1
|
Zhang W, Fan Y, Zhang J, Shi D, Yuan J, Ashrafizadeh M, Li W, Hu M, Abd El-Aty AM, Hacimuftuoglu A, Linnebacher M, Cheng Y, Li W, Fang S, Gong P, Zhang X. Cell membrane-camouflaged bufalin targets NOD2 and overcomes multidrug resistance in pancreatic cancer. Drug Resist Updat 2023; 71:101005. [PMID: 37647746 DOI: 10.1016/j.drup.2023.101005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023]
Abstract
AIMS Multidrug resistance in pancreatic cancer poses a significant challenge in clinical treatment. Bufalin (BA), a compound found in secretions from the glands of toads, may help overcome this problem. However, severe cardiotoxicity thus far has hindered its clinical application. Hence, the present study aimed to develop a cell membrane-camouflaged and BA-loaded polylactic-co-glycolic acid nanoparticle (CBAP) and assess its potential to counter chemoresistance in pancreatic cancer. METHODS The toxicity of CBAP was evaluated by electrocardiogram, body weight, distress score, and nesting behavior of mice. In addition, the anticarcinoma activity and underlying mechanism were investigated both in vitro and in vivo. RESULTS CBAP significantly mitigated BA-mediated acute cardiotoxicity and enhanced the sensitivity of pancreatic cancer to several clinical drugs, such as gemcitabine, 5-fluorouracil, and FOLFIRINOX. Mechanistically, CBAP directly bound to nucleotide-binding and oligomerization domain containing protein 2 (NOD2) and inhibited the expression of nuclear factor kappa-light-chain-enhancer of activated B cells. This inhibits the expression of ATP-binding cassette transporters, which are responsible for chemoresistance in cancer cells. CONCLUSIONS Our findings indicate that CBAP directly inhibits NOD2. Combining CBAP with standard-of-care chemotherapeutics represents a safe and efficient strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China
| | - Yibao Fan
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jinze Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Dan Shi
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Jiahui Yuan
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Wei Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25070, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25070, Turkey
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock 18059, Germany
| | - Yongxian Cheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Weiguang Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China.
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Peng Gong
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Spanehl L, Revskij D, Bannert K, Ehlers L, Jaster R. YAP activates pancreatic stellate cells and enhances pancreatic fibrosis. Hepatobiliary Pancreat Dis Int 2022; 21:583-589. [PMID: 35753954 DOI: 10.1016/j.hbpd.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/11/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic stellate cells (PSCs) foster the progression of pancreatic adenocarcinoma and chronic pancreatitis (CP) by producing a dense fibrotic stroma. However, the incomplete knowledge of PSCs biology hampers the exploration of antifibrotic therapies. Here, we explored the role of the Hippo pathway in the context of PSCs activation and experimental CP. METHODS CP model was created in rats with the tail vein injection of dibutyltin dichloride (DBTC). The expression of Yes-associated protein (YAP) in CP tissue was assessed. Primary and immortalized rats PSCs were treated with the YAP-inhibitor verteporfin. Furthermore, YAP siRNA was employed. Subsequently, DNA synthesis, cell survival, levels of α-smooth muscle actin (α-SMA) protein, presence of lipid droplets and PSCs gene expression were evaluated. Upstream regulators of YAP signaling were studied by reporter gene assays. RESULTS In DBTC-induced CP, pronounced expression of YAP in areas of tubular structures and periductal fibrosis was observed. Verteporfin diminished DNA replication in PSCs in a dose-dependent fashion. Knockdown of YAP reduced cell proliferation. Primary cultures of PSCs were characterized by a decrease of lipid droplets and increased synthesis of α-SMA protein. Both processes were not affected by verteporfin. At the non-cytotoxic concentration of 100 nmol/L, verteporfin significantly reduced mRNA levels of transforming growth factor-β1 (Tgf-β1) and Ccn family member 1 (Ccn1). YAP signaling was activated by TGF-β1, but repressed by interferon-γ. CONCLUSIONS Activated YAP enhanced PSCs proliferation. The antifibrotic potential of Hippo pathway inhibitors warrants further investigation.
Collapse
Affiliation(s)
- Lennard Spanehl
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Denis Revskij
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Karen Bannert
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Luise Ehlers
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany.
| |
Collapse
|
3
|
Fleming Martinez AK, Döppler HR, Bastea LI, Edenfield BH, Liou GY, Storz P. Ym1 + macrophages orchestrate fibrosis, lesion growth, and progression during development of murine pancreatic cancer. iScience 2022; 25:104327. [PMID: 35602933 PMCID: PMC9118688 DOI: 10.1016/j.isci.2022.104327] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 01/05/2023] Open
Abstract
Desmoplasia around pancreatic lesions is a barrier for immune cells and a hallmark of developing and established pancreatic cancer. However, the contribution of the innate immune system to this process is ill-defined. Using the KC mouse model and primary cells in vitro, we show that alternatively activated macrophages (AAM) crosstalk with pancreatic lesion cells and pancreatic stellate cells (PSCs) to mediate fibrosis and progression of lesions. TGFβ1 secreted by AAM not only drives activation of quiescent PSCs but also in activated PSCs upregulates expression of TIMP1, a factor previously shown as crucial in fibrosis. Once activated, PSCs auto-stimulate proliferation via CXCL12. Furthermore, we found that TIMP1/CD63 signaling mediates PanIN lesion growth and TGFβ1 contributes to a cadherin switch and drives structural collapse of lesions, indicating a potential progression step. Taken together, our data indicate TGFβ1 produced by Ym1+ AAM as a major driver of processes that initiate the development of pancreatic cancer.
Collapse
Affiliation(s)
| | - Heike R. Döppler
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Ligia I. Bastea
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Brandy H. Edenfield
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Geou-Yarh Liou
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA,Department of Biological Sciences, Center for Cancer Research & Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA,Corresponding author
| |
Collapse
|
4
|
Kang Z, Wang C, Tong Y, Li Y, Gao Y, Hou S, Hao M, Han X, Wang B, Wang Q, Zhang C. Novel Nonsecosteroidal Vitamin D Receptor Modulator Combined with Gemcitabine Enhances Pancreatic Cancer Therapy through Remodeling of the Tumor Microenvironment. J Med Chem 2020; 64:629-643. [PMID: 33381963 DOI: 10.1021/acs.jmedchem.0c01197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In a pancreatic tumor microenvironment, activated pancreatic stellate cells (PSCs) produce extracellular matrix (ECM) to form a barrier to drug penetration. Moreover, the interaction between cancer cells and activated PSCs promotes the tumor growth. Vitamin D receptor (VDR), as a key regulator to promote the recovery of PSCs to the resting state, is an attractive therapeutic target for pancreatic cancer. Herein, we reported the design and synthesis of 57 nonsecosteroidal VDR modulators based on the skeleton of phenyl-pyrrolyl pentane. Among them, compounds C4, I5, and I8 exhibited excellent VDR affinity and effective inhibition of the activation of PSCs, as well as potent suppression of the interaction between cancer cells and PSCs in vitro. In vivo, compound I5 combined with gemcitabine achieved efficacious antitumor activity without causing hypercalcemia. In conclusion, the compounds designed in our study can remodel the tumor microenvironment and are expected to be candidates for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zisheng Kang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Cong Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yu Tong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yanyi Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yi Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Siyuan Hou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Meixi Hao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Xiaolin Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Bin Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Qianqian Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, P.R. China
| |
Collapse
|
5
|
FAK inhibition radiosensitizes pancreatic ductal adenocarcinoma cells in vitro. Strahlenther Onkol 2020; 197:27-38. [PMID: 32705304 PMCID: PMC7801360 DOI: 10.1007/s00066-020-01666-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022]
Abstract
Introduction Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase protein frequently overexpressed in cancer and has been linked to an increase in the stem cell population of tumors, resistance to therapy, and metastatic spread. Pharmacological FAK inhibition in pancreatic cancer has received increased attention over the last few years, either alone or in combination with other therapeutics including chemotherapy and immunotherapy. However, its prognostic value and its role in radioresistance of pancreatic ducal adenocarcinoma (PDAC) is unknown. Methods and materials Using the TCGA and GTEx databases, we investigated the genetic alterations and mRNA expression levels of PTK2 (the encoding-gene for FAK) in normal pancreatic tissue and pancreatic cancer and its impact on patient survival. Furthermore, we evaluated the expression of FAK and its tyrosine domain Ty-397 in three pancreatic cancer cell lines. We went further and evaluated the role of a commercial FAK tyrosine kinase inhibitor VS-4718 on the viability and radiosensitization of the pancreatic cell lines as well as its effect on the extracellular matrix (ECM) production from the pancreatic stellate cells. Furthermore, we tested the effect of combining radiation with VS-4718 in a three-dimensional (3D) multicellular pancreatic tumor spheroid model. Results A database analysis revealed a relevant increase in genetic alterations and mRNA expression of the PTK2 in PDAC, which were associated with lower progression-free survival. In vitro, there was only variation in the basal phosphorylation level of FAK in cell lines. VS-4718 radiosensitized pancreatic cell lines only in the presence of ECM-producing pancreatic stellate cells and markedly reduced the ECM production in the stromal cells. Finally, using a 3D multicellular tumor model, the combination of VS-4718 and radiotherapy significantly reduced the growth of tumor aggregates. Conclusion Pharmacological inhibition of FAK in pancreatic cancer could be a novel therapeutic strategy as our results show a radiosensitization effect of VS-4718 in vitro in a multicellular 2D- and in a 3D-model of pancreatic cancer. Electronic supplementary material The online version of this article (10.1007/s00066-020-01666-0) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
|
7
|
Li W, Zhou Y, Wang X, Cai M, Gao F, Carlsson PO, Sun Z. A modified in vitro tool for isolation and characterization of rat quiescent islet stellate cells. Exp Cell Res 2019; 384:111617. [PMID: 31505166 DOI: 10.1016/j.yexcr.2019.111617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Islet stellate cells (ISCs) play a critical role in islet fibrosis, contributing to the progression of pancreatic diseases. Previous studies have focused on fibrosis-associated activated ISCs obtained by standard islet explant techniques. However, in vitro models of quiescent ISCs (qISCs) are lacking. This study aims to develop a method to isolate qISCs and analyze their phenotype during activation. METHODS Immunofluorescence staining was applied to localize ISCs in normal human, rat, and mouse islets. qISCs were isolated from rat islets using density gradient centrifugation (DGC) method. qRT-PCR, immunoblotting, proliferation, and migration assays were employed for their characterization. RESULTS Desmin-positive ISCs were detected in normal human, rat, and mouse islets. Freshly isolated qISCs, obtained by density gradient centrifugation, displayed a polygonal appearance with refringent cytoplasmic lipid droplets and expressed transcriptional markers indicating a low activation/quiescent state. With increasing culture time, the marker expression pattern changed, reflecting ISC activation. qISCs contained more lipid droplets and exhibited lower proliferation and migration abilities compared to spindle-shaped ISCs obtained by traditional explant techniques. CONCLUSIONS This study describes a new method for efficient isolation of qISCs from rat islets, representing a useful in vitro tool to study the biology of ISCs in more physiological conditions.
