1
|
Chauhan G, Rieder F. The Pathogenesis of Inflammatory Bowel Diseases. Surg Clin North Am 2025; 105:201-215. [PMID: 40015812 PMCID: PMC11868724 DOI: 10.1016/j.suc.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Inflammatory bowel diseases (IBDs) are relapsing, remitting inflammatory diseases of the intestinal tract. Familial aggregation and genome-wide association studies revealed susceptibility variants that point toward a combination of innate immune and adaptive immune dysregulation that in concert with environmental factors, such as our microbiome, can initiate and perpetuate inflammation. Innate immune perturbations include functional abnormalities in the intestinal barrier, endoplasmic reticulum stress, and abnormal recognition of microbes. Adaptive immune changes include dysregulation of cytokines, regulatory T cells, and leukocyte migration. IBD is linked with an abnormal wound-healing response leading to fibrosis. This article summarizes key pathogenic mechanisms in the pathogenesis of IBDs.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases Institute; Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
2
|
Kalafateli M, Tourkochristou E, Tsounis EP, Aggeletopoulou I, Triantos C. New Insights into the Pathogenesis of Intestinal Fibrosis in Inflammatory Bowel Diseases: Focusing on Intestinal Smooth Muscle Cells. Inflamm Bowel Dis 2025; 31:579-592. [PMID: 39680685 DOI: 10.1093/ibd/izae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Indexed: 12/18/2024]
Abstract
Strictures in inflammatory bowel disease, especially Crohn's disease (CD), are characterized by increased intestinal wall thickness, which, according to recent accumulating data, is mainly attributed to the expansion of the intestinal smooth muscle layers and to a lesser extent to collagen deposition. In this review, we will discuss the role of intestinal smooth muscle cells (SMCs) as crucial orchestrators of stricture formation. Activated SMCs can synthesize extracellular matrix (ECM), thus contributing to intestinal fibrosis, as well as growth factors and cytokines that can further enhance ECM production, stimulate other surrounding mesenchymal and immune cells, and increase SMC proliferation via paracrine or autocrine signaling. There is also evidence that, in stricturing CD, a phenotypic modulation of SMC toward a myofibroblast-like synthetic phenotype takes place. Moreover, the molecular mechanisms and signaling pathways that regulate SMC hyperplasia/hypertrophy will be extensively reviewed. The understanding of the cellular network and the molecular background behind stricture formation is essential for the design of effective anti-fibrotic strategies, and SMCs might be a promising therapeutic target in the future.
Collapse
Affiliation(s)
- Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, Patras, Greece
| | - Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Efthymios P Tsounis
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
3
|
Baidoo N, Sanger GJ, Belai A. Histochemical and biochemical analysis of collagen content in formalin-fixed, paraffin embedded colonic samples. MethodsX 2023; 11:102416. [PMID: 37876831 PMCID: PMC10590991 DOI: 10.1016/j.mex.2023.102416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
Collagen is the most abundant structural protein and extracellular matrix component in mammals. In the colon, collagen fibres reside in all the major sublayers; namely, the mucosa, submucosa, muscularis externa and the serosa. Methods to quantify collagen content in formalin-fixed, paraffin-embedded (FFPE) stained sections are required and image analysis offers a technique by which the spatial distribution and localisation of collagen fibres can be easily measured. This laboratory protocol was developed from established techniques using FFPE colon. Human colonic samples embedded transversally in paraffin wax were serially sectioned and stained with either Masson's trichrome (MT) or Picrosirius red (PSR). Quantitation estimation of collagen content in each sublayer was performed via ImageJ processing. Hydroxyproline content was quantified using a rapid and sensitive assay in sectioned tissue. Either MT or PSR staining followed by morphometric image analysis via ImageJ provided equally appreciable quantitative results. Moreso, analysis of hydroxyproline content in our samples indicate that this protocol could be useful in retrospective studies for FFPE samples. This laboratory protocol provides a systematic and reproducible method that can be utilized to accurately assess collagen content in individual sublayers of the colonic wall as well as detection of overall hydroxyproline content in FFPE specimens.
Collapse
Affiliation(s)
- Nicholas Baidoo
- University of Roehampton, School of Life Sciences. Holybourne Ave, London. SW15 4JD, UK
| | - Gareth J. Sanger
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Abi Belai
- University of Roehampton, School of Life Sciences. Holybourne Ave, London. SW15 4JD, UK
| |
Collapse
|
4
|
Manjarín R, Dillard K, Coffin M, Hernandez GV, Smith VA, Noland-Lidell T, Gehani TR, Smart HJ, Wheeler K, Sprayberry KA, Edwards MS, Fanter RK, Glanz H, Immoos C, Santiago-Rodriguez TM, Blank JM, Burrin DG, Piccolo BD, Abo-Ismail M, La Frano MR, Maj M. Dietary fat composition shapes bile acid metabolism and severity of liver injury in a pig model of pediatric NAFLD. Am J Physiol Endocrinol Metab 2022; 323:E187-E206. [PMID: 35858244 PMCID: PMC9423774 DOI: 10.1152/ajpendo.00052.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/09/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the effect of dietary fatty acid (FA) composition on bile acid (BA) metabolism in a pig model of NAFLD, by using a multiomics approach combined with histology and serum biochemistry. Thirty 20-day-old Iberian pigs pair-housed in pens were randomly assigned to receive 1 of 3 hypercaloric diets for 10 wk: 1) lard-enriched (LAR; n = 5 pens), 2) olive oil-enriched (OLI; n = 5), and 3) coconut oil-enriched (COC; n = 5). Animals were euthanized on week 10 after blood sampling, and liver, colon, and distal ileum (DI) were collected for histology, metabolomics, and transcriptomics. Data were analyzed by multivariate and univariate statistics. Compared with OLI and LAR, COC increased primary and secondary BAs in liver, plasma, and colon. In addition, both COC and OLI reduced circulating fibroblast growth factor 19, increased hepatic necrosis, composite lesion score, and liver enzymes in serum, and upregulated genes involved in hepatocyte proliferation and DNA repair. The severity of liver disease in COC and OLI pigs was associated with increased levels of phosphatidylcholines, medium-chain triacylglycerides, trimethylamine-N-oxide, and long-chain acylcarnitines in the liver, and the expression of profibrotic markers in DI, but not with changes in the composition or size of BA pool. In conclusion, our results indicate a role of dietary FAs in the regulation of BA metabolism and progression of NAFLD. Interventions that aim to modify the composition of dietary FAs, rather than to regulate BA metabolism or signaling, may be more effective in the treatment of NAFLD.NEW & NOTEWORTHY Bile acid homeostasis and signaling is disrupted in NAFLD and may play a central role in the development of the disease. However, there are no studies addressing the impact of diet on bile acid metabolism in patients with NAFLD. In juvenile Iberian pigs, we show that fatty acid composition in high-fat high-fructose diets affects BA levels in liver, plasma, and colon but these changes were not associated with the severity of the disease.
Collapse
Affiliation(s)
- Rodrigo Manjarín
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Kayla Dillard
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Morgan Coffin
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Gabriella V Hernandez
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Victoria A Smith
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Trista Noland-Lidell
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Tanvi R Gehani
- Department of Biomedical Engineering, California Polytechnic State University, San Luis Obispo, California
| | - Hayden J Smart
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Kevin Wheeler
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California
| | - Kimberly A Sprayberry
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Mark S Edwards
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Rob K Fanter
- College of Agriculture, Food and Environmental Sciences, California Polytechnic State University, San Luis Obispo, California
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California
| | - Hunter Glanz
- Department of Statistics, California Polytechnic State University, San Luis Obispo, California
| | - Chad Immoos
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California
| | | | - Jason M Blank
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California
| | - Douglas G Burrin
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Brian D Piccolo
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mohammed Abo-Ismail
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
- Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, California
| | - Magdalena Maj
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, California
| |
Collapse
|
5
|
Abstract
Intestinal fibrosis is one of the most common intestinal complications observed in inflammatory bowel disease, especially Crohn’s disease (CD). Intestinal fibrosis in CD is associated with chronic inflammation resulting from immunologic abnormalities and occurs as a form of tissue repair during the anti-inflammatory process. Various types of immune cells and mesenchymal cells, including myofibroblasts, are intricately involved in causing intestinal fibrosis. It is often difficult to treat intestinal fibrosis as intestinal stricture may develop despite treatment aimed at controlling inflammation. Detailed analysis of the pathogenesis of intestinal fibrosis is critical towards advancing the development of future therapeutic applications.
Collapse
|
6
|
Siri S, Zhao Y, Maier F, Pierce DM, Feng B. The Macro- and Micro-Mechanics of the Colon and Rectum I: Experimental Evidence. Bioengineering (Basel) 2020; 7:E130. [PMID: 33086503 PMCID: PMC7712174 DOI: 10.3390/bioengineering7040130] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Many lower gastrointestinal diseases are associated with altered mechanical movement and deformation of the large intestine, i.e., the colon and rectum. The leading reason for patients' visits to gastrointestinal clinics is visceral pain, which is reliably evoked by mechanical distension rather than non-mechanical stimuli such as inflammation or heating. The macroscopic biomechanics of the large intestine were characterized by mechanical tests and the microscopic by imaging the load-bearing constituents, i.e., intestinal collagen and muscle fibers. Regions with high mechanical stresses in the large intestine (submucosa and muscularis propria) coincide with locations of submucosal and myenteric neural plexuses, indicating a functional interaction between intestinal structural biomechanics and enteric neurons. In this review, we systematically summarized experimental evidence on the macro- and micro-scale biomechanics of the colon and rectum in both health and disease. We reviewed the heterogeneous mechanical properties of the colon and rectum and surveyed the imaging methods applied to characterize collagen fibers in the intestinal wall. We also discussed the presence of extrinsic and intrinsic neural tissues within different layers of the colon and rectum. This review provides a foundation for further advancements in intestinal biomechanics by synergistically studying the interplay between tissue biomechanics and enteric neurons.
