1
|
Mincheva G, Moreno-Manzano V, Felipo V, Llansola M. Extracellular vesicles from mesenchymal stem cells improve neuroinflammation and neurotransmission in hippocampus and cognitive impairment in rats with mild liver damage and minimal hepatic encephalopathy. Stem Cell Res Ther 2024; 15:472. [PMID: 39696620 DOI: 10.1186/s13287-024-04076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Patients with steatotic liver disease may show mild cognitive impairment. Rats with mild liver damage reproduce this cognitive impairment, which is mediated by neuroinflammation that alters glutamate neurotransmission in the hippocampus. Treatment with extracellular vesicles (EV) from mesenchymal stem cells (MSC) reduces neuroinflammation and improves cognitive impairment in different animal models of neurological diseases. TGFβ in these EVs seems to be involved in its beneficial effects. The aim of this work was to assess if MSCs-EVs may improve cognitive impairment in rats with mild liver damage and to analyze the underlying mechanisms, assessing the effects on hippocampal neuroinflammation and neurotransmission. We also aimed to analyze the role of TGFβ in the in vivo effects of MSCs-EVs. METHODS Male Wistar rats with CCl4-induced mild liver damage were treated with EVs from unmodified MSC or with EVs derived from TGFβ-silenced MSCs and its effects on cognitive function and on neuroinflammation and altered neurotransmission in the hippocampus were analysed. RESULTS Unmodified MSC-EVs reversed microglia activation and TNFα content, restoring membrane expression of NR2 subunit of NMDA receptor and improved object location memory. In contrast, EVs derived from TGFβ-silenced MSCs did not induce these effects but reversed astrocyte activation, IL-1β content and altered GluA2 AMPA receptor subunit membrane expression leading to improvement of learning and working memory in the radial maze. CONCLUSIONS EVs from MSCs with TGFβ silenced induce different effects on behavior, neuroinflammation and neurotransmitter receptors alterations than unmodified MSC-EVs, indicating that the modification of TGFβ in the MSC-EVs has a notable effect on the consequences of the treatment. This work shows that treatment with MSC-EVs improves learning and memory in a model of mild liver damage and MHE in rats, suggesting that MSC-EVs may be a good therapeutic option to reverse cognitive impairment in patients with steatotic liver disease.
Collapse
Affiliation(s)
- Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| |
Collapse
|
2
|
Anzillotti G, Gomoll AH, Conte P, Bulgarelli A, Queirazza P, Marcacci M, Kon E, Di Matteo B. Limited evidence for the usage of renin-angiotensin-aldosterone pathway blockers to prevent arthrofibrosis after total knee arthroplasty. A systematic review of clinical evidence. J Exp Orthop 2024; 11:e70089. [PMID: 39664927 PMCID: PMC11633675 DOI: 10.1002/jeo2.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/13/2024] Open
Abstract
Purpose Despite advances in surgical techniques and rehabilitation protocols, arthrofibrosis following total knee arthroplasty (TKA) still has poor outcomes. In the last decade, attention has been focused on the pathogenesis and cascade of events leading to the development of fibrosis. Currently, one of the most promising approaches consists in the indirect antagonisation of transforming growth factor beta 1 (TGF-beta 1) through the downregulation of the renin-angiotensin-aldosterone system (RAAS). This systematic review aims to analyse the available evidence regarding the use of angiotensin receptor blockers (ARBs)/angiotensin-converting-enzyme inhibitors (ACEi) in order to prevent post-operative knee arthrofibrosis following TKA. Methods Extensive research on the PubMed, Cochrane, and Google Scholar databases was performed on 8 July 2024, using keywords related to ARBs, ACE inhibitors and arthrofibrosis. Inclusion criteria included: (1) clinical trials of any level of evidence; (2) written in English; (3) studies conducted on humans; and (4) evaluating the antifibrotic effects of ACE inhibitors or ARBs administered for TKA surgeries. Exclusion criteria were articles written in other languages; preclinical studies; expert opinions; reviews and trials evaluating the effects of ACEi/ARBs not related to their antifibrotic effect after TKA. Results A total of six studies met the inclusion criteria and were analysed. All studies were retrospective and involved a total of 158,310 patients. Time of administration varied among the studies as well as the dosage, which fell within the range for cardiological use. Four out of six studies focused exclusively on losartan. Three studies reported a clear, significant correlation between the use of ARBs and/or ACEi and a reduced likelihood of developing arthrofibrosis. Conclusions The RAAS antagonism could have potential for stiffness prevention after TKA. However, given the side effects and the limited evidence available, the use of ACEi/sartans for the sole purpose of avoiding arthrofibrosis after TKA is not currently recommended. Level of Evidence Level III.
Collapse
Affiliation(s)
- Giuseppe Anzillotti
- IRCCS Humanitas Research HospitalRozzanoMilanItaly
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleMilanItaly
| | - Andreas H. Gomoll
- Department of Sports MedicineHospital for Special SurgeryNew YorkNew YorkUSA
| | - Pietro Conte
- IRCCS Humanitas Research HospitalRozzanoMilanItaly
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleMilanItaly
| | - Alberto Bulgarelli
- IRCCS Humanitas Research HospitalRozzanoMilanItaly
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleMilanItaly
| | - Paolo Queirazza
- IRCCS Humanitas Research HospitalRozzanoMilanItaly
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleMilanItaly
| | - Maurilio Marcacci
- IRCCS Humanitas Research HospitalRozzanoMilanItaly
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleMilanItaly
| | - Elizaveta Kon
- IRCCS Humanitas Research HospitalRozzanoMilanItaly
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleMilanItaly
| | - Berardo Di Matteo
- IRCCS Humanitas Research HospitalRozzanoMilanItaly
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleMilanItaly
| |
Collapse
|
3
|
Mzimela N, Dimba N, Sosibo A, Khathi A. Evaluating the impact of type 2 diabetes mellitus on pulmonary vascular function and the development of pulmonary fibrosis. Front Endocrinol (Lausanne) 2024; 15:1431405. [PMID: 39050565 PMCID: PMC11266053 DOI: 10.3389/fendo.2024.1431405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The increasing prevalence of type 2 diabetes mellitus (T2DM) is a significant worldwide health concern caused by sedentary lifestyles and unhealthy diets. Beyond glycemic control, T2DM impacts multiple organ systems, leading to various complications. While traditionally associated with cardiovascular and microvascular complications, emerging evidence indicates significant effects on pulmonary health. Pulmonary vascular dysfunction and fibrosis, characterized by alterations in vascular tone and excessive extracellular matrix deposition, are increasingly recognized in individuals with T2DM. The onset of T2DM is often preceded by prediabetes, an intermediate hyperglycemic state that is associated with increased diabetes and cardiovascular disease risk. This review explores the relationship between T2DM, pulmonary vascular dysfunction and pulmonary fibrosis, with a focus on potential links with prediabetes. Pulmonary vascular function, including the roles of nitric oxide (NO), prostacyclin (PGI2), endothelin-1 (ET-1), thromboxane A2 (TxA2) and thrombospondin-1 (THBS1), is discussed in the context of T2DM and prediabetes. Mechanisms linking T2DM to pulmonary fibrosis, such as oxidative stress, dysregulated fibrotic signaling, and chronic inflammation, are explained. The impact of prediabetes on pulmonary health, including endothelial dysfunction, oxidative stress, and dysregulated vasoactive mediators, is highlighted. Early detection and intervention during the prediabetic stage may reduce respiratory complications associated with T2DM, emphasizing the importance of management strategies targeting blood glucose regulation and vascular health. More research that looks into the mechanisms underlying pulmonary complications in T2DM and prediabetes is needed.
Collapse
Affiliation(s)
- Nhlakanipho Mzimela
- Department of Human Physiology, Faculty of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | | | | |
Collapse
|
4
|
Braczkowski MJ, Kufel KM, Kulińska J, Czyż DŁ, Dittmann A, Wiertelak M, Młodzik MS, Braczkowski R, Soszyński D. Pleiotropic Action of TGF-Beta in Physiological and Pathological Liver Conditions. Biomedicines 2024; 12:925. [PMID: 38672279 PMCID: PMC11048627 DOI: 10.3390/biomedicines12040925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study is to review and analyze the pleiotropic effects of TGF-β in physiological and pathological conditions of the liver, with particular emphasis on its role in immune suppression, wound healing, regulation of cell growth and differentiation, and liver cell apoptosis. A literature review was conducted, including 52 studies, comprising review articles, in vitro and in vivo studies, and meta-analyses. Only studies published in peer-reviewed scientific journals were included in the analysis. TGF-β is a pleiotropic growth factor that is crucial for the liver, both in physiology and pathophysiology. Although its functions are complex and diverse, TGF-β plays a constant role in immune suppression, wound healing, and the regulation of cell growth and differentiation. In concentrations exceeding the norm, it can induce the apoptosis of liver cells. Increased TGF-β levels are observed in many liver diseases, such as fibrosis, inflammation, and steatosis. TGF-β has been shown to play a key role in many physiological and pathological processes of the liver, and its concentration may be a potential diagnostic and prognostic marker in liver diseases.
Collapse
Affiliation(s)
- Michał Jakub Braczkowski
- Department of Physiology, Institute of Medical Sciences, University of Opole, 45040 Opole, Poland;
| | - Klaudia Maria Kufel
- Student Scientific Society of Physiology, Department of Physiology, Institute of Medical Sciences, University of Opole, 45040 Opole, Poland; (K.M.K.); (J.K.); (A.D.); (M.W.)
| | - Julia Kulińska
- Student Scientific Society of Physiology, Department of Physiology, Institute of Medical Sciences, University of Opole, 45040 Opole, Poland; (K.M.K.); (J.K.); (A.D.); (M.W.)
| | - Daniel Łukasz Czyż
- Student Scientific Society of Physiology, Department of Physiology, Institute of Medical Sciences, University of Opole, 45040 Opole, Poland; (K.M.K.); (J.K.); (A.D.); (M.W.)
| | - Aleksander Dittmann
- Student Scientific Society of Physiology, Department of Physiology, Institute of Medical Sciences, University of Opole, 45040 Opole, Poland; (K.M.K.); (J.K.); (A.D.); (M.W.)
| | - Michał Wiertelak
- Student Scientific Society of Physiology, Department of Physiology, Institute of Medical Sciences, University of Opole, 45040 Opole, Poland; (K.M.K.); (J.K.); (A.D.); (M.W.)
| | - Marcin Sławomir Młodzik
- Department of Pathology, Institute of Medical Sciences, University of Opole, 45040 Opole, Poland;
| | | | - Dariusz Soszyński
- Department of Physiology, Institute of Medical Sciences, University of Opole, 45040 Opole, Poland;
- Department of Human Physiology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87100 Torun, Poland
| |
Collapse
|
5
|
Bačenková D, Trebuňová M, Demeterová J, Živčák J. Human Chondrocytes, Metabolism of Articular Cartilage, and Strategies for Application to Tissue Engineering. Int J Mol Sci 2023; 24:17096. [PMID: 38069417 PMCID: PMC10707713 DOI: 10.3390/ijms242317096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Hyaline cartilage, which is characterized by the absence of vascularization and innervation, has minimal self-repair potential in case of damage and defect formation in the chondral layer. Chondrocytes are specialized cells that ensure the synthesis of extracellular matrix components, namely type II collagen and aggregen. On their surface, they express integrins CD44, α1β1, α3β1, α5β1, α10β1, αVβ1, αVβ3, and αVβ5, which are also collagen-binding components of the extracellular matrix. This article aims to contribute to solving the problem of the possible repair of chondral defects through unique methods of tissue engineering, as well as the process of pathological events in articular cartilage. In vitro cell culture models used for hyaline cartilage repair could bring about advanced possibilities. Currently, there are several variants of the combination of natural and synthetic polymers and chondrocytes. In a three-dimensional environment, chondrocytes retain their production capacity. In the case of mesenchymal stromal cells, their favorable ability is to differentiate into a chondrogenic lineage in a three-dimensional culture.
