MPB), and net balance (MPS-MPB). Perioperative AA significantly improved muscle net balance as compared to SC (-0.005 ± 0.018%/h vs. -0.052 ± 0.011%/h) but not CON (0.003 ± 0.013%/h). The AA infusion significantly increased muscle net balance via a significant increase in MPS (AA = 0.062 ± 0.007%/h; SC = 0.037 ± 0.004%/h; CON = 0.072% ± 0.005%/h), and a nonsignificant attenuation of MPB (AA = 0.067 ± 0.012%/h; SC = 0.089 ± 0.014%/h; CON = 0.075 ± 0.011%/h). Our data support the use of perioperative AA infusion during elective THA as pragmatic strategy to offset the loss of surgically induced skeletal muscle protein.
Collapse
Affiliation(s)
- David D. Church
- Department of GeriatricsCenter for Translational Research in Aging & LongevityDonald W. Reynolds Institute on AgingUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Scott E. Schutzler
- Department of GeriatricsCenter for Translational Research in Aging & LongevityDonald W. Reynolds Institute on AgingUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Robert R. Wolfe
- Department of GeriatricsCenter for Translational Research in Aging & LongevityDonald W. Reynolds Institute on AgingUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Arny A. Ferrando
- Department of GeriatricsCenter for Translational Research in Aging & LongevityDonald W. Reynolds Institute on AgingUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
37
|
Pinckaers PJM, Trommelen J, Snijders T, van Loon LJC. The Anabolic Response to Plant-Based Protein Ingestion. Sports Med 2021; 51:59-74. [PMID: 34515966 PMCID: PMC8566416 DOI: 10.1007/s40279-021-01540-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/17/2022]
Abstract
There is a global trend of an increased interest in plant-based diets. This includes an increase in the consumption of plant-based proteins at the expense of animal-based proteins. Plant-derived proteins are now also frequently applied in sports nutrition. So far, we have learned that the ingestion of plant-derived proteins, such as soy and wheat protein, result in lower post-prandial muscle protein synthesis responses when compared with the ingestion of an equivalent amount of animal-based protein. The lesser anabolic properties of plant-based versus animal-derived proteins may be attributed to differences in their protein digestion and amino acid absorption kinetics, as well as to differences in amino acid composition between these protein sources. Most plant-based proteins have a low essential amino acid content and are often deficient in one or more specific amino acids, such as lysine and methionine. However, there are large differences in amino acid composition between various plant-derived proteins or plant-based protein sources. So far, only a few studies have directly compared the muscle protein synthetic response following the ingestion of a plant-derived protein versus a high(er) quality animal-derived protein. The proposed lower anabolic properties of plant- versus animal-derived proteins may be compensated for by (i) consuming a greater amount of the plant-derived protein or plant-based protein source to compensate for the lesser quality; (ii) using specific blends of plant-based proteins to create a more balanced amino acid profile; (iii) fortifying the plant-based protein (source) with the specific free amino acid(s) that is (are) deficient. Clinical studies are warranted to assess the anabolic properties of the various plant-derived proteins and their protein sources in vivo in humans and to identify the factors that may or may not compromise the capacity to stimulate post-prandial muscle protein synthesis rates. Such work is needed to determine whether the transition towards a more plant-based diet is accompanied by a transition towards greater dietary protein intake requirements.
Collapse
Affiliation(s)
- Philippe J M Pinckaers
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Jorn Trommelen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Tim Snijders
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
38
|
Mulazzani GE, Corti F, Della Valle S, Di Bartolomeo M. Nutritional Support Indications in Gastroesophageal Cancer Patients: From Perioperative to Palliative Systemic Therapy. A Comprehensive Review of the Last Decade. Nutrients 2021; 13:nu13082766. [PMID: 34444926 PMCID: PMC8400027 DOI: 10.3390/nu13082766] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer treatments are rapidly evolving, leading to significant survival benefit. Recent evidence provided by clinical trials strongly encouraged the use of perioperative chemotherapy as standard treatment for the localized disease, whereas in the advanced disease setting, molecular characterization has improved patients’ selection for tailored therapeutic approaches, including molecular targeted therapy and immunotherapy. The role of nutritional therapy is widely recognized, with oncologic treatment’s tolerance and response being better in well-nourished patients. In this review, literature data on strategies or nutritional interventions will be critically examined, with particular regard to different treatment phases (perioperative, metastatic, and palliative settings), with the aim to draw practical indications for an adequate nutritional support of gastric cancer patients and provide an insight on future directions in nutritional strategies. We extensively analyzed the last 10 years of literature, in order to provide evidence that may fit current clinical practice both in terms of nutritional interventions and oncological treatment. Overall, 137 works were selected: 34 Randomized Clinical Trials (RCTs), 12 meta-analysis, 9 reviews, and the most relevant prospective, retrospective and cross-sectional studies in this setting. Eleven ongoing trials have been selected from clinicaltrial.gov as representative of current research. One limitation of our work lies in the heterogeneity of the described studies, in terms of sample size, study procedures, and both nutritional and clinical outcomes. Indeed, to date, there are no specific evidence-based guidelines in this fields, therefore we proposed a clinical algorithm with the aim to indicate an appropriate nutritional strategy for gastric cancer patients.
