1
|
Habibullah MM, Mohan S, Syed NK, Makeen HA, Jamal QMS, Alothaid H, Bantun F, Alhazmi A, Hakamy A, Kaabi YA, Samlan G, Lohani M, Thangavel N, Al-Kasim MA. Human Growth Hormone Fragment 176–191 Peptide Enhances the Toxicity of Doxorubicin-Loaded Chitosan Nanoparticles Against MCF-7 Breast Cancer Cells. Drug Des Devel Ther 2022; 16:1963-1974. [PMID: 35783198 PMCID: PMC9249349 DOI: 10.2147/dddt.s367586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Numerous drugs with potent toxicity against cancer cells are available for treating malignancies, but therapeutic efficacies are limited due to their inefficient tumor targeting and deleterious effects on non-cancerous tissue. Therefore, two improvements are mandatory for improved chemotherapy 1) novel delivery techniques that can target cancer cells to deliver anticancer drugs and 2) methods to specifically enhance drug efficacy within tumors. The loading of inert drug carriers with anticancer agents and peptides which are able to bind (target) tumor-related proteins to enhance tumor drug accumulation and local cytotoxicity is a most promising approach. Objective To evaluate the anticancer efficacy of Chitosan nanoparticles loaded with human growth hormone hGH fragment 176–191 peptide plus the clinical chemotherapeutic doxorubicin in comparison with Chitosan loaded with doxorubicin alone. Methods Two sets of in silico experiments were performed using molecular docking simulations to determine the influence of hGH fragment 176–191 peptide on the anticancer efficacy of doxorubicin 1) the binding affinities of hGH fragment 176–191 peptide to the breast cancer receptors, 2) the effects of hGH fragment 176–191 peptide binding on doxorubicin binding to these same receptors. Further, the influence of hGH fragment 176–191 peptide on the anticancer efficacy of doxorubicin was validated using viability assay in Human MCF-7 breast cancer cells. Results In silico analysis suggested that addition of the hGH fragment to doxorubicin-loaded Chitosan nanoparticles can enhance doxorubicin binding to multiple breast cancer protein targets, while photon correlation spectroscopy revealed that the synthesized dual-loaded Chitosan nanoparticles possess clinically favorable particle size, polydispersity index, as well as zeta potential. Conclusion These dual-loaded Chitosan nanoparticles demonstrated greater anti-proliferative activity against a breast cancer cell line (MCF-7) than doxorubicin-loaded Chitosan. This dual-loading strategy may enhance the anticancer potency of doxorubicin and reduce the clinical side effects associated with non-target tissue exposure.
Collapse
Affiliation(s)
- Mahmoud M Habibullah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
- Correspondence: Mahmoud M Habibullah, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Al Maarefah Road, Jazan, Saudi Arabia, Tel +966 556644205, Email
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Nabeel Kashan Syed
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah, Saudi Arabia
| | - Hani Alothaid
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Alhazmi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Ali Hakamy
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Yahia A Kaabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ghalia Samlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohtashim Lohani
- Emergency Medical Services Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohamed Ahmed Al-Kasim
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Ribeiro de Oliveira Longo Schweizer J, Ribeiro-Oliveira A, Bidlingmaier M. Growth hormone: isoforms, clinical aspects and assays interference. Clin Diabetes Endocrinol 2018; 4:18. [PMID: 30181896 PMCID: PMC6114276 DOI: 10.1186/s40842-018-0068-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/19/2018] [Indexed: 11/11/2022] Open
Abstract
The measurement of circulating concentrations of growth hormone (GH) is an indispensable tool in the diagnosis of both GH deficiency and GH excess. GH is a heterogeneous protein composed of several molecular isoforms, but the physiological role of these different isoforms has not yet been fully understood. The 22KD GH (22 K-GH) is the main isoform in circulation, followed by 20KD GH (20 K-GH) and other rare isoforms. Studies have been performed to better understand the biological actions of the different isoforms as well as their importance in pathological conditions. Generally, the non-22 K- and 20 K-GH isoforms are secreted in parallel to 22 K-GH, and only very moderate changes in the ratio between isoforms have been described in some pituitary tumors or during exercise. Therefore, in a diagnostic approach, concentrations of 22 K-GH accurately reflect total GH secretion. On the other hand, the differential recognition of GH isoforms by different GH immunoassays used in clinical routine contributes to the known discrepancy in results from different GH assays. This makes the application of uniform decision limits problematic. Therefore, the worldwide efforts to standardize GH assays include the recommendation to use 22 K-GH specific GH assays calibrated against the pure 22 K-GH reference preparation 98/574. Adoption of this recommendation might lead to improvement in diagnosis and follow-up of pathological conditions, and facilitate the comparison of results from different laboratories.
