1
|
Zhang J, Xie Z, Zhu X, Xu C, Lin J, Zhao M, Cheng Y. New insights into therapeutic strategies for targeting hepatic macrophages to alleviate liver fibrosis. Int Immunopharmacol 2025; 158:114864. [PMID: 40378438 DOI: 10.1016/j.intimp.2025.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/18/2025]
Abstract
Liver fibrosis is a wound-healing response induced by persistent liver damage, resulting from complex multicellular interactions and multifactorial networks. Without intervention, it can progress to cirrhosis and even liver cancer. Current understanding suggests that liver fibrosis is reversible, making it crucial to explore effective therapeutic strategies for its alleviation. Chronic inflammation serves as the primary driver of liver fibrosis, with hepatic macrophages playing a dual role depending on their polarization state. This review summarizes various prevention and therapeutic strategies targeting hepatic macrophages in the context of liver fibrosis. These strategies include inhibition of macrophage recruitment, modulation of macrophage activation and polarization, regulation of macrophage metabolism, and induction of phagocytosis and autophagy in hepatic macrophages. Additionally, we discuss the communication between hepatic macrophages, hepatocytes, and hepatic stellate cells (HSCs), as well as the current clinical application of anti-fibrotic drugs targeting macrophages. The goal is to identify effective therapeutic targets at each stage of macrophage participation in liver fibrosis development, with the aim of using hepatic macrophages as a target for liver fibrosis treatment.
Collapse
Affiliation(s)
- Jialu Zhang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Zhaojing Xie
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Xueyu Zhu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Chenxi Xu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Jiguo Lin
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Mingqi Zhao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Xu H, Tang Y, Mao W, Wu L, Zhou Y, Deng J, Tang W, Xiao X, Xia Y, Wang Y. Exploration of the optimal retention method in vivo for stem cell therapy: Low-intensity ultrasound preconditioning. Regen Ther 2025; 29:484-492. [PMID: 40390863 PMCID: PMC12088760 DOI: 10.1016/j.reth.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/26/2025] [Accepted: 04/17/2025] [Indexed: 05/21/2025] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are pluripotent and self-renewing, exerting a crucial role in the domain of regenerative medicine. Nevertheless, BMSCs encounter challenges such as low cell viability and inadequate homing during transplantation, thereby restricting their therapeutic efficacy. Hence, current research is concentrated on identifying optimal retention approaches following BMSCs transplantation to enhance its effectiveness. Low-intensity ultrasound (LIUS) has been verified as an efficacious method to enhance the performance of BMSCs. We established a skin trauma model and assessed the therapeutic effect of LIUS-preconditioned BMSCs. The results demonstrated that pretreatment with LIUS could expedite wound healing and effectively diminish scar formation post-transplantation by promoting proliferation capacity, reinforcing anti-apoptotic attributes, improving homing ability, and significantly enhancing the transplantation effect of BMSCs. These discoveries imply that LIUS might constitute a promising strategy for attaining optimal retention after stem cell transplantation in regenerative medicine and wound repair therapy.
Collapse
Affiliation(s)
| | | | - Wenjing Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Liu Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yiqing Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Juan Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Wentao Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xinfang Xiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Xia
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
3
|
Meng L, Lv H, Liu A, Cao Q, Du X, Li C, Li Q, Luo Q, Xiao Y. Albiflorin inhibits inflammation to improve liver fibrosis by targeting the CXCL12/CXCR4 axis in mice. Front Pharmacol 2025; 16:1577201. [PMID: 40371331 PMCID: PMC12074940 DOI: 10.3389/fphar.2025.1577201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
Liver fibrosis is a common pathological feature of chronic hepatic injury that currently lacks effective therapeutic interventions. Albiflorin (ALB), a pinane-type monoterpene derived from Paeonia lactiflora Pall, has notable anti-inflammatory and hepatoprotective effects. However, the potential role of ALB against liver fibrosis is largely unknown. In this study, we discovered that ALB significantly inhibited CCl4-induced liver fibrosis in mice. This was evidenced by improvements in liver and kidney function indexes, fibrosis indicators, and histopathological findings. In vitro studies also showed that ALB inhibited TGF-β1-induced LX-2 cell activation and reduced the expression of α-SMA and collagen I. Additionally, we found that ALB mitigates inflammation and ameliorates liver fibrosis by targeting the CXCL12/CXCR4 axis, as confirmed using the CXCR4 inhibitor AMD3100 in CCl4-treated mice. Notably, combining ALB with metformin (MET) enhanced the inhibition of liver fibrosis progression. These findings highlight that ALB exerts anti-liver fibrosis effects by targeting the CXCL12/CXCR4 axis, underscoring its potential as a standalone treatment or as an adjuvant therapy.
Collapse
Affiliation(s)
- Lingjie Meng
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huijing Lv
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Anli Liu
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Cao
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinyi Du
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chengjin Li
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qinggui Li
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingqing Luo
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi Xiao
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
4
|
Wang L, Nie F, Lu Z, Chong Y. Mechanism underlying the involvement of CXCR4/CXCL12 in diabetic wound healing and prospects for responsive hydrogel-loaded CXCR4 formulations. Front Pharmacol 2025; 16:1561112. [PMID: 40308758 PMCID: PMC12040920 DOI: 10.3389/fphar.2025.1561112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Diabetes mellitus is a prevalent chronic disease, often leading to complications, with chronic wounds being among the most challenging. Impairment of the CXCR4/CXCL12 signaling pathway, which plays a key role in cell mobilization, migration, and angiogenesis, significantly hampers the wound healing process in diabetic patients. Modulation of this pathway using CXCR4-targeted agents has shown promise in restoring wound repair capabilities. Additionally, the development of responsive hydrogels capable of adapting to external stimuli offers a powerful platform for drug delivery in chronic wound management. These hydrogels, when loaded with CXCR4 agonists or antagonists, enable controlled drug release and real-time therapeutic modulation. Integrating such hydrogels with existing wound healing strategies may provide an innovative and effective solution for overcoming the challenges associated with diabetic wound treatment.
Collapse
Affiliation(s)
- Lingli Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fengsong Nie
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhaoyu Lu
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Chong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Tiede A, Stockhoff L, Liu Z, Rieland H, Mauz JB, Ohlendorf V, Bremer B, Witt J, Kraft A, Cornberg M, Hinrichs JB, Meyer BC, Wedemeyer H, Xu CJ, Falk CS, Maasoumy B. Insertion of a transjugular intrahepatic portosystemic shunt leads to sustained reversal of systemic inflammation in patients with decompensated liver cirrhosis. Clin Mol Hepatol 2025; 31:240-255. [PMID: 39568127 PMCID: PMC11791575 DOI: 10.3350/cmh.2024.0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND/AIMS Systemic Inflammation (SI) is considered a key mechanism in disease progression and development of complications in decompensated liver cirrhosis. SI is mainly driven by portal hypertension and bacterial translocation. Transjugular intrahepatic portosystemic shunt (TIPS) insertion represents an effective treatment for portal hypertension. This study aims to investigate the impact of TIPS insertion on SI and bacterial translocation. METHODS We prospectively included 59 cirrhotic patients undergoing TIPS insertion. Blood samples were collected at TIPS insertion and follow-up (FU) 1, 3, 6, and 12 months thereafter. At all time points, we performed a comprehensive analysis of SI including 43 soluble inflammatory markers (SIMs), and surrogates of bacterial translocation (sCD14, sCD163). To investigate long-term kinetics of SI, C-reactive protein (CRP) and white blood cells (WBC) were retrospectively analyzed in a cohort of 177 patients up to 3 years after TIPS insertion. RESULTS At TIPS insertion, 30/43 SIMs, sCD14, and sCD163 measured significantly higher in cirrhotic patients compared to healthy controls. By FU6 25 SIMs and sCD14 measured at significantly lower levels compared to baseline. Interestingly, in patients with TIPS indication of refractory ascites, IL-6 decreased to levels documented in earlier stages of cirrhosis. In long-term follow-up, CRP levels significantly decreased after TIPS insertion, which translated into lower mortality in Cox regression analysis (HR 0.968, p=0.042). Notably, patients with residual ascites post-TIPS showed significantly higher CRP and IL-6 levels across all follow-ups compared to patients with resolved ascites. CONCLUSION Decreasing portal hypertension via TIPS insertion leads to a significant attenuation of SI and bacterial translocation over time.
Collapse
Affiliation(s)
- Anja Tiede
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Lena Stockhoff
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Niels-Stensen-Kliniken Marienhospital, Osnabrück, Germany
| | - Zhaoli Liu
- Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Hannah Rieland
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jim B. Mauz
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Valerie Ohlendorf
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Birgit Bremer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jennifer Witt
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Anke Kraft
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Cluster of Excellence RESIST (EXC2155), Hannover Medical School, Hannover, Germany
| | - Jan B. Hinrichs
- St. Bernward Hospital, Radiology, Hildesheim, Germany
- Hannover Medical School, Department of Diagnostic and Interventional Radiology, Hannover, Germany
| | - Bernhard C. Meyer
- Hannover Medical School, Department of Diagnostic and Interventional Radiology, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- Cluster of Excellence RESIST (EXC2155), Hannover Medical School, Hannover, Germany
| | - Cheng-Jian Xu
- Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Christine S. Falk
- Cluster of Excellence RESIST (EXC2155), Hannover Medical School, Hannover, Germany
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Benjamin Maasoumy
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- Cluster of Excellence RESIST (EXC2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Chen N, Sun Y, Luo P, Tang Y, Fan Y, Han L, Wang K. Association of CXCR4 gene expression and promoter methylation with chronic hepatitis B-related fibrosis/cirrhosis. Int Immunopharmacol 2024; 139:112686. [PMID: 39053226 DOI: 10.1016/j.intimp.2024.112686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Chronic hepatitis B (CHB) virus infection remains a major public health concern. In this study, the diagnostic capability of C-X-C chemokine receptor type 4 promoter methylation in patients with CHB-associated liver fibrosis/cirrhosis was evaluated. METHODS Two hundred participants were recruited, including 25 healthy controls (HCs), 60 patients with CHB and 115 patients with hepatitis B virus (HBV)-related liver fibrosis/LC. Researchers monitored the methylation and messenger ribonucleic acid (mRNA) levels of C-X-C chemokine receptor type 4 (CXCR4) in peripheral blood mononuclear cells (PBMCs). In addition, we utilized single cell sequencing to analyze the cell types highly expressing CXCR4 in HBV-related liver fibrosis/LC. RESULTS HBV-related fibrosis/cirrhosis patients exhibited a significant elevation in the expression level of CXCR4 mRNA in PBMCs compared to CHB ones. The CXCR4 promoter showed a significantly lower methylation level in patients with CHB-related fibrosis/cirrhosis than in patients with CHB. Additionally, the diagnostic area under the area under the curve (AUC) of methylation of the CXCR4 promoter for CHB -related liver fibrosis/LC exceeded liver stiffness measurement (LSM), aspartate aminotransferase-to-platelet ratio index (APRI) and fibrosis-4 score (FIB-4). Furthermore, single-cell analysis demonstrated that CXCR4 expression is closely associated with Natural Killer cells(NK cells), T lymphocytes (T cells), and monocytes. CONCLUSION The low methylation of the CXCR4 promoter holds promise as a non-invasive biomarker for detecting CHB-associated liver fibrosis/LC.
Collapse
Affiliation(s)
- Nan Chen
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yu Sun
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Pengyu Luo
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yuna Tang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Liyan Han
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China; Institute of Hepatology, Shandong University, Jinan 250012, PR China.
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, PR China; Institute of Hepatology, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
7
|
He X, Sun Z, Sun J, Chen Y, Luo Y, Wang Z, Linghu D, Song M, Cao C. Single-cell transcriptomics reveal the microenvironment landscape of perfluorooctane sulfonate-induced liver injury in female mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173562. [PMID: 38825197 DOI: 10.1016/j.scitotenv.2024.173562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
Epidemic and animal studies have reported that perfluoroalkyl and polyfluoroalkyl substances (PFASs) are strongly associated with liver injury; however, to date, the effects of PFASs on the hepatic microenvironment remain largely unknown. In this study, we established perfluorooctane sulfonic acid (PFOS)-induced liver injury models by providing male and female C57BL/6 mice with water containing PFOS at varying doses for 4 weeks. Hematoxylin and eosin staining revealed that PFOS induced liver injury in both sexes. Elevated levels of serum aminotransferases including those of alanine aminotransferase and aspartate transaminase were detected in the serum of mice treated with PFOS. Female mice exhibited more severe liver injury than male mice. We collected the livers from female mice and performed single-cell RNA sequencing. In total, 36,529 cells were included and grouped into 10 major cell types: B cells, granulocytes, T cells, NK cells, monocytes, dendritic cells, macrophages, endothelial cells, fibroblasts, and hepatocytes. Osteoclast differentiation was upregulated and the T cell receptor signaling pathway was significantly downregulated in PFOS-treated livers. Further analyses revealed that among immune cell clusters in PFOS-treated livers, Tcf7+CD4+T cells were predominantly downregulated, whereas conventional dendritic cells and macrophages were upregulated. Among the fibroblast subpopulations, hepatic stellate cells were significantly enriched in PFOS-treated female mice. CellphoneDB analysis suggested that fibroblasts interact closely with endothelial cells. The major ligand-receptor pairs between fibroblasts and endothelial cells in PFOS-treated livers were Dpp4_Cxcl12, Ackr3_Cxcl12, and Flt1_complex_Vegfa. These genes are associated with directing cell migration and angiogenesis. Our study provides a general framework for understanding the microenvironment in the livers of female mice exposed to PFOS at the single-cell level.