Collapse
Affiliation(s)
- Giulia E.G. Mulazzani
- Clinical Nutrition Unit, Department of Critical and Supportive Care, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (G.E.G.M.); (S.D.V.)
| | - Francesca Corti
- Gastrointestinal Medical Oncology, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
| | - Serena Della Valle
- Clinical Nutrition Unit, Department of Critical and Supportive Care, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (G.E.G.M.); (S.D.V.)
| | - Maria Di Bartolomeo
- Gastrointestinal Medical Oncology, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
- Correspondence: ; Tel.: +39-02-2390-2882
| |
Collapse
|
39
|
Garibotto G, Saio M, Aimasso F, Russo E, Picciotto D, Viazzi F, Verzola D, Laudon A, Esposito P, Brunori G. How to Overcome Anabolic Resistance in Dialysis-Treated Patients? Front Nutr 2021; 8:701386. [PMID: 34458305 PMCID: PMC8387577 DOI: 10.3389/fnut.2021.701386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
A current hypothesis is that dialysis-treated patients are "anabolic resistant" i. e., their muscle protein synthesis (MPS) response to anabolic stimuli is blunted, an effect which leads to muscle wasting and poor physical performance in aging and in several chronic diseases. The importance of maintaining muscle mass and MPS is often neglected in dialysis-treated patients; better than to describe mechanisms leading to energy-protein wasting, the aim of this narrative review is to suggest possible strategies to overcome anabolic resistance in this patient's category. Food intake, in particular dietary protein, and physical activity, are the two major anabolic stimuli. Unfortunately, dialysis patients are often aged and have a sedentary behavior, all conditions which per se may induce a state of "anabolic resistance." In addition, patients on dialysis are exposed to amino acid or protein deprivation during the dialysis sessions. Unfortunately, the optimal amount and formula of protein/amino acid composition in supplements to maximixe MPS is still unknown in dialysis patients. In young healthy subjects, 20 g whey protein maximally stimulate MPS. However, recent observations suggest that dialysis patients need greater amounts of proteins than healthy subjects to maximally stimulate MPS. Since unneccesary amounts of amino acids could stimulate ureagenesis, toxins and acid production, it is urgent to obtain information on the optimal dose of proteins or amino acids/ketoacids to maximize MPS in this patients' population. In the meantime, the issue of maintaining muscle mass and function in dialysis-treated CKD patients needs not to be overlooked by the kidney community.
