1
|
Kulkarni A, Nadler JL, Mirmira RG, Casimiro I. Regulation of Tissue Inflammation by 12-Lipoxygenases. Biomolecules 2021; 11:717. [PMID: 34064822 PMCID: PMC8150372 DOI: 10.3390/biom11050717] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Lipoxygenases (LOXs) are lipid metabolizing enzymes that catalyze the di-oxygenation of polyunsaturated fatty acids to generate active eicosanoid products. 12-lipoxygenases (12-LOXs) primarily oxygenate the 12th carbon of its substrates. Many studies have demonstrated that 12-LOXs and their eicosanoid metabolite 12-hydroxyeicosatetraenoate (12-HETE), have significant pathological implications in inflammatory diseases. Increased level of 12-LOX activity promotes stress (both oxidative and endoplasmic reticulum)-mediated inflammation, leading to damage in these tissues. 12-LOXs are also associated with enhanced cellular migration of immune cells-a characteristic of several metabolic and autoimmune disorders. Genetic depletion or pharmacological inhibition of the enzyme in animal models of various diseases has shown to be protective against disease development and/or progression in animal models in the setting of diabetes, pulmonary, cardiovascular, and metabolic disease, suggesting a translational potential of targeting the enzyme for the treatment of several disorders. In this article, we review the role of 12-LOXs in the pathogenesis of several diseases in which chronic inflammation plays an underlying role.
Collapse
Affiliation(s)
- Abhishek Kulkarni
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA;
| | - Jerry L. Nadler
- Department of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| | | | - Isabel Casimiro
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA;
| |
Collapse
|
2
|
Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch 2020; 472:1207-1248. [PMID: 32829466 PMCID: PMC7462918 DOI: 10.1007/s00424-020-02439-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Absorption of monosaccharides is mainly mediated by Na+-D-glucose cotransporter SGLT1 and the facititative transporters GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of D-glucose and D-galactose while GLUT5 is relevant for D-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes, whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal D-glucose concentrations, respectively. At high luminal D-glucose, the abundance SGLT1 in the BBM is increased. Hence, D-glucose absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLM whereas high-capacity D-glucose absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed. Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide transporters in the small intestine. Finally, food components that decrease D-glucose absorption and drugs in development that inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose transporters, and for interplay between D-fructose transport and metabolism, are discussed.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstr 6, 97070, Würzburg, Germany.
| |
Collapse
|
3
|
Cotton JA, Amat CB, Buret AG. Disruptions of Host Immunity and Inflammation by Giardia Duodenalis: Potential Consequences for Co-Infections in the Gastro-Intestinal Tract. Pathogens 2015; 4:764-92. [PMID: 26569316 PMCID: PMC4693164 DOI: 10.3390/pathogens4040764] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022] Open
Abstract
Giardia duodenalis (syn. G. intestinalis, or G. lamblia) is a leading cause of waterborne diarrheal disease that infects hundreds of millions of people annually. Research on Giardia has greatly expanded within the last few years, and our understanding of the pathophysiology and immunology on this parasite is ever increasing. At peak infection, Giardia trophozoites induce pathophysiological responses that culminate in the development of diarrheal disease. However, human data has suggested that the intestinal mucosa of Giardia-infected individuals is devoid of signs of overt intestinal inflammation, an observation that is reproduced in animal models. Thus, our understanding of host inflammatory responses to the parasite remain incompletely understood and human studies and experimental data have produced conflicting results. It is now also apparent that certain Giardia infections contain mechanisms capable of modulating their host's immune responses. As the oral route of Giardia infection is shared with many other gastrointestinal (GI) pathogens, co-infections may often occur, especially in places with poor sanitation and/or improper treatment of drinking water. Moreover, Giardia infections may modulate host immune responses and have been found to protect against the development of diarrheal disease in developing countries. The following review summarizes our current understanding of the immunomodulatory mechanisms of Giardia infections and their consequences for the host, and highlights areas for future research. Potential implications of these immunomodulatory effects during GI co-infection are also discussed.
Collapse
Affiliation(s)
- James A Cotton
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Christina B Amat
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
4
|
Giardia duodenalis cathepsin B proteases degrade intestinal epithelial interleukin-8 and attenuate interleukin-8-induced neutrophil chemotaxis. Infect Immun 2014; 82:2772-87. [PMID: 24733096 DOI: 10.1128/iai.01771-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Giardia duodenalis (syn. G. intestinalis, G. lamblia) infections are a leading cause of waterborne diarrheal disease that can also result in the development of postinfectious functional gastrointestinal disorders via mechanisms that remain unclear. Parasite numbers exceed 10(6) trophozoites per centimeter of gut at the height of an infection. Yet the intestinal mucosa of G. duodenalis-infected individuals is devoid of signs of overt inflammation. G. duodenalis infections can also occur concurrently with infections with other proinflammatory gastrointestinal pathogens. Little is known of whether and how this parasite can attenuate host inflammatory responses induced by other proinflammatory stimuli, such as a gastrointestinal pathogen. Identifying hitherto-unrecognized parasitic immunomodulatory pathways, the present studies demonstrated that G. duodenalis trophozoites attenuate secretion of the potent neutrophil chemoattractant interleukin-8 (CXCL8); these effects were observed in human small intestinal mucosal tissues and from intestinal epithelial monolayers, activated through administration of proinflammatory interleukin-1β or Salmonella enterica serovar Typhimurium. This attenuation is caused by the secretion of G. duodenalis cathepsin B cysteine proteases that degrade CXCL8 posttranscriptionally. Furthermore, the degradation of CXCL8 via G. duodenalis cathepsin B cysteine proteases attenuates CXCL8-induced chemotaxis of human neutrophils. Taken together, these data demonstrate for the first time that G. duodenalis trophozoite cathepsins are capable of attenuating a component of their host's proinflammatory response induced by a separate proinflammatory stimulus.
Collapse
|
5
|
Kosik-Bogacka DI, Wojtkowiak-Giera A, Kolasa A, Czernomysy-Furowicz D, Lanocha N, Wandurska-Nowak E, Salamatin R, Jagodzinski PP. Hymenolepis diminuta: analysis of the expression of Toll-like receptor genes (TLR2 and TLR4) in the small and large intestines of rats. Part II. Exp Parasitol 2013; 135:437-45. [PMID: 23994484 DOI: 10.1016/j.exppara.2013.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 07/30/2013] [Accepted: 08/09/2013] [Indexed: 12/21/2022]
Abstract
Toll-like receptors in the gastrointestinal tract can influence intestinal homeostasis and play a role in the repair and restitution of intestinal epithelium following tissue damage. In our previous study a statistically significant increase in the level of TLR4 and TLR2 gene expression was observed in rats in early stages of hymenolepidosis. Moreover, the immunopositive cell number and the intensity of immunohistochemical staining (indicating the presence of TLRs within intestinal epithelial cells) increased over the infection period. In this paper, we determined changes in the expression of TLR2 and TLR4 and the number of anaerobic intestinal commensal bacteria in Hymenolepis diminuta infected rats. In the isolated jejunum of infected rats at 16 days post infection (dpi), the expression of TLR4 and TLR2 was significantly higher than uninfected rats. In the colon, a statistically significantly increased expression of TLR2 was observed from 16 to 40 dpi, and TLR4 from 16 to 60 dpi. The jejunum and colon of infected rats contained Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Enterococcus, Streptococcus, Staphylococcus, Bacillus, Lactobacillus) and Candida. The total number of intestinal bacteria was higher in H. diminuta infected rats, but the observed microbiota had only minor effects on the expression of TLR2 and TLR4. Toll-like receptors play a role in maintaining epithelial barrier function in response to enteric pathogens and parasites. In our study, the alteration of TLR2 and TLR4 expression in the infected rats indicates the potential role of the innate immune system in the pathomechanism of this infection.
