1
|
Zhang L, Zhao Y, Chen H, Yu Y, Zhao H, Lan M, Yang X, Xiang C, An S, Guo X, Yang Y, Xu TR. Parishin A alleviates insomnia by regulating hypothalamic-pituitary-adrenal axis homeostasis and directly targeting orexin receptor OX 2. Eur J Pharmacol 2025; 998:177498. [PMID: 40064224 DOI: 10.1016/j.ejphar.2025.177498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Parishin A (PA), a bioactive compound derived from Gastrodia elata Blume, has been used as a herbal remedy for insomnia. Nevertheless, the mechanism underlying the effect of PA on promotion of sleep and its potential targets remain to be elucidated. This study aimed to investigate the potential of PA in ameliorating insomnia, probing into its interactions with the orexin receptor 2 (OX2), antagonists of which are used clinically for the treatment of sleep disorders. We employed an array of methodologies, including in vivo experiments involving the assessment of the impacts of PA on sleep behavior in a p-chlorophenylalanine (PCPA)-induced insomnia mouse model, and the detection of neurotransmitters, inflammatory factors, and hypothalamic-pituitary-adrenal (HPA) axis-related hormones. In vitro experiments, such as extracellular signal-regulated kinase (ERK) 1/2 phosphorylation assay, drug-receptor binding stability assay (DARTS), cellular thermal shift assay (CETSA), solvent-induced protein precipitation (SIP), and molecular docking, were performed to validate the interaction between PA and OX2. The results showed that PA relieved insomnia in mice by effectively increasing the content of 5-hydroxytryptamine (5-HT) while reducing those of dopamine (DA), norepinephrine (NE) and glutamine/γ-aminobutyric acid (Glu/GABA), as well as the inflammatory factor tumor necrosis factor-alpha (TNF-α) in the hypothalamus. PA also improved the morphological changes in the hippocampus of insomnia mice and decreased the levels of HPA axis-related hormones. Furthermore, OX2 was found to be a potential direct target of PA. In conclusion, PA might be an antagonist of OX2 because of its ability to inhibit OX2-induced ERK 1/2 activation. These findings provide valuable insights into the therapeutic potential of PA in insomnia.
Collapse
Affiliation(s)
- Lijing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ya Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hao Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yue Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huanchun Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Mengli Lan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiuyu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Cheng Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaoxi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Jespersen KE, Xiong W, Santhanam L, Terrin M, Matsumura J, Curci JA, Blackwelder W, Brown CH, Martinez Yus M, Baxter BT. Hyperglycemia inhibits AAA expansion: examining the role of lysyl oxidase. Am J Physiol Heart Circ Physiol 2025; 328:H247-H259. [PMID: 39716889 DOI: 10.1152/ajpheart.00163.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024]
Abstract
Abdominal aortic aneurysm (AAA) is a common, progressive, and potentially fatal dilation of the most distal aortic segment. Multiple studies with longitudinal follow-up of AAA have identified markedly slower progression among patients affected with diabetes. Understanding the molecular pathway responsible for the growth inhibition could have implications for therapy in nondiabetic patients with AAA. Toward this end, we investigated the effects of hyperglycemia in a murine model of AAA and a carefully monitored cohort of patients with AAA from the Noninvasive Treatment of AAA-Clinical Trial (NTA3CT). In mice with hyperglycemia, AAA growth was inhibited to a similar degree (∼30%) as seen in patients with diabetes. AAA growth correlated inversely to levels of hyperglycemia in mice and patients with AAA. Inhibiting lysyl oxidase (LOX) activity increases aneurysm growth and matrix degradation in this model. Hyperglycemia increased LOX concentration in aortic smooth muscle cells (SMCs) but not in murine AAA tissue. Inhibiting LOX activity completely blocked the growth-inhibitory effect of hyperglycemia. Lysyl oxidase-like 2 (LOXL2), the primary arterial isoform of LOX, is expressed in the same area as type IV collagen along the outer media in murine AAA tissue. There is a significant inverse correlation between LOXL2 and AAA growth rates in patients. Taken together, these studies suggest a role for LOXL2-mediated type IV collagen crosslinking in slowing AAA growth in the setting of hyperglycemia.NEW & NOTEWORTHY AAA grows slower in patients affected by diabetes. This growth inhibition is lost when the enzyme lysyl oxidase (LOX) is blocked in diabetic mice. The predominant arterial isoform of LOX, LOX-like 2 (LOXL2), overlaps with type IV collagen in the outer media of murine aneurysm tissue. Circulating LOXL2 correlates inversely with AAA growth in patients. Type IV collagen cross-linking by LOXL2 may play a role in the AAA growth inhibition associated with diabetes.
Collapse
MESH Headings
- Animals
- Protein-Lysine 6-Oxidase/metabolism
- Protein-Lysine 6-Oxidase/antagonists & inhibitors
- Protein-Lysine 6-Oxidase/genetics
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Amino Acid Oxidoreductases/metabolism
- Amino Acid Oxidoreductases/genetics
- Hyperglycemia/enzymology
- Hyperglycemia/metabolism
- Humans
- Mice, Inbred C57BL
- Male
- Disease Models, Animal
- Aorta, Abdominal/pathology
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/metabolism
- Mice
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Blood Glucose/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Female
- Disease Progression
- Cells, Cultured
Collapse
Affiliation(s)
| | - Wanfen Xiong
- Nebraska Medical Center, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Lakshmi Santhanam
- School of Medicine, John Hopkins University, Baltimore, Maryland, United States
| | - Michael Terrin
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Jon Matsumura
- University of Colorado Anschutz Medical Campus, UCHealth University, Aurora, Colorado, United States
| | - John A Curci
- Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - William Blackwelder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Clayton H Brown
- University of Maryland Medical Center, Baltimore, Maryland, United States
| | | | - B Timothy Baxter
- Nebraska Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
3
|
Wentges TH, El‐Shorafa HM, Beckmann J, Gabriel M, Poutanen M, Greve B, Kiesel L, Schäfer SD, Götte M. Combined targeting of TCF7L1/2, PTEN, CDK6, and BCCIP by microRNA miR-29c-3p is associated with reduced invasion and proliferation of endometriotic cells. Reprod Med Biol 2025; 24:e12645. [PMID: 40135061 PMCID: PMC11933757 DOI: 10.1002/rmb2.12645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Purpose Endometriosis is a chronic gynecological disorder associated with pain symptoms and infertility. The expression of microRNA miR-29c-3p is dysregulated in endometriosis. We aimed to identify novel molecular targets of miR-29c-3p functionally linked to proliferation and invasive growth in endometriosis. Methods The epithelial endometriotic cell line 12Z and primary endometriotic stromal cells (PESC) were transfected with control miRNA or pre-miR-29c-3p, and subjected to cell cycle analysis, cell viability, wound healing, and Matrigel invasion assays. Expression of bioinformatically predicted miR-29c-3p targets was analyzed by qPCR and western blot. Target gene expression in endometriotic lesions and healthy endometrium was studied in the EndometDB endometriosis database. Results miR-29c-3p decreased 12Z and PESC cell viability and the proportion of PESC in the S-phase. 12Z cell invasion, but not migration, was decreased after miR-29c-3p upregulation. miR-29c-3p decreased the mRNA expression of CDK6, BCCIP, TCF7L1, TCF7L2, PTEN, COL4A1, E-Cadherin, and N-Cadherin. A decrease of CDK6 and PTEN and an increase of p21 were confirmed at the protein level. EndometDB database analysis demonstrated dysregulated expression of the selected targets in both deep endometriosis and ovarian endometriosis. Conclusions miR-29c-3p effectively curbs endometriotic cell proliferation and invasion by combined inhibition of cell cycle regulators and transcription factors, unveiling a promising therapeutic strategy.
Collapse
Affiliation(s)
- Teresa Helene Wentges
- Department of Gynecology and ObstetricsMünster University Hospital, Research LaboratoryMünsterGermany
| | - Heba M. El‐Shorafa
- Department of Gynecology and ObstetricsMünster University Hospital, Research LaboratoryMünsterGermany
- Department of Laboratory Medical Sciences, Faculty of Medical SciencesAlaqsa UniversityGazaPalestine
| | - Janine Beckmann
- Department of Gynecology and ObstetricsMünster University Hospital, Research LaboratoryMünsterGermany
| | - Michael Gabriel
- Department of Obstetrics and GynecologyInstitute of Medicine, University of TurkuTurkuFinland
- Research Centre for Integrative Physiology and PharmacologyInstitute of Biomedicine, University of TurkuTurkuFinland
| | - Matti Poutanen
- Research Centre for Integrative Physiology and PharmacologyInstitute of Biomedicine, University of TurkuTurkuFinland
| | - Burkhard Greve
- Department of Radiotherapy‐RadiooncologyMünster University HospitalMünsterGermany
| | - Ludwig Kiesel
- Department of Gynecology and ObstetricsMünster University Hospital, Research LaboratoryMünsterGermany
| | - Sebastian D. Schäfer
- Department of Gynecology and ObstetricsMünster University Hospital, Research LaboratoryMünsterGermany
- Department of Gynecology and ObstetricsClemenshospital MünsterMünsterGermany
| | - Martin Götte
- Department of Gynecology and ObstetricsMünster University Hospital, Research LaboratoryMünsterGermany
- Cells‐in‐Motion Interfaculty Centre (CiMIC)University of MünsterMünsterGermany
| |
Collapse
|
4
|
Jiang W, Cheung RYK, Chung CY, Chan SSC, Choy KW. Genetic Etiology in Pelvic Organ Prolapse: Role of Connective Tissue Homeostasis, Hormone Metabolism, and Oxidative Stress. Genes (Basel) 2024; 16:5. [PMID: 39858552 PMCID: PMC11765207 DOI: 10.3390/genes16010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Pelvic organ prolapse (POP) has become a common health problem among the aging population and affects an increasing number of elderly women worldwide. Studies within family and twin pairs provided strong evidence for the contribution of genetic factors to POP. Given the incomplete penetrance, polygenic traits, and small effect sizes of each variant in complex diseases, it is not always easy to evaluate the genetic susceptibility and molecular mechanisms involved in POP. Objectives: This review intends to comprehensively summarize the current studies on genetic variants associated with POP. Methods: We performed a comprehensive review to summarize the genetic findings from genome-linkage studies, genome-wide association studies, candidate association studies, and gene expression analyses. Results: We summarized genetic variants associated with connective tissue homeostasis, hormone metabolism, and oxidative stress, which were potentially related to the pathophysiology of POP. We also reviewed the limited polygenic risk score (PRS) studies generated for each individual's genetic risk stratification and its integration into clinical risk factors for disease prediction. Conclusions: This pooled analysis provides moderate epidemiological credibility for associations of these genetic variants with POP to bridge the gap between genetic research and clinical medicine towards understanding the genetic etiology of POP. It also highlights the potential of PRS as a risk prediction model.