Collapse
Affiliation(s)
| | - Michela Saio
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Francesca Aimasso
- Clinical Nutrition Unit, Istituto di Ricerca a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy
| | - Elisa Russo
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Picciotto
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Alessandro Laudon
- Division of Nephrology and Dialysis, Ospedale Santa Chiara, Trento, Italy
| | - Pasquale Esposito
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giuliano Brunori
- Division of Nephrology and Dialysis, Ospedale Santa Chiara, Trento, Italy
| |
Collapse
|
40
|
Salvador AF, McKenna CF, Paulussen KJM, Keeble AR, Askow AT, Fang HY, Li Z, Ulanov AV, Paluska SA, Moore DR, Burd NA. Early resistance training-mediated stimulation of daily muscle protein synthetic responses to higher habitual protein intake in middle-aged adults. J Physiol 2021; 599:4287-4307. [PMID: 34320223 DOI: 10.1113/jp281907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/26/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The ingestion of protein potentiates the stimulation of myofibrillar protein synthesis rates after an acute bout of resistance exercise. Protein supplementation (eating above the protein Recommended Dietary Allowance) during resistance training has been shown to maximize lean mass and strength gains in healthy young and older adults. Here, contractile, oxidative, and structural protein synthesis were assessed in skeletal muscle in response to a moderate or higher protein diet during the early adaptive phase of resistance training in middle-aged adults. The stimulation of myofibrillar, mitochondrial or collagen protein synthesis rates during 0-3 weeks of resistance training is not further enhanced by a higher protein diet. These results show that moderate protein diets are sufficient to support the skeletal muscle adaptive response during the early phase of a resistance training programme. ABSTRACT Protein ingestion augments muscle protein synthesis (MPS) rates acutely after resistance exercise and can offset age-related loss in muscle mass. Skeletal muscle contains a variety of protein pools, such as myofibrillar (contractile), mitochondrial (substrate oxidation), and collagen (structural support) proteins, and the sensitivity to nutrition and exercise seems to be dependent on the major protein fraction studied. However, it is unknown how free-living conditions with high dietary protein density and habitual resistance exercise mediates muscle protein subfraction synthesis. Therefore, we investigated the effect of moderate (MOD: 1.06 ± 0.22 g kg-1 day-1 ) or high (HIGH: 1.55 ± 0.25 g kg-1 day-1 ) protein intake on daily MPS rates within the myofibrillar (MyoPS), mitochondrial (MitoPS) and collagen (CPS) protein fractions in middle-aged men and women (n = 20, 47 ± 1 years, BMI 28 ± 1 kg m-2 ) during the early phase (0-3 weeks) of a dietary counselling-controlled resistance training programme. Participants were loaded with deuterated water, followed by daily maintenance doses throughout the intervention. Muscle biopsies were collected at baseline and after weeks 1, 2 and 3. MyoPS in the HIGH condition remained constant (P = 1.000), but MOD decreased over time (P = 0.023). MitoPS decreased after 0-3 weeks when compared to 0-1 week (P = 0.010) with no effects of protein intake (P = 0.827). A similar decline with no difference between groups (P = 0.323) was also observed for CPS (P = 0.007). Our results demonstrated that additional protein intake above moderate amounts does not potentiate the stimulation of longer-term MPS responses during the early stage of resistance training adaptations in middle-aged adults.
Collapse
Affiliation(s)
- Amadeo F Salvador
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Colleen F McKenna
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kevin J M Paulussen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alexander R Keeble
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew T Askow
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hsin-Yu Fang
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
41
|
Oikawa SY, Brisbois TD, van Loon LJC, Rollo I. Eat like an athlete: insights of sports nutrition science to support active aging in healthy older adults. GeroScience 2021; 43:2485-2495. [PMID: 34283389 PMCID: PMC8599603 DOI: 10.1007/s11357-021-00419-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
Skeletal muscle mass losses with age are associated with negative health consequences, including an increased risk of developing metabolic disease and the loss of independence. Athletes adopt numerous nutritional strategies to maximize the benefits of exercise training and enhance recovery in pursuit of improving skeletal muscle quality, mass, or function. Importantly, many of the principles applied to enhance skeletal muscle health in athletes may be applicable to support active aging and prevent sarcopenia in the healthy (non-clinical) aging population. Here, we discuss the anabolic properties of protein supplementation in addition to ingredients that may enhance the anabolic effects of protein (e.g. omega 3 s, creatine, inorganic nitrate) in older persons. We conclude that nutritional strategies used in pursuit of performance enhancement in athletes are often applicable to improve skeletal muscle health in the healthy older population when implemented as part of a healthy active lifestyle. Further research is required to elucidate the mechanisms by which these nutrients may induce favourable changes in skeletal muscle and to determine the appropriate dosing and timing of nutrient intakes to support active aging.
Collapse
Affiliation(s)
- Sara Y Oikawa
- Gatorade Sports Science Institute, PepsiCo Life Sciences, Global R&D, 5500 34th Street West, Bradenton, FL, 34210, USA.
