1
|
Lam P, Zygmunt DA, Ashbrook A, Yan C, Du H, Martin PT. Liver-directed AAV gene therapy normalizes disease symptoms and provides cross-correction in a model of lysosomal acid lipase deficiency. Mol Ther 2024; 32:4272-4284. [PMID: 39489913 PMCID: PMC11638878 DOI: 10.1016/j.ymthe.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Lysosomal acid lipase deficiency (LAL-D) is caused by mutations in the LIPA gene, which encodes the lysosomal enzyme that hydrolyzes triglycerides and cholesteryl esters to free fatty acids and free cholesterol. The objective of this study was to develop a curative single-treatment therapy for LAL-D using adeno-associated virus (AAV). Treatment at both early (1-2 days) and late (8-week) timepoints with rscAAVrh74.LP1.LIPA, a liver-directed AAV gene therapy, normalized many disease measures in Lipa-/- mice when measured at 24 weeks of age, including hepatosplenomegaly, serum transaminase activity, organ triglyceride and cholesterol levels, and biomarkers of liver inflammation and fibrosis. For most measures, liver-directed therapy was superior to therapy utilizing a constitutive tissue expression approach. rscAAVrh74.LP1.LIPA treatment elevated LAL enzyme activity above wild-type levels in all tissues tested, including liver, spleen, intestine, muscle, and brain, and treatment elicited minimal serum antibody responses to transgenic protein. AAV treatment at 8 weeks of age with 1 × 1013 vg/kg extended survival significantly, with all AAV-treated mice surviving beyond the maximal lifespan of untreated Lipa-/- mice. These results show that this liver-directed LIPA gene therapy has the potential to be a transformative treatment for LAL-D.
Collapse
Affiliation(s)
- Patricia Lam
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Deborah A Zygmunt
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Anna Ashbrook
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Cong Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hong Du
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Paul T Martin
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Zhang Z, Shi X, Ji J, Guo Y, Peng Q, Hao L, Xue Y, Liu Y, Li C, Lu J, Yu K. Dihydroartemisinin increased the abundance of Akkermansia muciniphila by YAP1 depression that sensitizes hepatocellular carcinoma to anti-PD-1 immunotherapy. Front Med 2023; 17:729-746. [PMID: 37121958 DOI: 10.1007/s11684-022-0978-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/05/2022] [Indexed: 05/02/2023]
Abstract
The effect of anti-programmed cell death 1 (anti-PD-1) immunotherapy is limited in patients with hepatocellular carcinoma (HCC). Yes-associated protein 1 (YAP1) expression increased in liver tumor cells in early HCC, and Akkermansia muciniphila abundance decreased in the colon. The response to anti-PD-1 treatment is associated with A. muciniphila abundance in many tumors. However, the interaction between A. muciniphila abundance and YAP1 expression remains unclear in HCC. Here, anti-PD-1 treatment decreased A. muciniphila abundance in the colon, but increased YAP1 expression in the tumor cells by mice with liver tumors in situ. Mechanistically, hepatocyte-specific Yap1 knockout (Yap1LKO) maintained bile acid homeostasis in the liver, resulting in an increased abundance of A. muciniphila in the colon. Yap1 knockout enhanced anti-PD-1 efficacy. Therefore, YAP1 inhibition is a potential target for increasing A. muciniphila abundance to promote anti-PD-1 efficacy in liver tumors. Dihydroartemisinin (DHA), acting as YAP1 inhibitor, increased A. muciniphila abundance to sensitize anti-PD-1 therapy. A. muciniphila by gavage increased the number and activation of CD8+ T cells in liver tumor niches during DHA treatment or combination with anti-PD-1. Our findings suggested that the combination anti-PD-1 with DHA is an effective strategy for liver tumor treatment.
Collapse
Affiliation(s)
- Zhiqin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Jingmin Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yinglin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Liyuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Caige Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Junlan Lu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Kun Yu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| |
Collapse
|
3
|
Poudel S, Cabrera DP, Bhushan B, Manley MW, Gunewardena S, Jaeschke H, Apte U. Hepatocyte-Specific Deletion of Yes-Associated Protein Improves Recovery From Acetaminophen-Induced Acute Liver Injury. Toxicol Sci 2021; 184:276-285. [PMID: 34546377 PMCID: PMC8633918 DOI: 10.1093/toxsci/kfab115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Overdose of acetaminophen (APAP) is the major cause of acute liver failure (ALF) in the Western world with very limited treatment options. Previous studies from our groups and others have shown that timely activation of liver regeneration is a critical determinant of transplant-free survival of APAP-induced ALF patients. Here, we report that hepatocyte-specific deletion of Yes-associated protein (Yap), the downstream mediator of the Hippo Kinase signaling pathway results in faster recovery from APAP-induced acute liver injury. Initial studies performed with male C57BL/6J mice showed a rapid activation of Yap and its target genes within first 24 h after APAP administration. Treatment of hepatocyte-specific Yap knockout (Yap-KO) mice with 300 mg/kg APAP resulted in equal initial liver injury but a significantly accelerated recovery in Yap-KO mice. The recovery was accompanied by significantly rapid hepatocyte proliferation supported by faster activation of Wnt/β-catenin pathway. Furthermore, Yap-KO mice had significantly earlier and higher pro-regenerative inflammatory response following APAP overdose. Global gene expression analysis indicated that Yap-KO mice had a robust activation of transcription factors involved in response to endoplasmic reticulum stress (XBP1) and maintaining hepatocyte differentiation (HNF4α). In conclusion, these data indicate that inhibition of Yap in hepatocytes results in rapid recovery from APAP overdose due to an earlier activation of liver regeneration.