Collapse
Affiliation(s)
- Wenxuan Jiang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.J.); (R.Y.K.C.); (C.Y.C.); (S.S.C.C.)
| | - Rachel Yau Kar Cheung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.J.); (R.Y.K.C.); (C.Y.C.); (S.S.C.C.)
| | - Cheuk Yan Chung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.J.); (R.Y.K.C.); (C.Y.C.); (S.S.C.C.)
| | - Symphorosa Shing Chee Chan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.J.); (R.Y.K.C.); (C.Y.C.); (S.S.C.C.)
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.J.); (R.Y.K.C.); (C.Y.C.); (S.S.C.C.)
- Baylor College of Medicine Joint Center for Medical Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Qu Y, Ma D, Wu T, Wang H, Tian Z, Liu X, Wang Y. A multi-omics approach identifies the key role of disorders of sphingolipid metabolism in Ang II-induced hypertensive cardiomyopathy myocardial remodeling. Sci Rep 2024; 14:30379. [PMID: 39638825 PMCID: PMC11621778 DOI: 10.1038/s41598-024-81611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Hypertension-induced myocardial remodelling encompasses both structural and functional changes in cardiac muscle tissue, such as myocardial hypertrophy, fibrosis, and inflammation. These alterations not only impair the systolic and diastolic functions of the heart but also elevate the risk of cardiovascular events and heart failure. One of the primary contributors to hypertensive cardiomyopathy (HTN-CM) is the over-activation of the renin-angiotensin-aldosterone system (RAAS), which subsequently induces myocardial remodeling. Although conventional therapeutic strategies aim to suppress RAAS and slow the progression of heart failure, the primary challenge in treating HTN-CM remains the lack of sensitive and specific biomarkers for early detection of myocardial remodelling. Combined multi-omics analyses, complemented by experimental validation, offer a systematic understanding of the landscape of gene/protein/metabolite expression in HTN-CM, revealing the underlying mechanisms of angiotensin II (Ang II)-induced myocardial remodeling in HTN-CM. Transcriptomic analysis revealed that differentially expressed genes (DEGs) are implicated in sphingolipid metabolic processes and are associated with collagen synthesis and inflammatory responses, collectively contributing to myocardial remodeling in HTN-CM. Proteomic analysis demonstrated that differentially expressed proteins (DEPs) are also involved in inflammatory and fibrotic processes, with associations to sphingolipid signaling pathways, particularly manifested through elevated expression of IL6, COL4A1, FGG, FGB, CREBBP and SPHK2 proteins. Metabolomic profiling further elucidated the increased expression of bioactive sphingolipid metabolites S1P and Sa1P in the myocardium of HTN-CM. Integrative multi-omics analysis revealed that HTN-CM is primarily influenced by the sphingolipid signaling pathway, with additional associations to the HIF-1α and FoxO signaling pathways. Correlation analysis has highlighted strong associations between sphingolipids and genes/proteins related to fibrosis and inflammation, as well as their connection to the HIF-1α and FoxO signalling pathways. Furthermore, certain key indicators were validated through ELISA and Western blot analyses in both plasma and myocardial tissue. In conclusion, the findings of this study suggest that excessive Ang II may induce abnormalities in sphingolipid metabolism, resulting in increased levels of S1P in both circulating and myocardial tissues. This elevation in S1P is implicated in myocardial inflammatory and fibrotic alterations, highlighting its pivotal role in myocardial remodeling. The specific mechanism underlying the sphingolipid signaling pathway in myocardial remodeling may involve downstream biological processes, including oxidative stress and excessive mitochondrial autophagy, mediated by HIF-1α and FoxO.
Collapse
Affiliation(s)
- Yiwei Qu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Dufang Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369 Jingshi Road, Lixia District, Jinan, 250014, Shandong, China
| | - Tao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huaizhe Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Zhihan Tian
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Xue Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Yong Wang
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369 Jingshi Road, Lixia District, Jinan, 250014, Shandong, China.
| |
Collapse
|
6
|
Gasparini S, Balestrini S, Saccaro LF, Bacci G, Panichella G, Montomoli M, Cantalupo G, Bigoni S, Mancano G, Pellacani S, Leuzzi V, Volpi N, Mari F, Melani F, Cavallin M, Pisano T, Porcedda G, Vaglio A, Mei D, Barba C, Parrini E, Guerrini R. Multiorgan manifestations of COL4A1 and COL4A2 variants and proposal for a clinical management protocol. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2024; 196:e32099. [PMID: 39016117 DOI: 10.1002/ajmg.c.32099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
COL4A1/2 variants are associated with highly variable multiorgan manifestations. Depicting the whole clinical spectrum of COL4A1/2-related manifestations is challenging, and there is no consensus on management and preventative strategies. Based on a systematic review of current evidence on COL4A1/2-related disease, we developed a clinical questionnaire that we administered to 43 individuals from 23 distinct families carrying pathogenic variants. In this cohort, we extended ophthalmological and cardiological examinations to asymptomatic individuals and those with only limited or mild, often nonspecific, clinical signs commonly occurring in the general population (i.e., oligosymptomatic). The most frequent clinical findings emerging from both the literature review and the questionnaire included stroke (203/685, 29.6%), seizures or epilepsy (199/685, 29.0%), intellectual disability or developmental delay (168/685, 24.5%), porencephaly/schizencephaly (168/685, 24.5%), motor impairment (162/685, 23.6%), cataract (124/685, 18.1%), hematuria (63/685, 9.2%), and retinal arterial tortuosity (58/685, 8.5%). In oligosymptomatic and asymptomatic carriers, ophthalmological investigations detected retinal vascular tortuosity (5/13, 38.5%), dysgenesis of the anterior segment (4/13, 30.8%), and cataract (2/13, 15.4%), while cardiological investigations were unremarkable except for mild ascending aortic ectasia in 1/8 (12.5%). Our multimodal approach confirms highly variable penetrance and expressivity in COL4A1/2-related conditions, even at the intrafamilial level with neurological involvement being the most frequent and severe finding in both children and adults. We propose a protocol for prevention and management based on individualized risk estimation and periodic multiorgan evaluations.
Collapse
Affiliation(s)
- Simone Gasparini
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
- University of Florence, Florence, Italy
| | - Simona Balestrini
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
- University of Florence, Florence, Italy
| | - Luigi Francesco Saccaro
- Department of Psychiatry, Geneva University and Geneva University Hospitals, Geneva, Switzerland
| | - Giacomo Bacci
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Giorgia Panichella
- University of Florence, Florence, Italy
- Department of Clinical and Experimental Medicine, University Hospital Careggi, Florence, Italy
| | - Martino Montomoli
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
| | - Gaetano Cantalupo
- Child Neuropsychiatry Unit, University Hospital of Verona (full member of the European Reference Network EpiCARE), Verona, Italy
- Department of Engineering for Innovation Medicine, Innovation Biomedicine Section, University of Verona, Verona, Italy
- Center for Research on Epilepsy in Pediatric Age (CREP), University Hospital of Verona, Verona, Italy
| | - Stefania Bigoni
- Medical Genetics Unit, Ferrara University Hospital, Ferrara, Italy
| | - Giorgia Mancano
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
| | - Simona Pellacani
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
- University of Florence, Florence, Italy
| | - Vincenzo Leuzzi
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Nila Volpi
- Neurology and Clinical Neurophysiology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Francesco Mari
- Child and Adolescent Epilepsy and Clinical Neurophysiology Departmental Unit, USL Centro Toscana, Prato, Italy
| | - Federico Melani
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
| | - Mara Cavallin
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
| | - Tiziana Pisano
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
| | - Giulio Porcedda
- Department of Paediatric Cardiology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Augusto Vaglio
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Davide Mei
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
| | - Carmen Barba
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
- University of Florence, Florence, Italy
| | - Elena Parrini
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
| | - Renzo Guerrini
- Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS (full member of the European Reference Network EpiCARE), Florence, Italy
- University of Florence, Florence, Italy
| |
Collapse
|
7
|
Di Nubila A, Dilella G, Simone R, Barbieri SS. Vascular Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2024; 25:12017. [PMID: 39596083 PMCID: PMC11594217 DOI: 10.3390/ijms252212017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The extracellular matrix (ECM) plays a central role in the structural integrity and functionality of the cardiovascular system. Moreover, the ECM is involved in atherosclerotic plaque formation and stability. In fact, ECM remodeling affects plaque stability, cellular migration, and inflammatory responses. Collagens, fibronectin, laminin, elastin, and proteoglycans are crucial proteins during atherosclerosis development. This dynamic remodeling is driven by proteolytic enzymes such as matrix metalloproteinases (MMPs), cathepsins, and serine proteases. Exploring and investigating ECM dynamics is an important step to designing innovative therapeutic strategies targeting ECM remodeling mechanisms, thus offering significant advantages in the management of cardiovascular diseases. This review illustrates the structure and role of vascular ECM, presenting a new perspective on ECM remodeling and its potential as a therapeutic target in atherosclerosis treatments.
Collapse
Affiliation(s)
| | | | | | - Silvia S. Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (A.D.N.); (G.D.); (R.S.)
| |
Collapse
|
8
|
Shade LMP, Katsumata Y, Abner EL, Aung KZ, Claas SA, Qiao Q, Heberle BA, Brandon JA, Page ML, Hohman TJ, Mukherjee S, Mayeux RP, Farrer LA, Schellenberg GD, Haines JL, Kukull WA, Nho K, Saykin AJ, Bennett DA, Schneider JA, Ebbert MTW, Nelson PT, Fardo DW. GWAS of multiple neuropathology endophenotypes identifies new risk loci and provides insights into the genetic risk of dementia. Nat Genet 2024; 56:2407-2421. [PMID: 39379761 PMCID: PMC11549054 DOI: 10.1038/s41588-024-01939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Genome-wide association studies (GWAS) have identified >80 Alzheimer's disease and related dementias (ADRD)-associated genetic loci. However, the clinical outcomes used in most previous studies belie the complex nature of underlying neuropathologies. Here we performed GWAS on 11 ADRD-related neuropathology endophenotypes with participants drawn from the following three sources: the National Alzheimer's Coordinating Center, the Religious Orders Study and Rush Memory and Aging Project, and the Adult Changes in Thought study (n = 7,804 total autopsied participants). We identified eight independent significantly associated loci, of which four were new (COL4A1, PIK3R5, LZTS1 and APOC2). Separately testing known ADRD loci, 19 loci were significantly associated with at least one neuropathology after false-discovery rate adjustment. Genetic colocalization analyses identified pleiotropic effects and quantitative trait loci. Methylation in the cerebral cortex at two sites near APOC2 was associated with cerebral amyloid angiopathy. Studies that include neuropathology endophenotypes are an important step in understanding the mechanisms underlying genetic ADRD risk.