Collapse
Affiliation(s)
- D I Kosik-Bogacka
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Rizzi A, Raddadi N, Sorlini C, Nordgrd L, Nielsen KM, Daffonchio D. The Stability and Degradation of Dietary DNA in the Gastrointestinal Tract of Mammals: Implications for Horizontal Gene Transfer and the Biosafety of GMOs. Crit Rev Food Sci Nutr 2012; 52:142-61. [DOI: 10.1080/10408398.2010.499480] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Cooper CA, Brundige DR, Reh WA, Maga EA, Murray JD. Lysozyme transgenic goats' milk positively impacts intestinal cytokine expression and morphology. Transgenic Res 2011; 20:1235-43. [PMID: 21311970 PMCID: PMC3210943 DOI: 10.1007/s11248-011-9489-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/20/2011] [Indexed: 01/13/2023]
Abstract
In addition to its well-recognized antimicrobial properties, lysozyme can also modulate the inflammatory response. This ability may be particularly important in the gastrointestinal tract where inappropriate inflammatory reactions can damage the intestinal epithelium, leading to significant health problems. The consumption of milk from transgenic goats producing human lysozyme (hLZ) in their milk therefore has the potential to positively impact intestinal health. In order to investigate the effect of hLZ-containing milk on the inflammatory response, young pigs were fed pasteurized milk from hLZ or non-transgenic control goats and quantitative real-time PCR was performed to assess local expression of TNF-α, IL-8, and TGF-β1 in the small intestine. Histological changes were also investigated, specifically looking at villi width, length, crypt depth, and lamina propria thickness along with cell counts for intraepithelial lymphocytes and goblet cells. Significantly higher expression of anti-inflammatory cytokine TGF-β1 was seen in the ileum of pigs fed pasteurized milk containing hLZ (P = 0.0478), along with an increase in intraepithelial lymphocytes (P = 0.0255), and decrease in lamina propria thickness in the duodenum (P = 0.0001). Based on these results we conclude that consuming pasteurized milk containing hLZ does not induce an inflammatory response and improves the health of the small intestine in pigs.
Collapse
Affiliation(s)
- Caitlin A Cooper
- Department of Animal Science, University of California, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Bacterial pathogens must overcome a range of challenges during the process of infecting their host. The ability of a pathogen to sense and respond appropriately to changes in host environment is vital if the pathogen is to succeed. Mammalian defense strategies include the use of barriers like skin and epithelial surfaces, the production of a chemical arsenal, such as stomach acid and reactive oxygen and nitrogen species, and a highly coordinated cellular and humoral immune response. Salmonella serovars are significant human and animal pathogens which have evolved several mechanisms to overcome mammalian host defense. Here we focus on the interplay which occurs between Salmonella and the host during the infection process, with particular emphasis on the complex bacterial response to reactive nitrogen species produced by the host. We discuss recent advances in our understanding of the key mechanisms which confer bacterial resistance to nitrogen species, which in response to nitric oxide include the flavohemoglobin, HmpA, the flavorubredoxin, NorV, and the cytochrome c nitrite reductase, NrfA, whilst in response to nitrate include a repertoire of nitrate reductases. Elucidating the precise role of different aspects of microbial physiology, nitrogen metabolism, and detoxification during infection will provide valuable insight into novel opportunities and potential targets for the development of therapeutic approaches.
Collapse
|
9
|
Potenza MA, Gagliardi S, De Benedictis L, Zigrino A, Tiravanti E, Colantuono G, Federici A, Lorusso L, Benagiano V, Quon MJ, Montagnani M. Treatment of spontaneously hypertensive rats with rosiglitazone ameliorates cardiovascular pathophysiology via antioxidant mechanisms in the vasculature. Am J Physiol Endocrinol Metab 2009; 297:E685-94. [PMID: 19531637 PMCID: PMC2739701 DOI: 10.1152/ajpendo.00291.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 06/14/2009] [Indexed: 12/20/2022]
Abstract
Oxidative stress contributes to cardiovascular complications of diabetes, in part, by reducing the bioavailability of nitric oxide (NO). We investigated the mechanisms whereby the insulin sensitizer rosiglitazone may ameliorate oxidative stress in the vasculature of spontaneously hypertensive rats (SHR). Nine-week-old SHR were treated by gavage for 7 wk with rosiglitazone (5 mg x kg(-1) x day(-1)) or vehicle control. Treatment of SHR with rosiglitazone lowered systolic blood pressure, reduced fasting plasma insulin and asymmetrical dimethylarginine, and increased insulin sensitivity (when compared with vehicle treatment). In vessel homogenates and serum from rosiglitazone-treated SHR, SOD activity was enhanced, while 8-iso-PGF(2alpha) (lipid peroxidation product) was reduced (when compared with samples from vehicle-treated SHR). Moreover, expression of p22phox (catalytic subunit of NADPH oxidase) as well as nitrotyrosine and superoxide content were all reduced in the aortas of rosiglitazone-treated SHR. In mesenteric vascular beds (MVB) isolated ex vivo from rosiglitazone-treated SHR, NO-dependent vasodilator actions of insulin were improved when compared with MVB from vehicle-treated SHR. Acute pretreatment of MVB from vehicle-treated SHR with apocynin (NADPH oxidase inhibitor) enhanced vasodilator actions of insulin (results comparable to those in MVB from rosiglitazone-treated SHR). In Langendorff heart preparations from rosiglitazone-treated SHR, ischemia/reperfusion injury caused infarcts 40% smaller than in hearts from vehicle-treated SHR. Acute pretreatment of hearts from vehicle-treated SHR with apocynin produced similar results. Finally, rosiglitazone treatment of endothelial cells in primary culture reduced superoxide induced by insulin-resistant conditions. We conclude that rosiglitazone therapy in SHR increases SOD activity and decreases p22phox expression in the vasculature to reduce oxidant stress leading to an improved cardiovascular phenotype.
Collapse
Affiliation(s)
- Maria A Potenza
- Dept. of Pharmacology and Human Physiology, Medical School, Univ. of Bari, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bagi Z. Mechanisms of coronary microvascular adaptation to obesity. Am J Physiol Regul Integr Comp Physiol 2009; 297:R556-67. [DOI: 10.1152/ajpregu.90817.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The metabolic syndrome (MetS) is associated with clustering of cardiovascular risk factors in individuals that may greatly increase their risk of developing coronary artery disease. Obesity and related metabolic dysfunction are the driving forces in the prevalence of MetS. It is believed that obesity has detrimental effects on cardiovascular function, but its overall impact on the vasomotor regulation of small coronary arteries is still debated. Emerging evidence indicates that in obesity coronary arteries adapt to hemodynamic changes via maintaining and/or upregulating cellular mechanism(s) intrinsic to the vascular wall. Among other factors, endothelial production of cyclooxygenase-2-derived prostacyclin and reactive oxygen species, as well as increased nitric oxide sensitivity and potassium channel activation in smooth muscle cells, have been implicated in maintaining coronary vasodilator function. This review aims to examine studies that have been primarily focused on alterations in coronary vasodilator function in obesity. A better understanding of cellular mechanisms that may contribute to coronary microvascular adaptation may provide insight into the sequence of pathological events in obesity and may allow the harnessing of these effects for therapeutic purposes.
