1
|
Ge Z, Wu Q, Lv C, He Q. The Roles of T Cells in the Development of Metabolic Dysfunction-Associated Steatohepatitis. Immunology 2025. [PMID: 40414629 DOI: 10.1111/imm.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/28/2025] [Accepted: 04/28/2025] [Indexed: 05/27/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), the progressed period of metabolic dysfunction-associated steatotic liver disease (MASLD), is a multifaceted liver disease characterised by inflammation and fibrosis that develops from simple steatosis, even contributing to hepatocellular carcinoma and death. MASH involves several immune cell-mediated inflammation and fibrosis, where T cells play a crucial role through the release of pro-inflammatory cytokines and pro-fibrotic factors. This review discusses the complex role of various T cell subsets in the pathogenesis of MASH and highlights the progress of ongoing clinical trials involving T cell-targeted MASH therapies.
Collapse
Affiliation(s)
- Zhifa Ge
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qingwei Wu
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qifeng He
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Liu K, Dong H, Zhang K, Yan W, Wu H, Fan J, Ye W. IL-15-Activated CD38 +HLA-DR +CD8 + T cells induce liver injury in cirrhosis via JAK/STAT5 and PI3K/mTOR pathways. Sci Rep 2025; 15:17612. [PMID: 40399368 PMCID: PMC12095495 DOI: 10.1038/s41598-025-02693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 05/15/2025] [Indexed: 05/23/2025] Open
Abstract
The development and progression of liver cirrhosis are considerably influenced by immune processes, with CD8 + T cells playing a key role. Notably, cytokines can activate bystander CD38 + HLA-DR + CD8 + T cells without the need for T cell receptor (TCR) stimulation. However, their role in liver fibrosis remains controversial. This study aimed to investigate the pathological role of CD38 + HLA-DR + CD8 + T cells in cirrhosis progression and explore the mechanisms that regulate their functions. Peripheral blood mononuclear cells (PBMCs) were extracted from patients with cirrhosis and healthy donors, and the ratio of CD38+HLA-DR+CD8+ T cells was assessed through flow cytometry. The relationship between the prevalence of these cells and certain clinical indicators was investigated. Additionally, CD8+ T cells from healthy donors were used to examine the impact of cytokine IL-15 on CD38+HLA-DR+CD8+ T cells, utilizing flow cytometry and in vitro cytotoxicity assays. Finally, the signaling pathways involved in IL-15 activation of CD38+HLA-DR+CD8+ T cells were examined in vitro. The proportion of CD38+HLA-DR+CD8+ T cells was significantly increased in patients with cirrhosis compared to healthy donors and exhibited a strong correlation with disease severity, hepatic damage, and inflammation in cirrhosis. IL-15-stimulated CD38+HLA-DR+CD8+ T cells from healthy donors demonstrated proliferation and overexpression of cytotoxic molecules, exhibiting NKG2D- and FasL-dependent innate-like cytotoxicity without TCR activation. Notably, IL-15 did not alter the mitochondrial function of these cells. The JAK/STAT5 and PI3K/mTOR pathways were found to play a critical role in IL-15-induced innate-like cytotoxicity. These findings suggested that CD38+HLA-DR+CD8+ T cells from patients with cirrhosis contribute to immune-mediated liver injury. Furthermore, the JAK/STAT5 and PI3K/mTOR pathways were essential for IL-15-induced activation of CD38+HLA-DR+CD8+ T cells, which expressed NKG2D and FasL, demonstrating innate cytotoxicity independent of TCR engagement.
Collapse
Affiliation(s)
- Ke Liu
- Department of Infectious Disease and Liver Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongliang Dong
- Department of Infectious Disease and Liver Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Kaiyue Zhang
- Department of Infectious Disease and Liver Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Wanping Yan
- Department of Infectious Disease and Liver Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanyu Wu
- Department of Infectious Disease and Liver Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Fan
- Department of Infectious Disease and Liver Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, 210003, Jiangsu, PR China.
| | - Wei Ye
- Department of Infectious Disease and Liver Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, 210003, Jiangsu, PR China.
| |
Collapse
|
3
|
Bhattacharya I, Maity DK, Kumar A, Sarkar S, Bhattacharya T, Sahu A, Sreedhar R, Arumugam S. Beyond obesity: lean metabolic dysfunction-associated steatohepatitis from unveiling molecular pathogenesis to therapeutic advancement. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04257-x. [PMID: 40366398 DOI: 10.1007/s00210-025-04257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD), now known by the name of metabolic dysfunction-associated fatty liver disease (MAFLD), with increased global incidence, has been recognized as a significant metabolic disorder. NAFLD includes a spectrum liver disease from hepatocellular fat accumulation (isolated steatosis) to an advanced form of liver injury known as nonalcoholic steatohepatitis (NASH), which refers to distinct histologic features, including hepatocellular steatosis and injury, necroinflammation, and eventually fibrosis. Nonobese or lean individuals associated with metabolic dysregulation usually demonstrated diverse risk factors compared to obese MAFLD. The presence of normal range body mass index (BMI) and excess visceral adiposity with increased cardiometabolic and renal comorbidities, along with sarcopenia, has been evidenced to be associated with lean MASH. Genetic predispositions accompanying lifestyle and environmental factors contribute to disease initiation and progression. The genetic influence in pathophysiology indicated the significant contributions of the following genes: PNPLA3, TM6SF2, APOB, LIPA, MBOAT7, and HSD17B13, and the impact of their disease-specific variants in the development of obesity-independent MASH. The epigenetic modifications exhibited differential DNA methylation patterns in the genes involved in lipid metabolism, particularly hypomethylation of PEMT. Diet-induced and genetic animal models of lean MASH, including Slc: Wistar/ST rats, PPAR-α, PTEN, and MAT1A knockout mice models, are indicated to be pivotal in the exploration of disease progression and observing the effect of therapeutic interventions. This comprehensive review comprises the molecular and genetic pathophysiology, molecular diagnostics, and therapeutic aspects of lean MASH to enunciate a diagnostic approach that combines detailed clinical phenotyping regarding genomic analysis.
Collapse
Affiliation(s)
- Indrajit Bhattacharya
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Deep Kumar Maity
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Amit Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Sampriti Sarkar
- School of Biosciences & Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Teeshyo Bhattacharya
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Amrita Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Remya Sreedhar
- School of Pharmacy, Sister Nivedita University, DG Block, Action Area I, 1/2, Newtown, Kolkata, 700156, West Bengal, India
| | - Somasundaram Arumugam
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
4
|
Wu Q, Yang Y, Lin S, Geller DA, Yan Y. The microenvironment in the development of MASLD-MASH-HCC and associated therapeutic in MASH-HCC. Front Immunol 2025; 16:1569915. [PMID: 40370443 PMCID: PMC12074932 DOI: 10.3389/fimmu.2025.1569915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a series of obesity-related metabolic liver diseases, ranging from relatively benign hepatic steatosis to metabolic-associated steatohepatitis (MASH). With the changes in lifestyle, its incidence and prevalence have risen to epidemic proportions globally. In recent years, an increasing amount of evidence has indicated that the hepatic microenvironment is involved in the pathophysiological processes of MASH-induced liver fibrosis and the formation of hepatocellular carcinoma (HCC). The hepatic microenvironment is composed of various parenchymal and non-parenchymal cells, which communicate with each other through various factors. In this review, we focus on the changes in hepatocytes, cholangiocytes, liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs), Kupffer cells (KC), dendritic cells (DC), neutrophils, monocytes, T and B lymphocytes, natural killer cells (NK), natural killer T cells (NKT), mucosal-associated invariant T cells (MAIT), γδT cells, and gut microbiota during the progression of MASLD. Furthermore, we discuss promising therapeutic strategies targeting the microenvironment of MASLD-MASH-HCC.
Collapse
Affiliation(s)
- Qiulin Wu
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Yang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shixun Lin
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - David A. Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Yihe Yan
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Du W, Siwan E, Twigg SM, Min D. Alterations in Immune Cell Profiles in the Liver in Diabetes Mellitus: A Systematic Review. Int J Mol Sci 2025; 26:4027. [PMID: 40362271 PMCID: PMC12071842 DOI: 10.3390/ijms26094027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The aim of this study was to systematically review literature on immune responses in liver tissue pathology in diabetes, focusing on immune cell populations and related cytokines. A systematic search of relevant English full-text articles up to June 2024 from online databases, covering animal and human studies, was conducted using the PRISMA workflow. Thirteen studies met criteria. Immune cells in the liver, including monocytes/macrophages, neutrophils, and iNKT and T cells, were implicated in liver inflammation and fibrosis in diabetes. Pro-inflammatory cytokines, including interferon-ɣ, tumor necrosis factor-α, interleukin (IL)-15, IL-18, and IL-1β were upregulated in the liver, potentially contributing to liver inflammation and fibrosis progression. In contrast, the anti-inflammatory cytokine IL-4 was downregulated, possibly attributing to chronic inflammation in diabetes. Pathological immune responses via the TLR4/MyD88/NF-κB pathway and the IL-17/IL-23 axis were also linked to liver fibrosis in diabetes. In conclusion, this review highlights the putative pivotal role of immune cells in diabetes-related liver fibrosis progression through their regulation of cytokines and signaling pathways. Further research on diabetes and dysmetabolic liver pathology is needed to clarify immune cell localization in the liver and their interactions with resident cells promoting fibrosis. Targeting immune mechanisms may provide therapeutic strategies for managing liver fibrosis in diabetes.
Collapse
Affiliation(s)
- Wanying Du
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (W.D.); (E.S.); (S.M.T.)
| | - Elisha Siwan
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (W.D.); (E.S.); (S.M.T.)
| | - Stephen M. Twigg
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (W.D.); (E.S.); (S.M.T.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Danqing Min
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (W.D.); (E.S.); (S.M.T.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| |
Collapse
|
6
|
Chen Y, Bian S, Le J. Molecular Landscape and Diagnostic Model of MASH: Transcriptomic, Proteomic, Metabolomic, and Lipidomic Perspectives. Genes (Basel) 2025; 16:399. [PMID: 40282358 PMCID: PMC12026639 DOI: 10.3390/genes16040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), a progressive form of fatty liver disease, presents a significant global health challenge. Despite extensive research, fully elucidating its complex pathogenesis and developing accurate non-invasive diagnostic tools remain key goals. Multi-omics approaches, integrating data from transcriptomics, proteomics, metabolomics, and lipidomics, offer a powerful strategy to achieve these aims. This review summarizes key findings from multi-omics studies in MASH, highlighting their contributions to our understanding of disease mechanisms and the development of improved diagnostic models. Transcriptomic studies have revealed widespread gene dysregulation affecting lipid metabolism, inflammation, and fibrosis, while proteomics has identified altered protein expression patterns and potential biomarkers. Metabolomic and lipidomic analyses have further uncovered significant changes in various metabolites and lipid species, including ceramides, sphingomyelins, phospholipids, and bile acids, underscoring the central role of lipid dysregulation in MASH. These multi-omics findings have been leveraged to develop novel diagnostic models, some incorporating machine learning algorithms, with improved accuracy compared to traditional methods. Further research is needed to validate these findings, explore the complex interplay between different omics layers, and translate these discoveries into clinically useful tools for improved MASH diagnosis and prognosis.
Collapse
Affiliation(s)
- Yilong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.C.); (S.B.)
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Shuixiu Bian
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.C.); (S.B.)
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jiamei Le
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.C.); (S.B.)
