1
|
Fareed MM, Khalid H, Khalid S, Shityakov S. Deciphering Molecular Mechanisms of Carbon Tetrachloride- Induced Hepatotoxicity: A Brief Systematic Review. Curr Mol Med 2024; 24:1124-1134. [PMID: 37818557 DOI: 10.2174/0115665240257603230919103539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 10/12/2023]
Abstract
The liver plays a critical role in metabolic processes, making it vulnerable to injury. Researchers often study carbon tetrachloride (CCl4)-induced hepatotoxicity in model organisms because it closely resembles human liver damage. This toxicity occurs due to the activation of various cytochromes, including CYP2E1, CYP2B1, CYP2B2, and possibly CYP3A, which produce the trichloromethyl radical (CCl3*). CCl3* can attach to biological molecules such as lipids, proteins, and nucleic acids, impairing lipid metabolism and leading to fatty degeneration. It can also combine with DNA to initiate hepatic carcinogenesis. When exposed to oxygen, CCl3* generates more reactive CCl3OO*, which leads to lipid peroxidation and membrane damage. At the molecular level, CCl4 induces the release of several inflammatory cytokines, including TNF-α and NO, which can either help or harm hepatotoxicity through cellular apoptosis. TGF-β contributes to fibrogenesis, while IL-6 and IL-10 aid in recovery by minimizing anti-apoptotic activity and directing cells toward regeneration. To prevent liver damage, different interventions can be employed, such as antioxidants, mitogenic agents, and the maintenance of calcium sequestration. Drugs that prevent CCl4- induced cytotoxicity and proliferation or enhance CYP450 activity may offer a protective response against hepatic carcinoma.
Collapse
Affiliation(s)
- Muhammad Mazhar Fareed
- School of Science and Engineering, Department of Computer Science, Università degli Studi di Verona, Verona, Italy
- Laboratorio di Bioinformatica Applicata, Department of Biotechnology, Università degli Studi di Verona, Verona, Italy
| | - Hina Khalid
- Faculty of Life Sciences, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sana Khalid
- School of Life Science and Medicine, Shandong University of Technology, Zibo, China
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation
| |
Collapse
|
2
|
Trejo-Moreno C, Alvarado-Ojeda ZA, Méndez-Martínez M, Cruz-Muñoz ME, Castro-Martínez G, Arrellín-Rosas G, Zamilpa A, Jimenez-Ferrer JE, Baez Reyes JC, Fragoso G, Salgado GR. Aqueous Fraction from Cucumis sativus Aerial Parts Attenuates Angiotensin II-Induced Endothelial Dysfunction In Vivo by Activating Akt. Nutrients 2023; 15:4680. [PMID: 37960332 PMCID: PMC10649625 DOI: 10.3390/nu15214680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Endothelial dysfunction (ED) is a marker of vascular damage and a precursor of cardiovascular diseases such as hypertension, which involve inflammation and organ damage. Nitric oxide (NO), produced by eNOS, which is induced by pAKT, plays a crucial role in the function of a healthy endothelium. METHODS A combination of subfractions SF1 and SF3 (C4) of the aqueous fraction from Cucumis sativus (Cs-Aq) was evaluated to control endothelial dysfunction in vivo and on HMEC-1 cells to assess the involvement of pAkt in vitro. C57BL/6J mice were injected daily with angiotensin II (Ang-II) for 10 weeks. Once hypertension was established, either Cs-AqC4 or losartan was orally administered along with Ang-II for a further 10 weeks. Blood pressure (BP) was measured at weeks 0, 5, 10, 15, and 20. In addition, serum creatinine, inflammatory status (in the kidney), tissue damage, and vascular remodeling (in the liver and aorta) were evaluated. Cs-AqC4 was also tested in vitro on HMEC-1 cells stimulated by Ang-II to assess the involvement of Akt phosphorylation. RESULTS Cs-AqC4 decreased systolic and diastolic BP, reversed vascular remodeling, decreased IL-1β and TGF-β, increased IL-10, and decreased kidney and liver damage. In HMEC-1 cells, AKT phosphorylation and NO production were increased. CONCLUSIONS Cs-AqC4 controlled inflammation and vascular remodeling, alleviating hypertension; it also improved tissue damage associated with ED, probably via Akt activation.
Collapse
Affiliation(s)
- Celeste Trejo-Moreno
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca 62350, Morelos, Mexico; (C.T.-M.); (Z.A.A.-O.); (M.E.C.-M.); (G.A.-R.)
| | - Zimri Aziel Alvarado-Ojeda
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca 62350, Morelos, Mexico; (C.T.-M.); (Z.A.A.-O.); (M.E.C.-M.); (G.A.-R.)
| | - Marisol Méndez-Martínez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México 04960, Mexico;
| | - Mario Ernesto Cruz-Muñoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca 62350, Morelos, Mexico; (C.T.-M.); (Z.A.A.-O.); (M.E.C.-M.); (G.A.-R.)
| | - Gabriela Castro-Martínez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico;
| | - Gerardo Arrellín-Rosas
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca 62350, Morelos, Mexico; (C.T.-M.); (Z.A.A.-O.); (M.E.C.-M.); (G.A.-R.)
- Facultad de Ciencias de la Salud, Universidad Panamericana, Ciudad de México 03920, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec 62790, Morelos, Mexico; (A.Z.); (J.E.J.-F.)
| | - Jesús Enrique Jimenez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec 62790, Morelos, Mexico; (A.Z.); (J.E.J.-F.)
| | - Juan Carlos Baez Reyes
- Escuela Nacional Preparatoria No. 1, Universidad Nacional Autónoma de México, Ciudad de México 16030, Mexico;
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Gabriela Rosas Salgado
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca 62350, Morelos, Mexico; (C.T.-M.); (Z.A.A.-O.); (M.E.C.-M.); (G.A.-R.)
| |
Collapse
|
3
|
Wang S, Friedman SL. Found in translation-Fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Sci Transl Med 2023; 15:eadi0759. [PMID: 37792957 PMCID: PMC10671253 DOI: 10.1126/scitranslmed.adi0759] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe form of liver disease that poses a global health threat because of its potential to progress to advanced fibrosis, leading to cirrhosis and liver cancer. Recent advances in single-cell methodologies, refined disease models, and genetic and epigenetic insights have provided a nuanced understanding of MASH fibrogenesis, with substantial cellular heterogeneity in MASH livers providing potentially targetable cell-cell interactions and behavior. Unlike fibrogenesis, mechanisms underlying fibrosis regression in MASH are still inadequately understood, although antifibrotic targets have been recently identified. A refined antifibrotic treatment framework could lead to noninvasive assessment and targeted therapies that preserve hepatocellular function and restore the liver's architectural integrity.
Collapse
Affiliation(s)
- Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
4
|
Iji OT, Ajibade TO, Esan OO, Awoyomi OV, Oyagbemi AA, Adetona MO, Omobowale TO, Yakubu MA, Oguntibeju OO, Nwulia E. Ameliorative effects of glycine on cobalt chloride-induced hepato-renal toxicity in rats. Animal Model Exp Med 2023; 6:168-177. [PMID: 37141004 PMCID: PMC10158950 DOI: 10.1002/ame2.12315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND The important roles of liver and kidney in the elimination of injurious chemicals make them highly susceptible to the noxious activities of various toxicants including cobalt chloride (CoCl2 ). This study was designed to investigate the role of glycine in the mitigation of hepato-renal toxicities associated with CoCl2 exposure. METHODS Forty-two (42) male rats were grouped as Control; (CoCl2 ; 300 ppm); CoCl2 + Glycine (50 mg/kg); CoCl2 + Glycine (100 mg/kg); Glycine (50 mg/kg); and Glycine (100 mg/kg). The markers of hepatic and renal damage, oxidative stress, the antioxidant defense system, histopathology, and immunohistochemical localization of neutrophil gelatinase associated lipocalin (NGAL) and renal podocin were evaluated. RESULTS Glycine significantly reduced the markers of oxidative stress (malondialdehyde content and H2 O2 generation), liver function tests (ALT, AST, and ALP), markers of renal function (creatinine and BUN), and decreased the expression of neutrophil gelatinase-associated lipocalin (NGAL) and podocin compared with rats exposed to CoCl2 toxicity without glycine treatment. Histopathology lesions including patchy tubular epithelial necrosis, tubular epithelial degeneration and periglomerular inflammation in renal tissues, and severe portal hepatocellular necrosis, inflammation, and duct hyperplasia were observed in hepatic tissues of rats exposed to CoCl2 toxicity, but were mild to absent in glycine-treated rats. CONCLUSION The results of this study clearly demonstrate protective effects of glycine against CoCl2 -induced tissue injuries and derangement of physiological activities of the hepatic and renal systems in rats. The protective effects are mediated via augmentation of total antioxidant capacity and upregulation of NGAL and podocin expression.
Collapse
Affiliation(s)
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Moses Olusola Adetona
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering & Technology, COPHS, Texas Southern University, Houston, Texas, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, Howard University Hospital, College of Medicine, Howard University, Washington, District of Columbia, USA
| |
Collapse
|
5
|
Ciric D, Kravic-Stevovic T, Bumbasirevic V, Petricevic S, Jovanovic S, Trajkovic V, Martinovic T. Effects of metformin and simvastatin treatment on ultrastructural features of liver macrophages in HFD mice. Ultrastruct Pathol 2023; 47:1-11. [PMID: 36520527 DOI: 10.1080/01913123.2022.2156639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Type 2 diabetes is a major health burden to the society. Macrophages and liver inflammation emerged as important factors in its development. We investigated ultrastructural changes in the liver, with a special emphasis on macrophages in high fat diet (HFD) fed C57BL/6 J mice treated with metformin or simvastatin, two drugs that are used frequently in diabetes. Both metformin and simvastatin reduced the liver damage in HFD fed animals, manifested as the prevention of nonalcoholic steatohepatitis development and reduced activation and number of macrophages in the liver, as well as the percentage of these cells with lipid droplets in the cytoplasm compared to untreated HFD animals. In contrast with untreated HFD-fed animals, lipid droplets were not observed in lysosomes of macrophages in HFD animals treated with metformin and simvastatin. These findings provide new insight into the effects of metformin and simvastatin on the liver in this experimental model of type 2 diabetes and provide further rationale for implementation of statins in the therapeutic regimens in this disease.
Collapse
Affiliation(s)
- Darko Ciric
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Bumbasirevic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Department of Medical Science Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Sasa Petricevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sofija Jovanovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Martinovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Mohammad Omar J, Hai Y, Jin S. Hypoxia-induced factor and its role in liver fibrosis. PeerJ 2022; 10:e14299. [PMID: 36523459 PMCID: PMC9745792 DOI: 10.7717/peerj.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis develops as a result of severe liver damage and is considered a major clinical concern throughout the world. Many factors are crucial for liver fibrosis progression. While advancements have been made to understand this disease, no effective pharmacological drug and treatment strategies have been established that can effectively prevent liver fibrosis or even could halt the fibrotic process. Most of those advances in curing liver fibrosis have been aimed towards mitigating the causes of fibrosis, including the development of potent antivirals to inhibit the hepatitis virus. It is not practicable for many individuals; however, a liver transplant becomes the only suitable alternative. A liver transplant is an expensive procedure. Thus, there is a significant need to identify potential targets of liver fibrosis and the development of such agents that can effectively treat or reverse liver fibrosis by targeting them. Researchers have identified hypoxia-inducible factors (HIFs) in the last 16 years as important transcription factors driving several facets of liver fibrosis, making them possible therapeutic targets. The latest knowledge on HIFs and their possible role in liver fibrosis, along with the cell-specific activities of such transcription factors that how they play role in liver fibrosis progression, is discussed in this review.