Collapse
Affiliation(s)
- Lincoln M P Shade
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Khine Zin Aung
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
| | - Steven A Claas
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Qi Qiao
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
| | - Bernardo Aguzzoli Heberle
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - J Anthony Brandon
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Madeline L Page
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Richard P Mayeux
- Department of Neurology, Columbia University, New York City, NY, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Walter A Kukull
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush Medical College, Chicago, IL, USA
| | - Julie A Schneider
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush Medical College, Chicago, IL, USA
- Department of Pathology, Rush Medical College, Chicago, IL, USA
| | - Mark T W Ebbert
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - David W Fardo
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
9
|
Sun M, Liu C, Gao K, Xu X, Chen K, Qiu L, Wang X. Qili Qiangxin capsule attenuates myocardial fibrosis by modulating collagen homeostasis post-infarction in rats. PLoS One 2024; 19:e0310897. [PMID: 39331597 PMCID: PMC11432860 DOI: 10.1371/journal.pone.0310897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Myocardial fibrosis (MF) is a major cause of morbidity and mortality worldwide. Qili Qiangxin capsule (QLQX) is a traditional Chinese medicine (TCM) formula used for treating MF, QLQX can affect ventricular remodeling by regulating collagen deposition; however, the specific mechanism by which QLQX modulates collagen homeostasis remains unclear. Thus, this study aimed to explore the effect of QLQX on collagen fibers and its mechanism of action in rats after myocardial infarction (MI). Rats were subjected to left anterior descending artery ligation and then were divided equally into five groups: sham, model, low-dose QLQX, high-dose QLQX and empagliflozin groups. QLQX treatment for 28 days significantly improved cardiac function, as evidenced by decreases in heart mass index, cardiac volume, left ventricular end-diastolic diameter, left ventricular end-systolic diameter, N-terminal B-type natriuretic peptide levels, and high-sensitivity cardiac troponin I levels and increases in left ventricular ejection fraction and left ventricular fraction shortening. Hematoxylin and eosin, Masson, and Picrosirius red staining under a light microscope indicated that QLQX treatment suppressed fibrosis and promoted angiogenesis by decreasing the protein expression levels of proteins related to cardiac remodeling including transforming growth factor-β1, metalloproteinase-9 and α-smooth muscle actin and increasing the expression of tissue inhibitor of matrix metalloproteinase-1 concentration. Picrosirius red staining under the polarized light microscope and western blotting showed that MI increased the contents of collagen I and III, and reduced the contents of collagen II and IV. QLQX treatment improved cardiac function and attenuated MF by modulating collagen homeostasis and promoting angiogenesis. This study provides novel insights into the mechanism of action of QLQX in preventing MF after MI.
Collapse
Affiliation(s)
- Minyan Sun
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chunhua Liu
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Kehan Gao
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Xingming Xu
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Kunhan Chen
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liang Qiu
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Vascular Remodeling Related Diseases, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Xiaomin Wang
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Valančienė J, Melaika K, Šliachtenko A, Šiaurytė-Jurgelėnė K, Ekkert A, Jatužis D. Stroke genetics and how it Informs novel drug discovery. Expert Opin Drug Discov 2024; 19:553-564. [PMID: 38494780 DOI: 10.1080/17460441.2024.2324916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION Stroke is one of the main causes of death and disability worldwide. Nevertheless, despite the global burden of this disease, our understanding is limited and there is still a lack of highly efficient etiopathology-based treatment. It is partly due to the complexity and heterogenicity of the disease. It is estimated that around one-third of ischemic stroke is heritable, emphasizing the importance of genetic factors identification and targeting for therapeutic purposes. AREAS COVERED In this review, the authors provide an overview of the current knowledge of stroke genetics and its value in diagnostics, personalized treatment, and prognostication. EXPERT OPINION As the scale of genetic testing increases and the cost decreases, integration of genetic data into clinical practice is inevitable, enabling assessing individual risk, providing personalized prognostic models and identifying new therapeutic targets and biomarkers. Although expanding stroke genetics data provides different diagnostics and treatment perspectives, there are some limitations and challenges to face. One of them is the threat of health disparities as non-European populations are underrepresented in genetic datasets. Finally, a deeper understanding of underlying mechanisms of potential targets is still lacking, delaying the application of novel therapies into routine clinical practice.
Collapse
Affiliation(s)
| | | | | | - Kamilė Šiaurytė-Jurgelėnė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Dalius Jatužis
- Center of Neurology, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
11
|
Fu Y, Zhou Y, Wang K, Li Z, Kong W. Extracellular Matrix Interactome in Modulating Vascular Homeostasis and Remodeling. Circ Res 2024; 134:931-949. [PMID: 38547250 DOI: 10.1161/circresaha.123.324055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The ECM (extracellular matrix) is a major component of the vascular microenvironment that modulates vascular homeostasis. ECM proteins include collagens, elastin, noncollagen glycoproteins, and proteoglycans/glycosaminoglycans. ECM proteins form complex matrix structures, such as the basal lamina and collagen and elastin fibers, through direct interactions or lysyl oxidase-mediated cross-linking. Moreover, ECM proteins directly interact with cell surface receptors or extracellular secreted molecules, exerting matricellular and matricrine modulation, respectively. In addition, extracellular proteases degrade or cleave matrix proteins, thereby contributing to ECM turnover. These interactions constitute the ECM interactome network, which is essential for maintaining vascular homeostasis and preventing pathological vascular remodeling. The current review mainly focuses on endogenous matrix proteins in blood vessels and discusses the interaction of these matrix proteins with other ECM proteins, cell surface receptors, cytokines, complement and coagulation factors, and their potential roles in maintaining vascular homeostasis and preventing pathological remodeling.
Collapse
Affiliation(s)
- Yi Fu
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics (Y.Z.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Kai Wang
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Zhuofan Li
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
12
|
Becht A, Frączyk J, Waśko J, Menaszek E, Kajdanek J, Miłowska K, Kolesinska B. Selection of collagen IV fragments forming the outer sphere of the native protein: Assessment of biological activity for regenerative medicine. J Pept Sci 2024; 30:e3537. [PMID: 37607826 DOI: 10.1002/psc.3537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023]
Abstract
The aim of this research was to select the fragments that make up the outer layer of the collagen IV (COL4A6) protein and to assess their potential usefulness for regenerative medicine. It was expected that because protein-protein interactions take place via contact between external domains, the set of peptides forming the outer sphere of collagen IV will determine its interaction with other proteins. Cellulose-immobilized protein fragment libraries treated with polyclonal anti-collagen IV antibodies were used to select the peptides forming the outer sphere of collagen IV. In the first test, 33 peptides that strongly interacted with the polyclonal anti-collagen IV antibodies were selected from a library of non-overlapping fragments of collagen IV. The selected fragments of collagen IV (cleaved from the cellulose matrix) were tested for their cytotoxicity, their effects on cell viability and proliferation, and their impact on the formation of reactive oxygen species (ROS). The studies used RAW 264.7 mouse macrophage cells and Hs 680.Tr human fibroblasts. PrestoBlue, ToxiLight™, and ToxiLight 100% Lysis Control assays were conducted. The viability of fibroblasts cultured with the addition of increasing concentrations of the peptide mix did not show statistically significant differences from the control. Fragments 161-170, 221-230, 721-730, 1331-1340, 1521-1530, and 1661-1670 of COL4A6 were examined for cytotoxicity against BJ normal human foreskin fibroblasts. None of the collagen fragments were found to be cytotoxic. Further research is underway on the potential uses of collagen IV fragments in regenerative medicine.
Collapse
Affiliation(s)
- Angelika Becht
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Justyna Frączyk
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Joanna Waśko
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Elżbieta Menaszek
- Department of Cytobiology, Chair of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Krakow, Poland
| | - Jakub Kajdanek
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Beata Kolesinska
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
13
|
Li J, Tang Y, Yin L, Lin X, Luo Z, Wang S, Yuan L, Liang P, Jiang B. Mesenchymal stem cell-derived exosomes in myocardial infarction: Therapeutic potential and application. J Gene Med 2024; 26:e3596. [PMID: 37726968 DOI: 10.1002/jgm.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023] Open
Abstract
Myocardial infarction refers to the irreversible impairment of cardiac function resulting from the permanent loss of numerous cardiomyocytes and the formation of scar tissue. This condition is caused by acute and persistent inadequate blood supply to the heart's arteries. In the treatment of myocardial infarction, Mesenchymal stem cells (MSCs) play a crucial role because of their powerful therapeutic effects. These effects primarily stem from the paracrine secretion of multiple factors by MSCs, with exosome-carried microRNAs being the most effective component in promoting cardiac function recovery after infarction. Exosome therapy has emerged as a promising cell-free treatment for myocardial infarction as a result of its relatively simple composition, low immunogenicity and controlled transplantation dose. Despite these advantages, maintaining the stability of exosomes after transplantation and enhancing their targeting effect remain significant challenges in clinical applications. In recent developments, several approaches have been designed to optimize exosome therapy. These include enhancing exosome retention, improving their ability to target specific effects, pretreating MSC-derived exosomes and employing transgenic MSC-derived exosomes. This review primarily focuses on describing the biological characteristics of exosomes, their therapeutic potential and their application in treating myocardial infarction.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Yuting Tang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Zhengyang Luo
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Shuxin Wang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Skaggs C, Nick S, Patricelli C, Bond L, Woods K, Woodbury L, Oxford JT, Pu X. Effects of Doxorubicin on Extracellular Matrix Regulation in Primary Cardiac Fibroblasts from Mice. BMC Res Notes 2023; 16:340. [PMID: 37974221 PMCID: PMC10655342 DOI: 10.1186/s13104-023-06621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE Doxorubicin (DOX) is a highly effective chemotherapeutic used to treat many adult and pediatric cancers. However, its use is limited due to a dose-dependent cardiotoxicity, which can lead to lethal cardiomyopathy. In contrast to the extensive research efforts on toxic effects of DOX in cardiomyocytes, its effects and mechanisms on cardiac extracellular matrix (ECM) homeostasis and remodeling are poorly understood. In this study, we examined the potential effects of DOX on cardiac ECM to further our mechanistic understanding of DOX-induced cardiotoxicity. RESULTS DOX-induced significant down-regulation of several ECM related genes in primary cardiac fibroblasts, including Adamts1, Adamts5, Col4a1, Col4a2, Col5a1, Fbln1, Lama2, Mmp11, Mmp14, Postn, and TGFβ. Quantitative proteomics analysis revealed significant global changes in the fibroblast proteome following DOX treatment. A pathway analysis using iPathwayGuide of the differentially expressed proteins revealed changes in a list of biological pathways that involve cell adhesion, cytotoxicity, and inflammation. An apparent increase in Picrosirius red staining indicated that DOX-induced an increase in collagen production in cardiac primary fibroblasts after 3-day treatment. No significant changes in collagen organization nor glycoprotein production were observed.
Collapse
Affiliation(s)
- Cameron Skaggs
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Steve Nick
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Conner Patricelli
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
| | - Laura Bond
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Kali Woods
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Luke Woodbury
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
| | - Julia Thom Oxford
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA.
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA.