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
7
|
Xiao J, Liu T, Zeng F, Zhang J. New insights into T cell metabolism in liver cancer: from mechanism to therapy. Cell Death Discov 2025; 11:118. [PMID: 40122853 PMCID: PMC11930970 DOI: 10.1038/s41420-025-02397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Liver cancer is the sixth most common cancer worldwide and the third most common cause of cancer mortality. The development and progression of liver cancer and metastases is a multifaceted process involving numerous metabolic pathways. T cells have a protective role in the defense against cancer, and manipulating metabolic pathways in T cells can alter their antitumor activity. Furthermore, Liver cancer and T cell nutrition competition lead to T cell dysfunction through various molecular mechanisms. Some nanomaterials and drugs can improve T cell metabolism and promote the anti-liver cancer function of T cells. This review discusses the current literature regarding metabolic changes in liver cancer, the role of T cells in liver cancer, T cell metabolism in liver cancer, and targeted T cell metabolism therapy for liver cancer. The promise and challenges of studying target T cell metabolism for treating liver cancer are also addressed. Targeting T cell metabolism is a promising approach for treating liver cancer.
Collapse
Affiliation(s)
- Jie Xiao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, China
| | - Ting Liu
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
- School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichua, China.
| | - Jinhua Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, China.
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China.
| |
Collapse
|
8
|
Burtis AE, DeNicola DM, Ferguson ME, Santos RG, Pinilla C, Kriss MS, Orlicky DJ, Tamburini BAJ, Gillen AE, Burchill MA. Ag-driven CD8 + T cell clonal expansion is a prominent feature of MASH in humans and mice. Hepatology 2025; 81:591-608. [PMID: 39047085 PMCID: PMC11737124 DOI: 10.1097/hep.0000000000000971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND AIMS Chronic liver disease due to metabolic dysfunction-associated steatohepatitis (MASH) is a rapidly increasing global epidemic. MASH progression is a consequence of the complex interplay between inflammatory insults and dysregulated hepatic immune responses. T lymphocytes have been shown to accumulate in the liver during MASH, but the cause and consequence of T cell accumulation in the liver remain unclear. Our study aimed to define the phenotype and T cell receptor diversity of T cells from human cirrhotic livers and an animal model of MASH to begin resolving their function in disease. APPROACH AND RESULTS In these studies, we evaluated differences in T cell phenotype in the context of liver disease. Accordingly, we isolated liver resident T cell populations from humans with cirrhosis and from mice with diet-induced MASH. Using both 5' single-cell sequencing and flow cytometry, we defined the phenotype and T cell receptor repertoire of liver resident T cells during health and disease. CONCLUSIONS MASH-induced human cirrhosis and diet-induced MASH in mice resulted in the accumulation of activated and clonally expanded T cells in the liver. The clonally expanded T cells in the liver expressed markers of chronic antigenic stimulation, including PD1 , TIGIT , and TOX . Overall, this study establishes for the first time that T cells undergo Ag-dependent clonal expansion and functional differentiation during the progression of MASH. These studies could lead to the identification of antigenic targets that drive T cell activation, clonal expansion, and recruitment to the liver during MASH.
Collapse
Affiliation(s)
- Abbigayl E.C. Burtis
- Division of Gastroenterology and Hepatology, Department of Medicine, Aurora, Colorado, USA
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Destiny M.C. DeNicola
- Division of Gastroenterology and Hepatology, Department of Medicine, Aurora, Colorado, USA
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Megan E. Ferguson
- Division of Gastroenterology and Hepatology, Department of Medicine, Aurora, Colorado, USA
| | - Radleigh G. Santos
- Department of Mathematics, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Clemencia Pinilla
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael S. Kriss
- Division of Gastroenterology and Hepatology, Department of Medicine, Aurora, Colorado, USA
| | - David J. Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus. Aurora, Colorado, USA
| | - Beth A. Jirón Tamburini
- Division of Gastroenterology and Hepatology, Department of Medicine, Aurora, Colorado, USA
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Austin E. Gillen
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus. Aurora, Colorado, USA
| | - Matthew A. Burchill
- Division of Gastroenterology and Hepatology, Department of Medicine, Aurora, Colorado, USA
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Lan Y, Jin B, Fan Y, Huang Y, Zhou J. The Circadian Rhythm Regulates the Hepato-ovarian Axis Linking Polycystic Ovary Syndrome and Non-alcoholic Fatty Liver Disease. Biochem Genet 2025:10.1007/s10528-024-11010-1. [PMID: 39826031 DOI: 10.1007/s10528-024-11010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/17/2024] [Indexed: 01/20/2025]
Abstract
This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases. Single-sample and single-gene gene set enrichment analyses explored immune infiltration and pathways associated with CRRGs. Diagnostic biomarkers were identified using a random forest algorithm and validated through nomograms and a mouse model. Seven crosstalk CRRGs (FOS, ACHE, FOSB, EGR1, NR4A1, DUSP1, and EGR3) were associated with clinical features, immunoinflammatory microenvironment, and metabolic pathways in both diseases. EGR1, DUSP1, and NR4A1 were identified as diagnostic biomarkers, exhibiting robust diagnostic capacity (AUC = 0.7679 for PCOS, AUG = 0.9981 for NAFLD). Nomogram validation showed excellent calibration, and independent datasets confirmed their discriminatory ability (AUC = 0.6528 for PCOS, AUC = 0.8275 for NAFLD). Additionally, ceRNA networks and androgen receptor binding sites were identified, suggesting their regulatory roles. Mouse model validation confirmed significant downregulation of EGR1, DUSP1, and NR4A1 in liver tissues, consistent with sequencing data. This study identifies crosstalk CRRGs and diagnostic biomarkers shared between PCOS and NAFLD, highlighting their roles in immune and metabolic dysregulation. These biomarkers offer the potential for improving diagnosis and guiding targeted treatments for both diseases.
Collapse
Affiliation(s)
- Yibing Lan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Bihui Jin
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yuhang Fan
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China.
| |
Collapse
|
10
|
Yan M, Cui Y, Xiang Q. Metabolism of hepatic stellate cells in chronic liver diseases: emerging molecular and therapeutic interventions. Theranostics 2025; 15:1715-1740. [PMID: 39897543 PMCID: PMC11780521 DOI: 10.7150/thno.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025] Open
Abstract
Chronic liver diseases, primarily metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic and metabolic dysfunction-associated alcoholic liver disease (MetALD), and viral hepatitis, can lead to liver fibrosis, cirrhosis, and cancer. Hepatic stellate cell (HSC) activation plays a central role in the development of myofibroblasts and fibrogenesis in chronic liver diseases. However, HSC activation is influenced by the complex microenvironments within the liver, which are largely shaped by the interactions between HSCs and various other cell types. Changes in HSC phenotypes and metabolic mechanisms involve glucose, lipid, and cholesterol metabolism, oxidative stress, activation of the unfolded protein response (UPR), autophagy, ferroptosis, senescence, and nuclear receptors. Clinical interventions targeting these pathways have shown promising results in addressing liver inflammation and fibrosis, as well as in modulating glucose and lipid metabolism and metabolic stress responses. Therefore, a comprehensive understanding of HSC phenotypes and metabolic mechanisms presents opportunities for novel therapeutic approaches aimed at halting or even reversing chronic liver diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
11
|
Ahmadi M, Bagherzadeh S, Boskabady MH, Vahabi A, Abolhasani S, Aslani MR. The effects of carvacrol on the cardiac apoptosis gene expression levels in heart tissue of obese male rats induced by high-fat diet. AVICENNA JOURNAL OF PHYTOMEDICINE 2025; 15:1059-1069. [PMID: 40292260 PMCID: PMC12033011 DOI: 10.22038/ajp.2024.25089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/07/2024] [Indexed: 04/30/2025]
Abstract
Objective Animal studies have revealed that lipid accumulation in obese mice fed with a high-fat diet (HFD) leads to alterations in the structural and functional properties of cardiovascular tissues. The current study aimed to investigate apoptosis/anti-apoptotic markers in the heart tissue of rats fed with a HFD. Materials and Methods Twenty-four male Wistar rats (weighing approximately 180 grams) were randomly divided into three groups (n=8 each group), including the control group (C), the high-fat diet group (HFD), and the high-fat diet + carvacrol group (HFD + Carva). Animals received a standard or HFD to induce obesity for three months. From day 61 to 90 in the HFD+Carva group, carvacrol was injected intraperitoneally (50 mg/kg) every other day. At the end of the study, the heart tissue was examined for pathological changes and the mRNA levels of TNF-α, Bcl2, Bax, and caspase3 in the heart tissue by Real Time-PCR. Results HFD-induced obesity led to increased TNF-α, caspase-3, and Bax and decreased Bcl-2 expression levels in heart tissue. Furthermore, histopathological changes in intracytoplasmic vacuole accumulation were evident in the HFD-obese animals. Carvacrol treatment significantly decreased the expression of Bax, TNF-α, and caspase-3 and increased the expression of Bcl-2 in heart tissue. Conclusion In the findings, carvacrol was found to decrease the histopathological changes caused by HFD in heart tissue by suppressing the expression of genes involved in the apoptosis pathway.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, East Azerbaijan, Iran
| | - Sadegh Bagherzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Vahabi
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sakhavat Abolhasani
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, East Azerbaijan, Iran
| | - Mohammad Reza Aslani
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
12
|
Rabiu L, Zhang P, Afolabi LO, Saliu MA, Dabai SM, Suleiman RB, Gidado KI, Ige MA, Ibrahim A, Zhang G, Wan X. Immunological dynamics in MASH: from landscape analysis to therapeutic intervention. J Gastroenterol 2024; 59:1053-1078. [PMID: 39400718 DOI: 10.1007/s00535-024-02157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), previously known as nonalcoholic steatohepatitis (NASH), is a multifaceted liver disease characterized by inflammation and fibrosis that develops from simple steatosis. Immune and inflammatory pathways have a central role in the pathogenesis of MASH, yet, how to target immune pathways to treat MASH remains perplexed. This review emphasizes the intricate role that immune cells play in the etiology and pathophysiology of MASH and highlights their significance as targets for therapeutic approaches. It discusses both current strategies and novel therapies aimed at modulating the immune response in MASH. It also highlights challenges in liver-specific drug delivery, potential off-target effects, and difficulties in targeting diverse immune cell populations within the liver. This review is a comprehensive resource that integrates current knowledge with future perspectives in the evolving field of MASH, with the goal of driving forward progress in medical therapies designed to treat this complex liver disease.