Collapse
Affiliation(s)
- Jan Mohammad Omar
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical, Harbin, Heilongjiang, China
| | - Yang Hai
- College of International Education, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Zhang X, Thompkins-Johns A, Ziober A, Zhang PJ, Furth EE. Hepatic Macrophage Types Cluster with Disease Etiology in Chronic Liver Disease and Differ Compared to Normal Liver: Implications for Their Biologic and Diagnostic Role. Int J Surg Pathol 2022; 31:268-279. [PMID: 35521912 DOI: 10.1177/10668969221099630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction. Macrophages are phenotypically heterogeneous cells that play a vital role in hepatic fibrogenesis. We aimed to compare the macrophage profiles between normal livers and those with various chronic liver diseases in the precirrhotic fibrosis stage. Methods. Immunohistochemistry was performed for three macrophage markers (CD163, CD68, and IBA1) on 48 liver biopsies. Digital image analysis and automated cell count were used to calculate the densities of immunostained cells in two selected regions of interest: the periportal region and the perivenous region. Results. The absolute and relative densities of the macrophage phenotypes in relationship with zones and etiologies showed four distinct patterns by hierarchical cluster analysis: (1) no significant increase in the macrophage densities in either periportal or perivenous regions - nonalcoholic steatohepatitis; (2) significant increase in the selected macrophage densities in both periportal and perivenous regions - Hepatitis C; (3) significant increase in the macrophage densities only in periportal region - alcoholic liver disease, primary sclerosing cholangitis, and primary biliary cholangitis; and (4) significant increase in the densities of all types of macrophages in both periportal and perivenous regions - autoimmune hepatitis. Conclusions. There are distinct macrophage phenotypic and zonal geographic signatures correlating to etiologies of chronic liver disease in the precirrhotic stage.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Pathology and Laboratory Medicine, 428224Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra Thompkins-Johns
- Department of Pathology and Laboratory Medicine, 428224Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Ziober
- Department of Pathology and Laboratory Medicine, 428224Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Paul J Zhang
- Department of Pathology and Laboratory Medicine, 428224Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, 428224Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Mooli RGR, Mukhi D, Ramakrishnan SK. Oxidative Stress and Redox Signaling in the Pathophysiology of Liver Diseases. Compr Physiol 2022; 12:3167-3192. [PMID: 35578969 PMCID: PMC10074426 DOI: 10.1002/cphy.c200021] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The increased production of derivatives of molecular oxygen and nitrogen in the form of reactive oxygen species (ROS) and reactive nitrogen species (RNS) lead to molecular damage called oxidative stress. Under normal physiological conditions, the ROS generation is tightly regulated in different cells and cellular compartments. Any disturbance in the balance between the cellular generation of ROS and antioxidant balance leads to oxidative stress. In this article, we discuss the sources of ROS (endogenous and exogenous) and antioxidant mechanisms. We also focus on the pathophysiological significance of oxidative stress in various cell types of the liver. Oxidative stress is implicated in the development and progression of various liver diseases. We narrate the master regulators of ROS-mediated signaling and their contribution to liver diseases. Nonalcoholic fatty liver diseases (NAFLD) are influenced by a "multiple parallel-hit model" in which oxidative stress plays a central role. We highlight the recent findings on the role of oxidative stress in the spectrum of NAFLD, including fibrosis and liver cancer. Finally, we provide a brief overview of oxidative stress biomarkers and their therapeutic applications in various liver-related disorders. Overall, the article sheds light on the significance of oxidative stress in the pathophysiology of the liver. © 2022 American Physiological Society. Compr Physiol 12:3167-3192, 2022.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
An Integrated Bile Acids Profile Determination by UHPLC-MS/MS to Identify the Effect of Bile Acids Supplement in High Plant Protein Diet on Common Carp ( Cyprinus carpio). Foods 2021; 10:foods10102465. [PMID: 34681514 PMCID: PMC8535531 DOI: 10.3390/foods10102465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BAs) have considerable importance in the metabolism of glycolipid and cholesterol. The purpose of the present study is to clarify the effects of bile acids supplementary in a high plant protein diet for the common carp BA profiles and hepatopancreas and intestine health. An 11-week feeding trial was conducted with high plant protein diet (18% soybean meal and 18% cottonseed protein concentrated) (HP) and HP added 600 mg/kg BAs (HP+BAs) for common carp, and then, the UHPLC-MS/MS technology was used to analyze the BAs in the bile and plasma of two groups. HP could induce vacuolation of hepatocytes and accumulation of glycogen in the common carp, while these phenotypes were significantly improved in the HP+BAs group. In addition, the BA profile of the HP group and HP+BAs group are described in detail, for the common carp bile with treatment by exogenous BAs, TCA, CA, TβMCA, and TωMCA were the main components. Furthermore, in the HP+BAs group plasma, CDCA, CA, LCA, and GCDCA increased significantly; they could activate TGR5, and the activation of hepatopancreas TGR5 might regulate glucose metabolism to relieve hepatopancreas glycogen accumulation. This study proved that BAs supplemented to plant protein diet could relieve the common carp hepatopancreas glycogen accumulation by changing the BAs’ profile, thereby promoting its healthy growth, which has important guiding significance for the promotion of aquaculture development and makes an important contribution to expanding the strategic space of food security.
Collapse
|
10
|
Kumar S, Duan Q, Wu R, Harris EN, Su Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev 2021; 176:113869. [PMID: 34280515 PMCID: PMC11792083 DOI: 10.1016/j.addr.2021.113869] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease that encompasses a spectrum of pathological conditions, ranging from simple steatosis (NAFL), nonalcoholic steatohepatitis (NASH), fibrosis/cirrhosis which can further progress to hepatocellular carcinoma and liver failure. The progression of NAFL to NASH and liver fibrosis is closely associated with a series of liver injury resulting from lipotoxicity, oxidative stress, redox imbalance (excessive nitric oxide), ER stress, inflammation and apoptosis that occur sequentially in different liver cells which ultimately leads to the activation of liver regeneration and fibrogenesis, augmenting collagen and extracellular matrix deposition and promoting liver fibrosis and cirrhosis. Type 2 diabetes is a significant risk factor in NAFLD development by accelerating liver damage. Here, we overview recent findings from human study and animal models on the pathophysiological communication among hepatocytes (HCs), Kupffer cells (KCs), hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs) during the disease development. The mechanisms of crucial signaling pathways, including Toll-like receptor, TGFβ and hedgehog mediated hepatic injury are also discussed. We further highlight the potentials of precisely targeting hepatic individual cell-type using nanotechnology as therapeutic strategy for the treatment of NASH and liver fibrosis.
Collapse
Affiliation(s)
- Santosh Kumar
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Qihua Duan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Rongxue Wu
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom.
| |
Collapse
|
11
|
Zhang W, Zhangyuan G, Wang F, Jin K, Shen H, Zhang L, Yuan X, Wang J, Zhang H, Yu W, Huang R, Xu X, Yin Y, Zhong G, Lin A, Sun B. The zinc finger protein Miz1 suppresses liver tumorigenesis by restricting hepatocyte-driven macrophage activation and inflammation. Immunity 2021; 54:1168-1185.e8. [PMID: 34038747 DOI: 10.1016/j.immuni.2021.04.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 01/20/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Chronic inflammation plays a central role in hepatocellular carcinoma (HCC), but the contribution of hepatocytes to tumor-associated inflammation is not clear. Here, we report that the zinc finger transcription factor Miz1 restricted hepatocyte-driven inflammation to suppress HCC, independently of its transcriptional activity. Miz1 was downregulated in HCC mouse models and a substantial fraction of HCC patients. Hepatocyte-specific Miz1 deletion in mice generated a distinct sub-group of hepatocytes that produced pro-inflammatory cytokines and chemokines, which skewed the polarization of the tumor-infiltrating macrophages toward pro-inflammatory phenotypes to promote HCC. Mechanistically, Miz1 sequestrated the oncoprotein metadherin (MTDH), preventing MTDH from promoting transcription factor nuclear factor κB (NF-κB) activation. A distinct sub-group of pro-inflammatory cytokine-producing hepatocytes was also seen in a subset of HCC patients. In addition, Miz1 expression inversely correated with disease recurrence and poor prognosis in HCC patients. Our findings identify Miz1 as a tumor suppressor that prevents hepatocytes from driving inflammation in HCC.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guangyan Zhangyuan
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fei Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kangpeng Jin
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Haiyuan Shen
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Liansheng Zhang
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiang Yuan
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jincheng Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Haitian Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weiwei Yu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ruyi Huang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoliang Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yin Yin
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guisheng Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Anning Lin
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; Institute of Modern Biology, Nanjing University, Nanjing 20018, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
12
|
Mountford S, Effenberger M, Noll-Puchta H, Griessmair L, Ringleb A, Haas S, Denk G, Reiter FP, Mayr D, Dinarello CA, Tilg H, Bufler P. Modulation of Liver Inflammation and Fibrosis by Interleukin-37. Front Immunol 2021; 12:603649. [PMID: 33746950 PMCID: PMC7970756 DOI: 10.3389/fimmu.2021.603649] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Background and Aims: Chronic inflammation induces liver fibrosis, cirrhosis and potentially liver cancer. Kupffer cells modulate hepatic stellate cells by secreting immunologically active proteins as TGF-β. TGF-β promotes liver fibrosis via the activation of Sma- and Mad-related protein 3. IL-37 broadly suppresses innate and adaptive immune responses. Intracellular IL-37 interacts with Smad3. We hypothesize that IL-37 downregulates the activation of hepatic Kupffer and stellate cells and interferes with the TGF-β signaling cascade to modulate liver fibrogenesis. Methods: The role of IL-37 on liver inflammation and fibrogenesis was assessed in three mouse models as well as isolated Kupffer- and stellate cells. Serum IL-37 was tested by ELISA in a clinical cohort and correlated with liver disease severity. Results: Transgene expression of IL-37 in mice extends survival, reduces hepatic damage, expression of early markers of fibrosis and histologically assessed liver fibrosis after bile duct ligation. IL-37tg mice were protected against CCl4-induced liver inflammation. Colitis-associated liver inflammation and fibrosis was less severe in IL-10 knockout IL-37tg mice. Spontaneous and LPS/TGF-β-induced cytokine release and profibrogenic gene expression was lower in HSC and KC isolated from IL-37tg mice and IL-37 overexpressing, IL-1β stimulated human LX-2 stellate cells. However, administration of recombinant human IL-37 did not modulate fibrosis pathways after BDL in mice, LX2 cells or murine HSCs. In a large clinical cohort, we observed a positive correlation of serum IL-37 levels with disease severity in liver cirrhosis. Conclusions: Predominantly intracellular IL-37 downregulates liver inflammation and fibrosis. The correlation of serum IL-37 with disease severity in cirrhosis suggests its potential as a novel target modulating the course of liver fibrosis.
Collapse
Affiliation(s)
- Steffeni Mountford
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Heidi Noll-Puchta
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lucas Griessmair
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea Ringleb
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sonja Haas
- RNA Biology, Ethris GmbH, Planegg, Germany
| | - Gerald Denk
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Florian P. Reiter
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Doris Mayr
- Department of Pathology, Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Charles A. Dinarello
- Department of Medicine and Immunology, University of Colorado Denver, Aurora, CO, United States
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Philip Bufler
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Aghaei M, Ramezanitaghartapeh M, Javan M, Hoseininezhad-Namin MS, Mirzaei H, Rad AS, Soltani A, Sedighi S, Lup ANK, Khori V, Mahon PJ, Heidari F. Investigations of adsorption behavior and anti-inflammatory activity of glycine functionalized Al 12N 12 and Al 12ON 11 fullerene-like cages. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119023. [PMID: 33049473 DOI: 10.1016/j.saa.2020.119023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/12/2020] [Accepted: 09/27/2020] [Indexed: 05/24/2023]
Abstract
The adsorption behavior of the amino acid, glycine (Gly), via the carboxyl, hydroxyl, and amino groups onto the surfaces of Al12N12 and Al16N16 fullerene-like cages were computationally evaluated by the combination of density functional theory (DFT) and molecular docking studies. It was found that Gly can chemically bond with the Al12N12 and Al16N16 fullerene-like cages as its amino group being more favorable to interact with the aluminum atoms of the adsorbents compared to carboxyl and hydroxyl groups. Oxygen and carbon doping were reported to reduce steric hindrance for Glycine interaction at Al site of Al12ON11/Gly and Al12CN11/Gly complexes. Interaction was further enhanced by oxygen doping due to its greater electron withdrawing effect. Herein, the Al12ON11/Gly complex where two carbonyl groups of Gly are bonded to the aluminum atoms of the Al12N12 fullerene-like cage is the most stable interaction configuration showing ∆adsH and ∆adsG values of -81.74 kcal/mol and -66.21 kcal/mol, respectively. Computational studies also revealed the frequency shifts that occurred due to the interaction process. Molecular docking analysis revealed that the Al12N12/Gly (-11.7 kcal/mol) and the Al12ON11/Gly (-9.2 kcal/mol) complexes have a good binding affinity with protein tumor necrosis factor alpha (TNF-α). TNF-α was implicated as a key cytokine in various diseases, and it has been a validated therapeutic target for the treatment of rheumatoid arthritis. These results suggest that the Al12N12/Gly complex in comparison with the Al16N16/Gly, Al12ON11/Gly, and the Al12CN11/Gly complexes could be efficient inhibitors of TNF-α.
