1
|
Baumert BO, Fischer FC, Nielsen F, Grandjean P, Bartell S, Stratakis N, Walker DI, Valvi D, Kohli R, Inge T, Ryder J, Jenkins T, Sisley S, Xanthakos S, Rock S, La Merrill MA, Conti D, McConnell R, Chatzi L. Paired Liver:Plasma PFAS Concentration Ratios from Adolescents in the Teen-LABS Study and Derivation of Empirical and Mass Balance Models to Predict and Explain Liver PFAS Accumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14817-14826. [PMID: 37756184 PMCID: PMC10591710 DOI: 10.1021/acs.est.3c02765] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Animal studies have pointed at the liver as a hotspot for per- and polyfluoroalkyl substances (PFAS) accumulation and toxicity; however, these findings have not been replicated in human populations. We measured concentrations of seven PFAS in matched liver and plasma samples collected at the time of bariatric surgery from 64 adolescents in the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) study. Liver:plasma concentration ratios were perfectly explained (r2 > 0.99) in a multilinear regression (MLR) model based on toxicokinetic (TK) descriptors consisting of binding to tissue constituents and membrane permeabilities. Of the seven matched plasma and liver PFAS concentrations compared in this study, the liver:plasma concentration ratio of perfluoroheptanoic acid (PFHpA) was considerably higher than the liver:plasma concentration ratio of other PFAS congeners. Comparing the MLR model with an equilibrium mass balance model (MBM) suggested that complex kinetic transport processes are driving the unexpectedly high liver:plasma concentration ratio of PFHpA. Intratissue MBM modeling pointed to membrane lipids as the tissue constituents that drive the liver accumulation of long-chain, hydrophobic PFAS, whereas albumin binding of hydrophobic PFAS dominated PFAS distribution in plasma. The liver:plasma concentration data set, empirical MLR model, and mechanistic MBM modeling allow the prediction of liver from plasma concentrations measured in human cohort studies. Our study demonstrates that combining biomonitoring data with mechanistic modeling can identify underlying mechanisms of internal distribution and specific target organ toxicity of PFAS in humans.
Collapse
Affiliation(s)
- Brittney O. Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA, 90032
| | - Fabian C. Fischer
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA, 02134
| | - Flemming Nielsen
- Institute of Public Health, University of Southern Denmark, Odense, Denmark, 5230
| | - Philippe Grandjean
- Institute of Public Health, University of Southern Denmark, Odense, Denmark, 5230
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA, 02881
| | - Scott Bartell
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, USA, 92697
| | - Nikos Stratakis
- Barcelona Institute for Global Health, ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Douglas I. Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, NE, Atlanta, GA, 30322
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California, USA, 90027
| | - Thomas Inge
- Department of Surgery, Northwestern University Feinberg School of Medicine, 60611
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA, 60611
| | - Justin Ryder
- Department of Surgery, Northwestern University Feinberg School of Medicine, 60611
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA, 60611
| | - Todd Jenkins
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA, 45229
| | - Stephanie Sisley
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Stavra Xanthakos
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA, 45229
| | - Sarah Rock
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA, 90032
| | - Michele A. La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA, 95616
| | - David Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA, 90032
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA, 90032
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA, 90032
| |
Collapse
|
2
|
Liu J, Song Y, Wang Y, Hong H. Vitamin D/vitamin D receptor pathway in non-alcoholic fatty liver disease. Expert Opin Ther Targets 2023; 27:1145-1157. [PMID: 37861098 DOI: 10.1080/14728222.2023.2274099] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide, but underlying mechanisms are not fully understood. In recent years, a growing body of evidence has emphasized the therapeutic role of vitamin D in NAFLD, but the specific mechanism remains to be investigated. AREAS COVERED This review summarized the roles of vitamin D/VDR (vitamin D receptor) pathway in different types of liver cells (such as hepatocytes, hepatic stellate cells, liver macrophages, T lymphocytes, and other hepatic immune cells) in case of NAFLD. Meanwhile, the effects of pathways in the gut-liver axis, adipose tissue-liver axis, and skeletal muscle-liver axis on the development of NAFLD were further reviewed. Relevant literature was searched on PubMed for the writing of this review. EXPERT OPINION The precise regulation of regional vitamin D/VDR signaling pathway based on cell-specific or tissue-specific function will help clarify the potential mechanism of vitamin D in NAFLD, which may provide new therapeutic targets to improve the safety and efficacy of vitamin D based drugs.
Collapse
Affiliation(s)
- Jingqi Liu
- Fujian Key Laboratory of Vascular Aging, Department of Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Xiamen Institute of Geriatric Rehabilitation, Department of Geriatrics, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Yang Song
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Ye Wang
- Xiamen Institute of Geriatric Rehabilitation, Department of Geriatrics, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Huashan Hong
- Fujian Key Laboratory of Vascular Aging, Department of Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Reda D, Elshopakey GE, Albukhari TA, Almehmadi SJ, Refaat B, Risha EF, Mahgoub HA, El-Boshy ME, Abdelhamid FM. Vitamin D3 alleviates nonalcoholic fatty liver disease in rats by inhibiting hepatic oxidative stress and inflammation via the SREBP-1-c/ PPARα-NF-κB/IR-S2 signaling pathway. Front Pharmacol 2023; 14:1164512. [PMID: 37261280 PMCID: PMC10228732 DOI: 10.3389/fphar.2023.1164512] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction: Nonalcoholic fatty liver disease (NAFLD) is a chronic disease characterized by fat deposits in liver cells, which can lead to hepatitis and fibrosis. This study attempted to explore the protective effect of vitamin D3 (VitD) against NAFLD. Methods: Adult male albino rats were randomized into four separate groups: the negative control group was fed a standard rat chow; the positive group received a high-fat diet (20%) and 25% fructose water (NAFLD); the VitD control group was intramuscularly treated with VitD (1,000 IU/kg BW) 3 days per week for 10 weeks; and the NAFLD group was treated with VitD therapy. Biochemical and hepatic histological analyses were performed. Hepatic oxidative stress and inflammatory conditions were also studied. Hepatic expression of sterol regulatory element-binding protein 1-c (SREBP-1-c), peroxisome proliferator-activated receptor alpha (PPAR-α), and insulin receptor substrate-2 was analyzed by quantitative real-time polymerase chain reaction. Results and discussion: The NAFLD rats exhibited elevated terminal body weight, hepatic injury markers, dyslipidemia, glucose intolerance, and insulin resistance. Moreover, the NAFLD rats had increased SREBP-1-c expression and reduced PPAR-α and IRS-2 expressions. Histological analysis showed hepatic steatosis and inflammation in the NAFLD group. In contrast, VitD administration improved the serum biochemical parameters and hepatic redox status in NAFLD rats. Also, VitD treatment ameliorated hepatic inflammation and steatosis in the NAFLD group by decreasing the expression of SREBP-1-c and increasing the expression of PPAR-α. Overall, these results suggest that VitD could have a protective effect against NAFLD and its associated complication.
Collapse
Affiliation(s)
- Doha Reda
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Gehad E. Elshopakey
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Talat A. Albukhari
- Department of Haematology and Immunology, Faculty of Medicine, Umm Alqura University, Makkah, Saudi Arabia
| | - Samah J. Almehmadi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Engy F. Risha
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hebatallah A. Mahgoub
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed E. El-Boshy
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Fatma M. Abdelhamid
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Cinque F, Cespiati A, Lombardi R, Guaraldi G, Sebastiani G. Nutritional and Lifestyle Therapy for NAFLD in People with HIV. Nutrients 2023; 15:nu15081990. [PMID: 37111209 PMCID: PMC10140991 DOI: 10.3390/nu15081990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
HIV infection and nonalcoholic fatty liver disease (NAFLD) are two major epidemics affecting millions of people worldwide. As people with HIV (PWH) age, there is an increased prevalence of metabolic comorbidities, along with unique HIV factors, such as HIV chronic inflammation and life-long exposure to antiretroviral therapy, which leads to a high prevalence of NAFLD. An unhealthy lifestyle, with a high dietary intake of refined carbohydrates, saturated fatty acids, fructose added beverages, and processed red meat, as well as physical inactivity, are known to trigger and promote the progression of NAFLD to nonalcoholic steatohepatitis, liver fibrosis, and hepatocellular carcinoma. Furthermore, with no currently approved pharmacotherapy and a lack of clinical trials that are inclusive of HIV, nutritional and lifestyle approaches still represent the most recommended treatments for PWH with NAFLD. While sharing common features with the general population, NAFLD in PWH displays its own peculiarities that may also reflect different impacts of nutrition and exercise on its onset and treatment. Therefore, in this narrative review, we aimed to explore the role of nutrients in the development of NAFLD in PWH. In addition, we discussed the nutritional and lifestyle approaches to managing NAFLD in the setting of HIV, with insights into the role of gut microbiota and lean NAFLD.
Collapse
Affiliation(s)
- Felice Cinque
- Division of Gastroenterology and Hepatology, and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Medicine and Metabolic Disease Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Annalisa Cespiati
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Medicine and Metabolic Disease Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Rosa Lombardi
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Medicine and Metabolic Disease Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Giovanni Guaraldi
- Modena HIV Metabolic Clinic, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
5
|
Cederberg KLJ, Silvestri R, Walters AS. Vitamin D and Restless Legs Syndrome: A Review of Current Literature. Tremor Other Hyperkinet Mov (N Y) 2023; 13:12. [PMID: 37034443 PMCID: PMC10077981 DOI: 10.5334/tohm.741] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
This review presents a detailed summary of the current literature regarding RLS and vitamin D deficiency. To our knowledge it is the first review of its kind. We review the prevalence of vitamin D deficiency in RLS as well as the evidence for the use of vitamin D supplementation in RLS management. We further examine the literature for proteomic and genetic evidence of a role for vitamin D in the pathogenesis of RLS. An alteration in vitamin D binding protein in RLS is one of the most consistent findings in the proteomic studies. Furthermore, we examine the interaction of vitamin D with calcium, phosphorus, and parathyroid hormone and the possible role of these connections in RLS. We also explore the possible nexus between RLS and vitamin D in renal disease, cardiovascular and cerebrovascular disease as well as inflammation. In addition, we review the potential interaction between vitamin D and RLS with iron, dopamine and other neurotransmitter systems including the endogenous opiate, serotoninergic, glutamatergic and adenosinergic systems. We also explore the role of vitamin D in RLS Augmentation (i.e., the paradoxical worsening of RLS symptoms when dopaminergic agents are used as a therapy for RLS). Although the literature is not entirely consistent in affirming vitamin D deficiency in RLS or the amelioration of RLS symptoms with vitamin D therapy, the collective studies overall indicate that vitamin D deficiency is common enough in RLS patients to suggest that RLS patients should have their vitamin D levels checked and any deficiency corrected as a standard of care. Highlights Patients with Restless Legs Syndrome (RLS) may be deficient in vitamin D and therapy with vitamin D may ameliorate RLS. We present the first review dedicated solely to evaluating the relationship between RLS and vitamin D and present a case for the role of vitamin D in RLS pathogenesis.