Collapse
Affiliation(s)
- Lawan Rabiu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
- Federal University Dutse, Jigawa, Nigeria
| | - Pengchao Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Lukman O Afolabi
- Department of Pediatrics, Indiana University School of Medicine, 1234 Notre Dame Ave, S Bend, IN, 46617, USA
| | - Muhammad A Saliu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Salisu M Dabai
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Rabiatu B Suleiman
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Khalid I Gidado
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Mark A Ige
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Abdulrahman Ibrahim
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| |
Collapse
|
13
|
Bai Y, Song Y, Li M, Ou J, Hu H, Xu N, Cao M, Wang S, Chen L, Cheng G, Li Z, Liu G, Wang J, Zhang W, Yang C. Dissection of molecular mechanisms of liver injury induced by microcystin-leucine arginine via single-cell RNA-sequencing. J Environ Sci (China) 2024; 145:164-179. [PMID: 38844317 DOI: 10.1016/j.jes.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 07/28/2024]
Abstract
The occurrence of poisoning incidents caused by cyanobacterial blooms has aroused wide public concern. Microcystin-leucine arginine (MC-LR) is a well-established toxin produced by cyanobacterial blooms, which is widely distributed in eutrophic waters. MC-LR is not only hazardous to the water environment but also exerts multiple toxic effects including liver toxicity in both humans and animals. However, the underlying mechanisms of MC-LR-induced liver toxicity are unclear. Herein, we used advanced single-cell RNA sequencing technology to characterize MC-LR-induced liver injury in mice. We established the first single-cell atlas of mouse livers in response to MC-LR. Our results showed that the differentially expressed genes and pathways in diverse cell types of liver tissues of mice treated with MC-LR are highly heterogeneous. Deep analysis showed that MC-LR induced an increase in a subpopulation of hepatocytes that highly express Gstm3, which potentially contributed to hepatocyte apoptosis in response to MC-LR. Moreover, MC-LR increased the proportion and multiple subtypes of Kupffer cells with M1 phenotypes and highly expressed proinflammatory genes. Furthermore, the MC-LR increased several subtypes of CD8+ T cells with highly expressed multiple cytokines and chemokines. Overall, apart from directly inducing hepatocytes apoptosis, MC-LR activated proinflammatory Kupffer cell and CD8+ T cells, and their interaction may constitute a hostile microenvironment that contributes to liver injury. Our findings not only present novel insight into underlying molecular mechanisms but also provide a valuable resource and foundation for additional discovery of MC-LR-induced liver toxicity.
Collapse
Affiliation(s)
- Yunmeng Bai
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, China; Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Yali Song
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, China
| | - Miaoran Li
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinhuan Ou
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Hong Hu
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Nan Xu
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Min Cao
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Siyu Wang
- Faculty of Brain Sciences, University College London, WC1E 6BT, UK
| | - Lin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhijie Li
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Jigang Wang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, China; Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wei Zhang
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| | - Chuanbin Yang
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| |
Collapse
|
14
|
Matchett KP, Paris J, Teichmann SA, Henderson NC. Spatial genomics: mapping human steatotic liver disease. Nat Rev Gastroenterol Hepatol 2024; 21:646-660. [PMID: 38654090 DOI: 10.1038/s41575-024-00915-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as non-alcoholic fatty liver disease) is a leading cause of chronic liver disease worldwide. MASLD can progress to metabolic dysfunction-associated steatohepatitis (MASH, formerly known as non-alcoholic steatohepatitis) with subsequent liver cirrhosis and hepatocellular carcinoma formation. The advent of current technologies such as single-cell and single-nuclei RNA sequencing have transformed our understanding of the liver in homeostasis and disease. The next frontier is contextualizing this single-cell information in its native spatial orientation. This understanding will markedly accelerate discovery science in hepatology, resulting in a further step-change in our knowledge of liver biology and pathobiology. In this Review, we discuss up-to-date knowledge of MASLD development and progression and how the burgeoning field of spatial genomics is driving exciting new developments in our understanding of human liver disease pathogenesis and therapeutic target identification.
Collapse
Affiliation(s)
- Kylie P Matchett
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Jasmin Paris
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
15
|
Fletcher K, Johnson DB. Chronic immune-related adverse events arising from immune checkpoint inhibitors: an update. J Immunother Cancer 2024; 12:e008591. [PMID: 38964785 PMCID: PMC11227828 DOI: 10.1136/jitc-2023-008591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed cancer treatment, improving outcomes for many patients. However, toxicities termed immune-related adverse events (irAEs) are limitations of these revolutionary treatments. These irAEs may resolve with treatment or ICI cessation (acute) or persist many months beyond therapy cessation (chronic). Acute irAEs were the first to be recognized and are thus more well studied. However, chronic irAEs have been highlighted in recent years and are becoming a topic of more intensive investigation. These chronic irAEs have been noted to affect many different organ systems, including endocrine, rheumatologic, gastrointestinal, dermatologic, neurologic, and cardiovascular systems. In this review, we discuss current knowledge surrounding the frequency, time course, and risk factors associated with chronic irAEs affecting various organ systems, treatment approaches, and future directions.
Collapse
Affiliation(s)
- Kylie Fletcher
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Tzeng HT, Lee WC. Impact of Transgenerational Nutrition on Nonalcoholic Fatty Liver Disease Development: Interplay between Gut Microbiota, Epigenetics and Immunity. Nutrients 2024; 16:1388. [PMID: 38732634 PMCID: PMC11085251 DOI: 10.3390/nu16091388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent pediatric liver disorder, primarily attributed to dietary shifts in recent years. NAFLD is characterized by the accumulation of lipid species in hepatocytes, leading to liver inflammation that can progress to steatohepatitis, fibrosis, and cirrhosis. Risk factors contributing to NAFLD encompass genetic variations and metabolic disorders such as obesity, diabetes, and insulin resistance. Moreover, transgenerational influences, resulting in an imbalance of gut microbial composition, epigenetic modifications, and dysregulated hepatic immune responses in offspring, play a pivotal role in pediatric NAFLD development. Maternal nutrition shapes the profile of microbiota-derived metabolites in offspring, exerting significant influence on immune system regulation and the development of metabolic syndrome in offspring. In this review, we summarize recent evidence elucidating the intricate interplay between gut microbiota, epigenetics, and immunity in fetuses exposed to maternal nutrition, and its impact on the onset of NAFLD in offspring. Furthermore, potential therapeutic strategies targeting this network are also discussed.
Collapse
Affiliation(s)
- Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33332, Taiwan
| |
Collapse
|
17
|
Zhang L, Shi Y, Liang B, Li X. An overview of the cholesterol metabolism and its proinflammatory role in the development of MASLD. Hepatol Commun 2024; 8:e0434. [PMID: 38696365 PMCID: PMC11068152 DOI: 10.1097/hc9.0000000000000434] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 05/04/2024] Open
Abstract
Cholesterol is an essential lipid molecule in mammalian cells. It is not only involved in the formation of cell membranes but also serves as a raw material for the synthesis of bile acids, vitamin D, and steroid hormones. Additionally, it acts as a covalent modifier of proteins and plays a crucial role in numerous life processes. Generally, the metabolic processes of cholesterol absorption, synthesis, conversion, and efflux are strictly regulated. Excessive accumulation of cholesterol in the body is a risk factor for metabolic diseases such as cardiovascular disease, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD). In this review, we first provide an overview of the discovery of cholesterol and the fundamental process of cholesterol metabolism. We then summarize the relationship between dietary cholesterol intake and the risk of developing MASLD, and also the animal models of MASLD specifically established with a cholesterol-containing diet. In the end, the role of cholesterol-induced inflammation in the initiation and development of MASLD is discussed.
Collapse
Affiliation(s)
- Linqiang Zhang
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yongqiong Shi
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Bin Liang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Mladenić K, Lenartić M, Marinović S, Polić B, Wensveen FM. The "Domino effect" in MASLD: The inflammatory cascade of steatohepatitis. Eur J Immunol 2024; 54:e2149641. [PMID: 38314819 DOI: 10.1002/eji.202149641] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly common complication of obesity, affecting over a quarter of the global adult population. A key event in the pathophysiology of MASLD is the development of metabolic-associated steatohepatitis (MASH), which greatly increases the chances of developing cirrhosis and hepatocellular carcinoma. The underlying cause of MASH is multifactorial, but accumulating evidence indicates that the inflammatory process in the hepatic microenvironment typically follows a pattern that can be roughly divided into three stages: (1) Detection of hepatocyte stress by tissue-resident immune cells including γδ T cells and CD4-CD8- double-negative T cells, followed by their secretion of pro-inflammatory mediators, most notably IL-17A. (2) Recruitment of pro-inflammatory cells, mostly of the myeloid lineage, and initiation of inflammation through secretion of effector-type cytokines such as TNF, TGF-β, and IL-1β. (3) Escalation of the inflammatory response by recruitment of lymphocytes including Th17, CD8 T, and B cells leading to chronic inflammation, hepatic stellate cell activation, and fibrosis. Here we will discuss these three stages and how they are consecutively linked like falling domino tiles to the pathophysiology of MASH. Moreover, we will highlight the clinical potential of inflammation as a biomarker and therapeutic target for the treatment of MASLD.
Collapse
Affiliation(s)
- Karlo Mladenić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sonja Marinović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Division of Molecular Medicine, Laboratory for Personalized Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
19
|
Li Z, Wang S, Xu Q, Su X, Wang Y, Wang L, Zhang Y. The double roles of T cell-mediated immune response in the progression of MASLD. Biomed Pharmacother 2024; 173:116333. [PMID: 38479177 DOI: 10.1016/j.biopha.2024.116333] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease(MASLD), formerly known as non-alcoholic fatty liver disease(NAFLD), has become a major cause of chronic liver disease and a significant risk factor for hepatocellular carcinoma, which poses a huge burden on global public health and economy. MASLD includes steatotic liver disease, steatohepatitis, and cirrhosis, and the latter two cause great harm to human health and life, even complicated with liver cancer. Immunologic mechanism plays a major role in promoting its development into hepatitis and cirrhosis. Now more and more evidences show that T cells play an important role in the progression of MASLD. In this review, we discuss the double roles of T cells in MASLD from the perspective of T cell response pathways, as well as new evidences regarding the possible application of immunomodulatory therapy in MASH.
Collapse
Affiliation(s)
- Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Shujun Wang
- Department of Medical Parasitology, Wannan Medical College, Wuhu 241000, China
| | - Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Lina Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China.
| | - Yong Zhang
- Shandong Provincial Third Hospital Affiliated to Shandong University, Jinan, Shandong Province 250031, China.
| |
Collapse
|
20
|
Raoufinia R, Arabnezhad A, Keyhanvar N, Abdyazdani N, Saburi E, Naseri N, Niazi F, Niazi F, Namdar AB, Rahimi HR. Leveraging stem cells to combat hepatitis: a comprehensive review of recent studies. Mol Biol Rep 2024; 51:459. [PMID: 38551743 DOI: 10.1007/s11033-024-09391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Hepatitis is a significant global public health concern, with viral infections being the most common cause of liver inflammation. Antiviral medications are the primary treatments used to suppress the virus and prevent liver damage. However, the high cost of these drugs and the lack of awareness and stigma surrounding the disease create challenges in managing hepatitis. Stem cell therapy has arisen as a promising therapeutic strategy for hepatitis by virtue of its regenerative and immunomodulatory characteristics. Stem cells have the exceptional capacity to develop into numerous cell types and facilitate tissue regeneration, rendering them a highly promising therapeutic avenue for hepatitis. In animal models, stem cell therapy has demonstrated worthy results by reducing liver inflammation and improving liver function. Furthermore, clinical trials have been undertaken to assess the safety and effectiveness of stem cell therapy in individuals with hepatitis. This review aims to explore the involvement of stem cells in treating hepatitis and highlight the findings from studies conducted on both animals and humans. The objective of this review is to primarily concentrate on the ongoing and future clinical trials that assess the application of stem cell therapy in the context of hepatitis, including the transplantation of autologous bone marrow-derived stem cells, human induced pluripotent stem cells, and other mesenchymal stem cells. In addition, this review will explore the potential merits and constraints linked to stem cell therapy for hepatitis, as well as its prospective implications in the management of this disease.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Arabnezhad
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Keyhanvar
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, 94107, USA
| | - Nima Abdyazdani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Naseri
- Department of Biochemistry, School of medicine, Hamadan University of medical sciences, Hamadan, Iran
| | - Fereshteh Niazi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Niazi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Beheshti Namdar
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Topchieva LV, Kurbatova IV, Dudanova OP, Vasileva AV, Zhulai GA. Immune cell balance as potential biomarker of progressing non-alcoholic fatty liver disease. GENES & CELLS 2024; 19:105-125. [DOI: 10.17816/gc610252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a widespread chronic, slowly progressive metabolic multifactorial disease. It is represented by several clinical and morphological forms: steatosis, nonalcoholic steatohepatitis (NASH) (with or without fibrosis), and liver cirrhosis. The search for minimally invasive and cost-effective biomarkers of NAFLD is a key task in the diagnosis, staging of progression, and long-term monitoring of NAFLD. This article discusses the possibility of using immune cell balance as potential minimally invasive peripheral markers of NAFLD progression. In the progression of NASH from steatosis to fibrosis and cirrhosis, inflammation plays an important role because of the activation of Kupffer cells and increased migration of monocytes, dendritic cells, neutrophils, and activated T lymphocytes into the tissues. Macrophages originating from monocytes, with NASH progression, gradually begin to prevail over the pool of resident macrophages. The risk of NASH and fibrosis development in patients with NAFLD increases with the ratio of neutrophils/lymphocytes in the liver. An increase in the Th17 cell count and a decrease in T-regulatory cell count can contribute to increased hepatic steatosis and inflammation development in NAFLD and accelerate the transition from simple steatosis to steatohepatitis and fibrosis. Information on the participation of noncoding RNAs in the regulation of the balance of immune cells in NAFLD is presented, which also allows us to consider them as additional, along with cellular, markers of disease progression.