Collapse
|
11
|
Potenza MA, Addabbo F, Montagnani M. Vascular actions of insulin with implications for endothelial dysfunction. Am J Physiol Endocrinol Metab 2009; 297:E568-77. [PMID: 19491294 DOI: 10.1152/ajpendo.00297.2009] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hemodynamic actions of insulin depend largely on the hormone's ability to stimulate synthesis and release of endothelial mediators, whose balanced activity ensures dynamic control of vascular function. Nitric oxide (NO), endothelin-1 (ET-1), and reactive oxygen species (ROS) are important examples of endothelial mediators with opposing properties on vascular tone, hemostatic processes, and vascular permeability. Reduced NO bioavailability, resulting from either insufficient production or increased degradation of NO, characterizes endothelial dysfunction. In turn, endothelial dysfunction predicts vascular complications of metabolic and hemodynamic disorders. In the cardiovascular system, insulin stimulates the production and release of NO, ET-1, and ROS via activation of distinct intracellular signaling pathways. Under insulin-resistant conditions, increased insulin concentrations and/or impaired insulin-signaling pathways in the vasculature may contribute to imbalance in secretion of endothelial mediators that promote pathogenesis of vascular abnormalities. This short review describes signaling pathways involved in insulin-stimulated release of NO, ROS, and ET-1 and suggests possible molecular mechanisms by which abnormal insulin signaling may contribute to endothelial dysfunction.
Collapse
Affiliation(s)
- Maria Assunta Potenza
- Department of Pharmacology and Human Physiology, Medical School, University of Bari, Bari, Italy
| | | | | |
Collapse
|
12
|
Villalba N, Martínez P, Bríones AM, Sánchez A, Salaíces M, García-Sacristán A, Hernández M, Benedito S, Prieto D. Differential structural and functional changes in penile and coronary arteries from obese Zucker rats. Am J Physiol Heart Circ Physiol 2009; 297:H696-707. [PMID: 19542483 DOI: 10.1152/ajpheart.01308.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erectile dysfunction frequently coexists with coronary artery disease and has been proposed as a potential marker for silent coronary artery disease in type 2 diabetes. In the present study, we comparatively assessed the structural and functional changes of both penile arteries (PAs) and coronary arteries (CAs) from a prediabetic animal model. PAs and CAs from 17- to 18-wk-old obese Zucker rats (OZRs) and from their control counterparts [lean Zucker rats (LZRs)] were mounted in microvascular myographs to evaluate vascular function, and stained arteries were subjected to morphometric analysis. Endothelial nitric oxide (NO) synthase (eNOS) protein expression was also assessed. The internal diameter was reduced and the wall-to-lumen ratio was increased in PAs from OZRs, but structure was preserved in CAs. ACh-elicited relaxations were severely impaired in PAs but not in CAs from OZRs, although eNOS expression was unaltered. Contractions to norepinephrine and 5-HT were significantly enhanced in both PAs and CAs, respectively, from OZRs. Blockade of NOS abolished endothelium-dependent relaxations in PAs and CAs and potentiated norepinephrine and 5-HT contractions in arteries from LZRs but not from OZRs. The vasodilator response to the phosphodiesterase 5 inhibitor sildenafil was reduced in both PAs and CAs from OZRs. Pretreatment with SOD reduced the enhanced vasoconstriction in both PAs and CAs from OZRs but did not restore ACh-induced relaxations in PAs. In conclusion, the present results demonstrate vascular inward remodeling in PAs and a differential impairment of endothelial relaxant responses in PAs and CAs from insulin-resistant OZRs. Enhanced superoxide production and reduced basal NO activity seem to underlie the augmented vasoconstriction in both PAs and CAs. The severity of the structural and functional abnormalities in PAs might anticipate the vascular dysfunction of the more preserved coronary vascular bed.
Collapse
Affiliation(s)
- Nuria Villalba
- Department of Physiology, Faculty of Pharmacy, Faculty of Veterinary Sciences, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Subramanian K, Selvakkumar C, Vinaykumar KS, Goswami N, Meenakshisundaram S, Balakrishnan A, Lakshmi BS. Tackling multiple antibiotic resistance in enteropathogenic Escherichia coli (EPEC) clinical isolates: a diarylheptanoid from Alpinia officinarum shows promising antibacterial and immunomodulatory activity against EPEC and its lipopolysaccharide-induced inflammation. Int J Antimicrob Agents 2009; 33:244-50. [DOI: 10.1016/j.ijantimicag.2008.08.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 08/20/2008] [Accepted: 08/21/2008] [Indexed: 11/29/2022]
|
14
|
Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 2009; 89:27-71. [PMID: 19126754 DOI: 10.1152/physrev.00014.2008] [Citation(s) in RCA: 370] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regulated production of reactive oxygen species (ROS)/reactive nitrogen species (RNS) adequately balanced by antioxidant systems is a prerequisite for the participation of these active substances in physiological processes, including insulin action. Yet, increasing evidence implicates ROS and RNS as negative regulators of insulin signaling, rendering them putative mediators in the development of insulin resistance, a common endocrine abnormality that accompanies obesity and is a risk factor of type 2 diabetes. This review deals with this dual, seemingly contradictory, function of ROS and RNS in regulating insulin action: the major processes for ROS and RNS generation and detoxification are presented, and a critical review of the evidence that they participate in the positive and negative regulation of insulin action is provided. The cellular and molecular mechanisms by which ROS and RNS are thought to participate in normal insulin action and in the induction of insulin resistance are then described. Finally, we explore the potential usefulness and the challenges in modulating the oxidant-antioxidant balance as a potentially promising, but currently disappointing, means of improving insulin action in insulin resistance-associated conditions, leading causes of human morbidity and mortality of our era.
Collapse
Affiliation(s)
- Nava Bashan
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | |
Collapse
|
15
|
Katakam PVG, Domoki F, Snipes JA, Busija AR, Jarajapu YPR, Busija DW. Impaired mitochondria-dependent vasodilation in cerebral arteries of Zucker obese rats with insulin resistance. Am J Physiol Regul Integr Comp Physiol 2008; 296:R289-98. [PMID: 19005015 DOI: 10.1152/ajpregu.90656.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria affect cerebrovascular tone by activation of mitochondrial ATP-sensitive K+ (K ATP) channels and generation of reactive oxygen species (ROS). Insulin resistance accompanying obesity causes mitochondrial dysfunction, but the consequences on the cerebral circulation have not been fully identified. We evaluated the mitochondrial effects of diazoxide, a putative mitochondrial K ATP channel activator, on cerebral arteries of Zucker obese (ZO) rats with insulin resistance and lean (ZL) controls. Diameter measurements showed diminished diazoxide-induced vasodilation in ZO compared with ZL rats. Maximal relaxation was 38 +/- 3% in ZL vs. 21 +/- 4% in ZO rats (P < 0.05). Iberiotoxin, a Ca2+-activated K+ channel inhibitor, or manganese(III) tetrakis(4-benzoic acid)porphyrin chloride, an SOD mimetic, or endothelial denudation diminished vasodilation to diazoxide, implicating Ca2+-activated K+ channels, ROS, and endothelial factors in vasodilation. Inhibition of nitric oxide synthase (NOS) in ZL rats diminished diazoxide-induced vasodilation in intact arteries, but vasodilation was unaffected in endothelium-denuded arteries. In contrast, NOS inhibition in ZO rats enhanced vasodilation in endothelium-denuded arteries, but intact arteries were unaffected, suggesting that activity of endothelial NOS was abolished, whereas factors derived from nonendothelial NOS promoted vasoconstriction. Fluorescence microscopy showed decreased mitochondrial depolarization, ROS production, and nitric oxide generation in response to diazoxide in ZO arteries. Protein and mRNA measurements revealed increased expression of endothelial NOS and SODs in ZO arteries. Thus, cerebrovascular dilation to mitochondria-derived factors involves integration of endothelial and smooth muscle mechanisms. Furthermore, mitochondria-mediated vasodilation was diminished in ZO rats due to impaired mitochondrial K(ATP) channel activation, diminished mitochondrial ROS generation, increased ROS scavenging, and abnormal NOS activity.