Collapse
Affiliation(s)
- Mehrdad Aghaei
- Golestan Rheumatology Research Center, Golestan University of Medical Science, Gorgan, Iran
| | | | - Masoud Javan
- Department of Physics, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Mir Saleh Hoseininezhad-Namin
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Mirzaei
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Shokuhi Rad
- Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Alireza Soltani
- Golestan Rheumatology Research Center, Golestan University of Medical Science, Gorgan, Iran.
| | - Sima Sedighi
- Golestan Rheumatology Research Center, Golestan University of Medical Science, Gorgan, Iran.
| | - Andrew Ng Kay Lup
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Peter J Mahon
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Fatemeh Heidari
- Golestan Rheumatology Research Center, Golestan University of Medical Science, Gorgan, Iran
| |
Collapse
|
14
|
Abstract
Hepatic fibrosis is a complex mechanism defined by the net deposition of the extracellular matrix (ECM) owing to liver injury caused by multiple etiologies such as viral hepatitis and nonalcoholic fatty liver disease. Many cell types are implicated in liver fibrosis development and progression. In general, liver fibrosis starts with the recruitment of inflammatory immune cells to generate cytokines, growth factors, and other activator molecules. Such chemical mediators drive the hepatic stellate cells (HSCs) to activate the production of the ECM component. The activation of HSC is thus a crucial event in the fibrosis initiation, and a significant contributor to collagen deposition (specifically type I). This review explores the causes and mechanisms of hepatic fibrosis and focuses on the roles of key molecules involved in liver fibro genesis, some of which are potential targets for therapeutics to hamper liver fibro genesis.
Collapse
Affiliation(s)
- Reham M Dawood
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mai A El-Meguid
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Ghada Maher Salum
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mostafa K El Awady
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| |
Collapse
|
15
|
Maneikyte J, Bausys A, Leber B, Feldbacher N, Hoefler G, Kolb-Lenz D, Strupas K, Stiegler P, Schemmer P. Dietary Glycine Prevents FOLFOX Chemotherapy-Induced Heart Injury: A Colorectal Cancer Liver Metastasis Treatment Model in Rats. Nutrients 2020; 12:2634. [PMID: 32872376 PMCID: PMC7551625 DOI: 10.3390/nu12092634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION FOLFOX chemotherapy (CTx) is used for the treatment of colorectal liver metastasis (CRLM). Side effects include rare cardiotoxicity, which may limit the application of FOLFOX. Currently, there is no effective strategy to prevent FOLFOX-induced cardiotoxicity. Glycine has been shown to protect livers from CTx-induced injury and oxidative stress, and it reduces platelet aggregation and improves microperfusion. This study tested the hypothesis of glycine being cardioprotective in a rat model of FOLFOX in combination with CRLM. MATERIALS AND METHODS The effect of glycine was tested in vitro on human cardiac myocytes (HCMs). To test glycine in vivo Wag/Rij rats with induced CRLM were treated with FOLFOX ±5% dietary glycine. Left ventricle ejection fraction (LVEF), myocardial fibrosis, and apoptosis, also heart fatty acid binding protein (h-FABP) and brain natriuretic peptide levels were monitored. PCR analysis for Collagen type I, II, and brain natriuretic peptide (BNP) in the heart muscle was performed. RESULTS In vitro glycine had no effect on HCM cell viability. Treatment with FOLFOX resulted in a significant increase of h-FABP levels, increased myocardial fibrosis, and apoptosis as well as increased expression of type I Collagen. Furthermore, FOLFOX caused a decrease of LVEF by 10% (p = 0.028). Dietary glycine prevented FOLFOX-induced myocardial injury by preserving the LVEF and reducing the levels of fibrosis (p = 0.012) and apoptosis (p = 0.015) in vivo. CONCLUSIONS Data presented here demonstrate for the first time that dietary glycine protects the heart against FOLFOX-induced injury during treatment for CRLM.
Collapse
Affiliation(s)
- Juste Maneikyte
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Augustinas Bausys
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
- National Cancer Institute, 08406 Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
| | - Nicole Feldbacher
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Dagmar Kolb-Lenz
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, 8010 Graz, Austria;
- Center for Medical Research, Core Facility Ultrastructure Analysis, Medical University Graz, 8010 Graz, Austria
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
| |
Collapse
|
16
|
Schwabe RF, Tabas I, Pajvani UB. Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis. Gastroenterology 2020; 158:1913-1928. [PMID: 32044315 PMCID: PMC7682538 DOI: 10.1053/j.gastro.2019.11.311] [Citation(s) in RCA: 430] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease is the most prevalent liver disease worldwide, affecting 20%-25% of the adult population. In 25% of patients, nonalcoholic fatty liver disease progresses to nonalcoholic steatohepatitis (NASH), which increases the risk for the development of cirrhosis, liver failure, and hepatocellular carcinoma. In patients with NASH, liver fibrosis is the main determinant of mortality. Here, we review how interactions between different liver cells culminate in fibrosis development in NASH, focusing on triggers and consequences of hepatocyte-macrophage-hepatic stellate cell (HSC) crosstalk. We discuss pathways through which stressed and dead hepatocytes instigate the profibrogenic crosstalk with HSC and macrophages, including the reactivation of developmental pathways such as TAZ, Notch, and hedgehog; how clearance of dead cells in NASH via efferocytosis may affect inflammation and fibrogenesis; and insights into HSC and macrophage heterogeneity revealed by single-cell RNA sequencing. Finally, we summarize options to therapeutically interrupt this profibrogenic hepatocyte-macrophage-HSC network in NASH.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York.
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York; Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York
| |
Collapse
|
17
|
Gandhi CR. Pro- and Anti-fibrogenic Functions of Gram-Negative Bacterial Lipopolysaccharide in the Liver. Front Med (Lausanne) 2020; 7:130. [PMID: 32373617 PMCID: PMC7186417 DOI: 10.3389/fmed.2020.00130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Extensive research performed over several decades has identified cells participating in the initiation and progression of fibrosis, and the numerous underlying inter- and intra-cellular signaling pathways. However, liver fibrosis continues to be a major clinical challenge as the precise targets of treatment are still elusive. Activation of physiologically quiescent perisinusoidal hepatic stellate cells (HSCs) to a myofibroblastic proliferating, contractile and fibrogenic phenotype is a critical event in the pathogenesis of chronic liver disease. Thus, elucidation of the mechanisms of the reversal to quiescence or inhibition of activated HSCs, and/or their elimination via apoptosis has been the focus of intense investigation. Lipopolysaccharide (LPS), a gut-resident Gram-negative bacterial endotoxin, is a powerful pro-inflammatory molecule implicated in hepatic injury, inflammation and fibrosis. In both acute and chronic liver injury, portal venous levels of LPS are elevated due to increased intestinal permeability. LPS, via CD14 and Toll-like receptor 4 (TLR4) and its adapter molecules, stimulates macrophages, neutrophils and several other cell types to produce inflammatory mediators as well as factors that can activate HSCs and stimulate their fibrogenic activity. LPS also stimulates synthesis of pro- and anti-inflammatory cytokines/chemokines, growth mediators and molecules of immune regulation by HSCs. However, LPS was found to arrest proliferation of activated HSCs and to convert them into non-fibrogenic phenotype. Interestingly, LPS can elicit responses in HSCs independent of CD14 and TLR4. Identifying and/or developing non-inflammatory but anti-fibrogenic mimetics of LPS could be relevant for treating liver fibrosis.
Collapse
Affiliation(s)
- Chandrashekhar R Gandhi
- Divisions of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Cincinnati VA Medical Center, Cincinnati, OH, United States
| |
Collapse
|
18
|
Cao Y, Ji C, Lu L. Mesenchymal stem cell therapy for liver fibrosis/cirrhosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:562. [PMID: 32775363 PMCID: PMC7347778 DOI: 10.21037/atm.2020.02.119] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver fibrosis represents a common outcome of most chronic liver diseases. Advanced fibrosis leads to cirrhosis for which no effective treatment is available except liver transplantation. Because of the limitations of liver transplantation, alternative therapeutic strategies are an urgent need to find. Recently, mesenchymal stem cells (MSCs) based therapy has been suggested as an attractive therapeutic option for liver fibrosis and cirrhosis, based on the promising results from preclinical and clinical studies. Although the precise mechanisms of MSC transplantation are still not fully understood, accumulating evidence has indicated that MSCs eliminate the progression of fibrosis due to their immune-modulatory properties. In this review, we summarise the properties of MSCs and their clinical application in the treatment of liver fibrosis and cirrhosis. We also discuss the mechanisms involved in MSC-dependent regulation of immune microenvironment in the context of liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Ling Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
19
|
Lee DY, Yun SM, Song MY, Ji SD, Son JG, Kim EH. Administration of Steamed and Freeze-Dried Mature Silkworm Larval Powder Prevents Hepatic Fibrosis and Hepatocellular Carcinogenesis by Blocking TGF-β/STAT3 Signaling Cascades in Rats. Cells 2020; 9:E568. [PMID: 32121064 PMCID: PMC7140417 DOI: 10.3390/cells9030568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide and the majority of HCC patients occur with a background of hepatic fibrosis and cirrhosis. We have previously reported the hepatoprotective effects of steamed and freeze-dried mature silkworm larval powder (SMSP) in a chronic ethanol-treated rat model. Here, we assessed the anti-fibrotic and anti-carcinogenic effects of SMSP on diethylnitrosamine (DEN)-treated rats. Wistar rats were intraperitoneally injected with DEN once a week for 12 or 16 weeks with or without SMSP administration (0.1 and 1 g/kg). SMSP administration significantly attenuated tumor foci formation and proliferation in the livers of the rats treated with DEN for 16 weeks. SMSP administration also inhibited hepatic fibrosis by decreasing the levels of collagen fiber and the expression of pro-collagen I and alpha-smooth muscle actin (α-SMA). Moreover, SMSP supplementation improved the major parameters of fibrosis such as transforming growth factor-β (TGF-β), connective tissue growth factor (CTGF), tumor necrosis factor-alpha (TNF-α), plasminogen activator inhibitor-1 (PAI-1), and collagen type I (Col1A1) in the livers from the rats treated with DEN for 16 weeks. As s possible mechanisms, we investigated the effects of SMSP on the TGF-β and signal transducer and activator of transcription 3 (STAT3)-mediated signaling cascades, which are known to promote hepatic fibrosis. We found that SMSP treatment inhibited the activation of TGF-β and the phosphorylation of STAT3 pathway in DEN-treated rats. Moreover, SMSP administration suppressed the expressions of the target genes of TGF-β and STAT3 induced by DEN treatment. Our findings provide experimental evidences that SMSP administration has inhibitory effects of hepatic fibrosis and HCC induced by DEN in vivo and could be a promising strategy for the prevention or treatment of hepatic fibrosis and hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Da-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; (D.-Y.L.); (S.-M.Y.); (M.-Y.S.)
| | - Sun-Mi Yun
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; (D.-Y.L.); (S.-M.Y.); (M.-Y.S.)
| | - Moon-Young Song
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; (D.-Y.L.); (S.-M.Y.); (M.-Y.S.)
| | - Sang-Deok Ji
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Korea; (S.-D.J.); (J.-G.S.)
| | - Jong-Gon Son
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Korea; (S.-D.J.); (J.-G.S.)