Collapse
Affiliation(s)
- Wei Li
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Yunting Zhou
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Xiaohang Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Min Cai
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Feng Gao
- Graduate Innovation Platform of Southeast University, Nanjing, China
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
8
|
Zhang X, Schönrogge M, Eichberg J, Wendt EHU, Kumstel S, Stenzel J, Lindner T, Jaster R, Krause BJ, Vollmar B, Zechner D. Blocking Autophagy in Cancer-Associated Fibroblasts Supports Chemotherapy of Pancreatic Cancer Cells. Front Oncol 2018; 8:590. [PMID: 30568920 PMCID: PMC6290725 DOI: 10.3389/fonc.2018.00590] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
In this study we evaluated the interaction of pancreatic cancer cells, cancer-associated fibroblasts, and distinct drugs such as α-cyano-4-hydroxycinnamate, metformin, and gemcitabine. We observed that α-cyano-4-hydroxycinnamate as monotherapy or in combination with metformin could significantly induce collagen I deposition within the stromal reaction. Subsequently, we demonstrated that cancer-associated fibroblasts impaired the anti-proliferation efficacy of α-cyano-4-hydroxycinnamate, metformin and gemcitabine. Interestingly, inhibition of autophagy in these fibroblasts can augment the anti-proliferation effect of these chemotherapeutics in vitro and can reduce the tumor weight in a syngeneic pancreatic cancer model. These results suggest that inhibiting autophagy in cancer-associated fibroblasts may contribute to strategies targeting cancer.
Collapse
Affiliation(s)
- Xianbin Zhang
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Maria Schönrogge
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Johanna Eichberg
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Edgar Heinz Uwe Wendt
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Simone Kumstel
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Jan Stenzel
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Rostock, Germany
| | - Tobias Lindner
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Rostock, Germany
| | - Robert Jaster
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Bernd Joachim Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Dietmar Zechner
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
9
|
Kang ZS, Wang C, Han XL, Du JJ, Li YY, Zhang C. Design, synthesis and biological evaluation of non-secosteriodal vitamin D receptor ligand bearing double side chain for the treatment of chronic pancreatitis. Eur J Med Chem 2018; 146:541-553. [DOI: 10.1016/j.ejmech.2018.01.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 12/23/2022]
|
10
|
Song H, Zhang Y. Regulation of pancreatic stellate cell activation by Notch3. BMC Cancer 2018; 18:36. [PMID: 29304760 PMCID: PMC5756326 DOI: 10.1186/s12885-017-3957-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 12/21/2017] [Indexed: 01/18/2023] Open
Abstract
Background Activated pancreatic stellate cells (PaSCs) are the key cellular source of cancer-associated fibroblasts in the pancreatic stroma of patients with pancreatic ductal adenocarcinoma (PDAC), however, the activation mechanism of PaSCs is not yet known. The Notch signaling pathway, components of which are expressed in stromal cells, is involved in the fibrosis of several organs, including the lung and liver. In the current study, we investigated whether Notch signal transduction is involved in PaSC activation in PDAC. Methods The expression of Notch signaling pathway components in human PDAC was examined via immunohistochemical staining and assessed in mouse PaSCs using RT-qPCR and western blotting. Notch3 expression in both PDAC stromal cells and activated mouse PaSCs was evaluated using immunofluorescence, RT-qPCR and western blotting. The impact of siRNA-mediated Notch3 knockdown on PaSC activation was detected with RT-qPCR and western blotting, and the impact on PaSC proliferation and migration was detected using CCK-8 assays and scratch experiments. The effect of conditioned medium from PaSCs activated with Notch3 siRNA on pancreatic cancer (LTPA) cells was also detected with CCK-8 assays and scratch experiments. The data were analyzed for statistical significance using Student’s t-test. Results Notch3 was overexpressed in both human PDAC stromal cells and activated mouse PaSCs, and Notch3 knockdown with Notch3 siRNA decreased the proliferation and migration of mouse PaSCs. The levels of markers related to PaSC activation, such as α-smooth muscle actin (α-SMA), collagen I and fibronectin, decreased in response to Notch3 knockdown, indicating that Notch3 plays an important role in PaSC activation. Furthermore, we confirmed that inhibition of PaSC activation via Notch3 siRNA reduced the proliferation and migration of PaSC-induced mouse pancreatic cancer (LTPA) cells. Conclusions Notch3 inhibition in PaSCs can inhibit the activation, proliferation and migration of PaSCs and reduce the PaSC-induced pro-tumorigenic effect. Therefore, Notch3 silencing in PaSCs is a potential novel therapeutic option for patients with PDAC. Electronic supplementary material The online version of this article (10.1186/s12885-017-3957-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiyan Song
- Department of Biochemistry and Molecular Biology, Cancer Institute, Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, No. 10 Xitoutiao, You An Men, Fengtai District, Beijing, 100069, People's Republic of China
| | - Yuxiang Zhang
- Department of Biochemistry and Molecular Biology, Cancer Institute, Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, No. 10 Xitoutiao, You An Men, Fengtai District, Beijing, 100069, People's Republic of China.
| |
Collapse
|
11
|
Xia Y, Xiao HT, Liu K, Zhang HJ, Tsang SW. Resveratrol Ameliorates the Severity of Fibrogenesis in Mice with Experimental Chronic Pancreatitis. Mol Nutr Food Res 2018; 62:e1700561. [PMID: 29148265 DOI: 10.1002/mnfr.201700561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/15/2017] [Indexed: 01/18/2023]
Abstract
SCOPE Resveratrol is generally considered beneficial to health-span and longevity since this dietary stilbenoid has been scrutinized for its activating property on the "rescue gene" sirtuin-1 that promotes cellular survival under stress. In addition to its antiaging property, our previous in vitro studies revealed that resveratrol notably inhibits the production of extracellular matrix (ECM) proteins in pancreatic stellate cells (PSCs), the classic effector cells against pancreatic injury. OBJECTIVE We aim to extrapolate resveratrol intervention to the management of fibrogenesis in mice with chronic pancreatitis. METHODS AND RESULTS C57/BL6 mice are given repetitive injections of cerulein (50 μg kg-1 h-1 ) for 6 weeks for the induction of chronic pancreatitis. We demonstrate that the oral administration of resveratrol (20 mg kg-1 d-1 ) effectively attenuated PSC activation, ECM deposition, fibrogenesis, and acinar atrophy in the pancreatitic parenchyma of cerulein-induced mice, as the damage index score was improved by 45.5%. The enhanced cell survival and preserved acinar integrity by resveratrol plausibly involves a perpetuated nuclear accumulation of Mist1 and a negative modulation of the Akt and p38 MAPK pathways. CONCLUSION We suggest that resveratrol is potentially a nutraceutical for the mitigations of pancreatic fibrosis in chronic pancreatitis for which no effective therapeutic measure is currently available.
Collapse
Affiliation(s)
- Yixuan Xia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Hai-Tao Xiao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Kanglun Liu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Siu Wai Tsang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.,Institute of Research and Continuing Education, Hong Kong Baptist University Shenzhen Research Center, Shenzhen, China
| |
Collapse
|
12
|
Hesler RA, Huang JJ, Starr MD, Treboschi VM, Bernanke AG, Nixon AB, McCall SJ, White RR, Blobe GC. TGF-β-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis 2017; 37:1041-1051. [PMID: 27604902 DOI: 10.1093/carcin/bgw093] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/16/2016] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer in part due to inherent resistance to chemotherapy, including the first-line drug gemcitabine. Although low expression of the nucleoside transporters hENT1 and hCNT3 that mediate cellular uptake of gemcitabine has been linked to gemcitabine resistance, the mechanisms regulating their expression in the PDAC tumor microenvironment are largely unknown. Here, we report that the matricellular protein cysteine-rich angiogenic inducer 61 (CYR61) negatively regulates the nucleoside transporters hENT1 and hCNT3. CRISPR/Cas9-mediated knockout of CYR61 increased expression of hENT1 and hCNT3, increased cellular uptake of gemcitabine and sensitized PDAC cells to gemcitabine-induced apoptosis. In PDAC patient samples, expression of hENT1 and hCNT3 negatively correlates with expression of CYR61 . We demonstrate that stromal pancreatic stellate cells (PSCs) are a source of CYR61 within the PDAC tumor microenvironment. Transforming growth factor-β (TGF-β) induces the expression of CYR61 in PSCs through canonical TGF-β-ALK5-Smad2/3 signaling. Activation of TGF-β signaling or expression of CYR61 in PSCs promotes resistance to gemcitabine in PDAC cells in an in vitro co-culture assay. Our results identify CYR61 as a TGF-β-induced stromal-derived factor that regulates gemcitabine sensitivity in PDAC and suggest that targeting CYR61 may improve chemotherapy response in PDAC patients.
Collapse
Affiliation(s)
| | | | - Mark D Starr
- Division of Medical Oncology, Department of Medicine
| | | | | | | | | | - Rebekah R White
- Department of Surgery, Duke University, B354 LSRC Research Drive , Box 91004, Durham, NC 27708 , USA
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology.,Division of Medical Oncology, Department of Medicine
| |
Collapse
|
13
|
Ferdek PE, Jakubowska MA. Biology of pancreatic stellate cells-more than just pancreatic cancer. Pflugers Arch 2017; 469:1039-1050. [PMID: 28382480 PMCID: PMC5554282 DOI: 10.1007/s00424-017-1968-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 01/18/2023]
Abstract
Pancreatic stellate cells, normally quiescent, are capable of remarkable transition into their activated myofibroblast-like phenotype. It is now commonly accepted that these cells play a pivotal role in the desmoplastic reaction present in severe pancreatic disorders. In recent years, enormous scientific effort has been devoted to understanding their roles in pancreatic cancer, which continues to remain one of the most deadly diseases. Therefore, it is not surprising that considerably less attention has been given to studying physiological functions of pancreatic stellate cells. Here, we review recent advances not only in the field of pancreatic stellate cell pathophysiology but also emphasise their roles in physiological processes.