Collapse
Affiliation(s)
- Prasad V G Katakam
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Effects of multispecies probiotic combination on helicobacter pylori infection in vitro. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1472-82. [PMID: 18579692 DOI: 10.1128/cvi.00080-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Probiotic bacteria alleviate many gastrointestinal symptoms, but the current trend of combining bacteria for additional benefit may make their effects more complex. We characterize four probiotics and their combination in terms of pathogen adhesion, barrier function, cell death, and inflammatory response in Helicobacter pylori-infected epithelial cells. H. pylori-infected Caco-2 cells were pretreated with Lactobacillus rhamnosus GG, Lactobacillus rhamnosus Lc705, Propionibacterium freudenreichii subsp. shermanii Js, Bifidobacterium breve Bb99, or all four organisms in combination. We evaluated the adhesion of H. pylori by in situ immunofluorescence; epithelial barrier function by measurement of transepithelial resistance; apoptosis by measurement of caspase 3 activation; cell membrane leakage by measurement of lactate dehydrogenase release; and inflammation by measurement of interleukin-8 (IL-8), IL-10, prostaglandin E(2) (PGE(2)), and leukotriene B(4) (LTB(4)) release. All probiotics inhibited H. pylori adhesion. L. rhamnosus GG, L. rhamnosus Lc705, P. freudenreichii subsp. shermanii Js, and the combination inhibited H. pylori-induced cell membrane leakage. L. rhamnosus GG, L. rhamnosus Lc705, and the combination initially improved epithelial barrier function but increased the H. pylori-induced barrier deterioration after incubation for 24 to 42 h. L. rhamnosus GG, L. rhamnosus Lc705, and P. freudenreichii subsp. shermanii Js inhibited H. pylori-induced IL-8 release, whereas L. rhamnosus GG, L. rhamnosus Lc705, and B. breve Bb99 suppressed PGE(2) release. None of these anti-inflammatory effects persisted when the probiotics were used in combination. The combination thus increased the levels of IL-8, PGE(2), and LTB(4) released from H. pylori-infected epithelial cells. The proinflammatory actions of the individual components dominated the anti-inflammatory effects when the probiotic bacteria were used in combination. Our results stress that the therapeutic response can be optimized if probiotic strains are characterized before they are used in combination.
Collapse
|
17
|
Jebelovszki E, Kiraly C, Erdei N, Feher A, Pasztor ET, Rutkai I, Forster T, Edes I, Koller A, Bagi Z. High-fat diet-induced obesity leads to increased NO sensitivity of rat coronary arterioles: role of soluble guanylate cyclase activation. Am J Physiol Heart Circ Physiol 2008; 294:H2558-64. [PMID: 18408126 DOI: 10.1152/ajpheart.01198.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The impact of obesity on nitric oxide (NO)-mediated coronary microvascular responses is poorly understood. Thus NO-mediated vasomotor responses were investigated in pressurized coronary arterioles ( approximately 100 microm) isolated from lean (on normal diet) and obese (fed with 60% of saturated fat) rats. We found that dilations to acetylcholine (ACh) were not significantly different in obese and lean rats (lean, 83 +/- 4%; and obese, 85 +/- 3% at 1 microM), yet the inhibition of NO synthesis with N(omega)-nitro-l-arginine methyl ester reduced ACh-induced dilations only in vessels of lean controls. The presence of the soluble guanylate cyclase (sGC) inhibitor oxadiazolo-quinoxaline (ODQ) elicited a similar reduction in ACh-induced dilations in the two groups of vessels (lean, 60 +/- 11%; and obese, 57 +/- 3%). Dilations to NO donors, sodium nitroprusside (SNP), and diethylenetriamine (DETA)-NONOate were enhanced in coronary arterioles of obese compared with lean control rats (lean, 63 +/- 6% and 51 +/- 5%; and obese, 78 +/- 5% and 70 +/- 5%, respectively, at 1 microM), whereas dilations to 8-bromo-cGMP were not different in the two groups. In the presence of ODQ, both SNP and DETA-NONOate-induced dilations were reduced to a similar level in lean and obese rats. Moreover, SNP-stimulated cGMP immunoreactivity in coronary arterioles and also cGMP levels in carotid arteries were enhanced in obese rats, whereas the protein expression of endothelial NOS and the sGC beta1-subunit were not different in the two groups. Collectively, these findings suggest that in coronary arterioles of obese rats, the increased activity of sGC leads to an enhanced sensitivity to NO, which may contribute to the maintenance of NO-mediated dilations and coronary perfusion in obesity.
Collapse
Affiliation(s)
- Eva Jebelovszki
- Second Department of Medicine and Center of Cardiology, University of Szeged, Szeged
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The NleE/OspZ family of effector proteins is required for polymorphonuclear transepithelial migration, a characteristic shared by enteropathogenic Escherichia coli and Shigella flexneri infections. Infect Immun 2007; 76:369-79. [PMID: 17984206 DOI: 10.1128/iai.00684-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) and Shigella flexneri are human host-specific pathogens that infect intestinal epithelial cells. However, each bacterial species employs a different infection strategy within this environmental niche. EPEC attaches to the apical surface of small intestine enterocytes, causing microvillus effacement and rearrangement of the host cell cytoskeleton beneath adherent bacteria. In contrast, S. flexneri invades the large intestine epithelium at the basolateral membrane, replicates, and spreads cell to cell. Both EPEC and S. flexneri rely on type three secretion systems (T3SS) to secrete effectors into host cells, and both pathogens recruit polymorphonuclear leukocytes (PMNs) from the submucosa to the lumen of the intestine. In this report, we compared the virulence functions of the EPEC T3SS effector NleE and the homologous Shigella protein Orf212. We discovered that Orf212 was secreted by the S. flexneri T3SS and renamed this protein OspZ. Infection of polarized T84 intestinal epithelial cells with an ospZ deletion mutant of S. flexneri resulted in reduced PMN transepithelial migration compared to infection by the wild type. An nleE deletion mutant of EPEC showed a similar reduction of PMN migration. The ability to induce PMN migration was restored in both mutants when either ospZ or nleE was expressed from a plasmid. An infection of T84 cells with the delta ospZ mutant resulted in reduced extracellular signal-related kinase phosphorylation and NF-kappaB activation compared to infection with the wild type. Therefore, we conclude that OspZ and NleE have similar roles in the upstream induction of host signaling pathways required for PMN transepithelial migration in Shigella and EPEC infections.