Collapse
Affiliation(s)
- Darina Bačenková
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia; (M.T.); (J.D.); (J.Ž.)
| | | | | | | |
Collapse
|
6
|
Afe AE, Shen ZJ, Guo X, Zhou R, Li K. African Swine Fever Virus Interaction with Host Innate Immune Factors. Viruses 2023; 15:1220. [PMID: 37376520 DOI: 10.3390/v15061220] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
African swine fever virus (ASFV) adversely affects pig farming owing to its 100% mortality rate. The condition is marked by elevated body temperature, bleeding, and ataxia in domestic pigs, whereas warthogs and ticks remain asymptomatic despite being natural reservoirs for the virus. Breeding ASFV-resistant pigs is a promising solution for eradicating this disease. ASFV employs several mechanisms to deplete the host antiviral response. This review explores the interaction of ASFV proteins with innate host immunity and the various types of machinery encompassed by viral proteins that inhibit and induce different signaling pathways, such as cGAS-STING, NF-κB, Tumor growth factor-beta (TGF-β), ubiquitination, viral inhibition of apoptosis, and resistance to ASFV infection. Prospects for developing a domestic pig that is resistant to ASFV are also discussed.
Collapse
Affiliation(s)
- Ayoola Ebenezer Afe
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhao-Ji Shen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaorong Guo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528231, China
| | - Rong Zhou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
7
|
Aashaq S, Batool A, Mir SA, Beigh MA, Andrabi KI, Shah ZA. TGF-β signaling: A recap of SMAD-independent and SMAD-dependent pathways. J Cell Physiol 2021; 237:59-85. [PMID: 34286853 DOI: 10.1002/jcp.30529] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-β (TGF-β) is a proinflammatory cytokine known to control a diverse array of pathological and physiological conditions during normal development and tumorigenesis. TGF-β-mediated physiological effects are heterogeneous and vary among different types of cells and environmental conditions. TGF-β serves as an antiproliferative agent and inhibits tumor development during primary stages of tumor progression; however, during the later stages, it encourages tumor development and mediates metastatic progression and chemoresistance. The fundamental elements of TGF-β signaling have been divulged more than a decade ago; however, the process by which the signals are relayed from cell surface to nucleus is very complex with additional layers added in tumor cell niches. Although the intricate understanding of TGF-β-mediated signaling pathways and their regulation are still evolving, we tried to make an attempt to summarize the TGF-β-mediated SMAD-dependent andSMAD-independent pathways. This manuscript emphasizes the functions of TGF-β as a metastatic promoter and tumor suppressor during the later and initial phases of tumor progression respectively.
Collapse
Affiliation(s)
- Sabreena Aashaq
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| | - Asiya Batool
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Srinagar, JK, India
| | | | | | | | - Zaffar Amin Shah
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| |
Collapse
|
8
|
Wang L, Chang M, Tian Y, Yan J, Xu W, Yuan S, Zhang K, Liu X. The Role of Smad2 in Transforming Growth Factor β 1-Induced Hypertrophy of Ligamentum Flavum. World Neurosurg 2021; 151:e128-e136. [PMID: 33831616 DOI: 10.1016/j.wneu.2021.03.147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypertrophy of the ligamentum flavum (LF) contributes to the development of spinal stenosis. Smad proteins can mediate the fibrogenesis activity through the transforming growth factor β1 (TGF-β1) pathway, but which Smad protein plays a more important role in the hypertrophy process of LF is unclear. METHODS The LF samples were obtained from 50 patients. After the LF cells (LFCs) were cultured, small interfering ribonucleic acid (siRNA) that target human phosphorylated-Smad2, 3, or 4 (p-Smad2,3,4) genes was transfected into LFCs. Next, proteins from cells were extracted and the protein levels of Smad2, Smad3, and Smad4 were detected by Western blot. The messenger ribonucleic acid level of TGF-β1 was measured by real-time polymerase chain reaction (PCR). Furthermore, an enzyme-linked immunosorbent assay was performed to test the impact of Smad2 downstream of the TGF-β1 signaling pathway. RESULTS Degeneration of the LF was characterized by an increase in disorganized elastic fibers and fibrotic transformation by extracellular collagen deposition. The gene expression analysis of fibrotic genes in LFCs showed that knockdown of phosphorylated-Smad2 by siRNA significantly reduced the protein expression level of TGF-β1 compared with other groups. The enzyme-linked immunosorbent assay suggested that the protein expression level of Smad2 can influence the downstream events of TGF-β1 signaling pathway in the LFCs. CONCLUSIONS Our findings suggest that Smad2 plays a potential role in the pathologic development of hypertrophy of LF. We also found that Smad2 knockdown by Smad-siRNA can influence the TGF-β1 signaling pathway through decreasing expression of TGF-β1, tumor necrosis factor α, and nuclear factor κb.
Collapse
Affiliation(s)
- Lianlei Wang
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Mingzheng Chang
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Yonghao Tian
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Jun Yan
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Wanlong Xu
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Suomao Yuan
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Xinyu Liu
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China.
| |
Collapse
|
9
|
Kerola A, Lohi J, Heikkilä P, Mutanen A, Jalanko H, Pakarinen MP. Divergent expression of liver transforming growth factor superfamily cytokines after successful portoenterostomy in biliary atresia. Surgery 2019; 165:905-911. [PMID: 30686515 DOI: 10.1016/j.surg.2018.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/03/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pathogenesis of progressive liver fibrosis in biliary atresia after successful portoenterostomy remains unclear. We related hepatic expression of transforming growth factor beta (TGF-β) superfamily cytokines to histologic liver injury after successful portoenterostomy. METHODS Enrolled in our study were 28 patients with biliary atresia who had liver biopsies obtained during and after successful portoenterostomy, which normalized serum bilirubin (<20 µmol/l). Biopsies were evaluated for cholestasis, inflammation, ductal reaction, and fibrosis and were stained immunohistochemically for transforming growth factor beta 1, transforming growth factor beta 2, connective tissue growth factor, and decorin. Respective gene expression (TGFB1, TGFB2, TGFB3, CTGF, DCN) was analyzed at follow-up using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results were compared with fibrotic and healthy control livers. RESULTS After median follow-up of 3.0 years, histologic cholestasis resolved, whereas fibrosis had progressed only in isolated biliary atresia. Liver protein expression of transforming growth factor beta 1 and connective tissue growth factor (P < .001 for both), but not that of transforming growth factor beta 2 or decorin, decreased after successful portoenterostomy, although expression of all four cytokines remained elevated. In accordance with postportoenterostomy changes in protein expression, follow-up ribonucleic acid expression of TGFB2 and DCN, but not that of TGFB1 and CTGF, was upregulated when compared with the controls. Both protein and gene expression of transforming growth factor beta 1 and protein expression of transforming growth factor beta 2, connective tissue growth factor and decorin correlated with METAVIR fibrosis stage. Syndromic patients (n = 12) showed milder fibrosis and lower transforming growth factor beta 1 expression than patients with isolated biliary atresia. CONCLUSION These findings support a central role of transforming growth factor beta superfamily in mediating continuing liver fibrogenesis after successful portoenterostomy. Transforming growth factor beta pathway cytokines responded divergently to clearance of jaundice, which was reflected by differential progression of fibrosis between syndromic and isolated patients.
Collapse
Affiliation(s)
- Anna Kerola
- Pediatric Surgery and Pediatric Transplantation Surgery, Pediatric Liver and Gut Research Group, Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland.
| | - Jouko Lohi
- Pathology, University of Helsinki and Helsinki University Hospital, Finland
| | - Päivi Heikkilä
- Pathology, University of Helsinki and Helsinki University Hospital, Finland
| | - Annika Mutanen
- Pediatric Surgery and Pediatric Transplantation Surgery, Pediatric Liver and Gut Research Group, Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland
| | - Hannu Jalanko
- Pediatric Nephrology and Transplantation, University of Helsinki and Helsinki University Hospital, Finland
| | - Mikko P Pakarinen
- Pediatric Surgery and Pediatric Transplantation Surgery, Pediatric Liver and Gut Research Group, Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland
| |
Collapse
|
10
|
Lim BJ, Lee WK, Lee HW, Lee KS, Kim JK, Chang HY, Lee JI. Selective deletion of hepatocyte platelet-derived growth factor receptor α and development of liver fibrosis in mice. Cell Commun Signal 2018; 16:93. [PMID: 30509307 PMCID: PMC6276164 DOI: 10.1186/s12964-018-0306-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/21/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Platelet-derived growth factor receptor α (PDGFRα) expression is increased in activated hepatic stellate cells (HSCs) in cirrhotic liver, while normal hepatocytes express PDGFRα at a negligible level. However, cancerous hepatocytes may show upregulation of PDGFRα, and hepatocellular carcinoma is preceded by chronic liver injury. The role of PDGFRα in non-cancerous hepatocytes and liver fibrosis is unclear. We hypothesized that upon liver injury, PDGFRα in insulted hepatocytes contributes to liver fibrosis by facilitating intercellular crosstalk between hepatocytes and HSCs. METHODS Hepatocytes were isolated from normal and thioacetamide (TAA)-induced cirrhotic livers for assessment of PDGFRα expression. Conditional knock-out (KO) C57BL/6 mice, in which PDGFRα was selectively deleted in hepatocytes, were generated. Liver fibrosis was induced by injecting TAA for 8 weeks. Hep3B cells were transfected with a small interfering RNA (siRNA) (PDGFRα or control) and co-cultured with LX2 cells. RESULTS PDGFRα expression was increased in hepatocytes from fibrotic livers compared to normal livers. Conditional PDGFRα KO mice had attenuated TAA-induced liver fibrosis with decreased HSC activation and proliferation. Immunoblot analyses revealed decreased expression of phospho-p44/42 MAPK in TAA-treated KO mice; these mice also showed almost complete suppression of the upregulation of mouse double minute 2. Although KO mice exhibited increased expression of transforming growth factor (TGF)-β and Smad2/3, this was compensated for by increased expression of inhibitory Smad7. LX2 cells co-cultured with PDGFRα siRNA-infected Hep3B cells showed decreased PDGFRα, α smooth muscle actin, collagen α1(I), TGFβ, and Smad2/3 expression. LX2/PDGFRα-deleted hepatocyte co-culture medium showed decreased PDGF-BB and PDGF-CC levels. CONCLUSIONS Deletion of PDGFRα in hepatocytes attenuated the upregulation of PDGFRα in HSCs after TAA treatment, resulting in decreased liver fibrosis and HSC activation. This suggests that in the event of chronic liver injury, PDGFRα in hepatocytes plays an important role in liver fibrosis by affecting PDGFRα expression in HSCs.
Collapse
Affiliation(s)
- Beom Jin Lim
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woon-Kyu Lee
- Laboratory of Developmental Genetics, Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Republic of Korea
| | - Hyun Woong Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwan Sik Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ja Kyung Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Young Chang
- Medical Research Center, Gangnam Severance Hospital, Seoul, South Korea
| | - Jung Il Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Ma L, Zeng Y, Wei J, Yang D, Ding G, Liu J, Shang J, Kang Y, Ji X. Knockdown of LOXL1 inhibits TGF-β1-induced proliferation and fibrogenesis of hepatic stellate cells by inhibition of Smad2/3 phosphorylation. Biomed Pharmacother 2018; 107:1728-1735. [PMID: 30257391 DOI: 10.1016/j.biopha.2018.08.156] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 12/16/2022] Open
Abstract
Liver fibrosis is pathological condition that seriously threatens human health. The lysyl oxidase (LOX) family has been reported to promote liver fibrosis. However, the effect of LOX-like 1 (LOXL1), a member of LOX family, on fibrogenesis of hepatic stellate cells (HSCs) remains unknown. The current study aimed to investigate the role of LOXL1 in liver fibrosis and the potential mechanism. We found that the mRNA and protein levels of LOXL1 were increased in transforming growth factor-beta 1 (TGF-β1)-stimulated human hepatic stellate cell line LX-2. Knockdown of LOXL1 inhibited the proliferation of TGF-β1-stimulated LX-2 cells. Knockdown of LOXL1 suppressed TGF-β1-induced expression of metalloproteinase type 1 (TIMP1), α-smooth muscle actin (α-SMA), and collagen type I (Col-I), as well as phosphorylation of Smad2 and Smad3 in LX-2 cells. In addition, the cell proliferation and fibrogenesis mediated by TGF-β1 stimulation and LOXL1 overexpression were abolished by knockdown of Smad2 and Smad3. Collectively, knockdown of LOXL1 suppressed cell proliferation and fibrogenesis in TGF-β1-stimulated HSCs via regulating the phosphorylation of Smad2/3.