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; (D.-Y.L.); (S.-M.Y.); (M.-Y.S.)
| |
Collapse
|
20
|
Akiba S, Kawashita E, Ishihara K. [Inhibition of Group IVA Phospholipase A 2 as a Novel Therapeutic Strategy for Nonalcoholic Steatohepatitis]. YAKUGAKU ZASSHI 2019; 139:1155-1162. [PMID: 31474631 DOI: 10.1248/yakushi.19-00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a lifestyle-related disease characterized by hepatic fibrosis with the accumulation of fat and inflammation and can progress to cirrhosis or hepatocellular carcinoma. However, effective pharmacotherapeutic strategies for hepatic fibrosis in NASH remain to be established. Among the initiators of inflammation, we have been investigating the possible involvement of group IVA phospholipase A2 (IVA-PLA2), which catalyzes the initial step in the generation of lipid mediators, including eicosanoids and lysophospholipids, in the progression of hepatic fibrosis. We have recently demonstrated that a lack of IVA-PLA2 alleviates hepatic fibrosis in NASH model mice fed a high-fat and high-cholesterol diet and in CCl4-treated mice. CCl4-induced hepatic fibrosis was also prevented by the administration of an orally active, specific IVA-PLA2 inhibitor even after hepatic fibrosis had developed. Based on these findings suggesting that IVA-PLA2 mediates the cellular responses contributing to the progression of hepatic fibrosis, we have been exploring which types of cells in the liver are involved in IVA-PLA2-mediated hepatic fibrosis using cell-specific IVA-PLA2 knockout mice. The preliminary experimental results suggest that IVA-PLA2 in endothelial cells, but not monocyte-derived cells, plays a role, in part, in the hepatic stellate cell-mediated progression of hepatic fibrosis. In this paper, we discuss the possibility that IVA-PLA2 and/or its related molecules are candidate pharmacotherapeutic targets for NASH treatment.
Collapse
Affiliation(s)
- Satoshi Akiba
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| | - Eri Kawashita
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| | - Keiichi Ishihara
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| |
Collapse
|
21
|
Rothweiler S, Feldbrügge L, Jiang ZG, Csizmadia E, Longhi MS, Vaid K, Enjyoji K, Popov YV, Robson SC. Selective deletion of ENTPD1/CD39 in macrophages exacerbates biliary fibrosis in a mouse model of sclerosing cholangitis. Purinergic Signal 2019; 15:375-385. [PMID: 31243614 PMCID: PMC6737175 DOI: 10.1007/s11302-019-09664-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Purinergic signaling is important in the activation and differentiation of macrophages, which play divergent roles in the pathophysiology of liver fibrosis. The ectonucleotidase CD39 is known to modulate the immunoregulatory phenotype of macrophages, but whether this specifically impacts cholestatic liver injury is unknown. Here, we investigated the role of macrophage-expressed CD39 on the development of biliary injury and fibrosis in a mouse model of sclerosing cholangitis. Myeloid-specific CD39-deficient mice (LysMCreCd39fl/fl) were generated. Global CD39 null (Cd39-/-), wild-type (WT), LysMCreCd39fl/fl, and Cd39fl/fl control mice were exposed to 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to induce biliary fibrosis. Hepatic hydroxyproline levels, liver histology, immunohistochemistry, mRNA expression levels, and serum biochemistry were then assessed. Following 3 weeks of DDC-feeding, Cd39-/- mice exhibited more severe fibrosis, when compared to WT mice as reflected by morphology and increased liver collagen content. Myeloid-specific CD39 deletion in LysMCreCd39fl/fl mice recapitulated the phenotype of global Cd39-/-, after exposure to DDC, and resulted in similar worsening of liver fibrosis when compared to Cd39fl/fl control animals. Further, DDC-treated LysMCreCd39fl/fl mice exhibited elevated serum levels of transaminases and total bilirubin, as well as increased hepatic expression of the profibrogenic genes Tgf-β1, Tnf-α, and α-Sma. However, no clear differences were observed in the expression of macrophage-elaborated specific cytokines between LysMCreCd39fl/fl and Cd39fl/fl animals subjected to biliary injury. Our results in the DDC-induced biliary type liver fibrosis model suggest that loss of CD39 expression on myeloid cells largely accounts for the exacerbated sclerosing cholangitis in global CD39 knockouts. These findings indicate that macrophage expressed CD39 protects from biliary liver injury and fibrosis and support a potential therapeutic target for human hepatobiliary diseases.
Collapse
Affiliation(s)
- Sonja Rothweiler
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA
| | - Linda Feldbrügge
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA
- Department of Surgery, Charité Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
| | - Zhenghui Gordon Jiang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA
| | - Eva Csizmadia
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA
| | - Maria Serena Longhi
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA
| | - Kahini Vaid
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA
| | - Keiichi Enjyoji
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA
| | - Yury V Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA.
| | - Simon C Robson
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Dana 501, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Li J, Wu B, Hu H, Fang X, Liu Z, Wu S. GdCl 3 attenuates the glomerular sclerosis of streptozotocin (STZ) induced diabetic rats via inhibiting TGF-β/Smads signal pathway. J Pharmacol Sci 2019; 142:41-49. [PMID: 31831259 DOI: 10.1016/j.jphs.2019.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/25/2019] [Accepted: 06/19/2019] [Indexed: 01/05/2023] Open
Abstract
Diabetic nephropathy (DN) is the most serious end-stage renal disease which characterized by renal glomerular sclerosis including glomerular hypertrophy, glomerular basement membrane (GBM) thickening, mesangial expansion and renal fibrosis. TGF-β/Smads signal pathway plays a crucial role in the development of renal fibrosis. In this study, we found that GdCl3 which was an agonist of Calcium-sensing receptor (CaSR) could repress the activation of TGF-β/Smads signal pathway induced by TGF-β1 or high glucose and then alleviated the accumulation of extracellular matrix (ECM) in mesangial cells and the kidney of type1 diabetic rats. Further study indicated that GdCl3 could induce the binding of CaSR and TβR II and then both of these two receptors translocated from cell membrane to cytoplasm, in this case, TβR II on the cell membrane was decreased and then desensitized to the stimulation of its ligand TGF-β1, so that the activation of its downstream factors such as Smad2 and Smad3 were blocked, finally, ECM expression in mesangial cells were inhibited. We concluded that GdCl3 could alleviate the accumulation of ECM in mesangial cells via antagonizing TGF-β/Smads signal pathway in diabetes mellitus.
Collapse
Affiliation(s)
- Jialin Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Bing Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Haibo Hu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Xiansong Fang
- The First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China.
| | - Suzhen Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China.
| |
Collapse
|
23
|
Lee DY, Kim EH. Therapeutic Effects of Amino Acids in Liver Diseases: Current Studies and Future Perspectives. J Cancer Prev 2019; 24:72-78. [PMID: 31360687 PMCID: PMC6619856 DOI: 10.15430/jcp.2019.24.2.72] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver and the third most common cause of cancer-related death worldwide. HCC is caused by infection of hepatitis B/C virus and liver dysfunctions, such as alcoholic liver disease, nonalcoholic fatty liver disease, and cirrhosis. Amino acids are organic substances containing amine and carboxylic acid functional groups. There are over 700 kinds of amino acids in nature, but only about 20 of them are used to synthesize proteins in cells. Liver is an important organ for protein synthesis, degradation and detoxification as well as amino acid metabolism. In the liver, there are abundant non-essential amino acids, such as alanine, aspartate, glutamate, glycine, and serine and essential amino acids, such as histidine and threonine. These amino acids are involved in various cellular metabolisms, the synthesis of lipids and nucleotides as well as detoxification reactions. Understanding the role of amino acids in the pathogenesis of liver and the effects of amino acid intake on liver disease can be a promising strategy for the prevention and treatment of liver disease. In this review, we describe the biochemical properties and functions of amino acids and to review how they have been applied to treatment of liver diseases.
Collapse
Affiliation(s)
- Da-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| |
Collapse
|
24
|
Iwasaki J, Afify M, Bleilevens C, Klinge U, Weiskirchen R, Steitz J, Vogt M, Yagi S, Nagai K, Uemoto S, Tolba RH. The Impact of a Nitric Oxide Synthase Inhibitor (L-NAME) on Ischemia⁻Reperfusion Injury of Cholestatic Livers by Pringle Maneuver and Liver Resection after Bile Duct Ligation in Rats. Int J Mol Sci 2019; 20:ijms20092114. [PMID: 31035686 PMCID: PMC6539833 DOI: 10.3390/ijms20092114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
The Pringle maneuver (PM) has been widely used to control blood loss during liver resection. However, hepatic inflow occlusion can also result in hepatic ischemia–reperfusion injury (IRI), especially in patients with a cholestatic, fibrotic, or cirrhotic liver. Here we investigate a nitric oxide synthase (NOS) inhibitor N-Nitroarginine methyl ester (L-NAME) on IRI after the PM and partial hepatectomy of cholestatic livers induced by bile duct ligation (BDL) in rats. Control group (non-BDL/no treatment), BDL + T group (BDL/L-NAME treatment) and BDL group (BDL/no treatment) were analyzed. Cholestasis was induced by BDL in the L-NAME and BDL group and a 50% partial hepatectomy with PM was performed. L-NAME was injected before PM in the BDL + T group. Hepatocellular damage, portal venous flow, microcirculation, endothelial lining, and eNOS, iNOS, interleukin (IL)-6, and transforming growth factor-β (TGF-β) were evaluated. Microcirculation of the liver in the BDL + T group tended to be higher. Liver damage and apoptotic index were significantly lower and Ki-67 labeling index was higher in the BDL + T group while iNOS and TGF-β expression was decreased. This was corroborated by a better preserved endothelial lining. L-NAME attenuated IRI following PM and improved proliferation/regeneration of cholestatic livers. These positive effects were considered as the result of improved hepatic microcirculation, prevention of iNOS formation, and TGF-β mRNA upregulation.