Collapse
Affiliation(s)
- Samikshya Poudel
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Diego Paine Cabrera
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Bharat Bhushan
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Michael W Manley
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
4
|
Romualdo GR, Leroy K, Costa CJS, Prata GB, Vanderborght B, da Silva TC, Barbisan LF, Andraus W, Devisscher L, Câmara NOS, Vinken M, Cogliati B. In Vivo and In Vitro Models of Hepatocellular Carcinoma: Current Strategies for Translational Modeling. Cancers (Basel) 2021; 13:5583. [PMID: 34771745 PMCID: PMC8582701 DOI: 10.3390/cancers13215583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer-related death globally. HCC is a complex multistep disease and usually emerges in the setting of chronic liver diseases. The molecular pathogenesis of HCC varies according to the etiology, mainly caused by chronic hepatitis B and C virus infections, chronic alcohol consumption, aflatoxin-contaminated food, and non-alcoholic fatty liver disease associated with metabolic syndrome or diabetes mellitus. The establishment of HCC models has become essential for both basic and translational research to improve our understanding of the pathophysiology and unravel new molecular drivers of this disease. The ideal model should recapitulate key events observed during hepatocarcinogenesis and HCC progression in view of establishing effective diagnostic and therapeutic strategies to be translated into clinical practice. Despite considerable efforts currently devoted to liver cancer research, only a few anti-HCC drugs are available, and patient prognosis and survival are still poor. The present paper provides a state-of-the-art overview of in vivo and in vitro models used for translational modeling of HCC with a specific focus on their key molecular hallmarks.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Cícero Júlio Silva Costa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Gabriel Bacil Prata
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
| | - Wellington Andraus
- Department of Gastroenterology, Clinics Hospital, School of Medicine, University of São Paulo (HC-FMUSP), São Paulo 05403-000, Brazil;
| | - Lindsey Devisscher
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| |
Collapse
|
5
|
Keshvari S, Caruso M, Teakle N, Batoon L, Sehgal A, Patkar OL, Ferrari-Cestari M, Snell CE, Chen C, Stevenson A, Davis FM, Bush SJ, Pridans C, Summers KM, Pettit AR, Irvine KM, Hume DA. CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genet 2021; 17:e1009605. [PMID: 34081701 PMCID: PMC8205168 DOI: 10.1371/journal.pgen.1009605] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Homozygous mutation of the Csf1r locus (Csf1rko) in mice, rats and humans leads to multiple postnatal developmental abnormalities. To enable analysis of the mechanisms underlying the phenotypic impacts of Csf1r mutation, we bred a rat Csf1rko allele to the inbred dark agouti (DA) genetic background and to a Csf1r-mApple reporter transgene. The Csf1rko led to almost complete loss of embryonic macrophages and ablation of most adult tissue macrophage populations. We extended previous analysis of the Csf1rko phenotype to early postnatal development to reveal impacts on musculoskeletal development and proliferation and morphogenesis in multiple organs. Expression profiling of 3-week old wild-type (WT) and Csf1rko livers identified 2760 differentially expressed genes associated with the loss of macrophages, severe hypoplasia, delayed hepatocyte maturation, disrupted lipid metabolism and the IGF1/IGF binding protein system. Older Csf1rko rats developed severe hepatic steatosis. Consistent with the developmental delay in the liver Csf1rko rats had greatly-reduced circulating IGF1. Transfer of WT bone marrow (BM) cells at weaning without conditioning repopulated resident macrophages in all organs, including microglia in the brain, and reversed the mutant phenotypes enabling long term survival and fertility. WT BM transfer restored osteoclasts, eliminated osteopetrosis, restored bone marrow cellularity and architecture and reversed granulocytosis and B cell deficiency. Csf1rko rats had an elevated circulating CSF1 concentration which was rapidly reduced to WT levels following BM transfer. However, CD43hi non-classical monocytes, absent in the Csf1rko, were not rescued and bone marrow progenitors remained unresponsive to CSF1. The results demonstrate that the Csf1rko phenotype is autonomous to BM-derived cells and indicate that BM contains a progenitor of tissue macrophages distinct from hematopoietic stem cells. The model provides a unique system in which to define the pathways of development of resident tissue macrophages and their local and systemic roles in growth and organ maturation.
Collapse
Affiliation(s)
- Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Melanie Caruso
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Ngari Teakle
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Lena Batoon
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Omkar L. Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Michelle Ferrari-Cestari
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Cameron E. Snell
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Alex Stevenson
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Felicity M. Davis
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Clare Pridans
- Centre for Inflammation Research and Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Allison R. Pettit
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Katharine M. Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
- * E-mail: (KMI); (DAH)
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
- * E-mail: (KMI); (DAH)
| |
Collapse
|
6
|
Luo C, Sun H, Peng J, Gao C, Bao L, Ji R, Zhang C, Zhu W, Jin Y. Rosmarinic acid exerts an antagonistic effect on nonalcoholic fatty liver disease by regulating the YAP1/TAZ-PPARγ/PGC-1α signaling pathway. Phytother Res 2021; 35:1010-1022. [PMID: 32914480 DOI: 10.1002/ptr.6865] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 07/31/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023]
Abstract
Rosmarinic acid (RA) is a water-soluble phenolic compound extracted from Boraginaceae and Lamiaceae. This study was designed to investigate the role and mechanism of action of RA in improving nonalcoholic fatty liver disease (NAFLD). Male SD rats maintained on a high fat diet and L02 cells stimulated with oleic acid were treated with RA. Our results showed that RA significantly reduced total cholesterol, triglycerides, low-density lipoprotein cholesterol, alanine aminotransferase, aspartate aminotransferase, and malondialdehyde levels and increased high-density lipoprotein cholesterol, superoxide dismutase and adenosine triphosphate levels both in vivo and in vitro. Hematoxylin and eosin staining and oil red O staining showed that RA had a good lipid-lowering effect and substantial protective effects on liver injury. Transmission electron microscopy and JC-1 fluorescence results showed that RA could improve mitochondrial damage in hepatocytes. Additionally, flow cytometry results indicated that RA inhibited ROS generation and apoptosis in L02 cells. The impaired hepatocytes were restored by using RA in NAFLD models characterized by down-regulating YAP1 and TAZ, meanwhile up-regulating PPARγ and PGC-1α. When YAP1 was over-expressed, RA reduced the expression of YAP1; however, the action of RA was significantly blocked by silencing YAP1. The experimental results indicated that RA markedly alleviated NAFLD by repairing mitochondrial damage and regulating the YAP1/TAZ-PPARγ/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Chunxu Luo
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian, China
- Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, China
- Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Cong Gao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Liuchi Bao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Renpeng Ji
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Chi Zhang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Wenhan Zhu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- College of Pharmacy, Dalian Medical University, Dalian, China
- Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol 2021; 18:40-55. [PMID: 32764740 DOI: 10.1038/s41575-020-0342-4] [Citation(s) in RCA: 529] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
The liver is the only solid organ that uses regenerative mechanisms to ensure that the liver-to-bodyweight ratio is always at 100% of what is required for body homeostasis. Other solid organs (such as the lungs, kidneys and pancreas) adjust to tissue loss but do not return to 100% of normal. The current state of knowledge of the regenerative pathways that underlie this 'hepatostat' will be presented in this Review. Liver regeneration from acute injury is always beneficial and has been extensively studied. Experimental models that involve partial hepatectomy or chemical injury have revealed extracellular and intracellular signalling pathways that are used to return the liver to equivalent size and weight to those prior to injury. On the other hand, chronic loss of hepatocytes, which can occur in chronic liver disease of any aetiology, often has adverse consequences, including fibrosis, cirrhosis and liver neoplasia. The regenerative activities of hepatocytes and cholangiocytes are typically characterized by phenotypic fidelity. However, when regeneration of one of the two cell types fails, hepatocytes and cholangiocytes function as facultative stem cells and transdifferentiate into each other to restore normal liver structure. Liver recolonization models have demonstrated that hepatocytes have an unlimited regenerative capacity. However, in normal liver, cell turnover is very slow. All zones of the resting liver lobules have been equally implicated in the maintenance of hepatocyte and cholangiocyte populations in normal liver.
