1
|
Patel JJ, Barash M. The Gut in Critical Illness. Curr Gastroenterol Rep 2025; 27:11. [PMID: 39792234 DOI: 10.1007/s11894-024-00954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE OF REVIEW The purpose of this narrative review is to describe the mechanisms for gut dysfunction during critical illness, outline hypotheses of gut-derived inflammation, and identify nutrition and non-nutritional therapies that have direct and indirect effects on preserving both epithelial barrier function and gut microbiota during critical illness. RECENT FINDINGS Clinical and animal model studies have demonstrated that critical illness pathophysiology and interventions breach epithelial barrier function and convert a normally commensal gut microbiome into a pathobiome. As a result, the gut has been postulated to be the "motor" of critical illness and numerous hypotheses have been put forward to explain how it contributes to systemic inflammation and drives multiple organ failure. Strategies to ameliorate gut dysfunction have focused on maintaining gut barrier function and promoting gut microbiota commensalism. The trajectory of critical illness may be closely related to gut epithelial barrier function, the gut microbiome and interventions that may contribute towards a deleterious pathobiome with immune dysregulation.
Collapse
Affiliation(s)
- Jayshil J Patel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Medical College of Wisconsin, 8701 West Watertown Plank Road, 8th Floor: HUB for Collaborative Medicine, Milwaukee, WI, 53226, USA.
| | - Mark Barash
- Division of Pulmonary, Critical Care, and Sleep Medicine, Medical College of Wisconsin, 8701 West Watertown Plank Road, 8th Floor: HUB for Collaborative Medicine, Milwaukee, WI, 53226, USA
| |
Collapse
|
2
|
Li H, Zheng Q, Niu E, Xu J, Chai W, Xu C, Fu J, Hao L, Chen J, Zhang G. Increased risk of periprosthetic joint infection after traumatic injury in joint revision patients. ARTHROPLASTY 2024; 6:8. [PMID: 38311788 PMCID: PMC10840204 DOI: 10.1186/s42836-024-00235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Periprosthetic joint infection (PJI) is a serious complication after total joint arthroplasty (TJA). Although some risk factors of PJI were well studied, the association between trauma and PJI remains unknown in revision patients. MATERIALS AND METHODS Between 2015 and 2018, a total of 71 patients with trauma history before revisions (trauma cohort) were propensity score matched (PSM) at a ratio of 1 to 5 with a control cohort of revision patients without a history of trauma. Then, the cumulative incidence rate of PJI within 3 years after operation between the two groups was compared. The secondary endpoints were aseptic revisions within 3 postoperative years, complications up to 30 postoperative days, and readmission up to 90 days. During a minimal 3-year follow-up, the survival was comparatively analyzed between the trauma cohort and the control cohort. RESULTS The cumulative incidence of PJI was 40.85% in patients with trauma history against 27.04% in the controls (P = 0.02). Correspondingly, the cumulative incidence of aseptic re-revisions was 12.68% in patients with trauma history compared with 5.07% in the control cohort (P = 0.028). Cox regression revealed that trauma history was a risk factor of PJI (HR, 1.533 [95%CI, (1.019,2.306)]; P = 0.04) and aseptic re-revisions (HR, 3.285 [95%CI, (1.790,6.028)]; P < 0.0001). CONCLUSIONS Our study demonstrated that revision patients with trauma history carried a higher risk of PJI compared to those without trauma history. Moreover, after revisions, the trauma patients were still at higher risk for treatment failure due to PJI, periprosthetic joint fracture, and mechanical complications.
Collapse
Affiliation(s)
- Hao Li
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Qingyuan Zheng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Erlong Niu
- Department of Orthopedics, Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Jiazheng Xu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Wei Chai
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Chi Xu
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Jun Fu
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Libo Hao
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Jiying Chen
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China.
| | - Guoqiang Zhang
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
3
|
Salimi-Jazi F, Thomas AL, Rafeeqi TA, Wood LSY, Portelli K, Dunn JCY. Stem cell activation during distraction enterogenesis in the murine colon. Pediatr Surg Int 2023; 39:172. [PMID: 37031428 PMCID: PMC11571696 DOI: 10.1007/s00383-023-05455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 04/10/2023]
Abstract
PURPOSE Short bowel syndrome (SBS) is a devastating disease. We have proposed spring-mediated distraction enterogenesis for intestinal lengthening. Colonic lengthening is a potential treatment option for SBS to enhance fluid absorption capacity. We hypothesized that intraluminal spring-mediated colonic lengthening is associated with stem cell proliferation. METHODS C57BL/6 mice underwent placement of a gelatin-encapsulated compressed or uncompressed nitinol spring in a cecal segment. Animals were given clear liquid diet until postoperative day (POD) 7, followed by regular diet until POD 14. Cecal lengths were measured at euthanasia, and tissue was formalin fixed for histological processing. For Lgr5-GFP mice, immunohistochemistry against GFP was performed to localize Lgr5+ cells within crypts. RESULTS Significant cecal lengthening with compressed springs and shortening with uncompressed springs were observed on POD 7 and 14. Mucosa of the compressed spring group was significantly thicker on POD 14. The density of Lgr5+ cells within the crypts in the compressed spring groups was higher than that in the uncompressed spring groups on both POD 7 and 14. CONCLUSION Expandable springs can be used to lengthen the colon in the mouse model. Colonic lengthening was associated with gradual mucosal thickening and correlated with an increased density of stem cells within the crypts.