Collapse
Affiliation(s)
- Katie L. J. Cederberg
- Department of Psychiatry & Behavioral Sciences, Stanford University, 3165 Porter Drive Palo Alto, CA, USA
| | - Rosalia Silvestri
- Department of Clinical and Experimental Medicine, Sleep Medicine Center, University of Messina, Azienda Ospedaliera Universitaria “Gaetano Martino”, Messina, Italy
| | | |
Collapse
|
6
|
Wang L, Zhou C, Yu H, Hao L, Ju M, Feng W, Guo Z, Sun X, Fan Q, Xiao R. Vitamin D, Folic Acid and Vitamin B 12 Can Reverse Vitamin D Deficiency-Induced Learning and Memory Impairment by Altering 27-Hydroxycholesterol and S-Adenosylmethionine. Nutrients 2022; 15:nu15010132. [PMID: 36615790 PMCID: PMC9824694 DOI: 10.3390/nu15010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The cholesterol-oxidized metabolite 27-hydroxycholesterol (27-OHC) is synthesized by CYP27A1, which is a key factor in vitamin D and oxysterol metabolism. Both vitamin D and 27-OHC are considered to play important roles in Alzheimer’s disease (AD). The study aims to research the effects of co-supplementation of vitamin D, folic acid, and vitamin B12 on learning and memory ability in vitamin D-deficient mice, and to explore the underlying mechanism. In this study, C57BL/6J mice were fed a vitamin D-deficient diet for 13 weeks to establish a vitamin D-deficient mice model. The vitamin D-deficient mice were then orally gavaged with vitamin D (VD), folic acid (FA), and vitamin B12 (VB12) alone or together for eight weeks. Following the gavage, the learning and memory ability of the mice were evaluated by Morris Water Maze and Novel object recognition test. The CYP27A1-related gene and protein expressions in the liver and brain were determined by qRT-PCR. The serum level of 27-OHC was detected by HPLC-MS. Serum levels of 25(OH)D, homocysteine (Hcy), and S-Adenosylmethionine (SAM) were measured by ELISA. After feeding with the vitamin D-deficient diet, the mice performed longer latency to a platform (p < 0.001), lower average speed (p = 0.026) in the Morris Water Maze, a lower time discrimination index (p = 0.009) in Novel object recognition, and performances were reversed after vitamin D, folic acid and vitamin B12 supplementation alone or together (p < 0.05). The gene expressions of CYP27A1 in the liver and brain were upregulated in the vitamin D-deficiency (VDD) group compared with the control (CON) group (p = 0.015), while it was downregulated in VDD + VD and VDD + VD-FA/VB12 groups compared with the VDD group (p < 0.05), with a similar trend in the protein expression of CYP27A1. The serum levels of 27-OHC were higher in the VDD group, compared with CON, VDD + VD, and VDD + VD-FA/VB12 group (p < 0.05), and a similar trend was found in the brain. The serum 25(OH)D levels were significantly decreased in the vitamin D-deficiency group (p = 0.008), and increased in the vitamin D-supplemented group (p < 0.001). The serum levels of SAM were higher in the B vitamins-supplemented group, compared with CON and VDD groups (p < 0.05). This study suggests that CYP27A1 expression may be involved in the mechanism of learning and memory impairment induced by vitamin D deficiency. Co-supplementation with vitamin D, folic acid, and vitamin B12 significantly reverses this effect by affecting the expression of CYP27A1, which in turn regulates the metabolism of 27-OHC, 25(OH)D, and SAM.
Collapse
Affiliation(s)
- Lijing Wang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Cui Zhou
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Huiyan Yu
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ling Hao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Mengwei Ju
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wenjing Feng
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Zhiting Guo
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xuejing Sun
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qiushi Fan
- Medical Nutrition, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
- Correspondence: ; Tel.: +86-010-83911512; Fax: +86-010-83911512
| |
Collapse
|
7
|
Cao Y, Shu X, Li M, Yu S, Li C, Ji G, Zhang L. Jiangzhi granule attenuates non-alcoholic steatohepatitis through modulating bile acid in mice fed high-fat vitamin D deficiency diet. Biomed Pharmacother 2022; 149:112825. [PMID: 35305348 DOI: 10.1016/j.biopha.2022.112825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
Vitamin D deficiency is a common phenomenon in non-alcoholic fatty liver disease (NAFLD) and the progressive non-alcoholic steatohepatitis (NASH). Jiangzhi Granule (JZG) formula is a Traditional Chinese medicine prescription, and has been found effective against NAFLD/NASH. Here we showed that vitamin D deficiency could accelerate NASH development, and reduce vitamin D receptor (VDR) expression. JZG treatment alleviated high-fat vitamin D deficient (HF-VDD) diet-induced NASH in C57BL/6 J mice, and up-regulated both the liver and intestinal VDR expression independent of 1,25-dihydroxy-vitamin D3 level. We analyzed the fecal BA profile using liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-TQMS) -based metabolomics, and found that JZG modulated fecal BA profile, predominantly increased the ratio of secondary BA species, as well as the expression of tight junction proteins Zona occludens 1(ZO-1) and occludin in the colon. In vitro experiment further confirmed the representative secondary BA species lithocholic acid (LCA) and keto-LCA upregulated the expression of and ZO-1 through VDR in LPS-stressed Caco-2 cells. Our results identified the endogenous VDR activation by JZG through modulating BA species in vitamin D deficiency-related NASH mice, thus providing evidence for the clinical application of JZG in treating NASH.
Collapse
Affiliation(s)
- Ying Cao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiangbing Shu
- Department of Geratology, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China
| | - Meng Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Siyu Yu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chunlin Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
8
|
Xing Y, Cheng T, Zhou F, Ma H. The Association Between Vitamin D and Type 2 Diabetes Mellitus Complicated with Non-Alcoholic Fatty Liver Disease: An Observational Cross-Sectional Study. Diabetes Metab Syndr Obes 2022; 15:269-280. [PMID: 35140487 PMCID: PMC8819170 DOI: 10.2147/dmso.s348870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/14/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To investigate the association between vitamin D deficiency and NAFLD risk in patients with type 2 diabetes mellitus (T2DM). METHODS Overall, 434 patients with T2DM admitted to Hebei General Hospital from January 2019 to December 2019 were selected as the study subjects. According to abdominal ultrasound findings, patients were divided into the NAFLD group and the non-NAFLD group. Participants were divided into two study groups according to the 25-hydroxyvitamin D [25(OH)D] level. 25(OH)D deficiency was defined if 25(OH)D vitamin levels were <20 ng/mL. Chi-square test and one-way analysis of variance were used to compare groups. The relationship between 25(OH)D and NAFLD risk was analyzed using correlation and regression analyses. Furthermore, subgroup analyses were performed to verify the robustness of the results. RESULTS The 25(OH)D level in patients with T2DM complicated by NAFLD was significantly lower than in patients with T2DM only. Vitamin D deficiency was highly prevalent among T2DM patients with NAFLD. This study suggested that vitamin D deficiency was an independent factor for developing NAFLD in patients with T2DM. T2DM patients with vitamin D deficiency had 2.045 times higher risk of developing NAFLD than those without vitamin D deficiency. Vitamin D deficiency was associated with high NAFLD preference in T2DM patients with BMI >23kg/m2, but not those with BMI ≤23kg/m2. The significant correlation between vitamin D deficiency and NAFLD was found in participants with BMI >23kg/m2, age ≤65 years, without hypertension, TG <1.7mmol/l, HDL ≥1 mmol/l in men, ≥1.3 mmol/l in women, HBA1C ≤7%, or females. CONCLUSION This study suggests that T2DM people with BMI >23kg/m2 were more susceptible to NAFLD by vitamin D deficiency and that it is necessary to maintain optimal serum vitamin D levels in this population.
Collapse
Affiliation(s)
- Yuling Xing
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050017, People’s Republic of China
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Tiantian Cheng
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050017, People’s Republic of China
- Department of Internal Medicine, School of Clinical Medicine, North China University of Science and Technology, Tangshan, 063210, Hebei, People’s Republic of China
| | - Fei Zhou
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050017, People’s Republic of China
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Huijuan Ma
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050017, People’s Republic of China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital Shijiazhuang, Hebei, 050051, People’s Republic of China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Correspondence: Huijuan Ma, Email
| |
Collapse
|
9
|
Hamzehzadeh Alamdari A, Ahrabi S, Khoshbaten M, Roustaei S, Araqchin Ahrabi S, Asghari Jafarabadi M. Effect of Oral and parenteral routes of vitamin D supplementation on serum 25(OH) vitamin D levels in patients with non-alcoholic fatty liver disease. CASPIAN JOURNAL OF INTERNAL MEDICINE 2022; 13:23-28. [PMID: 35178204 PMCID: PMC8797815 DOI: 10.22088/cjim.13.1.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 03/13/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Due to the interruption of the EHC pathway in NAFLD patients, we hypothesized that parenteral vitamin D supplementation is superior to oral in vitamin D insufficient patients with NAFLD. Therefore, this study aimed to compare the efficacy of oral and parenteral routes of vitamin D supplementation on serum 25(OH) vitamin D levels in patients with NAFLD. METHODS In this prospective randomized trial, 66 NAFLD cases with vitamin D deficiency were studied. For 33 cases, oral vitamin D was supplemented, whereas the other 33 patients were given an intramuscular injection of vitamin D. Laboratory tests and liver ultrasound were performed at the beginning and the end of the trial for each subject. RESULTS Regardless of the drug administration route, at the end of this trial the mean of serum 25-hydroxy vitamin D level increased from 8.74±2.47 to 33.16±17.61 (P=0.00), and the mean±SD for serum triglyceride decreased from 191.46±92.79 to 166.00±68.30 (P=0.02), both were statistically significant. Liver ultrasound reported statistically significant changes in the grade of fatty liver disease (P=0.003). In the comparison between the two groups, serum 25-hydroxy vitamin D level changes were not statistically significant (P=0.788). CONCLUSION The intramuscular method of supplementation was not better than the oral route in improving serum 25(OH) vitamin D levels in NAFLD patients. In this study, the impaired EHC and vitamin D absorption inhibitor factors in NAFLD patients did not affect the final result of serum vitamin D levels significantly.