Collapse
Affiliation(s)
- Saeed Siri
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (S.S.); (Y.Z.); (D.M.P.)
| | - Yunmei Zhao
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (S.S.); (Y.Z.); (D.M.P.)
| | - Franz Maier
- Lightweight Design and Composite Materials, University of Applied Sciences Upper Austria, 4600 Wels, Austria;
| | - David M. Pierce
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (S.S.); (Y.Z.); (D.M.P.)
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (S.S.); (Y.Z.); (D.M.P.)
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
7
|
Radmard AR, Amouei M, Kooraki S, Atashi SN, Montazeri SA, Vaezi M, Laghi A. Potential MR Enterography Features to Differentiate Primary Small Intestinal Lymphoma From Crohn Disease. AJR Am J Roentgenol 2020; 215:864-873. [PMID: 32755202 DOI: 10.2214/ajr.19.22158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE. The purpose of this study was to assess the MR enterographic features of primary small intestinal lymphoma (PSIL) and compare them with active Crohn disease (CD) presenting with severe (≥ 10 mm) mural thickening of the small bowel. MATERIALS AND METHODS. This retrospective study included 15 patients with pathologically proven PSIL and 15 patients with active inflammatory CD with severe mural thickening. Various morphologic, enhancement, and diffusion parameters were compared between the two groups at MR enterography. The ratios of the upstream to involved luminal diameter and mural thickness to luminal diameter in the involved segment were calculated. An attempt was made to define a predictive model (morphologic score) for discriminating PSIL from CD with severe mural thickening. RESULTS. Patients with PSIL were more likely than those with CD to have unifocal disease (66.7% vs 20.0%, p = 0.025), circumferential involvement (86.7% vs 26.7%, p < 0.001), luminal dilatation (60.0% vs 7.0%, p = 0.005), and an attenuated fold pattern (53.3% vs none, p < 0.001). They were less likely to have serosal surface involvement (40.0% vs 100%, p = 0.001) and mesenteric fat infiltration (33.3% vs 100%, p < 0.001). Median upstream to involved luminal diameter ratio (1.5 vs 9.6, p < 0.001) and mural thickness to involved luminal diameter ratio (1.1 vs 4.3, p = 0.044) were significantly lower in patients with PSIL than in those with CD with severe mural thickening. No significant difference was observed in enhancement and diffusion measures. Morphologic score was based on the presence of luminal dilatation, unifocal involvement, mesenteric fat infiltration, and luminal stricture, yielding accuracy of 98% for differentiation between PSIL and CD with severe mural thickening. CONCLUSION. Morphologic features seen at MR enterography rather than enhancement or diffusion parameters may be valuable for differentiation of PSIL from active CD with severe mural thickening with significantly lower ratios of upstream to involved luminal diameter and mural thickness to involved luminal diameter in PSIL.
Collapse
Affiliation(s)
- Amir Reza Radmard
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, 14117 N Kargar St, Tehran, Iran
| | - Mehrnam Amouei
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, 14117 N Kargar St, Tehran, Iran
| | - Soheil Kooraki
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, 14117 N Kargar St, Tehran, Iran
| | - Sara Naybandi Atashi
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, 14117 N Kargar St, Tehran, Iran
| | - Seyed Ali Montazeri
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, 14117 N Kargar St, Tehran, Iran
| | - Mohammad Vaezi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Andrea Laghi
- Department of Surgical and Medical Sciences and Translational Medicine, School of Medicine and Psychology, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| |
Collapse
|
8
|
Rodríguez-Lago I, Gisbert JP. The Role of Immunomodulators and Biologics in the Medical Management of Stricturing Crohn's Disease. J Crohns Colitis 2020; 14:557-566. [PMID: 31541235 DOI: 10.1093/ecco-jcc/jjz158] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Crohn's disease is a progressive and disabling inflammatory disease involving the gastrointestinal tract. It usually produces inflammatory lesions in the ileocolonic region, but up to half of patients will also develop complications such as strictures in the long term. Indeed, a proportion of patients have progression of the disease with the development of stricturing lesions because there are no drugs that effectively prevent or reverse established fibrosis, and hence these patients are usually treated with surgery or endoscopic balloon dilation. Fibrotic lesions are always associated with some degree of inflammatory changes, but there is little evidence supporting the use of medical therapy in this context. Here, we discuss the most important findings on the possible use of immunomodulators or biologics in the prevention and treatment of intestinal strictures in Crohn's disease patients. Recent evidence demonstrates that these drugs may also be effective in treating lesions with high levels of collagen deposition, and thus might, at least in some patients, reduce the progression of the disease and bowel damage, and further avoid the need for surgery and a disabling course in the long term.
Collapse
Affiliation(s)
- Iago Rodríguez-Lago
- Gastroenterology Department, Hospital de Galdakao, and Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| |
Collapse
|
9
|
D'Amico F, Pugliese N, Peyrin-Biroulet L, Danese S. Efficacy of anti-TNFα drugs in patients with stricturing Crohn's disease. Expert Rev Gastroenterol Hepatol 2020; 14:347-353. [PMID: 32351139 DOI: 10.1080/17474124.2020.1759417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Half of Crohn's disease patients develop stenosis around 20 years after the disease onset. For a long time, surgery has been the only therapeutic approach for strictures. The introduction of anti-TNFα could be revolutionary in the management of these patients due to their potential role in stenoses' treatment. The aim of our work was to summarize efficacy data of anti-TNFα drugs in stricturing CD patients. AREAS COVERED Several case series and observational studies have shown that infliximab and adalimumab are effective in determining improvement and remission of stenosis in CD patients in both clinical trials and clinical practice. The injection of intralesional infliximab could be a valid alternative in patients not responding to systemic therapy. EXPERT OPINION Despite the promising literature data, the low level of evidence and the heterogeneity of the available studies do not allow to draw definitive conclusions on the use of TNFα inhibitors for the treatment of strictures. Further prospective randomized studies are needed to confirm and validate this therapeutic approach.
Collapse
Affiliation(s)
- Ferdinando D'Amico
- Department of Biomedical Sciences, Humanitas University , Milan, Italy.,Department of Gastroenterology and Inserm NGERE U1256, Nancy University Hospital, University of Lorraine , Vandoeuvre-lès-Nancy, France
| | - Nicola Pugliese
- Department of Biomedical Sciences, Humanitas University , Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology and Inserm NGERE U1256, Nancy University Hospital, University of Lorraine , Vandoeuvre-lès-Nancy, France
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University , Milan, Italy.,IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Center -IRCCS , Milan, Italy
| |
Collapse
|
10
|
Deletion of SOCS2 Reduces Post-Colitis Fibrosis via Alteration of the TGFβ Pathway. Int J Mol Sci 2020; 21:ijms21093073. [PMID: 32349250 PMCID: PMC7246483 DOI: 10.3390/ijms21093073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 12/31/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an immunologically mediated chronic intestinal disorder. Growth hormone (GH) administration enhances mucosal repair and decreases intestinal fibrosis in patients with IBD. In the present study, we investigated the effect of cellular sensitivity to GH via suppressor of cytokine signaling 2 (SOCS2) deletion on colitis and recovery. To induce colitis, wild type and SOCS2 knockout (SOCS2−/−) mice were treated with 3% dextran sodium sulphate (DSS), followed by a recovery period. SOCS2−/− mice showed higher disease activity during colitis with increased mRNA expression of the pro-inflammatory cytokines nitric oxide synthase 2 (NOS2) and interleukin 1 β (IL1-β). At recovery time point, SOCS2−/− showed better recovery with less fibrosis measured by levels of α-SMA and collagen deposition. Protein and mRNA expressions of transforming growth factor beta β1 (TGF-β1) receptors were significantly lower in SOCS2−/− mice compared to wild-type littermates. Using an in vivo bromodeoxyuridine (BrdU) proliferation assay, SOCS2−/− mice showed higher intestinal epithelial proliferation compared to wild-type mice. Our results demonstrated that deletion of the SOCS2 protein results in higher growth hormone sensitivity associated with higher pro-inflammatory signaling; however, it resulted in less tissue damage with less fibrotic lesions and higher epithelial proliferation, which are markers of GH-protective effects in IBD. This suggests a pleiotropic effect of SOCS2 and multiple cellular targets. Further study is required to study role of SOCS2 in regulation of TGFβ-mothers against the decapentaplegic homolog (Smad) pathway.
Collapse
|
11
|
Yoo JH, Holubar S, Rieder F. Fibrostenotic strictures in Crohn's disease. Intest Res 2020; 18:379-401. [PMID: 32259917 PMCID: PMC7609387 DOI: 10.5217/ir.2019.09148] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/26/2020] [Indexed: 12/15/2022] Open
Abstract
The use of biologic agents including anti-tumor necrosis factor monoclonal antibodies followed by anti-integrins and anti-interleukins has drastically changed the treatment paradigm of Crohn’s disease (CD) by improving clinical symptoms and mucosal healing. However, up to 70% of CD patients still eventually undergo surgery mainly due to fibrostenotic strictures. There are no specific anti-fibrotic drugs yet. This review comprehensively addresses the mechanism, prediction, diagnosis and treatment of the fibrostenotic strictures in CD. We also introduce promising anti-fibrotic agents which may be available in the near future and summarize challenges in developing novel therapies to treat fibrostenotic strictures in CD.