Collapse
|
19
|
Duncan ER, Walker SJ, Ezzat VA, Wheatcroft SB, Li JM, Shah AM, Kearney MT. Accelerated endothelial dysfunction in mild prediabetic insulin resistance: the early role of reactive oxygen species. Am J Physiol Endocrinol Metab 2007; 293:E1311-9. [PMID: 17711985 DOI: 10.1152/ajpendo.00299.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance is well established as an independent risk factor for the development of type 2 diabetes and cardiovascular atherosclerosis. Most studies have examined atherogenesis in models of severe insulin resistance or diabetes. However, by the time of diagnosis, individuals with type 2 diabetes already demonstrate a significant atheroma burden. Furthermore, recent studies suggest that, even in adolescence, insulin resistance is a progressive disorder that increases cardiovascular risk. In the present report, we studied early mechanisms of reduction in the bioavailability of the antiatheroscerotic molecule nitric oxide (NO) in very mild insulin resistance. Mice with haploinsufficiency for the insulin receptor (IRKO) are a model of mild insulin resistance with preserved glycemic control. We previously demonstrated that 2-mo-old (Young) IRKO mice have preserved vasorelaxation responses to ACh. This remained the case at 4 mo of age. However, by 6 mo, despite no significant deterioration in glucose homeostasis (Adult), IRKO mice had marked blunting of ACh-mediated vasorelaxation [IRKO maximum contraction response (E(max)) 66 +/- 5% vs. wild type 87 +/- 4%, P < 0.01]. Despite the endothelial dysfunction demonstrated, aortic endothelial nitric oxide synthase (eNOS) mRNA levels were similar in Adult IRKO and wild-type mice, and, interestingly, aortic eNOS protein levels were increased, suggesting a compensatory upregulation in the IRKO. We then examined the potential role of reactive oxygen species in mediating early endothelial dysfunction. The superoxide dismutase mimetic Mn(III)tetrakis(1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP) restored ACh relaxation responses in the Adult IRKO (E(max) to ACh with MnTMPyP 85 +/- 5%). Dihydroethidium fluorescence of aortas and isolated coronary microvascular endothelial cells confirmed a substantial increase in endothelium-derived reactive oxygen species in IRKO mice. These data demonstrate that mild insulin resistance is a potent substrate for accelerated endothelial dysfunction and support a role for endothelial cell superoxide production as a mechanism underlying the early reduction in NO bioavailability.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/metabolism
- Blood Glucose/metabolism
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/metabolism
- In Vitro Techniques
- Insulin/blood
- Insulin Resistance/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide Synthase Type III/biosynthesis
- Nitric Oxide Synthase Type III/genetics
- Nitroprusside/pharmacology
- Phenylephrine/pharmacology
- Prediabetic State/enzymology
- Prediabetic State/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Reactive Oxygen Species/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Statistics, Nonparametric
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- Edward R Duncan
- The Cardiovascular Division, King's College London School of Medicine, King's College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Eringa EC, Stehouwer CDA, Roos MH, Westerhof N, Sipkema P. Selective resistance to vasoactive effects of insulin in muscle resistance arteries of obese Zucker (fa/fa) rats. Am J Physiol Endocrinol Metab 2007; 293:E1134-9. [PMID: 17623751 DOI: 10.1152/ajpendo.00516.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UNLABELLED Obesity is related to insulin resistance and hypertension, but the underlying mechanisms are unclear. Insulin exerts both vasodilator and vasoconstrictor effects on muscle resistance arteries, which may be differentially impaired in obesity. OBJECTIVES To investigate whether vasodilator and vasoconstrictor effects of insulin are impaired in muscle resistance arteries of obese rats and the roles of Akt and endothelial NO synthase (eNOS). METHODS/RESULTS Effects of insulin were studied in resistance arteries isolated from cremaster muscles of lean and obese Zucker rats. In arteries of lean rats, insulin increased activity of both NO and endothelin (ET-1), resulting in a neutral effect under basal conditions. In arteries of obese rats, insulin induced endothelin-mediated vasoconstriction (-15 +/- 5% at 1 nM, P < 0.05 vs. lean). Insulin induced vasodilatation during endothelin receptor blockade in arteries of lean rats (20 +/- 5% at 1 nM) but not in those of obese rats. Inhibition of NO synthesis increased vascular tone (by 12 +/- 2%) and shifted insulin-mediated vasoreactivity to vasoconstriction (-25 +/- 1% at 1 nM) in lean rats but had no effect in arteries of obese rats, indicating reduced NO activity. Protein analysis of resistance arteries revealed that insulin-mediated activation of Akt was preserved in obese rats, whereas expression of eNOS was markedly decreased. CONCLUSIONS Vasodilator but not vasoconstrictor effects of insulin are impaired in muscle resistance arteries of obese rats, and this selective impairment is associated with decreased protein levels of eNOS. These findings provide a new mechanism linking obesity to insulin resistance and hypertension.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Endothelin Receptor Antagonists
- Endothelin-1/antagonists & inhibitors
- Endothelin-1/metabolism
- Enzyme Inhibitors/pharmacology
- In Vitro Techniques
- Insulin/pharmacology
- Insulin Resistance/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Nitric Oxide Synthase Type III/biosynthesis
- Nitric Oxide Synthase Type III/metabolism
- Nitroarginine/pharmacology
- Obesity/enzymology
- Obesity/metabolism
- Obesity/physiopathology
- Oligopeptides/pharmacology
- Oncogene Protein v-akt/metabolism
- Rats
- Rats, Zucker
- Receptors, Endothelin/metabolism
- Vasoconstriction/drug effects
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Etto C Eringa
- Laboratory for Physiology, Institute for Cardiovascular Research ICaR-VU VU University Medical Center, 1081 BT, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Pan CY, Chen JY, Cheng YSE, Chen CY, Ni IH, Sheen JF, Pan YL, Kuo CM. Gene expression and localization of the epinecidin-1 antimicrobial peptide in the grouper (Epinephelus coioides), and its role in protecting fish against pathogenic infection. DNA Cell Biol 2007; 26:403-13. [PMID: 17570764 DOI: 10.1089/dna.2006.0564] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epinecidin-1 is an antimicrobial peptide and plays a vital role in protecting fish against pathogenic infection. As a mimic of a grouper epinecidin-1 peptide, it has tertiary structures that closely resemble those of pleurocidin found in the winter flounder (Pleuronectes americanus). The tissue-specific, lipopolysaccharide (LPS)-stimulation-specific, and poly(I):poly(C)-stimulation-specific expressions of the grouper (Epinephelus coioides) epinecidin-1 antimicrobial peptide were determined using a comparative reverse-transcription polymerase chain reaction. Results of the tissue distribution analysis revealed high levels of epinecidin-1 messenger RNA (mRNA) in the head kidneys, intestines, and skin. Expression of epinecidin-1 mRNA was dose-dependently stimulated by both LPS and poly(I):poly(C). Immunohistochemical analysis with the polyclonal antiserum of a grouper epinecidin-1 peptide (rabbit polyclonal antibody) showed that the peptide was localized with the epinecidin-1 antibody in the gills and intestines. Two synthetic peptides of the grouper epinecidin-1 peptide (g-ple 22-51 and g-ple 22-42) and one winter flounder pleurocidin as a control exhibited high antimicrobial activities against gram-negative or gram-positive bacteria. In addition, peptide treatment was effective in promoting a significant increase in fish survival after the injection of Vibrio vulnificus in tilapia (Oreochromis mossambicus) and grouper. These results are relevant to the design of prophylactic and therapeutic strategies to counter bacterial infections, especially for preventing or ameliorating immune defects in fish during bacterial infections.