Collapse
Affiliation(s)
| | - Antônio Ribeiro-Oliveira
- 1Endocrinology Laboratory of Federal University of Minas Gerais. Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, 30130-100 Brazil
| | - Martin Bidlingmaier
- 2Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstraße 1, 80336 Munich, Germany
| |
Collapse
|
3
|
Kihara M, Kaiya H, Win ZP, Kitajima Y, Nishikawa M. Protective Effect of Dietary Ghrelin-Containing Salmon Stomach Extract on Mortality and Cardiotoxicity in Doxorubicin-Induced Mouse Model of Heart Failure. J Food Sci 2016; 81:H2858-H2865. [PMID: 27736040 DOI: 10.1111/1750-3841.13526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/04/2016] [Accepted: 09/10/2016] [Indexed: 01/11/2023]
Abstract
Ghrelin exhibits a cardioprotective effect. We examined whether orally administered ghrelin-containing salmon stomach extract (sSE) instead of chemically synthesized ghrelin protects against doxorubicin (DOX)-induced cardiotoxicity in mice. Mice were divided into four groups: (i) the control, (ii) DOX groups were fed a control diet (AIN-93G), (iii) the sSE, and (iv) DOX + sSE groups were fed a 10% sSE diet (AIN-93G + 10% sSE). After a 4-week pretreatment of sSE, DOX or saline was administered to the corresponding groups by intraperitoneal injection. The groups fed the 10% sSE diet consumed significantly more food than the groups fed the control diet before the DOX injection. No mortality was observed in the DOX + sSE group, whereas 40% (2 of 5) mortality was observed in the DOX group. Compared with the DOX group, levels of ascites and plasma cardiac troponin I improved in the DOX + sSE group. Significantly lesser DOX-induced collagen accumulation was observed in the left heart ventricle of the DOX group than in that of the DOX + sSE group. These results suggest that the dietary ghrelin contained in sSE mimics synthetic ghrelin in cardioprotective effect. Ghrelin in sSE (45 pmol/g) and the food intake-stimulating effect of sSE may explain, at least in part, the protective effect of orally administered teleost ghrelin.
Collapse
Affiliation(s)
- Minoru Kihara
- Dept. of Marine Biology and Sciences, School of Biological Sciences, Tokai Univ, Sapporo, 005-8601, Japan
| | - Hiroyuki Kaiya
- Dept. of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, 565-8565, Japan
| | - Zin Phyu Win
- Dept. of Marine Biology and Sciences, School of Biological Sciences, Tokai Univ, Sapporo, 005-8601, Japan
| | - Yuta Kitajima
- Dept. of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai, 982-0215, Japan
| | - Masazumi Nishikawa
- Dept. of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai, 982-0215, Japan
| |
Collapse
|
4
|
Romero CJ, Wolfe A, Law YY, Costelloe CZ, Miller R, Wondisford F, Radovick S. Altered somatotroph feedback regulation improves metabolic efficiency and limits adipose deposition in male mice. Metabolism 2016; 65:557-68. [PMID: 26975547 PMCID: PMC5331908 DOI: 10.1016/j.metabol.2015.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/18/2015] [Accepted: 11/25/2015] [Indexed: 11/22/2022]
Abstract
Several transgenic mouse models with disruption in the growth hormone (GH) axis support the role of GH in augmenting metabolic homeostasis. Specifically, interest has focused on GH's lipolytic properties and ability to affect adipose deposition. Furthermore, both GH and insulin growth factor 1 (IGF-1) may also play a direct or indirect role in adipose development. The somatotroph insulin-like growth factor-1 receptor knockout (SIGFRKO) mouse with only a modest increase in serum GH and IGF-1 demonstrates less adipose tissue than controls. In order to characterize the metabolic phenotype of SIGFRKO mice, histologic analysis of fat depots confirmed a smaller average diameter of adipocytes in the SIGFRKO mice compared to controls. These changes were accompanied by an increase in lipolytic gene expression in fat depots. Indirect calorimetry performed on 6-8week old male mice and again at 25weeks of age demonstrated that SIGFRKO mice, at both ages, had a higher VO2 and increased energy expenditure when compared with controls. The calculated respiratory exchange ratio (RER) was lower in the younger SIGFRKO mice compared to controls. No differences in food consumption or in either ambulatory or total activity were seen between SIGFRKO and control mice in either age group. These studies highlight the role of GH in adipose deposition and its influence on the expression of lipolytic genes resulting in an altered metabolic state, thus providing a mechanism for the decrease in weight gain seen in the SIGFRKO mouse model.