Collapse
Affiliation(s)
- Fereshteh Salimi-Jazi
- Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, 453 Quarry Road, MC 5733, Palo Alto, CA, 94304, USA
| | - Anne-Laure Thomas
- Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, 453 Quarry Road, MC 5733, Palo Alto, CA, 94304, USA
| | - Talha A Rafeeqi
- Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, 453 Quarry Road, MC 5733, Palo Alto, CA, 94304, USA
| | - Lauren S Y Wood
- Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, 453 Quarry Road, MC 5733, Palo Alto, CA, 94304, USA
| | - Katherine Portelli
- Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, 453 Quarry Road, MC 5733, Palo Alto, CA, 94304, USA
| | - James C Y Dunn
- Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, 453 Quarry Road, MC 5733, Palo Alto, CA, 94304, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Lunnemann HM, Shealy NG, Reyzer ML, Shupe JA, Green EH, Siddiqi U, Lacy DB, Byndloss MX, Markham NO. Cecum axis (CecAx) preservation reveals physiological and pathological gradients in mouse gastrointestinal epithelium. Gut Microbes 2023; 15:2185029. [PMID: 36872510 PMCID: PMC10012889 DOI: 10.1080/19490976.2023.2185029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
The mouse cecum has emerged as a model system for studying microbe-host interactions, immunoregulatory functions of the microbiome, and metabolic contributions of gut bacteria. Too often, the cecum is falsely considered as a uniform organ with an evenly distributed epithelium. We developed the cecum axis (CecAx) preservation method to show gradients in epithelial tissue architecture and cell types along the cecal ampulla-apex and mesentery-antimesentery axes. We used imaging mass spectrometry of metabolites and lipids to suggest functional differences along these axes. Using a model of Clostridioides difficile infection, we show how edema and inflammation are unequally concentrated along the mesenteric border. Finally, we show the similarly increased edema at the mesenteric border in two models of Salmonella enterica serovar Typhimurium infection as well as enrichment of goblet cells along the antimesenteric border. Our approach facilitates mouse cecum modeling with detailed attention to inherent structural and functional differences within this dynamic organ.
Collapse
Affiliation(s)
- Hannah M. Lunnemann
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicolas G. Shealy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - John A. Shupe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily H. Green
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Uswah Siddiqi
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - D. Borden Lacy
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Mariana X. Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas O. Markham
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Širvinskas D, Omrani O, Lu J, Rasa M, Krepelova A, Adam L, Kaeppel S, Sommer F, Neri F. Single-cell atlas of the aging mouse colon. iScience 2022; 25:104202. [PMID: 35479413 PMCID: PMC9035718 DOI: 10.1016/j.isci.2022.104202] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
We performed massive single-cell sequencing in the aging mouse colonic epithelium and immune cells. We identified novel compartment-specific markers as well as dramatic aging-associated changes in cell composition and signaling pathways, including a shift from absorptive to secretory epithelial cells, depletion of naive lymphocytes, and induction of eIF2 signaling. Colon cancer is one of the leading causes of death within the western world, incidence of which increases with age. The colonic epithelium is a rapidly renewing tissue, tasked with water and nutrient absorption, as well as hosting intestinal microbes. The colonic submucosa is populated with immune cells interacting with and regulating the epithelial cells. However, it is unknown whether compartment-specific changes occur during aging and what impact this would cause. We show that both epithelial and immune cells differ significantly between colonic compartments and experience significant age-related changes in mice. We found a shift in the absorptive-secretory cell balance, possibly linked to age-associated intestinal disturbances, such as malabsorption. We demonstrate marked changes in aging immune cells: population shifts and interactions with epithelial cells, linking cytokines (Ifn-γ, Il1B) with the aging of colonic epithelium. Our results provide new insights into the normal and age-associated states of the colon. Mouse colon shows compartment-specific transcriptional and population differences Old animal colon switches to a pro-inflammatory state Changes in epithelium linked to changes in tissue-resident immune cells
Collapse
Affiliation(s)
| | - Omid Omrani
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Jing Lu
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Mahdi Rasa
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Anna Krepelova
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Lisa Adam
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Sandra Kaeppel
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| | - Francesco Neri
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
- Corresponding author
| |
Collapse
|
6
|
Díaz-Díaz LM, Rodríguez-Villafañe A, García-Arrarás JE. The Role of the Microbiota in Regeneration-Associated Processes. Front Cell Dev Biol 2022; 9:768783. [PMID: 35155442 PMCID: PMC8826689 DOI: 10.3389/fcell.2021.768783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota, the set of microorganisms associated with a particular environment or host, has acquired a prominent role in the study of many physiological and developmental processes. Among these, is the relationship between the microbiota and regenerative processes in various organisms. Here we introduce the concept of the microbiota and its involvement in regeneration-related cellular events. We then review the role of the microbiota in regenerative models that extend from the repair of tissue layers to the regeneration of complete organs or animals. We highlight the role of the microbiota in the digestive tract, since it accounts for a significant percentage of an animal microbiota, and at the same time provides an outstanding system to study microbiota effects on regeneration. Lastly, while this review serves to highlight echinoderms, primarily holothuroids, as models for regeneration studies, it also provides multiple examples of microbiota-related interactions in other processes in different organisms.