Collapse
Affiliation(s)
- Xinrong He
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhichao Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingyuan Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyao Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongyi Luo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiyi Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dongli Linghu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Miao Song
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuanhui Cao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Lu Y, Xing F, Peng S. The effect of CXCL12 on survival outcomes of patients with viral hepatitis-associated hepatocellular carcinoma after hepatectomy. Heliyon 2024; 10:e30782. [PMID: 38756575 PMCID: PMC11096947 DOI: 10.1016/j.heliyon.2024.e30782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Background The CXCL12-CXCR4/CXCR7 axis is garnering growing attention. But the comprehension of its function in the progression of HCC remains controversial. The purpose of this study was to investigate the effects of CXCL12 and its receptor on the prognosis of patients with viral hepatitis-associated HCC after hepatectomy. Methods A total of 86 patients had been enrolled who had undergone hepatectomy for HCC and followed up to July 31, 2019, and their clinicopathological and follow-up data were recorded. Tumor and peritumoral tissues were obtained to detect the expression of CXCL12, CXCR4, and CXCR7 using immunohistochemistry. Real-time polymerase chain reaction was utilized to detect hepatitis B or C virus loads, while survival analysis was performed using the Kaplan-Meier method. Furthermore, the Cox proportional hazards regression model was employed to analyze the factors affecting the prognosis. Results The results revealed that the CXCL12, CXCR4, and CXCR7 expression in tumor tissues was lower than in the corresponding non-tumor tissues in 20.93 %, 22.09 %, and 23.26 % of the patients, respectively, and that only CXCL12 was found to be related to the extrahepatic invasion of HCC. The survival analysis and Cox regression showed that only CXCL12 was associated with the postoperative survival of patients with HCC, and that it was an independent prognostic risk factor in the CXCL12-CXCR4/CXCR7 axis. The CXCL12low group represented shorter progression-free survival and lower overall survival rates. However, the subgroup analysis displayed that the survival difference associated with CXCL12 was only manifested in patients with higher expression of CXCR4 or CXCR7 in HCC, as compared to the surrounding tissues. Conclusions Our findings suggest that, when assessing the prognostic significance of CXCL12 in HCC, it is essential to consider the expression level of its receptor. Nevertheless, CXCL12 can potentially serve as a promising prognostic marker for HCC.
Collapse
Affiliation(s)
- Yan Lu
- the Department of Hospital Infection Control and Public Health Management, the Seventh Affiliated Hospital, Sun Yat-sen University, No. 628 Zhenyuan Road, Guangming District, Shenzhen, 518107, China
| | - Fei Xing
- the Department of Oncology, the Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Heping District, 110004, China
| | - Songlin Peng
- the Department of General Surgery, the Seventh Affiliated Hospital, Sun Yat-sen University, No. 628 Zhenyuan Road, Guangming District, Shenzhen, 518107, China
| |
Collapse
|
9
|
Kim W, Chu JO, Kim DY, Lee SH, Choi CH, Lee KH. Mimicking chronic alcohol effects through a controlled and sustained ethanol release device. J Biol Eng 2024; 18:31. [PMID: 38715085 PMCID: PMC11077717 DOI: 10.1186/s13036-024-00428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Alcohol consumption, a pervasive societal issue, poses considerable health risks and socioeconomic consequences. Alcohol-induced hepatic disorders, such as fatty liver disease, alcoholic hepatitis, chronic hepatitis, liver fibrosis, and cirrhosis, underscore the need for comprehensive research. Existing challenges in mimicking chronic alcohol exposure in cellular systems, attributed to ethanol evaporation, necessitate innovative approaches. In this study, we developed a simple, reusable, and controllable device for examining the physiological reactions of hepatocytes to long-term alcohol exposure. Our approach involved a novel device designed to continuously release ethanol into the culture medium, maintaining a consistent ethanol concentration over several days. We evaluated device performance by examining gene expression patterns and cytokine secretion alterations during long-term exposure to ethanol. These patterns were correlated with those observed in patients with alcoholic hepatitis. Our results suggest that our ethanol-releasing device can be used as a valuable tool to study the mechanisms of chronic alcohol-mediated hepatic diseases at the cellular level. Our device offers a practical solution for studying chronic alcohol exposure, providing a reliable platform for cellular research. This innovative tool holds promise for advancing our understanding of the molecular processes involved in chronic alcohol-mediated hepatic diseases. Future research avenues should explore broader applications and potential implications for predicting and treating alcohol-related illnesses.
Collapse
Affiliation(s)
- Wanil Kim
- Department of Biochemistry and Institute of Medical Science, School of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jin-Ok Chu
- Department of Cosmetic Science and Technology, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Soo-Hyeon Lee
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Chang-Hyung Choi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Kyung-Ha Lee
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea.
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
10
|
Kimura K, Tanuma J, Kimura M, Imamura J, Yanase M, Ieiri I, Kurosaki M, Watanabe T, Endo T, Yotsuyanagi H, Gatanaga H. Safety and tolerability of OP-724 in patients with haemophilia and liver cirrhosis due to HIV/HCV coinfection: an investigator-initiated, open-label, non-randomised, single-centre, phase I study. BMJ Open Gastroenterol 2024; 11:e001341. [PMID: 38677720 PMCID: PMC11057312 DOI: 10.1136/bmjgast-2023-001341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE Patients with haemophilia and HIV who acquire hepatitis C virus (HCV) after receiving contaminated blood products can experience accelerated progression of liver fibrosis and a poor prognosis, making liver disease a prominent cause of mortality among these patients. In the current study, we aimed to evaluate the safety and tolerability of the potential antifibrotic agent OP-724-a CREB-binding protein/β-catenin inhibitor-in this patient subset. DESIGN In this single-centre, open-label, non-randomised, phase I trial, we sequentially enrolled patients with cirrhosis following HIV/HCV coinfection classified as Child-Pugh (CP) class A or B. Five patients received an intravenous infusion of OP-724 at doses of 140 or 280 mg/m2 for 4 hours two times weekly over 12 weeks. The primary endpoint was the incidence of serious adverse events (SAEs). Secondary endpoints included the incidence of AEs and improved liver stiffness measure (LSM), as determined by vibration-controlled transient elastography. This study was registered at ClinicalTrials.gov (NCT04688034). RESULTS Between 9 February 2021 and 5 July 2022, five patients (median age: 51 years) were enrolled. All five patients completed 12 cycles of treatment. SAEs were not observed. The most common AEs were fever (60%) and gastrointestinal symptoms (diarrhoea: 20%, enterocolitis: 20%). Improvements in LSM and serum albumin levels were also observed. CONCLUSION In this preliminary assessment, intravenous administration of 140 or 280 mg/m2/4 hours OP-724 over 12 weeks was well tolerated by patients with haemophilia combined with cirrhosis due to HIV/HCV coinfection. Hence, the antifibrotic effects of OP-724 warrant further assessment in patients with cirrhosis. TRIAL REGISTRATION NUMBER NCT04688034.
Collapse
Affiliation(s)
- Kiminori Kimura
- Department of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Junko Tanuma
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masamichi Kimura
- Department of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Jun Imamura
- Department of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Mikio Yanase
- Department of Gastroenterology, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Tsunamasa Watanabe
- Division of Gastroenterology and Hepatology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Tomoyuki Endo
- Department of Hematology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
11
|
Wang P, Jie Y, Yao L, Sun YM, Jiang DP, Zhang SQ, Wang XY, Fan Y. Cells in the liver microenvironment regulate the process of liver metastasis. Cell Biochem Funct 2024; 42:e3969. [PMID: 38459746 DOI: 10.1002/cbf.3969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
The research of liver metastasis is a developing field. The ability of tumor cells to invade the liver depends on the complicated interactions between metastatic cells and local subpopulations in the liver (including Kupffer cells, hepatic stellate cells, liver sinusoidal endothelial cells, and immune-related cells). These interactions are mainly mediated by intercellular adhesion and the release of cytokines. Cell populations in the liver microenvironment can play a dual role in the progression of liver metastasis through different mechanisms. At the same time, we can see the participation of liver parenchymal cells and nonparenchymal cells in the process of liver metastasis of different tumors. Therefore, the purpose of this article is to summarize the relationship between cellular components of liver microenvironment and metastasis and emphasize the importance of different cells in the occurrence or potential regression of liver metastasis.
Collapse
Affiliation(s)
- Pei Wang
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Jie
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lin Yao
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yi-Meng Sun
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Da-Peng Jiang
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shi-Qi Zhang
- Department of Gastroenterology, The Affiliated Suqian First People's Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Xiao-Yan Wang
- Department of Gastroenterology, The Affiliated Suqian First People's Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Yu Fan
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
12
|
Kawara RS, Moawed FS, Elsenosi Y, Elmaksoud HA, Ahmed ESA, Abo-Zaid OA. Melissa officinalis extract palliates redox imbalance and inflammation associated with hyperthyroidism-induced liver damage by regulating Nrf-2/ Keap-1 gene expression in γ-irradiated rats. BMC Complement Med Ther 2024; 24:71. [PMID: 38303002 PMCID: PMC10832092 DOI: 10.1186/s12906-024-04370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Melissa officinalis (MO) is a well-known medicinal plant species used in the treatment of several diseases; it is widely used as a vegetable, adding flavour to dishes. This study was designed to evaluate the therapeutic effect of MO Extract against hyperthyroidism induced by Eltroxin and γ-radiation. METHODS Hyperthyroidism was induced by injecting rats with Eltroxin (100 µg/kg/ day) for 14 days and exposure to γ-radiation (IR) (5 Gy single dose). The hyperthyroid rats were orally treated with MO extract (75 mg/kg/day) at the beginning of the second week of the Eltroxin injection and continued for another week. The levels of thyroid hormones, liver enzymes and proteins besides the impaired hepatic redox status and antioxidant parameters were measured using commercial kits. The hepatic gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein-1(Keap-1) in addition to hepatic inflammatory mediators including tumor necrosis factor-α (TNF- α), Monocyte chemoattractant protein-1 (MCP-1) and fibrogenic markers such as transforming growth factor-beta1 (TGF-β1) were determined. RESULTS MO Extract reversed the effect of Eltroxin + IR on rats and attenuated the thyroid hormones. Moreover, it alleviated hyperthyroidism-induced hepatic damage by inhibiting the hepatic enzymes' activities as well as enhancing the production of proteins concomitant with improving cellular redox homeostasis by attenuating the deranged redox balance and modulating the Nrf2/Keap-1 pathway. Additionally, MO Extract alleviated the inflammatory response by suppressing the TNF- α and MCP-1 and prevented hepatic fibrosis via Nrf2-mediated inhibition of the TGF-β1/Smad pathway. CONCLUSION Accordingly, these results might strengthen the hepatoprotective effect of MO Extract in a rat model of hyperthyroidism by regulating the Nrf-2/ Keap-1 pathway.