Collapse
Affiliation(s)
- Jun Hwan Yoo
- Digestive Disease Center, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Stefan Holubar
- Department of Colorectal Surgery, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
12
|
Andújar X, Loras C, González B, Socarras M, Sanchiz V, Boscà M, Domenech E, Calafat M, Rodríguez E, Sicilia B, Calvet X, Barrio J, Guardiola J, Iglesias E, Casanova MJ, Ber Y, Monfort D, López-Sanromán A, Rodríguez-Lago I, Bujanda L, Márquez L, Martín-Arranz MD, Zabana Y, Fernández-Bañares F, Esteve M. Efficacy and safety of endoscopic balloon dilation in inflammatory bowel disease: results of the large multicenter study of the ENEIDA registry. Surg Endosc 2020; 34:1112-1122. [PMID: 31144122 DOI: 10.1007/s00464-019-06858-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND There is no information regarding the outcome of Crohn's disease (CD) patients treated with endoscopic balloon dilation (EBD) in non-referral hospitals, nor on the efficacy of EBD in ulcerative colitis (UC). We report herein the results of the largest series published to date. AIM To assess the efficacy and safety of EBD for inflammatory bowel disease (IBD) stenosis performed in 19 hospitals with different levels of complexity and to determine factors related to therapeutic success. METHODS We identified IBD patients undergoing EBD in the ENEIDA database. Efficacy of EBD was compared between CD and UC and between secondary and tertiary hospitals. Predictive factors of therapeutic success were assessed with multivariate analysis. RESULTS Four-hundred dilations (41.2% anastomotic) were performed in 187 IBD patients (13 UC/Indeterminate colitis). Technical and therapeutic success per dilation was achieved in 79.5% and 55.3%, respectively. Therapeutic success per patient was achieved in 78.1% of cases (median follow-up: 40 months) with 49.7% requiring more than one dilation. No differences related to either diagnosis or hospital complexity was found. Technical success [OR 4.12 (95%CI 2.4-7.1)] and not receiving anti-TNF at the time of dilation [OR 1.7 (95% CI 1.1-2.6)] were independently related to therapeutic success per dilation. A stricture length ≤ 2 cm [HR 2.43 (95% CI 1.11-5.31)] was a predictive factor of long-term success per patient. The rate of major complications was 1.3%. CONCLUSIONS EBD can be performed with similar efficacy and safety in hospitals with differing levels of complexity and it might be a suitable treatment for UC with short stenosis. To achieve a technical success and the short length of the stenosis seem to be critical for long-term therapeutic success.
Collapse
Affiliation(s)
- Xavier Andújar
- Department of Gastroenterology, Endoscopy Unit, Hospital Universitari Mútua de Terrassa, Universitat de Barcelona, Plaça Dr Robert nº 5, Terrassa, 08221, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Carme Loras
- Department of Gastroenterology, Endoscopy Unit, Hospital Universitari Mútua de Terrassa, Universitat de Barcelona, Plaça Dr Robert nº 5, Terrassa, 08221, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - Begoña González
- Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Milena Socarras
- Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | - Maia Boscà
- Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | | | - Esther Rodríguez
- Hospital Universitario Nuestra Señora de la Candelaria, Santa Cruz De Tenerife, Spain
| | | | - Xavier Calvet
- Corporació Sanitària Universitària Parc Taulí, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | | | - Eva Iglesias
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - María José Casanova
- Hospital Universitario de La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | | | | | | | - Luís Bujanda
- Hospital Universitario Donostia/Instituto Biodonostia, Universidad del País Vasco (UPV/EHU), Gipuzkua, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | | | - Yamile Zabana
- Department of Gastroenterology, Endoscopy Unit, Hospital Universitari Mútua de Terrassa, Universitat de Barcelona, Plaça Dr Robert nº 5, Terrassa, 08221, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Fernando Fernández-Bañares
- Department of Gastroenterology, Endoscopy Unit, Hospital Universitari Mútua de Terrassa, Universitat de Barcelona, Plaça Dr Robert nº 5, Terrassa, 08221, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - María Esteve
- Department of Gastroenterology, Endoscopy Unit, Hospital Universitari Mútua de Terrassa, Universitat de Barcelona, Plaça Dr Robert nº 5, Terrassa, 08221, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
13
|
Kim J, Kim SH, Kim TO. Evaluation of CT enterography findings for endoscopic complete remission after anti-TNF-α therapy in patients with Crohn's disease. Acta Radiol 2019; 60:1200-1208. [PMID: 30628841 DOI: 10.1177/0284185118820062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jieun Kim
- Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Seung Ho Kim
- Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Tae Oh Kim
- Department of Internal Medicine, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Republic of Korea
| |
Collapse
|
14
|
Mathur R, Alam MM, Zhao XF, Liao Y, Shen J, Morgan S, Huang T, Lee H, Lee E, Huang Y, Zhu X. Induction of autophagy in Cx3cr1 + mononuclear cells limits IL-23/IL-22 axis-mediated intestinal fibrosis. Mucosal Immunol 2019; 12:612-623. [PMID: 30765845 PMCID: PMC6927046 DOI: 10.1038/s41385-019-0146-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 02/04/2023]
Abstract
Intestinal fibrosis is an excessive proliferation of myofibroblasts and deposition of collagen, a condition frequently seen in Crohn's disease (CD). The mechanism underlying myofibroblast hyper-proliferation in CD needs to be better understood. In this report, we found that mTOR inhibitor rapamycin or mTOR deletion in CX3Cr1+ mononuclear phagocytes inhibits expression of interleukin (IL)-23, accompanied by reduced intestinal production of IL-22 and ameliorated fibrosis in the TNBS-induced fibrosis mouse model. This inhibition of IL-23 expression is associated with elevated autophagy activity. Ablating the autophagy gene Atg7 increases the expression of IL-23, leading to increased expression of IL-22 and increased fibrosis. Both induction of IL-22 and intestinal fibrosis occurred in RAG-/- mice and depletion of innate lymphoid cells (ILCs) attenuates the fibrotic reaction, suggesting that the pro-fibrotic process is independent of T and B cells. Moreover, IL-22 facilitates the transformation of fibroblasts into myofibroblasts. Finally, the fibrotic reaction was attenuated upon neutralization of either IL-23 or IL-22. Altogether, this study elucidated a signaling cascade underlying intestinal fibrosis in which altered mTOR/autophagy in CX3Cr1+ mononuclear phagocytes up-regulates the IL-23/IL-22 axis, leading to an excessive fibrotic response. Thus, our findings suggest that this cascade could be a therapeutic target for alleviation of CD fibrosis.
Collapse
Affiliation(s)
- Ramkumar Mathur
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA.
- The IBD Center, Division of Gastroenterology, Department of Medicine, Albany Medical College, Albany, NY, 12208, USA.
| | - Mahabub Maraj Alam
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Xiao-Feng Zhao
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Yuan Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Jeffrey Shen
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Shannon Morgan
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Tingting Huang
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - HwaJeong Lee
- Department of Pathology, Albany Medical College, Albany, NY, 12208, USA
| | - Edward Lee
- Department of Surgery, Albany Medical College, Albany, NY, 12208, USA
| | - Yunfei Huang
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Xinjun Zhu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA.
- The IBD Center, Division of Gastroenterology, Department of Medicine, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
15
|
Yun SM, Kim SH, Kim EH. The Molecular Mechanism of Transforming Growth Factor-β Signaling for Intestinal Fibrosis: A Mini-Review. Front Pharmacol 2019; 10:162. [PMID: 30873033 PMCID: PMC6400889 DOI: 10.3389/fphar.2019.00162] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
Inflammatory bowel disease is known as the most chronic inflammatory disorder in colon, which subsequently progresses to intestinal obstruction and fistula formation. Many studies to date for the treatment of IBD have been focused on inflammation. However, most of the anti-inflammatory agents do not have anti-fibrotic effects and could not relieve intestinal stricture in IBD patients. Because preventing or reversing intestinal fibrosis in IBD is a major therapeutic target, we analyzed the papers focusing on TGF-β signaling in intestinal fibrosis. TGF-β is a good candidate to treat the intestinal fibrosis in IBD which involves TGF-β signaling pathway, EMT, EndMT, ECM, and other regulators. Understanding the mechanism involved in TGF-β signaling will contribute to the treatment and diagnosis of intestinal fibrosis occurring in IBD as well as the understanding of the molecular mechanisms underlying the pathogenesis.
Collapse
Affiliation(s)
- Sun-Mi Yun
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - Seok-Ho Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| |
Collapse
|
16
|
D'Arpino MC, Fuchs AG, Sánchez SS, Honoré SM. Extracellular matrix remodeling and TGF-β1/Smad signaling in diabetic colon mucosa. Cell Biol Int 2017; 42:443-456. [PMID: 29227005 DOI: 10.1002/cbin.10916] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Abstract
Diabetes is associated with metabolic and functional alterations in the gut. Using an experimental model of streptozotocin (STZ)-induced diabetes in rodents, we analyzed the extracellular matrix (ECM) and TGF-β/Smad signaling in the colon mucosa. Male rats were divided into normal control, diabetic and insulin treated diabetic groups during 4 and 9 weeks. Sirius red staining showed marked increase in the extracellular matrix deposition in diabetic mucosa. High levels of fibrillar collagen (I and III) and fibronectin mRNAs were also detected with an imbalance between MMPs/TIMPs activities. Moreover, an increased mesenchymal cell proliferation together with an enhanced expression of myofibroblasts markers vimentin and α-SMA were observed. TGF-β/Smad signaling-related genes were determined using RT-PCR, Western blotting, and immunohistochemistry. Diabetic rats showed a significant up-regulation of TGF-β1, TGF-β receptors and the effectors p-Smad2/3 in the mucosa compared with control rats. Insulin treatment attenuated the stimulating effect of diabetes on colon ECM deposition and TGF-β/Smad signaling. In conclusion, the overall results showed a deregulation of the TGFβ1 pathway associated with the appearance of myofibroblasts and the accumulation of ECM in the mucosa of diabetic colon. These data provide the first in vivo evidence that TGF-β1/Smad is a key component of intestinal tissue remodeling in diabetes.