Collapse
Affiliation(s)
- Chia-Yu Pan
- Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
van Aubel RAMH, Keestra AM, Krooshoop DJEB, van Eden W, van Putten JPM. Ligand-induced differential cross-regulation of Toll-like receptors 2, 4 and 5 in intestinal epithelial cells. Mol Immunol 2007; 44:3702-14. [PMID: 17493681 DOI: 10.1016/j.molimm.2007.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 03/30/2007] [Accepted: 04/02/2007] [Indexed: 10/23/2022]
Abstract
Toll-like receptors (TLR) 2, TLR4 and TLR5 are primary mucosal sensors of microbial patterns. Dissection of the cross-talk between TLRs in intestinal cells has thus far been hampered by the lack of functional TLR2 and TLR4 in in vitro model systems. Here we report that the mouse intestinal epithelial cell line mIC(cl2) expresses these TLRs and that receptor expression and function are regulated by environmental TLR stimuli. Our results show that stimulation of TLR5 by bacterial flagellin resulted in upregulated TLR2 and TLR4 mRNA and concomitant sensitization of the cells for subsequent TLR2 (Pam(3)CSK(4)) and TLR4 (LPS) stimulation. Exposure to low amounts of either Pam(3)CSK(4) or LPS in turn downregulated TLR5 mRNA and attenuated subsequent flagellin-mediated NF-kappaB activation, pointing to a negative feedback mechanism. Pam(3)CSK(4) and LPS also downregulated TLR4 mRNA but upregulated TLR2 mRNA and sensitized cells for subsequent TLR2 stimulation. Inhibition of the phosphatidyl-inositol-3-kinase/Akt pathway only affected LPS-mediated TLR cross-talk indicating that differential TLR cross-regulation was conferred via different mechanisms. Together, our results demonstrate that the expression and function of TLR in intestinal cells are highly dynamic and tightly regulated in response to encountered bacterial stimuli.
Collapse
Affiliation(s)
- Rémon A M H van Aubel
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Stulic M, Lubin FD, O'Donnell PM, Tammariello SP, McGee DW. Effect of the alpha3beta1 integrin on the IL-1 stimulated activation of c-Jun N-terminal kinase (JNK) in CACO-2 cells. Cytokine 2007; 37:163-70. [PMID: 17481915 DOI: 10.1016/j.cyto.2007.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 01/04/2007] [Accepted: 03/20/2007] [Indexed: 11/20/2022]
Abstract
Intestinal epithelial cells (IEC) are capable of responding to IL-1 stimulation by producing a variety of pro-inflammatory cytokines. Recently, we have found that binding of the alpha3beta1 integrin may have a regulatory effect on IL-1 responses and intracellular signaling by suppressing cytokine secretion, mRNA expression and the downstream intracellular signaling events from IKK to NF-kappaB activation. In this study, we extend these findings by showing that treatment of the Caco-2 epithelial cells with a cross-linking anti-alpha3 integrin antibody resulted in a suppression in the levels of IL-1 induced AP-1 binding activity in nuclear extracts. Furthermore, suppressed levels of IL-1 induced c-Jun N-terminal kinase (JNK) phosphorylation and kinase activity were seen with the antibody treated cells. Cells cultured on purified laminin-5, the ligand for the alpha3beta1 integrin, did not show significantly elevated levels of JNK phosphorylation after IL-1 stimulation while cells cultured on fibronectin yielded significantly elevated levels of IL-1 induced JNK phosphorylation. These results indicate that binding of the alpha3beta1 integrin results in a suppression in the activation of the IL-1 induced intracellular signaling pathway from JNK to AP-1. This novel regulatory effect may be a potentially important mechanism to regulate IL-1 mediated responses by IEC.
Collapse
Affiliation(s)
- Mate Stulic
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902-6000, USA
| | | | | | | | | |
Collapse
|
24
|
deSchoolmeester ML, Manku H, Else KJ. The innate immune responses of colonic epithelial cells to Trichuris muris are similar in mouse strains that develop a type 1 or type 2 adaptive immune response. Infect Immun 2006; 74:6280-6. [PMID: 17057095 PMCID: PMC1695505 DOI: 10.1128/iai.01609-05] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Trichuris muris resides in intimate contact with its host, burrowing within cecal epithelial cells. However, whether the enterocyte itself responds innately to T. muris is unknown. This study investigated for the first time whether colonic intestinal epithelial cells (IEC) produce cytokines or chemokines following T. muris infection and whether divergence of the innate response could explain differentially polarized adaptive immune responses in resistant and susceptible mice. Increased expression of mRNA for the proinflammatory cytokines gamma interferon (IFN-gamma) and tumor necrosis factor and the chemokine CCL2 (MCP-1) were seen after infection of susceptible and resistant strains, with the only difference in expression being a delayed increase in CCL2 in BALB/c IEC. These increases were ablated in MyD88-/- mice, and NF-kappaB p65 was phosphorylated in response to T. muris excretory/secretory products in the epithelial cell line CMT-93, suggesting involvement of the MyD88-NF-kappaB signaling pathway in IEC cytokine expression. These data reveal that IEC respond innately to T. muris. However, the minor differences identified between resistant and susceptible mice are unlikely to underlie the subsequent development of a susceptible type 1 (IFN-gamma-dominated) or resistant type 2 (interleukin-4 [IL-4]/IL-13-dominated) adaptive immune response.
Collapse
Affiliation(s)
- Matthew L deSchoolmeester
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.
| | | | | |
Collapse
|
25
|
Lukas M, Bortlik M, Maratka Z. What is the origin of ulcerative colitis? Still more questions than answers. Postgrad Med J 2006; 82:620-5. [PMID: 17068271 PMCID: PMC2653902 DOI: 10.1136/pmj.2006.047035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 04/22/2006] [Indexed: 01/28/2023]
Abstract
Despite more than a century of existence as a clinical entity, the true origin of ulcerative colitis still remains elusive. Several factors probably contribute to the development of this condition. Recently discovered technologies have clarified the role of bacterial species, which may account for intestinal dysbiosis, as a factor triggering ulcerative colitis. Genetic susceptibility together with abnormal innate immunoreactivity probably comprise the essential prerequisites for the initiation and perpetuation of ulcerative colitis. Although the genetic background has been more clearly recognised in patients with Crohn's disease than in those with ulcerative colitis, some candidate loci associated with ulcerative colitis have also been intensively studied. Additionally, environmental factors may interfere with inherent predispositions to ulcerative colitis, and either suppress or reinforce them. Whatever the origin, the search for the aetiology of ulcerative colitis must have the same goal: the improvement of treatment and the quality of life in patients with ulcerative colitis.