Collapse
Affiliation(s)
- Ragaa Sm Kawara
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| | - Fatma Sm Moawed
- Health radiation research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, 11787, Cairo, Egypt
| | - Yakout Elsenosi
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| | - Hussein Abd Elmaksoud
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, 11787, Cairo, Egypt.
| | - Omayma Ar Abo-Zaid
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| |
Collapse
|
13
|
Zhang C, Sui Y, Liu S, Yang M. The Roles of Myeloid-Derived Suppressor Cells in Liver Disease. Biomedicines 2024; 12:299. [PMID: 38397901 PMCID: PMC10886773 DOI: 10.3390/biomedicines12020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Liver disease-related mortality is a major cause of death worldwide. Hepatic innate and adaptive immune cells play diverse roles in liver homeostasis and disease. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells. MDSCs can be broadly divided into monocytic MDSCs and polymorphonuclear or granulocytic MDSCs, and they functionally interact with both liver parenchymal and nonparenchymal cells, such as hepatocytes and regulatory T cells, to impact liver disease progression. The infiltration and activation of MDSCs in liver disease can be regulated by inflammatory chemokines and cytokines, tumor-associated fibroblasts, epigenetic regulation factors, and gut microbiota during liver injury and cancer. Given the pivotal roles of MDSCs in advanced liver diseases, they can be targeted to treat primary and metastatic liver cancer, liver generation, alcoholic and nonalcoholic liver disease, and autoimmune hepatitis. Currently, several treatments such as the antioxidant and anti-inflammatory agent berberine are under preclinical and clinical investigation to evaluate their therapeutic efficacy on liver disease and their effect on MDSC infiltration and function. Phenotypic alteration of MDSCs in different liver diseases that are in a model-dependent manner and lack special markers for distinct MDSCs are challenges for targeting MDSCs to treat liver disease. Multi-omics study is an option to uncover the features of disease-specific MDSCs and potential gene or protein targets for liver disease treatment. In summary, MDSCs play important roles in the pathogenesis and progression of liver disease by regulating both intrahepatic innate and adaptive immune responses.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA;
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, China
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
14
|
Zhang L, Zhao C, Dai W, Tong H, Yang W, Huang Z, Tang C, Gao J. Disruption of cholangiocyte-B cell crosstalk by blocking the CXCL12-CXCR4 axis alleviates liver fibrosis. Cell Mol Life Sci 2023; 80:379. [PMID: 38010435 PMCID: PMC11072584 DOI: 10.1007/s00018-023-05032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
B cells can promote liver fibrosis, but the mechanism of B cell infiltration and therapy against culprit B cells are lacking. We postulated that the disruption of cholangiocyte-B-cell crosstalk could attenuate liver fibrosis by blocking the CXCL12-CXCR4 axis via a cyclooxygenase-2-independent effect of celecoxib. In wild-type mice subjected to thioacetamide, celecoxib ameliorated lymphocytic infiltration and liver fibrosis. By single-cell RNA sequencing and flow cytometry, CXCR4 was established as a marker for profibrotic and liver-homing phenotype of B cells. Celecoxib reduced liver-homing B cells without suppressing CXCR4. Cholangiocytes expressed CXCL12, attracting B cells to fibrotic areas in human and mouse. The proliferation and CXCL12 expression of cholangiocytes were suppressed by celecoxib. In CXCL12-deficient mice, liver fibrosis was also attenuated with less B-cell infiltration. In the intrahepatic biliary epithelial cell line HIBEpiC, bulk RNA sequencing indicated that both celecoxib and 2,5-dimethyl-celecoxib (an analog of celecoxib that does not show a COX-2-dependent effect) regulated the TGF-β signaling pathway and cell cycle. Moreover, celecoxib and 2,5-dimethyl-celecoxib decreased the proliferation, and expression of collagen I and CXCL12 in HIBEpiC cells stimulated by TGF-β or EGF. Taken together, liver fibrosis can be ameliorated by disrupting cholangiocyte-B cell crosstalk by blocking the CXCL12-CXCR4 axis with a COX-2-independent effect of celecoxib.
Collapse
Affiliation(s)
- Linhao Zhang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, 4th Keyuan Road, Chengdu, 610041, China
| | - Chong Zhao
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, 4th Keyuan Road, Chengdu, 610041, China
| | - Wenting Dai
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, 4th Keyuan Road, Chengdu, 610041, China
| | - Huan Tong
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenjuan Yang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyin Huang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengwei Tang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, 4th Keyuan Road, Chengdu, 610041, China.
| | - Jinhang Gao
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, 4th Keyuan Road, Chengdu, 610041, China.
| |
Collapse
|
15
|
Sanches BDA, Tamarindo GH, da Silva ADT, Amaro GM, Dos Santos Maldarine J, Dos Santos VA, Guerra LHA, Baraldi CMB, Góes RM, Taboga SR, Carvalho HF. Stromal cell-derived factor 1 (SDF-1) increases the number of telocytes in ex vivo and in vitro assays. Histochem Cell Biol 2023; 160:419-433. [PMID: 37474667 DOI: 10.1007/s00418-023-02223-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Telocytes are interstitial cells that are present in various tissues, have long cytoplasmic projections known as telopodes, and are classified as CD34+ cells. Telopodes form extensive networks that permeate the stroma, and there is evidence that these networks connect several stromal cell types, giving them an important role in intercellular communication and the maintenance of tissue organisation. Data have also shown that these networks can be impaired and the number of telocytes reduced in association with many pathological conditions such as cancer and fibrosis. Thus, techniques that promote telocyte proliferation have become an important therapeutic target. In this study, ex vivo and in vitro assays were conducted to evaluate the impact on prostatic telocytes of SDF-1, a factor involved in the proliferation and migration of CD34+ cells. SDF-1 caused an increase in the number of telocytes in explants, as well as morphological changes that were possibly related to the proliferation of these cells. These changes involved the fusion of telopode segments, linked to an increase in cell body volume. In vitro assays also showed that SDF-1 enriched prostate stromal cells with telocytes. Altogether, the data indicate that SDF-1 may offer promising uses in therapies that aim to increase the number of telocytes. However, further studies are needed to confirm the efficiency of this factor in different tissues/pathological conditions.
Collapse
Affiliation(s)
- Bruno Domingos Azevedo Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Av., Carl Von Linnaeus Street., Campinas, São Paulo, Brazil
| | - Guilherme Henrique Tamarindo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Av., Carl Von Linnaeus Street., Campinas, São Paulo, Brazil
| | - Alana Della Torre da Silva
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., São José Do Rio Preto, São Paulo, 2265, Brazil
| | - Gustavo Matheus Amaro
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., São José Do Rio Preto, São Paulo, 2265, Brazil
| | - Juliana Dos Santos Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Av., Carl Von Linnaeus Street., Campinas, São Paulo, Brazil
| | - Vitória Alário Dos Santos
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., São José Do Rio Preto, São Paulo, 2265, Brazil
| | - Luiz Henrique Alves Guerra
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., São José Do Rio Preto, São Paulo, 2265, Brazil
| | - Carolina Marques Bedolo Baraldi
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., São José Do Rio Preto, São Paulo, 2265, Brazil
| | - Rejane Maira Góes
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., São José Do Rio Preto, São Paulo, 2265, Brazil
| | - Sebastião Roberto Taboga
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., São José Do Rio Preto, São Paulo, 2265, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Av., Carl Von Linnaeus Street., Campinas, São Paulo, Brazil.
| |
Collapse
|
16
|
Chen L, Zhang N, Huang Y, Zhang Q, Fang Y, Fu J, Yuan Y, Chen L, Chen X, Xu Z, Li Y, Izawa H, Xiang C. Multiple Dimensions of using Mesenchymal Stem Cells for Treating Liver Diseases: From Bench to Beside. Stem Cell Rev Rep 2023; 19:2192-2224. [PMID: 37498509 DOI: 10.1007/s12015-023-10583-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Liver diseases impose a huge burden worldwide. Although hepatocyte transplantation has long been considered as a potential strategy for treating liver diseases, its clinical implementation has created some obvious limitations. As an alternative strategy, cell therapy, particularly mesenchymal stem cell (MSC) transplantation, is widely used in treating different liver diseases, including acute liver disease, acute-on-chronic liver failure, hepatitis B/C virus, autoimmune hepatitis, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic liver disease, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Here, we summarize the status of MSC transplantation in treating liver diseases, focusing on the therapeutic mechanisms, including differentiation into hepatocyte-like cells, immunomodulating function with a variety of immune cells, paracrine effects via the secretion of various cytokines and extracellular vesicles, and facilitation of homing and engraftment. Some improved perspectives and current challenges are also addressed. In summary, MSCs have great potential in the treatment of liver diseases based on their multi-faceted characteristics, and more accurate mechanisms and novel therapeutic strategies stemming from MSCs will facilitate clinical practice.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yuqi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Lu Chen
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Xin Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, People's Republic of China
| | - Zhenyu Xu
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Hiromi Izawa
- Jingugaien Woman Life Clinic, Jingu-Gaien 3-39-5 2F, Shibuya-Ku, Tokyo, Japan
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
17
|
Abubakr S, Hazem NM, Sherif RN, Elhawary AA, Botros KG. Correlation between SDF-1α, CD34 positive hematopoietic stem cells and CXCR4 expression with liver fibrosis in CCl4 rat model. BMC Gastroenterol 2023; 23:323. [PMID: 37730560 PMCID: PMC10512633 DOI: 10.1186/s12876-023-02932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND One of the most frequent disorders is liver fibrosis. An improved understanding of the different events during the process of liver fibrosis & its reversibility could be helpful in its staging and in finding potential therapeutic agents. AIM The goal of this research was to evaluate the relationship among CD34 + HPSCs, SDF-1α, and CXCR4 receptor expression with the percentage of the area of hepatic fibrosis. MATERIALS AND METHODS Thirty-six male Sprague-Dawley rats were separated into the control group, liver injury group & spontaneous reversion group. The liver injury was induced by using 2 ml/kg CCl4 twice a week. Flow cytometric examination of CD34 + cells in the blood & liver was performed. Bone marrow & liver samples were taken for evaluation of the SDF-1α mRNA by PCR. Liver specimens were stained for histopathological and CXCR4 immuno-expression evaluation. RESULTS In the liver injury group, the hepatic enzymes, fibrosis area percentage, CXCR4 receptor expression in the liver, CD34 + cells in the blood and bone marrow & the level SDF-1α in the liver and its concentration gradient were statistically significantly elevated with the progression of the liver fibrosis. On the contrary, SDF-1α in the bone marrow was statistically significantly reduced with the development of liver fibrosis. During the spontaneous reversion group, all the studied parameters apart from SDF-1α in the bone marrow were statistically substantially decreased compared with the liver injury group. We found a statistically substantial positive correlation between fibrosis area and all of the following: liver enzymes, CXCR4 receptor expression in the liver, CD34 + cells in the blood and liver, and SDF- 1α in the liver and its concentration gradient. In conclusion, in CCl4 rat model, the fibrosis area is significantly correlated with many parameters in the blood, bone marrow, and liver, which can be used during the process of follow-up during the therapeutic interventions.
Collapse
Affiliation(s)
- Sara Abubakr
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Noha M Hazem
- Medical Biochemistry and Molecular Biology Department, Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Algomhoria Street, Mansoura, 35516, Egypt.
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia.
| | - R N Sherif
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Adel Abdelmohdy Elhawary
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Kamal G Botros
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
18
|
Petővári G, Tóth G, Turiák L, L. Kiss A, Pálóczi K, Sebestyén A, Pesti A, Kiss A, Baghy K, Dezső K, Füle T, Tátrai P, Kovalszky I, Reszegi A. Dynamic Interplay in Tumor Ecosystems: Communication between Hepatoma Cells and Fibroblasts. Int J Mol Sci 2023; 24:13996. [PMID: 37762298 PMCID: PMC10530979 DOI: 10.3390/ijms241813996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Tumors are intricate ecosystems where cancer cells and non-malignant stromal cells, including cancer-associated fibroblasts (CAFs), engage in complex communication. In this study, we investigated the interaction between poorly (HLE) and well-differentiated (HuH7) hepatoma cells and LX2 fibroblasts. We explored various communication channels, including soluble factors, metabolites, extracellular vesicles (EVs), and miRNAs. Co-culture with HLE cells induced LX2 to produce higher levels of laminin β1, type IV collagen, and CD44, with pronounced syndecan-1 shedding. Conversely, in HuH7/LX2 co-culture, fibronectin, thrombospondin-1, type IV collagen, and cell surface syndecan-1 were dominant matrix components. Integrins α6β4 and α6β1 were upregulated in HLE, while α5β1 and αVβ1 were increased in HuH7. HLE-stimulated LX2 produced excess MMP-2 and 9, whereas HuH7-stimulated LX2 produced excess MMP-1. LX2 activated MAPK and Wnt signaling in hepatoma cells, and conversely, hepatoma-derived EVs upregulated MAPK and Wnt in LX2 cells. LX2-derived EVs induced over tenfold upregulation of SPOCK1/testican-1 in hepatoma EV cargo. We also identified liver cancer-specific miRNAs in hepatoma EVs, with potential implications for early diagnosis. In summary, our study reveals tumor type-dependent communication between hepatoma cells and fibroblasts, shedding light on potential implications for tumor progression. However, the clinical relevance of liver cancer-specific miRNAs requires further investigation.
Collapse
Affiliation(s)
- Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Anna L. Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary
| | - Krisztina Pálóczi
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1085 Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Adrián Pesti
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
| | - András Kiss
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
| | - Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Katalin Dezső
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Tibor Füle
- Thermo Fisher Scientific Inc., Váci út. 41-43, H-1134 Budapest, Hungary
| | - Péter Tátrai
- Charles River Laboratories Hungary, Irinyi József utca 4-20, H-1117 Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Andrea Reszegi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
19
|
Yu S, Yu S, Liu H, Liao N, Liu X. Enhancing mesenchymal stem cell survival and homing capability to improve cell engraftment efficacy for liver diseases. Stem Cell Res Ther 2023; 14:235. [PMID: 37667383 PMCID: PMC10478247 DOI: 10.1186/s13287-023-03476-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
Although mesenchymal stem cell (MSC) transplantation provides an alternative strategy for end-stage liver disease (ESLD), further widespread application of MSC therapy is limited owing to low cell engraftment efficiency. Improving cell engraftment efficiency plays a critical role in enhancing MSC therapy for liver diseases. In this review, we summarize the current status and challenges of MSC transplantation for ESLD. We also outline the complicated cell-homing process and highlight how low cell engraftment efficiency is closely related to huge differences in extracellular conditions involved in MSC homing journeys ranging from constant, controlled conditions in vitro to variable and challenging conditions in vivo. Improving cell survival and homing capabilities enhances MSC engraftment efficacy. Therefore, we summarize the current strategies, including hypoxic priming, drug pretreatment, gene modification, and cytokine pretreatment, as well as splenectomy and local irradiation, used to improve MSC survival and homing capability, and enhance cell engraftment and therapeutic efficiency of MSC therapy. We hope that this review will provide new insights into enhancing the efficiency of MSC engraftment in liver diseases.