Collapse
Affiliation(s)
- Arezou Hamzehzadeh Alamdari
- Gastroenterology and Liver Diseases Research Center, Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Ahrabi
- Gastroenterology and Liver Diseases Research Center, Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Khoshbaten
- Gastroenterology and Liver Diseases Research Center, Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Correspondence: Manouchehr Khoshbaten, Gastroenterology and Liver Diseases Research Center, Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. E-mail: , Tel: 0098 4133357310, Fax: 0098 4133359680
| | - Shahram Roustaei
- Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Araqchin Ahrabi
- Gastroenterology and Liver Diseases Research Center, Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asghari Jafarabadi
- Department of Statistics and Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran,Center for the development of interdisciplinary research in Islamic sciences and health sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Lorenzon F, Gregorio T, Niebisch F, Stolte RCK, Dos Santos GJ, Rafacho A, Lima FB. Maternal vitamin D administration attenuates metabolic disturbances induced by prenatal exposure to dexamethasone in a sex-dependent manner. J Steroid Biochem Mol Biol 2021; 212:105941. [PMID: 34147644 DOI: 10.1016/j.jsbmb.2021.105941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE The overexposure to synthetic glucocorticoids (GC) during pregnancy can predispose to metabolic diseases during adulthood. Vitamin D is not only crucial for fetal development, but also exerts direct effects on the GC sensitivity and down-regulates GC receptors. Given the vitamin D effects on glucocorticoid-related parameters, we aimed to investigate a possible protective role of maternal vitamin D administration on the glucose homeostasis of rats exposed to dexamethasone in utero. METHODS Pregnant rats received dexamethasone (0.1 mg/kg, Dex) daily between the 14th and 19th days of pregnancy. A subgroup of dexamethasone-treated dams received oral administration of vitamin D (500UI, DexVD) during the whole gestation. The corresponding control groups of dams were included (CTL and VD groups, respectively). Male and female offspring were evaluated at 3, 6 and 12 months of age. RESULTS Prenatal exposure to dexamethasone caused metabolic disruption in an age and sex-dependent manner being the older male offspring more susceptible to insulin resistance, fatty liver and beta-cell mass expansion than females. Furthermore, we demonstrated that prenatal GC led to glucose intolerance in male and female offspring in an age-dependent manner. Maternal vitamin D administration did not influence glucose intolerance but attenuated the insulin resistance, liver lipid accumulation and prevented the beta-cell mass expansion caused by prenatal dexamethasone in the male offspring. CONCLUSION Maternal vitamin D administration mitigates metabolic disturbances that occur later in life in male rats exposed to GC in utero. Moreover, our data suggest vitamin D as an important nutritional supplement for pregnant overexposed to GC during gestation.
Collapse
Affiliation(s)
- Flaviano Lorenzon
- Departamento de Ciências Fisiológicas, Campus Trindade, 88040-900, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Tamires Gregorio
- Departamento de Ciências Fisiológicas, Campus Trindade, 88040-900, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Fernanda Niebisch
- Departamento de Ciências Fisiológicas, Campus Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Rafaela C K Stolte
- Departamento de Ciências Fisiológicas, Campus Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Gustavo J Dos Santos
- Departamento de Ciências Fisiológicas, Campus Trindade, 88040-900, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Alex Rafacho
- Departamento de Ciências Fisiológicas, Campus Trindade, 88040-900, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Fernanda B Lima
- Departamento de Ciências Fisiológicas, Campus Trindade, 88040-900, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
11
|
Zhang X, Shang X, Jin S, Ma Z, Wang H, Ao N, Yang J, Du J. Vitamin D ameliorates high-fat-diet-induced hepatic injury via inhibiting pyroptosis and alters gut microbiota in rats. Arch Biochem Biophys 2021; 705:108894. [PMID: 33965368 DOI: 10.1016/j.abb.2021.108894] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that vitamin D (VD) has a therapeutic effect on non-alcoholic fatty liver disease (NAFLD). Pyroptosis and gut microbiota have been recognized as critical factors of the progression of NAFLD. However, the effect of VD on the pyroptosis and gut microbiota in NAFLD remains inconclusive. Herein, rats were fed high fat diet (HFD) for 12 weeks and concurrently treated with 5 μg/kg 1,25(OH)2D3 twice a week. BRL-3A cells were stimulated with 0.4 mmol/L palmitic acid (PA) and 1 μg/ml lipopolysaccharide (LPS) for 16 h and treated with 10-6 mol/L 1,25(OH)2D3. Effect of VD on the hepatic injury, lipid accumulation, activation of NLRP3 inflammasome and pyroptosis was determined in vivo and in vitro. Next, gasdermin D N-terminal (GSDMD-N) fragment was overexpressed in BRL-3A cells to investigate the role of pyroptosis in the therapeutic effect of VD on NAFLD. In addition, gut microbiota in NAFLD rats was also analyzed. Results showed that VD attenuated HFD-induced hepatic injury in vivo and PA-LPS-induced impairment of cell viability in vitro, and inhibited lipid accumulation, activation of NLRP3 inflammasome and pyroptosis in vivo and in vitro. GSDMD-N fragment overexpression suppressed the protective effect of VD on PA-LPS-induced activation of NLRP3 inflammasome, impairment of cell viability and lipid accumulation, indicating that VD might attenuate NAFLD through inhibiting pyroptosis. Additionally, VD also restored HFD-induced gut microbiota dysbiosis by increasing the relative abundance of Lactobacillus and reducing that of Acetatifactor, Oscillibacter and Flavonifractor. This study provides a novel mechanism underlying VD therapy against NAFLD.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xueying Shang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shi Jin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhuoqi Ma
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - He Wang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Na Ao
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Yang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Du
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
12
|
Wang Q, Shi X, Wang J, Zhang J, Xu C. Low serum vitamin D concentrations are associated with obese but not lean NAFLD: a cross-sectional study. Nutr J 2021; 20:30. [PMID: 33794916 PMCID: PMC8017627 DOI: 10.1186/s12937-021-00690-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A low serum vitamin D concentration has been reported to be associated with an increased risk of non-alcoholic fatty liver disease (NAFLD); however, whether lean or obese individuals show a similar association between vitamin D and NAFLD remains speculative. This study aimed to explore the relationship between serum vitamin D concentration and NAFLD in lean and obese Chinese adults. METHODS This cross-sectional study included 2538 participants (1360 men and 1178 women) who underwent health checkups at the First Affiliated Hospital, Zhejiang University School of Medicine in 2019. NAFLD was diagnosed by liver ultrasound excluding other causes. The association of serum vitamin D concentration with NAFLD was analyzed in lean and obese participants. RESULTS The overall prevalence of NAFLD was 33.61% (13.10% in lean and 53.32% in obese) in this study population. The serum vitamin D levels of obese NAFLD patients were lower than those of obese NAFLD-free controls. However, the serum vitamin D levels of lean NAFLD patients were comparable to those of lean NAFLD-free controls. Serum vitamin D level was negatively correlated with the prevalence of NAFLD in obese but not lean participants. Serum vitamin D level was independently associated with the risk of NAFLD in obese participants, with an adjusted odds ratio (95% CI) of 0.987 (0.981-0.993). However, serum vitamin D level was not related to the risk of NAFLD in lean participants. CONCLUSIONS A low serum vitamin D level is associated with NAFLD in obese but not lean participants.
Collapse
Affiliation(s)
- Qinqiu Wang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Xiaoying Shi
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Jinghua Wang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Juanwen Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
13
|
Zhang J, Feng M, Pan L, Wang F, Wu P, You Y, Hua M, Zhang T, Wang Z, Zong L, Han Y, Guan W. Effects of vitamin D deficiency on the improvement of metabolic disorders in obese mice after vertical sleeve gastrectomy. Sci Rep 2021; 11:6036. [PMID: 33727603 PMCID: PMC7971024 DOI: 10.1038/s41598-021-85531-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/28/2021] [Indexed: 01/31/2023] Open
Abstract
Vertical sleeve gastrectomy (VSG) is one of the most commonly performed clinical bariatric surgeries for the remission of obesity and diabetes. Its effects include weight loss, improved insulin resistance, and the improvement of hepatic steatosis. Epidemiologic studies demonstrated that vitamin D deficiency (VDD) is associated with many diseases, including obesity. To explore the role of vitamin D in metabolic disorders for patients with obesity after VSG. We established a murine model of diet-induced obesity + VDD, and we performed VSGs to investigate VDD's effects on the improvement of metabolic disorders present in post-VSG obese mice. We observed that in HFD mice, the concentration of VitD3 is four fold of HFD + VDD one. In the post-VSG obese mice, VDD attenuated the improvements of hepatic steatosis, insulin resistance, intestinal inflammation and permeability, the maintenance of weight loss, the reduction of fat loss, and the restoration of intestinal flora that were weakened. Our results suggest that in post-VSG obese mice, maintaining a normal level of vitamin D plays an important role in maintaining the improvement of metabolic disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Lisha Pan
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Feng Wang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Pengfei Wu
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yang You
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Meiyun Hua
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Tianci Zhang
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Zheng Wang
- Department of Pathology, The First Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Liang Zong
- Department of Gastrointestinal Surgery, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi, China.
| | - Yuanping Han
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
14
|
Al-ghamdi HA, Al Fayez FF, Bima AI, Khawaji TM, Elsamanoudy AZ. Study of Cellular Senescence and Vitamin D Deficiency in Nonalcoholic Fatty Liver Disease and The Potential Protective Effect of Vitamin D Supplementation. J Clin Exp Hepatol 2021; 11:219-226. [PMID: 33746447 PMCID: PMC7952998 DOI: 10.1016/j.jceh.2020.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a pathological process characterized by excessive hepatic fatty deposition with possible involvement of vitamin D deficiency and cellular senescence. The aim of this study is to investigate the pathophysiologic role of vitamin D deficiency and cellular senescence in NAFLD development. Moreover, it aims to investigate the potential protective role of vitamin D supplementation. METHODS This is an experimental Case/Control study. Forty-five male albino rats were enrolled in this study. Animals were divided into four groups: negative and positive control groups (10 for each group), a model of NAFLD (11) and vitamin D-treated NAFLD groups (14). At the end of the experiment, all rats were subjected to the following investigation; biochemical estimation of serum 25 hydroxycholecalciferol, senescence marker protein-30 (SMP-30), lipid profile and calculation of homeostatic model of insulin resistance (HOMA-IR). RESULTS NAFLD group shows a significant increase in glucose, insulin levels, and HOMA- IR compared with both normal controls. This finding indicates the intimate association between insulin resistance and NAFLD pathogenesis. Moreover, it was found that NAFLD group shows a significant decrease in SMP-30 level compared with normal controls. While vitamin D-treated NAFLD group shows significant increased SMP-30 and decrease in HOMA-IR in comparison with nontreated NAFLD group. CONCLUSION Vitamin D deficiency and increased cellular senescence are key features of NAFLD. Vitamin D supplementation could play a protective role, which needs further investigation including clinical human study.