Collapse
Affiliation(s)
- Li Ma
- Department of Infectious Diseases, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Yanli Zeng
- Department of Infectious Diseases, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Junfeng Wei
- Department of Infectious Diseases, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Dongqiang Yang
- Department of Infectious Diseases, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Gangqiang Ding
- Department of Infectious Diseases, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Junping Liu
- Department of Infectious Diseases, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Jia Shang
- Department of Infectious Diseases, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Yi Kang
- Department of Infectious Diseases, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| | - Xinying Ji
- Department of Medical Microbiology, College of Medicine, Henan University, Kaifeng 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
12
|
Rapamycin Inhibits the Growth and Collagen Production of Fibroblasts Derived from Human Urethral Scar Tissue. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7851327. [PMID: 29850566 PMCID: PMC5932518 DOI: 10.1155/2018/7851327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/15/2018] [Accepted: 03/01/2018] [Indexed: 11/17/2022]
Abstract
Rapamycin can inhibit fibroblast proliferation, collagen accumulation, and urethral stricture in rabbits. Transforming growth factor-beta-1 (TGF-β1) signaling, with downstream recruitment of Smad2, is known to promote fibrosis. This in vitro study examined the effects of rapamycin on fibroblasts derived from human urethral scar tissue (FHUS) and investigated the possible mechanism with respect to regulation of TGF-β1 signaling. FHUS were cultured from urethral scar tissues collected from four patients with urethral stricture. The cells were exposed to different concentrations of rapamycin (0, 10, 20, 40, 80, or 160 ng/ml) for 24 or 48 hours. Cell growth was assessed by the MTT assay. Collagen content was measured based on hydroxyproline levels. The mRNA expressions of Smad2, eIF-4E, and alpha-1 chains of collagen types I and III (Col1α1 and Col3α1) were determined by semiquantitative reverse-transcription PCR. The protein expressions of Smad2, phospho-Smad2, and eIF-4E were evaluated by western blot. Rapamycin caused a concentration-dependent inhibition of FHUS growth at 24 and 48 hours (P < 0.01). Rapamycin decreased total collagen content (P < 0.01), collagen content per 105 cells (P < 0.05), and mRNA expressions of Col1α1 and Col3α1 (P < 0.05) in a concentration-dependent manner. Rapamycin elicited concentration-dependent reductions in the mRNA (P < 0.05) and protein (P < 0.01) expressions of Smad2 and eIF-4E. The two highest concentrations of rapamycin also enhanced phospho-Smad2 levels (P < 0.01). In conclusion, the present study confirmed that rapamycin may reduce the growth and collagen production of FHUS, possibly through inhibition of TGF-β1 signaling.
Collapse
|
13
|
Yang F, Luo L, Zhu ZD, Zhou X, Wang Y, Xue J, Zhang J, Cai X, Chen ZL, Ma Q, Chen YF, Wang YJ, Luo YY, Liu P, Zhao L. Chlorogenic Acid Inhibits Liver Fibrosis by Blocking the miR-21-Regulated TGF-β1/Smad7 Signaling Pathway in Vitro and in Vivo. Front Pharmacol 2017; 8:929. [PMID: 29311932 PMCID: PMC5742161 DOI: 10.3389/fphar.2017.00929] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022] Open
Abstract
Aims: Chlorogenic acid (CGA) is a phenolic acid that has a wide range of pharmacological effects. However, the protective effects and mechanisms of CGA on liver fibrosis are not clear. This study explored the effects of CGA on miR-21-regulated TGF-β1/Smad7 liver fibrosis in the hepatic stellate LX2 cell line and in CCl4-induced liver fibrosis in Sprague-Dawley rats. Methods: The mRNA expression of miR-21, Smad7, connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase 1 (TIMP-1), matrix metalloproteinase-9 (MMP-9), and transforming growth factor-β1 (TGF-β1) and the protein levels of Smad2, p-Smad2, Smad3, p-Smad3, Smad2/3, p-Smad2/3, Smad7, CTGF, α-SMA, TIMP-1, MMP-9 and TGF-β1 were assayed in LX2 cells and liver tissue. The effects of CGA after miR-21 knockdown or overexpression were analyzed in LX2 cells. The liver tissue and serum were collected for histopathological examination, immunohistochemistry (IHC) and ELISA. Results: The mRNA expression of miR-21, CTGF, α-SMA, TIMP-1, and TGF-β1 and the protein expression of p-Smad2, p-Smad3, p-Smad2/3, CTGF, α-SMA, TIMP-1, and TGF-β1 were inhibited by CGA both in vitro and in vivo. Meanwhile, CGA elevated the mRNA and protein expression of Smad7 and MMP-9. After miR-21 knockdown and overexpression, the downstream molecules also changed accordingly. CGA also lessened the degree of liver fibrosis in the pathological manifestation and reduced α-SMA and collagen I expression in liver tissue and TGF-β1 in serum. Conclusion: CGA might relieve liver fibrosis through the miR-21-regulated TGF-β1/Smad7 signaling pathway, which suggests that CGA might be a new anti-fibrosis agent that improves liver fibrosis.
Collapse
Affiliation(s)
- Fan Yang
- Department of Hepatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Lei Luo
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-De Zhu
- Guangxi University of Chinese Medicine, Nanning, China
| | - Xuan Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Wang
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, China
| | - Juan Xue
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Juan Zhang
- Department of Pulmonary Diseases, Jingmen City Hospital of Traditional Chinese Medicine, Jingmen, China
| | - Xin Cai
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Ma
- School of Life Sciences, Hubei University, Wuhan, China
| | - Yun-Fei Chen
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jie Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Ying Luo
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Liu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Li L, Li H, Zhang Z, Zheng J, Shi Y, Liu J, Cao Y, Yuan X, Chu Y. Recombinant truncated TGF‑β receptor II attenuates carbon tetrachloride‑induced epithelial‑mesenchymal transition and liver fibrosis in rats. Mol Med Rep 2017; 17:315-321. [PMID: 29115426 DOI: 10.3892/mmr.2017.7845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/03/2017] [Indexed: 11/06/2022] Open
Abstract
Liver fibrosis is a pathological process of chronic liver diseases. In particular, epithelial‑mesenchymal transition (EMT) is a major source of myofibroblast structure in liver fibrosis. The present study investigated the effects of recombinant truncated transforming growth factor‑ß receptor II (rtTGFβRII) on EMT and liver fibrosis in a carbon tetrachloride (CCl4)‑induced rat model. A total of 24 rats were randomly separated into three groups: Normal control (NC), model (CCl4) and treatment (CCl4 + rtTGFβRII) groups. Histological methods, including hematoxylin and eosin, Masson's trichrome and Sirius red staining were conducted. The activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using an automatic biochemical analyzer. The mRNA expression levels of fibroblast specific protein‑1 (FSP‑1), α‑smooth muscle actin (α‑SMA), fibronectin, collagen I, vimentin and E‑cadherin were detected using reverse transcription‑quantitative polymerase chain reaction analysis. The protein levels of fibronectin, collagen I, E‑cadherin, Smad2/3 and phosphorylated (p)‑Smad2/3 were detected using western blot analysis. The expression of α‑SMA, fibronectin, vimentin and E‑cadherin in the liver tissue was detected using immunofluorescence staining. The results demonstrated that in vivo, rtTGFβRII significantly reduced the degree of liver injury, serum ALT and AST activities and liver fibrosis. These factors were associated with reduced expression of FSP‑1, α‑SMA, fibronectin, collagen I, vimentin and p‑Smad2/3, and increased expression of E‑cadherin. The results of the present study suggest that rtTGFβRII may inhibit EMT processes in CCl4‑induced liver fibrosis in rats and alter the expression of epithelial and myofibroblast markers. Therefore, rtTGFβRII may be considered a possible treatment for preventing liver fibrosis via EMT processes.
Collapse
Affiliation(s)
- Luxin Li
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Hongzhi Li
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Junya Zheng
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yongping Shi
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jieting Liu
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yanan Cao
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xiaohuan Yuan
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
15
|
Omar R, Yang J, Liu H, Davies NM, Gong Y. Hepatic Stellate Cells in Liver Fibrosis and siRNA-Based Therapy. Rev Physiol Biochem Pharmacol 2017; 172:1-37. [PMID: 27534415 DOI: 10.1007/112_2016_6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hepatic fibrosis is a reversible wound-healing response to either acute or chronic liver injury caused by hepatitis B or C, alcohol, and toxic agents. Hepatic fibrosis is characterized by excessive accumulation and reduced degradation of extracellular matrix (ECM). Excessive accumulation of ECM alters the hepatic architecture leading to liver fibrosis and cirrhosis. Cirrhosis results in failure of common functions of the liver. Hepatic stellate cells (HSC) play a major role in the development of liver fibrosis as HSC are the main source of the excessive production of ECM in an injured liver. RNA interference (RNAi) is a recently discovered therapeutic tool that may provide a solution to manage multiple diseases including liver fibrosis through silencing of specific gene expression in diseased cells. However, gene silencing using small interfering RNA (siRNA) is encountering many challenges in the body after systemic administration. Efficient and stable siRNA delivery to the target cells is a key issue for the development of siRNA therapeutic. For that reason, various viral and non-viral carriers for liver-targeted siRNA delivery have been developed. This review will cover the current strategies for the treatment of liver fibrosis as well as discussing non-viral approaches such as cationic polymers and lipid-based nanoparticles for targeted delivery of siRNA to the liver.
Collapse
Affiliation(s)
- Refaat Omar
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Jiaqi Yang
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Haoyuan Liu
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Neal M Davies
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, 8613-114 Street, Edmonton, AB, Canada, T6G 2H1
| | - Yuewen Gong
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5.
| |
Collapse
|
16
|
Hu D, Hu Y, Xu W, Yu H, Yang N, Ni S, Fu R. miR‑203 inhibits the expression of collagen‑related genes and the proliferation of hepatic stellate cells through a SMAD3‑dependent mechanism. Mol Med Rep 2017; 16:1248-1254. [PMID: 28586069 PMCID: PMC5561992 DOI: 10.3892/mmr.2017.6702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/21/2017] [Indexed: 12/22/2022] Open
Abstract
Activation of hepatic stellate cells (HSCs) is a pivotal event during hepatic fibrogenesis. Activated HSCs are the main source of collagen and other extracellular matrix (ECM) components, and emerging antifibrotic therapies are aimed at preventing ECM synthesis and deposition. MicroRNAs (miRNAs) have been demonstrated to exert regulatory effects on HSC activation and ECM synthesis. In the present study, the HSC-T6 rat hepatic stellate cell line was transiently transfected with a miRNA (miR)-203 mimic, which is an artificial miRNA that enhances the function of miR-203, with a miR-203 inhibitor or with a scramble miRNA negative control. mRNA and protein expression levels of collagen (COL) 1A1, COL3A1, α-smooth muscle actin (α-SMA) and mothers against decapentaplegic homolog 3 (SMAD3) were assessed using reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. The interaction between miR-203 and the 3′-untranslated region (UTR) of SMAD3 mRNA was examined using a dual-luciferase reporter assay. The proliferative capabilities of activated HSCs were measured using an MTT assay. The present results demonstrated that the mRNA and protein expression levels of COL1A1, COL3A1, α-SMA and SMAD3 were significantly upregulated following transfection of HSC-T6 cells with the miR-203 inhibitor. Conversely, COL1A1, COL3A1, α-SMA, and SMAD3 mRNA and protein expression appeared to be downregulated in rat HSCs transfected with miR-203 mimics. Notably, the inhibition of miR-203 expression was revealed to promote HSC proliferation, whereas increased miR-203 expression suppressed the proliferative capabilities of HSC-T6 cells. Furthermore, SMAD3 was revealed to be a direct target of miR-203. The present study suggested that miR-203 may function to prevent the synthesis and deposition of ECM components, including COL1A1, COL3A1 and α-SMA, and to inhibit the proliferation of HSCs through a SMAD3-dependent mechanism. Therefore, it may be hypothesized that miR-203 has potential as a novel target for the development of alternative therapeutic strategies for the treatment of patients with hepatic fibrosis in clinical practice.