Collapse
|
22
|
Pipitone RM, Lupo G, Zito R, Javed A, Petta S, Pennisi G, Grimaudo S. The PD-1/PD-L1 Axis in the Biology of MASLD. Int J Mol Sci 2024; 25:3671. [PMID: 38612483 PMCID: PMC11011676 DOI: 10.3390/ijms25073671] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver (MASL), previously named nonalcoholic fatty liver (NAFL), is a multifactorial disease in which metabolic, genetic, and environmental risk factors play a predominant role. Obesity and type 2 diabetes act as triggers of the inflammatory response, which contributes to the progression of MASL to Metabolic Dysfunction-Associated Steatohepatitis and the development of hepatocellular carcinoma. In the liver, several parenchymal, nonparenchymal, and immune cells maintain immunological homeostasis, and different regulatory pathways balance the activation of the innate and adaptative immune system. PD-1/PD-L1 signaling acts, in the maintenance of the balance between the immune responses and the tissue immune homeostasis, promoting self-tolerance through the modulation of activated T cells. Recently, PD-1 has received much attention for its roles in inducing an exhausted T cells phenotype, promoting the tumor escape from immune responses. Indeed, in MASLD, the excessive fat accumulation dysregulates the immune system, increasing cytotoxic lymphocytes and decreasing their cytolytic activity. In this context, T cells exacerbate liver damage and promote tumor progression. The aim of this review is to illustrate the main pathogenetic mechanisms by which the immune system promotes the progression of MASLD and the transition to HCC, as well as to discuss the possible therapeutic applications of PD-1/PD-L1 target therapy to activate T cells and reinvigorate immune surveillance against cancer.
Collapse
|
23
|
Burtis AEC, DeNicola DMC, Ferguson ME, Santos RG, Pinilla C, Kriss MS, Orlicky DJ, Tamburini BAJ, Gillen AE, Burchill MA. Antigen-driven CD8 + T cell clonal expansion is a prominent feature of MASH in humans and mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.583964. [PMID: 38562766 PMCID: PMC10983976 DOI: 10.1101/2024.03.20.583964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background and Aims Chronic liver disease due to metabolic dysfunction-associated steatohepatitis (MASH) is a rapidly increasing global epidemic. MASH progression is a consequence of the complex interplay between inflammatory insults and dysregulated hepatic immune responses. T lymphocytes have been shown to accumulate in the liver during MASH, but the cause and consequence of T cell accumulation in the liver remain unclear. Our study aimed to define the phenotype and T cell receptor diversity of T cells from human cirrhotic livers and an animal model of MASH to begin resolving their function in disease. Approach and Results In these studies, we evaluated differences in T cell phenotype in the context of liver disease we isolated liver resident T cell populations from individuals with cirrhosis and a murine model of MASH. Using both 5' single cell sequencing and flow cytometry we defined the phenotype and T cell receptor repertoire of liver resident T cells during health and disease. Conclusions MASH-induced cirrhosis and diet-induced MASH in mice resulted in the accumulation of activated and clonally expanded T cells in the liver. The clonally expanded T cells in the liver expressed markers of chronic antigenic stimulation, including PD1 , TIGIT and TOX . Overall, this study establishes for the first time that T cells undergo antigen-dependent clonal expansion and functional differentiation during the progression of MASH. These studies could lead to the identification of potential antigenic targets that drive T cell activation, clonal expansion, and recruitment to the liver during MASH.
Collapse
|
24
|
Huang SC, Su TH, Tseng TC, Chen CL, Hsu SJ, Liu CH, Liao SH, Hong CM, Lan TY, Yang HC, Liu CJ, Chen PJ, Kao JH. Metabolic Dysfunction-Associated Steatotic Liver Disease Facilitates Hepatitis B Surface Antigen Seroclearance and Seroconversion. Clin Gastroenterol Hepatol 2024; 22:581-590.e6. [PMID: 37871842 DOI: 10.1016/j.cgh.2023.09.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND & AIMS Hepatitis B surface antigen (HBsAg) seroclearance is the goal of functional cure for hepatitis B virus (HBV) infection. However, the impact of metabolic dysfunction-associated steatotic liver disease (MASLD) on this favorable outcome remains unclear. METHODS Patients with chronic hepatitis B (CHB) were consecutively recruited. MASLD was defined by the newly proposed disease criteria. Cumulative incidences and associated factors of HBsAg seroclearance/seroconversion were compared between the MASLD and non-MASLD groups. RESULTS From 2006 to 2021, 4084 treatment-naive hepatitis B e antigen (HBeAg)-negative CHB patients were included. At baseline, CHB patients with concurrent MASLD (n = 887) had significantly lower levels of HBsAg and HBV DNA than the non-MASLD group (n = 3197). During a median follow-up of 5.0 years, MASLD was associated with a higher likelihood of HBsAg seroclearance (adjusted hazard ratio [aHR], 1.43; 95% confidence interval [CI], 1.10-1.85; P = .007), and the accumulation of individual metabolic dysfunctions additively facilitated HBsAg seroclearance. In addition, a higher rate of HBsAg seroconversion was observed in patients with MASLD versus those without MASLD (aHR, 1.37; 95% CI, 1.00-1.86; P = .049). In sensitivity analysis, patients with intermittent MASLD had an intermediate probability of HBsAg seroclearance. After balancing clinical and virologic profiles by inverse probability of treatment weighting (IPTW), MASLD was still associated with a higher HBsAg seroclearance rate (IPTW-adjusted HR, 1.41; 95% CI, 1.09-1.84; P = .010). CONCLUSIONS In untreated HBeAg-negative CHB patients, concurrent MASLD is associated with higher rates of HBsAg seroclearance and seroconversion. Metabolic dysfunctions have additive effects on the functional cure of CHB.
Collapse
Affiliation(s)
- Shang-Chin Huang
- Department of Internal Medicine, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tung-Hung Su
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan.
| | - Tai-Chung Tseng
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Ling Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Jer Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Hua Liu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Sih-Han Liao
- National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chun-Ming Hong
- Division of Hospital Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ting-Yuan Lan
- Division of Rheumatology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Hung-Chih Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Jen Liu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Jia-Horng Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
25
|
Ma F, Huang X, Cai B. Linking MASLD to ACVD through Kupffer cells. NATURE CARDIOVASCULAR RESEARCH 2024; 3:258-259. [PMID: 39196120 DOI: 10.1038/s44161-024-00442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Fanglin Ma
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xin Huang
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
26
|
Di Nunzio G, Hellberg S, Zhang Y, Ahmed O, Wang J, Zhang X, Björck HM, Chizh V, Schipper R, Aulin H, Francis R, Fagerberg L, Gisterå A, Metso J, Manfé V, Franco-Cereceda A, Eriksson P, Jauhiainen M, Hagberg CE, Olofsson PS, Malin SG. Kupffer cells dictate hepatic responses to the atherogenic dyslipidemic insult. NATURE CARDIOVASCULAR RESEARCH 2024; 3:356-371. [PMID: 39196121 PMCID: PMC11358021 DOI: 10.1038/s44161-024-00448-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/05/2024] [Indexed: 08/29/2024]
Abstract
Apolipoprotein-B (APOB)-containing lipoproteins cause atherosclerosis. Whether the vasculature is the initially responding site or if atherogenic dyslipidemia affects other organs simultaneously is unknown. Here we show that the liver responds to a dyslipidemic insult based on inducible models of familial hypercholesterolemia and APOB tracing. An acute transition to atherogenic APOB lipoprotein levels resulted in uptake by Kupffer cells and rapid accumulation of triglycerides and cholesterol in the liver. Bulk and single-cell RNA sequencing revealed a Kupffer-cell-specific transcriptional program that was not activated by a high-fat diet alone or detected in standard liver function or pathological assays, even in the presence of fulminant atherosclerosis. Depletion of Kupffer cells altered the dynamic of plasma and liver lipid concentrations, indicating that these liver macrophages help restrain and buffer atherogenic lipoproteins while simultaneously secreting atherosclerosis-modulating factors into plasma. Our results place Kupffer cells as key sentinels in organizing systemic responses to lipoproteins at the initiation of atherosclerosis.
Collapse
Affiliation(s)
- Giada Di Nunzio
- Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sanna Hellberg
- Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yuyang Zhang
- Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Osman Ahmed
- Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Biochemistry, Faculty of Medicine, Khartoum University, Khartoum, Sudan
| | - Jiawen Wang
- Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xueming Zhang
- Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hanna M Björck
- Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Veronika Chizh
- Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ruby Schipper
- Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Aulin
- Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Roy Francis
- Science for Life Laboratory, Department of Cell and Molecular Biology (ICM), National Bioinformatics Infrastructure Sweden (NBIS), Uppsala University, Uppsala, Sweden
| | - Linn Fagerberg
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anton Gisterå
- Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jari Metso
- Finnish Institute for Health and Welfare, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | - Anders Franco-Cereceda
- Section of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Eriksson
- Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matti Jauhiainen
- Finnish Institute for Health and Welfare, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Carolina E Hagberg
- Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peder S Olofsson
- Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stephen G Malin
- Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
27
|
Lodge M, Scheidemantle G, Adams VR, Cottam MA, Richard D, Breuer D, Thompson P, Shrestha K, Liu X, Kennedy A. Fructose regulates the pentose phosphate pathway and induces an inflammatory and resolution phenotype in Kupffer cells. Sci Rep 2024; 14:4020. [PMID: 38369593 PMCID: PMC10874942 DOI: 10.1038/s41598-024-54272-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/10/2024] [Indexed: 02/20/2024] Open
Abstract
Over-consumption of fructose in adults and children has been linked to increased risk of non-alcoholic fatty liver disease (NAFLD). Recent studies have highlighted the effect of fructose on liver inflammation, fibrosis, and immune cell activation. However, little work summarizes the direct impact of fructose on macrophage infiltration, phenotype, and function within the liver. We demonstrate that chronic fructose diet decreased Kupffer cell populations while increasing transitioning monocytes. In addition, fructose increased fibrotic gene expression of collagen 1 alpha 1 (Col1a1) and tissue metallopeptidase inhibitor 1 (Timp1) as well as inflammatory gene expression of tumor necrosis factor alpha (Tnfa) and expression of transmembrane glycoprotein NMB (Gpnmb) in liver tissue compared to glucose and control diets. Single cell RNA sequencing (scRNAseq) revealed fructose elevated expression of matrix metallopeptidase 12 (Mmp12), interleukin 1 receptor antagonist (Il1rn), and radical S-adenosyl methionine domain (Rsad2) in liver and hepatic macrophages. In vitro studies using IMKC and J774.1 cells demonstrated decreased viability when exposed to fructose. Additionally, fructose increased Gpnmb, Tnfa, Mmp12, Il1rn, and Rsad2 in unpolarized IMKC. By mass spectrometry, C13 fructose tracing detected fructose metabolites in glycolysis and the pentose phosphate pathway (PPP). Inhibition of the PPP further increased fructose induced Il6, Gpnmb, Mmp12, Il1rn, and Rsad2 in nonpolarized IMKC. Taken together, fructose decreases cell viability while upregulating resolution and anti-inflammatory associated genes in Kupffer cells.