Collapse
Affiliation(s)
- Hasen A. Al-ghamdi
- Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fayza F. Al Fayez
- Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulhadi I. Bima
- Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Taghreed M. Khawaji
- Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayman Z. Elsamanoudy
- Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
15
|
Zhao M, Chen S, Ji X, Shen X, You J, Liang X, Yin H, Zhao L. Current innovations in nutraceuticals and functional foods for intervention of non-alcoholic fatty liver disease. Pharmacol Res 2021; 166:105517. [PMID: 33636349 DOI: 10.1016/j.phrs.2021.105517] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
As innovations in global agricultural production and food trading systems lead to major dietary shifts, high morbidity rates from non-alcoholic fatty liver disease (NAFLD), accompanied by elevated risk of lipid metabolism-related complications, has emerged as a growing problem worldwide. Treatment and prevention of NAFLD and chronic liver disease depends on the availability of safe, effective, and diverse therapeutic agents, the development of which is urgently needed. Supported by a growing body of evidence, considerable attention is now focused on interventional approaches that combines nutraceuticals and functional foods. In this review, we summarize the pathological progression of NAFLD and discuss the beneficial effects of nutraceuticals and the active ingredients in functional foods. We also describe the underlying mechanisms of these compounds in the intervention of NAFLD, including their effects on regulation of lipid homeostasis, activation of signaling pathways, and their role in gut microbial community dynamics and the gut-liver axis. In order to identify novel targets for treatment of lipid metabolism-related diseases, this work broadly explores the molecular mechanism linking nutraceuticals and functional foods, host physiology, and gut microbiota. Additionally, the limitations in existing knowledge and promising research areas for development of active interventions and treatments against NAFLD are discussed.
Collapse
Affiliation(s)
- Mengyao Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Shumin Chen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoguo Ji
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Shen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangshan You
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyi Liang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China.
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; School of Life Science, Shandong University of Technology, Zibo, Shandong 255000, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
16
|
Kibler L, Heinze CR, Webster CRL. Serum vitamin D status in sick cats with and without cholestatic liver disease. J Feline Med Surg 2020; 22:944-952. [PMID: 31916866 PMCID: PMC10814402 DOI: 10.1177/1098612x19895081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Vitamin D deficiency accompanies chronic cholestatic liver disease (CLD) in humans. The vitamin D status of cats with CLD is unknown. The objectives of this study were to describe serum vitamin D concentrations in cats with CLD and to determine if they correlated with indices of liver disease severity. METHODS Thirty-six cats with CLD, defined by increases in serum bilirubin and serum alanine aminotransferase, and 23 sick cats with non-hepatobiliary diseases were prospectively enrolled. Serum 25-hydroxyvitamin D (25[OH]D), parathyroid hormone (PTH) and ionized calcium were measured. Signalment, clinical signs, comorbidities, diet history, serum bilirubin, liver enzyme activity, albumin, phosphorus, white blood cell count, prothrombin time and final hepatic cytologic/histopathologic diagnosis, when available, were recorded. RESULTS Median serum 25(OH)D levels were similar in cats with CLD (89.5 nmol/l; range 21-112 nmol/l) and sick cats (89.0 nmol/l; range 49-115 nmol/l). Overall 12/36 (33%) cats with CLD and 4/23 (17%) sick cats had 25(OH)D levels below the lower limit of the reference interval (<65 nmol/l). Median PTH concentrations in cats with CLD were significantly higher (0.95 pmol/l; range 0-11.3 pmol/l) than in sick cats (0.70 pmol/l; range 0.5-6 pmol/l). In cats with CLD, 6/36 (17%) had high PTH levels in contrast to only 1/23 (4%) sick cats. In cats with CLD, 25(OH)D concentrations did not correlate with serum bilirubin, albumin or serum liver enzymes but were moderately negatively correlated with white blood cell count (r = - 0.402, P = 0.013). Cats with hepatic lipidosis had the highest prevalence of 25(OH)D concentrations that fell below the reference interval. CONCLUSIONS AND RELEVANCE Many cats with CLD have serum 25(OH)D concentrations below the lower limit of the reference interval. Further study is warranted to determine the clinical relevance and whether supplementation would provide benefits.
Collapse
Affiliation(s)
- Lesli Kibler
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA
| | - Cailin R Heinze
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA
| | - Cynthia RL Webster
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA
| |
Collapse
|
17
|
The Molecular Mechanisms by Which Vitamin D Prevents Insulin Resistance and Associated Disorders. Int J Mol Sci 2020; 21:ijms21186644. [PMID: 32932777 PMCID: PMC7554927 DOI: 10.3390/ijms21186644] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Numerous studies have shown that vitamin D deficiency is very common in modern societies and is perceived as an important risk factor in the development of insulin resistance and related diseases such as obesity and type 2 diabetes (T2DM). While it is generally accepted that vitamin D is a regulator of bone homeostasis, its ability to counteract insulin resistance is subject to debate. The goal of this communication is to review the molecular mechanism by which vitamin D reduces insulin resistance and related complications. The university library, PUBMED, and Google Scholar were searched to find relevant studies to be summarized in this review article. Insulin resistance is accompanied by chronic hyperglycaemia and inflammation. Recent studies have shown that vitamin D exhibits indirect antioxidative properties and participates in the maintenance of normal resting ROS level. Appealingly, vitamin D reduces inflammation and regulates Ca2+ level in many cell types. Therefore, the beneficial actions of vitamin D include diminished insulin resistance which is observed as an improvement of glucose and lipid metabolism in insulin-sensitive tissues.
Collapse
|
18
|
Metabolite profiling of mice under long-term fructose drinking and vitamin D deficiency: increased risks for metabolic syndrome and nonalcoholic fatty liver disease. J Physiol Biochem 2020; 76:587-598. [DOI: 10.1007/s13105-020-00764-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
|
19
|
Ma M, Long Q, Chen F, Zhang T, Wang W. Active vitamin D impedes the progression of non-alcoholic fatty liver disease by inhibiting cell senescence in a rat model. Clin Res Hepatol Gastroenterol 2020; 44:513-523. [PMID: 31810868 DOI: 10.1016/j.clinre.2019.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/26/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) refers to an accumulation of excess fat in liver due to causes other than alcohol use. The relationship between vitamin D (VD) and NAFLD has been previously studied. Therefore, we aimed to explore the mechanism involved active VD regulating the progression of NAFLD by inhibiting cell senescence and to provide a potential approach for further nutritional treatment of NAFLD. METHODS Following the induction with high-fat diet and intraperitoneal injection of corn oil, the successfully established NAFLD rat models were treated with 1,25(OH)2D3 at 1μg/kg, 5μg/kg or 10μg/kg. Meanwhile, the levels of factors related to oxidative stress, cell senescence, the p53-p21 signaling pathway and inflammation in liver were determined. Then, cell senescence was also measured by using senescence-associated β-galactosidase (SAβ-gal) staining. RESULTS It was also found that active VD increased the concentration of VD in serum and VDR in liver of NAFLD rats, and alleviated hepatic fibrosis. Besides, treatment of 1,25(OH)2D3 at 1μg/kg, 5μg/kg or 10μg/kg reduced oxidative stress and inflammation, inhibited the p53-p21 signaling pathway and consequent cell senescence. Furthermore, treatment of 1,25(OH)2D3 at a dosage of 5μg/kg made the most impact on these factors. CONCLUSION Collectively, the evidences from this study demonstrated that active VD could alleviate the development of NAFLD through blocking the p53-p21 signaling pathway, which provided a novel nutritional therapeutic insight for NAFLD.