Collapse
Affiliation(s)
- Junji Iwasaki
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
- Two Photon Imaging Facility of the Interdisciplinary Center for Clinical Research (IZKF), RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Mamdouh Afify
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza Square 12211, Egypt.
| | - Christian Bleilevens
- Department of Anesthesiology, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Uwe Klinge
- Department of General, Visceral and Transplantation Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Julia Steitz
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Michael Vogt
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
- Two Photon Imaging Facility of the Interdisciplinary Center for Clinical Research (IZKF), RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Shintaro Yagi
- Division of Hepatobiliary Pancreatic and Transplant Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | - Kazuyuki Nagai
- Division of Hepatobiliary Pancreatic and Transplant Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | - Shinji Uemoto
- Division of Hepatobiliary Pancreatic and Transplant Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | - Rene H Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| |
Collapse
|
25
|
Ben Hsouna A, Gargouri M, Dhifi W, Ben Saad R, Sayahi N, Mnif W, Saibi W. Potential anti-inflammatory and antioxidant effects of Citrus aurantium essential oil against carbon tetrachloride-mediated hepatotoxicity: A biochemical, molecular and histopathological changes in adult rats. ENVIRONMENTAL TOXICOLOGY 2019; 34:388-400. [PMID: 30578595 DOI: 10.1002/tox.22693] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The present study aimed (1) to investigate the chemical composition as well as the anti-inflammatory properties and in vitro antioxidant activity of Citrus aurantium peel essential oil (pEOCa) and (2) to evaluate its potential effect in vivo. The main results showed that the major components of pEOCa are Limonene and Linalool. Additionally, DPPH scavenging ability and β-carotene bleaching inhibition tests confirmed the antioxidant capacity of pEOCa. Our oil reduced the production of NO by LPS-stimulated RAW264,7 macrophages in a concentration-dependent. This inhibition occurred at a transcriptional level. pEOCa in CCl4 treated rats alleviated hepatotoxicity as monitored by the improvement of hepatic oxidative stress biomarkers levels plasma biochemical parameters, and DNA molecule aspect. Furthermore, the mRNA gene expression of Cu-Zn SOD, CAT, and GPx increased under CCl4 + pEOCa exposure to reach the same value to the control. Similarly, antioxidant activities of these three enzymes changed in accordance with the mRNA levels. These results were confirmed by the histological results. It seems obvious that the treatment with pEOCa prevented liver damage induced by CCl4 , thus preventing the harmful effects of free radicals.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Department of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, Gafsa, Tunisia
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Manel Gargouri
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, BP, Sfax, Tunisia
| | - Wissal Dhifi
- University of Manouba, ISBST, LR17-ES03 Physiopathology, Food and Biomolecules, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Naima Sayahi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Wissem Mnif
- Faculty of Sciences and Arts in Balgarn PO BOX 60 Balgarn - Sabt Al Alaya 61985, University of Bisha, Kingdom of Saudi Arabia
- University of Manouba, ISBST, BVBGR-LR11ES31, Biotechnopole Sidi Thabet, Ariana, Tunisia
| | - Walid Saibi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax, Tunisia
| |
Collapse
|
26
|
Classification of Gan Dan Shi Re Pattern and Gan Shen Yin Xu Pattern in Patients with Hepatitis B Cirrhosis Using Metabonomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2697468. [PMID: 30584450 PMCID: PMC6280296 DOI: 10.1155/2018/2697468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/24/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022]
Abstract
Objective This study aimed to analyze the differential metabolites and their metabolic pathways from the serum of patients with hepatitis B cirrhosis, with two typical patterns of Gan Dan Shi Re (GDSR) and Gan Shen Yin Xu (GSYX) based on the theory of traditional Chinese medicine (TCM). It also investigated the variation in the internal material basis for the two types of patterns and provided an objective basis for classifying TCM patterns using metabolomic techniques. Methods The serum samples taken from 111 qualified patients (40 GDSR cases, 41 GSYX cases, and 30 Latent Pattern (LP) cases with no obvious pattern characters) and 60 healthy volunteers were tested to identify the differential substances relevant to hepatitis B cirrhosis and the two typical TCM patterns under the gas chromatography–time-of-flight mass spectrometry platform. The relevant metabolic pathways of differential substances were analyzed using multidimensional statistical analysis. Results After excluding the influence of LP groups, six common substances were found in GDSR and GSYX patterns, which were mainly involved in the metabolic pathways of glycine, serine, threonine, and phenylalanine. Eight specific metabolites involved in the metabolic pathways of linoleic, glycine, threonine, and serine existed in the two patterns. Conclusions The data points on the metabolic spectrum were found to be well distributed among the differential substances between the two typical TCM patterns of patients with hepatitis B cirrhosis using metabolomic techniques. The differential expression of these substances between GDSR and GSYX patterns provided an important objective basis for the scientific nature of TCM pattern classification at the metabolic level.
Collapse
|
27
|
Hussain Z, Khan JA, Anwar H, Andleeb N, Murtaza S, Ashar A, Arif I. Synthesis, characterization, and pharmacological evaluation of zinc oxide nanoparticles formulation. Toxicol Ind Health 2018; 34:753-763. [PMID: 30227779 DOI: 10.1177/0748233718793508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) are being used extensively in manufacturing skin lotions and food products and in various biological and pharmaceutical industries because of their immunomodulatory and antimicrobial properties. In this study, ZnONPs were synthesized by a precipitation method and characterized by X-ray diffraction (XRD) techniques, scanning electron microscopy (SEM), and ultraviolet-visible spectroscopy to investigate their structural, morphological, and optical properties. For in vivo evaluation, 40 healthy albino mice were randomly allocated to four equal groups among which the first one was the control group, while the second, third, and fourth were treated with carbon tetrachloride (CCl4), a blend of CCl4 and ZnONPs, and ZnONPs alone, respectively, for 21 days. The XRD analysis confirmed hexagonal wurtzite type structures having an average crystallite size of 41.54 nm. The morphology of ZnONPs analyzed through SEM showed uniform distribution of the grains and shape of the synthesized oxide. The energy band gap of the ZnONPs was found to be 3.498 eV. Hepatic and renal damage following CCl4 administration was apparent after 14 days and was increased at the 21st day, showing nodular fibrotic masses in the liver and bumpy surfaces in the kidney as observed by gross and histological examination. Coadministration of ZnONPs (15 mg/kg b.w. intragastrically 5 days a week) significantly prevented the CCl4-dependent increases in alanine transaminase, aspartate transaminase, creatinine, and urea levels, suggesting a protective potential of ZnONPs.
Collapse
Affiliation(s)
- Zulfia Hussain
- 1 Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Junaid Ali Khan
- 1 Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Hafeez Anwar
- 2 Department of Physics, University of Agriculture, Faisalabad, Pakistan
| | - Naila Andleeb
- 1 Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Sehrish Murtaza
- 1 Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Ambreen Ashar
- 3 Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Iram Arif
- 2 Department of Physics, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
28
|
Allen J, Zhang J, Quickel MD, Kennett M, Patterson AD, Hankey-Giblin PA. Ron Receptor Signaling Ameliorates Hepatic Fibrosis in a Diet-Induced Nonalcoholic Steatohepatitis Mouse Model. J Proteome Res 2018; 17:3268-3280. [PMID: 30091925 DOI: 10.1021/acs.jproteome.8b00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is commonly observed in the terminal stages of nonalcoholic steatohepatitis (NASH) and with no specific and effective antifibrotic therapies available, this disease is a major global health burden. The MSP/Ron receptor axis has been shown to have anti-inflammatory properties in a number of mouse models, due at least in part, to its ability to limit pro-inflammatory responses in tissue-resident macrophages and hepatocytes. In this study, we established the role of the Ron receptor in steatohepatitis-induced hepatic fibrosis using Ron ligand domain knockout mice on an apolipoprotein E knockout background (DKO). After 18 weeks of high-fat high-cholesterol feeding, loss of Ron activation resulted in exacerbated NASH-associated steatosis which is precedent to hepatocellular injury, inflammation and fibrosis. 1H nuclear magnetic resonance (NMR)-based metabolomics identified significant changes in serum metabolites that can modulate the intrahepatic lipid pool in hepatic steatosis. Serum from DKO mice had higher concentrations of lipids, VLDL/LDL and pyruvate, whereas glycine levels were reduced. Parallel to the aggravated steatohepatitis, increased accumulation of collagen, inflammatory immune cells and collagen producing-myofibroblasts were seen in the livers of DKO mice. Gene expression profiling revealed that DKO mice exhibited elevated expression of genes encoding Ron receptor ligand MSP, collagens, ECM remodeling proteins and pro-fibrogenic cytokines in the liver. Our results demonstrate the protective effects of Ron receptor activation on NASH-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Joselyn Allen
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Jingtao Zhang
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Michael D Quickel
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Mary Kennett
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Pamela A Hankey-Giblin
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| |
Collapse
|
29
|
Mortezaee K, Khanlarkhani N. Melatonin application in targeting oxidative‐induced liver injuries: A review. J Cell Physiol 2017; 233:4015-4032. [DOI: 10.1002/jcp.26209] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/04/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Keywan Mortezaee
- Department of AnatomySchool of MedicineKurdistan University of Medical SciencesSanandajIran
| | - Neda Khanlarkhani
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
30
|
Russell JO, Monga SP. Wnt/β-Catenin Signaling in Liver Development, Homeostasis, and Pathobiology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 13:351-378. [PMID: 29125798 DOI: 10.1146/annurev-pathol-020117-044010] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is an organ that performs a multitude of functions, and its health is pertinent and indispensable to survival. Thus, the cellular and molecular machinery driving hepatic functions is of utmost relevance. The Wnt signaling pathway is one such signaling cascade that enables hepatic homeostasis and contributes to unique hepatic attributes such as metabolic zonation and regeneration. The Wnt/β-catenin pathway plays a role in almost every facet of liver biology. Furthermore, its aberrant activation is also a hallmark of various hepatic pathologies. In addition to its signaling function, β-catenin also plays a role at adherens junctions. Wnt/β-catenin signaling also influences the function of many different cell types. Due to this myriad of functions, Wnt/β-catenin signaling is complex, context-dependent, and highly regulated. In this review, we discuss the Wnt/β-catenin signaling pathway, its role in cell-cell adhesion and liver function, and the cell type-specific roles of Wnt/β-catenin signaling as it relates to liver physiology and pathobiology.
Collapse
Affiliation(s)
- Jacquelyn O Russell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
| |
Collapse
|
31
|
Hamid M, Liu D, Abdulrahim Y, Khan A, Qian G, Huang K. Inactivation of Kupffer Cells by Selenizing Astragalus Polysaccharides Prevents CCl 4-Induced Hepatocellular Necrosis in the Male Wistar Rat. Biol Trace Elem Res 2017; 179:226-236. [PMID: 28243851 DOI: 10.1007/s12011-017-0970-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/14/2017] [Indexed: 01/29/2023]
Abstract
Selenizing astragalus polysaccharides-3 (sAPS3) was prepared by nitric acid-sodium selenite method. The effects of sAPS3 on carbon tetrachloride (CCl4) induced hepatocellular necrosis, and its underlying mechanisms were studied in male Wistar rats. Hepatic damage was induced by intraperitoneal injection of CCl4 twice a week, for 3 weeks. Meanwhile, the rats in addition to CCl4 were also exposed to sodium selenite (SS), astragalus polysaccharides (APS), SS + APS or sAPS3, in parallel by oral gavage once a day for 3 weeks. At the end of 3 weeks, blood and liver tissue were taken. Serum was collected to test the levels of alanine aminotransferase, aspartate aminotransferase and antioxidant status parameters. Liver tissue was collected for histopathological examination and determination of messenger RNA (mRNA) expression levels of CD68, TNF-α, IL-1β and ATG7 followed by the measurements of CD68, IL-1β and LC3II by immunohistochemistry assay (IHC), or TNF-α by immunofluorescence assay (IFA). The results showed that sAPS3 effectively ameliorated CCl4 induced hepatocellular necrosis and inflammation and significantly decreased the levels of aspartate aminotransferase, alanine aminotransferase, malondialdehyde and the expression levels of Kupffer cells (KCs)-specific biomarker CD68 and proinflammatory cytokines produced by activated KCs such as IL-1β and TNF-α (P < 0.01). While increasing the levels of total antioxidant capacity, glutathione, glutathione peroxidase and superoxide dismutase (P < 0.05) and reduced the expression levels of a key regulator of autophagy in KCs ATG7 or LC3II (P < 0.05). These findings indicate that sAPS3 could ameliorate CCl4-induced hepatocellular necrosis by inactivation of Kupffer cells and its activity may be superior to the application of selenium, APS or combination of selenium with APS.