Collapse
Affiliation(s)
- Pawel E Ferdek
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK.
| | - Monika A Jakubowska
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK
| |
Collapse
|
14
|
Bynigeri RR, Jakkampudi A, Jangala R, Subramanyam C, Sasikala M, Rao GV, Reddy DN, Talukdar R. Pancreatic stellate cell: Pandora's box for pancreatic disease biology. World J Gastroenterol 2017; 23:382-405. [PMID: 28210075 PMCID: PMC5291844 DOI: 10.3748/wjg.v23.i3.382] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/09/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic stellate cells (PSCs) were identified in the early 1980s, but received much attention after 1998 when the methods to isolate and culture them from murine and human sources were developed. PSCs contribute to a small proportion of all pancreatic cells under physiological condition, but are essential for maintaining the normal pancreatic architecture. Quiescent PSCs are characterized by the presence of vitamin A laden lipid droplets. Upon PSC activation, these perinuclear lipid droplets disappear from the cytosol, attain a myofibroblast like phenotype and expresses the activation marker, alpha smooth muscle actin. PSCs maintain their activated phenotype via an autocrine loop involving different cytokines and contribute to progressive fibrosis in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). Several pathways (e.g., JAK-STAT, Smad, Wnt signaling, Hedgehog etc.), transcription factors and miRNAs have been implicated in the inflammatory and profibrogenic function of PSCs. The role of PSCs goes much beyond fibrosis/desmoplasia in PDAC. It is now shown that PSCs are involved in significant crosstalk between the pancreatic cancer cells and the cancer stroma. These interactions result in tumour progression, metastasis, tumour hypoxia, immune evasion and drug resistance. This is the rationale for therapeutic preclinical and clinical trials that have targeted PSCs and the cancer stroma.
Collapse
|
15
|
Ulmasov B, Neuschwander-Tetri BA, Lai J, Monastyrskiy V, Bhat T, Yates MP, Oliva J, Prinsen MJ, Ruminski PG, Griggs DW. Inhibitors of Arg-Gly-Asp-Binding Integrins Reduce Development of Pancreatic Fibrosis in Mice. Cell Mol Gastroenterol Hepatol 2016; 2:499-518. [PMID: 28174730 PMCID: PMC5042566 DOI: 10.1016/j.jcmgh.2016.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/04/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Pancreatic stellate cells (PSCs) regulate the development of chronic pancreatitis (CP) and are activated by the cytokine transforming growth factor β (TGFB). Integrins of the αv family promote TGFB signaling in mice, probably by interacting with the Arg-Gly-Asp (RGD) sequence of the TGFB latency-associated peptide, which frees TGFB to bind its cellular receptors. However, little is known about the role of integrins in the development of CP. We investigated the effects of small-molecule integrin inhibitors in a mouse model of CP. METHODS We induced CP in C57BL/6 female mice by repeated cerulein administration. An active RGD peptidomimetic compound (Center for World Health and Medicine [CWHM]-12) was delivered by continuous infusion, starting 3 days before or 5 days after cerulein administration began. Pancreata were collected and parenchymal atrophy, fibrosis, and activation of PSCs were assessed by histologic, gene, and protein expression analyses. We measured CWHM-12 effects on activation of TGFB in co-culture assays in which rat PSC cells (large T immortalized cells [LTC-14]) activate expression of a TGFB-sensitive promoter in reporter cells. RESULTS Pancreatic tissues of mice expressed messenger RNAs encoding subunits of RGD-binding integrins. Cerulein administration increased expression of these integrins, altered pancreatic cell morphology, and induced fibrosis. The integrin inhibitor CWHM-12 decreased acinar cell atrophy and loss, and substantially reduced fibrosis, activation of PSCs, and expression of genes regulated by TGFB. CWHM-12 also reduced established fibrosis in mice and blocked activation of TGFB in cultured cells. CONCLUSIONS Based on studies of a mouse model of CP and cultured PSCs, integrins that bind RGD sequences activate PSCs and promote the development of pancreatic fibrogenesis in mice. Small-molecule antagonists of this interaction might be developed for treatment of pancreatic fibrotic diseases.
Collapse
Key Words
- CP, chronic pancreatitis
- CTGF, connective tissue growth factor
- CWHM, Center for World Health and Medicine
- Col1a1, collagen type I α1
- DMEM, Dulbecco's modified Eagle medium
- DMSO, dimethyl sulfoxide
- ECM, extracellular matrix
- FBS, fetal bovine serum
- IC50, median inhibitory concentration
- Inflammation
- LAP, latency-associated peptide
- LTC-14, large T immortalized cells
- MLEC, mink lung epithelial cell
- MMP, matrix metallopeptidase
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PSC, pancreatic stellate cell
- Pancreas
- Peptidomimetic
- RGD, arginine-glycine-aspartic acid
- Signal Transduction
- TGFB, transforming growth factor β
- mPSC, mouse pancreatic stellate cell
- mRNA, messenger RNA
- p-SMAD, phosphorylated SMAD
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Barbara Ulmasov
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri
| | - Brent A. Neuschwander-Tetri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri
| | - Jinping Lai
- Department of Pathology, Saint Louis University, Saint Louis, Missouri
| | - Vladimir Monastyrskiy
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri
| | - Trisha Bhat
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri
| | - Matthew P. Yates
- Center for World Health and Medicine, Saint Louis University, Saint Louis, Missouri
| | - Jonathan Oliva
- Center for World Health and Medicine, Saint Louis University, Saint Louis, Missouri
| | - Michael J. Prinsen
- Center for World Health and Medicine, Saint Louis University, Saint Louis, Missouri
| | - Peter G. Ruminski
- Center for World Health and Medicine, Saint Louis University, Saint Louis, Missouri
| | - David W. Griggs
- Center for World Health and Medicine, Saint Louis University, Saint Louis, Missouri
| |
Collapse
|
16
|
Zhao L, Cai B, Lu Z, Tian L, Guo S, Wu P, Qian D, Xu Q, Jiang K, Miao Y. Modified methods for isolation of pancreatic stellate cells from human and rodent pancreas. J Biomed Res 2016; 30:510-516. [PMID: 27924070 PMCID: PMC5138584 DOI: 10.7555/jbr.30.20160033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/27/2016] [Accepted: 05/18/2016] [Indexed: 01/10/2023] Open
Abstract
Primary cultures of pancreatic stellate cells (PSCs) remain an important basis for in vitro study. However, effective methods for isolating abundant PSCs are currently lacking. We report on a novel approach to isolating PSCs from normal rat pancreases and human pancreatic ductal adenocarcinoma (PDAC) tissue. After anaesthesia and laparotomy of the rat, a blunt cannula was inserted into the pancreatic duct through the anti-mesentery side of the duodenum, and the pancreas was slowly infused with an enzyme solution until all lobules were fully dispersed. The pancreas was then pre-incubated, finely minced and incubated to procure a cell suspension. PSCs were obtained after the cell suspension was filtered, washed and subject to gradient centrifugation with Nycodenz solution. Fresh human PDAC tissue was finely minced into 1×1×1 mm3 cubes with sharp blades. Tissue blocks were placed at the bottom of a culture plate with fresh plasma (EDTA-anti-coagulated plasma from the same patient, mixed with CaCl2) sprinkled around the sample. After culture for 5–10 days under appropriate conditions, activated PSCs were harvested. An intraductal perfusion of an enzyme solution simplified the procedure of isolation of rat PSCs, as compared with the multiple injections technique, and a modified outgrowth method significantly shortened the outgrowth time of the activated cells. Our modification in PSC isolation methods significantly increased the isolation efficiency and shortened the culture period, thus facilitating future PSC-related research.
Collapse
Affiliation(s)
- Liangtao Zhao
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Baobao Cai
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Pancreas Center.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zipeng Lu
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Pancreas Center.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lei Tian
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Pancreas Center.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Song Guo
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Pengfei Wu
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Pancreas Center.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dong Qian
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qingcheng Xu
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Kuirong Jiang
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Pancreas Center.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Miao
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Pancreas Center.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China;
| |
Collapse
|
17
|
Strobel O, Dadabaeva N, Felix K, Hackert T, Giese NA, Jesenofsky R, Werner J. Isolation and culture of primary human pancreatic stellate cells that reflect the context of their tissue of origin. Langenbecks Arch Surg 2015; 401:89-97. [PMID: 26712717 DOI: 10.1007/s00423-015-1343-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/18/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND Pancreatic stellate cells (PSCs) play a critical role in pancreatic ductal adenocarcinoma (PDAC). Activated PSCs are the main source of fibrosis in chronic pancreatitis and of desmoplasia in PDAC. The majority of studies on PSC are based on in vitro experiments relying on immortalized cell lines derived from diseased human pancreas or from animal models. These PSCs are usually activated and may not represent the biological context of their tissue of origin. PURPOSE (1) To isolate and culture primary human PSC from different disease contexts with minimal impact on their state of activation. (2) To perform a comparative analysis of phenotypes of PSC derived from different contexts. METHODS PSCs were isolated from normal pancreas, chronic pancreatitis, and PDAC using a hybrid method of digestion and outgrowth. To minimize activation by serum compounds, cells were cultured in a low-serum environment (2.5 % fetal bovine serum (FBS)). Expression patterns of commonly used markers for PSC phenotype and activity were compared between primary PSC lines derived from different contexts and correlated to expression in their original tissues. RESULTS Isolation was successful from 14 of 17 tissues (82 %). Isolated PSC displayed stable viability and phenotype in low-serum environment. Expression profiles of isolated PSC and matched original tissues were closely correlated. PDAC-derived PSC tended to have a higher status of activation if compared to PSC derived from non-cancerous tissues. CONCLUSIONS Primary human PSCs isolated from different contexts and cultured in a low-serum environment maintain a phenotype that reflects the stromal activity present in their tissue of origin.
Collapse
Affiliation(s)
- Oliver Strobel
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| | - Nigora Dadabaeva
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Klaus Felix
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Thilo Hackert
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Nathalia A Giese
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Ralf Jesenofsky
- Department of Internal Medicine 2, University Medicine Mannheim, Mannheim, Germany
| | - Jens Werner
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| |
Collapse
|
18
|
Witteck L, Jaster R. Trametinib and dactolisib but not regorafenib exert antiproliferative effects on rat pancreatic stellate cells. Hepatobiliary Pancreat Dis Int 2015; 14:642-50. [PMID: 26663013 DOI: 10.1016/s1499-3872(15)60032-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Modulation of the stroma response is considered a promising approach for the treatment of chronic pancreatitis and pancreatic cancer. The aim of this study was to evaluate the effects of three clinically available small molecule kinase inhibitors, regorafenib, trametinib and dactolisib, on effector functions of activated pancreatic stellate cells (PSCs), which play a key role in pancreatic fibrosis. METHODS Cultured rat PSCs were exposed to small molecule kinase inhibitors. Proliferation and cell death were assessed by measuring the incorporation of 5-bromo-2'-deoxyuridine and cytotoxicity, respectively. Levels of mRNA were determined by real-time PCR, while protein expression and phosphorylation were analyzed by immunoblotting. Interleukin-6 levels in culture supernatants were quantified by ELISA. Zymography assays were performed to monitor collagenase activity in culture supernatants. RESULTS The MEK inhibitor trametinib and the dual phosphatidylinositol 3-kinase/mTOR inhibitor dactolisib, but not the multi-kinase inhibitor regorafenib, efficiently inhibited PSC proliferation. Trametinib as well as regorafenib suppressed the expression of two autocrine mediators of PSC activation, interleukin-6 and transforming growth factor-beta1. Dactolisib-treated cells expressed less alpha1 type I collagen and lower levels of alpha-smooth muscle actin, a marker of the myofibroblastic PSC phenotype. Simultaneous application of dactolisib and trametinib displayed additive inhibitory effects on cell growth without statistically significant cytotoxicity. Activity of matrix metalloproteinase-2 was not affected by any of the drugs. CONCLUSION We suggest the combination of two drugs, that specifically target two key signaling pathways in PSC, Ras-Raf-MEK-ERK (trametinib) and phosphatidylinositol 3-kinase-AKT-mTOR (dactolisib), as a concept to modulate the activation state of the cells in the context of fibrosis.