Collapse
Affiliation(s)
- Shaoxiong Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Saihua Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Haiyan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| |
Collapse
|
20
|
Fasolato S, Del Bianco P, Malacrida S, Mattiolo A, Gringeri E, Angeli P, Pontisso P, Calabrò ML. Studies on the Role of Compartmentalized Profiles of Cytokines in the Risk of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:13432. [PMID: 37686245 PMCID: PMC10563083 DOI: 10.3390/ijms241713432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of liver cancer, is frequently diagnosed late due to the absence of symptoms during early disease, thus heavily affecting the overall survival of these patients. Soluble immunological factors persistently produced during cirrhosis have been recognized as promoters of chronic inflammation and neoplastic transformation. The aim of this pilot study was to evaluate the predictive value of the cytokine profiles for HCC development. A Luminex xMAP approach was used for the quantification of 45 proteins in plasma and ascitic fluids of 44 cirrhotic patients without or with HCC of different etiologies. The association with patient survival was also evaluated. Univariate analyses revealed that very low levels of interleukin 5 (IL-5) (<15.86 pg/mL) in ascites and IL-15 (<12.40 pg/mL) in plasma were able to predict HCC onset with an accuracy of 81.8% and a sensitivity of 95.2%. Univariate analyses also showed that HCC, hepatitis B virus/hepatitis C virus infections, low levels of IL-5 and granulocyte-macrophage colony-stimulating factor in ascitic fluids, and high levels of eotaxin-1, hepatocyte growth factor and stromal-cell-derived factor 1α in plasma samples were factors potentially associated with a poor prognosis and decreased survival. Our results suggest a potential protective role of some immune modulators that may act in the peritoneal cavity to counteract disease progression leading to HCC development.
Collapse
Affiliation(s)
- Silvano Fasolato
- Department of Medicine, Padua University Hospital, I-35128 Padua, Italy; (P.A.); (P.P.)
| | - Paola Del Bianco
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy;
| | - Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, I-39100 Bozen, Italy;
| | - Adriana Mattiolo
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (A.M.); (M.L.C.)
| | - Enrico Gringeri
- Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, I-35128 Padua, Italy;
| | - Paolo Angeli
- Department of Medicine, Padua University Hospital, I-35128 Padua, Italy; (P.A.); (P.P.)
| | - Patrizia Pontisso
- Department of Medicine, Padua University Hospital, I-35128 Padua, Italy; (P.A.); (P.P.)
| | - Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (A.M.); (M.L.C.)
| |
Collapse
|
21
|
Yang YT, Jiang XY, Xu HL, Chen G, Wang SL, Zhang HP, Hong L, Jin QQ, Yao H, Zhang WY, Zhu YT, Mei J, Tian L, Ying J, Hu JJ, Zhou SG. Autoimmune Disease-Related Hub Genes are Potential Biomarkers and Associated with Immune Microenvironment in Endometriosis. Int J Gen Med 2023; 16:2897-2921. [PMID: 37457751 PMCID: PMC10348380 DOI: 10.2147/ijgm.s417430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Background Endometriosis, a common gynecological condition, can cause symptoms such as dysmenorrhea, infertility, and abnormal bleeding, which can negatively affect a woman's quality of life. In the current study, the pathophysiological mechanisms of endometriosis are unknown, but this study suggests that endometriosis is associated with dysregulation of the autoimmune system. This study identify hub genes involved in the prevalence, identification and diagnostic value of endometriosis and autoimmune diseases, and explore the central genes and immune infiltrates, the diagnosis of endometriosis provides a new sight of thinking about diagnosis and treatment. Methods and Results The relevant datasets for endometriosis GSE141549, GSE7305 and autoimmune disease-related genes (AIDGs) were downloaded from online database. Using the "limma" package and WGCNA to screen out the autoimmune disease related genes and endometriosis related genes, the autoimmune disease gene-related differential genes (AID-DEGs) progressive GO, KEGG enrichment analysis, and then using the protein interaction network and Cytoscape software to select hub genes (CXCL12, PECAM1, NGF, CTGF, WNT5A), using the "pROC" package to analyze the hub genes for the diagnostic value of endometriosis. The difference in the importance of hub genes for the diagnosis of endometriosis was analyzed by machine learning random forest, and the combined diagnostic value of hub genes was analyzed by using the Support Vector Machine (SVM) algorithm. The eutopic (EU) and ectopic endometrium (EC) immune microenvironment of endometriosis was evaluated using CIBERSORT, the correlation of hub genes to the immune microenvironment was analyzed. Conclusion The hub genes associated with AIDGs are differentially expressed in EC and EU of endometriosis and possess important value for the diagnosis of endometriosis. The hub genes have a very important impact on the immune microenvironment of endometriosis, which is important for exploring the connection between endometriosis and autoimmune diseases and provides a new insight for the subsequent study of immunotherapy and diagnosis of endometriosis.
Collapse
Affiliation(s)
- Yin-Ting Yang
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui, 230001, People’s Republic of China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Xi-Ya Jiang
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui, 230001, People’s Republic of China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Hong-Liang Xu
- Department of Pathology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui, 230001, People’s Republic of China
| | - Guo Chen
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui, 230001, People’s Republic of China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Sen-Lin Wang
- Department of Medical Genetics Center, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui, 230001, People’s Republic of China
| | - He-Ping Zhang
- Department of Pathology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui, 230001, People’s Republic of China
| | - Lin Hong
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui, 230001, People’s Republic of China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Qin-Qin Jin
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui, 230001, People’s Republic of China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Hui Yao
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui, 230001, People’s Republic of China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Wei-Yu Zhang
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui, 230001, People’s Republic of China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Yu-Ting Zhu
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui, 230001, People’s Republic of China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Jie Mei
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui, 230001, People’s Republic of China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Lu Tian
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui, 230001, People’s Republic of China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Jie Ying
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui, 230001, People’s Republic of China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Jing-Jing Hu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
| | - Shu-Guang Zhou
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui, 230001, People’s Republic of China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| |
Collapse
|
22
|
Alencar-Silva T, Díaz-Martín RD, Zonari A, Foyt D, Guiang M, Pogue R, Saldanha-Araujo F, Dias SC, Franco OL, Carvalho JL. The Combination of Synoeca-MP Antimicrobial Peptide with IDR-1018 Stimulates Proliferation, Migration, and the Expression of Pro-Regenerative Genes in Both Human Skin Cell Cultures and 3D Skin Equivalents. Biomolecules 2023; 13:biom13050804. [PMID: 37238674 DOI: 10.3390/biom13050804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 05/28/2023] Open
Abstract
In skin lesions, the development of microbial infection affects the healing process, increasing morbidity and mortality rates in patients with severe burns, diabetic foot, and other types of skin injuries. Synoeca-MP is an antimicrobial peptide (AMP) that exhibits activity against several bacteria of clinical importance, but its cytotoxicity can represent a problem for its positioning as an effective antimicrobial compound. In contrast, the immunomodulatory peptide IDR-1018 presents low toxicity and a wide regenerative potential due to its ability to reduce apoptotic mRNA expression and promote skin cell proliferation. In the present study, we used human skin cells and a 3D skin equivalent models to analyze the potential of the IDR-1018 peptide to attenuate the cytotoxicity of synoeca-MP, as well as the influence of synoeca-MP/IDR-1018 combination on cell proliferation, regenerative processes, and wound repair. We found that the addition of IDR-1018 significantly improved the biological properties of synoeca-MP on skin cells without modifying its antibacterial activity against S. aureus. Likewise, in both melanocytes and keratinocytes, the treatment with synoeca-MP/IDR-1018 combination induces cell proliferation and migration, while in a 3D human skin equivalent model, it can accelerate wound reepithelization. Furthermore, treatment with this peptide combination generates an up-regulation in the expression of pro-regenerative genes in both monolayer cell cultures and in 3D skin equivalents. This data suggests that the synoeca-MP/IDR-1018 combination possesses a good profile of antimicrobial and pro-regenerative activity, opening the door to the development of new strategies for the treatment of skin lesions.
Collapse
Affiliation(s)
- Thuany Alencar-Silva
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, DF, Brazil
| | - Rubén D Díaz-Martín
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, DF, Brazil
| | | | | | | | - Robert Pogue
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Departamento e Farmácia, Universidade de Brasília, Brasília 70910-900, DF, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | - Simoni Campos Dias
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, DF, Brazil
- Programa de Pós-Graduação em Biologia Animal, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | - Octavio Luiz Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, DF, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília 70910-900, DF, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, DF, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, DF, Brazil
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| |
Collapse
|
23
|
Pallett LJ, Swadling L, Diniz M, Maini AA, Schwabenland M, Gasull AD, Davies J, Kucykowicz S, Skelton JK, Thomas N, Schmidt NM, Amin OE, Gill US, Stegmann KA, Burton AR, Stephenson E, Reynolds G, Whelan M, Sanchez J, de Maeyer R, Thakker C, Suveizdyte K, Uddin I, Ortega-Prieto AM, Grant C, Froghi F, Fusai G, Lens S, Pérez-Del-Pulgar S, Al-Akkad W, Mazza G, Noursadeghi M, Akbar A, Kennedy PTF, Davidson BR, Prinz M, Chain BM, Haniffa M, Gilroy DW, Dorner M, Bengsch B, Schurich A, Maini MK. Tissue CD14 +CD8 + T cells reprogrammed by myeloid cells and modulated by LPS. Nature 2023; 614:334-342. [PMID: 36697826 DOI: 10.1038/s41586-022-05645-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/12/2022] [Indexed: 01/26/2023]
Abstract
The liver is bathed in bacterial products, including lipopolysaccharide transported from the intestinal portal vasculature, but maintains a state of tolerance that is exploited by persistent pathogens and tumours1-4. The cellular basis mediating this tolerance, yet allowing a switch to immunity or immunopathology, needs to be better understood for successful immunotherapy of liver diseases. Here we show that a variable proportion of CD8+ T cells compartmentalized in the human liver co-stain for CD14 and other prototypic myeloid membrane proteins and are enriched in close proximity to CD14high myeloid cells in hepatic zone 2. CD14+CD8+ T cells preferentially accumulate within the donor pool in liver allografts, among hepatic virus-specific and tumour-infiltrating responses, and in cirrhotic ascites. CD14+CD8+ T cells exhibit increased turnover, activation and constitutive immunomodulatory features with high homeostatic IL-10 and IL-2 production ex vivo, and enhanced antiviral/anti-tumour effector function after TCR engagement. This CD14+CD8+ T cell profile can be recapitulated by the acquisition of membrane proteins-including the lipopolysaccharide receptor complex-from mononuclear phagocytes, resulting in augmented tumour killing by TCR-redirected T cells in vitro. CD14+CD8+ T cells express integrins and chemokine receptors that favour interactions with the local stroma, which can promote their induction through CXCL12. Lipopolysaccharide can also increase the frequency of CD14+CD8+ T cells in vitro and in vivo, and skew their function towards the production of chemotactic and regenerative cytokines. Thus, bacterial products in the gut-liver axis and tissue stromal factors can tune liver immunity by driving myeloid instruction of CD8+ T cells with immunomodulatory ability.
Collapse
Affiliation(s)
- Laura J Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK.
| | - Leo Swadling
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Mariana Diniz
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | | | | | | | - Jessica Davies
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Stephanie Kucykowicz
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | | | - Niclas Thomas
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Nathalie M Schmidt
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Oliver E Amin
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Upkar S Gill
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kerstin A Stegmann
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Alice R Burton
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Emily Stephenson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matt Whelan
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Jenifer Sanchez
- School of Immunology and Microbial Sciences, Kings College London, London, UK
| | - Roel de Maeyer
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Clare Thakker
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Kornelija Suveizdyte
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Imran Uddin
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | | | | | - Farid Froghi
- Division of Surgery, University College London, London, UK
| | - Giuseppe Fusai
- Division of Surgery, University College London, London, UK
| | - Sabela Lens
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
- Liver Unit, Hospital Clinic, IDIBAPS and CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Sofia Pérez-Del-Pulgar
- Liver Unit, Hospital Clinic, IDIBAPS and CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Walid Al-Akkad
- Institute for Liver & Digestive Health, University College London, London, UK
| | - Giuseppe Mazza
- Institute for Liver & Digestive Health, University College London, London, UK
| | - Mahdad Noursadeghi
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Arne Akbar
- Division of Medicine, University College London, London, UK
| | - Patrick T F Kennedy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Benjamin M Chain
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
- Department of Computer Science, University College London, London, UK
| | - Muzlifah Haniffa
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Derek W Gilroy
- Division of Medicine, University College London, London, UK
| | - Marcus Dorner
- Department of Medicine, Imperial College London, London, UK
| | - Bertram Bengsch
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Anna Schurich
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
- School of Immunology and Microbial Sciences, Kings College London, London, UK
| | - Mala K Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK.
| |
Collapse
|
24
|
Wu X, Qian L, Zhao H, Lei W, Liu Y, Xu X, Li J, Yang Z, Wang D, Zhang Y, Zhang Y, Tang R, Yang Y, Tian Y. CXCL12/CXCR4: An amazing challenge and opportunity in the fight against fibrosis. Ageing Res Rev 2023; 83:101809. [PMID: 36442720 DOI: 10.1016/j.arr.2022.101809] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
Fibrosis is a pathological process caused by abnormal wound healing response, which often leads to excessive deposition of extracellular matrix, distortion of organ architecture, and loss of organ function. Aging is an important risk factor for the development of organ fibrosis. C-X-C receptor 4 (CXCR4) is the predominant chemokine receptor on fibrocytes, C-X-C motif ligand 12 (CXCL12) is the only ligand of CXCR4. Accumulated evidence have confirmed that CXCL12/CXCR4 can be involved in multiple pathological mechanisms in fibrosis, such as inflammation, immunity, epithelial-mesenchymal transition, and angiogenesis. In addition, CXCL12/CXCR4 have also been shown to improve fibrosis levels in many organs including the heart, liver, lung and kidney; thus, they are promising targets for anti-fibrotic therapy. Notably, inhibitors of CXCL12 or CXCR4 also play an important role in various fibrosis-related diseases. In summary, this review systematically summarizes the role of CXCL12/CXCR4 in fibrosis, and this information is of great significance for understanding CXCL12/CXCR4. This will also contribute to the design of further studies related to CXCL12/CXCR4 and fibrosis, and shed light on potential therapies for fibrosis.