Collapse
Affiliation(s)
- Mohammed Hamid
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, Nanjing Agricultural University, Nanjing, 210095, China
- College of Veterinary Sciences, University of Nyala, Nyala, Sudan
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yassin Abdulrahim
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, Nanjing Agricultural University, Nanjing, 210095, China
- College of Veterinary Sciences, University of Nyala, Nyala, Sudan
| | - Alamzeb Khan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gang Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
32
|
González LT, Minsky NW, Espinosa LEM, Aranda RS, Meseguer JP, Pérez PC. In vitro assessment of hepatoprotective agents against damage induced by acetaminophen and CCl 4. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:39. [PMID: 28086854 PMCID: PMC5234107 DOI: 10.1186/s12906-016-1506-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/30/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND In vitro bioassays are important in the evaluation of plants with possible hepatoprotective effects. The aims of this study were to evaluate the pretreatment of HepG2 cells with hepatoprotective agents against the damage induced by carbon tetrachloride (CCl4) and paracetamol (APAP). METHODS Antioxidative activity was measured using an assay to measure 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. The in vitro hepatotoxicity of CCl4 and APAP, and the cytotoxic and hepatoprotective properties of silymarin (SLM), silybinin (SLB), and silyphos (SLP) were evaluated by measuring cell viability; activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH); total antioxidant capacity (TAOxC); and reduced glutathione (GSH), superoxide dismutase (SOD), and lipid peroxidation (malondialdehyde (MDA) levels). RESULTS Only SLB and SLM showed strong antioxidative activity in the DPPH assay (39.71 ± 0.85 μg/mL and 14.14 ± 0.65 μg/mL, respectively). CCl4 induced time- and concentration-dependent changes. CCl4 had significant effects on cell viability, enzyme activities, lipid peroxidation, TAOxC, and SOD and GSH levels. These differences remained significant up to an exposure time of 3 h. APAP induced a variety of dose- and time-dependent responses up to 72 h of exposure. SLM, SLB, and SLP were not cytotoxic. Only SLB at a concentration of 100 μg/mL or 150 μg/mL significantly decreased the enzyme activities and MDA level, and prevented depletion of total antioxidants compared with CCl4. CONCLUSIONS CCl4 was more consistent than APAP in inducing cell injury. Only SLB provided hepatoprotection. AST, LDH, and MDA levels were good markers of liver damage.
Collapse
|
33
|
Metlakunta A, Huang W, Stefanovic-Racic M, Dedousis N, Sipula I, O'Doherty RM. Kupffer cells facilitate the acute effects of leptin on hepatic lipid metabolism. Am J Physiol Endocrinol Metab 2017; 312:E11-E18. [PMID: 27827807 PMCID: PMC5283880 DOI: 10.1152/ajpendo.00250.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022]
Abstract
Leptin has potent effects on lipid metabolism in a number of peripheral tissues. In liver, an acute leptin infusion (~120 min) stimulates hepatic fatty acid oxidation (~30%) and reduces triglycerides (TG, ~40%), effects that are dependent on phosphoinositol-3-kinase (PI3K) activity. In the current study we addressed the hypothesis that leptin actions on liver-resident immune cells are required for these metabolic effects. Myeloid cell-specific deletion of the leptin receptor (ObR) in mice or depletion of liver Kupffer cells (KC) in rats in vivo prevented the acute effects of leptin on liver lipid metabolism, while the metabolic effects of leptin were maintained in mice lacking ObR in hepatocytes. Notably, liver TG were elevated in both lean and obese myeloid cell ObR, but the degree of obesity and insulin resistance induced by a high-fat diet was similar to control mice. In isolated primary hepatocytes (HEP), leptin had no effects on HEP lipid metabolism and only weakly stimulated PI3K. However, the coculture of KC with HEP restored leptin action on HEP fatty acid metabolism and stimulation of HEP PI3K. Notably, leptin stimulated the release from KC of a number of cytokines. However, the exposure of HEP to these cytokines individually [granulocyte macrophage colony-stimulating factor, IL-1α, IL-1β, IL-6, IL-10, and IL-18] or in combination had no effects on HEP lipid metabolism. Together, these data demonstrate a role for liver mononuclear cells in the regulation of liver lipid metabolism by leptin.
Collapse
Affiliation(s)
- Anantha Metlakunta
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Wan Huang
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Maja Stefanovic-Racic
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Nikolaos Dedousis
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Ian Sipula
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Robert M O'Doherty
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania; and
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Fang J, Wang W, Sun S, Wang Y, Li Q, Lu X, Qiu M, Zhang Y. Metabolomics study of renal fibrosis and intervention effects of total aglycone extracts of Scutellaria baicalensis in unilateral ureteral obstruction rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:20-29. [PMID: 27286917 DOI: 10.1016/j.jep.2016.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/09/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellariae Radix (Scutellaria baicalensis Georgi) is a well-known Traditional Chinese Medicine (TCM) which mainly contains flavonoids. Our previous studies have demonstrated that total aglycone extracts of Scutellaria baicalensis (TAES) can improve kidney disease in rats. AIM OF THE STUDY To investigate the renal fibrosis (RF) pathogenesis and TAES treatment mechanism in unilateral ureteral obstruction (UUO) rats, using a metabolomics approach based on gas chromatography-mass spectrometry (GC/MS). METHODS Rats with RF were divided into 6 groups with rats subjected to sham operation as normal control. The effects of TAES on some RF closely related parameters in UUO rats were investigated. A metabolomics method, based on GC/MS, was developed to monitor metabolic alterations in urine. Multivariate data analysis was utilized to identify biomarkers potentially associated with RF and the anti-RF activity of TAES. Ontology-based enrichment analysis by BiNChE and pathway analysis by MetPA aid in the interpretation of difference metabolites. RESULTS After 10 days of treatment, the parameters of renal function begin returning to normal, and the abnormal high expressions of genes associated with extracellular matrix (ECM) were relived. In the metabolomics study, metabolic perturbations induced by UUO were reversed after treatment and TAES showed a dose-dependent therapy effect on RF, meanwhile, 18 potential biomarkers associated with RF were identified. Enrichment analysis of metabolites shows an over representation of mostly alkane-alpha, omega-diamine and alpha, omega-dicarboxylic acid, and these biomarkers are primarily involved in Glycine, serine and threonine metabolism, Retinol metabolism, Arginine and proline metabolism and Fructose and mannose metabolism. CONCLUSIONS Our findings indicate that TAES have positive effects on UUO-induced RF in rats, meanwhile, metabolomics method coupled with metabolites enrichment analysis is a useful tool for revealing the pathogenesis of diseases and action mechanism of TCM on the whole body.
Collapse
Affiliation(s)
- Junwei Fang
- Center for Traditional Chinese Medicine and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenyu Wang
- MacroStat (China) Clinical Research Co., Ltd, Shanghai 201203, China
| | - Shujun Sun
- Center for Traditional Chinese Medicine and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Wang
- Center for Traditional Chinese Medicine and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qianhua Li
- Center for Traditional Chinese Medicine and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiong Lu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yongyu Zhang
- Center for Traditional Chinese Medicine and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
35
|
Iracheta-Vellve A, Petrasek J, Gyongyosi B, Satishchandran A, Lowe P, Kodys K, Catalano D, Calenda CD, Kurt-Jones EA, Fitzgerald KA, Szabo G. Endoplasmic Reticulum Stress-induced Hepatocellular Death Pathways Mediate Liver Injury and Fibrosis via Stimulator of Interferon Genes. J Biol Chem 2016; 291:26794-26805. [PMID: 27810900 DOI: 10.1074/jbc.m116.736991] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/07/2016] [Indexed: 01/02/2023] Open
Abstract
Fibrosis, driven by inflammation, marks the transition from benign to progressive stages of chronic liver diseases. Although inflammation promotes fibrogenesis, it is not known whether other events, such as hepatocyte death, are required for the development of fibrosis. Interferon regulatory factor 3 (IRF3) regulates hepatocyte apoptosis and production of type I IFNs. In the liver, IRF3 is activated via Toll-like receptor 4 (TLR4) signaling or the endoplasmic reticulum (ER) adapter, stimulator of interferon genes (STING). We hypothesized that IRF3-mediated hepatocyte death is an independent determinant of chemically induced liver fibrogenesis. To test this, we performed acute or chronic CCl4 administration to WT and IRF3-, Toll/Interleukin-1R (TIR) domain-containing adapter-inducing interferon-β (TRIF)-, TRIF-related adaptor molecule (TRAM)-, and STING-deficient mice. We report that acute CCl4 administration to WT mice resulted in early ER stress, activation of IRF3, and type I IFNs, followed by hepatocyte apoptosis and liver injury, accompanied by liver fibrosis upon repeated administration of CCl4 Deficiency of IRF3 or STING prevented hepatocyte death and fibrosis both in acute or chronic CCl4 In contrast, mice deficient in type I IFN receptors or in TLR4 signaling adaptors, TRAM or TRIF, upstream of IRF3, were not protected from hepatocyte death and/or fibrosis, suggesting that the pro-apoptotic role of IRF3 is independent of TLR signaling in fibrosis. Hepatocyte death is required for liver fibrosis with causal involvement of STING and IRF3. Thus, our results identify that IRF3, by its association with STING in the presence of ER stress, couples hepatocyte apoptosis with liver fibrosis and indicate that innate immune signaling regulates outcomes of liver fibrosis via modulation of hepatocyte death in the liver.
Collapse
Affiliation(s)
- Arvin Iracheta-Vellve
- From the Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Jan Petrasek
- From the Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Benedek Gyongyosi
- From the Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Abhishek Satishchandran
- From the Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Patrick Lowe
- From the Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Karen Kodys
- From the Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Donna Catalano
- From the Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Charles D Calenda
- From the Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Evelyn A Kurt-Jones
- From the Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Katherine A Fitzgerald
- From the Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Gyongyi Szabo
- From the Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
36
|
Wu X, Liu G, Mu M, Peng Y, Li X, Deng L, Zhang Z, Chen M, You S, Kong X. Augmenter of Liver Regeneration Gene Therapy Using a Novel Minicircle DNA Vector Alleviates Liver Fibrosis in Rats. Hum Gene Ther 2016; 27:880-891. [PMID: 27136973 DOI: 10.1089/hum.2016.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Xin Wu
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Guangze Liu
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Mao Mu
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Yuting Peng
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Xiumei Li
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Lisi Deng
- The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Zhenwei Zhang
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Meijuan Chen
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Song You
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangping Kong
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| |
Collapse
|
37
|
Pritchard MT, McCracken JM. Identifying Novel Targets for Treatment of Liver Fibrosis: What Can We Learn from Injured Tissues which Heal Without a Scar? Curr Drug Targets 2016; 16:1332-46. [PMID: 26302807 DOI: 10.2174/1389450116666150825111439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/08/2015] [Indexed: 02/07/2023]
Abstract
The liver is unique in that it is able to regenerate. This regeneration occurs without formation of a scar in the case of non-iterative hepatic injury. However, when the liver is exposed to chronic liver injury, the purely regenerative process fails and excessive extracellular matrix proteins are deposited in place of normal liver parenchyma. While much has been discovered in the past three decades, insights into fibrotic mechanisms have not yet lead to effective therapies; liver transplant remains the only cure for advanced liver disease. In an effort to broaden the collection of possible therapeutic targets, this review will compare and contrast the liver wound healing response to that found in two types of wound healing: scarless wound healing of fetal skin and oral mucosa and scar-forming wound healing found in adult skin. This review will examine wound healing in the liver and the skin in relation to the role of humoral and cellular factors, as well as the extracellular matrix, in this process. While several therapeutic targets are similar between fibrotic liver and adult skin wound healing, others are unique and represent novel areas for hepatic anti-fibrotic research. In particular, investigations into the role of hyaluronan in liver fibrosis and fibrosis resolution are warranted.
Collapse
Affiliation(s)
- Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66161, USA.
| | | |
Collapse
|
38
|
Weinberg JM, Bienholz A, Venkatachalam MA. The role of glycine in regulated cell death. Cell Mol Life Sci 2016; 73:2285-308. [PMID: 27066896 PMCID: PMC4955867 DOI: 10.1007/s00018-016-2201-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/22/2023]
Abstract
The cytoprotective effects of glycine against cell death have been recognized for over 28 years. They are expressed in multiple cell types and injury settings that lead to necrosis, but are still not widely appreciated or considered in the conceptualization of cell death pathways. In this paper, we review the available data on the expression of this phenomenon, its relationship to major pathophysiologic pathways that lead to cell death and immunomodulatory effects, the hypothesis that it involves suppression by glycine of the development of a hydrophilic death channel of molecular dimensions in the plasma membrane, and evidence for its impact on disease processes in vivo.