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
15
|
Sakkers TR, Mokry M, Civelek M, Erdmann J, Pasterkamp G, Diez Benavente E, den Ruijter HM. Sex differences in the genetic and molecular mechanisms of coronary artery disease. Atherosclerosis 2023; 384:117279. [PMID: 37805337 DOI: 10.1016/j.atherosclerosis.2023.117279] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 09/01/2023] [Indexed: 10/09/2023]
Abstract
Sex differences in coronary artery disease (CAD) presentation, risk factors and prognosis have been widely studied. Similarly, studies on atherosclerosis have shown prominent sex differences in plaque biology. Our understanding of the underlying genetic and molecular mechanisms that drive these differences remains fragmented and largely understudied. Through reviewing genetic and epigenetic studies, we identified more than 40 sex-differential candidate genes (13 within known CAD loci) that may explain, at least in part, sex differences in vascular remodeling, lipid metabolism and endothelial dysfunction. Studies with transcriptomic and single-cell RNA sequencing data from atherosclerotic plaques highlight potential sex differences in smooth muscle cell and endothelial cell biology. Especially, phenotypic switching of smooth muscle cells seems to play a crucial role in female atherosclerosis. This matches the known sex differences in atherosclerotic phenotypes, with men being more prone to lipid-rich plaques, while women are more likely to develop fibrous plaques with endothelial dysfunction. To unravel the complex mechanisms that drive sex differences in CAD, increased statistical power and adjustments to study designs and analysis strategies are required. This entails increasing inclusion rates of women, performing well-defined sex-stratified analyses and the integration of multi-omics data.
Collapse
Affiliation(s)
- Tim R Sakkers
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands; Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, 1335 Lee St, Charlottesville, VA, 22908, USA; Department of Biomedical Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA, 22904, USA
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands.
| |
Collapse
|
16
|
Zhang GZ, Li L, Luo ZB, Zhang CY, Wang YG, Kang XW. Identification and experimental validation of key extracellular proteins as potential targets in intervertebral disc degeneration. Bone Joint Res 2023; 12:522-535. [PMID: 37661086 PMCID: PMC10475329 DOI: 10.1302/2046-3758.129.bjr-2022-0369.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Aims This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD). Methods The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions. Results A total of 56 EP-DEGs were identified in the differential expression analysis. EP-DEGs were enriched in the extracellular structure organization, ageing, collagen-activated signalling pathway, PI3K-Akt signalling pathway, and AGE-RAGE signalling pathway. PPI network analysis showed that the top ten hub EP-DEGs are closely related to IDD. Correlation analysis also demonstrated a significant correlation between the ten hub EP-DEGs (p<0.05), which were selected to construct TF-gene interaction and TF-miRNA coregulatory networks. In addition, ten candidate drugs were screened for the treatment of IDD. Conclusion The findings clarify the roles of extracellular proteins in IDD and highlight their potential as promising novel therapeutic targets.
Collapse
Affiliation(s)
- Guang-Zhi Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou, China
- The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Lanzhou, China
| | - Lei Li
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou, China
- The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Lanzhou, China
| | - Zhang-Bin Luo
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou, China
- The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Lanzhou, China
| | - Cang-Yu Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou, China
- The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Lanzhou, China
| | - Yong-Gang Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou, China
- The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Lanzhou, China
| | - Xue-Wen Kang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou, China
- The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Lanzhou, China
| |
Collapse
|
17
|
Andersen S, Reese-Petersen AL, Braams N, Andersen MJ, Mellemkjær S, Andersen A, Bogaard HJ, Genovese F, Nielsen-Kudsk JE. Biomarkers of collagen turnover and wound healing in chronic thromboembolic pulmonary hypertension patients before and after pulmonary endarterectomy. Int J Cardiol 2023; 384:82-88. [PMID: 37178803 DOI: 10.1016/j.ijcard.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/19/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND In chronic thromboembolic pulmonary hypertension (CTEPH), fibrotic remodeling of tissue and thrombi contributes to disease progression. Removal of the thromboembolic mass by pulmonary endarterectomy (PEA) improves hemodynamics and right ventricular function, but the roles of different collagens before as well as after PEA are not well understood. METHODS In this study, hemodynamics and 15 different biomarkers of collagen turnover and wound healing were evaluated in 40 CTEPH patients at diagnosis (baseline) and 6 and 18 months after PEA. Baseline biomarker levels were compared with a historical cohort of 40 healthy subjects. RESULTS Biomarkers of collagen turnover and wound healing were increased in CTEPH patients compared with healthy controls, including a 35-fold increase in the PRO-C4 marker of type IV collagen formation and a 55-fold increase in the C3M marker of type III collagen degradation. PEA reduced pulmonary pressures to almost normal levels 6 months after the procedure, with no further improvement at 18 months. There were no changes in any of the measured biomarkers after PEA. CONCLUSIONS Biomarkers of collagen formation and degradation are increased in CTEPH suggesting a high collagen turnover. While PEA effectively reduces pulmonary pressures, collagen turnover is not significantly modified by surgical PEA.
Collapse
Affiliation(s)
- Stine Andersen
- Department of Cardiology, Aarhus University Hospital, Denmark.
| | | | - Natalia Braams
- Department of Pulmonology, Amsterdam University Medical Center, the Netherlands
| | | | | | - Asger Andersen
- Department of Cardiology, Aarhus University Hospital, Denmark
| | - Harm Jan Bogaard
- Department of Pulmonology, Amsterdam University Medical Center, the Netherlands
| | | | | |
Collapse
|
18
|
Lu X, Zhu M, Zhao L, Qi F, Zou H, He P, Zhou H, Shi K, Du J. 68Ga-labeled WVP peptide as a novel PET probe for molecular biological diagnosis of unstable thoracic aortic aneurysm and early dissection: an animal study. Front Cardiovasc Med 2023; 10:1048927. [PMID: 37378402 PMCID: PMC10291320 DOI: 10.3389/fcvm.2023.1048927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE Type IV collagen (Col-IV) is a prospective biomarker for diagnosing and treating of unstable thoracic aortic aneurysm and dissection (TAAD). This study aims to evaluate the feasibility of 68Ga-labeled WVP peptide (68Ga-DOTA-WVP) as a novel Col-IV-targeted probe for TAAD biological diagnosis using PET/CT. METHODS WVP peptide was modified with bifunctional chelator DOTA for 68Ga radiolabeling. Immunohistochemical staining was used to evaluate the expression and location of Col-IV and elastin in aortas treated with 3-aminopropionitrile fumarate (BAPN) at different time points (0, 2, and 4 weeks). The imaging performance of 68Ga-DOTA-WVP was investigated using Micro-PET/CT in a BAPN-induced TAAD mouse model. The relationship between 68Ga-DOTA-WVP uptake in aortic lesions and the serum levels of TAAD-related biomarkers including D-dimer, C-reactive protein (CRP), and serum soluble suppression of tumorigenicity-2 (sST2) was also analyzed. RESULTS 68Ga-DOTA-WVP was readily prepared with high radiochemical purity and stability in vitro. 68Ga-DOTA-WVP Micro-PET/CT could detect Col-IV exposure of unstable aneurysms and early dissection in BAPN-induced TAAD mice, but little 68Ga-DOTA-WVP uptake was shown in the control group at each imaging time point. The differences of Col-IV expression and distribution of 68Ga-DOTA-WVP both in TAAD and control groups further verified the imaging efficiency of 68Ga-DOTA-WVP PET/CT. Additionally, a higher sST2 level was found in the imaging positive (n = 14) than the negative (n = 8) group (9.60 ± 1.14 vs. 8.44 ± 0.52, P = 0.014). CONCLUSION 68Ga-DOTA-WVP could trace the exposure and abnormal deposition of Col-IV in enlarged and early injured aortas, showing a potential for biological diagnosis, whole-body screening, and progression monitoring of TAAD.
Collapse
Affiliation(s)
- Xia Lu
- Department of Nuclear Medicine, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Meilin Zhu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feiran Qi
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Heng Zou
- Department of Clinical Medicine, Cellomics (Shenzhen) Co., Ltd, Shenzhen, China
| | - Peng He
- Department of Medical Research, Xiangpeng Youkang (Beijing) Technology Co., Ltd, Beijing, China
| | - Haizhong Zhou
- Department of Nuclear Medicine, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Jie Du
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Adlam D, Berrandou TE, Georges A, Nelson CP, Giannoulatou E, Henry J, Ma L, Blencowe M, Turley TN, Yang ML, Chopade S, Finan C, Braund PS, Sadeg-Sayoud I, Iismaa SE, Kosel ML, Zhou X, Hamby SE, Cheng J, Liu L, Tarr I, Muller DWM, d'Escamard V, King A, Brunham LR, Baranowska-Clarke AA, Debette S, Amouyel P, Olin JW, Patil S, Hesselson SE, Junday K, Kanoni S, Aragam KG, Butterworth AS, Tweet MS, Gulati R, Combaret N, Kadian-Dodov D, Kalman JM, Fatkin D, Hingorani AD, Saw J, Webb TR, Hayes SN, Yang X, Ganesh SK, Olson TM, Kovacic JC, Graham RM, Samani NJ, Bouatia-Naji N. Genome-wide association meta-analysis of spontaneous coronary artery dissection identifies risk variants and genes related to artery integrity and tissue-mediated coagulation. Nat Genet 2023; 55:964-972. [PMID: 37248441 PMCID: PMC10260398 DOI: 10.1038/s41588-023-01410-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Spontaneous coronary artery dissection (SCAD) is an understudied cause of myocardial infarction primarily affecting women. It is not known to what extent SCAD is genetically distinct from other cardiovascular diseases, including atherosclerotic coronary artery disease (CAD). Here we present a genome-wide association meta-analysis (1,917 cases and 9,292 controls) identifying 16 risk loci for SCAD. Integrative functional annotations prioritized genes that are likely to be regulated in vascular smooth muscle cells and artery fibroblasts and implicated in extracellular matrix biology. One locus containing the tissue factor gene F3, which is involved in blood coagulation cascade initiation, appears to be specific for SCAD risk. Several associated variants have diametrically opposite associations with CAD, suggesting that shared biological processes contribute to both diseases, but through different mechanisms. We also infer a causal role for high blood pressure in SCAD. Our findings provide novel pathophysiological insights involving arterial integrity and tissue-mediated coagulation in SCAD and set the stage for future specific therapeutics and preventions.
Collapse
Affiliation(s)
- David Adlam
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK.