Collapse
|
8
|
Nolte MJ, Jing P, Dewey CN, Payseur BA. Giant Island Mice Exhibit Widespread Gene Expression Changes in Key Metabolic Organs. Genome Biol Evol 2020; 12:1277-1301. [PMID: 32531054 PMCID: PMC7487164 DOI: 10.1093/gbe/evaa118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2020] [Indexed: 12/02/2022] Open
Abstract
Island populations repeatedly evolve extreme body sizes, but the genomic basis of this pattern remains largely unknown. To understand how organisms on islands evolve gigantism, we compared genome-wide patterns of gene expression in Gough Island mice, the largest wild house mice in the world, and mainland mice from the WSB/EiJ wild-derived inbred strain. We used RNA-seq to quantify differential gene expression in three key metabolic organs: gonadal adipose depot, hypothalamus, and liver. Between 4,000 and 8,800 genes were significantly differentially expressed across the evaluated organs, representing between 20% and 50% of detected transcripts, with 20% or more of differentially expressed transcripts in each organ exhibiting expression fold changes of at least 2×. A minimum of 73 candidate genes for extreme size evolution, including Irs1 and Lrp1, were identified by considering differential expression jointly with other data sets: 1) genomic positions of published quantitative trait loci for body weight and growth rate, 2) whole-genome sequencing of 16 wild-caught Gough Island mice that revealed fixed single-nucleotide differences between the strains, and 3) publicly available tissue-specific regulatory elements. Additionally, patterns of differential expression across three time points in the liver revealed that Arid5b potentially regulates hundreds of genes. Functional enrichment analyses pointed to cell cycling, mitochondrial function, signaling pathways, inflammatory response, and nutrient metabolism as potential causes of weight accumulation in Gough Island mice. Collectively, our results indicate that extensive gene regulatory evolution in metabolic organs accompanied the rapid evolution of gigantism during the short time house mice have inhabited Gough Island.
Collapse
Affiliation(s)
- Mark J Nolte
- Laboratory of Genetics, University of Wisconsin - Madison
| | - Peicheng Jing
- Laboratory of Genetics, University of Wisconsin - Madison
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin - Madison
| |
Collapse
|
9
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. Role of YAP/TAZ in Cell Lineage Fate Determination and Related Signaling Pathways. Front Cell Dev Biol 2020; 8:735. [PMID: 32850847 PMCID: PMC7406690 DOI: 10.3389/fcell.2020.00735] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The penultimate effectors of the Hippo signaling pathways YAP and TAZ, are transcriptional co-activator proteins that play key roles in many diverse biological processes, ranging from cell proliferation, tumorigenesis, mechanosensing and cell lineage fate determination, to wound healing and regeneration. In this review, we discuss the regulatory mechanisms by which YAP/TAZ control stem/progenitor cell differentiation into the various major lineages that are of interest to tissue engineering and regenerative medicine applications. Of particular interest is the key role of YAP/TAZ in maintaining the delicate balance between quiescence, self-renewal, proliferation and differentiation of endogenous adult stem cells within various tissues/organs during early development, normal homeostasis and regeneration/healing. Finally, we will consider how increasing knowledge of YAP/TAZ signaling might influence the trajectory of future progress in regenerative medicine.
Collapse
Affiliation(s)
- Boon C. Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Faculty of Science and Technology, Sunway University, Subang Jaya, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Dominique Aubel
- IUTA Department Genie Biologique, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zürich, Basel, Switzerland
| | - Xuliang Deng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
10
|
Katsuda T, Hosaka K, Matsuzaki J, Usuba W, Prieto-Vila M, Yamaguchi T, Tsuchiya A, Terai S, Ochiya T. Transcriptomic Dissection of Hepatocyte Heterogeneity: Linking Ploidy, Zonation, and Stem/Progenitor Cell Characteristics. Cell Mol Gastroenterol Hepatol 2019; 9:161-183. [PMID: 31493546 PMCID: PMC6909008 DOI: 10.1016/j.jcmgh.2019.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS There is a long-standing debate regarding the biological significance of polyploidy in hepatocytes. Recent studies have provided increasing evidence that hepatocytes with different ploidy statuses behave differently in a context-dependent manner (eg, susceptibility to oncogenesis, regenerative ability after injury, and in vitro proliferative capacity). However, their overall transcriptomic differences in a physiological context is not known. METHODS By using microarray transcriptome analysis, we investigated the heterogeneity of hepatocyte populations with different ploidy statuses. Moreover, by using single-cell quantitative reverse-transcription polymerase chain reaction (scPCR) analysis, we investigated the intrapopulational transcriptome heterogeneity of 2c and 4c hepatocytes. RESULTS Microarray analysis showed that cell cycle-related genes were enriched in 8c hepatocytes, which is in line with the established notion that polyploidy is formed via cell division failure. Surprisingly, in contrast to the general consensus that 2c hepatocytes reside in the periportal region, in our bulk transcriptome and scPCR analyses, the 2c hepatocytes consistently showed pericentral hepatocyte-enriched characteristics. In addition, scPCR analysis identified a subpopulation within the 2c hepatocytes that co-express the liver progenitor cell markers Axin2, Prom1, and Lgr5, implying the potential biological relevance of this subpopulation. CONCLUSIONS This study provides new insights into hepatocyte heterogeneity, namely 2c hepatocytes are preferentially localized to the pericentral region, and a subpopulation of 2c hepatocytes show liver progenitor cell-like features in terms of liver progenitor cell marker expression (Axin2, Prom1, and Lgr5).
Collapse
Affiliation(s)
- Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Kazunori Hosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Juntaro Matsuzaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Wataru Usuba
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Marta Prieto-Vila
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Institute of Medical Science, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Tomoko Yamaguchi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Institute of Medical Science, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Institute of Medical Science, Tokyo Medical University, Shinjuku, Tokyo, Japan.
| |
Collapse
|
11
|
Ahmed AF, de Bock CE, Sontag E, Hondermarck H, Lincz LF, Thorne RF. FAT1 cadherin controls neuritogenesis during NTera2 cell differentiation. Biochem Biophys Res Commun 2019; 514:625-631. [PMID: 31076104 DOI: 10.1016/j.bbrc.2019.04.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 02/09/2023]
Abstract
Fat1 cadherin is broadly expressed throughout the nervous system and has been implicated in neuronal differentiation. Here we examined the functional contribution of FAT1 during neuronal differentiation of the Ntera2 cell line model. FAT1 expression was increased during the retinoic acid (RA)-induced differentiation of NTera2 cells. Depletion of FAT1 with siRNA decreased the number of neurites produced after RA treatment. Moreover, FAT1 silencing also led to decreased Ser127-phosphorylation of YAP along with transcriptional increases in the Hippo target genes CTGF and ANKRD1, suggesting FAT1 alters Hippo signalling during differentiation. In the context of the Ntera2 model, FAT1 is required for efficient neuritogenesis, acting as a regulator of neurite formation during the early stages of differentiation.