Collapse
Affiliation(s)
- Danping Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Yibing Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Wangwang Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Huanhuan Yu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Naibin Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shunlan Ni
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Rongquan Fu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| |
Collapse
|
17
|
Perumal N, Perumal M, Halagowder D, Sivasithamparam N. Morin attenuates diethylnitrosamine-induced rat liver fibrosis and hepatic stellate cell activation by co-ordinated regulation of Hippo/Yap and TGF-β1/Smad signaling. Biochimie 2017; 140:10-19. [PMID: 28552397 DOI: 10.1016/j.biochi.2017.05.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/24/2017] [Indexed: 01/18/2023]
Abstract
Despite great progress in understanding the activation of hepatic stellate cells (HSCs) during liver fibrosis, therapeutic approaches to inhibit HSC activation remain very limited. Recent reports highlight Yes-associated protein (Yap) and transforming growth factor-β1 (TGF-β1) as critical regulators of HSC activation and henceforth a compound targeting Hippo/Yap and TGF-β1/Smad pathways would be a potential anti-fibrotic candidate. Morin, a dietary flavonoid, was earlier reported to inhibit HSC proliferation and induction of apoptosis of cultured HSCs, mainly by suppressing Wnt/β-catenin and NF-κB signaling, but its effect on Hippo/Yap and TGF-β1/Smad pathways was not determined. To address this concern, this study was carried out in cultured LX-2 cells and diethylnitrosamine-induced fibrotic rats. Morin activated hippo signaling through significantly increased expression of Mst1 and Lats1 with decreased expression of transcriptional effectors Yap/TAZ, thereby prevented HSC activation and also suppressed the expression of exacerbated TGF-β/Smad signaling molecules such as TGF-β1, p-Smad2/3, collagen-I, MMP-2, MMP-9 and TIMP-1 in cultured LX-2 and DEN induced fibrotic rats. Both the in vitro and in vivo results clearly showed that, morin by acting on Hippo/Yap and TGF-β1/Smad pathways, ameliorated experimental liver fibrosis, indicating that morin has potential for effective treatment of liver fibrosis.
Collapse
Affiliation(s)
- NaveenKumar Perumal
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, India
| | - MadanKumar Perumal
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, India; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Devaraj Halagowder
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | |
Collapse
|
18
|
Zhang Q, Liu C, Hong S, Min J, Yang Q, Hu M, Zhao Y, Hong L. Excess mechanical stress and hydrogen peroxide remodel extracellular matrix of cultured human uterosacral ligament fibroblasts by disturbing the balance of MMPs/TIMPs via the regulation of TGF-β1 signaling pathway. Mol Med Rep 2016; 15:423-430. [DOI: 10.3892/mmr.2016.5994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/31/2016] [Indexed: 11/06/2022] Open
|
19
|
Jacob N, Targan SR, Shih DQ. Cytokine and anti-cytokine therapies in prevention or treatment of fibrosis in IBD. United European Gastroenterol J 2016; 4:531-40. [PMID: 27536363 DOI: 10.1177/2050640616649356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
The frequency of fibrosing Crohn's disease (CD) is significant, with approximately 40% of CD patients with ileal disease developing clinically apparent strictures throughout their lifetime. Although strictures may be subdivided into fibrotic, inflammatory, or mixed forms, despite immunosuppressive therapy in CD patients in the form of steroids or immunomodulators, the frequency of fibrostenosing complications has still remained significant. A vast number of genetic and epigenetic variables are thought to contribute to fibrostenosing disease, including those that affect cytokine biology, and therefore highlight the complexity of disease, but also shed light on targetable pathways. Exclusively targeting fibrosis may be difficult, however, because of the relatively slow evolution of fibrosis in CD, and the potential adverse effects of inhibiting pathways involved in tissue repair and mucosal healing. Acknowledging these caveats, cytokine-targeted therapy has become the mainstay of treatment for many inflammatory conditions and is being evaluated for fibrotic disorders. The question of whether anti-cytokine therapy will prove useful for intestinal fibrosis is, therefore, acutely relevant. This review will highlight some of the current therapeutics targeting cytokines involved in fibrosis.
Collapse
Affiliation(s)
- Noam Jacob
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Digestive Diseases, Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Stephan R Targan
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David Q Shih
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
20
|
Mukherjee S, Ayaub EA, Murphy J, Lu C, Kolb M, Ask K, Janssen LJ. Disruption of Calcium Signaling in Fibroblasts and Attenuation of Bleomycin-Induced Fibrosis by Nifedipine. Am J Respir Cell Mol Biol 2015; 53:450-8. [PMID: 25664495 DOI: 10.1165/rcmb.2015-0009oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fibrotic lung disease afflicts millions of people; the central problem is progressive lung destruction and remodeling. We have shown that external growth factors regulate fibroblast function not only through canonical signaling pathways but also through propagation of periodic oscillations in Ca(2+). In this study, we characterized the pharmacological sensitivity of the Ca(2+)oscillations and determined whether a blocker of those oscillations can prevent the progression of fibrosis in vivo. We found Ca(2+) oscillations evoked by exogenously applied transforming growth factor β in normal human fibroblasts were substantially reduced by 1 μM nifedipine or 1 μM verapamil (both L-type blockers), by 2.7 μM mibefradil (a mixed L-/T-type blocker), by 40 μM NiCl2 (selective at this concentration against T-type current), by 30 mM KCl (which partially depolarizes the membrane and thereby fully inactivates T-type current but leaves L-type current intact), or by 1 mM NiCl2 (blocks both L- and T-type currents). In our in vivo study in mice, nifedipine prevented bleomycin-induced fibrotic changes (increased lung stiffness, overexpression of smooth muscle actin, increased extracellular matrix deposition, and increased soluble collagen and hydroxyproline content). Nifedipine had little or no effect on lung inflammation, suggesting its protective effect on lung fibrosis was not due to an antiinflammatory effect but rather was due to altering the profibrotic response to bleomycin. Collectively, these data show that nifedipine disrupts Ca(2+) oscillations in fibroblasts and prevents the impairment of lung function in the bleomycin model of pulmonary fibrosis. Our results provide compelling proof-of-principle that interfering with Ca(2+) signaling may be beneficial against pulmonary fibrosis.
Collapse
Affiliation(s)
- Subhendu Mukherjee
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ehab A Ayaub
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - James Murphy
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Chao Lu
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Martin Kolb
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Luke J Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
21
|
Lee JI, Wright JH, Johnson MM, Bauer RL, Sorg K, Yuen S, Hayes BJ, Nguyen L, Riehle KJ, Campbell JS. Role of Smad3 in platelet-derived growth factor-C-induced liver fibrosis. Am J Physiol Cell Physiol 2015; 310:C436-45. [PMID: 26632601 DOI: 10.1152/ajpcell.00423.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 12/01/2015] [Indexed: 12/31/2022]
Abstract
Chronic liver injury leads to fibrosis and cirrhosis. Cirrhosis, the end stage of chronic liver disease, is a leading cause of death worldwide and increases the risk of developing hepatocellular carcinoma. Currently, there is a lack of effective antifibrotic therapies to treat fibrosis and cirrhosis. Development of antifibrotic therapies requires an in-depth understanding of the cellular and molecular mechanisms involved in inflammation and fibrosis after hepatic injury. Two growth factor signaling pathways that regulate liver fibrosis are transforming growth factor-β (TGFβ) and platelet-derived growth factor (PDGF). However, their specific contributions to fibrogenesis are not well understood. Using a genetic model of liver fibrosis, we investigated whether the canonical TGFβ signaling pathway was necessary for fibrogenesis. PDGF-C transgenic (PDGF-C Tg) mice were intercrossed with mice that lack Smad3, and molecular and histological fibrosis was analyzed. PDGF-C Tg mice that also lacked Smad3 had less fibrosis and improved liver lobule architecture. Loss of Smad3 also reduced expression of collagen genes, which were induced by PDGF-C, but not the expression of genes frequently associated with hepatic stellate cell (HSC) activation. In vitro HSCs isolated from Smad3-null mice proliferated more slowly than cells from wild-type mice. Taken together, these findings indicate that PDGF-C activates TGFβ/Smad3 signaling pathways to regulate HSC proliferation, collagen production and ultimately fibrosis. In summary, these results suggest that inhibition of both PDGF and TGFβ signaling pathways may be required to effectively attenuate fibrogenesis in patients with chronic liver disease.
Collapse
Affiliation(s)
- Jung Il Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jocelyn H Wright
- Department of Pathology, University of Washington, Seattle, Washington; and
| | - Melissa M Johnson
- Department of Pathology, University of Washington, Seattle, Washington; and
| | - Renay L Bauer
- Department of Pathology, University of Washington, Seattle, Washington; and
| | - Kristina Sorg
- Department of Pathology, University of Washington, Seattle, Washington; and
| | - Sebastian Yuen
- Department of Pathology, University of Washington, Seattle, Washington; and
| | - Brian J Hayes
- Department of Pathology, University of Washington, Seattle, Washington; and
| | - Lananh Nguyen
- Department of Pathology, University of Washington, Seattle, Washington; and
| | - Kimberly J Riehle
- Department of Surgery, University of Washington, Seattle, Washington
| | - Jean S Campbell
- Department of Pathology, University of Washington, Seattle, Washington; and
| |
Collapse
|
22
|
Burke M, Pabbidi MR, Farley J, Roman RJ. Molecular mechanisms of renal blood flow autoregulation. Curr Vasc Pharmacol 2015; 12:845-58. [PMID: 24066938 PMCID: PMC4416696 DOI: 10.2174/15701611113116660149] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/18/2011] [Accepted: 07/02/2013] [Indexed: 01/10/2023]
Abstract
Diabetes and hypertension are the leading causes of chronic kidney disease and their incidence is increasing at
an alarming rate. Both are associated with impairments in the autoregulation of renal blood flow (RBF) and greater transmission
of fluctuations in arterial pressure to the glomerular capillaries. The ability of the kidney to maintain relatively
constant blood flow, glomerular filtration rate (GFR) and glomerular capillary pressure is mediated by the myogenic response
of afferent arterioles working in concert with tubuloglomerular feedback that adjusts the tone of the afferent arteriole
in response to changes in the delivery of sodium chloride to the macula densa. Despite intensive investigation, the factors
initiating the myogenic response and the signaling pathways involved in the myogenic response and tubuloglomerular
feedback remain uncertain. This review focuses on current thought regarding the molecular mechanisms underlying myogenic
control of renal vascular tone, the interrelationships between the myogenic response and tubuloglomerular feedback,
the evidence that alterations in autoregulation of RBF contributes to hypertension and diabetes-induced nephropathy and
the identification of vascular therapeutic targets for improved renoprotection in hypertensive and diabetic patients.
Collapse
Affiliation(s)
| | | | | | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| |
Collapse
|
23
|
Perez Aguilar RC, Honoré SM, Genta SB, Sánchez SS. Hepatic fibrogenesis and transforming growth factor/Smad signaling activation in rats chronically exposed to low doses of lead. J Appl Toxicol 2015; 34:1320-31. [PMID: 25493318 DOI: 10.1002/jat.2955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lead is an important heavy metal pollutant in the environment. The nervous system, kidney and liver are the most susceptible organs to lead deposition, showing that this pollutant has no single target system. To examine the cellular and molecular mechanisms involved in their pathobiology of chronic lead at low-dose exposure in the liver, male Wistar rats were exposed to 0.06% lead acetate in drinking water every day for 4 months. At the end of the study, hepatic metal accumulation, morphology and function were examined. Immunochemical staining and Western blot analysis were performed to detect extracellular matrix proteins, α-smooth muscle actin and transforming growth factor (TGF)β1/Smad pathway expression. Results showed increased laminin, collagen IV and fibronectin, located at the perisinusoidal space. Phenotypic transformation of hepatic stellate cells into myofibroblast-like cells was evidenced at the ultrastructural level and a significant expression of α-smooth muscle actin in Disse’s space was observed. These findings were associated with a marked increase in TGFβ1/Smad2/3 signaling. Our data suggest that, chronically, exposure to low levels of lead could trigger the onset of a hepatic fibrogenic process through upregulated TGFβ1/Smad signaling.