Collapse
Affiliation(s)
- Lymarie M Díaz-Díaz
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| | | | - José E García-Arrarás
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| |
Collapse
|
7
|
Antibiotics Modulate Intestinal Regeneration. BIOLOGY 2021; 10:biology10030236. [PMID: 33808600 PMCID: PMC8003396 DOI: 10.3390/biology10030236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 02/02/2023]
Abstract
Simple Summary The impact of the microbial community on host’s biological functions has uncovered the potential outcomes of antibiotics on host physiology, introducing the caveats of the antibiotic usage. Within animals, the digestive function is closely related to the microorganisms that inhabit this organ. The proper maintenance of the digestive system requires constant regeneration. These processes vary from self-renewal of some cells or tissues in some species to the complete regeneration of the organ in others. Whether antibiotics influence digestive organ regeneration remains unknown. We employ the sea cucumber, Holothuria glaberrima, for its capacity to regenerate the whole intestine after ejection from its internal cavity. We explored the antibiotics’ effects on several intestinal regeneration processes. In parallel, we studied the effect of antibiotics on the animals’ survival, toxicity, and gut bacteria growth. Our results show that tested antibiotics perturbed key cellular processes that occur during intestinal regeneration. Moreover, this happens at doses that inhibited bacteria growth but did not alter holothurian’s metabolic activity. We propose that antibiotics can perturb the cellular events of intestinal regeneration via their impact on the microbiota. These results highlight H. glaberrima as a promising model to study the importance of the microbiota during organ regeneration. Abstract The increased antibiotics usage in biomedical and agricultural settings has been well documented. Antibiotics have now been shown to exert effects outside their purposive use, including effects on physiological and developmental processes. We explored the effect of various antibiotics on intestinal regeneration in the sea cucumber Holothuria glaberrima. For this, holothurians were eviscerated and left to regenerate for 10 days in seawater with different penicillin/streptomycin-based cocktails (100 µg/mL PS) including: 100 µg/mL kanamycin (KPS), 5 µg/mL vancomycin (VPS), and 4 µg/mL (E4PS) or 20 µg/mL (E20PS) erythromycin. Immunohistological and histochemical analyses were performed to analyze regenerative processes, including rudiment size, extracellular matrix (ECM) remodeling, cell proliferation, and muscle dedifferentiation. A reduction in muscle dedifferentiation was observed in all antibiotic-treated animals. ECM remodeling was decreased by VPS, E4PS, and E20PS treatments. In addition, organisms subjected to E20PS displayed a significant reduction in the size of their regenerating rudiments while VPS exposure altered cell proliferation. MTT assays were used to discard the possibility that the antibiotics directly affect holothurian metabolic activity while bacterial cultures were used to test antibiotic effects on holothurian enteric microbiota. Our results demonstrate a negative effect on intestinal regeneration and strongly suggest that these effects are due to alterations in the microbial community.
Collapse
|
8
|
Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 2021; 13:1941711. [PMID: 34328058 PMCID: PMC8331043 DOI: 10.1080/19490976.2021.1941711] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, studies investigating the role of the gut microbiota in health and diseases have increased enormously - making it essential to deepen and question the research methodology employed. Fecal microbiota transplantation (FMT) in rodent studies (either from human or animal donors) allows us to better understand the causal role of the intestinal microbiota across multiple fields. However, this technique lacks standardization and requires careful experimental design in order to obtain optimal results. By comparing several studies in which rodents are the final recipients of FMT, we summarize the common practices employed. In this review, we document the limitations of this method and highlight different parameters to be considered while designing FMT Studies. Standardizing this method is challenging, as it differs according to the research topic, but avoiding common pitfalls is feasible. Several methodological questions remain unanswered to this day and we offer a discussion on issues to be explored in future studies.