Collapse
Affiliation(s)
- Joel M Weinberg
- Division of Nephrology, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan, Room 1560, MSRB II, Ann Arbor, MI, 48109-0676, USA.
| | - Anja Bienholz
- Department of Nephrology, University Duisburg-Essen, 45122, Essen, Germany
| | - M A Venkatachalam
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX, 78234, USA
| |
Collapse
|
39
|
Lefebvre E, Gottwald M, Lasseter K, Chang W, Willett M, Smith PF, Somasunderam A, Utay NS. Pharmacokinetics, Safety, and CCR2/CCR5 Antagonist Activity of Cenicriviroc in Participants With Mild or Moderate Hepatic Impairment. Clin Transl Sci 2016; 9:139-48. [PMID: 27169903 PMCID: PMC5351328 DOI: 10.1111/cts.12397] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/12/2016] [Accepted: 04/04/2016] [Indexed: 12/23/2022] Open
Abstract
Cenicriviroc, a dual CCR2/CCR5 antagonist, is being evaluated for treatment of nonalcoholic steatohepatitis and liver fibrosis (CENTAUR; NCT02217475). As it is metabolized by the liver, cenicriviroc was investigated in hepatic-impaired participants for pharmacokinetic changes. Participants with mild-to-moderate hepatic impairment (HI) (Child-Pugh class A (N = 7) or B (N = 8)) and matched controls (N = 15) received cenicriviroc 150 mg once daily for 14 days. Serial blood samples were obtained on Days 1 and 14. Safety, tolerability, and effects on CCR2/CCR5 ligands, cytokines, and bacterial translocation biomarkers were evaluated. Cenicriviroc exposures were increased by moderate HI (AUC0-τ 55%, Cmax 29% higher) but were not with mild HI (AUC0-τ 38%, Cmax 40% lower). Cenicriviroc was well tolerated. Rapid and potent CCR2/CCR5 blockade was observed, not associated with increases in hepatic inflammation or bacterial translocation biomarkers. Study findings suggest that cenicriviroc 150 mg can be used in patients with mild-to-moderate HI.
Collapse
Affiliation(s)
- E Lefebvre
- Tobira Therapeutics, Inc., South San Francisco, California, USA
| | - M Gottwald
- Tobira Therapeutics, Inc., South San Francisco, California, USA
| | - K Lasseter
- Clinical Pharmacology of Miami, Inc., Miami, Florida, USA
| | - W Chang
- Tobira Therapeutics, Inc., South San Francisco, California, USA
| | - M Willett
- Ready Clinical, LLC, Princeton, New Jersey, USA
| | - P F Smith
- d3 Medicine, LLC, Parsippany, New Jersey, USA
| | - A Somasunderam
- University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - N S Utay
- University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
40
|
Zhao HW, Zhang ZF, Chai X, Li GQ, Cui HR, Wang HB, Meng YK, Liu HM, Wang JB, Li RS, Bai ZF, Xiao XH. Oxymatrine attenuates CCl4-induced hepatic fibrosis via modulation of TLR4-dependent inflammatory and TGF-β1 signaling pathways. Int Immunopharmacol 2016; 36:249-255. [PMID: 27179304 DOI: 10.1016/j.intimp.2016.04.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022]
Abstract
Oxymatrine (OMT) is able to effectively protect against hepatic fibrosis because of its anti-inflammatory property, while the underlying mechanism remains incompletely understood. In this study, forty rats were randomly divided into five groups: control group, model group (carbon tetrachloride, CCl4) and three OMT treatment groups (30, 60, 120mg/kg). After CCl4 alone, the fibrosis score was 20.2±0.8, and the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), hydroxyproline content, and collagen I expression was elevated, but OMT blunted these parameters. Treatment with OMT prevented CCl4-induced increases in expression of pro-inflammatory and pro-fibrotic cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α, meanwhile OMT promoted the expression of anti-inflammatory and anti-fibrotic factors such as interleukin (IL)-10 and bone morphogenetic protein and activin membrane-bound inhibitor (Bambi). Moreover, lipopolysaccharides (LPS) and high mobility group box-1 (HMGB1), which activates Toll-like receptor 4 (TLR4) and modulate hepatic fibrogenesis through hepatic stellate cells (HSCs) or Kupffer cells, were significantly decreased by OMT treatment. These results were further supported by in vitro data. First, OMT suppressed the expression of TLR4 and its downstream pro-inflammatory cytokines, lowered the level of HMGB1, TGF-β1 in macrophages. Then, OMT promoted Bambi expression and thereby inhibited activation of HSCs mediated by transforming growth factor (TGF)-β1. In conclusion, this study showed that OMT could effectively attenuate the CCl4-induced hepatic fibrosis, and this effect may be due to modulation of TLR4-dependent inflammatory and TGF-β1 signaling pathways.
Collapse
Affiliation(s)
- Hong-Wei Zhao
- Department of Integrative Medical Center, 302 Military Hospital, Beijing 100039, China; Jiangxi University of Traditional Chinese Medicine, Jiangxi 330004, China
| | - Zhen-Fang Zhang
- Department of Integrative Medical Center, 302 Military Hospital, Beijing 100039, China; Chengde Medical College, Hebei 067000, China
| | - Xuan Chai
- Department of Integrative Medical Center, 302 Military Hospital, Beijing 100039, China; Academy of Military Medical Sciences, Beijing 100850, China
| | - Guang-Quan Li
- Department of Integrative Medical Center, 302 Military Hospital, Beijing 100039, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - He-Rong Cui
- Department of Integrative Medical Center, 302 Military Hospital, Beijing 100039, China; Chengde Medical College, Hebei 067000, China
| | - Hong-Bo Wang
- Department of Hepatobiliary Surgery Center, 302 Military Hospital, Beijing 100039, China
| | - Ya-Kun Meng
- Department of Integrative Medical Center, 302 Military Hospital, Beijing 100039, China; Jiangxi University of Traditional Chinese Medicine, Jiangxi 330004, China
| | - Hui-Min Liu
- Department of Integrative Medical Center, 302 Military Hospital, Beijing 100039, China; Chengde Medical College, Hebei 067000, China
| | - Jia-Bo Wang
- Department of Integrative Medical Center, 302 Military Hospital, Beijing 100039, China
| | - Rui-Sheng Li
- Animral Laboratory Center, 302 Hospital of PLA, Beijing 100039, China
| | - Zhao-Fang Bai
- Department of Integrative Medical Center, 302 Military Hospital, Beijing 100039, China.
| | - Xiao-He Xiao
- Department of Integrative Medical Center, 302 Military Hospital, Beijing 100039, China.
| |
Collapse
|
41
|
Abdou RM, Zhu L, Baker RD, Baker SS. Gut Microbiota of Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2016; 61:1268-81. [PMID: 26898658 DOI: 10.1007/s10620-016-4045-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/16/2016] [Indexed: 02/08/2023]
Abstract
The prevalence of nonalcoholic fatty liver disease has been rapidly increasing worldwide. It has become a leading cause of liver transplantation. Accumulating evidence suggests a significant role for gut microbiota in its development and progression. Here we review the effect of gut microbiota on developing hepatic fatty infiltration and its progression. Current literature supports a possible role for gut microbiota in the development of liver steatosis, inflammation and fibrosis. We also review the literature on possible interventions for NAFLD that target the gut microbiota.
Collapse
Affiliation(s)
- Reham M Abdou
- Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo, 219 Bryant Street, Buffalo, NY, 14222, USA.
| | - Lixin Zhu
- Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo, 219 Bryant Street, Buffalo, NY, 14222, USA.,, 3435 Main Street, 413 Biomedical Research Building, Buffalo, NY, 14214, USA
| | - Robert D Baker
- Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo, 219 Bryant Street, Buffalo, NY, 14222, USA
| | - Susan S Baker
- Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo, 219 Bryant Street, Buffalo, NY, 14222, USA
| |
Collapse
|
42
|
Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR Phase 2b study design. Contemp Clin Trials 2016; 47:356-65. [PMID: 26944023 DOI: 10.1016/j.cct.2016.02.012] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is often accompanied by liver fibrosis, which can progress to cirrhosis; C-C chemokine receptors type 2 and 5 (CCR2/CCR5), which mediate interactions driving inflammation and fibrosis, are promising treatment targets. Cenicriviroc (CVC), a dual-CCR2/CCR5 antagonist, has potent anti-inflammatory and antifibrotic activity in animal models; in HIV-positive subjects it reduced soluble CD14 levels, aspartate aminotransferase-to-platelet count ratio index, and non-invasive hepatic fibrosis risk scores; favorable tolerability was demonstrated in ~600 subjects. Efficacy and safety of CVC 150 mg for treating NASH with liver fibrosis are being evaluated over 2 years (primary endpoint at Year 1 [Y1]). DESIGN Phase 2b, randomized, double-blind, placebo-controlled, multinational study (CENTAUR; NCT02217475). Adults with histological evidence of NASH, non-alcoholic fatty liver disease activity score (NAS) ≥ 4, and liver fibrosis (stages 1-3 NASH clinical research network system) enrolled. Subjects have increased risk of progression to cirrhosis due to ≥1 characteristic: type 2 diabetes; body mass index > 25 kg/m(2) with ≥1 feature of metabolic syndrome; bridging fibrosis and/or NAS ≥ 5. Liver biopsy evaluation at Screening, Y1, and Year 2 (Y2). OBJECTIVES Assess histologic improvement (≥2-point in NAS with ≥1-point improvement in >1 category) without worsening of fibrosis at Y1 (primary); evaluate complete NASH resolution without worsening of fibrosis at Y2 (key secondary). DISCUSSION CENTAUR is the first prospective study evaluating an oral agent exclusively enrolling subjects with NASH and liver fibrosis, with increased risk of developing cirrhosis. It will compare shorter versus longer CVC treatment and assess correlations between decreased inflammation and fibrosis.
Collapse
|
43
|
Wang H, Zhang H, Zhang Z, Huang B, Cheng X, Wang D, la Gahu Z, Xue Z, Da Y, Li D, Yao Z, Gao F, Xu A, Zhang R. Adiponectin-derived active peptide ADP355 exerts anti-inflammatory and anti-fibrotic activities in thioacetamide-induced liver injury. Sci Rep 2016; 6:19445. [PMID: 26777428 PMCID: PMC4725969 DOI: 10.1038/srep19445] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/14/2015] [Indexed: 12/23/2022] Open
Abstract
Adiponectin is an adipocyte-derived circulating protein with beneficial effects on injured livers. Adiponectin-deficient (adipo(−/−)) mice develop enhanced liver fibrosis, suggesting that adiponectin could be a therapeutic target for liver injury. In the present study, we investigated the protective role of ADP355, an adiponectin-based active short peptide, in thioacetamide (TAA)-induced acute injury and chronic liver fibrosis in mice. ADP355 remarkably reduced TAA-induced necroinflammation and liver fibrosis. ADP355 treatment increased liver glycogen, decreased serum alanine transaminase and alkaline phosphatase activity, and promoted body weight gain, hyper-proliferation and hypo-apoptosis. In addition, ADP355 administration suppressed the TAA-induced activation of hepatic stellate cells and macrophages in the liver. These were associated with the inactivation of TGF-β1/SMAD2 signaling and the promotion of AMPK and STAT3 signaling. Sensitivity of adipo(−/−) mice to chronic liver injury was decreased with ADP355. In conclusion, ADP355 could mimic adiponectin’s action and may be suitable for the preclinical or clinical therapy of chronic liver injury.
Collapse
Affiliation(s)
- Huafeng Wang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Tianjin Medical University, Tianjin, China.,School of Life Science, Shanxi Normal University, Linfen, China
| | - Huan Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zimu Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Biao Huang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xixi Cheng
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Dan Wang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zha la Gahu
- Department of Cell Biology, Logistic College of CAPF, Tianjin, China
| | - Zhenyi Xue
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Tianjin Medical University, Tianjin, China
| | - Yurong Da
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Tianjin Medical University, Tianjin, China
| | - Daiqing Li
- Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Tianjin Medical University, Tianjin, China
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | - Aimin Xu
- State Key laboratory of Pharmaceutical Biotechnology, and Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
44
|
Abstract
Hepatocyte death, inflammation, and liver fibrosis are the hallmarks of chronic liver disease. Tumor necrosis factor-α (TNFα) is an inflammatory cytokine involved in liver inflammation and sustained liver inflammation leads to liver fibrosis. TNFα exerts inflammation, proliferation, and apoptosis. However, the role of TNFα signaling in liver fibrosis is not fully understood. This review highlights the recent findings demonstrating the molecular mechanisms of TNFα and its downstream signaling in liver fibrosis. During the progression of liver fibrosis, hepatic stellate cells play a pivotal role in a dynamic process of production of extracellular matrix proteins and modulation of immune response. Hepatic stellate cells transdifferentiate into activated myofibroblasts in response to damaged hepatocyte-derived mediators and immune cell-derived cytokines/chemokines. Here, we will discuss the role of TNFα in hepatic stellate cell survival and activation and the crosstalk between hepatic stellate cells and hepatocytes or other immune cells, such as macrophages, dendritic cells, and B cells in the development of liver fibrosis.