Collapse
Affiliation(s)
- Laura Witteck
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, E.-Heydemann-Str. 6, 18057 Rostock, Germany.
| | | |
Collapse
|
19
|
Piao RL, Xiu M, Brigstock DR, Gao RP. An immortalized rat pancreatic stellate cell line RP-2 as a new cell model for evaluating pancreatic fibrosis, inflammation and immunity. Hepatobiliary Pancreat Dis Int 2015; 14:651-9. [PMID: 26663014 DOI: 10.1016/s1499-3872(15)60415-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic stellate cells (PSCs) play a critical role in the pathogenesis of pancreatic fibrosis and have emerging functions as progenitor cells, immune cells or intermediaries in pancreatic exocrine secretion. Increasing evidence has shown that desmin as an exclusive cytoskeleton marker of PSC is only expressed in part of these cells. This study was to establish a desmin-positive PSC cell line and evaluate its actions on pancreatic fibrosis, inflammation and immunity. METHODS The presence of cytoskeletal proteins, integrin α5β1 or TLR4, was determined by immunocytochemistry while the production of desmin, collagen I, MMP-1, MMP-2, TIMP-2, or CD14 was evaluated by Western blotting. The levels of desmin, collagen I, IL-1 and IL-6 mRNA were determined by real-time quantitative PCR. The secretion of cytokines was detected by ELISA. Cell function was assessed using adhesion, migration, or proliferation assays. RESULTS A stable activated rat PSC cell line (designated as RP-2) was established by RSV promoter/enhancer-driven SV40 large T antigen expression. RP-2 cells retained typical PSC properties, exhibited a myofibroblast-like phenotype and persistently produced desmin. The cells produced collagen I protein, matrix metalloproteinases and inhibitors thereof. RP-2 cells demonstrated typical PSC functions, including proliferation, adherence, and migration, the latter two of which occurred in response to fibronectin and were mediated by integrin α5β1. TLR4 and its response genes including proinflammatory cytokines (IL-1, IL-6, TNF-alpha) and chemotactic cytokines (MCP-1, MIP-1α, Rantes) were produced by RP-2 cells and activated by LPS. LPS-induced IL-1 or IL-6 mRNA expression in this cell line was fully blocked with MyD88 inhibitor. CONCLUSION RP-2 cells provide a novel tool for analyzing the properties and functions of PSCs in the pathogenesis of fibrosis, inflammation and immunity in the pancreas.
Collapse
Affiliation(s)
- Rong-Li Piao
- Department of Hepatic-biliary-pancreatic Medicine, the First Hospital of Jilin University, Changchun 130021, China.
| | | | | | | |
Collapse
|
20
|
Lin Z, Zheng LC, Zhang HJ, Tsang SW, Bian ZX. Anti-fibrotic effects of phenolic compounds on pancreatic stellate cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:259. [PMID: 26223780 PMCID: PMC4520255 DOI: 10.1186/s12906-015-0789-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/21/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pancreatic fibrosis is a prominent histopathological characteristic of chronic pancreatitis and plausibly a dynamic process of transition to the development of pancreatic ductal adenocarcinoma. Conversely, the activation of pancreatic stellate cells (PSCs) has been recently suggested as the key initiating step in pancreatic fibrosis. As natural polyphenols had been largely applied in complementary therapies in the past decade, in this study, we aimed to investigate which groups of phenolic compounds exert promising inhibitory actions on fibrogenesis as there are few effective strategies for the treatment of pancreatic fibrosis to date. METHODS We examined the anti-fibrotic effects of a variety of herbal constituents using a cellular platform, the LTC-14 cells, which retained essential characteristics and morphologies of primary PSCs, by means of various biochemical assays including cell viability test, real-time polymerase chain reaction and Western blotting analysis. RESULTS Among a number of commonly used herbal constituents, we found that the application of rhein, emodin, curcumin and resveratrol significantly suppressed the mRNA and protein levels of several fibrotic mediators namely alpha-smooth muscle actin, type I collagen and fibronectin in LTC-14 cells against transforming growth factor-beta stimulation. Though the values of cytotoxicity varied, the mechanism of the anti-fibrotic action of these four phenolic compounds was principally associated with a decrease in the activation of the nuclear factor-kappaB signaling pathway. CONCLUSIONS Our findings suggest that the mentioned phenolic compounds may serve as anti-fibrotic agents in PSC-relating disorders and pathologies, particularly pancreatic fibrosis.
Collapse
Affiliation(s)
- Zesi Lin
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu-Cong Zheng
- School of Chinese Medicine, Hong Kong Baptist University, 3/F, SCM Building, 7 Baptist University Road, Kowloon, Hong Kong, SAR, China
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 3/F, SCM Building, 7 Baptist University Road, Kowloon, Hong Kong, SAR, China
| | - Siu Wai Tsang
- School of Chinese Medicine, Hong Kong Baptist University, 3/F, SCM Building, 7 Baptist University Road, Kowloon, Hong Kong, SAR, China.
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, 3/F, SCM Building, 7 Baptist University Road, Kowloon, Hong Kong, SAR, China.
| |
Collapse
|
21
|
Anti-fibrotic effect of trans-resveratrol on pancreatic stellate cells. Biomed Pharmacother 2015; 71:91-7. [PMID: 25960221 DOI: 10.1016/j.biopha.2015.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023] Open
Abstract
Trans-resveratrol, also known as 3,5,4'-trihydroxy-trans-stilbene, is a natural stilbenoid found at high concentration in skins of red grapes and berries. Over the recent years, it has been reported with a variety of beneficial effects such as antioxidant, anti-aging and anti-inflammatory bioactivities; thus often utilized as an active substance in human and veterinary therapeutics. In the current study, we aimed to delineate the mechanism of its anti-fibrotic action by means of various biochemical assays, such as immunofluorescent staining, real-time polymerase chain reaction and Western blotting analyses in a cellular model, the LTC-14 cells, which retain essential characteristics and morphological features of primary pancreatic stellate cells (PSCs). Our results demonstrated that the application of trans-resveratrol as low as 10 μM notably suppressed the mRNA and protein levels of different fibrotic mediators namely alpha-smooth muscle actin, type I collagen and fibronectin in the LTC-14 cells stimulated with transforming growth factor-beta, a well recognized pro-fibrotic inducer. Importantly, the mechanism of the anti-fibrotic action of trans-resveratrol was associated with a decrease in nuclear factor-kappaB activation and protein kinase B phosphorylation. In conclusion, our finding suggests that trans-resveratrol may serve as a therapeutic or an adjuvant agent in anti-fibrotic approaches and/or PSC-relating pathologies.
Collapse
|
22
|
Tsang SW, Bian ZX. Anti-fibrotic and Anti-tumorigenic Effects of Rhein, a Natural Anthraquinone Derivative, in Mammalian Stellate and Carcinoma Cells. Phytother Res 2014; 29:407-14. [DOI: 10.1002/ptr.5266] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/26/2014] [Accepted: 11/17/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Siu Wai Tsang
- Cancer and inflammation Center, School of Chinese Medicine; Hong Kong Baptist University; Kowloon Hong Kong
| | - Zhao-Xiang Bian
- Cancer and inflammation Center, School of Chinese Medicine; Hong Kong Baptist University; Kowloon Hong Kong
| |
Collapse
|
23
|
Coleman SJ, Watt J, Arumugam P, Solaini L, Carapuca E, Ghallab M, Grose RP, Kocher HM. Pancreatic cancer organotypics: High throughput, preclinical models for pharmacological agent evaluation. World J Gastroenterol 2014; 20:8471-8481. [PMID: 25024603 PMCID: PMC4093698 DOI: 10.3748/wjg.v20.i26.8471] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/15/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer carries a terrible prognosis, as the fourth most common cause of cancer death in the Western world. There is clearly a need for new therapies to treat this disease. One of the reasons no effective treatment has been developed in the past decade may in part, be explained by the diverse influences exerted by the tumour microenvironment. The tumour stroma cross-talk in pancreatic cancer can influence chemotherapy delivery and response rate. Thus, appropriate preclinical in vitro models which can bridge simple 2D in vitro cell based assays and complex in vivo models are required to understand the biology of pancreatic cancer. Here we discuss the evolution of 3D organotypic models, which recapitulare the morphological and functional features of pancreatic ductal adenocarcinoma (PDAC). Organotypic cultures are a valid high throughput preclinical in vitro model that maybe a useful tool to help establish new therapies for PDAC. A huge advantage of the organotypic model system is that any component of the model can be easily modulated in a short time-frame. This allows new therapies that can target the cancer, the stromal compartment or both to be tested in a model that mirrors the in vivo situation. A major challenge for the future is to expand the cellular composition of the organotypic model to further develop a system that mimics the PDAC environment more precisely. We discuss how this challenge is being met to increase our understanding of this terrible disease and develop novel therapies that can improve the prognosis for patients.
Collapse
|
24
|
Tsang SW, Zhang H, Lin C, Xiao H, Wong M, Shang H, Yang ZJ, Lu A, Yung KKL, Bian Z. Rhein, a natural anthraquinone derivative, attenuates the activation of pancreatic stellate cells and ameliorates pancreatic fibrosis in mice with experimental chronic pancreatitis. PLoS One 2013; 8:e82201. [PMID: 24312641 PMCID: PMC3849497 DOI: 10.1371/journal.pone.0082201] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/22/2013] [Indexed: 01/08/2023] Open
Abstract
Pancreatic fibrosis, a prominent histopathological feature of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma, is essentially a dynamic process that leads to irreversible scarring of parenchymal tissues of the pancreas. Though the exact mechanisms of its initiation and development are poorly understood, recent studies suggested that the activation of pancreatic stellate cells (PSCs) plays a critical role in eliciting such active course of fibrogenesis. Anthraquinone compounds possess anti-inflammatory bioactivities whereas its natural derivative rhein has been shown to effectively reduce tissue edema and free-radical production in rat models of inflammatory conditions. Apart from its anti-inflammatory properties, rhein actually exerts strong anti-fibrotic effects in our current in-vivo and in-vitro experiments. In the mouse model of cerulein-induced CP, prolonged administration of rhein at 50 mg/kg/day significantly decreased immunoreactivities of the principal fibrotic activators alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta (TGF-β) on pancreatic sections implicating the activation of PSCs, which is the central tread to fibrogenesis, was attenuated. Consequently, the overwhelmed deposition of extracellular matrix proteins fibronectin 1 (FN1) and type I collagen (COL I-α1) in exocrine parenchyma was found accordingly reduced. In addition, the expression levels of sonic hedgehog (SHH), which plays important roles in molecular modulation of various fibrotic processes, and its immediate effector GLI1 in pancreatic tissues were positively correlated to the degree of cerulein-induced fibrosis. Such up-regulation of SHH signaling was restrained in rhein-treated CP mice. In cultured PSCs, we demonstrated that the expression levels of TGF-β-stimulated fibrogenic markers including α-SMA, FN1 and COL I-α1 as well as SHH were all notably suppressed by the application of rhein at 10 μM. The present study firstly reported that rhein attenuates PSC activation and suppresses SHH/GLI1 signaling in pancreatic fibrosis. With strong anti-fibrotic effects provided, rhein can be a potential remedy for fibrotic and/or PSC-related pathologies in the pancreas.