Collapse
Affiliation(s)
- Milan Lukas
- Gastroenterology Center, Fourth Medical Department, General Faculty Hospital, First School of Medicine, Charles University, Prague, Czech Republic.
| | | | | |
Collapse
|
26
|
Katakam PVG, Jordan JE, Snipes JA, Tulbert CD, Miller AW, Busija DW. Myocardial preconditioning against ischemia-reperfusion injury is abolished in Zucker obese rats with insulin resistance. Am J Physiol Regul Integr Comp Physiol 2006; 292:R920-6. [PMID: 17008456 DOI: 10.1152/ajpregu.00520.2006] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin resistance (IR) precedes the onset of Type 2 diabetes, but its impact on preconditioning against myocardial ischemia-reperfusion injury is unexplored. We examined the effects of diazoxide and ischemic preconditioning (IPC; 5-min ischemia and 5-min reperfusion) on ischemia (30 min)-reperfusion (240 min) injury in young IR Zucker obese (ZO) and lean (ZL) rats. ZO hearts developed larger infarcts than ZL hearts (infarct size: 57.3 +/- 3% in ZO vs. 39.2 +/- 3.2% in ZL; P < 0.05) and also failed to respond to cardioprotection by IPC or diazoxide (47.2 +/- 4.3% and 52.5 +/- 5.8%, respectively; P = not significant). In contrast, IPC and diazoxide treatment reduced the infarct size in ZL hearts (12.7 +/- 2% and 16.3 +/- 6.7%, respectively; P < 0.05). The mitochondrial ATP-activated potassium channel (K(ATP)) antagonist 5-hydroxydecanoic acid inhibited IPC and diazoxide-induced preconditioning in ZL hearts, whereas it had no effect on ZO hearts. Diazoxide elicited reduced depolarization of isolated mitochondria from ZO hearts compared with ZL (73 +/- 9% in ZL vs. 39 +/- 9% in ZO; P < 0.05). Diazoxide also failed to enhance superoxide generation in isolated mitochondria from ZO compared with ZL hearts. Electron micrographs of ZO hearts revealed a decreased number of mitochondria accompanied by swelling, disorganized cristae, and vacuolation. Immunoblots of mitochondrial protein showed a modest increase in manganese superoxide dismutase in ZO hearts. Thus obesity accompanied by IR is associated with the inability to precondition against ischemic cardiac injury, which is mediated by enhanced mitochondrial oxidative stress and impaired activation of mitochondrial K(ATP).
Collapse
Affiliation(s)
- Prasad V G Katakam
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Hanes 1050, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Chiu TT, Leung WY, Moyer MP, Strieter RM, Rozengurt E. Protein kinase D2 mediates lysophosphatidic acid-induced interleukin 8 production in nontransformed human colonic epithelial cells through NF-kappaB. Am J Physiol Cell Physiol 2006; 292:C767-77. [PMID: 16928771 DOI: 10.1152/ajpcell.00308.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signaling pathways mediating lysophosphatidic acid (LPA)-stimulated PKD(2) activation and the potential contribution of PKD(2) in regulating LPA-induced interleukin 8 (IL-8) secretion in nontransformed, human colonic epithelial NCM460 cells were examined. Treatment of serum-deprived NCM460 cells with LPA led to a rapid and striking activation of PKD(2), as measured by in vitro kinase assay and phosphorylation at the activation loop (Ser706/710) and autophosphorylation site (Ser876). PKD(2) activation induced by LPA was abrogated by preincubation with selective PKC inhibitors GF-I and Ro-31-8220 in a dose-dependent manner. These inhibitors did not have any direct inhibitory effect on PKD(2) activity. LPA induced a striking increase in IL-8 production and stimulated NF-kappaB activation, as measured by NF-kappaB-DNA binding, NF-kappaB-driven luciferase reporter activity, and IkappaBalpha phosphorylation. PKD(2) gene silencing utilizing small interfering RNAs targeting distinct PKD(2) sequences dramatically reduced LPA-stimulated NF-kappaB promoter activity and IL-8 production. PKD(2) activation is a novel early event in the biological action of LPA and mediates LPA-stimulated IL-8 secretion in NCM460 cells through a NF-kappaB-dependent pathway. Our results demonstrate, for the first time, the involvement of a member of the PKD family in the production of IL-8, a potent proinflammatory chemokine, by epithelial cells.
Collapse
Affiliation(s)
- Terence T Chiu
- Dept. of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1786, USA
| | | | | | | | | |
Collapse
|
28
|
Johanesen PA, Dwinell MB. Flagellin-independent regulation of chemokine host defense in Campylobacter jejuni-infected intestinal epithelium. Infect Immun 2006; 74:3437-47. [PMID: 16714574 PMCID: PMC1479283 DOI: 10.1128/iai.01740-05] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Campylobacter jejuni is a leading cause of bacterial food-borne diarrheal disease throughout the world and the most frequent antecedent of autoimmune neuropathy Guillain-Barré syndrome. While infection is associated with immune memory, little is known regarding the role of the epithelium in targeting dendritic cells (DC) for initiating the appropriate adaptive immune response to C. jejuni. The objective of this study was to define the role for the intestinal epithelium in the induction of the adaptive immune response in C. jejuni infection by assessing the production of DC and T-cell chemoattractants. Human T84 epithelial cells were used as model intestinal epithelia. Infection of T84 cells with C. jejuni dose- and time-dependently up-regulated DC and T-cell chemokine gene transcription and secretion. Induction required live bacteria and was in the physiologically relevant direction for attraction of mucosal immunocytes. C. jejuni-activated NF-kappaB signaling was shown to be essential for proinflammatory chemokine secretion. Notably, C. jejuni secretion occurred independently of flagellin identification by Toll-like receptor 5. Secretion of a DC chemoattractant by differing clinical C. jejuni isolates suggested adherence/invasion were key virulence determinants of epithelial chemokine secretion. The regulated epithelial expression of DC and T-cell chemoattractants suggests a mechanism for the directed trafficking of immune cells required for the initiation of adaptive immunity in campylobacteriosis. Chemokine secretion occurs despite Campylobacter evasion of the flagellin pattern recognition receptor, suggesting that alternate host defense strategies limit disease pathogenesis.
Collapse
Affiliation(s)
- Priscilla A Johanesen
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
29
|
Oltman CL, Richou LL, Davidson EP, Coppey LJ, Lund DD, Yorek MA. Progression of coronary and mesenteric vascular dysfunction in Zucker obese and Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol 2006; 291:H1780-7. [PMID: 16714356 DOI: 10.1152/ajpheart.01297.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the progression of vascular dysfunction associated with the metabolic syndrome with and without hyperglycemia in lean, Zucker obese, and Zucker diabetic fatty (ZDF) rats. Responses of aorta and small coronary and mesenteric arteries were measured to endothelium-dependent and -independent vasodilators. Indices of oxidative stress were increased in serum from ZDF rats throughout the study, whereas values were increased in Zucker obese rats later in the study [thiobarbituric acid reactive substances: 0.45 +/- 0.02, 0.59 +/- 0.03 (P < 0.05), and 0.58 +/- 0.03 (P < 0.05) mug/ml in serum from 28- to 40-wk-old lean, Zucker obese, and ZDF rats, respectively]. Acetylcholine (ACh)-induced relaxation was not altered in vessels from lean animals from 8-40 wk. ACh-induced relaxation was nearly abolished in coronary arteries from 28- to 36-wk-old Zucker obese rats and by 16-36 wk in ZDF rats and was attenuated in aorta and mesenteric vessels from ZDF rats [%relaxation to 10 muM ACh: 72.2 +/- 7.1, 17.9 +/- 5.9 (P < 0.05), and 23.0 +/- 4.5 (P < 0.05) in coronary vessels; and 67.9 +/- 9.2, 50.1 +/- 5.5, and 42.3 +/- 4.7 (P < 0.05) in mesenteric vessels from 28- to 40-wk-old lean, Zucker obese, and ZDF rats, respectively]. The attenuated ACh-induced relaxation was improved when vessels were incubated with tiron, suggesting superoxide as a mechanism of endothelial dysfunction. Sodium nitroprusside-induced relaxation was not altered in aorta or coronary arteries and was potentiated in mesenteric arteries from Zucker obese rats. Our data suggest that diabetes enhances the progression of vascular dysfunction. Increases in indices of oxidative stress precede the development of dysfunction and may serve as a marker of endothelial damage.