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK.
| | - Takiy-Eddine Berrandou
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
- Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Adrien Georges
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Joséphine Henry
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Program of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tamiel N Turley
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sandesh Chopade
- Institute for Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Chris Finan
- Institute for Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Peter S Braund
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ines Sadeg-Sayoud
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
| | - Siiri E Iismaa
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew L Kosel
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stephen E Hamby
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jenny Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Program of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lu Liu
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
| | - Ingrid Tarr
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - David W M Muller
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Valentina d'Escamard
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annette King
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liam R Brunham
- Centre for Heart Lung Innovation, Departments of Medicine and Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ania A Baranowska-Clarke
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Stéphanie Debette
- Department of Neurology, Bordeaux University Hospital, Inserm, Bordeaux, France
| | - Philippe Amouyel
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, RID-AGE - Labex DISTALZ - Risk Factors and Molecular Determinants of Aging-Related Disease, Lille, France
| | - Jeffrey W Olin
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Snehal Patil
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stephanie E Hesselson
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Keerat Junday
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Krishna G Aragam
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Marysia S Tweet
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rajiv Gulati
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nicolas Combaret
- Department of Cardiology, CHU Clermont-Ferrand, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Daniella Kadian-Dodov
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan M Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Aroon D Hingorani
- Institute for Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Jacqueline Saw
- Vancouver General Hospital, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tom R Webb
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Sharonne N Hayes
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Program of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Timothy M Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nabila Bouatia-Naji
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France.
| |
Collapse
|
20
|
Wilson C, Zi M, Smith M, Hussain M, D’Souza A, Dobrzynski H, Boyett MR. Atrioventricular node dysfunction in pressure overload-induced heart failure—Involvement of the immune system and transcriptomic remodelling. Front Pharmacol 2023; 14:1083910. [PMID: 37081960 PMCID: PMC10110994 DOI: 10.3389/fphar.2023.1083910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Heart failure is associated with atrioventricular (AV) node dysfunction, and AV node dysfunction in the setting of heart failure is associated with an increased risk of mortality and heart failure hospitalisation. This study aims to understand the causes of AV node dysfunction in heart failure by studying changes in the whole nodal transcriptome. The mouse transverse aortic constriction model of pressure overload-induced heart failure was studied; functional changes were assessed using electrocardiography and echocardiography and the transcriptome of the AV node was quantified using RNAseq. Heart failure was associated with a significant increase in the PR interval, indicating a slowing of AV node conduction and AV node dysfunction, and significant changes in 3,077 transcripts (5.6% of the transcriptome). Many systems were affected: transcripts supporting AV node conduction were downregulated and there were changes in transcripts identified by GWAS as determinants of the PR interval. In addition, there was evidence of remodelling of the sarcomere, a shift from fatty acid to glucose metabolism, remodelling of the extracellular matrix, and remodelling of the transcription and translation machinery. There was evidence of the causes of this widespread remodelling of the AV node: evidence of dysregulation of multiple intracellular signalling pathways, dysregulation of 109 protein kinases and 148 transcription factors, and an immune response with a proliferation of neutrophils, monocytes, macrophages and B lymphocytes and a dysregulation of 40 cytokines. In conclusion, inflammation and a widespread transcriptional remodelling of the AV node underlies AV node dysfunction in heart failure.
Collapse
Affiliation(s)
- Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Min Zi
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Matthew Smith
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Munir Hussain
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Alicia D’Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
- *Correspondence: Halina Dobrzynski, ; Mark R. Boyett,
| | - Mark R. Boyett
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- *Correspondence: Halina Dobrzynski, ; Mark R. Boyett,
| |
Collapse
|
21
|
Krammer C, Yang B, Reichl S, Besson-Girard S, Ji H, Bolini V, Schulte C, Noels H, Schlepckow K, Jocher G, Werner G, Willem M, El Bounkari O, Kapurniotu A, Gokce O, Weber C, Mohanta S, Bernhagen J. Pathways linking aging and atheroprotection in Mif-deficient atherosclerotic mice. FASEB J 2023; 37:e22752. [PMID: 36794636 DOI: 10.1096/fj.202200056r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
Atherosclerosis is a chronic inflammatory condition of our arteries and the main underlying pathology of myocardial infarction and stroke. The pathogenesis is age-dependent, but the links between disease progression, age, and atherogenic cytokines and chemokines are incompletely understood. Here, we studied the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) in atherogenic Apoe-/- mice across different stages of aging and cholesterol-rich high-fat diet (HFD). MIF promotes atherosclerosis by mediating leukocyte recruitment, lesional inflammation, and suppressing atheroprotective B cells. However, links between MIF and advanced atherosclerosis across aging have not been systematically explored. We compared effects of global Mif-gene deficiency in 30-, 42-, and 48-week-old Apoe-/- mice on HFD for 24, 36, or 42 weeks, respectively, and in 52-week-old mice on a 6-week HFD. Mif-deficient mice exhibited reduced atherosclerotic lesions in the 30/24- and 42/36-week-old groups, but atheroprotection, which in the applied Apoe-/- model was limited to lesions in the brachiocephalic artery and abdominal aorta, was not detected in the 48/42- and 52/6-week-old groups. This suggested that atheroprotection afforded by global Mif-gene deletion differs across aging stages and atherogenic diet duration. To characterize this phenotype and study the underlying mechanisms, we determined immune cells in the periphery and vascular lesions, obtained a multiplex cytokine/chemokine profile, and compared the transcriptome between the age-related phenotypes. We found that Mif deficiency promotes lesional macrophage and T-cell counts in younger but not aged mice, with subgroup analysis pointing toward a role for Trem2+ macrophages. The transcriptomic analysis identified pronounced MIF- and aging-dependent changes in pathways predominantly related to lipid synthesis and metabolism, lipid storage, and brown fat cell differentiation, as well as immunity, and atherosclerosis-relevant enriched genes such as Plin1, Ldlr, Cpne7, or Il34, hinting toward effects on lesional lipids, foamy macrophages, and immune cells. Moreover, Mif-deficient aged mice exhibited a distinct plasma cytokine/chemokine signature consistent with the notion that mediators known to drive inflamm'aging are either not downregulated or even upregulated in Mif-deficient aged mice compared with the corresponding younger ones. Lastly, Mif deficiency favored formation of lymphocyte-rich peri-adventitial leukocyte clusters. While the causative contributions of these mechanistic pillars and their interplay will be subject to future scrutiny, our study suggests that atheroprotection due to global Mif-gene deficiency in atherogenic Apoe-/- mice is reduced upon advanced aging and identifies previously unrecognized cellular and molecular targets that could explain this phenotype shift. These observations enhance our understanding of inflamm'aging and MIF pathways in atherosclerosis and may have implications for translational MIF-directed strategies.
Collapse
Affiliation(s)
- Christine Krammer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Bishan Yang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Sabrina Reichl
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Simon Besson-Girard
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), LMU Munich, Planegg-Martinsried, Germany
| | - Hao Ji
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany
| | - Verena Bolini
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Corinna Schulte
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rhenish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rhenish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Jocher
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Werner
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Willem
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich (TUM), Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Weber
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Cardiovascular Prevention, LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Heart Alliance, Munich, Germany
| | - Sarajo Mohanta
- Institute for Cardiovascular Prevention, LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Munich Heart Alliance, Munich, Germany
| |
Collapse
|
22
|
Thorsen ASF, Riber LPS, Rasmussen LM, Overgaard M. A targeted multiplex mass spectrometry method for quantitation of abundant matrix and cellular proteins in formalin-fixed paraffin embedded arterial tissue. J Proteomics 2023; 272:104775. [PMID: 36414230 DOI: 10.1016/j.jprot.2022.104775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022]
Abstract
Assessment of proteins in formalin-fixed paraffin-embedded (FFPE) tissue traditionally hinges on immunohistochemistry and immunoblotting. These methods are far from optimal for quantitative studies and not suitable for large-scale testing of multiple protein panels. In this study, we developed and optimised a novel targeted isotope dilution mass spectrometry (MS)-based method for FFPE samples, designed to quantitate 17 matrix and cytosolic proteins abundantly present in arterial tissue. Our new method was developed on FFPE human tissue samples of the internal thoracic artery obtained from coronary artery bypass graft (CABG) operations. The workflow has a limit of 60 samples per day. Assay precision improved by normalisation to both beta-actin and smooth muscle actin with inter-assay coefficients of variation (CV) ranging from 5.3% to 31.9%. To demonstrate clinical utility of the assay we analysed 40 FFPE artery specimens from two groups of patients with or without type 2 diabetes. We observed increased levels of collagen type IV α1 and α2 in patients with diabetes. The assay is scalable for larger cohorts and advantageous for pathophysiological studies in diabetes and the method is easily convertible to analysis of other proteins in FFPE artery samples. SIGNIFICANCE: This article presents a novel robust and precise targeted mass spectrometry assay for relative quantitation of a panel of abundant matrix and cellular arterial proteins in archived formalin-fixed paraffin-embedded arterial samples. We demonstrate its utility in pathophysiological studies of cardiovascular disease in diabetes.
Collapse
Affiliation(s)
- Anne-Sofie Faarvang Thorsen
- Department of Clinical Biochemistry and Center for Individualised Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Steno Diabetes Center Odense (SDCO), Odense, Denmark
| | - Lars Peter Schødt Riber
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Center for Individualised Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Martin Overgaard
- Department of Clinical Biochemistry and Center for Individualised Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
23
|
Coll-Bonfill N, Mahajan U, Shashkova EV, Lin CJ, Mecham RP, Gonzalo S. Progerin induces a phenotypic switch in vascular smooth muscle cells and triggers replication stress and an aging-associated secretory signature. GeroScience 2022; 45:965-982. [PMID: 36482259 PMCID: PMC9886737 DOI: 10.1007/s11357-022-00694-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome is a premature aging disease caused by LMNA gene mutation and the production of a truncated prelamin A protein "progerin" that elicits cellular and organismal toxicity. Progerin accumulates in the vasculature, being especially detrimental for vascular smooth muscle cells (VSMC). Vessel stiffening and aortic atherosclerosis in HGPS patients are accompanied by VSMC depletion in the medial layer, altered extracellular matrix (ECM), and thickening of the adventitial layer. Mechanisms whereby progerin causes massive VSMC loss and vessel alterations remain poorly understood. Mature VSMC retain phenotypic plasticity and can switch to a synthetic/proliferative phenotype. Here, we show that progerin expression in human and mouse VSMC causes a switch towards the synthetic phenotype. This switch elicits some level of replication stress in normal cells, which is exacerbated in the presence of progerin, leading to telomere fragility, genomic instability, and ultimately VSMC death. Calcitriol prevents replication stress, telomere fragility, and genomic instability, reducing VSMC death. In addition, RNA-seq analysis shows induction of a profibrotic and pro-inflammatory aging-associated secretory phenotype upon progerin expression in human primary VSMC. Our data suggest that phenotypic switch-induced replication stress might be an underlying cause of VSMC loss in progeria, which together with loss of contractile features and gain of profibrotic and pro-inflammatory signatures contribute to vascular stiffness in HGPS.