| | | | - Luc J C van Loon
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, Netherlands
| | - Ian Rollo
- Gatorade Sports Science Institute, PepsiCo Life Sciences, Global R&D, 5500 34th Street West, Bradenton, FL, 34210, USA.,School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
42
|
Zaromskyte G, Prokopidis K, Ioannidis T, Tipton KD, Witard OC. Evaluating the Leucine Trigger Hypothesis to Explain the Post-prandial Regulation of Muscle Protein Synthesis in Young and Older Adults: A Systematic Review. Front Nutr 2021; 8:685165. [PMID: 34307436 PMCID: PMC8295465 DOI: 10.3389/fnut.2021.685165] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
Background: The "leucine trigger" hypothesis was originally conceived to explain the post-prandial regulation of muscle protein synthesis (MPS). This hypothesis implicates the magnitude (amplitude and rate) of post-prandial increase in blood leucine concentrations for regulation of the magnitude of MPS response to an ingested protein source. Recent evidence from experimental studies has challenged this theory, with reports of a disconnect between blood leucine concentration profiles and post-prandial rates of MPS in response to protein ingestion. Aim: The primary aim of this systematic review was to qualitatively evaluate the leucine trigger hypothesis to explain the post-prandial regulation of MPS in response to ingested protein at rest and post-exercise in young and older adults. We hypothesized that experimental support for the leucine trigger hypothesis will depend on age, exercise status (rest vs. post-exercise), and type of ingested protein (i.e., isolated proteins vs. protein-rich whole food sources). Methods: This qualitative systematic review extracted data from studies that combined measurements of post-prandial blood leucine concentrations and rates of MPS following ingested protein at rest and following exercise in young and older adults. Data relating to blood leucine concentration profiles and post-prandial MPS rates were extracted from all studies, and reported as providing sufficient or insufficient evidence for the leucine trigger hypothesis. Results: Overall, 16 of the 29 eligible studies provided sufficient evidence to support the leucine trigger hypothesis for explaining divergent post-prandial rates of MPS in response to different ingested protein sources. Of these 16 studies, 13 were conducted in older adults (eight of which conducted measurements post-exercise) and 14 studies included the administration of isolated proteins. Conclusion: This systematic review underscores the merits of the leucine trigger hypothesis for the explanation of the regulation of MPS. However, our data indicate that the leucine trigger hypothesis confers most application in regulating the post-prandial response of MPS to ingested proteins in older adults. Consistent with our hypothesis, we provide data to support the idea that the leucine trigger hypothesis is more relevant within the context of ingesting isolated protein sources rather than protein-rich whole foods. Future mechanistic studies are warranted to understand the complex series of modulatory factors beyond blood leucine concentration profiles within a food matrix that regulate post-prandial rates of MPS.
Collapse
Affiliation(s)
- Gabriele Zaromskyte
- Department of Nutritional Sciences, King's College London, London, United Kingdom
| | - Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Theofilos Ioannidis
- Department of Nutritional Sciences, King's College London, London, United Kingdom
| | - Kevin D Tipton
- Institute of Performance Nutrition, London, United Kingdom
| | - Oliver C Witard
- Department of Nutritional Sciences, King's College London, London, United Kingdom.,Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
43
|
McKendry J, Stokes T, Mcleod JC, Phillips SM. Resistance Exercise, Aging, Disuse, and Muscle Protein Metabolism. Compr Physiol 2021; 11:2249-2278. [PMID: 34190341 DOI: 10.1002/cphy.c200029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle is the organ of locomotion, its optimal function is critical for athletic performance, and is also important for health due to its contribution to resting metabolic rate and as a site for glucose uptake and storage. Numerous endogenous and exogenous factors influence muscle mass. Much of what is currently known regarding muscle protein turnover is owed to the development and use of stable isotope tracers. Skeletal muscle mass is determined by the meal- and contraction-induced alterations of muscle protein synthesis and muscle protein breakdown. Increased loading as resistance training is the most potent nonpharmacological strategy by which skeletal muscle mass can be increased. Conversely, aging (sarcopenia) and muscle disuse lead to the development of anabolic resistance and contribute to the loss of skeletal muscle mass. Nascent omics-based technologies have significantly improved our understanding surrounding the regulation of skeletal muscle mass at the gene, transcript, and protein levels. Despite significant advances surrounding the mechanistic intricacies that underpin changes in skeletal muscle mass, these processes are complex, and more work is certainly needed. In this article, we provide an overview of the importance of skeletal muscle, describe the influence that resistance training, aging, and disuse exert on muscle protein turnover and the molecular regulatory processes that contribute to changes in muscle protein abundance. © 2021 American Physiological Society. Compr Physiol 11:2249-2278, 2021.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