Collapse
Affiliation(s)
- Ming Ma
- Department of Clinical Nutrition, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052 Hangzhou, P.R, China.
| | - Qi Long
- Department of Clinical Nutrition, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052 Hangzhou, P.R, China
| | - Fei Chen
- Department of Clinical Nutrition, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052 Hangzhou, P.R, China
| | - Ting Zhang
- Department of Clinical Nutrition, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052 Hangzhou, P.R, China
| | - Wenqiao Wang
- Department of Clinical Nutrition, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052 Hangzhou, P.R, China
| |
Collapse
|
20
|
Mutt SJ, Raza GS, Mäkinen MJ, Keinänen‐Kiukaanniemi S, Järvelin M, Herzig K. Vitamin D Deficiency Induces Insulin Resistance and Re‐Supplementation Attenuates Hepatic Glucose Output via the PI3K‐AKT‐FOXO1 Mediated Pathway. Mol Nutr Food Res 2020; 64:e1900728. [DOI: 10.1002/mnfr.201900728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/11/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Shivaprakash Jagalur Mutt
- Institute of Biomedicine, Department of PhysiologyUniversity of Oulu 90014 Oulu Finland
- Biocenter of OuluUniversity of Oulu 90014 Oulu Finland
- Medical Research CenterUniversity of Oulu and Oulu University Hospital 90014 Oulu Finland
| | - Ghulam Shere Raza
- Institute of Biomedicine, Department of PhysiologyUniversity of Oulu 90014 Oulu Finland
- Biocenter of OuluUniversity of Oulu 90014 Oulu Finland
| | - Markus J Mäkinen
- Medical Research CenterUniversity of Oulu and Oulu University Hospital 90014 Oulu Finland
- Cancer and Translational Research Unit, Department of PathologyUniversity of Oulu 90014 Oulu Finland
| | - Sirkka Keinänen‐Kiukaanniemi
- Center for Life Course Health Research, Faculty of MedicineUniversity of Oulu 90014 Oulu Finland
- Unit of General Practice and Primary CareOulu University Hospital 90220 Oulu Finland
- Institute of Health SciencesUniversity of Oulu 90014 Oulu Finland
| | - Marjo‐Riitta Järvelin
- Biocenter of OuluUniversity of Oulu 90014 Oulu Finland
- Center for Life Course Health Research, Faculty of MedicineUniversity of Oulu 90014 Oulu Finland
- Institute of Health SciencesUniversity of Oulu 90014 Oulu Finland
- Unit of General Practice and Primary CareOulu University Hospital 90220 Oulu Finland
- Department of Children, Young People and FamiliesNational Institute for Health and Welfare 90101 Oulu Finland
| | - Karl‐Heinz Herzig
- Institute of Biomedicine, Department of PhysiologyUniversity of Oulu 90014 Oulu Finland
- Biocenter of OuluUniversity of Oulu 90014 Oulu Finland
- Medical Research CenterUniversity of Oulu and Oulu University Hospital 90014 Oulu Finland
- Department of Gastroenterology and MetabolismPoznan University of Medical Sciences 61–701 Poznan Poland
| |
Collapse
|
21
|
Pramono A, Jocken JWE, Blaak EE. Vitamin D deficiency in the aetiology of obesity-related insulin resistance. Diabetes Metab Res Rev 2019; 35:e3146. [PMID: 30801902 DOI: 10.1002/dmrr.3146] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
The obese insulin-resistant state is often associated with low circulating concentration of vitamin D 25-hydroxyvitamin D3 [25(OH)D3 ]. Fat sequestration of vitamin D in the expanded obese adipose tissue mass has been pointed out as a plausible explanation for this circulating vitamin D deficiency. However, the putative mechanisms behind this hypovitaminosis D remain to be elucidated. The presence of vitamin D receptor and vitamin D-metabolizing enzymes in insulin-sensitive organs suggests that vitamin D may be involved in glucose and lipid metabolism and may be related to insulin sensitivity. Indeed, mainly in vitro studies support a role of vitamin D in regulating glucose and lipid metabolism in several insulin-sensitive tissues including adipose tissue, skeletal muscle, liver, as well as pancreatic insulin secretion. A potential role of vitamin D in gut barrier function and metabolism has also been suggested. This review summarizes recent knowledge on vitamin D deficiency in the aetiology of obesity-related insulin resistance and discusses potential underlying mechanisms. Finally, the role of vitamin D supplementation on insulin sensitivity and glycaemic control is discussed.
Collapse
Affiliation(s)
- Adriyan Pramono
- Department of Human Biology, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Johan W E Jocken
- Department of Human Biology, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
22
|
Jahn D, Dorbath D, Kircher S, Nier A, Bergheim I, Lenaerts K, Hermanns HM, Geier A. Beneficial Effects of Vitamin D Treatment in an Obese Mouse Model of Non-Alcoholic Steatohepatitis. Nutrients 2019; 11:nu11010077. [PMID: 30609782 PMCID: PMC6356425 DOI: 10.3390/nu11010077] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023] Open
Abstract
Serum vitamin D levels negatively correlate with obesity and associated disorders such as non-alcoholic steatohepatitis (NASH). However, the mechanisms linking low vitamin D (VD) status to disease progression are not completely understood. In this study, we analyzed the effect of VD treatment on NASH in mice. C57BL6/J mice were fed a high-fat/high-sugar diet (HFSD) containing low amounts of VD for 16 weeks to induce obesity, NASH and liver fibrosis. The effects of preventive and interventional VD treatment were studied on the level of liver histology and hepatic/intestinal gene expression. Interestingly, preventive and to a lesser extent also interventional VD treatment resulted in improvements of liver histology. This included a significant decrease of steatosis, a trend towards lower non-alcoholic fatty liver disease (NAFLD) activity score and a slight non-significant decrease of fibrosis in the preventive treatment group. In line with these changes, preventive VD treatment reduced the hepatic expression of lipogenic, inflammatory and pro-fibrotic genes. Notably, these beneficial effects occurred in conjunction with a reduction of intestinal inflammation. Together, our observations suggest that timely initiation of VD supplementation (preventive vs. interventional) is a critical determinant of treatment outcome in NASH. In the applied animal model, the improvements of liver histology occurred in conjunction with reduced inflammation in the gut, suggesting a potential relevance of vitamin D as a therapeutic agent acting on the gut⁻liver axis.
Collapse
Affiliation(s)
- Daniel Jahn
- Division of Hepatology, University Hospital Würzburg, 97080 Würzburg, Germany.
| | - Donata Dorbath
- Division of Hepatology, University Hospital Würzburg, 97080 Würzburg, Germany.
| | - Stefan Kircher
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany.
| | - Anika Nier
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria.
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria.
| | - Kaatje Lenaerts
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Surgery, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
| | - Heike M Hermanns
- Division of Hepatology, University Hospital Würzburg, 97080 Würzburg, Germany.
| | - Andreas Geier
- Division of Hepatology, University Hospital Würzburg, 97080 Würzburg, Germany.
- Division of Gastroenterology and Hepatology, University Hospital Zürich, 8091 Zürich, Switzerland.
| |
Collapse
|
23
|
Borges CC, Bringhenti I, Mandarim-de-Lacerda CA, Aguila MB. Vitamin D deficiency aggravates the liver metabolism and inflammation in ovariectomized mice. Biomed Pharmacother 2018; 107:878-888. [DOI: 10.1016/j.biopha.2018.08.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/04/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
|
24
|
Jamka M, Arslanow A, Bohner A, Krawczyk M, Weber SN, Grünhage F, Lammert F, Stokes CS. Effects of Gene Variants Controlling Vitamin D Metabolism and Serum Levels on Hepatic Steatosis. Digestion 2018. [PMID: 29514138 DOI: 10.1159/000485180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Common genetic variations in vitamin D metabolism are associated with liver stiffness. Whether these genes are implicated in hepatic steatosis remains unclear. Here we aimed to analyse the association of common vitamin D pathway gene variants with liver steatosis. METHODS Liver steatosis was assessed non-invasively in 241 patients with chronic liver conditions by controlled attenuation parameter (CAP). The following polymorphisms were genotyped using TaqMan assays: group-specific component (GC) rs7041, 7-dehydrocholesterol reductase (DHCR7) rs12785878, cytochrome P450 2R1 (CYP2R1) rs10741657, -vitamin D receptor (VDR) rs7974353. Chemiluminescence immunoassay determined serum 25-hydroxyvitamin D (25(OH) D) concentrations. RESULTS Vitamin D deficiency (defined by 25(OH)D concentrations <20 ng/mL) occurred in 66% of patients. Median CAP was 296 (100-400) dB/m. Patients with advanced steatosis (CAP ≥280 dB/m) had significantly (p = 0.033) lower 25(OH)D levels as compared to patients with CAP <280 dB/m. Moreover, the rare allele [T] in GC rs7041 was significantly (p = 0.018) associated with higher 25(OH)D levels in patients with CAP <280 dB/m. However, GC, DHCR7, CYP2R1, and VDR polymorphisms were not related to liver steatosis and obesity traits. CONCLUSIONS Higher CAP values are associated with low serum 25(OH)D concentrations but not with common vitamin D pathway gene variants.
Collapse
Affiliation(s)
- Małgorzata Jamka
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.,Department of Paediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Anita Arslanow
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Annika Bohner
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.,Laboratory of Metabolic Liver Diseases, Centre for Preclinical Research, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Susanne N Weber
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Frank Grünhage
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.,Department of Internal Medicine, Grevenbroich St. Elisabeth Hospital, Grevenbroich, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Caroline S Stokes
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
25
|
Gorman S, Lucas RM, Allen-Hall A, Fleury N, Feelisch M. Ultraviolet radiation, vitamin D and the development of obesity, metabolic syndrome and type-2 diabetes. Photochem Photobiol Sci 2018; 16:362-373. [PMID: 28009891 DOI: 10.1039/c6pp00274a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Obesity is increasing in prevalence in many countries around the world. Its causes have been traditionally ascribed to a model where energy intake exceeds energy consumption. Reduced energy output in the form of exercise is associated with less sun exposure as many of these activities occur outdoors. This review explores the potential for ultraviolet radiation (UVR), derived from sun exposure, to affect the development of obesity and two of its metabolic co-morbidities, type-2 diabetes and metabolic syndrome. We here discuss the potential benefits (or otherwise) of exposure to UVR based on evidence from pre-clinical, human epidemiological and clinical studies and explore and compare the potential role of UVR-induced mediators, including vitamin D and nitric oxide. Overall, emerging findings suggest a protective role for UVR and sun exposure in reducing the development of obesity and cardiometabolic dysfunction, but more epidemiological and clinical research is required that focuses on measuring the direct associations and effects of exposure to UVR in humans.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia.
| | - Robyn M Lucas
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia. and National Centre of Epidemiology and Public Health, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory
| | - Aidan Allen-Hall
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia.
| | - Naomi Fleury
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia.