Collapse
Affiliation(s)
- Nuria Coll-Bonfill
- grid.262962.b0000 0004 1936 9342Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St Louis, MO 63104 USA
| | - Urvashi Mahajan
- grid.262962.b0000 0004 1936 9342Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St Louis, MO 63104 USA
| | - Elena V. Shashkova
- grid.262962.b0000 0004 1936 9342Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St Louis, MO 63104 USA
| | - Chien-Jung Lin
- grid.4367.60000 0001 2355 7002Cell Biology and Physiology Department & Department of Medicine, Washington University School of Medicine, St Louis, MO 63108 USA ,grid.262962.b0000 0004 1936 9342Department of Internal Medicine, Cardiovascular Division, Saint Louis University School of Medicine, St Louis, MO 63104 USA
| | - Robert P. Mecham
- grid.4367.60000 0001 2355 7002Cell Biology and Physiology Department & Department of Medicine, Washington University School of Medicine, St Louis, MO 63108 USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St Louis, MO, 63104, USA.
| |
Collapse
|
24
|
Sarohi V, Chakraborty S, Basak T. Exploring the cardiac ECM during fibrosis: A new era with next-gen proteomics. Front Mol Biosci 2022; 9:1030226. [PMID: 36483540 PMCID: PMC9722982 DOI: 10.3389/fmolb.2022.1030226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 10/24/2023] Open
Abstract
Extracellular matrix (ECM) plays a critical role in maintaining elasticity in cardiac tissues. Elasticity is required in the heart for properly pumping blood to the whole body. Dysregulated ECM remodeling causes fibrosis in the cardiac tissues. Cardiac fibrosis leads to stiffness in the heart tissues, resulting in heart failure. During cardiac fibrosis, ECM proteins get excessively deposited in the cardiac tissues. In the ECM, cardiac fibroblast proliferates into myofibroblast upon various kinds of stimulations. Fibroblast activation (myofibroblast) contributes majorly toward cardiac fibrosis. Other than cardiac fibroblasts, cardiomyocytes, epithelial/endothelial cells, and immune system cells can also contribute to cardiac fibrosis. Alteration in the expression of the ECM core and ECM-modifier proteins causes different types of cardiac fibrosis. These different components of ECM culminated into different pathways inducing transdifferentiation of cardiac fibroblast into myofibroblast. In this review, we summarize the role of different ECM components during cardiac fibrosis progression leading to heart failure. Furthermore, we highlight the importance of applying mass-spectrometry-based proteomics to understand the key changes occurring in the ECM during fibrotic progression. Next-gen proteomics studies will broaden the potential to identify key targets to combat cardiac fibrosis in order to achieve precise medicine-development in the future.
Collapse
Affiliation(s)
- Vivek Sarohi
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Sanchari Chakraborty
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| |
Collapse
|
25
|
Zarkasi KA, Abdullah N, Abdul Murad NA, Ahmad N, Jamal R. Genetic Factors for Coronary Heart Disease and Their Mechanisms: A Meta-Analysis and Comprehensive Review of Common Variants from Genome-Wide Association Studies. Diagnostics (Basel) 2022; 12:2561. [PMID: 36292250 PMCID: PMC9601486 DOI: 10.3390/diagnostics12102561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have discovered 163 loci related to coronary heart disease (CHD). Most GWAS have emphasized pathways related to single-nucleotide polymorphisms (SNPs) that reached genome-wide significance in their reports, while identification of CHD pathways based on the combination of all published GWAS involving various ethnicities has yet to be performed. We conducted a systematic search for articles with comprehensive GWAS data in the GWAS Catalog and PubMed, followed by a meta-analysis of the top recurring SNPs from ≥2 different articles using random or fixed-effect models according to Cochran Q and I2 statistics, and pathway enrichment analysis. Meta-analyses showed significance for 265 of 309 recurring SNPs. Enrichment analysis returned 107 significant pathways, including lipoprotein and lipid metabolisms (rs7412, rs6511720, rs11591147, rs1412444, rs11172113, rs11057830, rs4299376), atherogenesis (rs7500448, rs6504218, rs3918226, rs7623687), shared cardiovascular pathways (rs72689147, rs1800449, rs7568458), diabetes-related pathways (rs200787930, rs12146487, rs6129767), hepatitis C virus infection/hepatocellular carcinoma (rs73045269/rs8108632, rs56062135, rs188378669, rs4845625, rs11838776), and miR-29b-3p pathways (rs116843064, rs11617955, rs146092501, rs11838776, rs73045269/rs8108632). In this meta-analysis, the identification of various genetic factors and their associated pathways associated with CHD denotes the complexity of the disease. This provides an opportunity for the future development of novel CHD genetic risk scores relevant to personalized and precision medicine.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Biochemistry Unit, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (UPNM), Kuala Lumpur 57000, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- Epidemiology and Statistics Unit, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| |
Collapse
|
26
|
Luo JY, Cheng CK, He L, Pu Y, Zhang Y, Lin X, Xu A, Lau CW, Tian XY, Ma RCW, Jo H, Huang Y. Endothelial UCP2 Is a Mechanosensitive Suppressor of Atherosclerosis. Circ Res 2022; 131:424-441. [PMID: 35899624 PMCID: PMC9390236 DOI: 10.1161/circresaha.122.321187] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Inflamed endothelial cells (ECs) trigger atherogenesis, especially at arterial regions experiencing disturbed blood flow. UCP2 (Uncoupling protein 2), a key mitochondrial antioxidant protein, improves endothelium-dependent relaxation in obese mice. However, whether UCP2 can be regulated by shear flow is unknown, and the role of endothelial UCP2 in regulating inflammation and atherosclerosis remains unclear. This study aims to investigate the mechanoregulation of UCP2 expression in ECs and the effect of UCP2 on endothelial inflammation and atherogenesis. METHODS In vitro shear stress simulation system was used to investigate the regulation of UCP2 expression by shear flow. EC-specific Ucp2 knockout mice were used to investigate the role of UCP2 in flow-associated atherosclerosis. RESULTS Shear stress experiments showed that KLF2 (Krüppel-like factor 2) mediates fluid shear stress-dependent regulation of UCP2 expression in human aortic and human umbilical vein ECs. Unidirectional shear stress, statins, and resveratrol upregulate whereas oscillatory shear stress and proinflammatory stimuli inhibit UCP2 expression through altered KLF2 expression. KLF2 directly binds to UCP2 promoter to upregulate its transcription in human umbilical vein ECs. UCP2 knockdown induced expression of genes involved in proinflammatory and profibrotic signaling, resulting in a proatherogenic endothelial phenotype. EC-specific Ucp2 deletion promotes atherogenesis and collagen production. Additionally, we found endothelial Ucp2 deficiency aggravates whereas adeno-associated virus-mediated EC-Ucp2 overexpression inhibits carotid atherosclerotic plaque formation in disturbed flow-enhanced atherosclerosis mouse model. RNA-sequencing analysis revealed FoxO1 (forkhead box protein O1) as the major proinflammatory transcriptional regulator activated by UCP2 knockdown, and FoxO1 inhibition reduced vascular inflammation and disturbed flow-enhanced atherosclerosis. We showed further that UCP2 level is critical for phosphorylation of AMPK (AMP-activated protein kinase), which is required for UCP2-induced inhibition of FoxO1. CONCLUSIONS Altogether, our studies uncover that UCP2 is novel mechanosensitive gene under the control of fluid shear stress and KLF2 in ECs. UCP2 expression is critical for endothelial proinflammatory response and atherogenesis. Therapeutic strategies enhancing UCP2 level may have therapeutic potential against atherosclerosis.
Collapse
Affiliation(s)
- Jiang-Yun Luo
- Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China (J.-Y.L.)
- Heart and Vascular Institute, Shenzhen Research Institute and School of Biomedical Sciences (J.-Y.L., C.K.C., L.H., Y.P., C.W.L., X.Y.T.), Chinese University of Hong Kong, China
| | - Chak Kwong Cheng
- Heart and Vascular Institute, Shenzhen Research Institute and School of Biomedical Sciences (J.-Y.L., C.K.C., L.H., Y.P., C.W.L., X.Y.T.), Chinese University of Hong Kong, China
- Department of Biomedical Sciences, City University of Hong Kong, China (C.K.C., L.H., Y.P., Y.H.)
| | - Lei He
- Heart and Vascular Institute, Shenzhen Research Institute and School of Biomedical Sciences (J.-Y.L., C.K.C., L.H., Y.P., C.W.L., X.Y.T.), Chinese University of Hong Kong, China
- Department of Biomedical Sciences, City University of Hong Kong, China (C.K.C., L.H., Y.P., Y.H.)
| | - Yujie Pu
- Heart and Vascular Institute, Shenzhen Research Institute and School of Biomedical Sciences (J.-Y.L., C.K.C., L.H., Y.P., C.W.L., X.Y.T.), Chinese University of Hong Kong, China
- Department of Biomedical Sciences, City University of Hong Kong, China (C.K.C., L.H., Y.P., Y.H.)
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China (Y.Z.)
| | - Xiao Lin
- School of Life Sciences (X.L.), Chinese University of Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, China (A.X.)
| | - Chi Wai Lau
- Heart and Vascular Institute, Shenzhen Research Institute and School of Biomedical Sciences (J.-Y.L., C.K.C., L.H., Y.P., C.W.L., X.Y.T.), Chinese University of Hong Kong, China
| | - Xiao Yu Tian
- Heart and Vascular Institute, Shenzhen Research Institute and School of Biomedical Sciences (J.-Y.L., C.K.C., L.H., Y.P., C.W.L., X.Y.T.), Chinese University of Hong Kong, China
| | - Ronald Ching Wan Ma
- Department of Medicine and Therapeutics (R.C.W.M.), Chinese University of Hong Kong, China
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, China (C.K.C., L.H., Y.P., Y.H.)