Collapse
Affiliation(s)
- Mareca Lodge
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, USA
| | - Grace Scheidemantle
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, USA
| | - Victoria R Adams
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, USA
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Daniel Richard
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, USA
| | - Denitra Breuer
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, USA
| | - Peter Thompson
- Molecular Education, Technology and Research Innovation Center (METRIC), NC State University, Raleigh, NC, USA
| | - Kritika Shrestha
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, USA
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, USA
| | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, USA.
| |
Collapse
|
28
|
Parola M, Pinzani M. Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies. Mol Aspects Med 2024; 95:101231. [PMID: 38056058 DOI: 10.1016/j.mam.2023.101231] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Liver fibrosis, as an excess deposition of extracellular matrix (ECM) components, results from chronic liver injury as well as persistent activation of inflammatory response and of fibrogenesis. Liver fibrosis is a major determinant for chronic liver disease (CLD) progression and in the last two decades our understanding on the major molecular and cellular mechanisms underlying the fibrogenic progression of CLD has dramatically improved, boosting pre-clinical studies and clinical trials designed to find novel therapeutic approaches. From these studies several critical concepts have emerged, starting to reveal the complexity of the pro-fibrotic microenvironment which involves very complex, dynamic and interrelated interactions between different hepatic and extrahepatic cell populations. This review will offer first a recapitulation of established and novel pathophysiological basic principles and concepts by intentionally focus the attention on NAFLD/NASH, a metabolic-related form of CLD with a high impact on the general population and emerging as a leading cause of CLD worldwide. NAFLD/NASH-related pro-inflammatory and profibrogenic mechanisms will be analysed as well as novel information on cells, mediators and signalling pathways which have taken advantage from novel methodological approaches and techniques (single cell genomics, imaging mass cytometry, novel in vitro two- and three-dimensional models, etc.). We will next offer an overview on recent advancement in diagnostic and prognostic tools, including serum biomarkers and polygenic scores, to support the analysis of liver biopsies. Finally, this review will provide an analysis of current and emerging therapies for the treatment of NAFLD/NASH patients.
Collapse
Affiliation(s)
- Maurizio Parola
- Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Division of Medicine - Royal Free Hospital, London, NW32PF, United Kingdom.
| |
Collapse
|
29
|
Adams VR, Collins LB, Williams TI, Holmes J, Hess P, Atkins HM, Scheidemantle G, Liu X, Lodge M, Johnson AJ, Kennedy A. Myeloid cell MHC I expression drives CD8 + T cell activation in nonalcoholic steatohepatitis. Front Immunol 2024; 14:1302006. [PMID: 38274832 PMCID: PMC10808415 DOI: 10.3389/fimmu.2023.1302006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
Background & aims Activated CD8+ T cells are elevated in Nonalcoholic steatohepatitis (NASH) and are important for driving fibrosis and inflammation. Despite this, mechanisms of CD8+ T cell activation in NASH are largely limited. Specific CD8+ T cell subsets may become activated through metabolic signals or cytokines. However, studies in NASH have not evaluated the impact of antigen presentation or the involvement of specific antigens. Therefore, we determined if activated CD8+ T cells are dependent on MHC class I expression in NASH to regulate fibrosis and inflammation. Methods We used H2Kb and H2Db deficient (MHC I KO), Kb transgenic mice, and myeloid cell Kb deficient mice (LysM Kb KO) to investigate how MHC class I impacts CD8+ T cell function and NASH. Flow cytometry, gene expression, and histology were used to examine hepatic inflammation and fibrosis. The hepatic class I immunopeptidome was evaluated by mass spectrometry. Results In NASH, MHC class I isoform H2Kb was upregulated in myeloid cells. MHC I KO demonstrated protective effects against NASH-induced inflammation and fibrosis. Kb mice exhibited increased fibrosis in the absence of H2Db while LysM Kb KO mice showed protection against fibrosis but not inflammation. H2Kb restricted peptides identified a unique NASH peptide Ncf2 capable of CD8+ T cell activation in vitro. The Ncf2 peptide was not detected during fibrosis resolution. Conclusion These results suggest that activated hepatic CD8+ T cells are dependent on myeloid cell MHC class I expression in diet induced NASH to promote inflammation and fibrosis. Additionally, our studies suggest a role of NADPH oxidase in the production of Ncf2 peptide generation.
Collapse
Affiliation(s)
- Victoria R. Adams
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Leonard B. Collins
- Molecular Education, Technology and Research Innovation Center (METRIC), NC State University, Raleigh, NC, United States
| | - Taufika Islam Williams
- Molecular Education, Technology and Research Innovation Center (METRIC), NC State University, Raleigh, NC, United States
- Department of Chemistry, NC State University, Raleigh, NC, United States
| | - Jennifer Holmes
- College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Paul Hess
- College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Hannah M. Atkins
- Center for Human Health and Environment, NC State University, Raleigh, NC, United States
- Division of Comparative Medicine, UNC Chapel Hill, Chapel Hill, NC, United States
| | - Grace Scheidemantle
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Mareca Lodge
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| |
Collapse
|
30
|
Mims TS, Kumari R, Leathem C, Antunes K, Joseph S, Yen MI, Ferstl D, Jamieson SM, Sabbar A, Biebel C, Lazarevic N, Willis NB, Henry L, Yen CLE, Smith JP, Gosain A, Meisel M, Willis KA, Talati AJ, Elabiad MT, Hibl B, Pierre JF. Altered hepatic and intestinal homeostasis in a neonatal murine model of short-term total parenteral nutrition and antibiotics. Am J Physiol Gastrointest Liver Physiol 2023; 325:G556-G569. [PMID: 37753583 PMCID: PMC11901332 DOI: 10.1152/ajpgi.00129.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 09/28/2023]
Abstract
Parenteral nutrition (PN) prevents starvation and supports metabolic requirements intravenously when patients are unable to be fed enterally. Clinically, infants are frequently provided PN in intensive care settings along with exposure to antibiotics (ABX) to minimize infection during care. Unfortunately, neonates experience extremely high rates of hepatic complications. Adult rodent and piglet models of PN are well-established but neonatal models capable of leveraging the considerable transgenic potential of the mouse remain underdeveloped. Utilizing our newly established neonatal murine PN mouse model, we administered ABX or controlled drinking water to timed pregnant dams to disrupt the maternal microbiome. We randomized mouse pups to PN or sham surgery controls +/- ABX exposure. ABX or short-term PN decreased liver and brain organ weights, intestinal length, and mucosal architecture (vs. controls). PN significantly elevated evidence of hepatic proinflammatory markers, neutrophils and macrophage counts, bacterial colony-forming units, and evidence of cholestasis risk, which was blocked by ABX. However, ABX uniquely elevated metabolic regulatory genes resulting in accumulation of hepatocyte lipids, triglycerides, and elevated tauro-chenoxycholic acid (TCDCA) in serum. Within the gut, PN elevated the relative abundance of Akkermansia, Enterococcus, and Suterella with decreased Anaerostipes and Lactobacillus compared with controls, whereas ABX enriched Proteobacteria. We conclude that short-term PN elevates hepatic inflammatory stress and risk of cholestasis in early life. Although concurrent ABX exposure protects against hepatic immune activation during PN, the dual exposure modulates metabolism and may contribute toward early steatosis phenotype, sometimes observed in infants unable to wean from PN.NEW & NOTEWORTHY This study successfully established a translationally relevant, murine neonatal parenteral nutrition (PN) model. Short-term PN is sufficient to induce hepatitis-associated cholestasis in a neonatal murine model that can be used to understand disease in early life. The administration of antibiotics during PN protects animals from bacterial translocation and proinflammatory responses but induces unique metabolic shifts that may predispose the liver toward early steatosis.
Collapse
Affiliation(s)
- Tahliyah S Mims
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Roshan Kumari
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Cameron Leathem
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Karen Antunes
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Sydney Joseph
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Mei-I Yen
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Danielle Ferstl
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Sophia M Jamieson
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Austin Sabbar
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Claudia Biebel
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Nikolai Lazarevic
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Nathaniel B Willis
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Lydia Henry
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Chi-Liang E Yen
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Joseph P Smith
- Department of Pharmacy, University of Wisconsin Hospitals and Clinics, Madison, Wisconsin, United States
| | - Ankush Gosain
- Department of Pediatric Surgery, Children's Hospital of Colorado, Denver, Colorado, United States
| | - Marlies Meisel
- Department of Immunology, University of Pittsburg, Pittsburg, Pennsylvania, United States
| | - Kent A Willis
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ajay J Talati
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Mohammad T Elabiad
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Brianne Hibl
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Joseph F Pierre
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
31
|
Zhao Q, Wu J, Ding Y, Pang Y, Jiang C. Gut microbiota, immunity, and bile acid metabolism: decoding metabolic disease interactions. LIFE METABOLISM 2023; 2:load032. [PMID: 39872860 PMCID: PMC11749371 DOI: 10.1093/lifemeta/load032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 01/03/2025]
Abstract
In recent decades, the global prevalence of metabolic syndrome has surged, posing a significant public health challenge. Metabolic disorders, encompassing diabetes, obesity, nonalcoholic fatty liver disease, and polycystic ovarian syndrome, have been linked to alterations in the gut microbiota. Nonetheless, the connection between gut microbiota and host metabolic diseases warrants further investigation. In this review, we delve into the associations between various metabolic disorders and the gut microbiota, focusing on immune responses and bile acid (BA) metabolism. Notably, T helper cells, innate lymphoid cells, macrophages, and dendritic cells have been shown to modulate host metabolism through interactions with intestinal microorganisms and the release of cytokines. Furthermore, secondary BA metabolites, derived from the microbiota, are involved in the pathogenesis of metabolic diseases via the farnesoid X receptor and Takeda G protein-coupled receptor 5. By covering both aspects of this immune system-microorganism axis, we present a comprehensive overview of the roles played by the gut microbiota, microbiota-derived BA metabolites, and immune responses in metabolic diseases, as well as the interplay between these systems.