Collapse
Affiliation(s)
- Maria Cecilia D'Arpino
- Instituto Superior de Investigaciones Biológicas (INSIBIO) Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán (CONICET-UNT), Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - Alicia G Fuchs
- Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECHIS)-Universidad Abierta Interamericana (UAI), Av. Montes de Oca 745, 1270AAH, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sara S Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO) Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán (CONICET-UNT), Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - Stella M Honoré
- Instituto Superior de Investigaciones Biológicas (INSIBIO) Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán (CONICET-UNT), Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| |
Collapse
|
17
|
Lawrance IC, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Latella G. Cellular and Molecular Mediators of Intestinal Fibrosis. J Crohns Colitis 2017. [PMID: 25306501 DOI: 10.1016/j.crohns.2014.09.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis is a major complication of the inflammatory bowel diseases (IBD) and although inflammation is necessary for its development, it would appear that it plays a minor role in its progression as anti-inflammatory treatments in IBD do not prevent fibrosis once it has started. The processes that regulate fibrosis would thus appear to be distinct from those regulating inflammation and, therefore, a detailed understanding of these pathways is vital to the development of anti-fibrogenic strategies. There have been several recent reviews exploring what is known, and what remains unknown, about the development of intestinal fibrosis. This review is designed to add to this literature but with a focus on the cellular components that are involved in the development of fibrogenesis and the major molecular mediators that impact on these cells. The aim is to heighten the understanding of the factors involved in intestinal fibrogenesis so that detailed research can be encouraged in order to advance the processes that could lead to effective treatments.
Collapse
Affiliation(s)
- Ian C Lawrance
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, WA, Australia.,University Department of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Freemantle, WA, Australia
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Christine Breynaert
- Department of Immunology and Microbiology, Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jon Florholmen
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Artic University of Norway and University Hospital of Northern Norway, Tromsø, Norway
| | - Gianluca Pellino
- General Surgery Unit, Second University of Naples, Naples, Italy
| | - Shimon Reif
- Department of Pediatrics, Tel-Aviv Souraski Medical Center, Tel-Aviv, Israel
| | - Silvia Speca
- National Institute of Health and Medical Research-INSERM, Unit U995, Lille, France
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
18
|
Lawrance IC, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Latella G. Cellular and Molecular Mediators of Intestinal Fibrosis. J Crohns Colitis 2017; 11:1491-1503. [PMID: 25306501 PMCID: PMC5885809 DOI: 10.1016/j.crohns.2014.09.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal fibrosis is a major complication of the inflammatory bowel diseases (IBD) and although inflammation is necessary for its development, it would appear that it plays a minor role in its progression as anti-inflammatory treatments in IBD do not prevent fibrosis once it has started. The processes that regulate fibrosis would thus appear to be distinct from those regulating inflammation and, therefore, a detailed understanding of these pathways is vital to the development of anti-fibrogenic strategies. There have been several recent reviews exploring what is known, and what remains unknown, about the development of intestinal fibrosis. This review is designed to add to this literature but with a focus on the cellular components that are involved in the development of fibrogenesis and the major molecular mediators that impact on these cells. The aim is to heighten the understanding of the factors involved in intestinal fibrogenesis so that detailed research can be encouraged in order to advance the processes that could lead to effective treatments.
Collapse
Affiliation(s)
- Ian C Lawrance
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, WA, Australia
- University Department of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Freemantle, WA, Australia
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Christine Breynaert
- Department of Immunology and Microbiology, Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jon Florholmen
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Artic University of Norway and University Hospital of Northern Norway, Tromsø, Norway
| | - Gianluca Pellino
- General Surgery Unit, Second University of Naples, Naples, Italy
| | - Shimon Reif
- Department of Pediatrics, Tel-Aviv Souraski Medical Center, Tel-Aviv, Israel
| | - Silvia Speca
- National Institute of Health and Medical Research-INSERM, Unit U995, Lille, France
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
19
|
Study of intestinal anti-inflammatory activity of Phoenix loureiroi Kunth (Arecaceae) fruit. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
20
|
Intestinal Stem Cell Niche: The Extracellular Matrix and Cellular Components. Stem Cells Int 2017; 2017:7970385. [PMID: 28835755 PMCID: PMC5556610 DOI: 10.1155/2017/7970385] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium comprises a monolayer of polarised columnar cells organised along the crypt-villus axis. Intestinal stem cells reside at the base of crypts and are constantly nourished by their surrounding niche for maintenance, self-renewal, and differentiation. The cellular microenvironment including the adjacent Paneth cells, stromal cells, smooth muscle cells, and neural cells as well as the extracellular matrix together constitute the intestinal stem cell niche. A dynamic regulatory network exists among the epithelium, stromal cells, and the matrix via complex signal transduction to maintain tissue homeostasis. Dysregulation of these biological or mechanical signals could potentially lead to intestinal injury and disease. In this review, we discuss the role of different intestinal stem cell niche components and dissect the interaction between dynamic matrix factors and regulatory signalling during intestinal stem cell homeostasis.
Collapse
|
21
|
Johnson LA, Rodansky ES, Moons DS, Larsen SD, Neubig RR, Higgins PDR. Optimisation of Intestinal Fibrosis and Survival in the Mouse S. Typhimurium Model for Anti-fibrotic Drug Discovery and Preclinical Applications. J Crohns Colitis 2017; 11:724-736. [PMID: 27986839 PMCID: PMC5881735 DOI: 10.1093/ecco-jcc/jjw210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/19/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Intestinal fibrosis is a frequent complication in Crohn's disease [CD]. The mouse Salmonella typhimurium model, due to its simplicity, reproducibility, manipulability, and penetrance, is an established fibrosis model for drug discovery and preclinical trials. However, the severity of fibrosis and mortality are host- and bacterial strain-dependent, thus limiting the original model. We re-evaluated the S. typhimurium model to optimise fibrosis and survival, using commercially available mouse strains. METHODS Fibrotic and inflammatory markers were evaluated across S. typhimurium ΔaroA:C57bl/6 studies performed in our laboratory. A model optimisation study was performed using three commercially available mouse strains [CBA/J, DBA/J, and 129S1/SvImJ] infected with either SL1344 or ΔaroA S. typhimurium. Fibrotic penetrance was determined by histopathology, gene expression, and αSMA protein expression. Fibrosis severity, penetrance, and survival were analysed across subsequent CBA studies. RESULTS Fibrosis severity and survival are both host- and bacterial strain-dependent. Marked tissue fibrosis and 100% survival occurred in the CBA/J strain infected with SL1344. Subsequent experiments demonstrated that CBA/J mice develop extensive intestinal fibrosis, characterised by transmural tissue fibrosis, a Th1/Th17 cytokine response, and induction of pro-fibrotic genes and extracellular matrix proteins. A meta-analysis of subsequent SL1344:CBA/J studies demonstrated that intestinal fibrosis is consistent and highly penetrant across histological, protein, and gene expression markers. As proof-of-concept, we tested the utility of the SL1344:CBA/J fibrosis model to evaluate efficacy of CCG-203971, a novel anti-fibrotic drug. CONCLUSION The S. typhimurium SL1344:CBA/J model is an optimised model for the study of intestinal fibrosis.
Collapse
Affiliation(s)
- Laura A Johnson
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Eva S Rodansky
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - David S Moons
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Scott D Larsen
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI, USA
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Peter D R Higgins
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Rieder F, Fiocchi C, Rogler G. Mechanisms, Management, and Treatment of Fibrosis in Patients With Inflammatory Bowel Diseases. Gastroenterology 2017; 152:340-350.e6. [PMID: 27720839 PMCID: PMC5209279 DOI: 10.1053/j.gastro.2016.09.047] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 02/08/2023]
Abstract
In the last 10 years, we have learned much about the pathogenesis, diagnosis, and management of intestinal fibrosis in patients with inflammatory bowel diseases. Just a decade ago, intestinal strictures were considered to be an inevitable consequence of long-term inflammation in patients who did not respond to anti-inflammatory therapies. Inflammatory bowel diseases-associated fibrosis was seen as an irreversible process that frequently led to intestinal obstructions requiring surgical intervention. This paradigm has changed rapidly, due to the antifibrotic approaches that may become available. We review the mechanisms and diagnosis of this serious complication of inflammatory bowel diseases, as well as factors that predict its progression and management strategies.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute; Cleveland Clinic, Cleveland, Ohio; Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| | - Claudio Fiocchi
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute; Cleveland Clinic, Cleveland, Ohio; Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital, University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Abstract
Gastrointestinal disease is a prevalent cause of morbidity and mortality and the use of animal models have been instrumental in studying mechanisms of digestive pathophysiology. As investigators attempt to translate the wealth of basic science information developed from rodent, models, large animal models provide a number of translational advantages. The pig, in particular, is arguably one of the most powerful models of human organ systems, including the gastrointestinal tract. The pig has provided important tools and insight into intestinal ischemia/reperfusion injury, intestinal mucosal repair, as well as new insights into esophageal injury and repair. Porcine model development has taken advantage of the size of the animal, allowing increased surgical and endoscopic access. In addition, cellular tools such as the intestinal porcine epithelial cell line and porcine enteroids are providing the methodology to translate basic science findings using in-depth mechanistic analyses. Further opportunities in porcine digestive disease modeling include developing additional transgenic pig strains. Collectively, porcine models hold great promise for the future of clinically relevant digestive disease research.