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, and NIHR Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
26
|
Zhu A, Chen J, Wu P, Luo M, Zeng Y, Liu Y, Zheng H, Zhang L, Chen Z, Sun Q, Li W, Duan Y, Su D, Xiao Z, Duan Z, Zheng S, Bai L, Zhang X, Ju Z, Li Y, Hu R, Pandol SJ, Han YP. Cationic Polystyrene Resolves Nonalcoholic Steatohepatitis, Obesity, and Metabolic Disorders by Promoting Eubiosis of Gut Microbiota and Decreasing Endotoxemia. Diabetes 2017; 66:2137-2143. [PMID: 28446519 PMCID: PMC5521855 DOI: 10.2337/db17-0070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/15/2017] [Indexed: 12/16/2022]
Abstract
A pandemic of metabolic diseases, consisting of type 2 diabetes, nonalcoholic fatty liver disease, and obesity, has imposed critical challenges for societies worldwide, prompting investigation of underlying mechanisms and exploration of low-cost and effective treatment. In this report, we demonstrate that metabolic disorders in mice generated by feeding with a high-fat diet without dietary vitamin D can be prevented by oral administration of polycationic amine resin. Oral administration of cholestyramine, but not the control uncharged polystyrene, was able to sequester negatively charged bacterial endotoxin in the gut, leading to 1) reduced plasma endotoxin levels, 2) resolved systemic inflammation and hepatic steatohepatitis, and 3) improved insulin sensitivity. Gut dysbiosis, characterized as an increase of the phylum Firmicutes and a decrease of Bacteroidetes and Akkermansia muciniphila, was fully corrected by cholestyramine, indicating that the negatively charged components in the gut are critical for the dysbiosis. Furthermore, fecal bacteria transplant, derived from cholestyramine-treated animals, was sufficient to antagonize the metabolic disorders of the recipient mice. These results indicate that the negatively charged components produced by dysbiosis are critical for biogenesis of metabolic disorders and also show a potential application of cationic polystyrene to treat metabolic disorders through promoting gut eubiosis.
Collapse
Affiliation(s)
- Airu Zhu
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jingjing Chen
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pengfei Wu
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mei Luo
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
- Public Health Clinical Center of Chengdu, Chengdu, China
| | - Yilan Zeng
- Public Health Clinical Center of Chengdu, Chengdu, China
| | - Yong Liu
- Public Health Clinical Center of Chengdu, Chengdu, China
| | - Han Zheng
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Li Zhang
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zishou Chen
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qun Sun
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenwen Li
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yixiang Duan
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Danmei Su
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhixiong Xiao
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhongping Duan
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Sujun Zheng
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Li Bai
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Zhang
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Zhongyuan Ju
- Chengdu Tongde Pharmaceutical Co. Ltd., Chengdu, China
| | - Yan Li
- Chengdu Tongde Pharmaceutical Co. Ltd., Chengdu, China
| | - Richard Hu
- Olive View-UCLA Medical Center, Los Angeles, CA
| | | | - Yuan-Ping Han
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
- Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
27
|
Cordeiro A, Pereira S, Saboya CJ, Ramalho A. Relationship between Nonalcoholic Fatty Liver Disease and Vitamin D Nutritional Status in Extreme Obesity. Can J Gastroenterol Hepatol 2017; 2017:9456897. [PMID: 28685131 PMCID: PMC5480021 DOI: 10.1155/2017/9456897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/24/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the relationship of nonalcoholic fatty liver disease (NAFLD) with nutritional status of vitamin D in extreme obesity. METHODS Descriptive cross-sectional study in individuals with class III obesity (BMI ≥ 40 kg/m2), aged ≥ 20 years to < 60 years. Data were obtained for weight, height, waist circumference (WC), and serum 25-hydroxyvitamin D (25(OH)D) levels. Vitamin D analysis was performed by high performance liquid chromatography (HPLC) and the cutoff points used for its classification were < 20 ng/mL for deficiency and 20-29.9 ng/ml for insufficiency. NAFLD gradation was conducted through histological evaluation by liver biopsy. RESULTS The sample is comprised of 50 individuals (86% female). BMI and average weight were 44.1 ± 3.8 kg/m2 and 121.4 ± 21.4 kg, respectively. Sample distribution according to serum 25(OH)D levels showed 42% of deficiency and 48% of insufficiency. The diagnosis of NAFLD was confirmed in 100% of the individuals, of which 70% had steatosis and 30% had steatohepatitis. The highest percentage of 25(OH)D insufficiency was seen in individuals with steatosis (66%/n = 21) and steatohepatitis (93%/n = 16). All individuals with steatohepatitis presented VDD (p < 0.01). CONCLUSION The results of this study showed high prevalence of serum 25(OH)D inadequacy in individuals with class III obesity, which worsens as the stage of liver disease progresses.
Collapse
Affiliation(s)
- Adryana Cordeiro
- Micronutrients Research Center, Federal University of Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Silvia Pereira
- Micronutrients Research Center, Federal University of Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Carlos José Saboya
- Multidisciplinary Center of Bariatric and Metabolic Surgery, 22280-020 Rio de Janeiro, RJ, 22280-020, Brazil
| | - Andrea Ramalho
- Micronutrients Research Center, Federal University of Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
28
|
Cimini FA, Barchetta I, Carotti S, Bertoccini L, Baroni MG, Vespasiani-Gentilucci U, Cavallo MG, Morini S. Relationship between adipose tissue dysfunction, vitamin D deficiency and the pathogenesis of non-alcoholic fatty liver disease. World J Gastroenterol 2017; 23:3407-3417. [PMID: 28596677 PMCID: PMC5442077 DOI: 10.3748/wjg.v23.i19.3407] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/28/2017] [Accepted: 04/13/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. Its pathogenesis is complex and not yet fully understood. Over the years many studies have proposed various pathophysiological hypotheses, among which the currently most widely accepted is the "multiple parallel hits" theory. According to this model, lipid accumulation in the hepatocytes and insulin resistance increase the vulnerability of the liver to many factors that act in a coordinated and cooperative manner to promote hepatic injury, inflammation and fibrosis. Among these factors, adipose tissue dysfunction and subsequent chronic low grade inflammation play a crucial role. Recent studies have shown that vitamin D exerts an immune-regulating action on adipose tissue, and the growing wealth of epidemiological data is demonstrating that hypovitaminosis D is associated with both obesity and NAFLD. Furthermore, given the strong association between these conditions, current findings suggest that vitamin D may be involved in the relationship between adipose tissue dysfunction and NAFLD. The purpose of this review is to provide an overview of recent advances in the pathogenesis of NAFLD in relation to adipose tissue dysfunction, and in the pathophysiology linking vitamin D deficiency with NAFLD and adiposity, together with an overview of the evidence available on the clinical utility of vitamin D supplementation in cases of NAFLD.
Collapse
|
29
|
Chow MD, Lee YH, Guo GL. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mol Aspects Med 2017; 56:34-44. [PMID: 28442273 DOI: 10.1016/j.mam.2017.04.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/11/2017] [Accepted: 04/20/2017] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease is growing in prevalence worldwide. It is marked by the presence of macrosteatosis on liver histology but is often clinically asymptomatic. However, it can progress into nonalcoholic steatohepatitis which is a more severe form of liver disease characterized by inflammation and fibrosis. Further progression leads to cirrhosis, which predisposes patients to hepatocellular carcinoma or liver failure. The mechanism by which simple steatosis progresses to steatohepatitis is not entirely clear. However, multiple pathways have been proposed. A common link amongst many of these pathways is disruption of the homeostasis of bile acids. Other than aiding in the absorption of lipids and lipid-soluble vitamins, bile acids act as ligands. For example, they bind to farnesoid X receptor, which is critically involved in many of the pathways responsible for maintaining bile acid, glucose, and lipid homeostasis. Alterations to these pathways can lead to dysregulation of energy balance and increased inflammation and fibrosis. Repeated insults over time may be the key to development of steatohepatitis. For this reason, current drug therapies target aspects of these pathways to try to reduce and halt inflammation and fibrosis. This review will focus on the role of bile acids in these various pathways and how changes in these pathways may result in steatohepatitis. While there is no approved pharmaceutical treatment for either hepatic steatosis or steatohepatitis, this review will also touch upon the multitude of potential therapies.
Collapse
Affiliation(s)
- Monica D Chow
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yi-Horng Lee
- Division of Pediatric Surgery, Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Grace L Guo
- Department of Pharmacy and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
30
|
Yang BB, Chen YH, Zhang C, Shi CE, Hu KF, Zhou J, Xu DX, Chen X. Low vitamin D status is associated with advanced liver fibrosis in patients with nonalcoholic fatty liver disease. Endocrine 2017; 55:582-590. [PMID: 27796814 DOI: 10.1007/s12020-016-1152-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023]
Abstract
Several studies explored the association between vitamin D status and nonalcoholic fatty liver disease with contradictory results. We aimed to investigate the association between vitamin D status, inflammatory cytokines and liver fibrosis in nonalcoholic fatty liver disease patients. Two hundred nineteen nonalcoholic fatty liver disease patients and 166 age- and gender- matched healthy controls were recruited for this study. Serum 25(OH)D was measured by radioimmunoassay. Serum interleukin-8 and transforming growth factor-β1 were measured using ELISA. Serum 25(OH)D was only marginally decreased in nonalcoholic fatty liver disease patients. Interestingly, serum 25(OH)D was markedly reduced in nonalcoholic fatty liver disease patients with advanced liver fibrosis compared to nonalcoholic fatty liver disease patients with indeterminate liver fibrosis and no advanced fibrosis. Logistic regression analysis showed that there was an inverse association between serum 25(OH)D and severity of liver fibrosis in nonalcoholic fatty liver disease patients. Further analysis showed that serum interleukin-8 was elevated in nonalcoholic fatty liver disease patients, the highest interleukin-8 in patients with advanced fibrosis. An inverse correlation between serum 25(OH)D and interleukin-8 was observed in nonalcoholic fatty liver disease patients with and without liver fibrosis. Although serum transforming growth factor-β1 was slightly elevated in nonalcoholic fatty liver disease patients, serum transforming growth factor-β1 was reduced in nonalcoholic fatty liver disease patients with advanced fibrosis. Unexpectedly, a positive correlation between serum 25(OH)D and transforming growth factor-β1 was observed in nonalcoholic fatty liver disease patients with advanced fibrosis. In conclusion, low vitamin D status is associated with advanced liver fibrosis in nonalcoholic fatty liver disease patients. Interleukin-8 may be an important mediator for hepatic fibrosis in nonalcoholic fatty liver disease patients with low vitamin D status.