Collapse
|
24
|
Phenotypic Changes in Hepatic Stellate Cells in Response to Toxic Liver Injury. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Wen SL, Gao JH, Yang WJ, Lu YY, Tong H, Huang ZY, Liu ZX, Tang CW. Celecoxib attenuates hepatic cirrhosis through inhibition of epithelial-to-mesenchymal transition of hepatocytes. J Gastroenterol Hepatol 2014; 29:1932-42. [PMID: 24909904 DOI: 10.1111/jgh.12641] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM The epithelial-mesenchymal transition (EMT) of hepatocytes is a key step for hepatic fibrosis and cirrhosis. Long-term administration of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, can ameliorate hepatic fibrosis. This research aimed to examine the effect of celecoxib on the EMT of hepatocytes during the development of liver cirrhosis. METHODS Cirrhotic liver model of rat was established by peritoneal injection of thiacetamide (TAA). Thirty-six rats were randomly assigned to control, TAA, and TAA + celecoxib groups. Hepatic expressions of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), COX-2, prostaglandin E2 (PGE2 ), matrix metalloproteinase (MMP)-2 and -9, transforming growth factor-β1 (TGF-β1), Phospho-Smad2/3, Snail1, α-smooth muscle actin (α-SMA), vimentin, collagen I, fibroblast-specific protein (FSP-1), E-cadherin and N-cadherin were quantitated. Hepatic fibrosis was assessed by the visible hepatic fibrotic areas and Ishak's scoring system. RESULTS Exposed to TAA treatment, hepatocytes underwent the process of EMT during hepatic fibrosis. Compared with those in TAA group, celecoxib significantly downregulated the hepatic expressions of TNF-α, IL-6, COX-2, PGE2 , MMP-2, MMP-9, TGF-β1, Phospho-Smad2/3, Snail1, α-SMA, FSP-1, and vimentin while greatly restoring the levels of E-cadherin. The fibrotic areas and collagen I levels of TAA + celecoxib group were much lower than those in TAA group. CONCLUSIONS Celecoxib could ameliorate hepatic fibrosis and cirrhosis in TAA-rat model through suppression of the mesenchymal biomarkers in the hepatocytes while restoring the levels of their epithelial biomarkers. The inhibitory effect of celecoxib on the EMT of hepatocytes is associated with reduction of intrahepatic inflammation, preservation of normal basement matrix, and inhibition of TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Shi-Lei Wen
- Regenerative Medicine Research Center, West China Hospital, Chengdu, China; Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang L, Liu C, Meng XM, Huang C, Xu F, Li J. Smad2 protects against TGF-β1/Smad3-mediated collagen synthesis in human hepatic stellate cells during hepatic fibrosis. Mol Cell Biochem 2014; 400:17-28. [PMID: 25351340 DOI: 10.1007/s11010-014-2258-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 10/17/2014] [Indexed: 12/11/2022]
Abstract
With structural similarity but functional diversity, Smad2 and Smad3 interact with each other to mediate transforming growth factor-β (TGF-β)-triggered signaling transduction. However, in the hepatic fibrosis, the detailed roles of R-Smads, and interaction between Smad2 and Smad3 are still undefined. In this setting, we established a rat model of CCl4-induced hepatic fibrosis in vivo and TGF-β1-treated hepatic stellate cell model in vitro to detect whether Smad2 and Smad3 play distinct roles in mediating liver fibrogenesis. Results indicated that both phosphorylation of Smad2 and Smad3 were detected in the hepatic stellate cells of liver fibrotic tissues and cells. Furthermore, In vitro data demonstrated that knockdown of Smad2 in human hepatic stellate cells increased expression of collagen I (Col.I), tissue inhibitor of metalloproteinase-1 (TIMP-1) whereas decreasing expression of the matrix metalloproteinases-2(MMP-2) in presence of TGF-β1 compared with control group. In contrast, knockdown of Smad3 significantly reduced TGF-β1-induced Col.I production. These findings were further evident by the results that overexpression of Smad2 attenuated the expression of Col.I and TIMP-1, but enhanced MMP-2 whereas overexpression of Smad3 showed the opposite effect. Furthermore, Smad2 suppressed the phosphorylation and nuclear translocation of Smad3, which may protect against Smad3-mediated fibrotic response. Collectively, Smad2 may be a potential therapeutic target for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | | | | | | | | | | |
Collapse
|
27
|
Garg K, Corona BT, Walters TJ. Losartan administration reduces fibrosis but hinders functional recovery after volumetric muscle loss injury. J Appl Physiol (1985) 2014; 117:1120-31. [PMID: 25257876 DOI: 10.1152/japplphysiol.00689.2014] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Losartan is a Food and Drug Administration approved antihypertensive medication that is recently emerging as an antifibrotic therapy. Previously, losartan has been successfully used to reduce fibrosis and improve both muscle regeneration and function in several models of recoverable skeletal muscle injuries, such as contusion and laceration. In this study, the efficacy of losartan treatment in reducing fibrosis and improving regeneration was determined in a Lewis rat model of volumetric muscle loss (VML) injury. VML has been defined as the traumatic or surgical loss of skeletal muscle with resultant functional impairment. It is among the top 10 causes for wounded service members to be medically retired from the military. This study shows that, after several weeks of recovery, VML injury results in little to no muscle regeneration, but is marked by persistent inflammation, chronic upregulation of profibrotic markers and extracellular matrix (i.e., collagen type I), and fat deposition at the defect site, which manifest irrecoverable deficits in force production. Losartan administration at 10 mg·kg(-1)·day(-1) was able to modulate the gene expression of fibrotic markers and was also effective at reducing fibrosis (i.e., the deposition of collagen type I) in the injured muscle. However, there were no improvements in muscle regeneration, and deleterious effects on muscle function were observed instead. We propose that, in the absence of regeneration, reduction in fibrosis worsens the ability of the VML injured muscle to transmit forces, which ultimately results in decreased muscle function.
Collapse
Affiliation(s)
- Koyal Garg
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| | - Benjamin T Corona
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| | - Thomas J Walters
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| |
Collapse
|
28
|
Chiu YS, Wei CC, Lin YJ, Hsu YH, Chang MS. IL-20 and IL-20R1 antibodies protect against liver fibrosis. Hepatology 2014; 60:1003-14. [PMID: 24763901 DOI: 10.1002/hep.27189] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/23/2014] [Indexed: 12/23/2022]
Abstract
UNLABELLED Interleukin (IL)-20 is a proinflammatory cytokine of the IL-10 family and involved in rheumatoid arthritis, atherosclerosis, stroke, and osteoporosis. However, the pathophysiological roles of IL-20 in liver injury have not been extensively studied. We explored the involvement of IL-20 in liver injury and the therapeutic potential of IL-20 antagonists for treating liver fibrosis. Compared with normal liver tissue from healthy individuals, the amount of IL-20 was much higher in hepatocytes and hepatic stellate cells in liver biopsies from patients with fibrosis, cirrhosis, and hepatocellular carcinoma. Carbon tetrachloride (CCl4) treatment induced IL-20 that further up-regulated the expression of transforming growth factor (TGF)-β1 and p21(WAF1) and resulted in cell cycle arrest in the Clone-9 rat hepatocyte cell line. IL-20 activated quiescent rat hepatic stellate cells (HSCs) and up-regulated TGF-β1 expression. IL-20 also increased TGF-β1, tumor necrosis factor (TNF)-α, and type I collagen (Col-I) expression, and promoted the proliferation and migration of activated HSCs. Serum IL-20 was significantly elevated in mice with short-term and long-term CCl4 -induced liver injury. In mice with short-term liver injury, anti-IL-20 monoclonal antibody (7E) and anti-IL-20 receptor (IL-20R1) monoclonal antibody (51D) attenuated hepatocyte damage caused by CCl4, TGF-β1, and chemokine production. In mice with long-term liver injury, 7E and 51D inhibited CCl4 -induced cell damage, TGF-β1 production, liver fibrosis, HSC activation, and extracellular matrix accumulation, which was caused by the reduced expression of tissue inhibitors of metalloproteinases as well as increased metalloproteinase expression and Col-I production. IL-20R1-deficient mice were protected from short-term and long-term liver injury. CONCLUSION We identified a pivotal role of IL-20 in liver injury and showed that 7E and 51D may be therapeutic for liver fibrosis.
Collapse
Affiliation(s)
- Yi-Shu Chiu
- Institute of Clinical Pharmacy and Pharmaceutical Sciences
| | | | | | | | | |
Collapse
|
29
|
Bellaye PS, Burgy O, Causse S, Garrido C, Bonniaud P. Heat shock proteins in fibrosis and wound healing: Good or evil? Pharmacol Ther 2014; 143:119-32. [DOI: 10.1016/j.pharmthera.2014.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 12/22/2022]
|
30
|
Kim JK, Lee KS, Chang HY, Lee WK, Lee JI. Progression of diet induced nonalcoholic steatohepatitis is accompanied by increased expression of Kruppel-like-factor 10 in mice. J Transl Med 2014; 12:186. [PMID: 24986741 PMCID: PMC4086692 DOI: 10.1186/1479-5876-12-186] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/24/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Kruppel-like-factor (KLF) 10 is identified as transforming growth factor (TGF) β inducible early gene and is reported to suppress lipogenic genes. Although previous studies report that TGFβ plays an important role in progression of nonalcoholic steatohepatitis (NASH) by regulating liver fibrosis, the association of KLF10 and NASH has never been explored. Thus we evaluated expressions and changes of KLF10 in diet induced NASH and in NASH which was alleviated by ursodeoxycholic acid (UDCA). We also assessed KLF10 in quiescent and activated hepatic stellate cells (HSCs). METHODS C57BL/6 mice were given high fat, sucrose diet (HFSD) at least for 12 weeks up to 48 weeks and sacrificed at 12, 24 and 48 weeks thereafter. In other groups, either standard diet (SD) or HFSD was given for 24 weeks at which point mice fed with HFSD were divided into two groups, and were given either UDCA in combination with HFSD or vehicle with HFSD. Mice under SD were given vehicle. HSCs were isolated from C57BL/6 mice in order to evaluated KLF10 expression in activated HSCs. RESULTS The mice were found to acquire liver steatosis and inflammation starting from week 12 of HFSD feeding, although significant liver fibrosis was noticed by week 24. Increased TGFβ and collagen α1(I) (Col1α(I)) expression was also apparent from week 24. However, expression of KLF10 mRNA started to increase from week 12, earlier than TGFβ gene. Up-regulation of KLF10 was accompanied by suppressed carbohydrate response element-binding protein (ChREBP) that is known to be protective against insulin resistance. The mice fed with HFSD and UDCA had decreased Colα(I) mRNA that was coincided with reduced TGFβ and KLF10 expression. Expression of ChREBP was also recovered by UDCA administration. Enhanced KLF10 was noticed in activated HSCs when quiescent cell showed minimal expression. CONCLUSIONS Our study demonstrated that KLF10 expression was significantly increased in diet induced NASH and collagen producing activated HSCs. We also noticed that this up-regulation of KLF10 was accompanied by increased TGFβ signaling genes and suppressed ChREBP expression. These observations suggest possible association of KLF10 and NASH progression.
Collapse
Affiliation(s)
- Ja Kyung Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eunju-ro, Gangnam-gu, Seoul 135-720, Republic of Korea
| | - Kwan Sik Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eunju-ro, Gangnam-gu, Seoul 135-720, Republic of Korea
| | - Hye Young Chang
- Medical Research Center, Gangnam Severance Hospital, 211 Eunju-ro, Gangnam-gu, Seoul 120-752, Republic of Korea
| | - Woon Kyu Lee
- Laboratory of Developmental Genetics, Inha University School of Medicine, Incheon 400-712, Republic of Korea
| | - Jung Il Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eunju-ro, Gangnam-gu, Seoul 135-720, Republic of Korea
| |
Collapse
|
31
|
Kim MS, Kim S, Myung H. Degradation of AIMP1/p43 induced by hepatitis C virus E2 leads to upregulation of TGF-β signaling and increase in surface expression of gp96. PLoS One 2014; 9:e96302. [PMID: 24816397 PMCID: PMC4015952 DOI: 10.1371/journal.pone.0096302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/05/2014] [Indexed: 12/25/2022] Open
Abstract
Hepatitis C virus (HCV) causes chronic hepatitis leading to liver fibrosis and autoimmune diseases. AIMP1/p43 is a multifunctional protein initially known as a cofactor of aminoacyl tRNA synthetase complex. Its function includes negative regulation of TGF-β signaling and suppression of Lupus-like autoimmune disease by inhibition of surface expression of gp96. HCV E2 was shown to directly interact with AIMP1/p43 by GST pulldown assay and coimmunoprecipitation. Their subcellular colocalization was observed in an immunofluorescence confocal microscopy. We showed that HCV E2 led to degradation of AIMP1/p43 in two ways. First, in the presence of HCV E2, endogenous AIMP1/p43 was shown to be degraded in an ubiquitin-dependent proteasome pathway. Second, grp78, an ER chaperone, was shown to interact with and stabilize AIMP1/p43. And HCV E2 inhibited this interaction leading to reduction of cellular AIMP1/p43. The degradation of AIMP1/p43 by HCV E2 resulted in increase of TGF-β signaling and cell surface expression of gp96. Thus we suggest that these are novel mechanisms responsible for liver fibrosis and autoimmune diseases caused by HCV.