44
|
Williamson E, Moore DR. A Muscle-Centric Perspective on Intermittent Fasting: A Suboptimal Dietary Strategy for Supporting Muscle Protein Remodeling and Muscle Mass? Front Nutr 2021; 8:640621. [PMID: 34179054 PMCID: PMC8219935 DOI: 10.3389/fnut.2021.640621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Muscle protein is constantly “turning over” through the breakdown of old/damaged proteins and the resynthesis of new functional proteins, the algebraic difference determining net muscle gain, maintenance, or loss. This turnover, which is sensitive to the nutritional environment, ultimately determines the mass, quality, and health of skeletal muscle over time. Intermittent fasting has become a topic of interest in the health community as an avenue to improve health and body composition primarily via caloric deficiency as well as enhanced lipolysis and fat oxidation secondary to attenuated daily insulin response. However, this approach belies the established anti-catabolic effect of insulin on skeletal muscle. More importantly, muscle protein synthesis, which is the primary regulated turnover variable in healthy humans, is stimulated by the consumption of dietary amino acids, a process that is saturated at a moderate protein intake. While limited research has explored the effect of intermittent fasting on muscle-related outcomes, we propose that infrequent meal feeding and periods of prolonged fasting characteristic of models of intermittent fasting may be counter-productive to optimizing muscle protein turnover and net muscle protein balance. The present commentary will discuss the regulation of muscle protein turnover across fasted and fed cycles and contrast it with studies exploring how dietary manipulation alters the partitioning of fat and lean body mass. It is our position that intermittent fasting likely represents a suboptimal dietary approach to remodel skeletal muscle, which could impact the ability to maintain or enhance muscle mass and quality, especially during periods of reduced energy availability.
Collapse
Affiliation(s)
- Eric Williamson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
45
|
Plant Proteins and Exercise: What Role Can Plant Proteins Have in Promoting Adaptations to Exercise? Nutrients 2021; 13:nu13061962. [PMID: 34200501 PMCID: PMC8230006 DOI: 10.3390/nu13061962] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 01/10/2023] Open
Abstract
Adequate dietary protein is important for many aspects of health with current evidence suggesting that exercising individuals need greater amounts of protein. When assessing protein quality, animal sources of protein routinely rank amongst the highest in quality, largely due to the higher levels of essential amino acids they possess in addition to exhibiting more favorable levels of digestibility and absorption patterns of the amino acids. In recent years, the inclusion of plant protein sources in the diet has grown and evidence continues to accumulate on the comparison of various plant protein sources and animal protein sources in their ability to stimulate muscle protein synthesis (MPS), heighten exercise training adaptations, and facilitate recovery from exercise. Without question, the most robust changes in MPS come from efficacious doses of a whey protein isolate, but several studies have highlighted the successful ability of different plant sources to significantly elevate resting rates of MPS. In terms of facilitating prolonged adaptations to exercise training, multiple studies have indicated that a dose of plant protein that offers enough essential amino acids, especially leucine, consumed over 8–12 weeks can stimulate similar adaptations as seen with animal protein sources. More research is needed to see if longer supplementation periods maintain equivalence between the protein sources. Several practices exist whereby the anabolic potential of a plant protein source can be improved and generally, more research is needed to best understand which practice (if any) offers notable advantages. In conclusion, as one considers the favorable health implications of increasing plant intake as well as environmental sustainability, the interest in consuming more plant proteins will continue to be present. The evidence base for plant proteins in exercising individuals has seen impressive growth with many of these findings now indicating that consumption of a plant protein source in an efficacious dose (typically larger than an animal protein) can instigate similar and favorable changes in amino acid update, MPS rates, and exercise training adaptations such as strength and body composition as well as recovery.