Collapse
Affiliation(s)
- Abdulrzag F Ahmed
- Department of Pharmacology, Faculty of Pharmacy, Elmergib University, Alkhoms, Libya; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Randwick, NSW 2031, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, New Lambton, New South Wales, 2305, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, New Lambton, New South Wales, 2305, Australia
| | - Lisa F Lincz
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, New Lambton, New South Wales, 2305, Australia; Hunter Haematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW, 2298, Australia
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, 450053, Zhengzhou, China; School of Environmental and Life Sciences, University of Newcastle, NSW, 2258, Australia.
| |
Collapse
|
12
|
Wu S, Liu Y, Guo W, Cheng X, Ren X, Chen S, Li X, Duan Y, Sun Q, Yang X. Identification and characterization of long noncoding RNAs and mRNAs expression profiles related to postnatal liver maturation of breeder roosters using Ribo-zero RNA sequencing. BMC Genomics 2018; 19:498. [PMID: 29945552 PMCID: PMC6020324 DOI: 10.1186/s12864-018-4891-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The liver is mainly hematopoietic in the embryo, and converts into a major metabolic organ in the adult. Therefore, it is intensively remodeled after birth to adapt and perform adult functions. Long non-coding RNAs (lncRNAs) are involved in organ development and cell differentiation, likely they have potential roles in regulating postnatal liver development. Herein, in order to understand the roles of lncRNAs in postnatal liver maturation, we analyzed the lncRNAs and mRNAs expression profiles in immature and mature livers from one-day-old and adult (40 weeks of age) breeder roosters by Ribo-Zero RNA-Sequencing. RESULTS Around 21,939 protein-coding genes and 2220 predicted lncRNAs were expressed in livers of breeder roosters. Compared to protein-coding genes, the identified chicken lncRNAs shared fewer exons, shorter transcript length, and significantly lower expression levels. Notably, in comparison between the livers of newborn and adult breeder roosters, a total of 1570 mRNAs and 214 lncRNAs were differentially expressed with the criteria of log2fold change > 1 or < - 1 and P values < 0.05, which were validated by qPCR using randomly selected five mRNAs and five lncRNAs. Further GO and KEGG analyses have revealed that the differentially expressed mRNAs were involved in the hepatic metabolic and immune functional changes, as well as some biological processes and pathways including cell proliferation, apoptotic and cell cycle that are implicated in the development of liver. We also investigated the cis- and trans- regulatory effects of differentially expressed lncRNAs on its target genes. GO and KEGG analyses indicated that these lncRNAs had their neighbor protein coding genes and trans-regulated genes associated with adapting of adult hepatic functions, as well as some pathways involved in liver development, such as cell cycle pathway, Notch signaling pathway, Hedgehog signaling pathway, and Wnt signaling pathway. CONCLUSIONS This study provides a catalog of mRNAs and lncRNAs related to postnatal liver maturation of chicken, and will contribute to a fuller understanding of biological processes or signaling pathways involved in significant functional transition during postnatal liver development that differentially expressed genes and lncRNAs could take part in.
Collapse
Affiliation(s)
- Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Wei Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Xi Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Xiaochun Ren
- Dazhou Institute of Agricultural Sciences, Dazhou, 635000 Sichuan China
| | - Si Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Xueyuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yongle Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| |
Collapse
|
13
|
Moreno-Carranza B, Bravo-Manríquez M, Baez A, Ledesma-Colunga MG, Ruiz-Herrera X, Reyes-Ortega P, de los Ríos EA, Macotela Y, Martínez de la Escalera G, Clapp C. Prolactin regulates liver growth during postnatal development in mice. Am J Physiol Regul Integr Comp Physiol 2018; 314:R902-R908. [DOI: 10.1152/ajpregu.00003.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The liver grows during the early postnatal period first at slower and then at faster rates than the body to achieve the adult liver-to-body weight ratio (LBW), a constant reflecting liver health. The hormone prolactin (PRL) stimulates adult liver growth and regeneration, and its levels are high in the circulation of newborn infants, but whether PRL plays a role in neonatal liver growth is unknown. Here, we show that the liver produces PRL and upregulates the PRL receptor in mice during the first 2 wk after birth, when liver growth lags behind body growth. At postnatal week 4, the production of PRL by the liver ceases coinciding with the elevation of circulating PRL and the faster liver growth that catches up with body growth. PRL receptor null mice ( Prlr−/−) show a significant decrease in the LBW at 1, 4, 6, and 10 postnatal weeks and reduced liver expression of proliferation [cyclin D1 ( Ccnd1)] and angiogenesis [platelet/endothelial cell adhesion molecule 1 ( Pecam1)] markers relative to Prlr+/+ mice. However, the LBW increases in Prlr−/− mice at postnatal week 2 concurring with the enhanced liver expression of Igf-1 and the liver upregulation and downregulation of suppressor of cytokine signaling 2 ( Socs2) and Socs3, respectively. These findings indicate that PRL acts locally and systemically to restrict and stimulate postnatal liver growth. PRL inhibits liver and body growth by attenuating growth hormone-induced Igf-1 liver expression via Socs2 and Socs3-related mechanisms.
Collapse
Affiliation(s)
- Bibiana Moreno-Carranza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| | - Marco Bravo-Manríquez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| | - Arelí Baez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| | - Maria G. Ledesma-Colunga
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| | - Xarubet Ruiz-Herrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| | - Pamela Reyes-Ortega
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| | - Ericka A. de los Ríos
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| |
Collapse
|
14
|
Sá-Pereira I, Roodselaar J, Couch Y, Consentino Kronka Sosthenes M, Evans MC, Anthony DC, Stolp HB. Hepatic acute phase response protects the brain from focal inflammation during postnatal window of susceptibility. Brain Behav Immun 2018; 69:486-498. [PMID: 29355821 PMCID: PMC5871396 DOI: 10.1016/j.bbi.2018.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Perinatal inflammation is known to contribute to neurodevelopmental diseases. Animal models of perinatal inflammation have revealed that the inflammatory response within the brain is age dependent, but the regulators of this variation remain unclear. In the adult, the peripheral acute phase response (APR) is known to be pivotal in the downstream recruitment of leukocytes to the injured brain. The relationship between perinatal brain injury and the APR has not been established. Here, we generated focal inflammation in the brain using interleukin (IL)-1β at postnatal day (P)7, P14, P21 and P56 and studied both the central nervous system (CNS) and hepatic inflammatory responses at 4 h. We found that there is a significant window of susceptibility in mice at P14, when compared to mice at P7, P21 and P56. This was reflected in increased neutrophil recruitment to the CNS, as well as an increase in blood-brain barrier permeability. To investigate phenomena underlying this window of susceptibility, we performed a dose response of IL-1β. Whilst induction of endogenous IL-1β or intercellular adhesion molecule (ICAM)-1 in the brain and induction of a hepatic APR were dose dependent, the recruitment of neutrophils and associated blood-brain barrier breakdown was inversely proportional. Furthermore, in contrast to adult animals, an additional peripheral challenge (intravenous IL-1β) reduced the degree of CNS inflammation, rather than exacerbating it. Together these results suggest a unique window of susceptibility to CNS injury, meaning that suppressing systemic inflammation after brain injury may exacerbate the damage caused, in an age-dependent manner.