Collapse
|
24
|
Rieder F, Latella G, Magro F, Yuksel ES, Higgins PDR, Di Sabatino A, de Bruyn JR, Rimola J, Brito J, Bettenworth D, van Assche G, Bemelman W, d'Hoore A, Pellino G, Dignass AU. European Crohn's and Colitis Organisation Topical Review on Prediction, Diagnosis and Management of Fibrostenosing Crohn's Disease. J Crohns Colitis 2016; 10:873-885. [PMID: 26928961 DOI: 10.1093/ecco-jcc/jjw055] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/16/2016] [Indexed: 01/24/2023]
Abstract
This ECCO topical review of the European Crohn's and Colitis Organisation [ECCO] focused on prediction, diagnosis, and management of fibrostenosing Crohn's disease [CD]. The objective was to achieve evidence-supported, expert consensus that provides guidance for clinical practice.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Pathobiology, Lerner Research Institute, Cleveland, OH, USA Department of Gastroenterology, Hepatology & Nutrition, Lerner Research Institute, Cleveland, OH, USA
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy
| | - Fernando Magro
- Department of Pharmacology & Therapeutics, Department of Gastroenterology, Faculty of Medicine University of Porto, Porto, Portugal
| | - Elif S Yuksel
- Department of Gastroenterology, Izmir Ataturk Teaching and Research Hospital-Katip Celebi University, Izmir, Turkey
| | - Peter D R Higgins
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Antonio Di Sabatino
- First Department of Internal Medicine, St Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Jessica R de Bruyn
- Academic Medical Center Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - Jordi Rimola
- Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jorge Brito
- Department of Radiology, Centro Hospitalar do Algarve, Lagos, Portugal
| | | | - Gert van Assche
- Division of Gastroenterology, University of Leuven, Leuven, Belgium
| | - Willem Bemelman
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Andre d'Hoore
- Department of Abdominal Surgery, University Hospital Gasthuisberg, Leuven, Belgium
| | - Gianluca Pellino
- Department of Medicine 1, Agaplesion Markus Hospital, Frankfurt, Germany
| | - Axel U Dignass
- Department of Pathobiology, Lerner Research Institute, Cleveland, OH, USA
| |
Collapse
|
25
|
γ-Glutamyl valine supplementation-induced mitigation of gut inflammation in a porcine model of colitis. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
26
|
Alfano M, Canducci F, Nebuloni M, Clementi M, Montorsi F, Salonia A. The interplay of extracellular matrix and microbiome in urothelial bladder cancer. Nat Rev Urol 2016; 13:77-90. [PMID: 26666363 PMCID: PMC7097604 DOI: 10.1038/nrurol.2015.292] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many pathological changes in solid tumours are caused by the accumulation of genetic mutations and epigenetic molecular alterations. In addition, tumour progression is profoundly influenced by the environment surrounding the transformed cells. The interplay between tumour cells and their microenvironment has been recognized as one of the key determinants of cancer development and is being extensively investigated. Data suggest that both the extracellular matrix and the microbiota represent microenvironments that contribute to the onset and progression of tumours. Through the introduction of omics technologies and pyrosequencing analyses, a detailed investigation of these two microenvironments is now possible. In urological research, assessment of their dysregulation has become increasingly important to provide diagnostic, prognostic and predictive biomarkers for urothelial bladder cancer. Understanding the roles of the extracellular matrix and microbiota, two key components of the urothelial mucosa, in the sequelae of pathogenic events that occur in the development and progression of urothelial carcinomas will be important to overcome the shortcomings in current bladder cancer treatment strategies.
Collapse
Affiliation(s)
- Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan Italy
| | - Filippo Canducci
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Via Dunant 3, 21100 Varese Italy
| | - Manuela Nebuloni
- Department of Clinical Sciences, Pathology Unit, L. Sacco Hospital, Università degli Studi di Milano, Via Giovanni Battista Grassi 74, 20157 Milan Italy
| | - Massimo Clementi
- Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan Italy
| | - Francesco Montorsi
- Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan Italy
| | - Andrea Salonia
- Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan Italy
| |
Collapse
|
27
|
Abstract
BACKGROUND Intestinal fibrosis is mainly associated with Crohn's disease and is defined as a progressive and excessive deposition of extracellular matrix components. No specific antifibrotic therapies are available. In this study, we evaluate the antifibrotic effect of a novel 5-ASA analog able to activate the peroxisome proliferator-activated receptor γ, named GED-0507-34 Levo. METHODS Colonic fibrosis was induced in 110 C57BL/6 mice by 3 cycles of 2.5% (wt/vol) dextran sulfate sodium administration for 6 weeks. The preventive effects of oral daily GED (30 mg · kg(-1) · d(-1)) administration were evaluated using a macroscopic and histological score and also through biological endpoints. Expression of main markers of myofibroblasts activation was determined in transforming growth factor (TGF-β)-stimulated intestinal fibroblasts and epithelial cells. RESULTS GED improved macroscopic and microscopic intestinal lesions in dextran sulfate sodium-treated animals and reduced the profibrotic gene expression of Acta2, COL1a1, and Fn1 by 1.48-folds (P < 0.05), 1.93-folds (P < 0.005), and 1.03-fold (P < 0.05), respectively. It reduced protein levels of main markers of fibrosis (α-SMA and Collagen I-II) and the main TGF-β/Smad pathway components. GED also decreased the interleukin-13 and connective tissue growth factor expression by 1.89-folds (P < 0.05) and 2.2-folds (P < 0.005), respectively. GED inhibited TGF-β-induced activation of both fibroblast and intestinal epithelial cell lines, by regulating mRNA expression of α-SMA and fibronectin, and restoring the TGF-β-induced loss of intestinal epithelial cell markers. GED treatment also reduced the TGF-β and ACTA1 expression in primary human intestinal fibroblasts from ulcerative colitis patients. CONCLUSIONS GED ameliorates intestinal fibrosis in dextran sulfate sodium-induced chronic colitis in mice and regulates major profibrotic cellular and molecular mechanisms.
Collapse
|
28
|
Pathogenic aspects and therapeutic avenues of intestinal fibrosis in Crohn's disease. Clin Sci (Lond) 2015; 129:1107-13. [PMID: 26494636 DOI: 10.1042/cs20150472] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In Crohn's disease, one of the two major forms of inflammatory bowel diseases in human beings, persistent and chronic inflammation promotes fibrotic processes thereby facilitating formation of strictures, the most common indication for surgical intervention in this disorder. The pathogenesis of Crohn's disease-associated fibrosis is not fully understood, but variants of genes involved in the recognition of microbial components/products [e.g. CARD15 (caspase-activating recruitment domain 15) and ATG16L1 (autophagy-related 16-like 1)] are associated with this phenotype, and experimental evidence suggests that intestinal fibrosis results from an altered balance between deposition of ECM (extracellular matrix) and degradation of ECM by proteases. Studies have also contributed to identify the main phenotypic and functional alterations of cells involved in the fibrogenic process, as well as molecules that stimulate such cells to produce elevated amounts of collagen and other ECM-related proteins. In the present review, we assess the current knowledge about cellular and molecular mediators of intestinal fibrosis and describe results of recent studies aimed at testing the preventive/therapeutic effect of compounds in experimental models of intestinal fibrosis.
Collapse
|
29
|
de Bruyn JR, Meijer SL, Wildenberg ME, Bemelman WA, van den Brink GR, D'Haens GR. Development of Fibrosis in Acute and Longstanding Ulcerative Colitis. J Crohns Colitis 2015; 9:966-72. [PMID: 26245217 DOI: 10.1093/ecco-jcc/jjv133] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/21/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Intestinal fibrosis is a process driven by chronic inflammation leading to increased presence of myofibroblasts and collagen deposition. Although strictures are rarely seen in ulcerative colitis [UC], longstanding disease is believed to cause fibrosis resulting in altered bowel function. METHODS The presence of fibrosis was studied in colectomy specimens from patients with recent-onset UC refractory to medical treatment [n = 13] and longstanding UC [n = 16], and colon cancer patients without UC [n = 7] as controls. Severity of inflammation was scored according to the Geboes score on haematoxylin and eosin stainings. Immunohistochemistry was performed to detect α-smooth muscle actin, fibronectin and collagen I and III. RESULTS Colectomy specimens from patients with acute UC showed significantly more inflammation than those with longstanding disease [19 vs 9 points, p = 0.01]. Both acute and longstanding UC showed a thicker muscularis mucosa than controls [0.10 vs 0.10 vs 0.05 mm, respectively, p = 0.019]. An increase in collagen I and III deposition in the mucosa was observed in UC compared with controls (40% [30-75] vs 25% [10-25], p = 0.033), but this did not differ significantly among acute and longstanding UC patients. CONCLUSIONS Collagen deposition is enhanced in UC compared with controls. However, UC collagen deposition does not increase significantly over time and does not seem to aggravate the entire fibrotic process.
Collapse
Affiliation(s)
- Jessica R de Bruyn
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Sybren L Meijer
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Willem A Bemelman
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Gijs R van den Brink
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Geert R D'Haens
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Affiliation(s)
- A. T. Blikslager
- Department of Clinical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh USA
| |
Collapse
|
31
|
Kondamudi PK, Kovelamudi H, Nayak PG, Rao MC, Shenoy RR. Curcumin half analog modulates interleukin-6 and tumor necrosis factor-alpha in inflammatory bowel disease. Pharmacogn Mag 2015; 11:S296-302. [PMID: 26664018 PMCID: PMC4653340 DOI: 10.4103/0973-1296.165991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/18/2015] [Accepted: 09/24/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The present study was aimed at examining the effect of dehydrozingerone (DHZ), half analogue of curcumin which is the active constituent of turmeric (Curcuma longa) in the di-nitrochlorobenzene (DNCB) induced model for inflammatory bowel disease (IBD). MATERIALS AND METHODS Male Wistar rats (200-220 g) were divided into four groups (n = 6). Chemical induction of IBD was done by sensitizing with 300 µL of 20 g/L of DNCB (in acetone) onto the nape of rats for 14 days followed by intra-colonic instillation of 250 µL of DNCB (0.1% DNCB in 50% alcohol) solution on day 15. Rats in Group 1 (normal control) and Group 2 (DNCB control) were treated with vehicle. Rats in Group 3 were treated with DHZ (100 mg/kg, p.o.; 8 days) and Group 4 animals were treated with sulfasalazine (SS) (100 mg/kg, p.o.; 8 days). On 24(th) day, the rats were killed, colon removed and the macroscopic, biochemical, and histopathological evaluations were performed. RESULTS The levels of myeloperoxidase, thiobarbituric acid reactive substrate, and nitrite increased significantly (P < 0.05) in the DNCB group whereas reduced significantly in the DHZ and SS treated groups. Serum nitrite levels were found to be insignificant between the different groups. Interleukin-6, tumor necrosis factor-alpha level was significantly high in the DNCB group. CONCLUSION These findings show that DHZ can be a promising molecule for the treatment of IBD.