Collapse
Affiliation(s)
- Yoon Mee Yang
- Department of Medicine, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ekihiro Seki
- Department of Medicine, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| |
Collapse
|
45
|
Roth KJ, Copple BL. Role of Hypoxia-Inducible Factors in the Development of Liver Fibrosis. Cell Mol Gastroenterol Hepatol 2015; 1:589-597. [PMID: 28210703 PMCID: PMC5301877 DOI: 10.1016/j.jcmgh.2015.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/16/2015] [Indexed: 02/08/2023]
Abstract
Liver fibrosis remains a significant clinical problem in the United States and throughout the world. Although important advances in the understanding of this disease have been made, no effective pharmacologic agents have been developed that directly prevent or reverse the fibrotic process. Many of the successes in liver fibrosis treatment have been targeted toward treating the cause of fibrosis, such as the development of new antivirals that eradicate hepatitis virus. For many patients, however, this is not feasible, so a liver transplant remains the only viable option. Thus, there is a critical need to identify new therapeutic targets that will slow or reverse the progression of fibrosis in such patients. Research over the last 16 years has identified hypoxia-inducible factors (HIFs) as key transcription factors that drive many aspects of liver fibrosis, making them potential targets of therapy. In this review, we discuss the latest work on HIFs and liver fibrosis, including the cell-specific functions of these transcription factors in the development of liver fibrosis.
Collapse
Key Words
- BDL, bile duct ligation
- CCl4, carbon tetrachloride
- Ccr, C-C chemokine receptor
- FGF, fibroblast growth factor
- HGF, hepatocyte growth factor
- HIFs, hypoxia-inducible factors
- HSC, hepatic stellate cell
- Hepatic Stellate Cells
- Hypoxia-Inducible Factors
- Jmjd, Jumonji domain-containing
- Kupffer Cells
- Liver Fibrosis
- PAI-1, plasminogen activator inhibitor-1
- PDGF, platelet-derived growth factor
- Rgs, regulator of G-protein signaling
- TGF-β, transforming growth factor β
- VEGF, vascular endothelial growth factor
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
| | - Bryan L. Copple
- Correspondence Address correspondence to: Bryan L. Copple, PhD, Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, B403 Life Sciences Building, East Lansing, Michigan 48824.Department of Pharmacology and ToxicologyMichigan State University1355 Bogue Street, B403 Life Sciences BuildingEast LansingMichigan 48824
| |
Collapse
|
46
|
Zheng S, Lu Q, Xu Y, Wang X, Shen J, Wang W. GdCl3 Attenuates Schistosomiasis japonicum Egg-Induced Granulomatosis Accompanied by Decreased Macrophage Infiltration in Murine Liver. PLoS One 2015; 10:e0132222. [PMID: 26317423 PMCID: PMC4552789 DOI: 10.1371/journal.pone.0132222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/12/2015] [Indexed: 11/19/2022] Open
Abstract
Early-stage hepatic granuloma and advanced-stage fibrosis are important characteristics of schistosomiasis. The direct consequences of gadolinium chloride (GdCl3) in egg-induced granuloma formation have not been reported, although GdCl3 is known to block the macrophages. In present study, mice were infected with 15 Schistosoma japonicum (S. japonicum) cercariae and treated with GdCl3 (10 mg/kg body weight) twice weekly from day 21 to day 42 post-infection during the onset of egg-laying towards early granuloma formation. Histochemical staining showed that repeated injection of GdCl3 decreased macrophages infiltration in liver of mice infected with S. japonicum. Macrophage depletion by GdCl3 during the initial phase attenuated liver pathological injury characterized by smaller granuloma size and decreased immune inflammation as well as less fibrogenesis. In addition, IL-13Rα2 expression was reduced by GdCl3 in liver of mice infected with S. japonicum. The results suggest that GdCl3 depleted macrophages, which attenuated helminth infected immune responses involving with IL-13Rα2 signal. These findings would highlight a therapeutic potential via manipulating IL-13Rα2+ macrophage in schistosomiasis.
Collapse
Affiliation(s)
- Shengsheng Zheng
- Department of Pathobiology, Key Laboratories of Zoonoses of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Qiang Lu
- Department of Clinical Medicine, Anhui Medical University, Hefei, 230032, China
| | - Yuanhong Xu
- Department of Laboratory Diagnostics, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xiaonan Wang
- Department of Pathobiology, Key Laboratories of Zoonoses of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Jilong Shen
- Department of Pathobiology, Key Laboratories of Zoonoses of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Wei Wang
- Department of Pathobiology, Key Laboratories of Zoonoses of Anhui Province, Anhui Medical University, Hefei, 230032, China
- * E-mail:
| |
Collapse
|
47
|
Song M, Schuschke DA, Zhou Z, Zhong W, Zhang J, Zhang X, Wang Y, McClain CJ. Kupffer cell depletion protects against the steatosis, but not the liver damage, induced by marginal-copper, high-fructose diet in male rats. Am J Physiol Gastrointest Liver Physiol 2015; 308:G934-45. [PMID: 25813056 PMCID: PMC4451322 DOI: 10.1152/ajpgi.00285.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/24/2015] [Indexed: 01/31/2023]
Abstract
High-fructose feeding impairs copper status and leads to low copper availability, which is a novel mechanism in obesity-related fatty liver. Copper deficiency-associated hepatic iron overload likely plays an important role in fructose-induced liver injury. Excess iron in the liver is distributed throughout hepatocytes and Kupffer cells (KCs). The aim of this study was to examine the role of KCs in the pathogenesis of nonalcoholic fatty liver disease induced by a marginal-copper high-fructose diet (CuMF). Male weanling Sprague-Dawley rats were fed either a copper-adequate or a marginally copper-deficient diet for 4 wk. Deionized water or deionized water containing 30% fructose (wt/vol) was also given ad libitum. KCs were depleted by intravenous administration of gadolinium chloride (GdCl3) before and/or in the middle of the experimental period. Hepatic triglyceride accumulation was completely eliminated with KC depletion in CuMF consumption rats, which was associated with the normalization of elevated plasma monocyte chemoattractant protein-1 (MCP-1) and increased hepatic sterol regulatory element binding protein-1 expression. However, hepatic copper and iron content were not significantly affected by KC depletion. In addition, KC depletion reduced body weight and epididymal fat weight as well as adipocyte size. Plasma endotoxin and gut permeability were markedly increased in CuMF rats. Moreover, MCP-1 was robustly increased in the culture medium when isolated KCs from CuMF rats were treated with LPS. Our data suggest that KCs play a critical role in the development of hepatic steatosis induced by marginal-copper high-fructose diet.
Collapse
Affiliation(s)
- Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky;
| | - Dale A. Schuschke
- 2Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky;
| | - Zhanxiang Zhou
- 6Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, North Carolina; ,7Department of Nutrition, University of North Carolina at Greensboro, Kannapolis, North Carolina; and
| | - Wei Zhong
- 6Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, North Carolina;
| | - Jiayuan Zhang
- 4Department of Chemistry, University of Louisville School of Medicine, Louisville, Kentucky;
| | - Xiang Zhang
- 3Department of Pharmacology and Toxicology, ,4Department of Chemistry, University of Louisville School of Medicine, Louisville, Kentucky;
| | - Yuhua Wang
- 8College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Craig J. McClain
- 1Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky; ,3Department of Pharmacology and Toxicology, ,5Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky;
| |
Collapse
|
48
|
Vatakuti S, Schoonen WGEJ, Elferink MLG, Groothuis GMM, Olinga P. Acute toxicity of CCl4 but not of paracetamol induces a transcriptomic signature of fibrosis in precision-cut liver slices. Toxicol In Vitro 2015; 29:1012-20. [PMID: 25858767 DOI: 10.1016/j.tiv.2015.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/10/2015] [Accepted: 03/18/2015] [Indexed: 12/20/2022]
Abstract
In rat in vivo, both paracetamol (APAP) and carbon tetrachloride (CCl4) induce liver necrosis, but long-term treatment with CCl4, in contrast to paracetamol, causes liver fibrosis. The aim of this study was to perform transcriptomic analysis to compare the early changes in mRNA expression profiles induced by APAP and CCl4 in the rat precision-cut liver slice model (PCLS) and to identify early markers that could predict fibrosis-inducing potential. Microarray data of rat PCLS exposed to APAP andCCl4was generated using a toxic dose based on decrease in ATP levels. Toxicity pathway analysis using a custom made fibrosis-related gene list showed fibrosis as one of the predominant toxic endpoints in CCl4-treated, but not in APAP-treated PCLS. Moreover, genes which have a role in fibrosis such as alpha-B crystallin, jun proto-oncogene, mitogen-activated protein kinase 6, serpin peptidase inhibitor and also the transcription factor Kruppel-like-factor-6 were up-regulated by CCl4, but not by APAP. Predicted activation or inhibition of several upstream regulators due to CCl4 is in accordance with their role in fibrosis. In conclusion, transcriptomic analysis of PCLS successfully identified the fibrotic potential of CCl4 as opposed to APAP. The application of PCLS as an ex vivo model to identify early biomarkers to predict the fibrogenic potential of toxic compounds should be further explored.
Collapse
Affiliation(s)
- Suresh Vatakuti
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | - Marieke L G Elferink
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Geny M M Groothuis
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
49
|
Kodai S, Takemura S, Kubo S, Azuma H, Minamiyama Y. Therapeutic administration of an ingredient of aged-garlic extracts, S-allyl cysteine resolves liver fibrosis established by carbon tetrachloride in rats. J Clin Biochem Nutr 2015; 56:179-85. [PMID: 26060347 PMCID: PMC4454081 DOI: 10.3164/jcbn.14-108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/13/2014] [Indexed: 12/15/2022] Open
Abstract
S-allyl cysteine (SAC) is the most abundant compound in aged garlic extracts (AGEs). AGE has been reported to ameliorate the oxidative damage implicated in a variety of diseases. However, the effects of SAC have not been established in liver cirrhosis. The aim of this study was to examine the effect of therapeutic administration of SAC in liver cirrhosis by chronic carbon tetrachloride (CCl4) administration in rats. SAC or other cysteine compounds were administered from 4 weeks when liver fibrosis was confirmed to be in process. CCl4 administration elevated plasma alanine aminotransferase, plasma lipid peroxidation, liver hydroxyproline, and liver transforming growth factor (TGF)-β at 12 weeks. SAC prevented these changes induced by CCl4. Furthermore, SAC improved survival in a dose-dependent manner following consecutive CCl4 administration. The inhibitory mechanisms may be associated with a decrease in the profibrogenic cytokine, TGF-β as well as the antioxidative properties of SAC.
Collapse
Affiliation(s)
- Shintaro Kodai
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan
| | - Shigekazu Takemura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan
| | - Shoji Kubo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan
| | - Hideki Azuma
- Department of Applied and Bioapplied Chemistry, Graduate School of Engineering, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yukiko Minamiyama
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan ; Food Hygiene and Environmental Health Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 602-8522, Japan
| |
Collapse
|
50
|
Kawada N, Parola M. Interactions of Stellate Cells with Other Non-Parenchymal Cells. STELLATE CELLS IN HEALTH AND DISEASE 2015:185-207. [DOI: 10.1016/b978-0-12-800134-9.00012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|