Collapse
Affiliation(s)
- Siu Wai Tsang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Hongjie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Chengyuan Lin
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Haitao Xiao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Michael Wong
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Hongcai Shang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhi-Jun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Ken Kin-Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
25
|
Gao X, Cao Y, Yang W, Duan C, Aronson JF, Rastellini C, Chao C, Hellmich MR, Ko TC. BMP2 inhibits TGF-β-induced pancreatic stellate cell activation and extracellular matrix formation. Am J Physiol Gastrointest Liver Physiol 2013; 304:G804-13. [PMID: 23429583 PMCID: PMC3652003 DOI: 10.1152/ajpgi.00306.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activation of pancreatic stellate cells (PSCs) by transforming growth factor (TGF)-β is the key step in the development of pancreatic fibrosis, a common pathological feature of chronic pancreatitis (CP). Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have anti-fibrogenic functions, in contrast to TGF-β, in the kidney, lung, and liver. However, it is not known whether BMPs have an anti-fibrogenic role in the pancreas. The current study was designed to investigate the potential anti-fibrogenic role of BMPs in the pancreas using an in vivo CP model and an in vitro PSC model. CP was induced by repetitive intraperitoneal injections of cerulein in adult Swiss Webster mice. The control mice received saline injections. Compared with the control, cerulein injections induced a time-dependent increase in acinar injury and progression of fibrosis and a steady increase in inflammation. Cerulein injections also induced increases of the extracellular matrix (ECM) protein fibronectin and of α-smooth muscle actin (α-SMA)-positive stellate cells (PSCs). The mice receiving cerulein injections showed increased BMP2 protein levels and phosphorylated Smad1 levels up to 4 wk and then declined at 8 wk to similar levels as the control. In vitro, the isolated mouse and human PSCs were cultured and pretreated with BMP2 followed by TGF-β treatment. BMP2 pretreatment inhibited TGF-β-induced α-SMA, fibronectin, and collagen type Ia expression. Knocking down Smad1 with small-interfering RNA reversed the inhibitory effect of BMP2 on TGF-β-induced α-SMA and fibronectin expression. Thus, BMP2 opposes the fibrogenic function of TGF-β in PSCs through the Smad1 signaling pathway.
Collapse
Affiliation(s)
- Xuxia Gao
- 1Department of Surgery, University of Texas Health Science Center-Houston, Houston, Texas;
| | - Yanna Cao
- 1Department of Surgery, University of Texas Health Science Center-Houston, Houston, Texas; ,3Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Wenli Yang
- 1Department of Surgery, University of Texas Health Science Center-Houston, Houston, Texas;
| | - Chaojun Duan
- 1Department of Surgery, University of Texas Health Science Center-Houston, Houston, Texas;
| | - Judith F. Aronson
- 2Department of Pathology, University of Texas Medical Branch, Galveston, Texas; and
| | | | - Celia Chao
- 3Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Mark R. Hellmich
- 3Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Tien C. Ko
- 1Department of Surgery, University of Texas Health Science Center-Houston, Houston, Texas; ,3Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
26
|
Feig C, Gopinathan A, Neesse A, Chan DS, Cook N, Tuveson DA. The pancreas cancer microenvironment. Clin Cancer Res 2013; 18:4266-76. [PMID: 22896693 DOI: 10.1158/1078-0432.ccr-11-3114] [Citation(s) in RCA: 1004] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a common and lethal malignancy resulting in more than 250,000 deaths per year worldwide. Despite extensive efforts, cytotoxic and targeted therapies have provided only limited efficacy for patients with PDA to date. One contributing factor to the failure of systemic therapies may be the abundant tumor stromal content that is the characteristic of PDA. The PDA stroma, aptly termed the tumor microenvironment, occupies the majority of the tumor mass, and consists of a dynamic assortment of extracellular matrix components and nonneoplastic cells including fibroblastic, vascular, and immune cells. Recent work has revealed that the PDA stroma supports tumor growth and promotes metastasis and simultaneously serves as a physical barrier to drug delivery. Accordingly, methods that alter stromal composition or function, for instance interference with the vasculature via Notch/Hedgehog pathway inhibition or relief of vascular compression by hyaluronidase, are under active investigation. Here, we will review our current understanding of the PDA tumor microenvironment, and highlight opportunities for further exploration that may benefit patients.
Collapse
|
27
|
Rateitschak K, Winter F, Lange F, Jaster R, Wolkenhauer O. Parameter identifiability and sensitivity analysis predict targets for enhancement of STAT1 activity in pancreatic cancer and stellate cells. PLoS Comput Biol 2012; 8:e1002815. [PMID: 23284277 PMCID: PMC3527226 DOI: 10.1371/journal.pcbi.1002815] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 10/01/2012] [Indexed: 12/13/2022] Open
Abstract
The present work exemplifies how parameter identifiability analysis can be used to gain insights into differences in experimental systems and how uncertainty in parameter estimates can be handled. The case study, presented here, investigates interferon-gamma (IFNγ) induced STAT1 signalling in two cell types that play a key role in pancreatic cancer development: pancreatic stellate and cancer cells. IFNγ inhibits the growth for both types of cells and may be prototypic of agents that simultaneously hit cancer and stroma cells. We combined time-course experiments with mathematical modelling to focus on the common situation in which variations between profiles of experimental time series, from different cell types, are observed. To understand how biochemical reactions are causing the observed variations, we performed a parameter identifiability analysis. We successfully identified reactions that differ in pancreatic stellate cells and cancer cells, by comparing confidence intervals of parameter value estimates and the variability of model trajectories. Our analysis shows that useful information can also be obtained from nonidentifiable parameters. For the prediction of potential therapeutic targets we studied the consequences of uncertainty in the values of identifiable and nonidentifiable parameters. Interestingly, the sensitivity of model variables is robust against parameter variations and against differences between IFNγ induced STAT1 signalling in pancreatic stellate and cancer cells. This provides the basis for a prediction of therapeutic targets that are valid for both cell types.
Collapse
Affiliation(s)
- Katja Rateitschak
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.
| | | | | | | | | |
Collapse
|
28
|
Lee BJ, Lee HS, Kim CD, Jung SW, Seo YS, Kim YS, Jeen YT, Chun HJ, Um SH, Lee SW, Choi JH, Ryu HS. The Effects of Combined Treatment with an HMG-CoA Reductase Inhibitor and PPARγ Agonist on the Activation of Rat Pancreatic Stellate Cells. Gut Liver 2012; 6:262-9. [PMID: 22570758 PMCID: PMC3343167 DOI: 10.5009/gnl.2012.6.2.262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/15/2011] [Accepted: 10/13/2011] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) and peroxisome proliferator-activated receptor gamma (PPARγ) ligands can modulate cellular differentiation, proliferation, and apoptosis through various pathways. It has been shown that HMG-CoA reductase inhibitors and PPARγ agonists separately inhibit pancreatic stellate cell (PaSC) activation. We studied the effects of a combination of both types of drugs on activated PaSCs via platelet-derived growth factor (PDGF), which has not previously been reported. The present study was performed to elucidate the underlying mechanisms of these effects by focusing on the impact of the signaling associated with cell-cycle progression. Methods Primary cultures of rat PaSCs were exposed to simvastatin and troglitazone. Proliferation was quantified using the BrdU method, and cell-cycle analysis was performed using a fluorescent activated cell sorter. The protein expression levels of smooth muscle actin (SMA), extracellular signal-regulated kinase (ERK), and a cell cycle machinery protein (p27Kip1) were investigated using Western blot analysis. Results Simvastatin reversed the effects of PDGF on cell proliferation in a dose-dependent manner. The combination of a low concentration of simvastatin (1 mM) and troglitazone (10 mM) synergistically reversed the effects of PDGF on cell proliferation but had no effect on cell viability. The expression of a-SMA was markedly attenuated by combining the two drugs, which blocked the cell cycle beyond the G0/G1 phase by reducing the levels of phosphorylated ERK and reversed the expression of p27Kip1 interrupted by PDGF. Conclusions Simvastatin and troglitazone synergistically inhibited cell proliferation in activated PaSCs by blocking the cell cycle beyond the G0/G1 phase. This inhibition was due to the synergistic modulation of the ERK pathway and the cell cycle machinery protein p27Kip1.
Collapse
Affiliation(s)
- Beom Jae Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sparmann G, Kruse ML, Hofmeister-Mielke N, Koczan D, Jaster R, Liebe S, Wolff D, Emmrich J. Bone marrow-derived pancreatic stellate cells in rats. Cell Res 2010; 20:288-98. [PMID: 20101265 DOI: 10.1038/cr.2010.10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Origin and fate of pancreatic stellate cells (PSCs) before, during and after pancreatic injury are a matter of debate. The crucial role of PSCs in the pathogenesis of pancreatic fibrosis is generally accepted. However, the turnover of the cells remains obscure. The present study addressed the issue of a potential bone marrow (BM) origin of PSCs. We used a model of stable hematopoietic chimerism by grafting enhanced green fluorescence protein (eGFP)-expressing BM cells after irradiation of acceptor rats. Chimerism was detected by FACS analysis of eGFP-positive cells in the peripheral blood. Dibutyltin dichloride (DBTC) was used to induce acute pancreatic inflammation with subsequent recovery over 4 weeks. Investigations have been focused on isolated cells to detect the resting PSC population. The incidence of eGFP-positive PSC obtained from the pancreas of chimeric rats was approximately 7% in healthy pancreatic tissue and increased significantly to a mean of 18% in the restored pancreas 4 weeks after DBTC-induced acute inflammation. Our results suggest that BM-derived progenitor cells represent a source of renewable stellate cells in the pancreas. Increased numbers of resting PSCs after regeneration point toward enhanced recruitment of BM-derived cells to the pancreas and/or re-acquisition of a quiescent state after inflammation-induced activation.