Collapse
Affiliation(s)
- Xue Wu
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Lu Qian
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Wangrui Lei
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yanqing Liu
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiaoling Xu
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Jiawen Li
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Du Wang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuchen Zhang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yan Zhang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ran Tang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yang Yang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| | - Ye Tian
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
25
|
Endoplasmic Reticulum Stress in Hepatitis B Virus and Hepatitis C Virus Infection. Viruses 2022; 14:v14122630. [PMID: 36560634 PMCID: PMC9780809 DOI: 10.3390/v14122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Endoplasmic reticulum (ER) stress, a type of cellular stress, always occurs when unfolded or misfolded proteins accumulating in the ER exceed the protein folding capacity. Because of the demand for rapid viral protein synthesis after viral infection, viral infections become a risk factor for ER stress. The hepatocyte is a cell with large and well-developed ER, and hepatitis virus infection is widespread in the population, indicating the interaction between hepatitis viruses and ER stress may have significance for managing liver diseases. In this paper, we review the process that is initiated by the hepatocyte through ER stress against HBV and HCV infection and explain how this information can be helpful in the treatment of HBV/HCV-related diseases.
Collapse
|
26
|
Luo Z, Bian Y, Zheng R, Song Y, Shi L, Xu H, Wang H, Li X, Tao Z, Wang A, Liu K, Fu W, Xue J. Combination of chemically modified SDF-1α mRNA and small skin improves wound healing in diabetic rats with full-thickness skin defects. Cell Prolif 2022; 55:e13318. [PMID: 35932176 DOI: 10.1111/cpr.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Diabetes mellitus is associated with refractory wound healing, yet current therapies are insufficient to accelerate the process of healing. Recent studies have indicated chemically modified mRNA (modRNA) as a promising therapeutic intervention. The present study aimed to explore the efficacy of small skin engineered to express modified mRNAs encoding the stromal cell-derived factor-1α (SDF-1α) facilitating wound healing in a full-thickness skin defect rat model. This study, devised therapeutic strategies for diabetic wounds by pre-treating small skin with SDF-1α modRNA. MATERIALS AND METHODS The in vitro transfection efficiency was evaluated using fluorescence microscopy and the content of SDF-1α in the medium was determined using ELISA after the transfection of SDF-1α into the small skin. To evaluate the effect of SDF-1α modRNA and transplantation of the small skin cells on wound healing, an in vivo full-thickness skin defect rat model was assessed. RESULTS The results revealed that a modRNA carrying SDF-1α provided potent wound healing in the small skin lesions reducing reduced scar thickness and greater angiogenesis (CD31) in the subcutaneous layer. The SDF-1α cytokines were significantly secreted by the small skin after transfection in vitro. CONCLUSIONS This study demonstrated the benefits of employing small skin combined with SDF-1α modRNA in enhancing wound healing in diabetic rats having full-thickness skin defects.
Collapse
Affiliation(s)
- Zucheng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yujie Bian
- Department of Orthopaedics, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| | - Rui Zheng
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonghuan Song
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Li Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Haiting Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Zhenyu Tao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Anyuan Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Ke Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jixin Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Liu P, Mao Y, Xie Y, Wei J, Yao J. Stem cells for treatment of liver fibrosis/cirrhosis: clinical progress and therapeutic potential. Stem Cell Res Ther 2022; 13:356. [PMID: 35883127 PMCID: PMC9327386 DOI: 10.1186/s13287-022-03041-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Cost-effective treatment strategies for liver fibrosis or cirrhosis are limited. Many clinical trials of stem cells for liver disease shown that stem cells might be a potential therapeutic approach. This review will summarize the published clinical trials of stem cells for the treatment of liver fibrosis/cirrhosis and provide the latest overview of various cell sources, cell doses, and delivery methods. We also describe the limitations and strengths of various stem cells in clinical applications. Furthermore, to clarify how stem cells play a therapeutic role in liver fibrosis, we discuss the molecular mechanisms of stem cells for treatment of liver fibrosis, including liver regeneration, immunoregulation, resistance to injury, myofibroblast repression, and extracellular matrix degradation. We provide a perspective for the prospects of future clinical implementation of stem cells.
Collapse
Affiliation(s)
- Pinyan Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yongcui Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ye Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiayun Wei
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China. .,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
28
|
Yang T, Liang N, Li J, Hu P, Huang Q, Zhao Z, Wang Q, Zhang H. MDSCs might be "Achilles heel" for eradicating CSCs. Cytokine Growth Factor Rev 2022; 65:39-50. [PMID: 35595600 DOI: 10.1016/j.cytogfr.2022.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/03/2022]
Abstract
During tumor initiation and progression, the complicated role of immune cells in the tumor immune microenvironment remains a concern. Myeloid-derived suppressor cells (MDSCs) are a group of immune cells that originate from the bone marrow and have immunosuppressive potency in various diseases, including cancer. In recent years, the key role of cancer stemness has received increasing attention in cancer development and therapy. Several studies have demonstrated the important regulatory relationship between MDSCs and cancer stem cells (CSCs). However, there is still no clear understanding regarding the complex interacting regulation of tumor malignancy, and current research progress is limited. In this review, we summarize the complicated role of MDSCs in the modulation of cancer stemness, evaluate the mechanism of the relationship between CSCs and MDSCs, and discuss potential strategies for eradicating CSCs with respect to MDSCs.
Collapse
Affiliation(s)
- Tao Yang
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Ning Liang
- Department of General Surgery, The 75th Group Army Hospital, Dali 671000, China
| | - Jing Li
- Department of Stomatology, Shaanxi Provincial Hospital, Xi'an, Shaanxi 710038, China
| | - Pan Hu
- Department of Anesthesiology, the 920 Hospital of Joint Logistic Support Force of Chinese PLA, Kunming, Yunnan, China
| | - Qian Huang
- Department of Gynaecology and Obstetrics, The 75th Group Army Hospital, Dali 671000, China
| | - Zifeng Zhao
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Qian Wang
- Department of Anorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.
| | - Hongxin Zhang
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, China; Department of Intervention Therapy, The Second Affiliated Hospital, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
29
|
Oral supplementation of policosanol alleviates carbon tetrachloride-induced liver fibrosis in rats. Biomed Pharmacother 2022; 150:113020. [PMID: 35658249 DOI: 10.1016/j.biopha.2022.113020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Liver fibrosis is a prevalent liver disease that requires rapid and effective treatment prior to its progression to cirrhosis and liver damage. Recently, several reports have investigated the efficacy of phytotherapy using natural herbal extracts rather than synthetic drugs to treat several liver diseases. Policosanol is a herbal extract used to treat patients with cardiovascular. However, its therapeutic effect on liver fibrosis is still unknown. Therefore, the present study aimed to assess the potential antifibrotic effect of policosanol compared to silymarin and the possible underlying molecular mechanisms. Rats were categorized into four groups; negative control group "NCG", the fibrotic group "FG", silymarin treated group "STG", and policosanol treated group "PTG". Serum liver enzymes, oxidative stress markers, angiogenic growth factors, and pro-inflammatory cytokines were measured biochemically. The relative mRNA expressions of liver caspase-3 and alpha-smooth muscle actin (α-SMA) were assessed. Immunohistochemical staining was carried out using anti- α-SMA, and anti-caspase-3 antibodies. Compared to NCG, the FG group demonstrated a significant decrease in the level of serum liver enzymes "GSH, TAC, and SDF. Nevertheless, it demonstrateda significant increase in the level of pro-inflammatory cytokines "Il-6, TNF"; oxidative stress markers "NO, MDA", and angiogenic growth factors "VEGF and PDGF" and the expression of α-SMA, and Caspase-3. Interestingly, the values of these measurements were restored to normal levels in the treated groups, particularly the PTG. In conclusion, our data revealed the beneficial effects of co-administration of policosanol or silymarin on the fibrotic liver rat model and thus could be a promising natural therapeutic drug.
Collapse
|
30
|
Liu C, Wang Z, Wang W, Zheng L, Li M. Positive effects of selenium supplementation on selenoprotein S expression and cytokine status in a murine model of acute liver injury. J Trace Elem Med Biol 2022; 71:126927. [PMID: 35030482 DOI: 10.1016/j.jtemb.2022.126927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND It is a consensus that selenomethionine (SeMet) can protect liver from damage, but the immune mechanism of SeMet in acute liver injury (ALI) is still unclear. This study aims to investigate the protective effects of SeMet against ALI and to elucidate the possible immune mechanism. METHODS Firstly, the role of SeMet in CCl4-induced ALI mice was investigated through survival rate, serum ALT and AST, liver necrosis and apoptosis analysis. The expression and secretion of inflammatory cytokines and chemokines in the liver and serum of CCl4-induced ALI mice were analyzed by qRT-PCR and ELISA. Then the immune cell phenotypes were analyzed by flow cytometry and confocal imaging. In addition, MDSCs depletion, CXCL12/CXCR4 axis blocking and selenoprotein S (SELENOS) knockdown assays were used to reveal the immune mechanism of SeMet. RESULTS We found that SeMet prolonged survival rate, decreased the serum ALT and AST, alleviated liver necrosis and inhibited hepatocytes apoptosis. Prospective, SeMet decreased the expression of IL-6 and TNF-α, and increased the expression of IL-10. Interestingly, SeMet decreased the expression of MCP-1, while increased the expression of CXCL12. The immune analysis showed that SeMet decreased the activation of T cells through promoting MDSCs accumulation mediated by CXCL12/CXCR4 axis. Furthermore, SeMet increased SELENOS expression in vivo, and knockdown of SELENOS effectively abolished the protective effect of SeMet during ALI. CONCLUSION This study demonstrates that SeMet alleviates CCl4-induced ALI by promoting MDSCs accumulation through SELENOS mediated CXCL12/CXCR4 axis. Therefore, our study infers that selenium intake may be as a new therapeutic option for management of inflammation-mediated liver injury.