Collapse
Affiliation(s)
- Cassandra E. Gheorghe
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jason A. Martin
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah R. Wardill
- Precision Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Adelaide Medical School, the University of Adelaide, Adelaide, Australia
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Lang M, Baumgartner M, Rożalska A, Frick A, Riva A, Jarek M, Berry D, Gasche C. Crypt residing bacteria and proximal colonic carcinogenesis in a mouse model of Lynch syndrome. Int J Cancer 2020; 147:2316-2326. [PMID: 32350866 PMCID: PMC7496850 DOI: 10.1002/ijc.33028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/11/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is a multifactorial disease involving inherited DNA mutations, environmental factors, gut inflammation and intestinal microbiota. Certain germline mutations within the DNA mismatch repair system are associated with Lynch syndrome tumors including right-sided colorectal cancer with mucinous phenotype and presence of an inflammatory infiltrate. Such tumors are more often associated with bacterial biofilms, which may contribute to disease onset and progression. Inflammatory bowel diseases are also associated with colorectal cancer and intestinal dysbiosis. Herein we addressed the question, whether inflammation can aggravate colorectal cancer development under mismatch repair deficiency. MSH2loxP/loxP Vill-cre mice were crossed into the IL-10-/- background to study the importance of inflammation and mucosal bacteria as a driver of tumorigenesis in a Lynch syndrome mouse model. An increase in large bowel tumorigenesis was found in double knockout mice both under conventional housing and under specific pathogen-free conditions. This increase was mostly due to the development of proximal tumors, a hotspot for tumorigenesis in Lynch syndrome, and was associated with a higher degree of inflammation. Additionally, bacterial invasion into the mucus of tumor crypts was observed in the proximal tumors. Inflammation shifted fecal and mucosal microbiota composition and was associated with enrichment in Escherichia-Shigella as well as Akkermansia, Bacteroides and Parabacteroides genera in fecal samples. Tumor-bearing double knockout mice showed a similar enrichment for Escherichia-Shigella and Parabacteroides. Lactobacilli, Lachnospiraceae and Muribaculaceae family members were depleted upon inflammation. In summary, chronic inflammation aggravates colonic tumorigenesis under mismatch repair deficiency and is associated with a shift in microbiota composition.
Collapse
Affiliation(s)
- Michaela Lang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3Medical University of ViennaViennaAustria
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial EcologyUniversity of ViennaViennaAustria
| | - Maximilian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3Medical University of ViennaViennaAustria
| | - Aleksandra Rożalska
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3Medical University of ViennaViennaAustria
| | - Adrian Frick
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3Medical University of ViennaViennaAustria
| | - Alessandra Riva
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial EcologyUniversity of ViennaViennaAustria
| | - Michael Jarek
- Genome Analytics, Helmholtz Centre for Infection ResearchBraunschweigGermany
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial EcologyUniversity of ViennaViennaAustria
- The Joint Microbiome Facility of the Medical University of Vienna and the University of ViennaViennaAustria
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3Medical University of ViennaViennaAustria
| |
Collapse
|
10
|
Duque-Correa MA, Schreiber F, Rodgers FH, Goulding D, Forrest S, White R, Buck A, Grencis RK, Berriman M. Development of caecaloids to study host-pathogen interactions: new insights into immunoregulatory functions of Trichuris muris extracellular vesicles in the caecum. Int J Parasitol 2020; 50:707-718. [PMID: 32659277 PMCID: PMC7435689 DOI: 10.1016/j.ijpara.2020.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
The caecum, an intestinal appendage in the junction of the small and large intestines, displays a unique epithelium that serves as an exclusive niche for a range of pathogens including whipworms (Trichuris spp.). While protocols to grow organoids from small intestine (enteroids) and colon (colonoids) exist, the conditions to culture organoids from the caecum have yet to be described. Here, we report methods to grow, differentiate and characterise mouse adult stem cell-derived caecal organoids, termed caecaloids. We compare the cellular composition of caecaloids with that of enteroids, identifying differences in intestinal epithelial cell populations that mimic those found in the caecum and small intestine. The remarkable similarity in the intestinal epithelial cell composition and spatial conformation of caecaloids and their tissue of origin enables their use as an in vitro model to study host interactions with important caecal pathogens. Thus, exploiting this system, we investigated the responses of caecal intestinal epithelial cells to extracellular vesicles secreted/excreted by the intracellular helminth Trichuris muris. Our findings reveal novel immunoregulatory effects of whipworm extracellular vesicles on the caecal epithelium, including the downregulation of responses to nucleic acid recognition and type-I interferon signalling.
Collapse
Affiliation(s)
| | | | - Faye H Rodgers
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - David Goulding
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Sally Forrest
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Ruby White
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Amy Buck
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Richard K Grencis
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
11
|
Spatial Compartmentalization of the Microbiome between the Lumen and Crypts Is Lost in the Murine Cecum following the Process of Surgery, Including Overnight Fasting and Exposure to Antibiotics. mSystems 2020; 5:5/3/e00377-20. [PMID: 32518197 PMCID: PMC7289591 DOI: 10.1128/msystems.00377-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cecum is a unique region in the mammalian intestinal tract in which the microbiome is localized to two compartments, the lumen and the crypts. The microbiome within crypts is particularly important as it is in direct contact with lining epithelial cells including stem cells. Here, we analyzed the microbiome in cecum of mice using multiple techniques including metagenomics. The lumen microbiome comprised Firmicutes and Bacteroidetes whereas the crypts were dominated by Proteobacteria and Deferribacteres, and the mucus comprised a mixture of these 4 phyla. The lumen microbial functional potential comprised mainly carbon metabolism, while the crypt microbiome was enriched for genes encoding stress resistance. In order to determine how this structure, assembly, and function are altered under provocative conditions, we exposed mice to overnight starvation (S), antibiotics (A), and a major surgical injury (partial hepatectomy [H]), as occurs with major surgery in humans. We have previously demonstrated that the combined effect of this "SAH" treatment leads to a major disturbance of the cecal microbiota at the bottom of crypts in a manner that disrupts crypt cell homeostasis. Here, we applied the SAH conditions and observed a loss of compartmentalization in both composition and function of the cecal microbiome associated with major shifts in local physicochemical cues including decrease of hypoxia, increase of pH, and loss of butyrate production. Taken together, these studies demonstrated a defined order, structure, and function of the cecal microbiome that can be disrupted under provocative conditions such as major surgery and its attendant exposures.IMPORTANCE The proximal colon and cecum are two intestinal regions in which the microbiome localizes to two spatially distinct compartments, the lumen and crypts. The differences in composition and function of luminal and crypt microbiome in the cecum and the effect of physiological stress on their compartmentalization remain poorly characterized. Here, we characterized the composition and function of the lumen-, mucus-, and crypt-associated microbiome in the cecum of mice. We observed a highly ordered microbial architecture within the cecum whose assembly and function become markedly disrupted when provoked by physiological stress such as surgery and its attendant preoperative treatments (i.e., overnight fasting and antibiotics). Major shifts in local physicochemical cues including a decrease in hypoxia levels, an increase in pH, and a loss of butyrate production were associated with the loss of compositional and functional compartmentalization of the cecal microbiome.