Collapse
Affiliation(s)
- Inês Sá-Pereira
- Department of Pharmacology, University of Oxford, United Kingdom
| | - Jay Roodselaar
- Department of Pharmacology, University of Oxford, United Kingdom
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Marcia Consentino Kronka Sosthenes
- Department of Pharmacology, University of Oxford, United Kingdom,Universidade Federal do Pará, Laboratório de Investigações em Neurodegeneração e Infecção, ICB/HUJBB, Belém, Brazil
| | - Matthew C. Evans
- Department of Pharmacology, University of Oxford, United Kingdom
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, United Kingdom,Corresponding author at: Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom.Department of PharmacologyUniversity of OxfordOxfordOX1 3QTUnited Kingdom
| | - Helen B. Stolp
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, St Thomas’ Hospital, King’s College London, United Kingdom,Royal Veterinary College, London, United Kingdom
| |
Collapse
|
15
|
Hippo pathway coactivators Yap and Taz are required to coordinate mammalian liver regeneration. Exp Mol Med 2018; 50:e423. [PMID: 29303509 PMCID: PMC5992983 DOI: 10.1038/emm.2017.205] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
The mammalian liver has a remarkable capacity for repair following injury. Removal of up to two-third of liver mass results in a series of events that include extracellular matrix remodeling, coordinated hepatic cell cycle re-entry, restoration of liver mass and tissue remodeling to return the damaged liver to its normal state. Although there has been considerable advancement of our knowledge concerning the regenerative capacity of the mammalian liver, many outstanding questions remaining, such as: how does the regenerating liver stop proliferating when appropriate mass is restored and how do these mechanisms relate to normal regulation of organ size during development? Hippo pathway has been proposed to be central in mediating both events: organ size control during development and following regeneration. In this report, we examined the role of Yap and Taz, key components of the Hippo pathway in liver organ size regulation, both in the context of development and homeostasis. Our studies reveal that contrary to the current paradigms that Yap/Taz are not required for developmental regulation of liver size but are required for proper liver regeneration. In livers depleted of Yap and Taz, liver mass is elevated in neonates and adults. However, Yap/Taz-depleted livers exhibit profound defects in liver regeneration, including an inability to restore liver mass and to properly coordinate cell cycle entry. Taken together, our results highlight requirements for the Hippo pathway during liver regeneration and indicate that there are additional pathways that cooperate with Hippo signaling to control liver size during development and in the adult.
Collapse
|
16
|
Apte U, Bhushan B, Dadhania V. Hepatic Defenses Against Toxicity: Liver Regeneration and Tissue Repair. COMPREHENSIVE TOXICOLOGY 2018:368-396. [DOI: 10.1016/b978-0-12-801238-3.64918-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Fan F, He Z, Kong LL, Chen Q, Yuan Q, Zhang S, Ye J, Liu H, Sun X, Geng J, Yuan L, Hong L, Xiao C, Zhang W, Sun X, Li Y, Wang P, Huang L, Wu X, Ji Z, Wu Q, Xia NS, Gray NS, Chen L, Yun CH, Deng X, Zhou D. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci Transl Med 2017; 8:352ra108. [PMID: 27535619 DOI: 10.1126/scitranslmed.aaf2304] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/24/2016] [Indexed: 12/11/2022]
Abstract
Tissue repair and regenerative medicine address the important medical needs to replace damaged tissue with functional tissue. Most regenerative medicine strategies have focused on delivering biomaterials and cells, yet there is the untapped potential for drug-induced regeneration with good specificity and safety profiles. The Hippo pathway is a key regulator of organ size and regeneration by inhibiting cell proliferation and promoting apoptosis. Kinases MST1 and MST2 (MST1/2), the mammalian Hippo orthologs, are central components of this pathway and are, therefore, strong target candidates for pharmacologically induced tissue regeneration. We report the discovery of a reversible and selective MST1/2 inhibitor, 4-((5,10-dimethyl-6-oxo-6,10-dihydro-5H-pyrimido[5,4-b]thieno[3,2-e][1,4]diazepin-2-yl)amino)benzenesulfonamide (XMU-MP-1), using an enzyme-linked immunosorbent assay-based high-throughput biochemical assay. The cocrystal structure and the structure-activity relationship confirmed that XMU-MP-1 is on-target to MST1/2. XMU-MP-1 blocked MST1/2 kinase activities, thereby activating the downstream effector Yes-associated protein and promoting cell growth. XMU-MP-1 displayed excellent in vivo pharmacokinetics and was able to augment mouse intestinal repair, as well as liver repair and regeneration, in both acute and chronic liver injury mouse models at a dose of 1 to 3 mg/kg via intraperitoneal injection. XMU-MP-1 treatment exhibited substantially greater repopulation rate of human hepatocytes in the Fah-deficient mouse model than in the vehicle-treated control, indicating that XMU-MP-1 treatment might facilitate human liver regeneration. Thus, the pharmacological modulation of MST1/2 kinase activities provides a novel approach to potentiate tissue repair and regeneration, with XMU-MP-1 as the first lead for the development of targeted regenerative therapeutics.
Collapse
Affiliation(s)
- Fuqin Fan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhixiang He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Lu-Lu Kong
- Institute of Systems Biomedicine, Department of Biophysics, and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qinghua Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, and School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Shihao Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Jinjin Ye
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Hao Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiufeng Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Geng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, and School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Lixin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Weiji Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Xihuan Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Yunzhan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Ping Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Lihong Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Xinrui Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiliang Ji
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, and School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Longwood Center 2207, 360 Longwood Avenue, Boston, MA 02215, USA
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Cai-Hong Yun
- Institute of Systems Biomedicine, Department of Biophysics, and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China.
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
18
|
Hu Y, Shin DJ, Pan H, Lin Z, Dreyfuss JM, Camargo FD, Miao J, Biddinger SB. YAP suppresses gluconeogenic gene expression through PGC1α. Hepatology 2017; 66:2029-2041. [PMID: 28714135 PMCID: PMC6082140 DOI: 10.1002/hep.29373] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/25/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022]
Abstract
UNLABELLED Cell growth and proliferation are tightly coupled to metabolism, and dissecting the signaling molecules which link these processes is an important step toward understanding development, regeneration, and cancer. The transcriptional regulator Yes-associated protein 1 (YAP) is a key regulator of liver size, development, and function. We now show that YAP can also suppress gluconeogenic gene expression. Yap deletion in primary hepatocytes potentiates the gluconeogenic gene response to glucagon and dexamethasone, whereas constitutively active YAP suppresses it. The effects of YAP are mediated by the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1. YAP inhibits its ability to bind to and activate transcription from the promoters of its gluconeogenic targets, and the effects of YAP are blunted upon its knockdown. In vivo, constitutively active YAP lowers plasma glucose levels and increases liver size. CONCLUSION YAP appears to reprogram cellular metabolism, diverting substrates away from the energy-consuming process of gluconeogenesis and toward the anabolic process of growth. (Hepatology 2017;66:2029-2041).