Collapse
Affiliation(s)
- Christopher J Romero
- Division of Pediatric Endocrinology and Diabetes, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1616, New York, NY 10029.
| | - Andrew Wolfe
- Division of Pediatric Endocrinology, Johns Hopkins University, School of Medicine, 600 North Wolfe Street, CSMC 4-106, Baltimore, MD 21287
| | - Yi Ying Law
- Division of Pediatric Endocrinology, Johns Hopkins University, School of Medicine, 600 North Wolfe Street, CSMC 4-106, Baltimore, MD 21287
| | - ChenChen Z Costelloe
- Division of Pediatric Endocrinology, Johns Hopkins University, School of Medicine, 600 North Wolfe Street, CSMC 4-106, Baltimore, MD 21287
| | - Ryan Miller
- Division of Pediatric Endocrinology, University of Maryland Medical Center, 22. S. Greene St., Baltimore, MD 21201
| | - Fredric Wondisford
- Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, New Brunswick, NJ 08901
| | - Sally Radovick
- Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, New Brunswick, NJ 08901
| |
Collapse
|
5
|
Wang F, Wu M, Liu W, Shen Q, Sun H, Chen S. Expression, purification, and lipolytic activity of recombinant human serum albumin fusion proteins with one domain of human growth hormone inPichia pastoris. Biotechnol Appl Biochem 2013; 60:405-11. [DOI: 10.1002/bab.1108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/07/2013] [Indexed: 01/27/2023]
Affiliation(s)
| | - Min Wu
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; People's Republic of China
| | - Wenhui Liu
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; People's Republic of China
| | - Qi Shen
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; People's Republic of China
| | - Hongying Sun
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; People's Republic of China
| | - Shuqing Chen
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; People's Republic of China
| |
Collapse
|
6
|
Simonyi G, Pados G, Medvegy M, Bedros JR. The pharmacological treatment of obesity: Past, present and future. Orv Hetil 2012; 153:363-73. [DOI: 10.1556/oh.2012.29317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Currently, obesity presents one of the biggest health problems. Management strategies for weight reduction in obese individuals include changes in life style such as exercise and diet, behavioral therapy, and pharmacological treatment, and in certain cases surgical intervention. Diet and exercise are best for both prevention and treatment, but both require much discipline and are difficult to maintain. Drug treatment of obesity offer a possible adjunct, but it may only have modest results, limited by side effects; furthermore, the weight lowering effects last only as long as the drug is being taken and, unfortunately, as soon as the administration is stopped, the weight is regained. These strategies should be used in a combination for higher efficacy. Drugs used to induce weight loss have various effects: they increase satiety, reduce the absorption of nutrients or make metabolism faster; but their effect is usually moderate. In the past, several drugs were used in the pharmacological therapy of weight reduction including thyroid hormone, dinitrophenol, amphetamines and their analogues, e.g. fenfluramine, At present, only orlistat is available in the long term treatment (≥24 weeks) of obesity as sibutramine and rimonabant were withdrawn form the market. Several new anti-obesity drugs are being tested at present, and liraglutide, a GLP-1 analogue (incretin mimetic), is the most promising one. Orv. Hetil., 2012, 153, 363–373.