Collapse
Affiliation(s)
- Qixiang Zhao
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiayu Wu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yong Ding
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yanli Pang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
32
|
Lowe KO, Tanase CE, Maghami S, Fisher LE, Ghaemmaghami AM. Inflammatory Network of Liver Fibrosis and How It Can Be Targeted Therapeutically. IMMUNO 2023; 3:375-408. [DOI: 10.3390/immuno3040023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a complex, dynamic process associated with a broad spectrum of chronic liver diseases and acute liver failure, characterised by the dysregulated intrahepatic production of extracellular matrix proteins replacing functional liver cells with scar tissue. Fibrosis progresses due to an interrelated cycle of hepatocellular injury, triggering a persistent wound-healing response. The accumulation of scar tissue and chronic inflammation can eventually lead to cirrhosis and hepatocellular carcinoma. Currently, no therapies exist to directly treat or reverse liver fibrosis; hence, it remains a substantial global disease burden. A better understanding of the intricate inflammatory network that drives the initiation and maintenance of liver fibrosis to enable the rationale design of new intervention strategies is required. This review clarifies the most current understanding of the hepatic fibrosis cellular network with a focus on the role of regulatory T cells, and a possible trajectory for T cell immunotherapy in fibrosis treatment. Despite good progress in elucidating the role of the immune system in liver fibrosis, future work to better define the function of different immune cells and their mediators at different fibrotic stages is needed, which will enhance the development of new therapies.
Collapse
Affiliation(s)
- Kirstin O. Lowe
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK
| | - Leanne E. Fisher
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
33
|
Provera A, Ramavath NN, Gadipudi LL, Gigliotti CL, Boggio E, Vecchio C, Stoppa I, Rolla R, Boldorini R, Pirisi M, Smirne C, Albano E, Dianzani U, Sutti S. Role of the co-stimulatory molecule inducible T-cell co-stimulator ligand (ICOSL) in the progression of experimental metabolic dysfunction-associated steatohepatitis. Front Immunol 2023; 14:1290391. [PMID: 38077334 PMCID: PMC10702974 DOI: 10.3389/fimmu.2023.1290391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND AND AIMS Inducible T-cell Co-Stimulator (ICOS) present on T-lymphocytes and its ligand ICOSL expressed by myeloid cells play multiple roles in regulating T-cell functions. However, recent evidence indicates that reverse signalling involving ICOSL is also important in directing the differentiation of monocyte-derived cells. In this study, we investigated the involvement of ICOS/ICOSL dyad in modulating macrophage functions during the evolution of metabolic dysfunction-associated steatohepatitis (MASH). RESULTS In animal models of MASH, ICOS was selectively up-regulated on CD8+ T-cells in parallel with an expansion of ICOSL-expressing macrophages. An increase in circulating soluble ICOSL was also evident in patients with MASH as compared to healthy individuals. ICOSL knockout (ICOSL-/-) mice receiving choline/methionine deficient (MCD) diet for 6 weeks had milder steatohepatitis than wild type mice. MASH improvement was confirmed in mice fed with cholesterol-enriched Western diet for 24 weeks in which ICOSL deficiency greatly reduced liver fibrosis along with the formation of crown-like macrophage aggregates producing the pro-fibrogenic mediators osteopontin (OPN) and galectin-3 (Gal-3). These effects associated with a selective shewing of F4-80+/CD11bhigh monocyte-derived macrophages (MoMFs) expressing the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) to CD11blow/F4-80+ cells positive for the Kupffer cell marker C-type lectin-like type 2 receptor (CLEC-2), thus indicating an increased MoMF maturation toward monocyte-derived Kupffer cells. CONCLUSIONS These results suggest that CD8+ T-cells interaction with monocyte-derived macrophages through ICOS/ICOSL critically supports a specific subset of TREM2+-expressing cells contributing to the evolution of steatohepatitis. The data also point ICOS/ICOSL dyad as a possible target for therapeutic interventions in MASH.
Collapse
Affiliation(s)
- Alessia Provera
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Naresh Naik Ramavath
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
- Department of Pediatrics, Washington University in St. Louis, St Louis, MO, United States
| | | | | | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Cristina Vecchio
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Renzo Boldorini
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Mario Pirisi
- Translational Medicine and Interdisciplinary Research Centre for Autoimmune Diseases, Università del Piemonte Orientale, Novara, Italy
| | - Carlo Smirne
- Translational Medicine and Interdisciplinary Research Centre for Autoimmune Diseases, Università del Piemonte Orientale, Novara, Italy
| | - Emanuele Albano
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
34
|
Borrello MT, Mann D. Chronic liver diseases: From development to novel pharmacological therapies: IUPHAR Review 37. Br J Pharmacol 2023; 180:2880-2897. [PMID: 35393658 DOI: 10.1111/bph.15853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic liver diseases comprise a broad spectrum of burdensome diseases that still lack effective pharmacological therapies. Our research group focuses on fibrosis, which is a major precursor of liver cirrhosis. Fibrosis consists in a progressive disturbance of liver sinusoidal architecture characterised by connective tissue deposition as a reparative response to tissue injury. Multifactorial events and several types of cells participate in fibrosis initiation and progression, and the process still needs to be completely understood. The development of experimental models of liver fibrosis alongside the identification of critical factors progressing fibrosis to cirrhosis will facilitate the development of more effective therapeutic approaches for such condition. This review provides an overlook of the main process leading to hepatic fibrosis and therapeutic approaches that have emerged from a deep knowledge of the molecular regulation of fibrogenesis in the liver. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Maria Teresa Borrello
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Derek Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
35
|
Abstract
Chronic liver diseases such as nonalcoholic fatty liver disease (NAFLD) or viral hepatitis are characterized by persistent inflammation and subsequent liver fibrosis. Liver fibrosis critically determines long-term morbidity (for example, cirrhosis or liver cancer) and mortality in NAFLD and nonalcoholic steatohepatitis (NASH). Inflammation represents the concerted response of various hepatic cell types to hepatocellular death and inflammatory signals, which are related to intrahepatic injury pathways or extrahepatic mediators from the gut-liver axis and the circulation. Single-cell technologies have revealed the heterogeneity of immune cell activation concerning disease states and the spatial organization within the liver, including resident and recruited macrophages, neutrophils as mediators of tissue repair, auto-aggressive features of T cells as well as various innate lymphoid cell and unconventional T cell populations. Inflammatory responses drive the activation of hepatic stellate cells (HSCs), and HSC subsets, in turn, modulate immune mechanisms via chemokines and cytokines or transdifferentiate into matrix-producing myofibroblasts. Current advances in understanding the pathogenesis of inflammation and fibrosis in the liver, mainly focused on NAFLD or NASH owing to the high unmet medical need, have led to the identification of several therapeutic targets. In this Review, we summarize the inflammatory mediators and cells in the diseased liver, fibrogenic pathways and their therapeutic implications.
Collapse
Affiliation(s)
- Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
36
|
Zhong X, Lv M, Ma M, Huang Q, Hu R, Li J, Yi J, Sun J, Zhou X. State of CD8 + T cells in progression from nonalcoholic steatohepatitis to hepatocellular carcinoma: From pathogenesis to immunotherapy. Biomed Pharmacother 2023; 165:115131. [PMID: 37429231 DOI: 10.1016/j.biopha.2023.115131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023] Open
Abstract
With the obesity epidemic, nonalcoholic steatohepatitis (NASH) is emerging as the fastest growing potential cause of hepatocellular carcinoma (HCC). NASH has been demonstrated to establish a tumor-prone liver microenvironment where both innate and adaptive immune systems are involved. As the most typical anti-tumor effector, the cell function of CD8+ T cells is remodeled by chronic inflammation, metabolic alteration, lipid toxicity and oxidative stress in the liver microenvironment along the NASH to HCC transition. Unexpectedly, NASH may blunt the effect of immune checkpoint inhibitor therapy against HCC due to the dysregulated CD8+ T cells. Growing evidence has supported that NASH is likely to facilitate the state transition of CD8+ T cells with changes in cell motility, effector function, metabolic reprogramming and gene transcription according to single-cell sequencing. However, the mechanistic insight of CD8+ T cell states in the NASH-driven HCC is not comprehensive. Herein, we focus on the characterization of state phenotypes of CD8+ T cells with both functional and metabolic signatures in NASH-driven fibrosis and HCC. The NASH-specific CD8+ T cells are speculated to mainly have a dualist effect, where its aberrant activated phenotype sustains chronic inflammation in NASH but subsequently triggers its exhaustion in HCC. As the exploration of CD8+ T cells on the distribution and phenotypic shifts will provide a new direction for the intervention strategies against HCC, we also discuss the implications for targeting different phenotypes of CD8+ T cells, shedding light on the personalized immunotherapy for NASH-driven HCC.
Collapse
Affiliation(s)
- Xin Zhong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Minling Lv
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - MengQing Ma
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Qi Huang
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Rui Hu
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jing Li
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jinyu Yi
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jialing Sun
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaozhou Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
37
|
Kawamura E, Matsubara T, Kawada N. New Era of Immune-Based Therapy in Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2023; 15:3993. [PMID: 37568808 PMCID: PMC10417782 DOI: 10.3390/cancers15153993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (CC) accounts for approximately 20% of all biliary tract cancer (BTC) cases and 10-15% of all primary liver cancer cases. Many patients are diagnosed with unresectable BTC, and, even among patients with resectable BTC, the 5-year survival rate is approximately 20%. The BTC incidence rate is high in Southeast and East Asia and has increased worldwide in recent years. Since 2010, cytotoxic chemotherapy, particularly combination gemcitabine + cisplatin (ABC-02 trial), has been the first-line therapy for patients with BTC. In 2022, a multicenter, double-blind, randomized phase 3 trial (TOPAZ-1 trial) examined the addition of programmed death-ligand 1 immunotherapy (durvalumab) to combination gemcitabine + cisplatin for BTC treatment, resulting in significantly improved survival without notable additional toxicity. As a result of this trial, this three-drug combination has become the new standard first-line therapy, leading to notable advances in BTC management for the first time since 2010. The molecular profiling of BTC has continued to drive the development of new targeted therapies for use when first-line therapies fail. Typically, second-line therapy decisions are based on identified genomic alterations in tumor tissue. Mutations in fibroblast growth factor receptor 1/2/3, isocitrate dehydrogenase 1/2, and neurotrophic tyrosine receptor kinase A/B/C are relatively frequent in intrahepatic CC, and precision medicines are available that can target associated pathways. In this review, we suggest strategies for systemic pharmacotherapy with a focus on intrahepatic CC, in addition to presenting the results and safety outcomes of clinical trials evaluating immune checkpoint inhibitor therapies in BTC.
Collapse
Affiliation(s)
- Etsushi Kawamura
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
38
|
Lang Z, Yu S, Hu Y, Tao Q, Zhang J, Wang H, Zheng L, Yu Z, Zheng J. Ginsenoside Rh2 promotes hepatic stellate cell ferroptosis and inactivation via regulation of IRF1-inhibited SLC7A11. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154950. [PMID: 37441987 DOI: 10.1016/j.phymed.2023.154950] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Sustained liver fibrosis may lead to cirrhosis. Activated hepatic stellate cells (HSCs) are crucial for liver fibrosis development. Ferroptosis, a newly iron-dependent regulated cell death, has been demonstrated to be involved in HSC inactivation. PURPOSE Ginsenoside Rh2 (GRh2), a natural bioactive product derived from ginseng, has been shown to promote HSC inactivation. However, the effect of GRh2 on HSC ferroptosis remains unclear. METHODS We explored the effects of GRh2 on liver fibrosis in vivo and in vitro. RNA-sequence analysis was performed in HSCs after GRh2 treatment. The crosstalk between ferroptotic HSCs and macrophages was also explored. RESULTS GRh2 alleviated liver fibrosis in vivo. In vitro, GRh2 reduced HSC proliferation and activation via ferroptosis, with increased intracellular iron, reactive oxygen species, malondialdehyde and glutathione depletion. The expression of SLC7A11, a negative regulator of ferroptosis, was obviously reduced by GRh2. Interestingly, interferon regulatory factor 1 (IRF1), a transcription factor, was predicted to bind the promoter region of SCL7A11. The interaction between IRF1 and SCL7A11 was further confirmed by the results of chromatin immunoprecipitation and luciferase reporter assays. Furthermore, loss of IRF1 led to an increase in SCL7A11, which contributed to the suppression of HSC ferroptosis and the enhancement of HSC activation in GRh2-treated HSCs. Further studies revealed that GRh2-induced HSC ferroptosis contributed to the inhibition of macrophage recruitment via regulation of inflammation-related genes. Moreover, GRh2 caused a reduction in liver inflammation in vivo. CONCLUSION Collectively, GRh2 up-regulates IRF1 expression, resulting in the suppression of SLC7A11, which contributes to HSC ferroptosis and inactivation. GRh2 ameliorates liver fibrosis through enhancing HSC ferroptosis and inhibiting liver inflammation. GRh2 may be a promising drug for treating liver fibrosis.