Collapse
Affiliation(s)
- Yue Hu
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston Massachusetts 02115, USA,Present address: Cancer Center, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Dong-Ju Shin
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston Massachusetts 02115, USA
| | - Hui Pan
- Bioinformatics Core, Research Division, Joslin Diabetes Center, Boston, Massachusetts 02115, USA,Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Zhiqiang Lin
- Cardiology department, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Jonathan M. Dreyfuss
- Bioinformatics Core, Research Division, Joslin Diabetes Center, Boston, Massachusetts 02115, USA,Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Fernando D. Camargo
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA,Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ji Miao
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston Massachusetts 02115, USA
| | - Sudha B. Biddinger
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston Massachusetts 02115, USA
| |
Collapse
|
19
|
Jiang L, Sun L, Edwards G, Manley M, Wallace DP, Septer S, Manohar C, Pritchard MT, Apte U. Increased YAP Activation Is Associated With Hepatic Cyst Epithelial Cell Proliferation in ARPKD/CHF. Gene Expr 2017; 17:313-326. [PMID: 28915934 PMCID: PMC5705408 DOI: 10.3727/105221617x15034976037343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autosomal recessive polycystic kidney disease/congenital hepatic fibrosis (ARPKD/CHF) is a rare but fatal genetic disease characterized by progressive cyst development in the kidneys and liver. Liver cysts arise from aberrantly proliferative cholangiocytes accompanied by pericystic fibrosis and inflammation. Yes-associated protein (YAP), the downstream effector of the Hippo signaling pathway, is implicated in human hepatic malignancies such as hepatocellular carcinoma, cholangiocarcinoma, and hepatoblastoma, but its role in hepatic cystogenesis in ARPKD/CHF is unknown. We studied the role of the YAP in hepatic cyst development using polycystic kidney (PCK) rats, an orthologous model of ARPKD, and in human ARPKD/CHF patients. The liver cyst wall epithelial cells (CWECs) in PCK rats were highly proliferative and exhibited expression of YAP. There was increased expression of YAP target genes, Ccnd1 (cyclin D1) and Ctgf (connective tissue growth factor), in PCK rat livers. Extensive expression of YAP and its target genes was also detected in human ARPKD/CHF liver samples. Finally, pharmacological inhibition of YAP activity with verteporfin and short hairpin (sh) RNA-mediated knockdown of YAP expression in isolated liver CWECs significantly reduced their proliferation. These data indicate that increased YAP activity, possibly through dysregulation of the Hippo signaling pathway, is associated with hepatic cyst growth in ARPKD/CHF.
Collapse
Affiliation(s)
- Lu Jiang
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lina Sun
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Genea Edwards
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael Manley
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Darren P. Wallace
- †Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- ‡The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Seth Septer
- §Department of Gastroenterology, Children’s Mercy Hospital, Kansas City, KS, USA
| | - Chirag Manohar
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michele T. Pritchard
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- ‡The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Udayan Apte
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- ‡The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
20
|
Pope C, Piekos SC, Chen L, Mishra S, Zhong XB. The role of H19, a long non-coding RNA, in mouse liver postnatal maturation. PLoS One 2017; 12:e0187557. [PMID: 29099871 PMCID: PMC5669494 DOI: 10.1371/journal.pone.0187557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/21/2017] [Indexed: 12/16/2022] Open
Abstract
H19 RNA is highly expressed at early postnatal ages and precipitously decreases at a specific time corresponding with increases in expression of genes important for mature liver function, such as drug metabolizing enzymes. H19’s role in the regulation of liver maturation is currently unknown. Using an H19 knockout mouse model to determine the role of H19 in liver development, we quantified gene expression for insulin growth factor signaling, Wnt signaling, key cytochrome P450 (P450) enzymes known to change as the liver develops, and fetal and adult plasma protein produced in liver. In mice lacking H19 expression, liver weights were significantly increased immediately after birth and significant increases were found in the number of actively proliferating cells. Increases in cell proliferation may be due to increases in β-catenin protein affecting Wnt signaling, increases in insulin-like growth factor 2 (IGF2) expression, and/or increases in insulin-like growth factor 1 receptor (IGF1R) expression at the protein level. Loss of targeted inhibition of IGF1R by microRNA 675 (miR-675) may be the cause of IGF1R increases, as miR-675 expression is also abrogated with loss of H19 expression in our model. P450 expression patterns were largely unchanged. No change in the production of plasma proteins was found, indicating H19 may not be important for liver maturation despite its role in controlling cell proliferation during liver growth. H19 may be important for normal liver development, and understanding how the liver matures will assist in predicting drug efficacy and toxicity in pediatric populations.
Collapse
Affiliation(s)
- Chad Pope
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: ,
| | - Stephanie C. Piekos
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
| | - Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
| | - Shashank Mishra
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
21
|
Peng L, Piekos SC, Guo GL, Zhong XB. Role of Farnesoid X Receptor in the Determination of Liver Transcriptome during Postnatal Maturation in Mice. NUCLEAR RECEPTOR RESEARCH 2017; 4:101308. [PMID: 29795774 PMCID: PMC5962295 DOI: 10.11131/2017/101308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The liver is a vital organ with critical functions in metabolism of various biologically useful materials, synthesis of several vital proteins, detoxification of toxic substances, and immune defense. Most liver functions are not mature at birth and many changes happen during postnatal liver development, which lead to differential vulnerabilities of the liver at different developmental stages. However, the details of what changes occur in liver after birth, at what developmental stages they occur, and molecular mechanisms in the regulation of the developmental process are not clearly known. The nuclear receptor Farnesoid X receptor (FXR) is an important transcriptional regulator in liver. Here, we used RNA-Sequencing to analyze the transcriptome of mouse liver from perinatal to adult ages in both C57BL/6 and Fxr-/- mice. We have defined a clear timeline of functional transition from prenatal through neonatal and adolescent to adult in C57BL/6 mice. Without FXR, activation of neonatal-specific pathways was prolonged and maturation of multiple metabolic pathways was delayed. The loss of FXR also led to increased expression of 27 other transcription regulators. Our data support a conclusion that developmental transcriptome revealed significant functional transition during postnatal liver development and FXR plays an important role in control of postnatal liver maturation.
Collapse
Affiliation(s)
- Lai Peng
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Stephanie C. Piekos
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ 08807, USA
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
22
|
Energy restriction affect liver development in Hu sheep ram lambs through Hippo signaling pathway. Tissue Cell 2017; 49:603-611. [DOI: 10.1016/j.tice.2017.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/29/2017] [Accepted: 08/24/2017] [Indexed: 12/17/2022]
|
23
|
Nagasue R, Murata I, Sasaki K, Sakai R, Miyajima H, Shimoda M. Effectiveness of the liver micronucleus assay using juvenile mice. J Vet Med Sci 2017; 79:1310-1317. [PMID: 28603212 PMCID: PMC5559381 DOI: 10.1292/jvms.17-0116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effectiveness of the liver micronucleus (MN) assay using juvenile mice. Therefore, we analyzed various hepatic cytochrome P450 (CYP)- mediated activities of ethoxyresorufin
O-deethylation, pentoxyresorufin O-dealkylation, tolbutamide hydroxylation, bufuralol 1’-hydroxylation, aniline hydroxylation and midazolam 4-hydroxylation by CYP1A, CYP2B, CYP2C, CYP2D, CYP2E and
CYP3A, respectively, in non-treated male ICR mice aged between 3 and 8 weeks. The enzyme efficiency levels in 3- and 4-week-old mice were approximately similar to or higher than those in 8-week-old mice, except for CYP1A and CYP2E
in 3- and 4-week-old mice, respectively. Since these results suggest that juvenile mice have sufficient activities for most CYP enzymes, we also conducted a liver MN assay using diethylnitrosamine (DEN), a rodent hepatocarcinogen,
on male ICR mice aged between 3 and 6 weeks. A peripheral blood (PB) MN assay was performed simultaneously in 4-week-old mice. Assays incorporating DEN produced positive results in 3- and 4-week-old mice and showed a
dose-dependent increase in the micronucleated hepatocyte frequencies at 4 weeks. Both the liver MN assay in 5- and 6-week-old mice and the PB MN assay had negative results when using DEN. These results suggest that 3- and
4-week-old mice have micronuclei-inducing potential in the liver to detect genotoxic compounds using the liver MN assay.