Collapse
Affiliation(s)
- Gisela Sparmann
- Division of Gastroenterology, Department of Internal Medicine, University of Rostock, 18057 Rostock, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Haas SL, Fitzner B, Jaster R, Wiercinska E, Gaitantzi H, Jesnowski R, Löhr JM, Singer MV, Dooley S, Breitkopf K. Transforming growth factor-beta induces nerve growth factor expression in pancreatic stellate cells by activation of the ALK-5 pathway. Growth Factors 2009; 27:289-99. [PMID: 19639490 DOI: 10.1080/08977190903132273] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nerve growth factor (NGF), a survival factor for neurons enforces pain by sensitizing nociceptors. Also in the pancreas, NGF was associated with pain and it can stimulate the proliferation of pancreatic cancer cells. Hepatic stellate cells (HSC) respond to NGF with apoptosis. Transforming growth factor (TGF)-beta, one of the strongest pro-fibrogenic activators of pancreatic stellate cells (PSC) induced NGF and its two receptors in an immortalized human cell line (ihPSC) and primary rat PSC (prPSC) as determined by RT-PCR, western blot, and immunofluorescence. In contrast to HSC, PSC expressed both NGF receptors, although p75(NTR) expression was weak in prPSC. In contrast to ihPSC TGF-beta activated both Smad signaling cascades in prPSC. NGF secretion was diminished by the activin-like kinase (ALK)-5 inhibitor SB431542, indicating the predominant role of ALK5 in activating the NGF system in PSC. While NGF did not affect proliferation or survival of PSC it induced expression of Inhibitor of Differentiation-1. We conclude that under conditions of upregulated TGF-beta, like fibrosis, NGF levels will also increase in PSC which might contribute to pancreatic wound healing responses.
Collapse
Affiliation(s)
- Stephan L Haas
- Department of Medicine II, Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rateitschak K, Karger A, Fitzner B, Lange F, Wolkenhauer O, Jaster R. Mathematical modelling of interferon-gamma signalling in pancreatic stellate cells reflects and predicts the dynamics of STAT1 pathway activity. Cell Signal 2009; 22:97-105. [PMID: 19781632 DOI: 10.1016/j.cellsig.2009.09.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 09/14/2009] [Indexed: 12/13/2022]
Abstract
Signal transducer and activator of transcription (STAT) 1 is essentially involved in the mediation of antifibrotic interferon-gamma (IFN gamma) effects in pancreatic stellate cells (PSC). Here, we have further analysed the activation of the STAT1 pathway in a PSC line by combining quantitative data generation with mathematical modelling. At saturating concentrations of IFN gamma, a triphasic pattern of STAT1 activation was observed. An initial, rapid induction of phospho-STAT1 was followed by a plateau phase and another, long-lasting phase of further increase. The late increase occurred despite enhanced expression of the feedback inhibitor (SOCS1), and corresponded to increased levels of total STAT1 protein. If IFN gamma was applied at non-saturating concentrations, phospho-STAT1 and SOCS1 levels peaked and declined again over a 12 hour period, while STAT1 protein levels remained high. The mathematical model, based on a system of ordinary differential equations, describes temporal changes of the network components as a function of interactions and transport processes. The model reproduced activation profiles of all components of the STAT1 pathway that were experimentally analysed. Furthermore, it successfully predicted the dynamics of network components in additional experimental studies. Based on experimental findings and the results obtained from modelling, we suggest exhaustion of applied IFN gamma and STAT1 dephosphorylation by tyrosine phosphatases as limiting factors of STAT1 activation in PSC. In contrast, we did not obtain compelling evidence that SOCS1 acts as an efficient feedback inhibitor in our experimental system. We believe that further investigations into mathematical modelling of the STAT1 pathway will improve the understanding of the antifibrotic interferon action.
Collapse
Affiliation(s)
- Katja Rateitschak
- Systems Biology and Bioinformatics Group, University of Rostock, 18051 Rostock, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Young SZ, Bordey A. GABA's control of stem and cancer cell proliferation in adult neural and peripheral niches. Physiology (Bethesda) 2009; 24:171-85. [PMID: 19509127 PMCID: PMC2931807 DOI: 10.1152/physiol.00002.2009] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aside from traditional neurotransmission and regulation of secretion, gamma-amino butyric acid (GABA) through GABA(A) receptors negatively regulates proliferation of pluripotent and neural stem cells in embryonic and adult tissue. There has also been evidence that GABAergic signaling and its control over proliferation is not only limited to the nervous system, but is widespread through peripheral organs containing adult stem cells. GABA has emerged as a tumor signaling molecule in the periphery that controls the proliferation of tumor cells and perhaps tumor stem cells. Here, we will discuss GABA's presence as a near-universal signal that may be altered in tumor cells resulting in modified mitotic activity.
Collapse
Affiliation(s)
- Stephanie Z Young
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
33
|
Mechanisms of parenchymal injury and signaling pathways in ectatic ducts of chronic pancreatitis: implications for pancreatic carcinogenesis. J Transl Med 2009; 89:489-97. [PMID: 19308045 DOI: 10.1038/labinvest.2009.19] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pathobiology of chronic pancreatitis (CP) remains enigmatic despite remarkable progress made recently in uncovering key mechanisms involved in the initiation and progression of the disease. CP is increasingly thought of as a multifactorial disorder. Apoptosis plays a role in parenchymal destruction, the pathological hallmark of CP. The apoptotic mechanisms preferentially target the exocrine compartment, leaving endocrine islets relatively intact for a prolonged period. Exocrine cells shed their 'immunoprivileged' status, express death receptors, and are rendered susceptible to apoptosis induced by death ligands on infiltrating lymphocytes, and released locally by activated pancreatic stellate cells. Islet cells retain their 'immunoprivileged' status and activate anti-apoptotic programs through NF-kappaB. Ductal changes, including distortion, dilatation, and pancreatic ductal hypertension in the setting of CP, induce genomic damage and increased cell turnover. In addition, signaling mechanisms that play a role in the development of embryonic pancreas are reinstated, thus, playing a role in repair, regeneration, and transformation. This, in turn, leads to acino-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN). Some of these pathways are activated in pancreatic cancer. We attempt to integrate the current knowledge and major concepts in the pathogenesis of CP and to explain the mechanism of differential cell loss. We also discuss the possible implications of signaling pathway activation in pancreatic inflammation, relevant to the cellular transformation that leads to pancreatic neoplasia.
Collapse
|
34
|
Ding Z, Maubach G, Masamune A, Zhuo L. Glial fibrillary acidic protein promoter targets pancreatic stellate cells. Dig Liver Dis 2009; 41:229-36. [PMID: 18602878 DOI: 10.1016/j.dld.2008.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 04/25/2008] [Accepted: 05/05/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic fibrosis is one of the clinical manifestations of chronic pancreatitis and pancreatic cancer. Pancreatic stellate cells (PSCs) have been recognised as principal effector cells in the development of pancreatic fibrosis. The ability to specifically address PSCs might offer a potential for developing a targeted therapy for pancreatic fibrosis. AIM Characterisation of the 2.2kb hGFAP (human glial fibrillary acidic protein) promoter for its usefulness to express reporter genes specifically in PSCs in vitro and in vivo. METHODS 2.2kb hGFAP-LacZ reporter expressions were examined in four immortalised PSC lines and two non-PSCs, meanwhile, GFAP-LacZ transgenic mice were used to detect LacZ reporter in pancreas tissue. Several kinase inhibitors, vitamin A and its metabolites were applied to study the regulation of 2.2kb hGFAP promoter in PSCs. RESULTS Our results showed that the 2.2kb hGFAP promoter is capable of regulating the expression of reporter genes exclusively in immortalised and primary PSCs, as well as in PSCs of transgenic GFAP-LacZ mice. When a PSC cell line transfected with the LacZ reporter (SAM-K/LacZ/C1) was treated with different anti-fibrotic agents and kinase inhibitors, the transgenic beta-galactosidase activity was found to be regulated by multiple signalling pathways known to be involved in the PSC activation. CONCLUSIONS This study provides the proof of concept for using the 2.2kb hGFAP promoter to specifically manipulate PSCs for the development of targeted gene and/or drug therapy in pancreatic fibrosis, and for the screening of anti-fibrotic agents.
Collapse
Affiliation(s)
- Z Ding
- Institute of Bioengineering and Nanotechnology, Singapore
| | | | | | | |
Collapse
|
35
|
Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, Rivera A, Ji B, Evans DB, Logsdon CD. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 2008; 68:918-26. [PMID: 18245495 DOI: 10.1158/0008-5472.can-07-5714] [Citation(s) in RCA: 919] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pancreatic adenocarcinoma is characterized by a dense background of tumor associated stroma originating from abundant pancreatic stellate cells. The aim of this study was to determine the effect of human pancreatic stellate cells (HPSC) on pancreatic tumor progression. HPSCs were isolated from resected pancreatic adenocarcinoma samples and immortalized with telomerase and SV40 large T antigen. Effects of HPSC conditioned medium (HPSC-CM) on in vitro proliferation, migration, invasion, soft-agar colony formation, and survival in the presence of gemcitabine or radiation therapy were measured in two pancreatic cancer cell lines. The effects of HPSCs on tumors were examined in an orthotopic murine model of pancreatic cancer by co-injecting them with cancer cells and analyzing growth and metastasis. HPSC-CM dose-dependently increased BxPC3 and Panc1 tumor cell proliferation, migration, invasion, and colony formation. Furthermore, gemcitabine and radiation therapy were less effective in tumor cells treated with HPSC-CM. HPSC-CM activated the mitogen-activated protein kinase and Akt pathways in tumor cells. Co-injection of tumor cells with HPSCs in an orthotopic model resulted in increased primary tumor incidence, size, and metastasis, which corresponded with the proportion of HPSCs. HPSCs produce soluble factors that stimulate signaling pathways related to proliferation and survival of pancreatic cancer cells, and the presence of HPSCs in tumors increases the growth and metastasis of these cells. These data indicate that stellate cells have an important role in supporting and promoting pancreatic cancer. Identification of HPSC-derived factors may lead to novel stroma-targeted therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Rosa F Hwang
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77230-1402, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Omary MB, Lugea A, Lowe AW, Pandol SJ. The pancreatic stellate cell: a star on the rise in pancreatic diseases. J Clin Invest 2007; 117:50-9. [PMID: 17200706 PMCID: PMC1716214 DOI: 10.1172/jci30082] [Citation(s) in RCA: 542] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic stellate cells (PaSCs) are myofibroblast-like cells found in the areas of the pancreas that have exocrine function. PaSCs are regulated by autocrine and paracrine stimuli and share many features with their hepatic counterparts, studies of which have helped further our understanding of PaSC biology. Activation of PaSCs induces them to proliferate, to migrate to sites of tissue damage, to contract and possibly phagocytose, and to synthesize ECM components to promote tissue repair. Sustained activation of PaSCs has an increasingly appreciated role in the fibrosis that is associated with chronic pancreatitis and with pancreatic cancer. Therefore, understanding the biology of PaSCs offers potential therapeutic targets for the treatment and prevention of these diseases.