Collapse
Affiliation(s)
- Bing-Bing Yang
- Department of Gastroenterology, Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Chang-E Shi
- Department of Gastroenterology, Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Kai-Feng Hu
- Department of Gastroenterology, Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Ju Zhou
- Department of Gastroenterology, Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China.
| | - Xi Chen
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
31
|
Calcium and vitamin D3 combinations improve fatty liver disease through AMPK-independent mechanisms. Eur J Nutr 2016; 57:731-740. [DOI: 10.1007/s00394-016-1360-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023]
|
32
|
Su D, Nie Y, Zhu A, Chen Z, Wu P, Zhang L, Luo M, Sun Q, Cai L, Lai Y, Xiao Z, Duan Z, Zheng S, Wu G, Hu R, Tsukamoto H, Lugea A, Liu Z, Pandol SJ, Han YP. Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models. Front Physiol 2016; 7:498. [PMID: 27895587 PMCID: PMC5108805 DOI: 10.3389/fphys.2016.00498] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/12/2016] [Indexed: 01/10/2023] Open
Abstract
Metabolic syndrome (MetS), characterized as obesity, insulin resistance, and non-alcoholic fatty liver diseases (NAFLD), is associated with vitamin D insufficiency/deficiency in epidemiological studies, while the underlying mechanism is poorly addressed. On the other hand, disorder of gut microbiota, namely dysbiosis, is known to cause MetS and NAFLD. It is also known that systemic inflammation blocks insulin signaling pathways, leading to insulin resistance and glucose intolerance, which are the driving force for hepatic steatosis. Vitamin D receptor (VDR) is highly expressed in the ileum of the small intestine, which prompted us to test a hypothesis that vitamin D signaling may determine the enterotype of gut microbiota through regulating the intestinal interface. Here, we demonstrate that high-fat-diet feeding (HFD) is necessary but not sufficient, while additional vitamin D deficiency (VDD) as a second hit is needed, to induce robust insulin resistance and fatty liver. Under the two hits (HFD+VDD), the Paneth cell-specific alpha-defensins including α-defensin 5 (DEFA5), MMP7 which activates the pro-defensins, as well as tight junction genes, and MUC2 are all suppressed in the ileum, resulting in mucosal collapse, increased gut permeability, dysbiosis, endotoxemia, systemic inflammation which underlie insulin resistance and hepatic steatosis. Moreover, under the vitamin D deficient high fat feeding (HFD+VDD), Helicobacter hepaticus, a known murine hepatic-pathogen, is substantially amplified in the ileum, while Akkermansia muciniphila, a beneficial symbiotic, is diminished. Likewise, the VD receptor (VDR) knockout mice exhibit similar phenotypes, showing down regulation of alpha-defensins and MMP7 in the ileum, increased Helicobacter hepaticus and suppressed Akkermansia muciniphila. Remarkably, oral administration of DEFA5 restored eubiosys, showing suppression of Helicobacter hepaticus and increase of Akkermansia muciniphila in association with resolving metabolic disorders and fatty liver in the HFD+VDD mice. An in vitro analysis showed that DEFA5 peptide could directly suppress Helicobacter hepaticus. Thus, the results of this study reveal critical roles of a vitamin D/VDR axis in optimal expression of defensins and tight junction genes in support of intestinal integrity and eubiosis to suppress NAFLD and metabolic disorders.
Collapse
Affiliation(s)
- Danmei Su
- The Center for Growth, Metabolism and Aging, and the Key Laboratory for Bio-Resource and Eco-Environment of Education of Ministry, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Yuanyang Nie
- The Center for Growth, Metabolism and Aging, and the Key Laboratory for Bio-Resource and Eco-Environment of Education of Ministry, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Airu Zhu
- The Center for Growth, Metabolism and Aging, and the Key Laboratory for Bio-Resource and Eco-Environment of Education of Ministry, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Zishuo Chen
- The Center for Growth, Metabolism and Aging, and the Key Laboratory for Bio-Resource and Eco-Environment of Education of Ministry, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Pengfei Wu
- The Center for Growth, Metabolism and Aging, and the Key Laboratory for Bio-Resource and Eco-Environment of Education of Ministry, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Li Zhang
- The Center for Growth, Metabolism and Aging, and the Key Laboratory for Bio-Resource and Eco-Environment of Education of Ministry, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Mei Luo
- The Center for Growth, Metabolism and Aging, and the Key Laboratory for Bio-Resource and Eco-Environment of Education of Ministry, College of Life Sciences, Sichuan UniversityChengdu, China
- Chengdu Public Health Clinical CenterChengdu, China
| | - Qun Sun
- The Center for Growth, Metabolism and Aging, and the Key Laboratory for Bio-Resource and Eco-Environment of Education of Ministry, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Linbi Cai
- The Center for Growth, Metabolism and Aging, and the Key Laboratory for Bio-Resource and Eco-Environment of Education of Ministry, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Yuchen Lai
- The Center for Growth, Metabolism and Aging, and the Key Laboratory for Bio-Resource and Eco-Environment of Education of Ministry, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Zhixiong Xiao
- The Center for Growth, Metabolism and Aging, and the Key Laboratory for Bio-Resource and Eco-Environment of Education of Ministry, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Zhongping Duan
- Beijing YouAn Hospital, Capital Medical UniversityBeijing, China
| | - Sujun Zheng
- Beijing YouAn Hospital, Capital Medical UniversityBeijing, China
| | - Guihui Wu
- Chengdu Public Health Clinical CenterChengdu, China
| | - Richard Hu
- Olive View-University of California, Los Angeles Medical CenterLos Angeles, CA, USA
| | - Hidekazu Tsukamoto
- Department of Pathology, Keck School of Medicine of the University of Southern CaliforniaLos Angeles, CA, USA
| | | | - Zhenqui Liu
- Cedars-Sinai Medical CenterLos Angeles, CA, USA
| | | | - Yuan-Ping Han
- The Center for Growth, Metabolism and Aging, and the Key Laboratory for Bio-Resource and Eco-Environment of Education of Ministry, College of Life Sciences, Sichuan UniversityChengdu, China
- Cedars-Sinai Medical CenterLos Angeles, CA, USA
| |
Collapse
|
33
|
Drori A, Shabat Y, Ben Ya'acov A, Danay O, Levanon D, Zolotarov L, Ilan Y. Extracts from Lentinula edodes (Shiitake) Edible Mushrooms Enriched with Vitamin D Exert an Anti-Inflammatory Hepatoprotective Effect. J Med Food 2016; 19:383-9. [DOI: 10.1089/jmf.2015.0111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ariel Drori
- Liver Unit, Department of Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Yehudit Shabat
- Liver Unit, Department of Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Ami Ben Ya'acov
- Liver Unit, Department of Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Ofer Danay
- Migal, Galilee Research Institute, Kiryat Shmone, Israel
| | - Dan Levanon
- Migal, Galilee Research Institute, Kiryat Shmone, Israel
| | - Lidya Zolotarov
- Liver Unit, Department of Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Liver Unit, Department of Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
34
|
Nutritional therapy for nonalcoholic fatty liver disease. J Nutr Biochem 2016; 29:1-11. [DOI: 10.1016/j.jnutbio.2015.08.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023]
|
35
|
Low vitamin D levels and non-alcoholic fatty liver disease, evidence for their independent association in men in East China: a cross-sectional study (Survey on Prevalence in East China for Metabolic Diseases and Risk Factors (SPECT-China)). Br J Nutr 2016; 115:1352-9. [PMID: 26888280 DOI: 10.1017/s0007114516000386] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent studies have suggested an association between vitamin D and non-alcoholic fatty liver disease (NAFLD); however, some results are subject to debate. This study was carried out to evaluate the correlation between NAFLD and vitamin D in men and women in East China. The data were obtained from a cross-sectional study that focused on the health and metabolic status of adults in sixteen areas of East China. According to ultrasonic assessments, the patients were divided into normal and NAFLD groups. Demographic characteristics and biochemical measurements were obtained. Binary logistic regression analysis was used to explore the association. In total, 5066 subjects were enrolled, and 2193 (43·3 %) were diagnosed with NAFLD; 84·56 % of the subjects showed vitamin D deficiency. Subjects with high vitamin D levels had a lower prevalence of NAFLD, particularly male subjects. Within the highest quartile of vitamin D levels, the prevalence of NAFLD was 40·8 %, whereas the lowest quartile of vitamin D levels showed a prevalence of 62·2 %, which was unchanged in women across the vitamin D levels. Binary logistic analysis showed that decreased vitamin D levels were associated with an increased risk of NAFLD (OR 1·54; 95 % CI 1·26, 1·88). This study suggests that vitamin D levels are significantly associated with NAFLD and that vitamin D acts as an independent factor for NAFLD prevalence, particularly in males in East China. Vitamin D interventional treatment might be a new target for controlling NAFLD; elucidating the mechanism requires further research.
Collapse
|
36
|
Vitamin D deficiency in non-alcoholic fatty liver disease: The chicken or the egg? Clin Nutr 2015; 36:191-197. [PMID: 26615912 DOI: 10.1016/j.clnu.2015.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Serum vitamin D concentration is reduced in patients with non-alcoholic fatty liver disease (NAFLD). Although the mechanism of vitamin D deficiency in liver disease is not fully understood, a few reports have suggested the beneficial effects of vitamin D supplements. The present study investigated changes in serum 25-hydroxy vitamin D level and clinical parameters after total calorie restriction with vitamin D intake reduction in NAFLD patients. METHODS Newly diagnosed NAFLD patients with elevated aminotransferase levels were chosen for a calorie restriction and weight-reduction program. A total of 82 patients received nutritional education from nutritionists every 2 weeks for 2 months. Serum 25-hydroxy vitamin D level, amount of vitamin D intake, and physical activity were thoroughly investigated. RESULTS The mean serum 25-hydroxy vitamin D concentration was 13.0 ng/ml. Twenty-nine patients (35.4%) had severe vitamin D deficiency. Patients with a 25-hydroxy vitamin D concentration <10 ng/ml had an increased risk of abdominal obesity (72.4% vs. 47.2%, P = 0.023) and a higher prevalence of metabolic syndrome (69% vs. 42.2%, P = 0.015) compared with patients with 25-hydroxy vitamin D levels >10 ng/ml. Although total energy and vitamin D intake were reduced during the program, serum 25-hydroxy vitamin D levels increased in patients with NAFLD (P < 0.001). Liver enzymes and metabolic parameters also improved, even as vitamin D intake decreased. Serum vitamin D concentration increased with body weight and intrahepatic fat reduction, independent of decreases in vitamin D intake. CONCLUSIONS Weight loss per increased serum vitamin D level without vitamin D supplementation and improved metabolic parameters in NAFLD.