Collapse
Affiliation(s)
- Ritsuko Nagasue
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Ikue Murata
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Rina Sakai
- Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hirofumi Miyajima
- Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Minoru Shimoda
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
24
|
Abstract
BACKGROUND The spectrum of nonalcoholic fatty liver disease (NAFLD) describes disease conditions deteriorating from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) to cirrhosis (CIR) to hepatocellular carcinoma (HCC). From a molecular and biochemical perspective, our understanding of the etiology of this disease is limited by the broad spectrum of disease presentations, the lack of a thorough understanding of the factors contributing to disease susceptibility, and ethical concerns related to repeat sampling of the liver. To better understand the factors associated with disease progression, we investigated by next-generation RNA sequencing the altered expression of microRNAs (miRNAs) in liver biopsies of class III obese subjects (body mass index ≥40 kg/m(2)) biopsied at the time of elective bariatric surgery. METHODS Clinical characteristics and unbiased RNA expression profiles for 233 miRs, 313 transfer RNAs (tRNAs), and 392 miscellaneous small RNAs (snoRNAs, snRNAs, rRNAs) were compared among 36 liver biopsy specimens stratified by disease severity. RESULTS The abundances of 3 miRNAs that were found to be differentially regulated (miR-301a-3p and miR-34a-5p increased and miR-375 decreased) with disease progression were validated by RT-PCR. No tRNAs or miscellaneous RNAs were found to be associated with disease severity. Similar patterns of increased miR-301a and decreased miR-375 expression were observed in 134 hepatocellular carcinoma (HCC) samples deposited in The Cancer Genome Atlas (TCGA). CONCLUSIONS Our analytical results suggest that NAFLD severity is associated with a specific pattern of altered hepatic microRNA expression that may drive the hallmark of this disorder: altered lipid and carbohydrate metabolism. The three identified miRNAs can potentially be used as biomarkers to access the severity of NAFLD. The persistence of this miRNA expression pattern in an external validation cohort of HCC samples suggests that specific microRNA expression patterns may permit and/or sustain NAFLD development to HCC.
Collapse
|
25
|
Hsu SH, Delgado ER, Otero PA, Teng KY, Kutay H, Meehan KM, Moroney JB, Monga JK, Hand NJ, Friedman JR, Ghoshal K, Duncan AW. MicroRNA-122 regulates polyploidization in the murine liver. Hepatology 2016; 64:599-615. [PMID: 27016325 PMCID: PMC4956491 DOI: 10.1002/hep.28573] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED A defining feature of the mammalian liver is polyploidy, a numerical change in the entire complement of chromosomes. The first step of polyploidization involves cell division with failed cytokinesis. Although polyploidy is common, affecting ∼90% of hepatocytes in mice and 50% in humans, the specialized role played by polyploid cells in liver homeostasis and disease remains poorly understood. The goal of this study was to identify novel signals that regulate polyploidization, and we focused on microRNAs (miRNAs). First, to test whether miRNAs could regulate hepatic polyploidy, we examined livers from Dicer1 liver-specific knockout mice, which are devoid of mature miRNAs. Loss of miRNAs resulted in a 3-fold reduction in binucleate hepatocytes, indicating that miRNAs regulate polyploidization. Second, we surveyed age-dependent expression of miRNAs in wild-type mice and identified a subset of miRNAs, including miR-122, that is differentially expressed at 2-3 weeks, a period when extensive polyploidization occurs. Next, we examined Mir122 knockout mice and observed profound, lifelong depletion of polyploid hepatocytes, proving that miR-122 is required for complete hepatic polyploidization. Moreover, the polyploidy defect in Mir122 knockout mice was ameliorated by adenovirus-mediated overexpression of miR-122, underscoring the critical role miR-122 plays in polyploidization. Finally, we identified direct targets of miR-122 (Cux1, Rhoa, Iqgap1, Mapre1, Nedd4l, and Slc25a34) that regulate cytokinesis. Inhibition of each target induced cytokinesis failure and promoted hepatic binucleation. CONCLUSION Among the different signals that have been associated with hepatic polyploidy, miR-122 is the first liver-specific signal identified; our data demonstrate that miR-122 is both necessary and sufficient in liver polyploidization, and these studies will serve as the foundation for future work investigating miR-122 in liver maturation, homeostasis, and disease. (Hepatology 2016;64:599-615).
Collapse
Affiliation(s)
- Shu-hao Hsu
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219
| | - Evan R. Delgado
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219
| | - P. Anthony Otero
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219
| | - Kun-yu Teng
- Department of Pathology, The Ohio State University, 646C MRF Bldg., 420 W. 12th Ave., Columbus, OH 43210
| | - Huban Kutay
- Department of Pathology, The Ohio State University, 646C MRF Bldg., 420 W. 12th Ave., Columbus, OH 43210
| | - Kolin M. Meehan
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219
| | - Justin B. Moroney
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219
| | - Jappmann K. Monga
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219
| | - Nicholas J. Hand
- Children’s Hospital of Philadelphia Research Institute, Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition. 3615 Civic Center Blvd., Philadelphia, PA 19104
| | - Joshua R. Friedman
- Children’s Hospital of Philadelphia Research Institute, Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition. 3615 Civic Center Blvd., Philadelphia, PA 19104
| | - Kalpana Ghoshal
- Department of Pathology, The Ohio State University, 646C MRF Bldg., 420 W. 12th Ave., Columbus, OH 43210
| | - Andrew W. Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219
| |
Collapse
|
26
|
Abstract
The Hippo pathway is a signalling cascade conserved from Drosophila melanogaster to mammals. The mammalian core kinase components comprise MST1 and MST2, SAV1, LATS1 and LATS2 and MOB1A and MOB1B. The transcriptional co-activators YAP1 and TAZ are the downstream effectors of the Hippo pathway and regulate target gene expression. Hippo signalling has crucial roles in the control of organ size, tissue homeostasis and regeneration, and dysregulation of the Hippo pathway can lead to uncontrolled cell growth and malignant transformation. Mammalian intestine consists of a stem cell compartment as well as differentiated cells, and its ability to regenerate rapidly after injury makes it an excellent model system to study tissue homeostasis, regeneration and tumorigenesis. Several studies have established the important role of the Hippo pathway in these processes. In addition, crosstalk between Hippo and other signalling pathways provides tight, yet versatile, regulation of tissue homeostasis. In this Review, we summarize studies on the role of the Hippo pathway in the intestine on these physiological processes and the underlying mechanisms responsible, and discuss future research directions and potential therapeutic strategies targeting Hippo signalling in intestinal disease.