Collapse
Affiliation(s)
- Phani Krishna Kondamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576104, Karnataka, India
| | - Hemalatha Kovelamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576104, Karnataka, India
| | - Pawan G. Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576104, Karnataka, India
| | - Mallikarjuna Chamallamudi Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576104, Karnataka, India
| | - Rekha Raghuveer Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576104, Karnataka, India
| |
Collapse
|
32
|
Grillo AR, Scarpa M, D'Incà R, Brun P, Scarpa M, Porzionato A, De Caro R, Martines D, Buda A, Angriman I, Palù G, Sturniolo GC, Castagliuolo I. TAK1 is a key modulator of the profibrogenic phenotype of human ileal myofibroblasts in Crohn's disease. Am J Physiol Gastrointest Liver Physiol 2015; 309:G443-54. [PMID: 26185333 DOI: 10.1152/ajpgi.00400.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/06/2015] [Indexed: 01/31/2023]
Abstract
Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) signaling can mediate inflammatory responses as well as tissue remodeling. Intestinal mucosal myofibroblast (IMF) activation drives gut fibrosis in Crohn's disease (CD); however, the molecular pathways involved are largely unknown. Thus we investigated the yet-unknown expression and function of TAK1 in human CD-associated fibrosis. Ileal surgical specimens, ileal biopsies, and IMF isolated from controls and CD patients were analyzed for TAK1 and its active phosphorylated form (pTAK1) by Western blotting, immunohistochemistry, and real-time quantitative PCR. TAK1 pharmacological inhibition and silencing were used to assess its role in collagen and inflammatory cytokine synthesis in IMF. TAK1 and pTAK1 levels increased in ileum specimens from CD patients compared with controls and correlated to tissue fibrosis. Similarly, TAK1 mRNA in ileal biopsies of CD patients correlated with fibrogenic marker expression but not inflammatory cytokines. CD-derived IMF showed higher TAK1 and pTAK1 expression associated with increased collagen1(α)1 mRNA levels compared with control IMF. TGF-β1 promoted pTAK1 nuclear translocation and collagen synthesis. TAK1 inhibition or silencing significantly reduced TGF-β1-stimulated collagen production and normalized the profibrogenic phenotype of CD-derived IMF. Taken together, these data suggest that TAK1 activation and nuclear translocation induce and maintain a fibrogenic phenotype in the IMF. Thus the TAK1 signaling pathway may represent a suitable target to design new, antifibrotic therapies.
Collapse
Affiliation(s)
- Alessia Rosaria Grillo
- Department of Molecular Medicine, University of Padova, Padova, Italy; Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy; and
| | - Melania Scarpa
- Oncological Surgery Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Renata D'Incà
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy; and
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marco Scarpa
- Oncological Surgery Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Andrea Porzionato
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Raffaele De Caro
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Diego Martines
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy; and
| | - Andrea Buda
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy; and
| | - Imerio Angriman
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy; and
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giacomo Carlo Sturniolo
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy; and
| | | |
Collapse
|
33
|
Porcine models of digestive disease: the future of large animal translational research. Transl Res 2015; 166:12-27. [PMID: 25655839 PMCID: PMC4458388 DOI: 10.1016/j.trsl.2015.01.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/03/2015] [Accepted: 01/07/2015] [Indexed: 12/14/2022]
Abstract
There is increasing interest in nonrodent translational models for the study of human disease. The pig, in particular, serves as a useful animal model for the study of pathophysiological conditions relevant to the human intestine. This review assesses currently used porcine models of gastrointestinal physiology and disease and provides a rationale for the use of these models for future translational studies. The pig has proven its utility for the study of fundamental disease conditions such as ischemia-reperfusion injury, stress-induced intestinal dysfunction, and short bowel syndrome. Pigs have also shown great promise for the study of intestinal barrier function, surgical tissue manipulation and intervention, as well as biomaterial implantation and tissue transplantation. Advantages of pig models highlighted by these studies include the physiological similarity to human intestine and mechanisms of human disease. Emerging future directions for porcine models of human disease include the fields of transgenics and stem cell biology, with exciting implications for regenerative medicine.
Collapse
|
34
|
Abstract
Importance of chronic fibroproliferative diseases (FDs) including pulmonary fibrosis, chronic kidney diseases, inflammatory bowel disease, and cardiovascular or liver fibrosis is rapidly increasing and they have become a major public health problem. According to some estimates about 45% of all deaths are attributed to FDs in the developed world. Independently of their etiology the common hallmark of FDs is chronic inflammation. Infiltrating immune cells, endothelial, epithelial, and other resident cells of the injured organ release an orchestra of inflammatory mediators, which stimulate the proliferation and excessive extracellular matrix (ECM) production of myofibroblasts, the effector cells of organ fibrosis. Abnormal amount of ECM disturbs the original organ architecture leading to the decline of function. Although our knowledge is rapidly expanding, we still have neither a diagnostic tool to detect nor a drug to specifically target fibrosis. Therefore, there is an urgent need for the more comprehensive understanding of the pathomechanism of fibrosis and development of novel diagnostic and therapeutic strategies. In the present review we provide an overview of the common key mediators of organ fibrosis highlighting the role of interleukin-10 (IL-10) cytokine family members (IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26), which recently came into focus as tissue remodeling-related inflammatory cytokines.
Collapse
|
35
|
Intestinal fibrosis in Crohn's disease: role of microRNAs as fibrogenic modulators, serum biomarkers, and therapeutic targets. Inflamm Bowel Dis 2015; 21:1141-50. [PMID: 25636122 DOI: 10.1097/mib.0000000000000298] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammation often precedes fibrosis and stricture formation in patients with Crohn's disease. Established medical therapies reduce inflammation, but there are currently no specific therapies to prevent fibrosis or treat established fibrosis. Our understanding of the pathogenic processes underpinning fibrogenesis is limited compared with our knowledge of the events initiating and propagating inflammation. There are several biomarkers for intestinal inflammation, but there are none that reflect the development of fibrosis. MicroRNAs (miRNAs) are regulators of cellular activities including inflammation and fibrosis and may serve as biomarkers of disease processes. Differential serum and mucosal miRNA expression profiles have been identified between patients with inflammatory bowel disease with active and inactive inflammatory disease. In contrast, studies in patients with fibrotic phenotypes are comparatively few, although specific miRNAs have defined roles in the development of fibrosis in other organ systems. Here, we discuss the most recent research on miRNA and fibrogenesis with a particular emphasis on Crohn's disease. We also anticipate the potential of miRNAs in fulfilling current unmet translational needs in this patient group by focusing on the role of miRNAs as modulators of fibrogenesis and on their potential value as serum biomarkers and therapeutic targets in the management of fibrosis.
Collapse
|
36
|
Murphy AM, Wong AL, Bezuhly M. Modulation of angiotensin II signaling in the prevention of fibrosis. FIBROGENESIS & TISSUE REPAIR 2015; 8:7. [PMID: 25949522 PMCID: PMC4422447 DOI: 10.1186/s13069-015-0023-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/06/2015] [Indexed: 12/20/2022]
Abstract
Over the last decade, it has become clear that the role of angiotensin II extends far beyond recognized renal and cardiovascular effects. The presence of an autologous renin-angiotensin system has been demonstrated in almost all tissues of the body. It is now known that angiotensin II acts both independently and in synergy with TGF-beta to induce fibrosis via the angiotensin type 1 receptor (AT1) in a multitude of tissues outside of the cardiovascular and renal systems, including pulmonary fibrosis, intra-abdominal fibrosis, and systemic sclerosis. Interestingly, recent studies have described a paradoxically regenerative effect of the angiotensin system via stimulation of the angiotensin type 2 receptor (AT2). Activation of AT2 has been shown to ameliorate fibrosis in animal models of skeletal muscle, gastrointestinal, and neurologic diseases. Clinical reports suggest a beneficial role for modulation of angiotensin II signaling in cutaneous scarring. This article reviews current knowledge on the role that angiotensin II plays in tissue fibrosis, as well as current and potential therapies targeting this system.
Collapse
Affiliation(s)
- Amanda M Murphy
- Division of Plastic and Reconstructive Surgery, Dalhousie University, 5850/5980 University Avenue, PO Box 9700, B3K 6R8 Halifax, NS Canada
| | - Alison L Wong
- Division of Plastic and Reconstructive Surgery, Dalhousie University, 5850/5980 University Avenue, PO Box 9700, B3K 6R8 Halifax, NS Canada
| | - Michael Bezuhly
- Division of Plastic and Reconstructive Surgery, Dalhousie University, 5850/5980 University Avenue, PO Box 9700, B3K 6R8 Halifax, NS Canada ; IWK Health Centre, Dalhousie University, 5850/5980 University Avenue, PO Box 9700, B3K 6R8 Halifax, NS Canada
| |
Collapse
|
37
|
Tao Q, Wang B, Zheng Y, Li G, Ren J. Triptolide ameliorates colonic fibrosis in an experimental rat model. Mol Med Rep 2015; 12:1891-7. [PMID: 25845760 PMCID: PMC4464197 DOI: 10.3892/mmr.2015.3582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 03/12/2015] [Indexed: 12/18/2022] Open
Abstract
Triptolide is known to exert anti-inflammatory and immunomodulatory activities; however, its impact on intestinal fibrosis has not been previously examined. Based on our previous studies of the suppressive activity of triptolide on human colonic subepithelial myofibroblasts and the therapeutic efficacy of triptolide in Crohn's disease, it was hypothesized that triptolide may have beneficial effects on intestinal fibrosis. In the present study, colonic fibrosis was induced in rats by 6 weekly repeated administration with a low-dose of 2,4,6-trinitrobenzene sulfonic acid (TNBS) and was then treated with triptolide or PBS daily (control) simultaneously. Extracellular matrix (ECM) deposition in the colon was examined with image analysis of Masson Trichrome staining. Total collagen levels in colonic homogenates were measured by a Sircol assay. Collagen Iα1 transcripts and collagen I protein were measured ex vivo in the isolated colonic subepithelial myofibroblasts by reverse transcription-quantitative polymerase chain reaction and immunoblot analysis, respectively. The results indicated that triptolide decreased ECM deposition and collagen production in the colon, and inhibited collagen Iα1 transcripts and collagen I protein expression in the isolated subepithelial myofibroblasts of the rats with colonic fibrosis. In conclusion, triptolide ameliorates colonic fibrosis in the experimental rat model, suggesting triptolide may be a promising compound for inflammatory bowel disease treatment.