Collapse
Affiliation(s)
- Gábor Simonyi
- Pest Megyei Flór Ferenc Kórház, Kardiometabolikus Centrum V. Belgyógyászat-Lipidológiai Osztály, Regionális Zsíranyagcsere-központ és Hypertonia Decentrum Kistarcsa Semmelweis tér 1. 2143
| | - Gyula Pados
- Fővárosi Önkormányzat Szent Imre Kórház Kardiometabolikus Centrum, Lipid Profil Budapest
| | - Mihály Medvegy
- Pest Megyei Flór Ferenc Kórház, Kardiometabolikus Centrum III. Belgyógyászat-Kardiológiai Osztály Kistarcsa
| | | |
Collapse
|
7
|
Such-Sanmartín G, Bosch J, Segura J, Wu M, Du H, Chen G, Wang S, Vila-Perelló M, Andreu D, Gutiérrez-Gallego R. Characterisation of the 5 kDa growth hormone isoform. Growth Factors 2008; 26:152-62. [PMID: 18569023 DOI: 10.1080/08977190802127952] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The 5 kDa N-terminal fragment of 43 amino acids of human growth hormone (GH) shows a specific and significant in-vivo insulin-like activity. This isoform can be easily obtained by solid phase synthesis methods. Our objective in this study is to describe this procedure in detail and to provide structural information of the protein. METHODS Solid phase synthesis was employed for the synthesis of the 5 kDa GH isoform. Circular dichroism and limited proteolysis have been carried out to provide structural information about the folded state of the protein in solution. Surface plasmon resonance was used to compare the structural equivalence between the synthetic protein and a proteolytic homologue at an antibody binding level. For this purpose, a murine monoclonal antibody specific for the 5 kDa isoform was generated and characterised employing this and several other GH isoforms. RESULTS Circular dichroism and proteolysis results suggested that the C-terminal segment of the 5 kDa protein folds in an alpha-helix. The comparison of the synthetic product to its proteolytic homologue at an antibody binding level suggested structural equivalency. A highly specific antibody against the 5 kDa GH isoform was generated with null cross-reactivity for 17, 20 and 22 kDa isoforms. Kinetic data on the interaction with the synthetic 5 kDa GH was obtained. CONCLUSIONS The structure of the protein appears to be different in comparison to when it is included within the 22 kDa GH isoform. Finally, a highly specific antibody has been generated. The possible significance of the 5 kDa protein as a potential agent for obesity-related diseases is discussed.
Collapse
Affiliation(s)
- Gerard Such-Sanmartín
- Pharmacology Research Unit, Municipal Institute for Medical Research (IMIM), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Roth JD, Hughes H, Kendall E, Baron AD, Anderson CM. Antiobesity effects of the beta-cell hormone amylin in diet-induced obese rats: effects on food intake, body weight, composition, energy expenditure, and gene expression. Endocrinology 2006; 147:5855-64. [PMID: 16935845 DOI: 10.1210/en.2006-0393] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Effects of amylin and pair feeding (PF) on body weight and metabolic parameters were characterized in diet-induced obesity-prone rats. Peripherally administered rat amylin (300 microg/kg.d, 22d) reduced food intake and slowed weight gain: approximately 10% (P<0.05), similar to PF. Fat loss was 3-fold greater in amylin-treated rats vs. PF (P<0.05). Whereas PF decreased lean tissue (P<0.05 vs. vehicle controls; VEH), amylin did not. During wk 1, amylin and PF reduced 24-h respiratory quotient (mean+/-se, 0.82+/-0.0, 0.81+/-0.0, respectively; P<0.05) similar to VEH (0.84+/-0.01). Energy expenditure (EE mean+/-se) tended to be reduced by PF (5.67+/-0.1 kcal/h.kg) and maintained by amylin (5.86+/-0.1 kcal/h.kg) relative to VEH (5.77+/-0.0 kcal/h.kg). By wk 3, respiratory quotient no longer differed; however, EE increased with amylin treatment (5.74+/-0.09 kcal/.kg; P<0.05) relative to VEH (5.49+/-0.06) and PF (5.38+/-0.07 kcal/h.kg). Differences in EE, attributed to differences in lean mass, argued against specific amylin-induced thermogenesis. Weight loss in amylin and pair-fed rats was accompanied by similar increases arcuate neuropeptide Y mRNA (P<0.05). Amylin treatment, but not PF, increased proopiomelanocortin mRNA levels (P<0.05 vs. VEH). In a rodent model of obesity, amylin reduced body weight and body fat, with relative preservation of lean tissue, through anorexigenic and specific metabolic effects.