Collapse
Affiliation(s)
- Min Soo Kim
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, Gyung-Gi Do, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Heejoon Myung
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, Gyung-Gi Do, Korea
- * E-mail:
| |
Collapse
|
32
|
Su KY, Hsieh CY, Chen YW, Chuang CT, Chen CT, Chen YLS. Taiwanese Green Propolis and Propolin G Protect the Liver from the Pathogenesis of Fibrosis via Eliminating TGF-β-Induced Smad2/3 Phosphorylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3192-3201. [PMID: 24625297 DOI: 10.1021/jf500096c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pathogenesis of fibrosis is a common process leading to chronic liver diseases and liver cirrhosis. New compounds for disease treatment and adjuvant therapy have been important issues in recent years. In this study, we isolated propolin G from Taiwanese green propolis (TGP) and investigated its antifibrotic effects by utilizing active hepatic stellate cells (HSCs) fibrosis model. Our results showed that TGP and propolin G inhibited α-SMA, collagen expression, and proliferation of HSC-T6 cells after TGF-β treatment. They also reduced the accumulation of extracellular matrix (ECM) components such as collagen Iα1 (Col Iα1) through down-regulating JNK signaling. Subsequently, mRNA and protein expression of Smad2/3 but no other Smad members was specifically down-regulated in the presence of propolin G. This effect also significantly induced apoptosis-associated expression of cleaved caspase-3 and caspase-7 proteins for fibrotic cell clearance. In in vivo experiments, we found that propolin G and TGP can reduce plasma alanine aminotransferase (ALT) activation and perhaps lead to the prevention of alcohol-induced liver cirrhosis. Furthermore, TGP can significantly decrease the malondialdehyde (MDA) level but has no influence on plasma or hepatic superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels, suggesting TGP protects the liver from alcohol-induced injury through antioxidant-independent pathways. In conclusion, this study provides a new perspective of propolin G and TGP on liver protection, and its application has potential for health management by daily supplement or adjuvant therapy in related diseases.
Collapse
Affiliation(s)
- Kang-Yi Su
- Department of Laboratory Medicine, National Taiwan University Hospital , Taipei 100, Taiwan
| | - Chih-Yu Hsieh
- Department of Biotechnology and Animal Science, National Ilan University , Ilan, Taiwan
| | - Yue-Wen Chen
- Department of Biotechnology and Animal Science, National Ilan University , Ilan, Taiwan
| | - Chin-Ting Chuang
- Department of Biotechnology and Animal Science, National Ilan University , Ilan, Taiwan
| | - Chun-Ting Chen
- Department of Biotechnology and Animal Science, National Ilan University , Ilan, Taiwan
| | - Yi-Lin Sophia Chen
- Department of Biotechnology and Animal Science, National Ilan University , Ilan, Taiwan
| |
Collapse
|
33
|
Weerachayaphorn J, Luo Y, Mennone A, Soroka CJ, Harry K, Boyer JL. Deleterious effect of oltipraz on extrahepatic cholestasis in bile duct-ligated mice. J Hepatol 2014; 60:160-6. [PMID: 23978715 PMCID: PMC4054607 DOI: 10.1016/j.jhep.2013.08.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/18/2013] [Accepted: 08/08/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Oltipraz (4-methyl-5(pyrazinyl-2)-1-2-dithiole-3-thione), a promising cancer preventive agent, has an antioxidative activity and ability to enhance glutathione biosynthesis, phase II detoxification enzymes and multidrug resistance-associated protein-mediated efflux transporters. Oltipraz can protect against hepatotoxicity caused by carbon tetrachloride, acetaminophen and alpha-naphthylisothiocyanate. Whether oltipraz has hepato-protective effects on obstructive cholestasis is unknown. METHODS We administered oltipraz to mice for 5 days prior to bile duct ligation (BDL) for 3 days. Liver histology, liver function markers, bile flow rates and hepatic expression of profibrogenic genes were evaluated. RESULTS Mice pretreated with oltipraz prior to BDL demonstrated higher levels of serum aminotransferases and more severe liver damage than in control mice. Higher bile flow and glutathione secretion rates were observed in unoperated mice treated with oltipraz than in control mice, suggesting that liver necrosis in oltipraz-treated BDL mice may be related partially to increased bile-acid independent flow and biliary pressure. Oltipraz treatment in BDL mice enhanced α-smooth muscle actin expression, consistent with activation of hepatic stellate cells and portal fibroblasts. Matrix metalloproteinases (Mmp) 9 and 13 and tissue inhibitors of metalloproteinases (Timp) 1 and 2 levels were increased in the oltipraz-treated BDL group, suggesting that the secondary phase of liver injury induced by oltipraz might be due to excessive Mmp and Timp secretions, which induce remodeling of the extracellular matrix. CONCLUSIONS Oltipraz treatment exacerbates the severity of liver injury following BDL and should be avoided as therapy for extrahepatic cholestatic disorders due to bile duct obstruction.
Collapse
Affiliation(s)
- Jittima Weerachayaphorn
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yuhuan Luo
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Albert Mennone
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Carol J. Soroka
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Kathy Harry
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - James L. Boyer
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA,The corresponding author: James L. Boyer, M.D., Emeritus Director, Liver Center, Yale University School of Medicine, 333 Cedar Street, 1080 LMP, New Haven, CT 06520. Phone: (203) 785-5279; Fax: (203) 785-7273;
| |
Collapse
|
34
|
Narola J, Pandey SN, Glick A, Chen YW. Conditional expression of TGF-β1 in skeletal muscles causes endomysial fibrosis and myofibers atrophy. PLoS One 2013; 8:e79356. [PMID: 24244485 PMCID: PMC3828351 DOI: 10.1371/journal.pone.0079356] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/30/2013] [Indexed: 11/18/2022] Open
Abstract
To study the effects of transforming growth factor beta 1 (TGF-β1) on fibrosis and failure of regeneration of skeletal muscles, we generated a tet-repressible muscle-specific TGF-β1 transgenic mouse in which expression of TGF-β1 is controlled by oral doxycycline. The mice developed muscle weakness and atrophy after TGF-β1 over-expression. We defined the group of mice that showed phenotype within 2 weeks as early onset (EO) and the rest as late onset (LO), which allowed us to further examine phenotypic differences between the groups. While only mice in the EO group showed significant muscle weakness, pathological changes including endomysial fibrosis and smaller myofibers were observed in both groups at two weeks after the TGF-β1 was over-expressed. In addition, the size of the myofibers and collagen accumulation were significantly different between the two groups. The amount of latent and active TGF-β1 in the muscle and circulation were significantly higher in the EO group compared to the LO or control groups. The up-regulation of the latent TGF-β1 indicated that endogenous TGF-β1 was induced by the expression of the TGF-β1 transgene. Our studies showed that the primary effects of TGF-β1 over-expression in skeletal muscles are muscle wasting and endomysial fibrosis. In addition, the severity of the pathology is associated with the total amount of TGF-β1 and the expression of endogenous TGF-β1. The findings suggest that an auto-feedback loop of TGF-β1 may contribute to the severity of phenotypes.
Collapse
Affiliation(s)
- Jigna Narola
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, DC, United States of America
| | - Sachchida Nand Pandey
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, DC, United States of America
| | - Adam Glick
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yi-Wen Chen
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, DC, United States of America
- Department of Integrative Systems Biology and Department of Pediatrics, George Washington University, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
35
|
Botfield H, Gonzalez AM, Abdullah O, Skjolding AD, Berry M, McAllister JP, Logan A. Decorin prevents the development of juvenile communicating hydrocephalus. ACTA ACUST UNITED AC 2013; 136:2842-58. [PMID: 23983032 DOI: 10.1093/brain/awt203] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In post-haemorrhagic and other forms of communicating hydrocephalus, cerebrospinal fluid flow and drainage is obstructed by subarachnoid fibrosis in which the potent fibrogenic cytokine transforming growth factor-β has been aetiologically implicated. Here, the hypothesis that the transforming growth factor-β antagonist decorin has therapeutic potential for reducing fibrosis and ventriculomegaly was tested using a rat model of juvenile communicating hydrocephalus. Hydrocephalus was induced by a single basal cistern injection of kaolin in 3-week-old rats, immediately followed by 3 or 14 days of continuous intraventricular infusion of either human recombinant decorin or phosphate-buffered saline (vehicle). Ventricular expansion was measured by magnetic resonance imaging at Day 14. Fibrosis, transforming growth factor-β/Smad2/3 activation and hydrocephalic brain pathology were evaluated at Day 14 and the inflammatory response at Days 3 and 14 by immunohistochemistry and basic histology. Analysis of ventricular size demonstrated the development of hydrocephalus in kaolin-injected rats but also revealed that continuous decorin infusion prevented ventricular enlargement, such that ventricle size remained similar to that in intact control rats. Decorin prevented the increase in transforming growth factor-β1 and phosphorylated Smad2/3 levels throughout the ventricular system after kaolin injection and also inhibited the deposition of the extracellular matrix molecules, laminin and fibronectin in the subarachnoid space. In addition, decorin protected against hydrocephalic brain damage inferred from attenuation of glial and inflammatory reactions. Thus, we conclude that decorin prevented the development of hydrocephalus in juvenile rats by blocking transforming growth factor-β-induced subarachnoid fibrosis and protected against hydrocephalic brain damage. The results suggest that decorin is a potential clinical therapeutic for the treatment of juvenile post-haemorrhagic communicating hydrocephalus.
Collapse
Affiliation(s)
- Hannah Botfield
- Neurotrauma and Neurodegeneration, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, B15 2TT, UK.
| | | | | | | | | | | | | |
Collapse
|
36
|
Peng J, Li X, Feng Q, Chen L, Xu L, Hu Y. Anti-fibrotic effect of Cordyceps sinensis polysaccharide: Inhibiting HSC activation, TGF-β1/Smad signalling, MMPs and TIMPs. Exp Biol Med (Maywood) 2013; 238:668-77. [PMID: 23918878 DOI: 10.1177/1535370213480741] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cordyceps sinensis has been used to treat liver disease in traditional Chinese medicine for thousands of years. Polysaccharide extracted from cultured Cordyceps sinensis mycelia (CS-PS) is the major active components of cordyceps sinensis with anti-liver injury effects. In the present study, the effects of CS-PS on hepatic stellate cell (HSC) activation, transforming growth factor-β1 (TGF-β1)/Smad pathway, as well as matrix metalloproteinase (MMP) 2, MMP9 and tissue inhibitor of metalloproteinase (TIMP) 1, TIMP2, were investigated in liver fibrosis in rats induced by carbon tetrachloride (CCl4). Colchicine was used as a positive control. The effect of CS-PS inhibition liver injury and fibrosis was confirmed by decreasing serum alanine aminotransferase, aspartate aminotransferase, total bilirubin, hepatic hydroxyproline and increasing serum albumin, as well as alleviation of histological changes, which was comparable to that of colchicine. With CS-PS treatment, hepatic α-smooth muscle actin, TGF-β1, TGF-β1 receptor (TβR)-I, TβR-II, p-Smad2, p-Smad3 and TIMP2 proteins expression were down-regulated comparing to that in CCl4 group. The activities of MMP2 and MMP9 in liver tissue were also inhibited in CS-PS-treated group. It is indicated that the effects of CS-PS anti-liver fibrosis are probably associated with the inhibition on HSC activation, TGF-β1/Smads signalling pathway, as well as MMP2, MMP9 activity and TIMP2 expression.