Collapse
|
46
|
Højfeldt G, Bülow J, Agergaard J, Simonsen LR, Bülow J, Schjerling P, van Hall G, Holm L. Postprandial muscle protein synthesis rate is unaffected by 20-day habituation to a high protein intake: a randomized controlled, crossover trial. Eur J Nutr 2021; 60:4307-4319. [PMID: 34032900 DOI: 10.1007/s00394-021-02590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE During the last decade more researchers have argued in favor of an increased protein intake for older adults. However, there is a lack of knowledge on the long-term effects of conforming to such a high protein intake with regards to the basal and postprandial muscle protein turnover. The purpose of this study was to compare the postprandial synthesis response in muscle proteins, and the abundance of directly incorporated food-derived amino acids following habituation to high vs. recommended level of protein intake. METHODS In a double blinded crossover intervention 11 older male participants (66.6 ± 1.7 years of age) were habituated for 20 days to a recommended protein (RP) intake (1.1 g protein/kg lean body mass (LBM)/day) and a high protein (HP) intake (> 2.1 g protein/kg LBM/day). Following each habituation period, intrinsically labelled proteins were ingested as part of a mixed meal to determine the incorporation of meal protein-derived amino acids into myofibrillar proteins. Furthermore, the myofibrillar fractional synthesis rate (FSR) and amino acid kinetics across the leg were determined using gold standard stable isotope tracer methodologies. RT qPCR was used to assess the expression of markers related to muscle proteinsynthesis and breakdown. RESULTS No impact of habituation was observed on skeletal muscle amino acid or protein kinetics. However, the shunting of amino acids directly from artery to vein was on average 2.9 [Formula: see text]mol/min higher following habituation to HP compared to RP. CONCLUSIONS In older males, habituation to a higher than the currently recommended protein intake did not demonstrate any adaptions in the muscle protein turnover or markers hereof when subjected to an intake of an identical mixed meal. CLINICAL TRIAL REGISTRY Journal number NCT02587156, Clinicaltrials.org. Date of registration: October 27th, 2015.
Collapse
Affiliation(s)
- Grith Højfeldt
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.
| | - Jacob Bülow
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jakob Agergaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Lene R Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Metabolomics Core Facility, Department of Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Lars Holm
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
47
|
Callahan MJ, Parr EB, Hawley JA, Camera DM. Can High-Intensity Interval Training Promote Skeletal Muscle Anabolism? Sports Med 2021; 51:405-421. [PMID: 33512698 DOI: 10.1007/s40279-020-01397-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exercise training in combination with optimal nutritional support is an effective strategy to maintain or increase skeletal muscle mass. A single bout of resistance exercise undertaken with adequate protein availability increases rates of muscle protein synthesis and, when repeated over weeks and months, leads to increased muscle fiber size. While resistance-based training is considered the 'gold standard' for promoting muscle hypertrophy, other modes of exercise may be able to promote gains in muscle mass. High-intensity interval training (HIIT) comprises short bouts of exercise at or above the power output/speed that elicits individual maximal aerobic capacity, placing high tensile stress on skeletal muscle, and somewhat resembling the demands of resistance exercise. While HIIT induces rapid increases in skeletal muscle oxidative capacity, the anabolic potential of HIIT for promoting concurrent gains in muscle mass and cardiorespiratory fitness has received less scientific inquiry. In this review, we discuss studies that have determined muscle growth responses after HIIT, with a focus on molecular responses, that provide a rationale for HIIT to be implemented among populations who are susceptible to muscle loss (e.g. middle-aged or older adults) and/or in clinical settings (e.g. pre- or post-surgery).
Collapse
Affiliation(s)
- Marcus J Callahan
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring street, Melbourne, VIC, 3000, Australia
| | - Evelyn B Parr
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring street, Melbourne, VIC, 3000, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring street, Melbourne, VIC, 3000, Australia.
| | - Donny M Camera
- Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
48
|
Moore DR, Sygo J, Morton JP. Fuelling the female athlete: Carbohydrate and protein recommendations. Eur J Sport Sci 2021; 22:684-696. [PMID: 34015236 DOI: 10.1080/17461391.2021.1922508] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Optimal carbohydrate and protein intakes are vital for modulating training adaptation, recovery, and exercise performance. However, the research base underpinning contemporary sport nutrition guidelines has largely been conducted in male populations with a lack of consensus on whether the menstrual phase and associated changes in sex hormones allow broad application of these principles to female athletes. The present review will summarise our current understanding of carbohydrate and protein requirements in female athletes across the menstrual cycle and provide a critical analysis on how they compare to male athletes. On the basis of current evidence, we consider it premature to conclude that female athletes require sex specific guidelines in relation to CHO or protein requirements provided energy needs are met. However, there is a need for further research using sport-specific competition and training related exercise protocols that rigorously control for prior exercise, CHO/energy intake, contraceptive use and phase of menstrual cycle. Our overarching recommendation is to use current recommendations as a basis for adopting an individualised approach that takes into account athlete specific training and competition goals whilst also considering personal symptoms associated with the menstrual cycle.