Collapse
Affiliation(s)
- Jonathan D Roth
- Amylin Pharmaceuticals, Inc., San Diego, California 92121, USA.
| | | | | | | | | |
Collapse
|
9
|
De Palo EF, Gatti R, Antonelli G, Spinella P. Growth hormone isoforms, segments/fragments: Does a link exist with multifunctionality? Clin Chim Acta 2006; 364:77-81. [PMID: 16154554 DOI: 10.1016/j.cca.2005.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 06/09/2005] [Accepted: 06/13/2005] [Indexed: 11/24/2022]
Abstract
Understanding the relationship between growth hormone (GH) structure (its molecular fragments) and function via interaction with single or multiple receptors is of particular importance in clinical diagnostics and physiologic biochemistry. Direct and indirect actions of GH are numerous ranging from carbohydrate and lipid metabolism to growth effects at muscle and vessels. To this end, we have focused on the influence of physical exercise on GH synthesis and release into the circulation. Physical exercise is a physiological condition to which GH multifunctionality is inextricably linked and is thus important physiologically and pathologically. This review describes the potential human GH fragments with respect to protein hormone multifunctionality and the molecular regions of potential action. The intent of the review is to highlight human GH fragments and hypothesize their potential physiologic role. GH fragmentation is also reviewed in relation to the effects of physical exercise and hormone multifunctionality.
Collapse
Affiliation(s)
- Elio F De Palo
- Section of Clinical Biochemistry, Department of Medical Diagnostic Sciences and Sp.Ther., University of Padua, Italy.
| | | | | | | |
Collapse
|
10
|
Adams SH, Lei C, Jodka CM, Nikoulina SE, Hoyt JA, Gedulin B, Mack CM, Kendall ES. PYY[3-36] administration decreases the respiratory quotient and reduces adiposity in diet-induced obese mice. J Nutr 2006; 136:195-201. [PMID: 16365082 DOI: 10.1093/jn/136.1.195] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In rodents, weight reduction after peptide YY[3-36] (PYY[3-36]) administration may be due largely to decreased food consumption. Effects on other processes affecting energy balance (energy expenditure, fuel partitioning, gut nutrient uptake) remain poorly understood. We examined whether s.c. infusion of 1 mg/(kg x d) PYY[3-36] (for up to 7 d) increased metabolic rate, fat combustion, and/or fecal energy loss in obese mice fed a high-fat diet. PYY[3-36] transiently reduced food intake (e.g., 25-43% lower at d 2 relative to pretreatment baseline) and decreased body weight (e.g., 9-10% reduction at d 2 vs. baseline) in 3 separate studies. Mass-specific metabolic rate in kJ/(kg x h) in PYY[3-36]-treated mice did not differ from controls. The dark cycle respiratory quotient (RQ) was transiently decreased. On d 2, it was 0.747 +/- 0.008 compared with 0.786 +/- 0.004 for controls (P < 0.001); light cycle RQ was reduced throughout the study in PYY[3-36]-treated mice (0.730 +/- 0.006) compared with controls (0.750 +/- 0.009; P < 0.001). Epididymal fat pad weight in PYY[3-36]-treated mice was approximately 50% lower than in controls (P < 0.01). Fat pad lipolysis ex vivo was not stimulated by PYY[3-36]. PYY[3-36] decreased basal gallbladder emptying in nonobese mice. Fecal energy loss was negligible ( approximately 2% of ingested energy) and did not differ between PYY[3-36]-treated mice and controls. Thus, negative energy balance after PYY[3-36] administration in diet-induced obese mice results from reduced food intake with a relative maintenance of mass-specific energy expenditure. Fat loss and reduced RQ highlight the potential for PYY[3-36] to drive increased mobilization of fat stores to help meet energy requirements in this model.