Collapse
Affiliation(s)
- Jinghua Peng
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
BACKGROUND Severe mucosal tissue damage requiring efficient wound healing is a main feature of inflammatory bowel disease but excessive tissue repair promotes fibrosis. The clinical investigation of fibrosis is confined to the limited amount of biological material available from patients. This makes the establishment of a new animal model, a highly desirable goal. We investigated whether intestinal fibrosis occurs after heterotopic transplantation of small bowel resections in rats. METHODS Donor (Brown Norway or Lewis rats) small bowel resections were transplanted subcutaneously into the neck of recipients (Lewis rats). Grafts were explanted 2, 7, 14, and 21 days after transplantation. RESULTS Heterotopic intestinal transplants remained viable for 21 days. Rapid loss of crypt structures at day 2 after intestinal transplantation was followed by lymphocyte infiltration and obliteration of the intestinal lumen by fibrous tissue at day 21. Loss of the intestinal epithelium was confirmed by the lack of cytokeratin staining in immunohistochemistry. Collagen expression was increased with time after transplantation as confirmed by real-time PCRs, Elastica van Gieson, and Sirius Red staining. Lumen obliteration was connected with increased expression of potent mediators of fibrosis such as α5β6 integrin, interleukin (IL)-13, and transforming growth factor β. Myofibroblast phenotype was demonstrated by the presence of both α-smooth muscle actin and vimentin in the obliterated lumen. CONCLUSIONS We established a method for heterotopic transplantation of small bowel resections. A variety of histologic and molecular features of fibrosis were observed in the heterotopic intestinal grafts which suggests, that this new in vivo model will be instrumental in studying pathogenesis and treatment of intestinal fibrosis.
Collapse
|
38
|
Conde SRS, Feitosa RNM, Freitas FB, Hermes RB, Demachki S, Araújo MTF, Soares MCP, Ishak R, Vallinoto ACR. Association of cytokine gene polymorphisms and serum concentrations with the outcome of chronic hepatitis B. Cytokine 2013; 61:940-4. [PMID: 23395388 DOI: 10.1016/j.cyto.2013.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/28/2012] [Accepted: 01/05/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The present paper investigated possible correlations between the clinical presentation of hepatitis B and the TNF-α -308G/A, IFN-γ +874A/T, TGF-beta1 -509C/T, and IL-10 -1081A/G polymorphisms and associated serum levels of these cytokines. METHODS Fifty-three hepatitis patients were selected and divided into two groups: A - inactive (n=30) and B - chronic hepatitis/cirrhosis (n=23). The control group consisted of 100 subjects who were positive for anti-HBc and anti-HBs. The serum concentrations of the cytokines were determined by immunoenzymatic assays. The polymorphisms of the cytokines genes were assessed by PCR and PCR-SSP. RESULTS The mean serum levels of IFN-γ of the control group were significantly higher than those of groups A and B, whereas the mean levels TGF-beta1 were significantly higher in groups A and B in comparison with the control. In the case of IL-10, the mean serum level recorded in the control group was significantly higher than that of group B. The TNF-α -308AG genotype was considerably more frequent in group B (43.3%) than the control (14.4%). CONCLUSION Higher serum levels of IFN-γ and TGF-beta1 were associated with chronic hepatitis B, and lower serum levels of IL-10 were found in patients with the active disease. Furthermore the presence of allele A of the TNF-α -308 polymorphism suggest a risk of the progressive disease.
Collapse
Affiliation(s)
- Simone R S Conde
- Federal University of Para, Institute of Biological Sciences, Virus Laboratory, Belém, Pará, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhong L, Wang X, Wang S, Yang L, Gao H, Yang C. The anti-fibrotic effect of bone morphogenic protein-7(BMP-7) on liver fibrosis. Int J Med Sci 2013; 10:441-50. [PMID: 23471555 PMCID: PMC3590605 DOI: 10.7150/ijms.5765] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/26/2013] [Indexed: 02/06/2023] Open
Abstract
Background/Aims : Transforming growth factor-β1 (TGF-β1) plays an important role in the pathogenesis of liver fibrosis and cirrhosis. Recombinant human bone morphogenic protein-7 (rhBMP-7) alleviates renal fibrosis and improves kidney function. However, the beneficial effect of BMP-7 on hepatic fibrosis and cirrhosis remains unknown. The purpose of this study was to investigate the prophylactic and therapeutic effects of rhBMP-7 on liver fibrosis and the underlying mechanisms. Methods : Liver fibrosis in the rat model was induced by peritoneal injection of porcine-serum (0.5ml/kg body weight) twice a week over 8 weeks. The effect of rhBMP-7 on hepatic fibrosis was monitored in rhBMP-7 pre-treated and non-treated rats. Pathologic changes were determined by immunohistolocial staining. TGF-β1 expression was investigated by immunohistolocial staining, western blotting, and real-time PCR. Collagen secretion was measured by enzyme-linked immunosorbent assay. Results : Liver fibrosis was significantly reduced by rhBMP-7. The secretion of collagen type-I and -III was decreased by rhBMP-7 in hepatic stellate cells (HSCs) but not in hepatocytes. The anti-fibrotic effect of rhBMP-7 on liver fibrosis was resulted by blocking the nuclear accumulation of Smad2/3 or by inhibiting TGF-β1 expression in HSCs or hepatocytes. Conclusions : The anti-fibrogenic mechanism of rhBMP-7 in the rat liver fibrosis was depended on the reduction of TGF-β1 overexpression and the inhibition of TGF-β1 triggered intracellular signalling in hepatic cells.
Collapse
Affiliation(s)
- Lan Zhong
- Division of Gastroenterology, East Hospital of Tongji University School of Medicine, Shanghai 200120, China
| | | | | | | | | | | |
Collapse
|
40
|
Carli C, Giroux M, Delisle JS. Roles of Transforming Growth Factor-β in Graft-versus-Host and Graft-versus-Tumor Effects. Biol Blood Marrow Transplant 2012; 18:1329-40. [DOI: 10.1016/j.bbmt.2012.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/27/2012] [Indexed: 01/07/2023]
|
41
|
Arauz J, Moreno MG, Cortés-Reynosa P, Salazar EP, Muriel P. Coffee attenuates fibrosis by decreasing the expression of TGF-β and CTGF in a murine model of liver damage. J Appl Toxicol 2012; 33:970-9. [PMID: 22899499 DOI: 10.1002/jat.2788] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/24/2012] [Accepted: 05/24/2012] [Indexed: 12/17/2022]
Abstract
This study was performed to evaluate the antifibrotic properties of coffee in a model of liver damage induced by repeated administration of thioacetamide (TAA) in male Wistar rats. In this study, cirrhosis was induced by chronic TAA administration and the effects of co-administration of conventional caffeinated coffee or decaffeinated coffee (CC, DC, respectively) for 8 weeks were evaluated. TAA administration elevated serum alkaline phosphatase (AP), γ-glutamyl transpeptidase (γ-GTP) and alanine aminotransferase (ALAT), liver lipid peroxidation, collagen content, depleted liver glycogen and glutathione peroxidase (GPx) activity. Additionally increased levels of a number of proteins were detected including transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF) and alpha-smooth muscle actin (α-SMA), and matrix metalloproteinase (MMP)-2, 9 and 13. Coffee suppressed most of the changes produced by TAA. Histopathological analysis was in agreement with biochemical and molecular findings. These results indicate that coffee attenuates experimental cirrhosis; the action mechanisms are probably associated with its antioxidant properties and mainly by its ability to block the elevation of the profibrogenic cytokine TGF-β and its downstream effector CTGF. Various components of coffee that have been related to such a favorable effect include caffeine, coffee oils kahweol, cafestol and antioxidant substances; however, no definite evidence for the role of these components has been established. These results support earlier findings suggesting a beneficial effect of coffee on the liver. However, more basic clinical studies must be performed to confirm this hypothesis.
Collapse
Affiliation(s)
- Jonathan Arauz
- Departamento de Farmacología, Cinvestav-IPN, Apdo Postal 14-740, México, 07000, D. F., México
| | | | | | | | | |
Collapse
|
42
|
Yeganeh B, Mukherjee S, Moir LM, Kumawat K, Kashani HH, Bagchi RA, Baarsma HA, Gosens R, Ghavami S. Novel non-canonical TGF-β signaling networks: emerging roles in airway smooth muscle phenotype and function. Pulm Pharmacol Ther 2012; 26:50-63. [PMID: 22874922 DOI: 10.1016/j.pupt.2012.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 12/19/2022]
Abstract
The airway smooth muscle (ASM) plays an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease (COPD). ASM cells express a wide range of receptors involved in contraction, growth, matrix protein production and the secretion of cytokines and chemokines. Transforming growth factor beta (TGF-β) is one of the major players in determining the structural and functional abnormalities of the ASM in asthma and COPD. It is increasingly evident that TGF-β functions as a master switch, controlling a network of intracellular and autocrine signaling loops that effect ASM phenotype and function. In this review, the various elements that participate in non-canonical TGF-β signaling, including MAPK, PI3K, WNT/β-catenin, and Ca(2+), are discussed, focusing on their effect on ASM phenotype and function. In addition, new aspects of ASM biology and their possible association with non-canonical TGF-β signaling will be discussed.
Collapse
Affiliation(s)
- Behzad Yeganeh
- Department of Physiology, Manitoba Institute of Child Health, University of Manitoba, 675 McDermot Ave, Winnipeg, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Giovanini AF, Grossi JRA, Gonzaga CC, Zielak JC, Göhringer I, Vieira JDS, Kuczera J, de Oliveira Filho MA, Deliberador TM. Leukocyte-Platelet-Rich Plasma (L-PRP) Induces an Abnormal Histophenotype in Craniofacial Bone Repair Associated with Changes in the Immunopositivity of the Hematopoietic Clusters of Differentiation, Osteoproteins, and TGF-β1. Clin Implant Dent Relat Res 2012; 16:259-72. [DOI: 10.1111/j.1708-8208.2012.00478.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | - João Cesar Zielak
- Masters Program in Clinical Dentistry; Positivo University; Curitiba Brazil
| | - Isabella Göhringer
- Masters Program in Clinical Dentistry; Positivo University; Curitiba Brazil
| | | | | | | | | |
Collapse
|
44
|
Tsukada T, Fushida S, Harada S, Yagi Y, Kinoshita J, Oyama K, Tajima H, Fujita H, Ninomiya I, Fujimura T, Ohta T. The role of human peritoneal mesothelial cells in the fibrosis and progression of gastric cancer. Int J Oncol 2012; 41:476-82. [PMID: 22614335 PMCID: PMC3582882 DOI: 10.3892/ijo.2012.1490] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/30/2012] [Indexed: 11/21/2022] Open
Abstract
Peritoneal dissemination is the most frequent metastatic pattern of scirrhous gastric cancer. However, despite extensive research effort, disease outcomes have not improved sufficiently. Tumor progression and metastasis result from interactions between cancer and various cells in the stroma, including endothelial cells, immune cells and fibroblasts. Fibroblasts have been particularly well studied; they are known to change into carcinoma-associated fibroblasts (CAFs) and produce transforming growth factor β (TGF-β), which mediates cancer-stroma interactions. Here, we investigated whether TGF-β derived from cancer cells in the peritoneal microenvironment activates human peritoneal mesothelial cells (HPMCs), leading to the progression and fibrosis of gastric cancer. We found that activated HPMCs (a-HPMCs) took on a spindle shape formation, decreased the expression of E-cadherin and increased that of α-SMA. Furthermore, a-HPMCs became more invasive and upregulated proliferation of human gastric cancer-derived MKN45 cells following direct cell-cell contact. Notably, MKN45 cells co-cultured with a-HPMCs also acquired anchorage-independent cell growth and decreased expression of E-cadherin in vitro. To measure the effects of the co-culture in vivo, we developed a mouse xenograft model into which different culture products were subcutaneously injected. The largest tumors were observed in mice that had been given MKN45 cells co-cultured with a-HPMCs. Furthermore, these tumors contained HPMC-derived fibrous tissue. Thus, the epithelial-mesenchymal transition (EMT) of HPMCs appears to drive peritoneal dissemination and tumor fibrosis.