Collapse
|
27
|
Hindley CJ, Condurat AL, Menon V, Thomas R, Azmitia LM, Davis JA, Pruszak J. The Hippo pathway member YAP enhances human neural crest cell fate and migration. Sci Rep 2016; 6:23208. [PMID: 26980066 PMCID: PMC4793290 DOI: 10.1038/srep23208] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/01/2016] [Indexed: 12/14/2022] Open
Abstract
The Hippo/YAP pathway serves as a major integrator of cell surface-mediated signals and regulates key processes during development and tumorigenesis. The neural crest is an embryonic tissue known to respond to multiple environmental cues in order to acquire appropriate cell fate and migration properties. Using multiple in vitro models of human neural development (pluripotent stem cell-derived neural stem cells; LUHMES, NTERA2 and SH-SY5Y cell lines), we investigated the role of Hippo/YAP signaling in neural differentiation and neural crest development. We report that the activity of YAP promotes an early neural crest phenotype and migration, and provide the first evidence for an interaction between Hippo/YAP and retinoic acid signaling in this system.
Collapse
Affiliation(s)
- Christopher J Hindley
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg
| | - Alexandra Larisa Condurat
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg.,Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Vishal Menon
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg.,Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ria Thomas
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg.,Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Luis M Azmitia
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg
| | - Jason A Davis
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg
| | - Jan Pruszak
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg.,Center for Biological Signaling Studies (BIOSS), University of Freiburg
| |
Collapse
|
28
|
Su T, Bondar T, Zhou X, Zhang C, He H, Medzhitov R. Two-signal requirement for growth-promoting function of Yap in hepatocytes. eLife 2015; 4:e02948. [PMID: 25667983 PMCID: PMC4363878 DOI: 10.7554/elife.02948] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 02/09/2015] [Indexed: 01/09/2023] Open
Abstract
The transcriptional coactivator Yes-associated protein (Yap) promotes proliferation and inhibits apoptosis, suggesting that Yap functions as an oncogene. Most oncogenes, however, require a combination of at least two signals to promote proliferation. In this study, we present evidence that Yap activation is insufficient to promote growth in the otherwise normal tissue. Using a mosaic mouse model, we demonstrate that Yap overexpression in a fraction of hepatocytes does not lead to their clonal expansion, as proliferation is counterbalanced by increased apoptosis. To shift the activity of Yap towards growth, a second signal provided by tissue damage or inflammation is required. In response to liver injury, Yap drives clonal expansion, suppresses hepatocyte differentiation, and promotes a progenitor phenotype. These results suggest that Yap activation is insufficient to promote growth in the absence of a second signal thus coordinating tissue homeostasis and repair.
Collapse
Affiliation(s)
- Tian Su
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Tanya Bondar
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Xu Zhou
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Cuiling Zhang
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Hang He
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| | - Ruslan Medzhitov
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
29
|
Alder O, Cullum R, Lee S, Kan AC, Wei W, Yi Y, Garside VC, Bilenky M, Griffith M, Morrissy AS, Robertson GA, Thiessen N, Zhao Y, Chen Q, Pan D, Jones SJM, Marra MA, Hoodless PA. Hippo signaling influences HNF4A and FOXA2 enhancer switching during hepatocyte differentiation. Cell Rep 2014; 9:261-271. [PMID: 25263553 PMCID: PMC4612615 DOI: 10.1016/j.celrep.2014.08.046] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/11/2014] [Accepted: 08/20/2014] [Indexed: 12/28/2022] Open
Abstract
Cell fate acquisition is heavily influenced by direct interactions between master regulators and tissue-specific enhancers. However, it remains unclear how lineage-specifying transcription factors, which are often expressed in both progenitor and mature cell populations, influence cell differentiation. Using in vivo mouse liver development as a model, we identified thousands of enhancers that are bound by the master regulators HNF4A and FOXA2 in a differentiation-dependent manner, subject to chromatin remodeling, and associated with differentially expressed target genes. Enhancers exclusively occupied in the embryo were found to be responsive to developmentally regulated TEAD2 and coactivator YAP1. Our data suggest that Hippo signaling may affect hepatocyte differentiation by influencing HNF4A and FOXA2 interactions with temporal enhancers. In summary, transcription factor-enhancer interactions are not only tissue specific but also differentiation dependent, which is an important consideration for researchers studying cancer biology or mammalian development and/or using transformed cell lines.
Collapse
Affiliation(s)
- Olivia Alder
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Sam Lee
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Arohumam C Kan
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Wei Wei
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Yuyin Yi
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | | | - Misha Bilenky
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Malachi Griffith
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - A Sorana Morrissy
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Gordon A Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Nina Thiessen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Yongjun Zhao
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Qian Chen
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Duojia Pan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A1S6, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z4H4, Canada.
| |
Collapse
|
30
|
The use of Yes-associated protein expression in the diagnosis of persistent neonatal cholestatic liver disease. Hum Pathol 2014; 45:1057-64. [PMID: 24746211 DOI: 10.1016/j.humpath.2014.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/19/2022]
Abstract
Although physiologic jaundice of neonates is common, persistent neonatal cholestasis is life-threatening and has multiple etiologies. Among these etiologies, biliary atresia (BA) requires rapid diagnosis and treatment. In diagnosing BA, the surgical pathologist must recognize subtle histologic changes, often with only a small core liver biopsy. To aid in the differential diagnosis of neonatal cholestasis, we investigated Yes-associated protein (YAP), a regulator of organ size and bile duct development. We examined whether a YAP immunostain can highlight emerging hepatobiliary epithelium in BA (n = 28) versus other causes of persistent cholestasis (non-BA; n = 15) and thus serve as a useful diagnostic marker in persistent neonatal jaundice. We show significantly (P < .01) more high-grade (<2) fibrosis and ductular proliferation among BA versus non-BA cases. Likewise, there was significantly more high-grade (2-3/3) cytoplasmic and nuclear YAP staining in BA (97% and 89%) versus non-BA (20% and 13%). High-grade nuclear YAP staining was both sensitive (88%) and specific (87%) for the diagnosis of BA. In contrast to neonatal cholestasis, the differences in YAP localization in cholestatic/obstructed versus nonobstructed adult livers were not significant. Lastly, we found that pharmacologic inhibition of the YAP complex in both cholangiocyte and cholangiocarcinoma cell lines blocked compensatory bile duct proliferation, an early marker of BA that requires nuclear YAP expression, in a time- and dose-dependent manner. In summary, we show that YAP expression modulates both bile duct proliferation and liver damage/fibrosis while acting as a sensitive and specific marker in the differential diagnosis of persistent neonatal cholestasis.
Collapse
|
31
|
Lats2 is critical for the pluripotency and proper differentiation of stem cells. Cell Death Differ 2014; 21:624-33. [PMID: 24413153 DOI: 10.1038/cdd.2013.188] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/08/2022] Open
Abstract
Differentiation is a highly controlled process essential for embryonic and adult development. Moreover, disruption of proper differentiation is often associated with human diseases, including cancer. We analyzed the involvement of the tumor-suppressor Lats2 in mouse embryonic stem cell (mESC) pluripotency and differentiation, and report that mESCs lacking Lats2 are unable to sustain stemness and are not able to initiate and coordinate developmental transcriptional programs. Lats2-/- mESCs retain bivalent 'poised' chromatin marks on developmental genes and exhibit germ layer ambiguity both in vitro and in vivo. Importantly, in coordinating proper germ layer specification, Lats2 engages in a feedback loop with another tumor suppressor, p53.
Collapse
|