Collapse
Affiliation(s)
- Qingsong Tao
- Department of Surgery, Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing, Jiangsu 210089, P.R. China
| | - Baochai Wang
- Department of Surgery, Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing, Jiangsu 210089, P.R. China
| | - Yu Zheng
- Department of Surgery, Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing, Jiangsu 210089, P.R. China
| | - Guanwei Li
- Department of Surgery, Research Institute of General Surgery, Jinling Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210093, P.R. China
| | - Jianan Ren
- Department of Surgery, Research Institute of General Surgery, Jinling Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210093, P.R. China
| |
Collapse
|
38
|
Kerami Z, Duijvis NW, Vogels EW, van Dooren FH, Moerland PD, Te Velde AA. Effect of interleukin-17 on gene expression profile of fibroblasts from Crohn's disease patients. J Crohns Colitis 2014; 8:1208-16. [PMID: 24637010 DOI: 10.1016/j.crohns.2014.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIM The expression of interleukin (IL)-17 is upregulated in inflammatory bowel disease (IBD). Since fibroblasts are known to be responsive to IL-17, they may play a role in the modulation of inflammatory responses in IBD. Here, the effects of IL-17 on ileum and colon fibroblasts from Crohn's disease (CD) and ulcerative colitis (UC) patients are investigated, as compared to controls. METHODS Fibroblasts were isolated from surgical specimens taken from the tissue of 21 CD patients, 5 UC patients, and 14 patients undergoing surgery for colorectal carcinoma (control). The fibroblasts were cultured with and without IL-17. We performed mRNA microarray analysis on cultured fibroblasts, isolated from three CD samples and three control samples. Based on these results, the expression of IL-17 induced genes was validated in a larger selection of samples using qRT-PCR and ELISA. RESULTS The mRNA microarray showed that IL-17 induced the expression levels of various genes in fibroblasts of CD patients and controls, among which NFKBIZ, CXCL1, and CXCL6 demonstrated the most prominent response. qRT-PCR validated that IL-17 induced the expression of NFKBIZ significantly (p=0.028) in intestinal fibroblasts of CD patients. By performing an ELISA, we also discovered that, following IL-17 stimulation, CXCL1 levels were significantly increased in fibroblasts from CD patients (p=0.048). IL-17 also stimulated secretion of CXCL6 in fibroblasts from UC patients (p=0.053). CONCLUSION The enhanced expression of IL-17 that is observed in patients with Crohn's disease could act on intestinal fibroblasts to induce expression of transcription factor NFKBIZ and proinflammatory chemokine CXCL1. This can have consequences for fibroblast activity and neutrophil chemotaxis.
Collapse
Affiliation(s)
- Zohra Kerami
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands.
| | - Nicolette W Duijvis
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands.
| | - Esther W Vogels
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands.
| | - Faas H van Dooren
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands.
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands.
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Alterations of the enteric smooth musculature in diverticular disease. J Gastroenterol 2014; 49:1241-52. [PMID: 24113817 DOI: 10.1007/s00535-013-0886-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/06/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND The pathogenesis of diverticular disease (DD) is considered to be multifactorial and involves intestinal motor disturbances and an underlying enteric neuromuscular pathology. While an enteric neuropathy has been well documented, actual studies on concomitant alterations of the enteric musculature are limited. This study is aimed at reassessing the smooth muscle tissue by histological, ultrastructural and molecular-biological approaches. METHODS Full-thickness sigmoid specimens were obtained from patients with DD (n = 20) and controls (n = 19). Morphometric analysis was performed to evaluate the thickness and connective tissue index of the circular and longitudinal muscle layers as well as the myenteric plexus. Structural alterations were determined by light and transmission electron microscopy. mRNA profiles of components of the contractile smooth muscle apparatus including smooth muscle α-actin, smoothelin, histone deacetylase 8, and smooth muscle myosin heavy chain (SMMHC) were assessed by qPCR. Altered gene expression levels were confirmed at protein level by immunohistochemistry. RESULTS Compared to controls, patients with DD showed (1) increased thickness of the circular and longitudinal muscle layers, (2) architectural alterations of smooth muscle cells, (3) increased connective tissue index of the longitudinal muscle layer, (4) focally reduced density of myofilaments at ultrastructural level, (5) specific down-regulation of SMMHC mRNA levels, (6) decreased immunoreactivity of SMMHC, (7) oligo-neuronal hypoganglionosis. CONCLUSIONS DD is associated with distinct structural and functional alterations of the enteric musculature. The enteric myopathy is characterized by disturbed muscular architecture, connective tissue replacement and loss of specific myofilaments and thus may contribute to the pathogenesis and progression of DD.
Collapse
|
40
|
Investigation of sesamol on myeloperoxidase and colon morphology in acetic acid-induced inflammatory bowel disorder in albino rats. ScientificWorldJournal 2014; 2014:802701. [PMID: 24616646 PMCID: PMC3926374 DOI: 10.1155/2014/802701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/20/2013] [Indexed: 12/14/2022] Open
Abstract
Background. Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of gastrointestinal tract of immune, genetic, and environmental origin. In the present study, we examined the effects of sesamol (SES), which is the active constituent of sesame oil in the acetic acid (AA) induced model for IBD in rats. Methods. The groups were divided into normal control, AA control, SES, and sulfasalazine (SS). On day 7, the rats were killed, colon was removed, and the macroscopic, biochemical, and histopathological evaluations were performed. Results. The levels of MPO, TBARS, and tissue nitrite increased significantly (P < 0.05) in the AA group whereas they reduced significantly in the SES and SS treated groups. Serum nitrite levels were found to be insignificant between the different groups. Conclusions. The mucosal protective effects of sesamol in IBD are due to its potential to reduce the myeloperoxidase and nitrite content.
Collapse
|
41
|
Rieder F. The gut microbiome in intestinal fibrosis: environmental protector or provocateur? Sci Transl Med 2014; 5:190ps10. [PMID: 23785034 DOI: 10.1126/scitranslmed.3004731] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In individuals with inflammatory bowel diseases, intestinal fibrosis is a serious clinical complication with no specific therapies. Patients develop bowel fistulae and strictures that usually require surgery and often reoccur. The main driver of gut fibrogenesis is believed to be chronic inflammation, which leads to mesenchymal cell recruitment and activation. Recent findings suggest that the environment--in particular, the microbiome--plays a critical role in this process.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| |
Collapse
|
42
|
Small CLN, Reid-Yu SA, McPhee JB, Coombes BK. Persistent infection with Crohn's disease-associated adherent-invasive Escherichia coli leads to chronic inflammation and intestinal fibrosis. Nat Commun 2013; 4:1957. [PMID: 23748852 PMCID: PMC3938456 DOI: 10.1038/ncomms2957] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/30/2013] [Indexed: 02/06/2023] Open
Abstract
Crohn’s disease is a chronic inflammatory condition of the gastrointestinal tract in which alterations to the bacterial community contribute to disease. Adherent-invasive E. coli (AIEC) are associated with human Crohn’s disease, however their role in intestinal immunopathology is unclear due to the lack of an animal model compatible with chronic timescales. Here we establish chronic AIEC infection in streptomycin-treated conventional mice (CD-1, DBA/2, C3HeN, 129e, C57BL/6), enabling the study of host response and immunopathology. AIEC induces an active Th17 response, heightened levels of proinflammatory cytokines and fibrotic growth factors, with transmural inflammation and fibrosis. Depletion of CD8+ T cells increases cecal bacterial load, pathology and intestinal fibrosis in C57BL/6 mice suggesting a protective role. Our findings provide evidence that chronic AIEC infections result in immunopathology similar to that seen in Crohn’s disease. With this model, research into the host and bacterial genetics associated with AIEC-induced disease becomes more widely accessible.
Collapse
Affiliation(s)
- Cherrie-Lee N Small
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | |
Collapse
|
43
|
Latella G, Vetuschi A, Sferra R, Speca S, Gaudio E. Localization of ανβ6 integrin-TGF-β1/Smad3, mTOR and PPARγ in experimental colorectal fibrosis. Eur J Histochem 2013; 57:e40. [PMID: 24441193 PMCID: PMC3896042 DOI: 10.4081/ejh.2013.e40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/26/2013] [Accepted: 11/04/2013] [Indexed: 02/08/2023] Open
Abstract
A simultaneous action of several pro-fibrotic mediators appears relevant in the development of fibrosis. There are evidences that transforming growth factor-β (TGF-β)/Smad3 pathway forms with αvβ6 integrin, mammalian target of Rapamycin (mTOR) and peroxisome proliferator-activated receptor-γ (PPARγ) a complex signalling network with extensive crosstalk and strong effects on fibrosis development. The present study evaluated the expression of TGFβ, Smad3, αvβ6 integrin, mTOR and PPARγ in 2, 4, 6-trinitrobenzenesulphonic acid (TNBS)-induced colorectal fibrosis in Smad3 wild-type (WT) and null mice. Smad3 WT mice treated with TNBS developed a marked colorectal fibrosis and showed a concomitant up-regulation of TGFβ, Smad3, αvβ6 and mTOR and a reduction of PPARγ expression. On the other hand, Smad3 Null mice similarly treated with TNBS did not develop fibrosis and showed a very low or even absent expression of TGFβ, Smad3, αvβ6 and mTOR and a marked over-expression of PPARγ. At the same time the expression of α-smooth muscle actin (a marker of activated myofibroblasts), collagen I-III and connective tissue growth factor (a downstream effector of TGFβ/Smad3-induced extracellular matrix proteins) were up-regulated in Smad3 WT mice treated with TNBS compared to Null TNBS-treated mice. These preliminary results suggest a possible interaction between these pro-fibrotic molecules in the development of intestinal fibrosis.