Collapse
Affiliation(s)
- Tomoya Tsukada
- Department of Gastroenterological Surgery, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Asakawa T, Yagi M, Tanaka Y, Asagiri K, Kobayashi H, Egami H, Tanikawa K, Kage M. The herbal medicine Inchinko-to reduces hepatic fibrosis in cholestatic rats. Pediatr Surg Int 2012; 28:379-84. [PMID: 22045203 DOI: 10.1007/s00383-011-2974-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2011] [Indexed: 12/29/2022]
Abstract
PURPOSE Several studies have reported the herbal medicine Inchinko-to (ICKT) to have an antifibrotic effect which thus leads to an improvement of hepatic injury. However, there are still few reports of its use in the treatment of cholestatic liver disorder. The aim of this study was to clarify whether the administration of ICKT will ameliorate hepatic fibrosis and injury in cholestatic rats. MATERIALS AND METHODS We performed bile duct ligation on 7-week-old male cholestatic Wistar rats and assigned them to one of three groups according to the method of treatment: (1) the SHAM group, (2) the NT-group (non-treatment group), and (3) the T-group (treatment-group). Rats in the T-group were orally administered ICKT (TJ-135) at a dose of 1 g/kg/day and were killed on the 17th postoperative day. We subsequently investigated the levels of fibrosis and various clinical markers through measurement of the following: serum levels of AST and ALT; tissue transforming growth factor-beta 1 (TGF-beta1); tissue inhibitor metalloprotease-1 mRNA (TIMP-1 mRNA) through real-time PCR analysis; and Azan staining and immunohistochemical staining of alfa-smooth muscle actin (alfa-SMA) to evaluate the degree of fibrosis. RESULTS The levels of serum AST, serum ALT, and TGF-bata1 in the T-Group were significantly lower than those in the NT-Group. In addition, staining of Azan and alfa-SMA in the T-Group was significantly lower than those in the NT-Group. CONCLUSION ICKT may help reduce hepatic fibrosis and injury by controlling stellate cell activation.
Collapse
Affiliation(s)
- Takahiro Asakawa
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahimachi, Kurume, Fukuoka, 830-0011, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Losartan reduces trinitrobenzene sulphonic acid-induced colorectal fibrosis in rats. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2012; 26:33-9. [PMID: 22288068 DOI: 10.1155/2012/628268] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intestinal fibrosis is a challenging clinical condition in several fibrostenosing enteropathies, particularly Crohn's disease. Currently, no effective preventive measures or medical therapies are available for intestinal fibrosis. Fibrosis, due to an abnormal accumulation of extracellular matrix proteins, is a chronic and progressive process mediated by cell⁄matrix⁄cytokine and growth factor interactions, but may be a reversible phenomenon. Of the several molecules regulating fibrogenesis, transforming growth factor-beta 1 (TGF-b1) appears to play a pivotal role; it is strongly induced by the local activation of angiotensin II. The levels of both TGF-b1 and angiotensin II are elevated in fibrostenosing Crohn's disease. AIMS To evaluate the in vivo effect of losartan - an angiotensin II receptor antagonist - on the course of chronic colitis-associated fibrosis and on TGF-b1 expression. METHODS Colitis was induced by intrarectal instillation of trinitrobenzene sulphonic acid (TNBS) (15 mg⁄mL) while losartan was administered orally daily by gavage (7 mg⁄kg⁄day) for 21 days. Three groups of rats were evaluated: control (n=10); TNBS treated (n=10); and TNBS + losartan treated (n=10). Inflammation and fibrosis of the colon were evaluated by macro- and microscopic score analysis. Colonic TGF-b1 levels was measured using ELISA. RESULTS Twenty-one days after induction, losartan significantly improved the macro- and microscopic scores of fibrosis in the colonic wall and reduced TGF-b1 concentration. CONCLUSIONS Prophylactic oral administration of losartan reduces the colorectal fibrosis complicating the TNBS-induced chronic colitis, an effect that appears to be mediated by a downregulation of TGF-b1 expression.
Collapse
|
47
|
Mukherjee S, Kolb MRJ, Duan F, Janssen LJ. Transforming growth factor-β evokes Ca2+ waves and enhances gene expression in human pulmonary fibroblasts. Am J Respir Cell Mol Biol 2012; 46:757-64. [PMID: 22268139 DOI: 10.1165/rcmb.2011-0223oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fibroblasts maintain the structural framework of animal tissue by synthesizing extracellular matrix molecules. Chronic lung diseases are characterized in part by changes in fibroblast numbers, properties, and more. Fibroblasts respond to a variety of growth factors, cytokines, and proinflammatory mediators. However, the signaling mechanisms behind these responses have not been fully explored. We sought to determine the role of Ca(2+) waves in transforming growth factor-β (TGF-β)-mediated gene expression in human pulmonary fibroblasts. Primary human pulmonary fibroblasts were cultured and treated with TGF-β and different blockers under various conditions. Cells were then loaded with the Ca(2+) indicator dye Oregon green, and Ca(2+) waves were monitored by confocal [Ca(2+)](i) fluorimetry. Real-time PCR was used to probe gene expression. TGF-β (1 nM) evoked recurring Ca(2+) waves. A 30-minute pretreatment of SD 208, a TGF-β receptor-1 kinase inhibitor, prevented Ca(2+) waves from being evoked by TGF-β. The removal of external Ca(2+) completely occluded TGF-β-evoked Ca(2+) waves. Cyclopiazonic acid, an inhibitor of the internal Ca(2+) pump, evoked a relatively slowly developing rise in Ca(2+) waves compared with the rapid changes evoked by TGF-β, but the baseline fluorescence was increased. Ryanodine (10(-5) M) also blocked TGF-β-mediated Ca(2+) wave activity. Real-time PCR showed that TGF-β rapidly and dramatically increased the gene expression of collagen A1 and fibronectin. This increase was blocked by ryanodine treatment and cyclopiazonic acid. We conclude that, in human pulmonary fibroblasts, TGF-β acts on ryanodine-sensitive channels, leading to Ca(2+) wave activity, which in turn amplifies extracellular matrix gene expression.
Collapse
Affiliation(s)
- Subhendu Mukherjee
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, 50 Charlton Ave. East, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
48
|
Lyons JA, Dickson P, Wall J, Passage M, Ellinwood NM, Kakkis ED, McEntee MF. Arterial pathology in canine mucopolysaccharidosis-I and response to therapy. J Transl Med 2011; 91:665-74. [PMID: 21383673 PMCID: PMC3084338 DOI: 10.1038/labinvest.2011.7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mucopolysaccharidosis-I (MPS-I) is an inherited deficiency of α-L-iduronidase (IdU) that causes lysosomal accumulation of glycosaminoglycans (GAG) in a variety of parenchymal cell types and connective tissues. The fundamental link between genetic mutation and tissue GAG accumulation is clear, but relatively little attention has been given to the morphology or pathogenesis of associated lesions, particularly those affecting the vascular system. The terminal parietal branches of the abdominal aorta were examined from a colony of dogs homozygous (MPS-I affected) or heterozygous (unaffected carrier) for an IdU mutation that eliminated all enzyme activity, and in affected animals treated with human recombinant IdU. High-resolution computed tomography showed that vascular wall thickenings occurred in affected animals near branch points, and associated with low endothelial shear stress. Histologically these asymmetric 'plaques' entailed extensive intimal thickening with disruption of the internal elastic lamina, occluding more than 50% of the vascular lumen in some cases. Immunohistochemistry was used to show that areas of sclerosis contained foamy (GAG laden) macrophages, fibroblasts and smooth muscle cells, with loss of overlying endothelial basement membrane and claudin-5 expression. Lesions contained scattered cells expressing nuclear factor-κβ (p65), increased fibronectin and transforming growth factor β-1 signaling (with nuclear Smad3 accumulation) in comparison to unaffected vessels. Intimal lesion development and morphology was improved by intravenous recombinant enzyme treatment, particularly with immune tolerance to this exogenous protein. The progressive sclerotic vasculopathy of MPS-I shares some morphological and molecular similarities to atherosclerosis, including formation in areas of low shear stress near branch points, and can be reduced or inhibited by intravenous administration of recombinant IdU.
Collapse
Affiliation(s)
| | - Patricia Dickson
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA
| | - Jonathan Wall
- Graduate School of Medicine, University of Tennessee, Knoxville, TN
| | - Merry Passage
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA
| | | | - Emil D. Kakkis
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, BioMarin Pharmaceutical Inc., Novato, CA
| | - Michael F. McEntee
- Department of Pathobiology, University of Tennessee, Knoxville, TN,Corresponding author: Michael McEntee, DVM, Department of Pathobiology, University of Tennessee, 2407 River Drive, RmA201, Knoxville, TN, 37996-4542. Office: 865-974-8236, Fax: 865-974-5616,
| |
Collapse
|
49
|
Taguchi T, Nazneen A, Al-Shihri AA, A. Turkistani K, Razzaque MS. Heat shock protein 47: a novel biomarker of phenotypically altered collagen-producing cells. Acta Histochem Cytochem 2011; 44:35-41. [PMID: 21614164 PMCID: PMC3096080 DOI: 10.1267/ahc.11001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/18/2011] [Indexed: 01/15/2023] Open
Abstract
Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that helps the molecular maturation of various types of collagens. A close association between increased expression of HSP47 and the excessive accumulation of collagens is found in various human and experimental fibrotic diseases. Increased levels of HSP47 in fibrotic diseases are thought to assist in the increased assembly of procollagen, and thereby contribute to the excessive deposition of collagens in fibrotic areas. Currently, there is not a good universal histological marker to identify collagen-producing cells. Identifying phenotypically altered collagen-producing cells is essential for the development of cell-based therapies to reduce the progression of fibrotic diseases. Since HSP47 has a single substrate, which is collagen, the HSP47 cellular expression provides a novel universal biomarker to identify phenotypically altered collagen-producing cells during wound healing and fibrosis. In this brief article, we explained why HSP47 could be used as a universal marker for identifying phenotypically altered collagen-producing cells.
Collapse
Affiliation(s)
- Takashi Taguchi
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences
| | - Arifa Nazneen
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences
| | - Abdulmonem A. Al-Shihri
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine
| | | | - Mohammed S. Razzaque
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine
| |
Collapse
|
50
|
Giovanini AF, Gonzaga CC, Zielak JC, Deliberador TM, Kuczera J, Göringher I, de Oliveira Filho MA, Baratto-Filho F, Urban CA. Platelet-rich plasma (PRP) impairs the craniofacial bone repair associated with its elevated TGF-β levels and modulates the co-expression between collagen III and α-smooth muscle actin. J Orthop Res 2011; 29:457-63. [PMID: 20922797 DOI: 10.1002/jor.21263] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 08/17/2010] [Indexed: 02/04/2023]
Abstract
Transforming growth factor-β (TGF-β) is considered the main inducer of both the α-smooth muscle actin (α-SMA) phenotype and collagen synthesis and deposition and plays a significant role in the tissue repair and the development of fibrosis. Since the PRP constitutes an important source of TGF-β and its efficacy on the craniofacial bone repair remains controversy, the aim of this study was to evaluate the effect of PRP in the presence of levels of TGF-β on PRP samples, as well as in the presence of collagen III and α-SMA+ cells, while comparing these results by means of a histomorphometric analysis of the bone matrix and fibrous deposition on the bone repair. Four bone defects of 16 mm(2) were created on the calvarium of 21 rabbits. The surgical defects were treated with either particulate autograft, particulate autograft mixed with PRP and PRP alone. Animals were euthanized at 15, 30, and 45 days postoperative. Histomorphometric and immunohistochemical analyses were performed to assess repair time, as well as the expression of collagen III, and α-SMA. The histomorphometric results demonstrated intensive deposition of fibrous tissue while hinder bone deposition occurred in PRP groups. These results coincided with higher values of the TGF-β on the PRP sample, also larger occurrence of diffuse collagen III deposition and higher presence of α-SMA+ cells spread among the fibrous tissue. Thus, the higher levels of TGF-β associated with the both expression of collagen III and α-SMA on defect treated with PRP suggest that its biomaterial induce an effect that can be considered similarly to a fibroproliferative disorder.
Collapse
Affiliation(s)
- Allan Fernando Giovanini
- Positivo University, Rua Pedro Viriato Parigot de Souza #5300, Curitiba, Paraná 81280-330, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|