Collapse
Affiliation(s)
- Chunliang Liu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Biochemistry, Medical College of Soochow University, Suzhou, China.
| | - Zerong Wang
- Department of Infectious Diseases, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Wei Wang
- Department of Biochemistry, Medical College of Soochow University, Suzhou, China
| | - Lei Zheng
- Department of Biochemistry, Medical College of Soochow University, Suzhou, China
| | - Ming Li
- Department of Infectious Diseases, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
31
|
Li H. Intercellular crosstalk of liver sinusoidal endothelial cells in liver fibrosis, cirrhosis and hepatocellular carcinoma. Dig Liver Dis 2022; 54:598-613. [PMID: 34344577 DOI: 10.1016/j.dld.2021.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Intercellular crosstalk among various liver cells plays an important role in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Capillarization of liver sinusoidal endothelial cells (LSECs) precedes fibrosis and accumulating evidence suggests that the crosstalk between LSECs and other liver cells is critical in the development and progression of liver fibrosis. LSECs dysfunction, a key event in the progression from fibrosis to cirrhosis, and subsequently obstruction of hepatic sinuses and increased intrahepatic vascular resistance (IHVR) contribute to development of portal hypertension (PHT) and cirrhosis. More importantly, immunosuppressive tumor microenvironment (TME), which is closely related to the crosstalk between LSECs and immune liver cells like CD8+ T cells, promotes advances tumorigenesis, especially HCC. However, the connections within the crosstalk between LSECs and other liver cells during the progression from liver fibrosis to cirrhosis to HCC have yet to be discussed. In this review, we first summarize the current knowledge of how different crosstalk between LSECs and other liver cells, including hepatocytes, hepatic stellate cells (HSCs), macrophoges, immune cells in liver and extra cellular matrix (ECM) contribute to the physiological function and the progrssion from liver fibrosis to cirrhosis, or even to HCC. Then we examine current treatment strategies for LSECs crosstalk in liver fibrosis, cirrhosis and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
32
|
Lei HW, Huang BR, Cai J, Li CM, Shang CB, Liao ZY, Wan ZD. CXCR4 antagonist AMD3100 enhances therapeutic efficacy of transcatheter arterial chemoembolization in rats with hepatocellular carcinoma. Kaohsiung J Med Sci 2022; 38:781-789. [PMID: 35467082 DOI: 10.1002/kjm2.12540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/28/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
This study aims to discover the therapeutic effect of chemokine (CXC motif) receptor 4 (CXCR4) antagonist AMD3100 combined with transcatheter arterial chemoembolization (TACE) in a rat model with hepatocellular carcinoma (HCC). An orthotopic model of HCC was established and treated with TACE (doxorubicin-lipiodol emulsion) with or without AMD3100. The tumor volume was measured by magnetic resonance imaging (MRI). Histopathological changes were detected by hematoxylin-eosin (HE) staining. HCC cell apoptosis was assessed by terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling (TUNEL) staining. Immunohistochemistry was used to detect the expression of CD34, hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), and Ki67. Gene and protein expressions were quantified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and western blotting, respectively. Both TACE and AMD3100 reduced the tumor volume in orthotopic rat model of HCC with the decreased CXCR4 expression in tumor tissues, and the combination had better effect. However, TACE increased the microvessel density (MVD) in HCC tissues of rats, while AMD3100 treatment reduced MVD in HCC tissues. AMD3100 reduced the TACE induced MVD in HCC tissues with the reduction of HIF-1α and VEGF expression. Either AMD3100 or TACE could promote HCC cell apoptosis accompanying by decreased cell proliferation, and their combined use had better therapeutic effects. CXCR4 antagonist AMD3100 enhance therapeutic efficacy of TACE in rats with HCC via promoting the HCC cell apoptosis, reducing cell proliferation, and inhibiting MVD, thus reducing tumor volume.
Collapse
Affiliation(s)
- Hong-Wei Lei
- Department of Interventional Vascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Bi-Run Huang
- Department of Interventional Vascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Jie Cai
- Department of Interventional Vascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Cheng-Ming Li
- Department of Interventional Vascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Chun-Bo Shang
- Department of Interventional Vascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Zhi-Yang Liao
- Department of Interventional Vascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Zheng-Dong Wan
- Department of Interventional Vascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| |
Collapse
|
33
|
Modulation of Prostanoids Profile and Counter-Regulation of SDF-1α/CXCR4 and VIP/VPAC2 Expression by Sitagliptin in Non-Diabetic Rat Model of Hepatic Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:ijms222313155. [PMID: 34884960 PMCID: PMC8658172 DOI: 10.3390/ijms222313155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular mechanisms underlying the beneficial effect of sitagliptin repurposed for hepatic ischemia-reperfusion injury (IRI) are poorly understood. We aimed to evaluate the impact of IRI and sitagliptin on the hepatic profile of eicosanoids (LC-MS/MS) and expression/concentration (RTqPCR/ELISA) of GLP-1/GLP-1R, SDF-1α/CXCR4 and VIP/VPAC1, VPAC2, and PAC1 in 36 rats. Animals were divided into four groups and subjected to ischemia (60 min) and reperfusion (24 h) with or without pretreatment with sitagliptin (5 mg/kg) (IR and SIR) or sham-operated with or without sitagliptin pretreatment (controls and sitagliptin). PGI2, PGE2, and 13,14-dihydro-PGE1 were significantly upregulated in IR but not SIR, while sitagliptin upregulated PGD2 and 15-deoxy-12,14-PGJ2. IR and sitagliptin non-significantly upregulated GLP-1 while Glp1r expression was borderline detectable. VIP concentration and Vpac2 expression were downregulated in IR but not SIR, while Vpac1 was significantly downregulated solely in SIR. IRI upregulated both CXCR4 expression and concentration, and sitagliptin pretreatment abrogated receptor overexpression and downregulated Sdf1. In conclusion, hepatic IRI is accompanied by an elevation in proinflammatory prostanoids and overexpression of CXCR4, combined with downregulation of VIP/VPAC2. Beneficial effects of sitagliptin during hepatic IRI might be mediated by drug-induced normalization of proinflammatory prostanoids and upregulation of PGD2 and by concomitant downregulation of SDF-1α/CXCR4 and reinstating VIP/VCAP2 signaling.
Collapse
|
34
|
Zhou HY, Sui H, Zhao YJ, Qian HJ, Yang N, Liu L, Guan Q, Zhou Y, Lin HL, Wang DP. The Impact of Inflammatory Immune Reactions of the Vascular Niche on Organ Fibrosis. Front Pharmacol 2021; 12:750509. [PMID: 34776968 PMCID: PMC8585779 DOI: 10.3389/fphar.2021.750509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
Inflammation is a type of defense response against tissue damage, and can be mediated by lymphocytes and macrophages. Fibrosis is induced by tissue injury and inflammation, which leads to an increase in fibrous connective tissue in organs and a decrease in organ parenchyma cells, finally leading to organ dysfunction or even failure. The vascular niche is composed of endothelial cells, pericytes, macrophages, and hematopoietic stem cells. It forms a guiding microenvironment for the behavior of adjacent cells, and mainly exists in the microcirculation, including capillaries. When an organ is damaged, the vascular niche regulates inflammation and affects the repair of organ damage in a variety of ways, such as via its angiocrine function and transformation of myofibroblasts. In this paper, the main roles of vascular niche in the process of organ fibrosis and its mechanism of promoting the progress of fibrosis through inflammatory immunoregulation are summarized. It was proposed that the vascular niche should be regarded as a new therapeutic target for organ fibrosis, suggesting that antifibrotic effects could be achieved by regulating macrophages, inhibiting endothelial-mesenchymal transition, interfering with the angiocrine function of endothelial cells, and inhibiting the transformation of pericytes into myofibroblasts, thus providing new ideas for antifibrosis drug research.
Collapse
Affiliation(s)
- Hong-Yan Zhou
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hua Sui
- Institude college of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yang-Jianing Zhao
- Institude college of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hong-Jie Qian
- Institude college of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Nan Yang
- Institude college of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Lu Liu
- Institude college of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qing Guan
- Institude college of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yue Zhou
- Department of Nephrology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hong-Li Lin
- Institude college of Integrative Medicine, Dalian Medical University, Dalian, China.,Department of Nephrology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Da-Peng Wang
- Institude college of Integrative Medicine, Dalian Medical University, Dalian, China.,Department of Nephrology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
35
|
Kataki A, Giannakoulis VG, Derventzi A, Papiris K, Koniaris E, Konstadoulakis M. Membranous CD44v6 is upregulated as an early event in colorectal cancer: Downregulation is associated with circulating tumor cells and poor prognosis. Oncol Lett 2021; 22:820. [PMID: 34691247 PMCID: PMC8527563 DOI: 10.3892/ol.2021.13081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 07/01/2021] [Indexed: 01/30/2023] Open
Abstract
Previous studies have reported that CD44 variant 6 (CD44v6) and metastasis-associated protein 1 (MTA1) are contributing factors to cancer progression. The present study aimed to evaluate the expression profiles for associations with patients' demographic data, clinicopathological characteristics, the presence of partial epithelial-to-mesenchymal transition (pEMT), metastatic potential based on the presence of CK20+ CEA+ CXCR4+ circulating tumor cells (CTCs) and prognosis (median follow-up, 45 months). Thus, frozen tissue samples from 31 patients with stage I–III colorectal cancer (CRC), 15 benign colorectal polyps and seven normal colorectal tissues were analyzed to detect membranous (m)CD44v6 and MTA1 expression via flow cytometry. The results demonstrated that the mCD44v6 and MTA1 expression profiles were significantly correlated (rs=+0.786, P<0.001). Notably, MTA1 expression was not associated with any of the clinicopathological characteristics assessed. The percentage of mCD44v6-positive cells within tumors was higher in the right-sided cancer lesions (P=0.014), suggesting that proximal and distal CRCs are distinct clinicopathological entities. Furthermore, downregulated mCD44v6 expression was significantly associated with the presence of CTCs (P=0.017). This association was stronger for pEMT (co-expression of N- and E-cadherin mRNAs) primary lesions (P=0.009). In addition, patients with CRC with low levels of mCD44v6 had unfavorable survival outcomes (P=0.037). Taken together, these results suggest that targeted analysis of membranous CD44v6 as opposed to membranous-cytoplasmic expression is important in determining the prognosis of patients with CRC. Furthermore, downregulated mCD44v6 expression in malignancies presenting CTCs reinforces the importance of tumor-stroma reciprocal influence during the metastatic process and encourages the assessment of relevant therapeutic strategies.
Collapse
Affiliation(s)
- Agapi Kataki
- First Department of Propaedeutic Surgery, Hippokration General Hospital of Athens, Athens 11527, Greece
| | - Vassilis G Giannakoulis
- First Department of Propaedeutic Surgery, Hippokration General Hospital of Athens, Athens 11527, Greece
| | - Anastasia Derventzi
- First Department of Propaedeutic Surgery, Hippokration General Hospital of Athens, Athens 11527, Greece
| | - Konstantinos Papiris
- Department of Endoscopy, Hippokration General Hospital of Athens, Athens 11527, Greece
| | - Eythimios Koniaris
- Department of Pathology, Hippokration General Hospital of Athens, Athens 11527, Greece
| | - Manousos Konstadoulakis
- Second Surgery Clinic, Aretaieio Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens 11528, Greece
| |
Collapse
|
36
|
Ali S, Khan MR, Khan A, Khan R. In vitro anticancer activity of extracted oil from Parrotiopsis jacquemontiana (Decne) Rehder. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153697. [PMID: 34399165 DOI: 10.1016/j.phymed.2021.153697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/18/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Parrotiopsis jacquemontiana, commonly referred to as "Beranj" in the local community, is widely used traditionally and has numerous health benefits. However, no studies have been conducted to investigate its anticancer potential, particularly its extracted oil. PURPOSE The present study was put forth to appraise the anticancer potential of Parrotiopsis jacquemontiana extracted oil against liver (hcclm3 and hepg2) and breast cancer (mda-mb 231 and mcf-7) cell lines relative to normal cell lines (lo2 and mcf-10a) via MTT assay. METHODS Flow cytometry indicated the apoptotic effect whereas invasion and migration capabilities of oil against cancer cells were determined by Matrigel invasion chamber and wound-scratch assays. RESULTS The results of oil revealed a time and dose-dependent increase in cell proliferation inhibition, conferring to least IC50 shown against hcclm3 (144.9 ± 0.75 μg/ml) and mda-mb 231 (145.7 ± 0.32 μg/ml) cell line at 72 h, whereas no cytotoxic effect on normal cells was observed. In addition, the oil significantly (p < 0.001) suppressed the migration and invasion of hcclm3 and mda-mb 231 cells, showing noteworthy anti-metastatic potential. Furthermore, cell death was confirmed by Annexin‒V/PI staining where the maximum apoptotic percentage was calculated for oil (200 μg/ml) alongside mda-mb 231 conferring to 15.36 ± 1.22, 26.7 ± 1.2, and 36.43 ± 1.65 at 24, 48, and 72 h whereas 12.33 ± 1.05, 19.36 ± 1.62, and 29.3 ± 0.79 was recorded alongside hcclm3 at similar time intervals, respectively. CONCLUSION In conclusion, the extracted oil exhibited strong anti-proliferative, anti-metastatic, and apoptotic effects and therefore may have potential applications in cancer treatment, however, further studies of oil regarding the action mechanisms and compounds involved in anticancer therapy are necessary.
Collapse
Affiliation(s)
- Saima Ali
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asghar Khan
- National Centre for Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Raees Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
37
|
Lo Nigro A, Gallo A, Bulati M, Vitale G, Paini DS, Pampalone M, Galvagno D, Conaldi PG, Miceli V. Amnion-Derived Mesenchymal Stromal/Stem Cell Paracrine Signals Potentiate Human Liver Organoid Differentiation: Translational Implications for Liver Regeneration. Front Med (Lausanne) 2021; 8:746298. [PMID: 34631757 PMCID: PMC8494784 DOI: 10.3389/fmed.2021.746298] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/30/2021] [Indexed: 02/05/2023] Open
Abstract
The prevalence of end-stage liver diseases has reached very high levels globally. The election treatment for affected patients is orthotopic liver transplantation, which is a very complex procedure, and due to the limited number of suitable organ donors, considerable research is being done on alternative therapeutic options. For instance, the use of cell therapy, such as the transplantation of hepatocytes to promote liver repair/regeneration, has been explored, but standardized protocols to produce suitable human hepatocytes are still limited. On the other hand, liver progenitor and multipotent stem cells offer potential cell sources that could be used clinically. Different studies have reported regarding the therapeutic effects of transplanted mesenchymal stromal/stem cells (MSCs) on end-stage liver diseases. Moreover, it has been shown that delivery of MSC-derived conditioned medium (MSC-CM) can reduce cell death and enhance liver proliferation in fulminant hepatic failure. Therefore, it is believed that MSC-CM contains many factors that probably support liver regeneration. In our work, we used an in vitro model of human liver organoids to study if the paracrine components secreted by human amnion-derived MSCs (hAMSCs) affected liver stem/progenitor cell differentiation. In particular, we differentiated liver organoids derived from bipotent EpCAM+ human liver cells and tested the effects of hAMSC secretome, derived from both two-dimensional (2D) and three-dimensional (3D) hAMSC cultures, on that model. Our analysis showed that conditioned medium (CM) produced by 3D hAMSCs was able to induce an over-expression of mature hepatocyte markers, such as ALB, NTCP, and CYP3A4, compared with both 2D hAMSC cultures and the conventional differentiation medium (DM). These data were confirmed by the over-production of ALB protein and over-activity of CYP3A4 observed in organoids grown in 3D hAMSC-CM. Liver repair dysfunction plays a role in the development of liver diseases, and effective repair likely requires the normal functioning of liver stem/progenitor cells. Herein, we showed that hAMSC-CM produced mainly by 3D cultures had the potential to increase hepatic stem/progenitor cell differentiation, demonstrating that soluble factors secreted by those cells are potentially responsible for the reaction. This work shows a potential approach to improve liver repair/regeneration also in a transplantation setting.