Collapse
|
12
|
Rosenthal MD, Brown CJ, Loftus TJ, Vanzant EL, Croft CA, Martindale RG. Nutritional Management and Strategies for the Enterocutaneous Fistula. CURRENT SURGERY REPORTS 2020. [DOI: 10.1007/s40137-020-00255-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Alverdy JC, Hyman N, Gilbert J. Re-examining causes of surgical site infections following elective surgery in the era of asepsis. THE LANCET. INFECTIOUS DISEASES 2020; 20:e38-e43. [PMID: 32006469 DOI: 10.1016/s1473-3099(19)30756-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 11/29/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
The currently accepted assumption that most surgical site infections (SSIs) occurring after elective surgery under standard methods of antisepsis are due to an intraoperative contamination event, remains unproven. We examined the available evidence in which microbial cultures of surgical wounds were taken at the conclusion of an operation and determined that such studies provide more evidence to refute that an SSI is due to intraoperative contamination than support it. We propose that alternative mechanisms of SSI development should be considered, such as when a sterile postoperative wound becomes infected by a pathogen originating from a site remote from the operative wound-eg, from the gums or intestinal tract (ie, the Trojan Horse mechanism). We offer a path forward to reduce SSI rates after elective surgery that includes undertaking genomic-based microbial tracking from the built environment (ie, the operating room and hospital bed), to the patient's own microbiome, and then to the surgical site. Finally, we posit that only by generating this dynamic microbial map can the true pathogenesis of SSIs be understood enough to inform novel preventive strategies against infection following elective surgery in the current era of asepsis.
Collapse
Affiliation(s)
- John C Alverdy
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Neil Hyman
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jack Gilbert
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Abstract
Background: Antibiotics are frequently used to treat critically ill patients, and its use is often accompanied by intestinal dysbiosis that might further lead to bacterial translocation (BT). Nevertheless, studies on the relationship between antibiotic therapy and BT are rare. In the present study, we investigated the effect of broad-spectrum antibiotics on BT in an experimental rat model of burn or sepsis injury. Methods: The septic rat model was simulated by a second insult with lipopolysaccharides after burn injury. Ninety-two male Sprague-Dawley rats were randomly divided into control, burn, and sepsis groups (n = 8 or 9, each group), and the latter two groups were then treated with imipenem or ceftriaxone for 3 or 9 days. The mesenteric lymph nodes, liver, lungs, and blood were collected at each time point under sterile conditions for quantitative bacterial culture and strain identification. The differences between the groups were compared by Fisher exact test or Mann-Whitney U test. Results: Only minimal Escherichia coli translocation to the mesenteric lymph nodes was observed in the normal control group, in which the BT rate was 12.5%. Burn injury did not affect the BT rate (Burn group vs. Control group, 12.5% vs. 12.5%, P = 1.000), whereas the BT rate showed an increased trend after the second insult with lipopolysaccharide (Sepsis group vs. Control group, 44.4% vs. 12.5%, P = 0.294), and many strains of Enterobacteria spp. were detected in distant organs (liver, lung, and blood) [Sepsis group vs. Control group, 0 (0,3) vs. 0 (0,0), U = 20, P = 0.045]. After the antibiotic treatment, BT to the distant organs was increased in burned rats [Burn IT3 group vs. Burn group, 0 (0,2) vs. 0 (0,0); Burn IT9 group vs. Burn group, 0 (0,1) vs. 0 (0,0); Burn CT9 group vs. Burn group, 0 (0,2) vs. 0 (0,0); all U = 20 and P = 0.076] but decreased in septic rats [Sepsis CT3 group vs. Sepsis group, 0 (0,0) vs. 0 (0,3), U = 20, P = 0.045]. The total amount of translocated bacteria, regardless of which antibiotic was used, was increased in burned rats [Burn IT9 group vs. Burn group, 2.389 (0,2.845) vs. 0 (0,2.301) Log10 colony-forming units (CFU)/g, U = 14, P = 0.034; Burn CT3 group vs. Burn group, 2.602 (0,3.633) vs. 0 (0,2.301) Log10 CFU/g, U = 10.5, P = 0.009], but there was a slightly decreased trend in septic rats [Sepsis IT9 group vs. Sepsis group, 2.301 (2,3.146) vs. 0 (0,4.185) Log10 CFU/g, U = 36, P = 0.721; Sepsis CT9 group vs. Sepsis group, 2 (0,3.279) vs. 0 (0,4.185) Log10 CFU/g, U = 32.5, P = 0.760]. Remarkably, the quantity of Enterococci spp. dramatically increased after broad-spectrum antibiotic treatment in both the burned and septic groups [Burn IT3 group vs. Burn group, 1 (0,5.164) vs. 0 (0,0) Log10 CFU/g, U = 16; Burn IT9 group vs. Burn group, 1 (0,2.845) vs. 0 (0,0) Log10 CFU/g, U = 16; Burn CT3 group vs. Burn group, 2.602 (0,3.633) vs. 0 (0,0) Log10 CFU/g, U = 8; Burn CT9 group vs. Burn group, 1 (0,4.326) vs. 0 (0,0) Log10 CFU/g, U = 16; Sepsis IT3 group vs. Sepsis group, 2.477 (0,2.903) vs. 0 (0,0) Log10 CFU/g, U = 4.5; Sepsis IT9 group vs. Sepsis group, 2 (0,3.146) vs. 0 (0,0) Log10 CFU/g, U = 9; Sepsis CT3 group vs. Sepsis group, 1.151 (0,2.477) vs. 0 (0,0) Log10 CFU/g, U = 18; Sepsis CT9 group vs. Sepsis group, 2 (0,3) vs. 0 (0,0) Log10 CFU/g, U = 13.5; all P < 0.05]. Conclusions: Broad-spectrum antibiotics promote BT in burned rats but prevent BT in septic rats, especially preventing BT to distant organs, such as the liver and lung. Moreover, Enterococci spp. with high drug resistance and high pathogenicity translocated most after antibiotic treatment.