Collapse
Affiliation(s)
- Zhichao Lang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Suhui Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yuhang Hu
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qiqi Tao
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jingnan Zhang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Haoyue Wang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lei Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhixian Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
39
|
Jennings T, Janquart M, Washak C, Duddleston K, Kurtz C. What's gut got to do with it? The role of the microbiota and inflammation in the development of adiposity and obesity. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00029. [PMID: 37492183 PMCID: PMC10364962 DOI: 10.1097/in9.0000000000000029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Obesity is a complex and heterogeneous disease characterized by increased adiposity, ie, the accumulation of lipids and the growth of adipose tissue. In this mini-review, we explore the important role of the gut microbiota and immune system in the development of adiposity. Dysbiosis of the microbiota leads to increased permeability of the gut barrier and bacterial products in the bloodstream, which triggers metabolic inflammation of adipose tissue, muscle, and liver. Inflammation in these highly metabolic organs exacerbates adiposity and contributes to the development of comorbidities associated with obesity. Studies in animal models that manipulate the microbiota and/or inflammation have shown promise in the treatment of obesity.
Collapse
Affiliation(s)
- Travis Jennings
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
| | - Mallory Janquart
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Catherine Washak
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Khrystyne Duddleston
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
| | - Courtney Kurtz
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| |
Collapse
|
40
|
Li JH, Hepworth MR, O'Sullivan TE. Regulation of systemic metabolism by tissue-resident immune cell circuits. Immunity 2023; 56:1168-1186. [PMID: 37315533 PMCID: PMC10321269 DOI: 10.1016/j.immuni.2023.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023]
Abstract
Recent studies have demonstrated that tissue homeostasis and metabolic function are dependent on distinct tissue-resident immune cells that form functional cell circuits with structural cells. Within these cell circuits, immune cells integrate cues from dietary contents and commensal microbes in addition to endocrine and neuronal signals present in the tissue microenvironment to regulate structural cell metabolism. These tissue-resident immune circuits can become dysregulated during inflammation and dietary overnutrition, contributing to metabolic diseases. Here, we review the evidence describing key cellular networks within and between the liver, gastrointestinal tract, and adipose tissue that control systemic metabolism and how these cell circuits become dysregulated during certain metabolic diseases. We also identify open questions in the field that have the potential to enhance our understanding of metabolic health and disease.
Collapse
Affiliation(s)
- Joey H Li
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA; Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matthew R Hepworth
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| |
Collapse
|
41
|
Abstract
The understanding of the mechanisms of liver fibrosis has been dominated by models in which chronic hepatocellular injury is the initiating step as is seen with viral infections. The increased prevalence of the metabolic syndrome, and the increases in liver fibrosis due to metabolic syndrome driven non-alcoholic steatohepatitis (NASH), has made it a priority to understand how this type of liver fibrosis is similar to, and different from, pure hepatocellular injury driven liver fibrosis. Both types of liver fibrosis have the transformation of the hepatic stellate cell (HSC) into a myofibroblast as a key step. In metabolic syndrome, there is little evidence that metabolite changes such as high levels of glucose and free fatty acids are directly inducing HSC transdifferentiation, however, metabolite changes may lead to reductions in immunomodulatory and hepatoprotective molecules such as lipoxins, resolvins and Interleukin (IL)-22. Cells of the innate immune system are known to be important intermediaries between hepatocellular damage and HSC transdifferentiation, primarily by producing cytokines such as transforming growth factor-β (TGF-β) and platelet derived growth factor (PDGF). Resident and infiltrating macrophages are the dominant innate immune cells, but others (dendritic cells, neutrophils, natural killer T cells and mucosal-associated invariant T cells) also have important roles in inducing and resolving liver fibrosis. CD8+ and CD4+ T cells of the adaptive immune system have been identified to have greater profibrotic roles than previously realised by inducing hepatocyte death (auto-aggressive CD8+T) cells and cytokines producing (TH17 producing CD4+T) cells. Finally, the cellular networks present in NASH fibrosis are being identified and suggest that once fibrosis has developed cell-to-cell communication is dominated by myofibroblasts autocrine signalling followed by communication with cholangiocytes and endothelial cells, with myofibroblast-hepatocyte, and myofibroblast-macrophage signalling having minor roles. Such information is essential to the development of antifibrotic strategies for different stages of fibrosis.
Collapse
Affiliation(s)
- Wajahat Mehal
- Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
42
|
Little P, Liu S, Zhabotynsky V, Li Y, Lin DY, Sun W. A computational method for cell type-specific expression quantitative trait loci mapping using bulk RNA-seq data. Nat Commun 2023; 14:3030. [PMID: 37231002 PMCID: PMC10212972 DOI: 10.1038/s41467-023-38795-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Mapping cell type-specific gene expression quantitative trait loci (ct-eQTLs) is a powerful way to investigate the genetic basis of complex traits. A popular method for ct-eQTL mapping is to assess the interaction between the genotype of a genetic locus and the abundance of a specific cell type using a linear model. However, this approach requires transforming RNA-seq count data, which distorts the relation between gene expression and cell type proportions and results in reduced power and/or inflated type I error. To address this issue, we have developed a statistical method called CSeQTL that allows for ct-eQTL mapping using bulk RNA-seq count data while taking advantage of allele-specific expression. We validated the results of CSeQTL through simulations and real data analysis, comparing CSeQTL results to those obtained from purified bulk RNA-seq data or single cell RNA-seq data. Using our ct-eQTL findings, we were able to identify cell types relevant to 21 categories of human traits.
Collapse
Affiliation(s)
- Paul Little
- Biostatistics Program, Public Health Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Si Liu
- Biostatistics Program, Public Health Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Vasyl Zhabotynsky
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dan-Yu Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei Sun
- Biostatistics Program, Public Health Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biostatistics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
43
|
Oh KK, Yoon SJ, Lee SB, Lee SY, Gupta H, Ganesan R, Sharma SP, Won SM, Jeong JJ, Kim DJ, Suk KT. The convergent application of metabolites from Avena sativa and gut microbiota to ameliorate non-alcoholic fatty liver disease: a network pharmacology study. J Transl Med 2023; 21:263. [PMID: 37069607 PMCID: PMC10111676 DOI: 10.1186/s12967-023-04122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a serious public health issue globally, currently, the treatment of NAFLD lies still in the labyrinth. In the inchoate stage, the combinatorial application of food regimen and favorable gut microbiota (GM) are considered as an alternative therapeutic. Accordingly, we integrated secondary metabolites (SMs) from GM and Avena sativa (AS) known as potent dietary grain to identify the combinatorial efficacy through network pharmacology. METHODS We browsed the SMs of AS via Natural Product Activity & Species Source (NPASS) database and SMs of GM were retrieved by gutMGene database. Then, specific intersecting targets were identified from targets related to SMs of AS and GM. The final targets were selected on NAFLD-related targets, which was considered as crucial targets. The protein-protein interaction (PPI) networks and bubble chart analysis to identify a hub target and a key signaling pathway were conducted, respectively. In parallel, we analyzed the relationship of GM or AS─a key signaling pathway─targets─SMs (GASTM) by merging the five components via RPackage. We identified key SMs on a key signaling pathway via molecular docking assay (MDA). Finally, the identified key SMs were verified the physicochemical properties and toxicity in silico platform. RESULTS The final 16 targets were regarded as critical proteins against NAFLD, and Vascular Endothelial Growth Factor A (VEGFA) was a key target in PPI network analysis. The PI3K-Akt signaling pathway was the uppermost mechanism associated with VEGFA as an antagonistic mode. GASTM networks represented 122 nodes (60 GM, AS, PI3K-Akt signaling pathway, 4 targets, and 56 SMs) and 154 edges. The VEGFA-myricetin, or quercetin, GSK3B-myricetin, IL2-diosgenin complexes formed the most stable conformation, the three ligands were derived from GM. Conversely, NR4A1-vestitol formed stable conformation with the highest affinity, and the vestitol was obtained from AS. The given four SMs were no hurdles to develop into drugs devoid of its toxicity. CONCLUSION In conclusion, we show that combinatorial application of AS and GM might be exerted to the potent synergistic effects against NAFLD, dampening PI3K-Akt signaling pathway. This work provides the importance of dietary strategy and beneficial GM on NAFLD, a data mining basis for further explicating the SMs and pharmacological mechanisms of combinatorial application (AS and GM) against NAFLD.
Collapse
Affiliation(s)
- Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Sang-Jun Yoon
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Su-Been Lee
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Sang Youn Lee
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Jin-Ju Jeong
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Ki-Tae Suk
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea.
| |
Collapse
|
44
|
Yahoo N, Dudek M, Knolle P, Heikenwälder M. Role of immune responses for development of NAFLD-associated liver cancer and prospects for therapeutic modulation. J Hepatol 2023:S0168-8278(23)00165-4. [PMID: 36893854 DOI: 10.1016/j.jhep.2023.02.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
The liver is the central metabolic organ of the body regulating energy and lipid metabolism and at the same time has potent immunological functions. Overwhelming the metabolic capacity of the liver by obesity and sedentary lifestyle leads to hepatic lipid accumulation, chronic necro-inflammation, enhanced mitochondrial/ER-stress and development of non-alcoholic fatty liver disease (NAFLD), with its pathologic form nonalcoholic steatohepatitis (NASH). Based on knowledge on pathophysiological mechanisms, specifically targeting metabolic diseases to prevent or slow down progression of NAFLD to liver cancer will become possible. Genetic/environmental factors contribute to development of NASH and liver cancer progression. The complex pathophysiology of NAFLD-NASH is reflected by environmental factors, particularly the gut microbiome and its metabolic products. NAFLD-associated HCC occurs in most of the cases in the context of a chronically inflamed liver and cirrhosis. Recognition of environmental alarmins or metabolites derived from the gut microbiota and the metabolically injured liver create a strong inflammatory milieu supported by innate and adaptive immunity. Several recent studies indicate that the chronic hepatic microenvironment of steatosis induces auto-aggressive CD8+CXCR6+PD1+ T cells secreting TNF and upregulating FasL to eliminate parenchymal and non-parenchymal cells in an antigen independent manner. This promotes chronic liver damage and a pro-tumorigenic environment. CD8+CXCR6+PD1+ T cells possess an exhausted, hyperactivated, resident phenotype and trigger NASH to HCC transition, and might be responsible for a less efficient treatment response to immune-check-point inhibitors - in particular atezolizumab/bevacizumab. Here, we provide an overview of NASH-related inflammation/pathogenesis focusing on new discoveries on the role of T cells in NASH-immunopathology and therapy response. This review discusses preventive measures to halt disease progression to liver cancer and therapeutic strategies to manage NASH-HCC patients.