Collapse
Affiliation(s)
| | - Alessia Gallo
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Matteo Bulati
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | | | | | - Mariangela Pampalone
- Ri.MED Foundation, Palermo, Italy
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | | | - Pier Giulio Conaldi
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Vitale Miceli
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| |
Collapse
|
38
|
Autophagy Promotes the Survival of Adipose Mesenchymal Stem/Stromal Cells and Enhances Their Therapeutic Effects in Cisplatin-Induced Liver Injury via Modulating TGF-β1/Smad and PI3K/AKT Signaling Pathways. Cells 2021; 10:cells10092475. [PMID: 34572126 PMCID: PMC8470434 DOI: 10.3390/cells10092475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a key metabolic process where cells can recycle its proteins and organelles to regenerate its own cellular building blocks. Chemotherapy is indispensable for cancer treatment but associated with various side-effects, including organ damage. Stem cell-based therapy is a promising approach for reducing chemotherapeutic side effects, however, one of its main culprits is the poor survival of transplanted stem cells in damaged tissues. Here, we aimed to test the effects of activating autophagy in adipose-derived mesenchymal stem/stromal cells (ADSCs) on the survival of ADSCs, and their therapeutic value in cisplatin-induced liver injury model. Autophagy was activated in ADSCs by rapamycin (50 nM/L) for two hours before transplantation and were compared to non-preconditioned ADSCs. Rapamycin preconditioning resulted in activated autophagy and improved survival of ADSCs achieved by increased autophagosomes, upregulated autophagy-specific LC3-II gene, decreased protein degradation/ubiquitination by downregulated p62 gene, downregulated mTOR gene, and finally, upregulated antiapoptotic BCL-2 gene. In addition, autophagic ADSCs transplantation in the cisplatin liver injury model, liver biochemical parameters (AST, ALT and albumin), lipid peroxidation (MDA), antioxidant profile (SOD and GPX) and histopathological picture were improved, approaching near-normal conditions. These promising autophagic ADSCs effects were achieved by modulation of components in TGF-β1/Smad and PI3K-AKT signaling pathways, besides reducing NF-κB gene expression (marker for inflammation), reducing TGF-β1 levels (marker for fibrosis) and increasing SDF-1 levels (liver regeneration marker) in liver. Therefore, current results highlight the importance of autophagy in augmenting the therapeutic potential of stem cell therapy in alleviating cisplatin-associated liver damage and opens the path for improved cell-based therapies, in general, and with chemotherapeutics, in particular.
Collapse
|
39
|
Chapin CA, Taylor SA, Malladi P, Neighbors K, Melin-Aldana H, Kreiger PA, Bowsher N, Schipma MJ, Loomes KM, Behrens EM, Alonso EM. Transcriptional Analysis of Liver Tissue Identifies Distinct Phenotypes of Indeterminate Pediatric Acute Liver Failure. Hepatol Commun 2021; 5:1373-1384. [PMID: 34430782 PMCID: PMC8369940 DOI: 10.1002/hep4.1726] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 02/04/2023] Open
Abstract
Many patients with indeterminate pediatric acute liver failure (PALF) have evidence of T-cell driven immune injury; however, the precise inflammatory pathways are not well defined. We have characterized the hepatic cytokine and transcriptional signatures of patients with PALF. A retrospective review was performed on 22 children presenting with indeterminate (IND-PALF; n = 17) or other known diagnoses (DX-PALF; n = 6) with available archived liver tissue. Specimens were stained for clusters of differentiation 8 (CD8) T cells and scored as dense, moderate, or minimal. Measurement of immune analytes and RNA sequencing (RNA-seq) was performed on whole-liver tissue. Immune analyte data were analyzed by principal component analysis, and RNA-seq was analyzed by unsupervised hierarchical clustering, differential gene expression, and gene-set enrichment analysis. Most patients with IND-PALF (94%) had dense/moderate CD8 staining and were characterized by Th1 immune analytes including tumor necrosis factor α, interferon γ (IFN-γ), interleukin (IL) 1β, IL-12, C-X-C motif chemokine ligand (CXCL) 9, and CXCL12. Transcriptional analyses identified two transcriptional PALF phenotypes. Most patients in group 1 (91%) had IND-PALF and dense/moderate CD8 staining. This group was characterized by increased expression of genes and cell subset-specific signatures related to innate inflammation, T-cell activation, and antigen stimulation. Group 1 expressed significantly higher levels of gene signatures for regulatory T cells, macrophages, Th1 cells, T effector memory cells, cytotoxic T cells, and activated dendritic cells (adjusted P < 0.05). In contrast, patients in group 2 exhibited increased expression for genes involved in metabolic processes. Conclusion: Patients with IND-PALF have evidence of a Th1-mediated inflammatory response driven by IFN-γ. Transcriptional analyses suggest that a complex immune network may regulate an immune-driven PALF phenotype with less evidence of metabolic processes. These findings provide insight into mechanisms of hepatic injury in PALF, areas for future research, and potential therapeutic targets.
Collapse
Affiliation(s)
- Catherine A Chapin
- Department of PediatricsNorthwestern UniversityFeinberg School of MedicineAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoILUSA
| | - Sarah A Taylor
- Department of PediatricsNorthwestern UniversityFeinberg School of MedicineAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoILUSA
| | - Padmini Malladi
- Department of PediatricsNorthwestern UniversityFeinberg School of MedicineAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoILUSA
| | - Katie Neighbors
- Department of PediatricsNorthwestern UniversityFeinberg School of MedicineAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoILUSA
| | - Hector Melin-Aldana
- Department of Pathology and Laboratory MedicineNorthwestern UniversityFeinberg School of MedicineAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoILUSA
| | - Portia A Kreiger
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPerelman School of MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Nina Bowsher
- Preventative MedicineBiostatistics Collaboration CenterNorthwestern UniversityFeinberg School of MedicineChicagoILUSA
| | - Matthew J Schipma
- Next Generation Sequencing CoreNorthwestern UniversityFeinberg School of MedicineChicagoILUSA
| | - Kathleen M Loomes
- Department of PediatricsUniversity of PennsylvaniaPerelman School of MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Edward M Behrens
- Department of PediatricsUniversity of PennsylvaniaPerelman School of MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Estella M Alonso
- Department of PediatricsNorthwestern UniversityFeinberg School of MedicineAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoILUSA
| |
Collapse
|
40
|
Wang S, Gao S, Li Y, Qian X, Luan J, Lv X. Emerging Importance of Chemokine Receptor CXCR4 and Its Ligand in Liver Disease. Front Cell Dev Biol 2021; 9:716842. [PMID: 34386499 PMCID: PMC8353181 DOI: 10.3389/fcell.2021.716842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily, which together with chemokine ligands form chemokine networks to regulate various cellular functions, immune and physiological processes. These receptors are closely related to cell movement and thus play a vital role in several physiological and pathological processes that require regulation of cell migration. CXCR4, one of the most intensively studied chemokine receptors, is involved in many functions in addition to immune cells recruitment and plays a pivotal role in the pathogenesis of liver disease. Aberrant CXCR4 expression pattern is related to the migration and movement of liver specific cells in liver disease through its cross-talk with a variety of significant cell signaling pathways. An in-depth understanding of CXCR4-mediated signaling pathway and its role in liver disease is critical to identifying potential therapeutic strategies. Current therapeutic strategies for liver disease mainly focus on regulating the key functions of specific cells in the liver, in which the CXCR4 pathway plays a crucial role. Multiple challenges remain to be overcome in order to more effectively target CXCR4 pathway and identify novel combination therapies with existing strategies. This review emphasizes the role of CXCR4 and its important cell signaling pathways in the pathogenesis of liver disease and summarizes the targeted therapeutic studies conducted to date.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xueyi Qian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, China
| |
Collapse
|
41
|
Dong Y, Kong W, An W. Downregulation of augmenter of liver regeneration impairs the therapeutic efficacy of liver epithelial progenitor cells against acute liver injury by enhancing mitochondrial fission. STEM CELLS (DAYTON, OHIO) 2021; 39:1546-1562. [PMID: 34310799 DOI: 10.1002/stem.3439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 11/07/2022]
Abstract
Cell-based therapeutic approaches have been proven to be effective strategies for the treatment of acute liver injury (ALI). However, widespread application of these procedures is limited by several key issues, including rapid loss of stemness in vitro, aberrant differentiation into undesirable cell types, and low engraftment in vivo. In this study, liver epithelial progenitor cells (LEPCs) were characterized and transfected with augmenter of liver regeneration (ALR). The results revealed that in ALI mice with CCl4 , the transplantation of ALR-bearing LEPCs into the liver markedly protected mice against ALI by decreasing the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), thus relieving hepatic tissue injury and attenuating inflammatory infiltration. Mechanistically, the knockdown of ALR in LEPCs activated the phosphorylation of dynamin-related protein 1 (Drp1) at the S616 site and thereby enhanced mitochondrial fission. In contrast, the transfection of ALR into LEPCs significantly inhibited Drp1 phosphorylation, thereby favoring the maintenance of mitochondrial integrity and the preservation of adenosine triphosphate contents in LEPCs. Consequently, the ALR-bearing LEPCs transplanted into ALI mice exhibited substantially greater homing ability to the injured liver via the SDF-1/CXCR4 axis than that of LEPCs-lacking ALR. In conclusion, we demonstrated that the transplantation of ALR-transfected LEPCs protected mice against CCl4 -induced ALI, thus offering immense curative potential in the clinic.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Cell Biology, Capital Medical University, The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, People's Republic of China
| | - Weining Kong
- Department of Cell Biology, Capital Medical University, The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, People's Republic of China
| | - Wei An
- Department of Cell Biology, Capital Medical University, The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, People's Republic of China
| |
Collapse
|
42
|
Zhen Z, Shen Z, Hu Y, Sun P. Screening and identification of angiogenesis-related genes as potential novel prognostic biomarkers of hepatocellular carcinoma through bioinformatics analysis. Aging (Albany NY) 2021; 13:17707-17733. [PMID: 34252885 PMCID: PMC8312452 DOI: 10.18632/aging.203260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality, which makes the prognostic prediction challenging. Angiogenesis appears to be of critical importance in the progression and metastasis of HCC. Some of the angiogenesis-related genes promote this process, while other anti-angiogenesis genes suppress tumor growth and metastasis. Therefore, the comprehensive prognostic value of multiple angiogenesis-related genes in HCC needs to be further clarified. In this study, the mRNA expression profile of HCC patients and the corresponding clinical data were acquired from multiple public databases. Univariate Cox regression analysis was utilized to screen out differentially expressed angiogenesis-related genes with prognostic value. A multigene signature was established with the least absolute shrinkage and selection operator Cox regression in the Cancer Genome Atlas cohort, and validated through an independent cohort. The results suggested that a total of 16 differentially expressed genes (DEGs) were associated with overall survival (OS) and a 7-gene signature was constructed. The risk score of each patient was calculated using this signature, the median value of which was used to divide these patients into a high-risk group and a low-risk group. Compared with the low-risk group, the patients in the high-risk group had a poor prognosis. The risk score was an independent predictor for OS through multivariate Cox regression analysis. Then, unsupervised learning was used to verify the validity of this 7-gene signature. A nomogram by further integrating clinical information and the prognostic signature was utilized to predict prognostic risk and individual OS. Functional enrichment analyses demonstrated that these DEGs were enriched in the pathways of cell proliferation and mitosis, and the immune cell infiltration was significantly different between the two risk groups. In summary, a novel angiogenesis-related genes signature could be used to predict the prognosis of HCC and for targeted therapy.