Collapse
Affiliation(s)
- Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| | | | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Mores University, Liverpool, United Kingdom
| |
Collapse
|
49
|
Paulussen KJM, McKenna CF, Beals JW, Wilund KR, Salvador AF, Burd NA. Anabolic Resistance of Muscle Protein Turnover Comes in Various Shapes and Sizes. Front Nutr 2021; 8:615849. [PMID: 34026802 PMCID: PMC8131552 DOI: 10.3389/fnut.2021.615849] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Anabolic resistance is defined by a blunted stimulation of muscle protein synthesis rates (MPS) to common anabolic stimuli in skeletal muscle tissue such as dietary protein and exercise. Generally, MPS is the target of most exercise and feeding interventions as muscle protein breakdown rates seem to be less responsive to these stimuli. Ultimately, the blunted responsiveness of MPS to dietary protein and exercise underpins the loss of the amount and quality of skeletal muscle mass leading to decrements in physical performance in these populations. The increase of both habitual physical activity (including structured exercise that targets general fitness characteristics) and protein dense food ingestion are frontline strategies utilized to support muscle mass, performance, and health. In this paper, we discuss anabolic resistance as a common denominator underpinning muscle mass loss with aging, obesity, and other disease states. Namely, we discuss the fact that anabolic resistance exists as a dimmer switch, capable of varying from higher to lower levels of resistance, to the main anabolic stimuli of feeding and exercise depending on the population. Moreover, we review the evidence on whether increased physical activity and targeted exercise can be leveraged to restore the sensitivity of skeletal muscle tissue to dietary amino acids regardless of the population.
Collapse
Affiliation(s)
- Kevin J. M. Paulussen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Colleen F. McKenna
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Joseph W. Beals
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, United States
| | - Kenneth R. Wilund
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Amadeo F. Salvador
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nicholas A. Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
50
|
Morgan PT, Harris DO, Marshall RN, Quinlan JI, Edwards SJ, Allen SL, Breen L. Protein Source and Quality for Skeletal Muscle Anabolism in Young and Older Adults: A Systematic Review and Meta-Analysis. J Nutr 2021; 151:1901-1920. [PMID: 33851213 PMCID: PMC8245874 DOI: 10.1093/jn/nxab055] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 02/11/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There is much debate regarding the source/quality of dietary proteins in supporting indices of skeletal muscle anabolism. OBJECTIVE We performed a systematic review and meta-analysis to determine the effect of protein source/quality on acute muscle protein synthesis (MPS) and changes in lean body mass (LBM) and strength, when combined with resistance exercise (RE). METHODS A systematic search of the literature was conducted to identify studies that compared the effects of ≥2 dose-matched, predominantly isolated protein sources of varying "quality." Three separate models were employed as follows: 1) protein feeding alone on MPS, 2) protein feeding combined with a bout of RE on MPS, and 3) protein feeding combined with longer-term resistance exercise training (RET) on LBM and strength. Further subgroup analyses were performed to compare the effects of protein source/quality between young and older adults. A total of 27 studies in young (18-35 y) and older (≥60 y) adults were included. RESULTS Analysis revealed an effect favoring higher-quality protein for postprandial MPS at rest [mean difference (MD): 0.014%/h; 95% CI: 0.006, 0.021; P < 0.001] and following RE (MD: 0.022%/h; 95% CI: 0.014, 0.030; P < 0.00001) in young (model 1: 0.016%/h; 95% CI: -0.004, 0.036; P = 0.12; model 2: 0.030%/h; 95% CI: 0.015, 0.045; P < 0.0001) and older (model 1: 0.012%/h; 95% CI: 0.006, 0.018; P < 0.001; model 2: 0.014%/h; 95% CI: 0.007, 0.021; P < 0.001) adults. However, although higher protein quality was associated with superior strength gains with RET [standardized mean difference (SMD): 0.24 kg; 95% CI: 0.02, 0.45; P = 0.03)], no effect was observed on changes to LBM (SMD: 0.05 kg; 95% CI: -0.16, 0.25; P = 0.65). CONCLUSIONS The current review suggests that protein quality may provide a small but significant impact on indices of muscle protein anabolism in young and older adults. However, further research is warranted to elucidate the importance of protein source/quality on musculoskeletal aging, particularly in situations of low protein intake.
Collapse
Affiliation(s)
- Paul T Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Dane O Harris
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Ryan N Marshall
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Jonathan I Quinlan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK,National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Sophie J Edwards
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Sophie L Allen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|