Collapse
|
37
|
Abstract
Associated with the obesity epidemic, non-alcoholic fatty liver disease (NAFLD) has become the leading liver disease in North America. Approximately 30 % of patients with NAFLD may develop non-alcoholic steatohepatitis (NASH) that can lead to cirrhosis and hepatocellular carcinoma (HCC). Frequently animal models are used to help identify underlying factors contributing to NAFLD including insulin resistance, dysregulated lipid metabolism and mitochondrial stress. However, studying the inflammatory, progressive nature of NASH in the context of obesity has proven to be a challenge in mice. Although the development of effective treatment strategies for NAFLD and NASH is gaining momentum, the field is hindered by a lack of a concise animal model that reflects the development of liver disease during obesity and the metabolic syndrome. Therefore, selecting an animal model to study NAFLD or NASH must be done carefully to ensure the optimal application. The most widely used animal models have been reviewed highlighting their advantages and disadvantages to studying NAFLD and NASH specifically in the context of obesity.
Collapse
|
38
|
Delarue J, Lallès JP. Nonalcoholic fatty liver disease: Roles of the gut and the liver and metabolic modulation by some dietary factors and especially long-chain n-3 PUFA. Mol Nutr Food Res 2015; 60:147-59. [DOI: 10.1002/mnfr.201500346] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/25/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Jacques Delarue
- Department of Nutritional Sciences; University Hospital and University of Brest; Brest France
- Breton Federation of Food and Human Nutrition (FED4216); University of Brest; Brest France
| | - Jean-Paul Lallès
- Breton Federation of Food and Human Nutrition (FED4216); University of Brest; Brest France
- Institut National de la Recherche Agronomique; UR1341; Alimentation et Adaptations Digestives; Nerveuses et Comportementales (ADNC); Saint-Gilles France
- Centre de Recherche en Nutrition Humaine-Ouest; Nantes Cedex 1 France
| |
Collapse
|
39
|
Rantakokko P, Männistö V, Airaksinen R, Koponen J, Viluksela M, Kiviranta H, Pihlajamäki J. Persistent organic pollutants and non-alcoholic fatty liver disease in morbidly obese patients: a cohort study. Environ Health 2015; 14:79. [PMID: 26420011 PMCID: PMC4588245 DOI: 10.1186/s12940-015-0066-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/17/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND In animal experiments persistent organic pollutants (POPs) cause hepatosteatosis. In epidemiological studies POPs have positive associations with serum markers of nonalcoholic fatty liver disease (NAFLD) and together with obesity synergistic association with insulin resistance. Because insulin resistance and obesity are critical in NAFLD pathogenesis, we investigated the association of serum pollutant levels with liver histology and alanine aminotransferase (ALT) in morbidly obese. METHODS Liver biopsies were from 161 participants of the Kuopio Obesity Surgery Study (KOBS) who underwent bariatric surgery 2005-2011. Liver histology was categorized as normal, steatosis and non-alcoholic steatohepatitis (NASH). Liver phenotype at baseline and ALT at baseline and 12 months post-surgery were correlated to serum POP concentrations at respective time points. As lipophilic POPs concentrate to smaller fat volume during weight loss, serum levels before and 12 months after bariatric surgery were compared. RESULTS Baseline serum concentration of PCB-118, β-HCH and several PFAAs had an inverse association with lobular inflammation possibly due to changes in bile acid metabolism. ALT had negative associations with many POPs at baseline that turned positive at 12 months after major clinical improvements. There was an interaction between some POPs and sex at 12 months, and in stratified data positive associations were observed mainly in females but not in males. CONCLUSIONS We found a negative association between serum concentrations of PCB-118, β-HCH and several PFAAs with lobular inflammation at baseline. Positive POPs-ATL associations at 12 months among women suggest that increased POP concentrations may decrease the degree of liver recovery.
Collapse
Affiliation(s)
- Panu Rantakokko
- National Institute for Health and Welfare, Department of Health Protection, Chemicals and Health Unit, Kuopio, Finland.
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland.
| | - Riikka Airaksinen
- National Institute for Health and Welfare, Department of Health Protection, Chemicals and Health Unit, Kuopio, Finland.
| | - Jani Koponen
- National Institute for Health and Welfare, Department of Health Protection, Chemicals and Health Unit, Kuopio, Finland.
| | - Matti Viluksela
- National Institute for Health and Welfare, Department of Health Protection, Chemicals and Health Unit, Kuopio, Finland.
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland.
| | - Hannu Kiviranta
- National Institute for Health and Welfare, Department of Health Protection, Chemicals and Health Unit, Kuopio, Finland.
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
- Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
40
|
Vitamin D deficiency impairs glucose-stimulated insulin secretion and increases insulin resistance by reducing PPAR-γ expression in nonobese Type 2 diabetic rats. J Nutr Biochem 2015; 27:257-65. [PMID: 26522682 DOI: 10.1016/j.jnutbio.2015.09.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/03/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022]
Abstract
Human studies have provided relatively strong associations of poor vitamin D status with Type 2 diabetes but do not explain the nature of the association. Here, we explored the physiological pathways that may explain how vitamin D status modulates energy, lipid and glucose metabolisms in nonobese Type 2 diabetic rats. Goto-Kakizaki (GK) rats were fed high-fat diets containing 25 (VD-low), 1000 (VD-normal) or 10,000 (VD-high) cholecalciferol-IU/kg diet for 8 weeks. Energy expenditure, insulin resistance, insulin secretory capacity and lipid metabolism were measured. Serum 25-OH-D levels, an index of vitamin D status, increased dose dependently with dietary vitamin D. VD-low resulted in less fat oxidation without a significant difference in energy expenditure and less lean body mass in the abdomen and legs comparison to the VD-normal group. In comparison to VD-low, VD-normal had lower serum triglycerides and intracellular fat accumulation in the liver and skeletal muscles which was associated with down-regulation of the mRNA expressions of sterol regulatory element binding protein-1c and fatty acid synthase and up-regulation of gene expressions of peroxisome proliferator-activated receptors (PPAR)-α and carnitine palmitoyltransferase-1. In euglycemic hyperinsulinemic clamp, whole-body and hepatic insulin resistance was exacerbated in the VD-low group but not in the VD-normal group, possibly through decreasing hepatic insulin signaling and PPAR-γ expression in the adipocytes. In 3T3-L1 adipocytes 1,25-(OH)2-D (10 nM) increased triglyceride accumulation by elevating PPAR-γ expression and treatment with a PPAR-γ antagonist blocked the triglyceride deposition induced by 1,25-(OH)2-D treatment. VD-low impaired glucose-stimulated insulin secretion in hyperglycemic clamp and decreased β-cell mass by decreasing β-cell proliferation. In conclusion, vitamin D deficiency resulted in the dysregulation of glucose metabolism in GK rats by simultaneously increasing insulin resistance by decreasing adipose PPAR-γ expression and deteriorating β-cell function and mass.
Collapse
|
41
|
Gorman S, Black LJ, Feelisch M, Hart PH, Weller R. Can skin exposure to sunlight prevent liver inflammation? Nutrients 2015; 7:3219-39. [PMID: 25951129 PMCID: PMC4446748 DOI: 10.3390/nu7053219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023] Open
Abstract
Liver inflammation contributes towards the pathology of non-alcoholic fatty liver disease (NAFLD). Here we discuss how skin exposure to sunlight may suppress liver inflammation and the severity of NAFLD. Following exposure to sunlight-derived ultraviolet radiation (UVR), the skin releases anti-inflammatory mediators such as vitamin D and nitric oxide. Animal modeling studies suggest that exposure to UVR can prevent the development of NAFLD. Association studies also support a negative link between circulating 25-hydroxyvitamin D and NAFLD incidence or severity. Clinical trials are in their infancy and are yet to demonstrate a clear beneficial effect of vitamin D supplementation. There are a number of potentially interdependent mechanisms whereby vitamin D could dampen liver inflammation, by inhibiting hepatocyte apoptosis and liver fibrosis, modulating the gut microbiome and through altered production and transport of bile acids. While there has been a focus on vitamin D, other mediators induced by sun exposure, such as nitric oxide may also play important roles in curtailing liver inflammation.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, Western Australia 6008, Australia.
| | - Lucinda J Black
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, Western Australia 6008, Australia.
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, Western Australia 6008, Australia.
| | - Richard Weller
- University of Edinburgh, MRC Centre for Inflammation Research, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
42
|
Zhu L, Kong M, Han YP, Bai L, Zhang X, Chen Y, Zheng S, Yuan H, Duan Z. Spontaneous liver fibrosis induced by long term dietary vitamin D deficiency in adult mice is related to chronic inflammation and enhanced apoptosis. Can J Physiol Pharmacol 2015; 93:385-394. [PMID: 25894394 DOI: 10.1139/cjpp-2014-0275] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epidemiological studies have revealed an association between vitamin D deficiency and various chronic liver diseases. However, it is not known whether lack of vitamin D can induce spontaneous liver fibrosis in an animal model. To study this, mice were fed either a control diet or a vitamin D deficient diet (VDD diet). For the positive control, liver fibrosis was induced with carbon tetrachloride. Here we show, for the first time, that liver fibrosis spontaneously developed in mice fed the VDD diet. Long-term administration of a VDD diet resulted in necro-inflammation and liver fibrosis. Inflammatory mediators including tumor necrosis factor-α, interleulin-1, interleukin-6, Toll-like-receptor 4, and monocyte chemotactic protein-1 were up-regulated in the livers of the mice fed the VDD diet. Conversely, the expression of Th2/M2 markers such as IL-10, IL-13, arginase 1, and heme oxygenase-1 were down-regulated in the livers of mice fed the VDD diet. Transforming growth factor-β1 and matrix metalloproteinase 13, which are important for fibrosis, were induced in the livers of mice fed the VDD diet. Moreover, the VDD diet triggered apoptosis in the parenchymal cells, in agreement with the increased levels of Fas and FasL, and decreased Bcl2 and Bclx. Thus, long-term vitamin D deficiency can provoke chronic inflammation that can induce liver apoptosis, which consequently activates hepatic stellate cells to initiate liver fibrosis.
Collapse
Affiliation(s)
- Longdong Zhu
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | | | | | |
Collapse
|