Collapse
Affiliation(s)
- Sean H Adams
- Department of Pharmacology, Amylin Pharmaceuticals, San Diego, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Bays HE. Current and investigational antiobesity agents and obesity therapeutic treatment targets. ACTA ACUST UNITED AC 2004; 12:1197-211. [PMID: 15340100 DOI: 10.1038/oby.2004.151] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Public health efforts and current antiobesity agents have not controlled the increasing epidemic of obesity. Investigational antiobesity agents consist of 1) central nervous system agents that affect neurotransmitters or neural ion channels, including antidepressants (bupropion), selective serotonin 2c receptor agonists, antiseizure agents (topiramate, zonisamide), some dopamine antagonists, and cannabinoid-1 receptor antagonists (rimonabant); 2) leptin/insulin/central nervous system pathway agents, including leptin analogues, leptin transport and/or leptin receptor promoters, ciliary neurotrophic factor (Axokine), neuropeptide Y and agouti-related peptide antagonists, proopiomelanocortin and cocaine and amphetamine regulated transcript promoters, alpha-melanocyte-stimulating hormone analogues, melanocortin-4 receptor agonists, and agents that affect insulin metabolism/activity, which include protein-tyrosine phosphatase-1B inhibitors, peroxisome proliferator activated receptor-gamma receptor antagonists, short-acting bromocriptine (ergoset), somatostatin agonists (octreotide), and adiponectin; 3) gastrointestinal-neural pathway agents, including those that increase cholecystokinin activity, increase glucagon-like peptide-1 activity (extendin 4, liraglutide, dipeptidyl peptidase IV inhibitors), and increase protein YY3-36 activity and those that decrease ghrelin activity, as well as amylin analogues (pramlintide); 4) agents that may increase resting metabolic rate ("selective" beta-3 stimulators/agonist, uncoupling protein homologues, and thyroid receptor agonists); and 5) other more diverse agents, including melanin concentrating hormone antagonists, phytostanol analogues, functional oils, P57, amylase inhibitors, growth hormone fragments, synthetic analogues of dehydroepiandrosterone sulfate, antagonists of adipocyte 11B-hydroxysteroid dehydrogenase type 1 activity, corticotropin-releasing hormone agonists, inhibitors of fatty acid synthesis, carboxypeptidase inhibitors, indanones/indanols, aminosterols, and other gastrointestinal lipase inhibitors (ATL962). Finally, an emerging concept is that the development of antiobesity agents must not only reduce fat mass (adiposity) but must also correct fat dysfunction (adiposopathy).
Collapse
Affiliation(s)
- Harold E Bays
- FACP Louisville Metabolic and Atherosclerosis Research Center, 3288 Illinois Ave., Louisville, KY 40213, USA.