Collapse
|
15
|
Blutt SE, Klein OD, Donowitz M, Shroyer N, Guha C, Estes MK. Use of organoids to study regenerative responses to intestinal damage. Am J Physiol Gastrointest Liver Physiol 2019; 317:G845-G852. [PMID: 31589468 PMCID: PMC7132322 DOI: 10.1152/ajpgi.00346.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal organoid cultures provide an in vitro model system for studying pathways and mechanisms involved in epithelial damage and repair. Derived from either embryonic or induced pluripotent stem cells or adult intestinal stem cells or tissues, these self-organizing, multicellular structures contain polarized mature cells that recapitulate both the physiology and heterogeneity of the intestinal epithelium. These cultures provide a cutting-edge technology for defining regenerative pathways that are induced following radiation or chemical damage, which directly target the cycling intestinal stem cell, or damage resulting from viral, bacterial, or parasitic infection of the epithelium. Novel signaling pathways or biological mechanisms identified from organoid studies that mediate regeneration of the epithelium following damage are likely to be important targets of preventive or therapeutic modalities to mitigate intestinal injury. The evolution of these cultures to include more components of the intestinal wall and the ability to genetically modify them are key components for defining the mechanisms that modulate epithelial regeneration.
Collapse
Affiliation(s)
- Sarah E. Blutt
- 1Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Ophir D. Klein
- 2Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, California,3Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, California
| | - Mark Donowitz
- 4Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland,5Department of Medicine, Gastroenterology and Hepatology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Noah Shroyer
- 6Department of Medicine, Divisions of Gastroenterology and Hepatology and Infectious Diseases, Baylor College of Medicine, Houston, Texas
| | - Chandan Guha
- 7Department of Radiation Oncology, Albert Einstein, Bronx, New York
| | - Mary K. Estes
- 1Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas,6Department of Medicine, Divisions of Gastroenterology and Hepatology and Infectious Diseases, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
16
|
Liu J, Wang HW, Lin L, Miao CY, Zhang Y, Zhou BH. Intestinal barrier damage involved in intestinal microflora changes in fluoride-induced mice. CHEMOSPHERE 2019; 234:409-418. [PMID: 31228844 DOI: 10.1016/j.chemosphere.2019.06.080] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Intestinal microflora play an important role in maintaining the homeostasis of the intestinal microenvironment, but fluoride-induced changes in intestinal mechanical barrier and intestinal microflora have not been well studied. Given this paucity of information, this study aims to determine the effects of high fluoride level on intestinal mechanical barrier and intestinal microflora in the cecum of mice. Seventy-two female 21-day-old Kunming mice were randomly assigned to three groups and raised for 70 days. Changes in intestinal pathomorphology and intestinal epithelial cell proliferation were observed by haematoxylin and eosin-staining and Brdu measurement, respectively. The distribution of goblet cells, glycoproteins and mast cells was analysed through Alcian blue and periodic acid-Schiff (AB-PAS) staining, Periodic Acid-Schiff (PAS) staining, and toluidine blue staining. Results showed that excessive fluoride damaged the structure of the cecal tissues, inhibited epithelial cell proliferation and decreased the relative distribution of goblet cells, glycoproteins and mast cells that are involved in defense responses. Intestinal microflora sequencing analysis revealed that the composition of the diversity and composition of intestinal microflora was altered by excessive fluoride based on 16S rRNA amplicon sequencing. The relative abundance of Firmicutes (P = 0.03174), Bacteroidetes (P = 0.04462), Actinobacteria (P = 0.01085) and Spirochacteria (P = 0.04084) was significantly changed in the fluoride group as compared with the control group. In conclusion, excessive fluoride intake induced intestinal barrier damage, leading to changes in cecal composition, epithelium secretion and intestinal microflora.