Collapse
Affiliation(s)
- Christine L Oltman
- Cardiovascular Research, VA Medical Center, Rm. 204, Bld. 40, Highway 6 West, Iowa City, Iowa 52246, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Katakam PVG, Snipes JA, Tulbert CD, Mayanagi K, Miller AW, Busija DW. Impaired endothelin-induced vasoconstriction in coronary arteries of Zucker obese rats is associated with uncoupling of [Ca2+]i signaling. Am J Physiol Regul Integr Comp Physiol 2005; 290:R145-53. [PMID: 16322351 DOI: 10.1152/ajpregu.00405.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although insulin resistance (IR) is a major risk factor for coronary artery disease, little is known about the regulation of coronary vascular tone in IR by endothelin-1 (ET-1). We examined ET-1 and PGF(2alpha)-induced vasoconstriction in isolated small coronary arteries (SCAs; approximately 250 microM) of Zucker obese (ZO) rats and control Zucker lean (ZL) rats. ET-1 response was assessed in the absence and presence of endothelin type A (ET(A); BQ-123), type B (ET(B); BQ-788), or both receptor inhibitors. ZO arteries displayed reduced contraction to ET-1 compared with ZL arteries. In contrast, PGF(2alpha) elicited similar vasoconstriction in both groups. ET(A) inhibition diminished the ET-1 response in both groups. ET(B) inhibition alone or in combination with ET(A) blockade, however, restored the ET-1 response in ZO arteries to the level of ZL arteries. Similarly, inhibition of endothelial nitric oxide (NO) synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME) enhanced the contraction to ET-1 and abolished the difference between ZO and ZL arteries. In vascular smooth muscle cells from ZO, ET-1-induced elevation of myoplasmic intracellular free calcium concentration ([Ca2+]i) (measured by fluo-4 AM fluorescence), and maximal contractions were diminished compared with ZL, both in the presence and absence of l-NAME. However, increases in [Ca2+]i elicited similar contractions of the vascular smooth muscle cells in both groups. Analysis of protein and total RNA from SCA of ZO and ZL revealed equal expression of ET-1 and the ET(A) and ET(B) receptors. Thus coronary arteries from ZO rats exhibit reduced ET-1-induced vasoconstriction resulting from increased ET(B)-mediated generation of NO and diminished elevation of myoplasmic [Ca2+]i.
Collapse
Affiliation(s)
- Prasad V G Katakam
- Deptartment of Physiology and Pharmacology, Wake Forest University Health Sciences, Hanes 1050, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
31
|
Erdös B, Snipes JA, Tulbert CD, Katakam P, Miller AW, Busija DW. Rosuvastatin improves cerebrovascular function in Zucker obese rats by inhibiting NAD(P)H oxidase-dependent superoxide production. Am J Physiol Heart Circ Physiol 2005; 290:H1264-70. [PMID: 16284235 DOI: 10.1152/ajpheart.00804.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin-resistance induces cerebrovascular dysfunction and increases the risk for stroke. We investigated whether rosuvastatin (RSV), a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, can reverse reduced cerebrovascular responsiveness in insulin-resistant rats. Dilator responses of the basilar artery (BA) were examined after 1-day or 4-wk RSV (2 mg.kg(-1).day(-1)) treatment in anesthetized 12-wk-old insulin-resistant Zucker obese (ZO) and lean (ZL) rats by using a cranial window preparation. Vehicle-treated ZO rats had significantly higher fasting insulin, total cholesterol (TC), and triglyceride (TG) levels compared with ZL rats. In addition, in the ZO rats, dilator responses of the BA to acetylcholine, iloprost, cromakalim, and potassium chloride were significantly reduced when compared with ZL rats. One-day RSV treatment improved dilator responses of the ZO BAs without altering lipid levels. Four-week RSV treatment lowered both TC and TG by 30% and also improved dilator responses of the ZO BAs, although without additional effects compared with the 1-day RSV treatment. NAD(P)H oxidase-dependent superoxide production was significantly higher in the cerebral arteries of vehicle-treated ZO rats compared with ZL rats, but both 1-day and 4-wk RSV treatments normalized elevated superoxide levels in the ZO arteries. These findings demonstrate that RSV improves cerebrovascular function in insulin-resistance independently from its lipid-lowering effect by the inhibition of NAD(P)H oxidase.
Collapse
Affiliation(s)
- Benedek Erdös
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157-1083, USA
| | | | | | | | | | | |
Collapse
|
32
|
Frisbee JC. Reduced nitric oxide bioavailability contributes to skeletal muscle microvessel rarefaction in the metabolic syndrome. Am J Physiol Regul Integr Comp Physiol 2005; 289:R307-R316. [PMID: 15802560 DOI: 10.1152/ajpregu.00114.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study tested the hypothesis that chronically elevated oxidant stress contributes to impaired active hyperemia in skeletal muscle of obese Zucker rats (OZR) vs. lean Zucker rats (LZR) through progressive deteriorations in microvascular structure. Twelve-week-old LZR and OZR were given 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol) in the drinking water for ∼4 wk. Subsequently, perfusion of in situ gastrocnemius muscle was determined during incremental elevations in metabolic demand, while a contralateral skeletal muscle arteriole and the gastrocnemius muscle was removed to determine dilator reactivity, vessel wall mechanics, and microvessel density. Under control conditions, active hyperemia was impaired at all levels of metabolic demand in OZR, and this was correlated with a reduced microvessel density, increased arteriolar stiffness, and impaired dilator reactivity. Chronic tempol ingestion improved perfusion during moderate to high metabolic demand only and was associated with improved arteriolar reactivity and microvessel density; passive vessel mechanics were unaltered. Combined antioxidant therapy and nitric oxide synthase inhibition in OZR prevented much of the restored perfusion and microvessel density. In LZR, treatment with Nω-nitro-l-arginine methyl ester (l-NAME) hydrochloride and hydralazine (to prevent hypertension) impaired active hyperemia, dilator reactivity, and microvessel density, although arteriolar distensibility was not altered. These results suggest that with the development of the metabolic syndrome, chronic reductions in nitric oxide bioavailability, in part via the scavenging actions of oxidative free radicals, contribute to a loss of skeletal muscle microvessels, leading to impaired muscle perfusion with elevated metabolic demand.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Center for Interdisciplinary Research in Cardiovascular Science, Dept. of Physiology and Pharmacology, Robert C. Byrd Health Sciences Center, PO Box 9105, West Virginia University School of Medicine, Morgantown, WV 26505, USA.
| |
Collapse
|