Collapse
Affiliation(s)
- Zili Zhen
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Department of Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhemin Shen
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Department of Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanmei Hu
- Department of Paediatrics, the Second Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Peilong Sun
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, China
| |
Collapse
|
43
|
Baidildinova G, Nagy M, Jurk K, Wild PS, Ten Cate H, van der Meijden PEJ. Soluble Platelet Release Factors as Biomarkers for Cardiovascular Disease. Front Cardiovasc Med 2021; 8:684920. [PMID: 34235190 PMCID: PMC8255615 DOI: 10.3389/fcvm.2021.684920] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Platelets are the main players in thrombotic diseases, where activated platelets not only mediate thrombus formation but also are involved in multiple interactions with vascular cells, inflammatory components, and the coagulation system. Although in vitro reactivity of platelets provides information on the function of circulating platelets, it is not a full reflection of the in vivo activation state, which may be relevant for thrombotic risk assessment in various disease conditions. Therefore, studying release markers of activated platelets in plasma is of interest. While this type of study has been done for decades, there are several new discoveries that highlight the need for a critical assessment of the available tests and indications for platelet release products. First, new insights have shown that platelets are not only prominent players in arterial vascular disease, but also in venous thromboembolism and atrial fibrillation. Second, knowledge of the platelet proteome has dramatically expanded over the past years, which contributed to an increasing array of tests for proteins released and shed from platelets upon activation. Identification of changes in the level of plasma biomarkers associated with upcoming thromboembolic events allows timely and individualized adjustment of the treatment strategy to prevent disease aggravation. Therefore, biomarkers of platelet activation may become a valuable instrument for acute event prognosis. In this narrative review based on a systematic search of the literature, we summarize the process of platelet activation and release products, discuss the clinical context in which platelet release products have been measured as well as the potential clinical relevance.
Collapse
Affiliation(s)
- Gaukhar Baidildinova
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Magdolna Nagy
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site RhineMain, Mainz, Germany
| | - Philipp S Wild
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site RhineMain, Mainz, Germany.,Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hugo Ten Cate
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, Netherlands
| | - Paola E J van der Meijden
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.,Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
44
|
Amano H, Matsui Y, Hatanaka K, Hosono K, Ito Y. VEGFR1-tyrosine kinase signaling in pulmonary fibrosis. Inflamm Regen 2021; 41:16. [PMID: 34082837 PMCID: PMC8173728 DOI: 10.1186/s41232-021-00166-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is not only an important factor for angiogenesis but also lung development and homeostasis. VEGF-A binds three tyrosine kinase (TK) receptors VEGFR1–3. Idiopathic pulmonary fibrosis (IPF) is one of the poor prognoses of lung diseases. The relationship of VEGF and IPF remains to be clarified. Treatment with nintedanib used for the treatment of IPF reduced fibroblast proliferation, inhibited TK receptors, platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR), and VEGFR. Because the effect of that treatment is still not satisfactory, the emergence of new therapeutic agents is needed. This review describes the enhancement of pulmonary fibrosis by VEGFR1-TK signal and suggests that the blocking of the VEGFR1-TK signal may be useful for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Yoshio Matsui
- Department of Thoracic Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Ko Hatanaka
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
45
|
Chen H, Li G, Liu Y, Ji S, Li Y, Xiang J, Zhou L, Gao H, Zhang W, Sun X, Fu X, Li B. Pleiotropic Roles of CXCR4 in Wound Repair and Regeneration. Front Immunol 2021; 12:668758. [PMID: 34122427 PMCID: PMC8194072 DOI: 10.3389/fimmu.2021.668758] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Wound healing is a multi-step process that includes multiple cellular events such as cell proliferation, cell adhesion, and chemotactic response as well as cell apoptosis. Accumulating studies have documented the significance of stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor 4 (CXCR4) signaling in wound repair and regeneration. However, the molecular mechanism of regeneration is not clear. This review describes various types of tissue regeneration that CXCR4 participates in and how the efficiency of regeneration is increased by CXCR4 overexpression. It emphasizes the pleiotropic effects of CXCR4 in regeneration. By delving into the specific molecular mechanisms of CXCR4, we hope to provide a theoretical basis for tissue engineering and future regenerative medicine.
Collapse
Affiliation(s)
- Huating Chen
- Department of Wound Repair Surgery, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | | | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.,Department of Southern Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Jiangbing Xiang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.,Department of School of Biological Engineering, Chongqing University, Chongqing, China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Huanhuan Gao
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenwen Zhang
- Department of Wound Repair Surgery, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Binghui Li
- Department of Wound Repair Surgery, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
D'Aguanno S, Mallone F, Marenco M, Del Bufalo D, Moramarco A. Hypoxia-dependent drivers of melanoma progression. J Exp Clin Cancer Res 2021; 40:159. [PMID: 33964953 PMCID: PMC8106186 DOI: 10.1186/s13046-021-01926-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia, a condition of low oxygen availability, is a hallmark of tumour microenvironment and promotes cancer progression and resistance to therapy. Many studies reported the essential role of hypoxia in regulating invasiveness, angiogenesis, vasculogenic mimicry and response to therapy in melanoma. Melanoma is an aggressive cancer originating from melanocytes located in the skin (cutaneous melanoma), in the uveal tract of the eye (uveal melanoma) or in mucosal membranes (mucosal melanoma). These three subtypes of melanoma represent distinct neoplasms in terms of biology, epidemiology, aetiology, molecular profile and clinical features.In this review, the latest progress in hypoxia-regulated pathways involved in the development and progression of all melanoma subtypes were discussed. We also summarized current knowledge on preclinical studies with drugs targeting Hypoxia-Inducible Factor-1, angiogenesis or vasculogenic mimicry. Finally, we described available evidence on clinical studies investigating the use of Hypoxia-Inducible Factor-1 inhibitors or antiangiogenic drugs, alone or in combination with other strategies, in metastatic and adjuvant settings of cutaneous, uveal and mucosal melanoma.Hypoxia-Inducible Factor-independent pathways have been also reported to regulate melanoma progression, but this issue is beyond the scope of this review.As evident from the numerous studies discussed in this review, the increasing knowledge of hypoxia-regulated pathways in melanoma progression and the promising results obtained from novel antiangiogenic therapies, could offer new perspectives in clinical practice in order to improve survival outcomes of melanoma patients.
Collapse
Affiliation(s)
- Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiana Mallone
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Marco Marenco
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | | |
Collapse
|
47
|
Otaka F, Ito Y, Nakamoto S, Nishizawa N, Hyodo T, Hosono K, Majima M, Koizumi W, Amano H. Macrophages contribute to liver repair after monocrotaline-induced liver injury via SDF-1/CXCR4. Exp Ther Med 2021; 22:668. [PMID: 33986833 PMCID: PMC8112113 DOI: 10.3892/etm.2021.10100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Monocrotaline (MCT) administration induces liver injury in rodents that mimics the pathology of human sinusoidal obstruction syndrome. MCT-induced SOS models are used to investigate the mechanism of injury and optimize treatment strategies. However, the processes underlying liver repair are largely unknown. Specifically, the role of macrophages, the key drivers of liver repair, has not been elucidated. The current study aimed to examine the role of macrophages in the repair of MCT-induced liver injury in male C57/BL6 mice. Maximal liver injury occurred at 48 h post-MCT treatment, followed by repair at 120 h post-treatment. Immunofluorescence analysis revealed that CD68+ macrophages were recruited to the injured regions after MCT treatment. This was associated with the decreased expression of genes related to a pro-inflammatory macrophage phenotype and the increased expression of those associated with a reparative macrophage phenotype during the repair phase. The results also revealed that stromal cell-derived factor-1 (SDF-1) and its receptor C-X-C chemokine receptor-4 (CXCR4) were upregulated, and CD68+ macrophages were co-localized with CXCR4 expression. Treatment of mice with AMD3100, a CXCR4 antagonist, delayed liver repair and increased the expression of genes related to a pro-inflammatory macrophage phenotype. In contrast, SDF-1 treatment stimulated liver repair and increased the expression of genes related to a reparative macrophage phenotype. The results suggested that macrophages accumulate in the liver and repair damaged tissue after MCT treatment, and that the SDF-1-CXCR4 axis is involved in this process.
Collapse
Affiliation(s)
- Fumisato Otaka
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan.,Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Shuji Nakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan.,Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Nobuyuki Nishizawa
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan.,Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tetsuya Hyodo
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan.,Department of Plastic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Kanako Hosono
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan.,Department of Medical Therapeutics, Kanagawa Institute of Technology, Atsugi, Kanagawa 243-0292, Japan
| | - Wasaburo Koizumi
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
48
|
Ma H, Liu X, Zhang M, Niu J. Liver sinusoidal endothelial cells are implicated in multiple fibrotic mechanisms. Mol Biol Rep 2021; 48:2803-2815. [PMID: 33730288 DOI: 10.1007/s11033-021-06269-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver diseases are attributed to liver injury. Development of fibrosis from chronic liver diseases is a dynamic process that involves multiple molecular and cellular processes. As the first to be impacted by injury, liver sinusoidal endothelial cells (LSECs) are involved in the pathogenesis of liver diseases caused by a variety of etiologies. Moreover, capillarization of LSECs has been recognized as an important event in the development of chronic liver diseases and fibrosis. Studies have reported that various cytokines (such as vascular endothelial growth factor, transforming growth factor-β), and pathways (such as hedgehog, and Notch), as well as epigenetic and metabolic factors are involved in the development of LSEC-mediated liver fibrosis. This review describes the complexity and plasticity of LSECs in fibrotic liver diseases from several perspectives, including the cross-talk between LSECs and other intra-hepatic cells. Moreover, it summarizes the mechanisms of several kinds of LSECs-targeting anti-fibrosis chemicals, and provides a theoretical basis for future studies.
Collapse
Affiliation(s)
- Heming Ma
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Xu Liu
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Mingyuan Zhang
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
49
|
Li S, Yu C, Cheng Y, Du F, Wen G. Bioinformatics analysis identifies biomarkers associated with poor prognosis in diffuse‑type gastric cancer. Mol Med Rep 2021; 23:193. [PMID: 33495829 PMCID: PMC7809905 DOI: 10.3892/mmr.2021.11832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies of the digestive system. In diffuse‑type GC, differentiation is relatively poor, and the probability of distant metastasis and lymph node metastasis is high, resulting in poor clinical prognosis. The purpose of this study was to identify specific genes that can predict the prognosis of different types of GC. Differentially expressed genes (DEGs) were screened in the GSE62254 dataset obtained from the Gene Expression Omnibus using the 'limma' and 'survival' R packages. A total of 355 survival‑related DEGs were selected according to specific screening criteria, of which 293 were associated with diffuse‑type GC and 62 with intestinal‑type GC. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used for functional annotation and pathway enrichment analysis of DEGs. Using protein‑protein interaction networks and Cytoscape software, three hub genes were identified in diffuse‑type GC‑associated DEGs, including angiotensinogen (AGT), C‑X‑C motif chemokine ligand 12 (CXCL12) and adrenoceptor β2 (ADRB2). Immunohistochemical staining and reverse transcription‑quantitative PCR revealed that the expression levels of the three genes in diffuse‑type GC samples were upregulated compared with in intestinal‑type GC samples. Kaplan Meier analysis indicated that a higher expression levels of these three hub genes were associated with a poorer prognosis of diffuse‑type GC. In summary, the present findings suggested that AGT, CXCL12 and ADRB2 might contribute to the progression of diffuse‑type GC, and could serve as potential biomarkers or therapeutic targets for this disease.
Collapse
Affiliation(s)
- Sheng Li
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Chao Yu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Yuanguang Cheng
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Fangchao Du
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Gang Wen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| |
Collapse
|
50
|
Benedicto A, Sanz E, Márquez J. Ocoxin as a complement to first line treatments in cancer. Int J Med Sci 2021; 18:835-845. [PMID: 33437220 PMCID: PMC7797552 DOI: 10.7150/ijms.50122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy and radiotherapy are the most frequent treatment for patients suffering from malignant progression of cancer. Even though new treatments are now being implemented, administration of these chemotherapeutic agents remains as the first line option in many tumor types. However, the secondary effects of these compounds represent one of the main reasons cancer patients lose life quality during disease progression. Recent data suggests that Ocoxin, a plant extract and natural compound based nutritional complement rich in antioxidants and anti-inflammatory mediators exerts a positive effect in patients receiving chemotherapy and radiotherapy. This mixture attenuates the chemotherapy and radiotherapy-related side effects such as radiation-induced skin burns and mucositis, chemotherapy-related diarrhea, hepatic toxicity and blood-infection. Moreover, it has been proven to be effective as anticancer agent in different tumor models both in vitro and in vivo, potentiating the cytotoxic effect of several chemotherapy compounds such as Lapatinib, Gemcitabine, Paclitaxel, Sorafenib and Irinotecan. The aim of this review is to put some light on the potential of this nutritional mixture as an anticancer agent and complement for the standard chemotherapy routine.
Collapse
Affiliation(s)
- Aitor Benedicto
- Department of Cellular Biology and Histology, School of Medicine and Nursing, University of the Basque Country, 48940, Leioa, Bizkaia, Spain
| | | | - Joana Márquez
- Department of Cellular Biology and Histology, School of Medicine and Nursing, University of the Basque Country, 48940, Leioa, Bizkaia, Spain
| |
Collapse
|