| |
Collapse
|
27
|
Gou B, Chu X, Xiao Y, Liu P, Zhang H, Gao Z, Song M. Single-Cell Analysis Reveals Transcriptomic Reprogramming in Aging Cardiovascular Endothelial Cells. Front Cardiovasc Med 2022; 9:900978. [PMID: 35615560 PMCID: PMC9124831 DOI: 10.3389/fcvm.2022.900978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
The senescence of cardiovascular endothelial cells (ECs) is a major risk factor in the development of aging-related cardiovascular diseases. However, the molecular dynamics in cardiovascular EC aging are poorly understood. Here, we characterized the transcriptomic landscape of cardiovascular ECs during aging and observed that ribosome biogenesis, inflammation, apoptosis and angiogenesis-related genes and pathways changed with age. We also highlighted the importance of collagen genes in the crosstalk between ECs and other cell types in cardiovascular aging. Moreover, transcriptional regulatory network analysis revealed Jun as a candidate transcription factor involved in murine cardiovascular senescence and we validated the upregulation of Jun in aged cardiovascular ECs both in vitro and in vivo. Altogether, our study reveals the transcriptomic reprogramming in the aging murine cardiovascular ECs, which deepens the understanding of the molecular mechanisms of cardiovascular aging and provides new insights into potential therapeutic targets against age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Bo Gou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Chu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yi Xiao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pinxuan Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zeyu Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Vascular Pathobiology: Atherosclerosis and Large Vessel Disease. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Phyo SA, Uchida K, Chen CY, Caporizzo MA, Bedi K, Griffin J, Margulies K, Prosser BL. Transcriptional, Post-Transcriptional, and Post-Translational Mechanisms Rewrite the Tubulin Code During Cardiac Hypertrophy and Failure. Front Cell Dev Biol 2022; 10:837486. [PMID: 35433678 PMCID: PMC9010559 DOI: 10.3389/fcell.2022.837486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 01/03/2023] Open
Abstract
A proliferated and post-translationally modified microtubule network underlies cellular growth in cardiac hypertrophy and contributes to contractile dysfunction in heart failure. Yet how the heart achieves this modified network is poorly understood. Determining how the "tubulin code"-the permutations of tubulin isoforms and post-translational modifications-is rewritten upon cardiac stress may provide new targets to modulate cardiac remodeling. Further, while tubulin can autoregulate its own expression, it is unknown if autoregulation is operant in the heart or tuned in response to stress. Here we use heart failure patient samples and murine models of cardiac remodeling to interrogate transcriptional, autoregulatory, and post-translational mechanisms that contribute to microtubule network remodeling at different stages of heart disease. We find that autoregulation is operant across tubulin isoforms in the heart and leads to an apparent disconnect in tubulin mRNA and protein levels in heart failure. We also find that within 4 h of a hypertrophic stimulus and prior to cardiac growth, microtubule detyrosination is rapidly induced to help stabilize the network. This occurs concomitant with rapid transcriptional and autoregulatory activation of specific tubulin isoforms and microtubule motors. Upon continued hypertrophic stimulation, there is an increase in post-translationally modified microtubule tracks and anterograde motors to support cardiac growth, while total tubulin content increases through progressive transcriptional and autoregulatory induction of tubulin isoforms. Our work provides a new model for how the tubulin code is rapidly rewritten to establish a proliferated, stable microtubule network that drives cardiac remodeling, and provides the first evidence of tunable tubulin autoregulation during pathological progression.
Collapse
Affiliation(s)
- Sai Aung Phyo
- Department of Genetics and Epigenetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.,Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Keita Uchida
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Christina Yingxian Chen
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Matthew A Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Kenneth Bedi
- Department of Medicine, Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Joanna Griffin
- Department of Medicine, Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Kenneth Margulies
- Department of Medicine, Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
30
|
Ekkert A, Šliachtenko A, Grigaitė J, Burnytė B, Utkus A, Jatužis D. Ischemic Stroke Genetics: What Is New and How to Apply It in Clinical Practice? Genes (Basel) 2021; 13:48. [PMID: 35052389 PMCID: PMC8775228 DOI: 10.3390/genes13010048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
The etiology of ischemic stroke is multifactorial. Although receiving less emphasis, genetic causes make a significant contribution to ischemic stroke genesis, especially in early-onset stroke. Several stroke classification systems based on genetic information corresponding to various stroke phenotypes were proposed. Twin and family history studies, as well as candidate gene approach, are common methods to discover genetic causes of stroke, however, both have their own limitations. Genome-wide association studies and next generation sequencing are more efficient, promising and increasingly used for daily diagnostics. Some monogenic disorders, despite covering only about 7% of stroke etiology, may cause well-known clinical manifestations that include stroke. Polygenic disorders are more frequent, causing about 38% of all ischemic strokes, and their identification is a rapidly developing field of modern stroke genetics. Current advances in human genetics provide opportunity for personalized prevention of stroke and novel treatment possibilities. Genetic risk scores (GRS) and extended polygenic risk scores (PRS) estimate cumulative contribution of known genetic factors to a specific outcome of stroke. Combining those scores with clinical information and risk factor profiles might result in better primary stroke prevention. Some authors encourage the use of stroke gene panels for stroke risk evaluation and further stroke research. Moreover, new biomarkers for stroke genetic causes and novel targets for gene therapy are on the horizon. In this article, we summarize the latest evidence and perspectives of ischemic stroke genetics that could be of interest to the practitioner and useful for day-to-day clinical work.
Collapse
Affiliation(s)
- Aleksandra Ekkert
- Center of Neurology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (J.G.); (D.J.)
| | | | - Julija Grigaitė
- Center of Neurology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (J.G.); (D.J.)
| | - Birutė Burnytė
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (B.B.); (A.U.)
| | - Algirdas Utkus
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (B.B.); (A.U.)
| | - Dalius Jatužis
- Center of Neurology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (J.G.); (D.J.)
| |
Collapse
|
31
|
Kolasa M, Galita G, Majsterek I, Kucharska E, Czerczak K, Wasko J, Becht A, Fraczyk J, Gajda A, Pietrzak L, Szymanski L, Krakowiak A, Draczynski Z, Kolesinska B. Screening of Self-Assembling of Collagen IV Fragments into Stable Structures Potentially Useful in Regenerative Medicine. Int J Mol Sci 2021; 22:13584. [PMID: 34948383 PMCID: PMC8708666 DOI: 10.3390/ijms222413584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the research was to check whether it is possible to use fragments of type IV collagen to obtain, as a result of self-assembling, stable spatial structures that could be used to prepare new materials useful in regenerative medicine. Collagen IV fragments were obtained by using DMT/NMM/TosO- as a coupling reagent. The ability to self-organize and form stable spatial structures was tested by the CD method and microscopic techniques. Biological studies covered: resazurin assay (cytotoxicity assessment) on BJ, BJ-5TA and C2C12 cell lines; an alkaline version of the comet assay (genotoxicity), Biolegend Legendplex human inflammation panel 1 assay (SC cell lines, assessment of the inflammation activity) and MTT test to determine the cytotoxicity of the porous materials based on collagen IV fragments. It was found that out of the pool of 37 fragments (peptides 1-33 and 2.1-2.4) reconstructing the outer sphere of collagen IV, nine fragments (peptides: 2, 4, 5, 6, 14, 15, 25, 26 and 30), as a result of self-assembling, form structures mimicking the structure of the triple helix of native collagens. The stability of spatial structures formed as a result of self-organization at temperatures of 4 °C, 20 °C, and 40 °C was found. The application of the MST method allowed us to determine the Kd of binding of selected fragments of collagen IV to ITGα1β1. The stability of the spatial structures of selected peptides made it possible to obtain porous materials based on their equimolar mixture. The formation of the porous materials was found for cross-linked structures and the material stabilized only by weak interactions. All tested peptides are non-cytotoxic against all tested cell lines. Selected peptides also showed no genotoxicity and no induction of immune system responses. Research on the use of porous materials based on fragments of type IV collagen, able to form stable spatial structures as scaffolds useful in regenerative medicine, will be continued.
Collapse
Affiliation(s)
- Marcin Kolasa
- General Command of the Polish Armed Forces, Medical Division, Zwirki i Wigury 103/105, 00-912 Warsaw, Poland;
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (G.G.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (G.G.); (I.M.)
| | - Ewa Kucharska
- Department Geriatrics and Social Work, Jesuit University Ignatianum in Cracow, Kopernika 26, 31-501 Krakow, Poland;
| | - Katarzyna Czerczak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Angelika Becht
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Anna Gajda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Lukasz Pietrzak
- Institute of Mechatronics and Information Systems, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland; (L.P.); (L.S.)
| | - Lukasz Szymanski
- Institute of Mechatronics and Information Systems, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland; (L.P.); (L.S.)
| | - Agnieszka Krakowiak
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Zbigniew Draczynski
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| |
Collapse
|
32
|
Gama Sosa MA, De Gasperi R, Pryor D, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Hogg S, Ache B, Janssen WG, Sowa A, Tetreault T, Cook DG, Tappan SJ, Gandy S, Hof PR, Ahlers ST, Elder GA. Low-level blast exposure induces chronic vascular remodeling, perivascular astrocytic degeneration and vascular-associated neuroinflammation. Acta Neuropathol Commun 2021; 9:167. [PMID: 34654480 PMCID: PMC8518227 DOI: 10.1186/s40478-021-01269-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023] Open
Abstract
Cerebral vascular injury as a consequence of blast-induced traumatic brain injury is primarily the result of blast wave-induced mechanical disruptions within the neurovascular unit. In rodent models of blast-induced traumatic brain injury, chronic vascular degenerative processes are associated with the development of an age-dependent post-traumatic stress disorder-like phenotype. To investigate the evolution of blast-induced chronic vascular degenerative changes, Long-Evans rats were blast-exposed (3 × 74.5 kPa) and their brains analyzed at different times post-exposure by X-ray microcomputed tomography, immunohistochemistry and electron microscopy. On microcomputed tomography scans, regional cerebral vascular attenuation or occlusion was observed as early as 48 h post-blast, and cerebral vascular disorganization was visible at 6 weeks and more accentuated at 13 months post-blast. Progression of the late-onset pathology was characterized by detachment of the endothelial and smooth muscle cellular elements from the neuropil due to degeneration and loss of arteriolar perivascular astrocytes. Development of this pathology was associated with vascular remodeling and neuroinflammation as increased levels of matrix metalloproteinases (MMP-2 and MMP-9), collagen type IV loss, and microglial activation were observed in the affected vasculature. Blast-induced chronic alterations within the neurovascular unit should affect cerebral blood circulation, glymphatic flow and intramural periarterial drainage, all of which may contribute to development of the blast-induced behavioral phenotype. Our results also identify astrocytic degeneration as a potential target for the development of therapies to treat blast-induced brain injury.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Georgina S Perez Garcia
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Seth Hogg
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - Benjamin Ache
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - William G Janssen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Allison Sowa
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - David G Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA, 98108, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Susan J Tappan
- MBF Bioscience LLC, 185 Allen Brook Lane, Williston, VT, 05495, USA
| | - Sam Gandy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Gregory A Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| |
Collapse
|
33
|
Steffensen LB, Iversen XES, Hansen RS, Jensen PS, Thorsen ASF, Lindholt JS, Riber LPS, Beck HC, Rasmussen LM. Basement membrane proteins in various arterial beds from individuals with and without type 2 diabetes mellitus: a proteome study. Cardiovasc Diabetol 2021; 20:182. [PMID: 34496837 PMCID: PMC8428091 DOI: 10.1186/s12933-021-01375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Basement membrane (BM) accumulation is a hallmark of micro-vessel disease in diabetes mellitus (DM). We previously reported marked upregulation of BM components in internal thoracic arteries (ITAs) from type 2 DM (T2DM) patients by mass spectrometry. Here, we first sought to determine if BM accumulation is a common feature of different arteries in T2DM, and second, to identify other effects of T2DM on the arterial proteome. METHODS Human arterial samples collected during heart and vascular surgery from well-characterized patients and stored in the Odense Artery Biobank were analysed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We included ascending thoracic aortas (ATA) (n = 10 (type 2 DM, T2DM) and n = 10 (non-DM)); laser capture micro-dissected plaque- and media compartments from carotid plaques (n = 10 (T2DM) and n = 9 (non-DM)); and media- and adventitia compartments from ITAs (n = 9 (T2DM) and n = 7 (non-DM)). RESULTS We first extended our previous finding of BM accumulation in arteries from T2DM patients, as 7 of 12 pre-defined BM proteins were significantly upregulated in bulk ATAs consisting of > 90% media. Although less pronounced, BM components tended to be upregulated in the media of ITAs from T2DM patients, but not in the neighbouring adventitia. Overall, we did not detect effects on BM proteins in carotid plaques or in the plaque-associated media. Instead, complement factors, an RNA-binding protein and fibrinogens appeared to be regulated in these tissues from T2DM patients. CONCLUSION Our results suggest that accumulation of BM proteins is a general phenomenon in the medial layer of non-atherosclerotic arteries in patients with T2DM. Moreover, we identify additional T2DM-associated effects on the arterial proteome, which requires validation in future studies.