Collapse
Affiliation(s)
- Neda Yahoo
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Michael Dudek
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; The M3 Research Institute, Karl Eberhards Universitaet Tübingen, Medizinische Fakultät, Otfried-Müller-Straße 37, 72076 Tübingen.
| |
Collapse
|
45
|
Yang L, Hao Y, Boeckmans J, Rodrigues RM, He Y. Immune cells and their derived microRNA-enriched extracellular vesicles in nonalcoholic fatty liver diseases: Novel therapeutic targets. Pharmacol Ther 2023; 243:108353. [PMID: 36738973 DOI: 10.1016/j.pharmthera.2023.108353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Despite extensive research and multiple clinical trials, there are still no FDA-approved therapies to treat the most severe forms of NAFLD. This is largely due to its complicated etiology and pathogenesis, which involves visceral obesity, insulin resistance, gut dysbiosis, etc. Although inflammation is generally believed to be one of the critical factors that drive the progression of simple steatosis to nonalcoholic steatohepatitis (NASH), the exact type of inflammation and how it contributes to NASH pathogenesis remain largely unknown. Liver inflammation is accompanied by the elevation of inflammatory mediators, including cytokines and chemokines and consequently intrahepatic infiltration of multiple types of immune cells. Recent studies revealed that extracellular vesicles (EVs) derived from inflammatory cells and hepatocytes play an important role in controlling liver inflammation during NASH. In this review, we highlight the roles of innate and adaptive immune cells and their microRNA-enriched EVs during NAFLD development and discuss potential drugs that target inflammatory pathways for the treatment of NAFLD.
Collapse
Affiliation(s)
- Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yawen Hao
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
46
|
Liu J, Ding M, Bai J, Luo R, Liu R, Qu J, Li X. Decoding the role of immune T cells: A new territory for improvement of metabolic-associated fatty liver disease. IMETA 2023; 2:e76. [PMID: 38868343 PMCID: PMC10989916 DOI: 10.1002/imt2.76] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/14/2024]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a new emerging concept and is associated with metabolic dysfunction, generally replacing the name of nonalcoholic fatty liver disease (NAFLD) due to heterogeneous liver condition and inaccuracies in definition. The prevalence of MAFLD is rising by year due to dietary changes, metabolic disorders, and no approved therapy, affecting a quarter of the global population and representing a major economic problem that burdens healthcare systems. Currently, in addition to the common causative factors like insulin resistance, oxidative stress, and lipotoxicity, the role of immune cells, especially T cells, played in MAFLD is increasingly being emphasized by global scholars. Based on the diverse classification and pathophysiological effects of immune T cells, we comprehensively analyzed their bidirectional regulatory effects on the hepatic inflammatory microenvironment and MAFLD progression. This interaction between MAFLD and T cells was also associated with hepatic-intestinal immune crosstalk and gut microbiota homeostasis. Moreover, we pointed out several T-cell-based therapeutic approaches including but not limited to adoptive transfer of T cells, fecal microbiota transplantation, and drug therapy, especially for natural products and Chinese herbal prescriptions. Overall, this study contributes to a better understanding of the important role of T cells played in MAFLD progression and corresponding therapeutic options and provides a potential reference for further drug development.
Collapse
Affiliation(s)
- Jia Liu
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Mingning Ding
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Jinzhao Bai
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Ranyi Luo
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Runping Liu
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jiaorong Qu
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Xiaojiaoyang Li
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
47
|
Cannito S, Dianzani U, Parola M, Albano E, Sutti S. Inflammatory processes involved in NASH-related hepatocellular carcinoma. Biosci Rep 2023; 43:BSR20221271. [PMID: 36691794 PMCID: PMC9874450 DOI: 10.1042/bsr20221271] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide. In the recent years nonalcoholic fatty liver disease (NAFLD) is becoming a growing cause of HCCs and the incidence of NAFLD-related HCCs is expected to further dramatically increase by the next decade. Chronic inflammation is regarded as the driving force of NAFLD progression and a key factor in hepatic carcinogenesis. Hepatic inflammation in NAFLD results from the persistent stimulation of innate immunity in response to hepatocellular injury and gut dysbiosis as well as by the activation of adaptive immunity. However, the relative roles of innate and adaptive immunity in the processes leading to HCC are still incompletely characterized. This is due to the complex interplay between different liver cell populations, which is also strongly influenced by gut-derived bacterial products, metabolic/nutritional signals. Furthermore, carcinogenic mechanisms in NAFLD/NASH appear to involve the activation of signals mediated by hypoxia inducible factors. This review discusses recent data regarding the contribution of different inflammatory cells to NAFLD-related HCC and their possible impact on patient response to current treatments.
Collapse
Affiliation(s)
- Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Turin, Turin, Italy
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Turin, Turin, Italy
| | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| |
Collapse
|
48
|
Prevention of Metabolic Syndrome by Phytochemicals and Vitamin D. Int J Mol Sci 2023; 24:ijms24032627. [PMID: 36768946 PMCID: PMC9917154 DOI: 10.3390/ijms24032627] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, attention has focused on the roles of phytochemicals in fruits and vegetables in maintaining and improving the intestinal environment and preventing metabolic syndrome. A high-fat and high-sugar diet, lack of exercise, and excess energy accumulation in the body can cause metabolic syndrome and induce obesity, diabetes, and disorders of the circulatory system and liver. Therefore, the prevention of metabolic syndrome is important. The current review shows that the simultaneous intake of phytochemicals contained in citruses and grapes together with vitamin D improves the state of gut microbiota and immunity, preventing metabolic syndrome and related diseases. Phytochemicals contained in citruses include polyphenols such as hesperidin, rutin, and naringin; those in grapes include quercetin, procyanidin, and oleanolic acid. The intake of these phytochemicals and vitamin D, along with prebiotics and probiotics, nurture good gut microbiota. In general, Firmicutes are obese-prone gut microbiota and Bacteroidetes are lean-prone gut microbiota; good gut microbiota nurture regulatory T cells, which suppress inflammatory responses and upregulate immunity. Maintaining good gut microbiota suppresses TNF-α, an inflammatory cytokine that is also considered to be a pathogenic contributor adipokine, and prevents chronic inflammation, thereby helping to prevent metabolic syndrome. Maintaining good gut microbiota also enhances adiponectin, a protector adipokine that prevents metabolic syndrome. For the prevention of metabolic syndrome and the reduction of various disease risks, the intake of phytochemicals and vitamin D will be important for human health in the future.
Collapse
|
49
|
Lacotte S, Slits F, Moeckli B, Peloso A, Koenig S, Tihy M, El Hajji S, Gex Q, Rubbia-Brandt L, Toso C. Anti-CD122 antibody restores specific CD8 + T cell response in nonalcoholic steatohepatitis and prevents hepatocellular carcinoma growth. Oncoimmunology 2023; 12:2184991. [PMID: 36891258 PMCID: PMC9988345 DOI: 10.1080/2162402x.2023.2184991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) can lead to hepatocellular carcinoma (HCC). Although immunotherapy is used as first-line treatment for advanced HCC, the impact of NASH on anticancer immunity is only partially characterized. We assessed the tumor-specific T cell immune response in the context of NASH. In a mouse model of NASH, we observed an expansion of the CD44+CXCR6+PD-1+CD8+ T cells in the liver. After intra-hepatic injection of RIL-175-LV-OVA-GFP HCC cells, NASH mice had a higher percentage of peripheral OVA-specific CD8+ T cells than control mice, but these cells did not prevent HCC growth. In the tumor, the expression of PD-1 on OVA-specific CD44+CXCR6+CD8+ cells was higher in NASH mice suggesting lowered immune activity. Treating mice with an anti-CD122 antibody, which reduced the number of CXCR6+PD-1+ cells, we restored OVA-specific CD8 activity, and reduced HCC growth compared to untreated NASH mice. Human dataset confirmed that NASH-affected livers, NASH tissues adjacent to HCC and HCC in patients with NASH exhibited gene expression patterns supporting mouse observations. Our findings demonstrate the immune system fails to prevent HCC growth in NASH, primarily linked to a higher representation of CD44+CXCR6+PD-1+CD8+ T cells. Treatment with an anti-CD122 antibody reduces the number of these cells and prevents HCC growth.
Collapse
Affiliation(s)
- Stéphanie Lacotte
- Transplantation and Hepatology Laboratory, Department of Surgery, University of Geneva, Geneva, Switzerland
| | - Florence Slits
- Transplantation and Hepatology Laboratory, Department of Surgery, University of Geneva, Geneva, Switzerland
| | - Beat Moeckli
- Transplantation and Hepatology Laboratory, Department of Surgery, University of Geneva, Geneva, Switzerland.,Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Andrea Peloso
- Transplantation and Hepatology Laboratory, Department of Surgery, University of Geneva, Geneva, Switzerland.,Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Stéphane Koenig
- Department of Physiology, University of Geneva, Geneva, Switzerland
| | - Matthieu Tihy
- Division of Clinical Pathology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Sofia El Hajji
- Transplantation and Hepatology Laboratory, Department of Surgery, University of Geneva, Geneva, Switzerland
| | - Quentin Gex
- Transplantation and Hepatology Laboratory, Department of Surgery, University of Geneva, Geneva, Switzerland
| | - Laura Rubbia-Brandt
- Division of Clinical Pathology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Christian Toso
- Transplantation and Hepatology Laboratory, Department of Surgery, University of Geneva, Geneva, Switzerland.,Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
50
|
Luo P, Chen J, Zhang Q, Xia F, Wang C, Bai Y, Tang H, Liu D, Gu L, Du Q, Xiao W, Yang C, Wang J. Dissection of cellular and molecular mechanisms of aristolochic acid-induced hepatotoxicity via single-cell transcriptomics. PRECISION CLINICAL MEDICINE 2022; 5:pbac023. [PMID: 36349141 PMCID: PMC9635452 DOI: 10.1093/pcmedi/pbac023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Aristolochic acids (AAs), a class of carcinogenic and mutagenic natural products from Aristolochia and Asarum plants, are well-known to be responsible for inducing nephrotoxicity and urothelial carcinoma. Recently, accumulating evidence suggests that exposure to AAs could also induce hepatotoxicity and even hepatocellular carcinoma, though the mechanisms are poorly defined. METHODS Here, we aimed to dissect the underlying cellular and molecular mechanisms of aristolochic acid I (AAI)-induced hepatotoxicity by using advanced single-cell RNA sequencing (scRNA-seq) and proteomics techniques. We established the first single-cell atlas of mouse livers in response to AAI. RESULTS In hepatocytes, our results indicated that AAI activated NF-κB and STAT3 signaling pathways, which may contribute to the inflammatory response and apoptosis. In liver sinusoidal endothelial cells (LSECs), AAI activated multiple oxidative stress and inflammatory associated signaling pathways and induced apoptosis. Importantly, AAI induced infiltration of cytotoxic T cells and activation of proinflammatory macrophage and neutrophil cells in the liver to produce inflammatory cytokines to aggravate inflammation. CONCLUSIONS Collectively, our study provides novel knowledge of AAs-induced molecular characteristics of hepatotoxicity at a single-cell level and suggests future treatment options for AAs associated hepatotoxicity.
Collapse
Affiliation(s)
- Piao Luo
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiayun Chen
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qian Zhang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fei Xia
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yunmeng Bai
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Huan Tang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dandan Liu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingfeng Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Xiao
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Chuanbin Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jigang Wang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan 523125, China
| |
Collapse
|