| |
Collapse
|
12
|
Spolaore B, Polverino de Laureto P, Zambonin M, Fontana A. Limited proteolysis of human growth hormone at low pH: isolation, characterization, and complementation of the two biologically relevant fragments 1-44 and 45-191. Biochemistry 2004; 43:6576-86. [PMID: 15157090 DOI: 10.1021/bi049491g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The limited proteolysis approach was used to analyze the conformational features of human growth hormone (hGH) under acidic solvent conditions (A-state). Pepsin was used as the proteolytic probe because of its poor substrate specificity and its activity at low pH. Limited proteolysis of hGH in its A-state results in a selective cleavage of the Phe44-Leu45 peptide bond, leading to the production of fragments 1-44 and 45-191. The two fragments were isolated in homogeneous form for studying their conformational properties by means of spectroscopic methods. Fragment 1-44 was shown to retain little secondary and tertiary structure at neutral pH, while fragment 45-191 independently folds into a highly helical secondary structure. In particular, we have shown that the two peptic fragments are able to associate into a stable and native-like hGH complex 1-44/45-191. Our proteolysis data indicate that in acid solution hGH adopts a partly folded state characterized by a local unfolding of the first minihelix (residues 38-47) encompassing the Phe44-Leu45 peptide bond. Of interest, hGH has both insulin-like and diabetogenic effects. Two fragments of hGH occur in vivo and exert these two opposite activities, namely, fragment 1-43 showing an insulin-potentiating effect and fragment 44-191 showing a diabetogenic activity. The results of this study suggest that the conformational changes of hGH induced by an acidic pH promote the generation of the two physiologically relevant fragments by proteolytic processing of the hormone. Although pepsin cannot be the enzyme responsible for the in vivo processing of the hormone, we propose that limited proteolysis of hGH at low pH is physiologically relevant, since the hormone is exposed to an acidic environment in the cell. This study reports for the first time the analysis of the conformational features of the two individual functional domains of hGH and of their complex.
Collapse
Affiliation(s)
- Barbara Spolaore
- CRIBI Biotechnology Centre, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Susan Z Yanovski
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-5450, USA.
| | | |
Collapse
|
14
|
Jones ME, Thorburn AW, Britt KL, Hewitt KN, Misso ML, Wreford NG, Proietto J, Oz OK, Leury BJ, Robertson KM, Yao S, Simpson ER. Aromatase-deficient (ArKO) mice accumulate excess adipose tissue. J Steroid Biochem Mol Biol 2001; 79:3-9. [PMID: 11850201 DOI: 10.1016/s0960-0760(01)00136-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aromatase is the enzyme which catalyses the conversion of C19 steroids into C18 estrogens. We have generated a mouse model wherein the Cyp19 gene, which encodes aromatase, has been disrupted, and hence, the aromatase knockout (ArKO) mouse cannot synthesise endogenous estrogens. We examined the consequences of estrogen deficiency on accumulation of adipose depots in male and female ArKO mice, observing that these animals progressively accrue significantly more intra-abdominal adipose tissue than their wildtype (WT) litter mates, reflected in increased adipocyte volume and number. This increased adiposity was not due to hyperphagia or reduced resting energy expenditure, but was associated with reduced spontaneous physical activity levels, reduced glucose oxidation, and a decrease in lean body mass. Elevated circulating levels of leptin and cholesterol were present in 1-year-old ArKO mice compared to WT controls, as were elevated insulin levels, although blood glucose was unchanged. Associated with these changes, the livers of ArKO animals were characterised by a striking accumulation of lipid droplets. Our findings demonstrate an important role for estrogen in the maintenance of lipid homeostasis in both males and females.
Collapse
Affiliation(s)
- M E Jones
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Vic. 3168, Clayton, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Heffernan M, Summers RJ, Thorburn A, Ogru E, Gianello R, Jiang WJ, Ng FM. The effects of human GH and its lipolytic fragment (AOD9604) on lipid metabolism following chronic treatment in obese mice and beta(3)-AR knock-out mice. Endocrinology 2001; 142:5182-9. [PMID: 11713213 DOI: 10.1210/endo.142.12.8522] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both human GH (hGH) and a lipolytic fragment (AOD9604) synthesized from its C-terminus are capable of inducing weight loss and increasing lipolytic sensitivity following long-term treatment in mice. One mechanism by which this may occur is through an interaction with the beta-adrenergic pathway, particularly with the beta(3)-adrenergic receptors (beta(3)-AR). Here we describe how hGH and AOD9604 can reduce body weight and body fat in obese mice following 14 d of chronic ip administration. These results correlate with increases in the level of expression of beta(3)-AR RNA, the major lipolytic receptor found in fat cells. Importantly, both hGH and AOD9604 are capable of increasing the repressed levels of beta(3)-AR RNA in obese mice to levels comparable with those in lean mice. The importance of beta(3)-AR was verified when long-term treatment with hGH and AOD9604 in beta(3)-AR knock-out mice failed to produce the change in body weight and increase in lipolysis that was observed in wild-type control mice. However, in an acute experiment, AOD9604 was capable of increasing energy expenditure and fat oxidation in the beta(3)-AR knock-out mice. In conclusion, this study demonstrates that the lipolytic actions of both hGH and AOD9604 are not mediated directly through the beta(3)-AR although both compounds increase beta(3)-AR expression, which may subsequently contribute to enhanced lipolytic sensitivity.