Collapse
Affiliation(s)
- Jing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, PR China
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, PR China.
| | - Lin Lin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, PR China
| | - Cheng-Yi Miao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, PR China
| | - Yan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, PR China
| | - Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, PR China.
| |
Collapse
|
17
|
Hyoju SK, Zaborin A, Keskey R, Sharma A, Arnold W, van den Berg F, Kim SM, Gottel N, Bethel C, Charnot-Katsikas A, Jianxin P, Adriaansens C, Papazian E, Gilbert JA, Zaborina O, Alverdy JC. Mice Fed an Obesogenic Western Diet, Administered Antibiotics, and Subjected to a Sterile Surgical Procedure Develop Lethal Septicemia with Multidrug-Resistant Pathobionts. mBio 2019; 10:e00903-19. [PMID: 31363025 PMCID: PMC6667615 DOI: 10.1128/mbio.00903-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Despite antibiotics and sterile technique, postoperative infections remain a real and present danger to patients. Recent estimates suggest that 50% of the pathogens associated with postoperative infections have become resistant to the standard antibiotics used for prophylaxis. Risk factors identified in such cases include obesity and antibiotic exposure. To study the combined effect of obesity and antibiotic exposure on postoperative infection, mice were allowed to gain weight on an obesogenic Western-type diet (WD), administered antibiotics and then subjected to an otherwise recoverable sterile surgical injury (30% hepatectomy). The feeding of a WD alone resulted in a major imbalance of the cecal microbiota characterized by a decrease in diversity, loss of Bacteroidetes, a bloom in Proteobacteria, and the emergence of antibiotic-resistant organisms among the cecal microbiota. When WD-fed mice were administered antibiotics and subjected to 30% liver resection, lethal sepsis, characterized by multiple-organ damage, developed. Notable was the emergence and systemic dissemination of multidrug-resistant (MDR) pathobionts, including carbapenem-resistant, extended-spectrum β-lactamase-producing Serratia marcescens, which expressed a virulent and immunosuppressive phenotype. Analysis of the distribution of exact sequence variants belonging to the genus Serratia suggested that these strains originated from the cecal mucosa. No mortality or MDR pathogens were observed in identically treated mice fed a standard chow diet. Taken together, these results suggest that consumption of a Western diet and exposure to certain antibiotics may predispose to life-threating postoperative infection associated with MDR organisms present among the gut microbiota.IMPORTANCE Obesity remains a prevalent and independent risk factor for life-threatening infection following major surgery. Here, we demonstrate that when mice are fed an obesogenic Western diet (WD), they become susceptible to lethal sepsis with multiple organ damage after exposure to antibiotics and an otherwise-recoverable surgical injury. Analysis of the gut microbiota in this model demonstrates that WD alone leads to loss of Bacteroidetes, a bloom of Proteobacteria, and evidence of antibiotic resistance development even before antibiotics are administered. After antibiotics and surgery, lethal sepsis with organ damage developed in in mice fed a WD with the appearance of multidrug-resistant pathogens in the liver, spleen, and blood. The importance of these findings lies in exposing how the selective pressures of diet, antibiotic exposure, and surgical injury can converge on the microbiome, resulting in lethal sepsis and organ damage without the introduction of an exogenous pathogen.
Collapse
Affiliation(s)
- Sanjiv K Hyoju
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Alexander Zaborin
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Robert Keskey
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Anukriti Sharma
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Wyatt Arnold
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Fons van den Berg
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
- Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sangman M Kim
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Neil Gottel
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Cindy Bethel
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | | | - Peng Jianxin
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
- Guangdong Province Hospital of Chinese Medicine, China
| | - Carleen Adriaansens
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
- Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emily Papazian
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Jack A Gilbert
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Olga Zaborina
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - John C Alverdy
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
|
19
|
Ozkan J, Coroneo M, Willcox M, Wemheuer B, Thomas T. Identification and Visualization of a Distinct Microbiome in Ocular Surface Conjunctival Tissue. Invest Ophthalmol Vis Sci 2019; 59:4268-4276. [PMID: 30140925 DOI: 10.1167/iovs.18-24651] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Knowledge of whether microorganisms reside in protected niches of the conjunctiva is potentially significant in terms of minimizing risks of contact lens inflammation/infection and endophthalmitis. We define if and how microbial communities from limbal and forniceal conjunctival tissue differ from those on the conjunctival surface. Methods Human limbal and forniceal conjunctival tissue was obtained from 23 patients undergoing pterygium surgery and analyzed with data from a recent study of conjunctival surface swabs (n = 45). Microbial communities were analyzed by extracting total DNA from tissue samples and surface swabs and sequencing the 16S rRNA gene using the Illumina MiSeq platform. Sequences were quality filtered, clustered into operational taxonomic units (OTUs) at 97% similarity. OTUs associated with blank extraction and sampling negative controls were removed before analysis. Fluorescent in situ hybridization (FISH) was performed on cyrosections of limbal and forniceal conjunctival tissue. Results There was a significant difference in bacterial community structure between the conjunctival surface and fornix (P = 0.001) and limbus (P = 0.001) tissue. No difference was found in bacterial communities between the limbus and fornix (P = 0.764). Fornix and limbal samples were dominated by OTUs classified to the genus Pseudomonas (relative abundance 79.9%), which were found only in low relative abundances on conjunctival surfaces (6.3%). Application of FISH showed the presence of Pseudomonas in the forniceal tissue sample. Conclusions There is a discrete tissue-associated microbiome in freshly-collected human limbal and fornix tissue, which is different from the microbial community structure and composition of the ocular surface microbiome.