Collapse
Affiliation(s)
- M. Bishr Omary
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, California, USA.
Stanford University School of Medicine, Stanford, California, USA.
USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Aurelia Lugea
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, California, USA.
Stanford University School of Medicine, Stanford, California, USA.
USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Anson W. Lowe
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, California, USA.
Stanford University School of Medicine, Stanford, California, USA.
USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Stephen J. Pandol
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, California, USA.
Stanford University School of Medicine, Stanford, California, USA.
USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
37
|
Brock P, Sparmann G, Ritter T, Jaster R, Liebe S, Emmrich J. Adenovirus-mediated gene transfer of interleukin-4 into pancreatic stellate cells promotes interleukin-10 expression. J Cell Mol Med 2007; 10:884-95. [PMID: 17125592 PMCID: PMC3933084 DOI: 10.1111/j.1582-4934.2006.tb00532.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pancreatic stellate cells (PSC) are crucially involved in the development of fibrosis, a hallmark of chronic pancreatitis. Therefore, PSC represent an attractive target for the modulation of cellular functions providing the prerequisite for the establishment of novel therapeutic strategies like transfer of genetic material to the cells. Based on recent studies suggesting that the chronic course of pancreatitis is associated with immune deviation towards a Th1 cytokine profile, we have investigated the applicability of primary PSC to an adenovirus-mediated transfer of the cDNA encoding the Th2 cytokine interleukin (IL) 4 and the autocrine-acting effects of IL 4 on the cells in vitro. The trans-duction of primary PSC with a replication-incompetent adenovirus type 5 vector carrying the cDNA encoding rat IL-4 resulted in a distinct expression of the cytokine on mRNA and protein level for two weeks. Similar to recombinant IL 4, effects of the endogenously synthesized cytokine were mediated by the signal transducer and activator of transcription (STAT)6. Interestingly, beside the increase of PSC proliferation, IL 4 transduction was accompanied by an up-regulation in the endogenous expression of the anti-inflammatory cytokine IL 10. In summary, our data suggest that PSC are suitable targets for gene therapy modulating cellular interactions in the pancreas.
Collapse
Affiliation(s)
- Peter Brock
- Department of Medicine, Division of Gastroenterology, Medical Faculty, University of RostockRostock, Germany
| | - Gisela Sparmann
- Department of Medicine, Division of Gastroenterology, Medical Faculty, University of RostockRostock, Germany
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), National University of IrelandGalway, Ireland
| | - Robert Jaster
- Department of Medicine, Division of Gastroenterology, Medical Faculty, University of RostockRostock, Germany
- * Correspondence to: Jörg EMMRICH, M.D. Dept. of Medicine, Division of Gastroenterology, Medical Faculty, University of Rostock, Ernst-Heydemann-Str. 6, D - 18057 Rostock, Germany. Tel.: (+49) 381 - 494 - 7484 Fax: (+49) 381 - 494 - 7482 E-mail:
| | - Stefan Liebe
- Department of Medicine, Division of Gastroenterology, Medical Faculty, University of RostockRostock, Germany
| | - Jörg Emmrich
- Department of Medicine, Division of Gastroenterology, Medical Faculty, University of RostockRostock, Germany
| |
Collapse
|
38
|
Fitzner B, Brock P, Nechutova H, Glass A, Karopka T, Koczan D, Thiesen HJ, Sparmann G, Emmrich J, Liebe S, Jaster R. Inhibitory effects of interferon-gamma on activation of rat pancreatic stellate cells are mediated by STAT1 and involve down-regulation of CTGF expression. Cell Signal 2006; 19:782-90. [PMID: 17116388 DOI: 10.1016/j.cellsig.2006.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 10/09/2006] [Indexed: 12/15/2022]
Abstract
Pancreatic stellate cells (PSCs) are the main source of extracellular matrix proteins in pancreatic fibrosis, a pathological feature of chronic pancreatitis and pancreatic cancer. Interferon-gamma (IFN-gamma) is an antifibrotic cytokine, but how precisely it exerts its effects on PSCs is largely unknown. Here, we have focussed on the role of STAT1 as well as target genes of IFN-gamma signalling. Our data indicate that IFN-gamma regulates the expression of two autocrine mediators of PSC activation, connective tissue growth factor and endothelin-1, in a transforming growth factor-beta1-antagonistic manner. STAT1 overexpression under the control of a tetracycline-dependent promoter revealed a close correlation between STAT1 expression and activation, the biological effects of IFN-gamma (growth inhibition, induction of apoptosis), and target gene expression. Our data further support the hypothesis that IFN-gamma interferes with stellate cell activation in the pancreas and suggest activated STAT1 as an inductor of a quiescent PSC phenotype.
Collapse
Affiliation(s)
- Brit Fitzner
- Department of Medicine, Division of Gastroenterology, University of Rostock, E-Heydemann-Str 6, 18057, 18057 Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wittel UA, Singh AP, Henley BJ, Andrianifahanana M, Akhter MP, Cullen DM, Batra SK. Cigarette smoke-induced differential expression of the genes involved in exocrine function of the rat pancreas. Pancreas 2006; 33:364-70. [PMID: 17079941 DOI: 10.1097/01.mpa.0000240601.80570.31] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Little is known about the molecular and biological aspects of the epidemiological association between smoking and pancreatic pathology, such as chronic pancreatitis and pancreatic cancer. Recently, we reported that tobacco smoke exposure induced morphological alterations in the rat pancreas. Here, we have investigated the alterations in the expression of genes associated with exocrine pancreatic function and cellular differentiation upon exposure to cigarette smoke. METHODS Female rats were exposed to environmental smoke inhalation for 2 d/wk (70 min/d) for 12 weeks. The expression profiles of trypsinogen, pancreas-specific trypsin inhibitor, cholecystokinin A receptor, cystic fibrosis transmembrane conductance regulator (CFTR), carbonic anhydrase, and Muc1 and Muc4 mucins transcripts were analyzed by RNA slot blot analysis. Muc4 expression was also examined by immunohistochemistry. RESULTS Our data revealed that the ratio of trypsinogen to that of the protective pancreas-specific trypsin inhibitor was elevated upon cigarette smoke exposure. The expression of carbonic anhydrase and CFTR remained unaltered when inflammatory signs were not detected in histological examinations. On the other hand, when pancreatic inflammation was present, the levels of CFTR and carbonic anhydrase were increased, indicating ductal and/or centroacinar cell involvement. No changes in the expression of Muc1 and Muc4 mucins were observed. CONCLUSIONS Our data show that cigarette smoke exposure leads to an increased vulnerability to pancreatic self-digestion. Moreover, the concomitant involvement of pancreatic ducts occurs only when focal pancreatic inflammation is present.
Collapse
Affiliation(s)
- Uwe A Wittel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha 68198-5870, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Bachem MG, Zhou Z, Zhou S, Siech M. Role of stellate cells in pancreatic fibrogenesis associated with acute and chronic pancreatitis. J Gastroenterol Hepatol 2006; 21 Suppl 3:S92-6. [PMID: 16958683 DOI: 10.1111/j.1440-1746.2006.04592.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pancreas fibrosis is the result of a dynamic cascade of mechanisms beginning with acinar cell (AC) injury and necrosis and followed by inflammation, activation of macrophages, aggregation of platelets, release of growth factors and reactive oxygen species (ROS), activation of pancreatic stellate cells (PSC), stimulated synthesis of extracellular matrix and reduced matrix degradation. The result is a net matrix accumulation. Numerous in vivo and in vitro studies have provided strong evidence of a central role for PSC in fibrogenesis associated with acute and chronic pancreatitis. The PSC share homologies with hepatic stellate cells (HSC). In normal pancreas, the fat-storing phenotype of PSC is found in low numbers (approx. 4% of the cells) in the periacinar and interlobular space. Similar to the stellate cell-activating mechanisms in the liver, in pancreas injury PSC change their phenotype from the fat-storing to a highly active matrix-producing cell type (activated PSC). The induction of the activated phenotype of PSC has been shown to involve a number of diverse extra- and intracellular effector molecules, including inflammatory cytokines, growth factors, ethanol, acetaldehyde, and oxidative stress.
Collapse
Affiliation(s)
- Max G Bachem
- Department of Clinical Chemistry, University Hospital Ulm, Ulm, Germany.
| | | | | | | |
Collapse
|
41
|
Bhanot UK, Möller P, Hasel C. Dichotomy of fates of pancreatic epithelia in chronic pancreatitis: apoptosis versus survival. Trends Mol Med 2006; 12:351-7. [PMID: 16828345 DOI: 10.1016/j.molmed.2006.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 06/02/2006] [Accepted: 06/26/2006] [Indexed: 12/19/2022]
Abstract
Chronic pancreatitis is now thought to have a multifactorial etiology. New concepts integrating cellular, molecular and genetic knowledge of the disease have been proposed to explain its pathogenesis. However, the mechanisms responsible for early exocrine parenchymal destruction and preservation of endocrine islets were unexplored until recently. In the course of chronic inflammation, pancreatic acini lose their "immunoprotective" status by neo-expressing death receptors. Therefore, they become susceptible to apoptosis that is triggered by their respective ligands expressed on lymphocytes and released by pancreatic stellate cells. By contrast, islets retain their immunoprotective status and activate nuclear factor-kappaB (NF-kappaB)-induced anti-apoptotic factors, thus enabling survival. This knowledge might be exploited for devising therapeutic approaches to retard acinar loss and to prolong islet survival.
Collapse
Affiliation(s)
- Umesh Kumar Bhanot
- Department of Pathology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | |
Collapse
|
42
|
Mueller C, Emmrich J, Jaster R, Braun D, Liebe S, Sparmann G. Cis-hydroxyproline-induced inhibition of pancreatic cancer cell growth is mediated by endoplasmic reticulum stress. World J Gastroenterol 2006; 12:1569-76. [PMID: 16570349 PMCID: PMC4124289 DOI: 10.3748/wjg.v12.i10.1569] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the biological effects of cis-hydroxyproline (CHP) on the rat pancreatic carcinoma cell line DSL6A, and to examine the underlying molecular mechanisms.
METHODS: The effect of CHP on DSL6A cell proliferation was assessed by using BrdU incorporation. The expression of focal adhesion kinase (FAK) was characterized by Western blotting and immunofluorescence. Induction of endoplasmic reticulum (ER) stress was investigated by using RT-PCR and Western blotting for the glucose-related protein-78 (GRP78) and growth arrest and DNA inducible gene (GADD153). Cell viability was determined through measuring the metabolic activity based on the reduction potential of DSL6A cells. Apoptosis was analyzed by detection of caspase-3 activation and cleavage of poly(ADP-ribose) polymerase (PARP) as well as DNA laddering.