Collapse
Affiliation(s)
- M Heffernan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia 3800
| | | | | | | | | | | | | |
Collapse
|
16
|
Ainslie DA, Morris MJ, Wittert G, Turnbull H, Proietto J, Thorburn AW. Estrogen deficiency causes central leptin insensitivity and increased hypothalamic neuropeptide Y. Int J Obes (Lond) 2001; 25:1680-8. [PMID: 11753591 DOI: 10.1038/sj.ijo.0801806] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2000] [Revised: 03/13/2001] [Accepted: 05/02/2001] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Altered fat distribution is a consequence of menopause, but the mechanisms responsible are unknown. Estrogen insufficiency in humans can be modeled using ovariectomized rats. We have shown that increased adiposity in these rats is due to reduced physical activity and transient hyperphagia, and can be reversed with 17beta-estradiol treatment. The aims of this study were to examine whether this altered energy balance is associated with circulating leptin insufficiency, central leptin insensitivity, decreased hypothalamic leptin receptor (Ob-Rb) expression, and/or increased hypothalamic neuropeptide Y (NPY). METHODS Plasma leptin levels, adipose tissue ob gene expression, energy balance responses to i.c.v. leptin, hypothalamic Ob-Rb expression and NPY concentration in five separate hypothalamic regions were measured in adult female rats after either ovariectomy or sham operations. RESULTS Obesity was not associated with hypoleptinemia or decreased ob gene expression in ovariectomized rats; however, it was associated with insensitivity to central leptin administration. Food intake was less suppressed and spontaneous physical activity was less stimulated by leptin. This was not due to decreased hypothalamic Ob-Rb expression. NPY concentration in the paraventricular nucleus of the hypothalamus was elevated in the ovariectomized rats, consistent with leptin insensitivity; however this effect was transient and disappeared as body fat and leptin levels increased further and hyperphagia normalized. CONCLUSION Impaired central leptin sensitivity and overproduction of NPY may contribute to excess fat accumulation caused by estrogen deficiency.
Collapse
Affiliation(s)
- D A Ainslie
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Jones ME, Thorburn AW, Britt KL, Hewitt KN, Wreford NG, Proietto J, Oz OK, Leury BJ, Robertson KM, Yao S, Simpson ER. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc Natl Acad Sci U S A 2000; 97:12735-40. [PMID: 11070087 PMCID: PMC18833 DOI: 10.1073/pnas.97.23.12735] [Citation(s) in RCA: 551] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aromatase-knockout (ArKO) mouse provides a useful model to examine the role that estrogens play in development and homeostasis in mammals. Lacking a functional Cyp19 gene, which encodes aromatase, the ArKO mouse cannot synthesize endogenous estrogens. We examined the adipose depots of male and female ArKO mice, observing that these animals progressively accumulate significantly more intraabdominal adipose tissue than their wild-type (WT) littermates, reflected in increased adipocyte volume at gonadal and infrarenal sites. This increased adiposity was not due to hyperphagia or reduced resting energy expenditure, but was associated with reduced spontaneous physical activity levels, reduced glucose oxidation, and a decrease in lean body mass. Elevated circulating levels of leptin and cholesterol were present in 1-year-old ArKO mice compared with WT controls, as were elevated insulin levels, although blood glucose levels were unchanged. Associated with these changes, a striking accumulation of lipid droplets was observed in the livers of ArKO animals. Our findings demonstrate an important role for estrogen in the maintenance of lipid homeostasis in both males and females.
Collapse
Affiliation(s)
- M E Jones
- Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|