Collapse
|
44
|
Sahebally SM, Burke JP, Chang KH, Kiernan MG, O'Connell PR, Coffey JC. Circulating fibrocytes and Crohn's disease. Br J Surg 2013; 100:1549-56. [DOI: 10.1002/bjs.9302] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2013] [Indexed: 12/19/2022]
Abstract
Abstract
Background
Despite advances in medical therapy, there remains no effective preventive or non-surgical therapeutic option for fibrostenotic Crohn's disease (CD). Symptomatic recurrences are common, necessitating reintervention. Intestinal fibroblasts mediate stricture formation, but their exact source is unclear. Recent evidence indicates that circulating fibrocytes drive fibrosis through differentiation into fibroblasts and the production of extracellular matrix proteins. The aim of this review is to describe current understanding of the pathophysiology underlying fibrosis in CD, the cellular and molecular biology of fibrocytes and their role in CD.
Methods
The electronic literature (January 1972 to December 2012) on ‘circulating fibrocytes’ and ‘Crohn's fibrosis’ was reviewed.
Results
Circulating fibrocytes appear universally involved in organ fibrosis. A complex array of cytokines, chemokines and growth factors regulate fibrocyte biology, and these are associated with fibrogenesis in CD. The cytokines transforming growth factor β1, connective tissue growth factor and interleukin 13, overexpressed in the strictured Crohn's intestine, promote fibrocyte generation and/or differentiation.
Conclusion
Levels of circulating fibrocytes are raised in conditions marked by exaggerated fibrosis. These and other observations prompt a characterization of fibrocyte activity in CD with a view to investigating a pathogenic role.
Collapse
Affiliation(s)
- S M Sahebally
- Department of Colorectal Surgery, University Hospital Limerick, Limerick, Ireland
- 4i Centre for Interventions In Inflammation, Infection and Immunity, Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - J P Burke
- Department of Colorectal Surgery, University Hospital Limerick, Limerick, Ireland
| | - K H Chang
- Department of Colorectal Surgery, University Hospital Limerick, Limerick, Ireland
| | - M G Kiernan
- 4i Centre for Interventions In Inflammation, Infection and Immunity, Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - P R O'Connell
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - J C Coffey
- Department of Colorectal Surgery, University Hospital Limerick, Limerick, Ireland
- 4i Centre for Interventions In Inflammation, Infection and Immunity, Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| |
Collapse
|
45
|
Kondamudi PK, Malayandi R, Eaga C, Aggarwal D. Drugs as causative agents and therapeutic agents in inflammatory bowel disease. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2013.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
46
|
Abstract
Crohn's disease (CD) belongs together with ulcerative colitis to the two major forms of inflammatory bowel diseases (IBD). Although its etiology remains poorly understood, several genetic and immune factors and cells (especially T cells) have been shown to be involved in the pathogenesis of IBD. Among these factors, proinflammatory T cells and their secreted cytokines seem to be the main effectors in induction and perpetuation of the intestinal inflammation. Beside the local inflammatory effect, there is a very clear defined mechanism where T cells and inflammatory complexes migrate and induce extraintestinal manifestation and complications. This article reviews current knowledge of the pathomorphology of mucosal inflammation in CD focusing especially on the immune mechanisms of T-cell homing, extraintestinal manifestations and fibrogenesis.
Collapse
Affiliation(s)
- Jonas Mudter
- Medical Clinic 1, University of Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany.
| | | |
Collapse
|
47
|
Ziogas DC, Gras-Miralles B, Mustafa S, Geiger BM, Najarian RM, Nagel JM, Flier SN, Popov Y, Tseng YH, Kokkotou E. Anti-melanin-concentrating hormone treatment attenuates chronic experimental colitis and fibrosis. Am J Physiol Gastrointest Liver Physiol 2013; 304:G876-84. [PMID: 23538494 PMCID: PMC3652072 DOI: 10.1152/ajpgi.00305.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibrosis represents a major complication of several chronic diseases, including inflammatory bowel disease (IBD). Treatment of IBD remains a clinical challenge despite several recent therapeutic advances. Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide shown to regulate appetite and energy balance. However, accumulating evidence suggests that MCH has additional biological effects, including modulation of inflammation. In the present study, we examined the efficacy of an MCH-blocking antibody in treating established, dextran sodium sulfate-induced experimental colitis. Histological and molecular analysis of mouse tissues revealed that mice receiving anti-MCH had accelerated mucosal restitution and lower colonic expression of several proinflammatory cytokines, as well as fibrogenic genes, including COL1A1. In parallel, they spared collagen deposits seen in the untreated mice, suggesting attenuated fibrosis. These findings raised the possibility of perhaps direct effects of MCH on myofibroblasts. Indeed, in biopsies from patients with IBD, we demonstrate expression of the MCH receptor MCHR1 in α-smooth muscle actin(+) subepithelial cells. CCD-18Co cells, a primary human colonic myofibroblast cell line, were also positive for MCHR1. In these cells, MCH acted as a profibrotic modulator by potentiating the effects of IGF-1 and TGF-β on proliferation and collagen production. Thus, by virtue of combined anti-inflammatory and anti-fibrotic effects, blocking MCH might represent a compelling approach for treating IBD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yury Popov
- 1Beth Israel Deaconess Medical Center and
| | - Yu-Hua Tseng
- 2Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
48
|
Bargagna-Mohan P, Deokule SP, Thompson K, Wizeman J, Srinivasan C, Vooturi S, Kompella UB, Mohan R. Withaferin A effectively targets soluble vimentin in the glaucoma filtration surgical model of fibrosis. PLoS One 2013; 8:e63881. [PMID: 23667686 PMCID: PMC3648549 DOI: 10.1371/journal.pone.0063881] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 04/09/2013] [Indexed: 01/23/2023] Open
Abstract
Withaferin A (WFA) is a natural product that binds to soluble forms of the type III intermediate filament (IF) vimentin. Currently, it is unknown under what pathophysiological contexts vimentin is druggable, as cytoskeltal vimentin-IFs are abundantly expressed. To investigate druggability of vimentin, we exploited rabbit Tenon's capsule fibroblast (RbTCF) cell cultures and the rabbit glaucoma filtration surgical (GFS) model of fibrosis. WFA potently caused G₀/G₁ cell cycle inhibition (IC₅₀ 25 nM) in RbTCFs, downregulating ubiquitin E3 ligase skp2 and inducing p27(Kip1) expression. Transforming growth factor (TGF)-ß-induced myofibroblast transformation caused development of cell spheroids with numerous elongated invadopodia, which WFA blocked potently by downregulating soluble vimentin and α-smooth muscle actin (SMA) expression. In the pilot proof-of-concept study using the GFS model, subconjunctival injections of a low WFA dose reduced skp2 expression in Tenon's capsule and increased p27(Kip1) expression without significant alteration to vimentin-IFs. This treatment maintains significant nanomolar WFA concentrations in anterior segment tissues that correspond to WFA's cell cycle targeting activity. A ten-fold higher WFA dose caused potent downregulation of soluble vimentin and skp2 expression, but as found in cell cultures, no further increase in p27(Kip1) expression was observed. Instead, this high WFA dose potently induced vimentin-IF disruption and downregulated α-SMA expression that mimicked WFA activity in TGF-ß-treated RbTCFs that blocked cell contractile activity at submicromolar concentrations. These findings illuminate that localized WFA injection to ocular tissues exerts pharmacological control over the skp2-p27(Kip1) pathway by targeting of soluble vimentin in a model of surgical fibrosis.
Collapse
Affiliation(s)
- Paola Bargagna-Mohan
- Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Sunil P. Deokule
- Ophthalmology and Visual Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kyle Thompson
- Ophthalmology and Visual Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - John Wizeman
- Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Cidambi Srinivasan
- Statistics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sunil Vooturi
- Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Uday B. Kompella
- Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Royce Mohan
- Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|
49
|
Development of a peptidoglycan-polysaccharide murine model of Crohn's disease: effect of genetic background. Inflamm Bowel Dis 2013; 19:1238-44. [PMID: 23619717 DOI: 10.1097/mib.0b013e31828132b4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The peptidoglycan-polysaccharide (PGPS) model using inbred rats closely mimics Crohn's disease. Our aim was to identify mouse strains that develop ileocolitis in response to bowel wall injection with PGPS. Mouse strains studied included NOD2 knockout animals, RICK/RIP2 knockout animals, and genetically inbred strains that are susceptible to inflammation. Mice underwent laparotomy with intramural injection of PGPS or human serum albumin in the terminal ileum, ileal Peyer's patches, and cecum. Gross abdominal score, cecal histologic score, and levels of pro-fibrotic factor mRNAs were determined 20 to 32 days after laparotomy. PGPS-injected wild-type and knockout mice with mutations in the NOD2 pathway had higher abdominal scores than human serum albumin-injected mice. The RICK knockout animals tended to have higher mean abdominal scores than the NOD2 knockout animals, but the differences were not significant. CBA/J mice were shown to have the most robust response to PGPS, demonstrating consistently higher abdominal scores than other strains. Animals killed on day 26 had an average gross abdominal score of 6.1 ± 1.5, compared with those on day 20 (3.0 ± 0.0) or day 32 (2.8 ± 0.9). PGPS-injected CBA/J mice studied 26 days after laparotomy developed the most robust inflammation and most closely mimicked the PGPS rat model and human Crohn's disease.
Collapse
|
50
|
Abstract
BACKGROUND Crohn's disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression toward fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. METHODS The stiffness of fresh ex vivo samples from normal human small intestine, Crohn's disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin staining, and gene expression. RESULTS Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn's strictures and between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn's strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased α-smooth muscle actin protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase, and proinflammatory gene expression and was associated with nuclear localization of the transcriptional cofactor MRTF-A. CONCLUSIONS Matrix stiffness, representative of the pathologic stiffness of Crohn's strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways, suggesting that the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to auto-propagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn's disease.
Collapse
|