RESULTS: In addition to inhibition of proliferation, incubation with CHP induced proteolytic cleavage of FAK and a delocalisation of the enzyme from focal adhesions, followed by a loss of cell adherence. Simultaneously, we could show an increased expression of GRP78 and GADD153, indicating a CHP-mediated activation of the ER stress cascade in the DSL6A cell line. Prolonged incubation of DSL6A cells with CHP finally resulted in apoptotic cell death. Beside L-proline, the inhibition of intracellular proteolysis by addition of a broad spectrum protease inhibitor could abolish the effects of CHP on cellular functions and the molecular processes. In contrast, impeding the activity of apoptosis-executing caspases had no influence on CHP-mediated cell damage.
CONCLUSION: Our data suggest that the initiation of ER stress machinery by CHP leads to an activation of intracellular proteolytic processes, including caspase-independent FAK degradation, resulting in damaging pancreatic carcinoma cells.
Collapse
Affiliation(s)
- Christoph Mueller
- Department of Medicine, Division of Gastroenterology, University of Rostock, Ernst-Heydemann-Str. 6, D-18057 Rostock, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Jaster R, Lichte P, Fitzner B, Brock P, Glass A, Karopka T, Gierl L, Koczan D, Thiesen HJ, Sparmann G, Emmrich J, Liebe S. Peroxisome proliferator-activated receptor gamma overexpression inhibits pro-fibrogenic activities of immortalised rat pancreatic stellate cells. J Cell Mol Med 2005; 9:670-82. [PMID: 16202214 PMCID: PMC6741639 DOI: 10.1111/j.1582-4934.2005.tb00497.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic stellate cells (PSCs) play a key role in the development of pancreatic fibrosis, a constant feature of chronic pancreatitis and pancreatic cancer. In response to pro-fibrogenic mediators, PSCs undergo an activation process that involves proliferation, enhanced production of extracellular matrix proteins and a phenotypic transition towards myofibroblasts. Ligands of the peroxisome proliferator-activated receptor gamma (PPARgamma), such as thiazolidinediones, are potent inhibitors of stellate cell activation and fibrogenesis in pancreas and liver. The effects of PPARgamma ligands, however, are at least in part mediated through PPARgamma-independent pathways. Here, we have chosen a different approach to study regulatory functions of PPARgamma in PSCs. Using immortalised rat PSCs, we have established a model of tetracycline (tet)-regulated PPARgamma overexpression. Induction of PPARgamma expression strongly inhibited proliferation and enhanced the rate of apoptotic cell death. Furthermore, PPARgamma-overexpressing cells synthesised less collagen than controls. To monitor effects of PPARgamma on PSC gene expression, we employed Affymetrix microarray technology. Using stringent selection criteria, we identified 21 up- and 19 down-regulated genes in PPARgamma-overexpressing cells. Most of the corresponding gene products are either involved in lipid metabolism, play a role in signal transduction, or are secreted molecules that regulate cell growth and differentiation. In conclusion, our data suggest an active role of PPARgamma in the induction of a quiescent PSC phenotype. PPARgamma-regulated genes in PSCs may serve as novel targets for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Robert Jaster
- Department of Medicine, Division of Gastroenterology, Medical Faculty, University of Rostock, Rostock, 18057, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sparmann G, Glass A, Brock P, Jaster R, Koczan D, Thiesen HJ, Liebe S, Emmrich J. Inhibition of lymphocyte apoptosis by pancreatic stellate cells: impact of interleukin-15. Am J Physiol Gastrointest Liver Physiol 2005; 289:G842-51. [PMID: 16002563 DOI: 10.1152/ajpgi.00483.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There is growing evidence that pancreatic stellate cells (PSCs) produce cytokines and take part in the regulation of inflammatory processes in the pancreas. IL-15 inhibits apoptosis of various cell populations. This study was performed to investigate whether PSCs produce IL-15 and thereby can affect lymphocytes. Primary PSCs were isolated from the rat pancreas using density gradient centrifugation. mRNA expression of IL-15 was demonstrated by RT-PCR, and IL-15 protein was analyzed by immunoblotting. Lymphocytes obtained from rat mesenterial lymph nodes were cocultured with in vitro activated PSCs. Apoptosis has been quantified by the binding of annexin V-FITC with a flow cytometer. Proliferation was monitored using [3H]thymidine incorporation. PSCs express two splice variants of IL-15. The protein was detectable only in cell lysates but not in the cell culture supernatant. Cocultivation of lymphocytes with PSCs and IL-15 inhibited spontaneous lymphocyte apoptosis, and this effect was reduced by an anti-IL-15 antibody. Lymphocytes induced vice versa the proliferation and collagen production of PSCs. The inhibition of spontaneous lymphocyte apoptosis in cocultures with PSCs was at least partially mediated by cell-bound IL-15. This effect and the stimulation of PSCs by lymphocytes may lead to a circulus vitiosus, resulting in the persistence of inflammatory processes and the development of fibrosis during chronic pancreatitis.
Collapse
Affiliation(s)
- Gisela Sparmann
- Division of Gastroenterology, Department of Medicine, University of Rostock, D-18057 Rostock, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Jesnowski R, Fürst D, Ringel J, Chen Y, Schrödel A, Kleeff J, Kolb A, Schareck WD, Löhr M. Immortalization of pancreatic stellate cells as an in vitro model of pancreatic fibrosis: deactivation is induced by matrigel and N-acetylcysteine. J Transl Med 2005; 85:1276-91. [PMID: 16127427 DOI: 10.1038/labinvest.3700329] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tissue fibrosis is one of the characteristics of chronic pancreatitis and pancreatic adenocarcinoma. Activated pancreatic stellate cells (PSC) play a central role in this process. However, analysis of the molecular mechanisms leading to PSC activation is hampered by the lack of an established human PSC line. To overcome this problem, we immortalized and characterized primary human PSC. The cells were isolated by the outgrowth method and were immortalized by transfection with SV40 large T antigen and human telomerase (hTERT). Primary human PSC served as controls. An immortalized line, RLT-PSC, was analyzed for the expression of stellate cell markers. Moreover, the effects of transforming growth factor beta 1(TGFbeta1) or platelet-derived growth factor stimulation and of cultivation on basement membrane components or N-acetylcysteine (NAC) treatment on gene and protein expression and proliferation were analyzed. Immortal RLT-PSC cells retained the phenotype of activated PSC proven by the expression of alpha-smooth muscle actin (alphaSMA), vimentin, desmin and glial fibrillary acidic protein (GFAP). TGFbeta1 treatment upregulated the expression of alphaSMA, collagen type I (Col I), fibronectin and TGFbeta1. Incubation of RLT-PSC cells and primary human activated PSC on Matrigel plus NAC treatment resulted in a deactivated phenotype as evidenced by a decrease of alphaSMA, connective tissue growth factor and Col I expression and by a decreased proliferation of the cells. Moreover, this treatment restored the ability of the cells to store vitamin A in cytoplasmic vesicles. In conclusion, we have established an immortal pancreatic stellate cell line, without changing the characteristic phenotype. Importantly, we were able to demonstrate that besides soluble factors, the matrix surrounding PSC plays a pivotal role in the maintenance of the activation process of PSC. Cultivation of activated PSC on a reconstituted basement membrane plus treatment with NAC was able to deactivate the cells, thus pointing to the possibility of an antifibrosis therapy in chronic pancreatitis.
Collapse
Affiliation(s)
- Ralf Jesnowski
- Clinical Cooperation Unit Molecular Gastroenterology, DKFZ, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW As in our previous reviews, we endeavor to review important new observations in chronic pancreatitis made in the past year. We included articles, including review articles, only if they contained new observations or readdressed old questions and provided new insights into old and new concepts. RECENT FINDINGS Important observations include the following: (1) Strong association between cystic fibrosis transmembrane regulator dysfunction/mutations and 'recurrent acute pancreatitis', particularly in patients with pancreas divisum (2) Pancreas divisum may be incidental finding in recurrent acute pancreatitis (3) Smoking increases risk of chronic pancreatitis (4) Coxsackie B virus may increase severity of alcoholic chronic pancreatitis (5) CD4+ T cells and an immune reaction against amylase may play a role in pathogenesis of autoimmune pancreatitis (6) 2-(18F)-Fluro-2-deoxy-D-glucose positron emission tomography might be useful to detect pancreatic cancer in chronic pancreatitis patients at risk for developing pancreatic cancer, but contrast-enhanced Doppler ultrasound or endosonography may be as sensitive and better than contrast enhanced computed tomography (7) Superiority of surgery vs endotherapy for long term pain relief and weight gain in painful chronic pancreatitis (8) Early treatment of pain and malabsorption may improve life quality (9) Antifibrogenesis and fibrolytic agents as potential therapies. SUMMARY Ongoing basic and clinical research this past year has further characterized genetic, molecular and clinical aspects of chronic pancreatitis. The advent of predictable and lasting treatments of chronic pancreatitis is most likely to appear on the wings of carefully conducted studies targeting genetic and molecular mechanisms of chronic pancreatitis, particularly pancreatic fibrogenesis.
Collapse
Affiliation(s)
- Matthew J DiMagno
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0362, USA.
| | | |
Collapse
|
47
|
Jaster R. Molecular regulation of pancreatic stellate cell function. Mol Cancer 2004; 3:26. [PMID: 15469605 PMCID: PMC524499 DOI: 10.1186/1476-4598-3-26] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 10/06/2004] [Indexed: 12/11/2022] Open
Abstract
Until now, no specific therapies are available to inhibit pancreatic fibrosis, a constant pathological feature of chronic pancreatitis and pancreatic cancer. One major reason is the incomplete knowledge of the molecular principles underlying fibrogenesis in the pancreas. In the past few years, evidence has been accumulated that activated pancreatic stellate cells (PSCs) are the predominant source of extracellular matrix (ECM) proteins in the diseased organ. PSCs are vitamin A-storing, fibroblast-like cells with close morphological and biochemical similarities to hepatic stellate cells (also known as Ito-cells). In response to profibrogenic mediators such as various cytokines, PSCs undergo an activation process that involves proliferation, exhibition of a myofibroblastic phenotype and enhanced production of ECM proteins. The intracellular mediators of activation signals, and their antagonists, are only partially known so far. Recent data suggest an important role of enzymes of the mitogen-activated protein kinase family in PSC activation. On the other hand, ligands of the nuclear receptor PPARγ (peroxisome proliferator-activated receptor γ) stimulate maintenance of a quiescent PSC phenotype. In the future, targeting regulators of the PSC activation process might become a promising approach for the treatment of pancreatic fibrosis.
Collapse
Affiliation(s)
- Robert Jaster
- Department of Medicine, Division of Gastroenterology, Medical Faculty, University of Rostock, E,-Heydemann-Str, 6, 18057 Rostock, Germany.
| |
Collapse
|