Collapse
Affiliation(s)
- Jerome Ozkan
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Minas Coroneo
- Department of Ophthalmology, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Bernd Wemheuer
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia.,Department of Genomic and Applied Microbiology, University of Göttingen, Göttingen, Germany
| | - Torsten Thomas
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
20
|
Why do current strategies for optimal nutritional therapy neglect the microbiome? Nutrition 2019; 60:100-105. [DOI: 10.1016/j.nut.2018.09.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022]
|
21
|
Chen N, Ling ZX, Jin TT, Li M, Zhao S, Zheng LS, Xi X, Wang LL, Chen YY, Shen YL, Zhang LP, Sun SC. Altered Profiles of Gut Microbiota in Klebsiella pneumoniae-Induced Pyogenic Liver Abscess. Curr Microbiol 2018; 75:952-959. [PMID: 29637226 DOI: 10.1007/s00284-018-1471-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/05/2018] [Indexed: 02/07/2023]
Abstract
Intestinal microbiota plays a crucial role in preventing the colonization and invasion by pathogens, and disruption of microbiota may cause opportunistic infections and diseases. Pathogens often have strategies to escape from the colonization resistance mediated by microbiota, but whether they also modulate the microbiota composition is still a topic of investigation. In the present study, we addressed this question using an opportunistic pathogen, Klebsiella pneumoniae serotype K1, which is known to cause pyogenic liver abscess (KLA) in about 30% of mice. We examined the effect of K. pneumoniae infection on cecal microbiota composition by performing high-throughput 454 pyrosequencing of the hypervariable V3-V4 regions of bacterial 16S rRNA gene. Our data revealed that K. pneumoniae inoculation substantially changed the cecal microbiota composition when analyzed at the phylum, order, and family levels. Most strikingly, the KLA-infected mice had significantly increased abundance of Bacteroidales and Enterobacteriales and decreased abundance of Lactobacillales and Eggerthellales. Furthermore, by comparing the infected mice with or without KLA disease symptoms, we identified specific microbiota changes associated with the KLA disease induction. Especially, the KLA group had dramatically decreased sequence identical to Lactobacillus compared with non-KLA mice. These findings suggest that the pathogenic process of KLA infection may involve alteration of microbiota compositions, particularly reduction in Lactobacillus.
Collapse
Affiliation(s)
- Nan Chen
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, 071000, China
- Department of Medical Microbiology, Medicine College, Hebei University, Baoding, 071000, China
| | - Zong-Xin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Tong-Tong Jin
- Department of Medical Microbiology, Medicine College, Hebei University, Baoding, 071000, China
| | - Ming Li
- Department of Medical Microbiology, Medicine College, Hebei University, Baoding, 071000, China
| | - Sheng Zhao
- Department of Medical Microbiology, Medicine College, Hebei University, Baoding, 071000, China
| | - Li-Shuang Zheng
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Xin Xi
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Lin-Lin Wang
- Department of Pharmacology, Zhejiang Medical College, Zhejiang University, Hangzhou, 310053, China
| | - Ying-Ying Chen
- Department of Pharmacology, Zhejiang Medical College, Zhejiang University, Hangzhou, 310053, China
| | - Yue-Liang Shen
- Department of Pharmacology, Zhejiang Medical College, Zhejiang University, Hangzhou, 310053, China
| | - Li-Ping Zhang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071000, China.
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
|
23
|
Manzanares W, Langlois PL, Wischmeyer PE. Restoring the Microbiome in Critically Ill Patients: Are Probiotics Our True Friends When We Are Seriously Ill? JPEN J Parenter Enteral Nutr 2017; 41:530-533. [PMID: 28445681 DOI: 10.1177/0148607117700572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- William Manzanares
- 1 Department of Critical Care, Intensive Care Unit, Hospital de Clínicas (University Hospital), Faculty of Medicine, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Pascal L Langlois
- 2 Department of Anesthesiology and Reanimation, Faculty of Medicine and Health Sciences, Sherbrooke University, Centre Hospitalier Universitaire de Sherbrooke, Hospital Fleurimont, Sherbrooke, Quebec, Canada
| | - Paul E Wischmeyer
- 3 Department of Anesthesiology and Surgery, Duke University School of Medicine, Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|