Collapse
Affiliation(s)
- Lasse Bach Steffensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark.,Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark.,Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Xenia Emilie Sinding Iversen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark.,Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Rasmus Søgaard Hansen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark.,Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Pia Søndergaard Jensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark.,Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Anne-Sofie Faarvang Thorsen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark.,Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Jes Sanddal Lindholt
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark.,Department of Cardiac, Thoracic, and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Lars Peter Schødt Riber
- Department of Cardiac, Thoracic, and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark.,Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark. .,Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark.
| |
Collapse
|
34
|
Li T, Ling Z, Xie K, Wang Y, Miao Z, Ji X, Li J, Hou W, Tang Q, Yuan X, Li N, Li C, Ding H. The COL-4A1 polypeptide destroy endothelial cells through the TGF-β/PI3K/AKT pathway. Sci Rep 2021; 11:15761. [PMID: 34344927 PMCID: PMC8333066 DOI: 10.1038/s41598-021-94801-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Preeclampsia (PE) is commonly considered as a placental disorder in pregnancy. Until now, the etiology and pathological mechanism of PE have remained ambiguous. Although PE can lead to a variety of maternal and infant complications, there are still no effective treatments. This study aimed to explore the correlation between the novel polypeptide COL-4A1 and PE, and to identify the underlying mechanism by which this polypeptide may function and to explore new therapeutic targets for PE. A rat model of PE was established and used to verify the function of the polypeptide COL-4A1 in vivo. Additionally, human umbilical vascular endothelial cells (HUVECs) were cultured with or without COL-4A1 and TNF-α (20 ng/ml). Cell Counting Kit-8 (CCK-8), wound-healing, Transwell and tube formation assays were used to evaluate cell proliferation, migration and angiopoiesis. RNA sequencing and mass spectrometry were conducted to explore the underlying downstream mechanism of COL-4A1. In vivo, COL-4A1 increased blood pressure and elevated the risk of fetal growth restriction (FGR) which was induced by lipopolysaccharide (LPS) in the rat model. In vitro, COL-4A1 significantly inhibited the proliferation and migration of HUVECs. After culture with COL-4A1, compared to control group the adhesive ability and level of reactive oxygen species (ROS) were enhanced and tube formation ability was decreased. Furthermore, Western blotting (WB) and pull-down assays were conducted to explore the underlying mechanism by which COL-4A1 functions, and the TGF-β/PI3K/AKT pathway was identified as the potential pathway involved in its effects. In summary, these results revealed that the polypeptide COL-4A1 caused PE-like symptoms in cells and a rat model. Through the TGF-β/PI3K/AKT pathway, COL-4A1 interferes with the pathogenesis of PE. Thus COL-4A1 is expected to become a potential target of PE, providing a basis for exploring the treatment of PE.
Collapse
Affiliation(s)
- Ting Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Zhonghui Ling
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Kaipeng Xie
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Yixiao Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijing Miao
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaohong Ji
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Jingyun Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Hou
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Qiuqin Tang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojie Yuan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Nan Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Chanjuan Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China.
| | - Hongjuan Ding
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
35
|
Song Y, Kwon B, Al-Abdulwahhab AH, Nam YK, Ahn Y, Jeong SY, Seo EJ, Lee JK, Suh DC. Rare Neurovascular Diseases in Korea: Classification and Related Genetic Variants. Korean J Radiol 2021; 22:1379-1396. [PMID: 34047503 PMCID: PMC8316781 DOI: 10.3348/kjr.2020.1171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/07/2020] [Accepted: 01/23/2021] [Indexed: 01/19/2023] Open
Abstract
Rare neurovascular diseases (RNVDs) have not been well-recognized in Korea. They involve the central nervous system and greatly affect the patients' lives. However, these diseases are difficult to diagnose and treat due to their rarity and incurability. We established a list of RNVDs by referring to the previous literature and databases worldwide to better understand the diseases and their current management status. We categorized 68 RNVDs based on their pathophysiology and clinical manifestations and estimated the prevalence of each disease in Korea. Recent advances in genetic, molecular, and developmental research have enabled further understanding of these RNVDs. Herein, we review each disease, while considering its classification based on updated pathologic mechanisms, and discuss the management status of RNVD in Korea.
Collapse
Affiliation(s)
- Yunsun Song
- Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Boseong Kwon
- Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Abdulrahman Hamed Al-Abdulwahhab
- Department of Diagnostic and Interventional Radiology, Imam Abdulrahman Bin Faisal University, King Fahd Hospital of the University, Al-Khobar City, Eastern Province, Saudi Arabia
| | - Yeo Kyoung Nam
- Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yura Ahn
- Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - So Yeong Jeong
- Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul Ju Seo
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Keuk Lee
- Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae Chul Suh
- Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
36
|
Melnikov VN, Kim LB, Putyatina AN, Krivoschekov SG. Association of Circulating Extracellular Matrix Components with Central Hemodynamics and Arterial Distensibility of Peripheral Arteries. J Vasc Res 2021; 58:370-378. [PMID: 34252903 DOI: 10.1159/000516841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In addition to neuronal and endothelial regulators of vascular tone, the passive mechanical properties of arteries, determined by the molecular structure of extracellular matrices, are the principle modulators of vascular distensibility. Specifically, the association between collagen type IV (Col IV), a constituent of basement membrane, and arterial compliance remains unclear. METHODS In 31 healthy adult men, radial applanation tonometry and pulse wave analysis were used to assess aortic augmentation index (AIx), aortic-to-radial pulse pressure amplification (PPAmpl), and time to reflection wave. RESULTS Plasma Col IV and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) concentrations were correlated with AIx (r = 0.51, p = 0.021 and r = -0.45, p = 0.042, respectively) after adjustment for age and heart rate (HR). Greater matrix metalloproteinase-9 (MMP-9) and TIMP-1 levels were associated with high PPAmpl (r = 0.45 and r = 0.64, respectively) and hence with compliant arteries. Multiple regression analyses revealed that 99% of the variation in PPAmpl was attributable to age, HR, Col IV, TIMP-1, and Col × TIMP-1 interaction (p < 0.001). No relations between tonometric variables and levels of MMP-1, -2, and -3; TIMP-2 and -4; fibronectin; glycosaminoglycans; and hydroxyproline were found. CONCLUSION High circulating Col IV level indexes were associated with stiffer peripheral arteries whereas increased MMP-9 and TIMP-1 concentrations were associated with more compliant ones.
Collapse
Affiliation(s)
- Vladimir N Melnikov
- Laboratory of Functional Reserves of an Organism, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russian Federation
| | - Lena B Kim
- Group of Connective Tissue Biochemistry, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russian Federation
| | - Anna N Putyatina
- Group of Connective Tissue Biochemistry, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russian Federation
| | - Sergey G Krivoschekov
- Laboratory of Functional Reserves of an Organism, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russian Federation
| |
Collapse
|
37
|
Yang M, Liu X, Jiang M, Li J, Tang Y, Zhou L. miR-543 in human mesenchymal stem cell-derived exosomes promotes cardiac microvascular endothelial cell angiogenesis after myocardial infarction through COL4A1. IUBMB Life 2021; 73:927-940. [PMID: 33890394 DOI: 10.1002/iub.2474] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
To explore the impact and mechanism of human mesenchymal stem cells (hMSCs) on the angiogenesis of cardiac microvascular endothelial cells (CMECs) after ischemia insult. Exosomes derived from hMSCs (hMSCs-Exo) were identified by Western blotting and labeled by PHK-67. CMECs were isolated from rat myocardial tissues. After hypoxic treatment, CMECs were cultured with hMSCs and exosome inhibitor (GW4869) or transfected with si-COL4A1 + miR-543 inhibitor. CMEC proliferation, migration, invasion, and angiogenesis were examined. Target genes of miR-543 were predicted and then were identified by dual luciferase assay. Myocardial infarction (MI) rat model established by suture occlusion was intravenously injected with hMSCs-Exo. Fluorescence microscope was applied to visualize exosomes in myocardial tissues. Infarction volume and pathologies of myocardial tissues were observed. Ki-67 and miR-543 expressions were detected. The isolated hMSC-Exo expressed TSG101, HSP70, and CD63. Hypoxia-treated CMECs cultured with hMSCs exhibited high proliferation, migration, invasion, and angiogenesis ability, while incubation with exosome inhibitor GW4969 offset the promoting effects of hMSCs on the proliferation, migration, invasion, and angiogenesis of CMECs. hMSCs transfected with miR-543 inhibitor brought CMECs weak viability and angiogenesis ability. CMECs transfected with si-COL4A1 and miR-543 inhibitor showed low proliferation, migration, invasion, and angiogenesis compared to those transfected with si-COL4A1 alone. hMSCs-Exo entered the myocardial tissues of MI rats. Injection of hMSCs-Exo in MI rats diminished infarction size, attenuated MI-induced injuries, and increased Ki-67 expression. hMSCs-Exo facilitates the proliferation, migration, invasion, and angiogenesis of CMECs through transferring miR-543 and downregulating COL4A1 expression.
Collapse
Affiliation(s)
- Mei Yang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, Changsha, China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, Changsha, China
| | - Jian Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yaping Tang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Basement membrane collagen IV deficiency promotes abdominal aortic aneurysm formation. Sci Rep 2021; 11:12903. [PMID: 34145342 PMCID: PMC8213747 DOI: 10.1038/s41598-021-92303-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a complex disease which is incompletely accounted for. Basement membrane (BM) Collagen IV (COL4A1/A2) is abundant in the artery wall, and several lines of evidence indicate a protective role of baseline COL4A1/A2 in AAA development. Using Col4a1/a2 hemizygous knockout mice (Col4a1/a2+/-, 129Svj background) we show that partial Col4a1/a2 deficiency augmented AAA formation. Although unchallenged aortas were morphometrically and biomechanically unaffected by genotype, explorative proteomic analyses of aortas revealed a clear reduction in BM components and contractile vascular smooth muscle cell (VSMC) proteins, suggesting a central effect of the BM in maintaining VSMCs in the contractile phenotype. These findings were translated to human arteries by showing that COL4A1/A2 correlated to BM proteins and VSMC markers in non-lesioned internal mammary arteries obtained from coronary artery bypass procedures. Moreover, in human AAA tissue, MYH11 (VSMC marker) was depleted in areas of reduced COL4 as assessed by immunohistochemistry. Finally, circulating COL4A1 degradation fragments correlated with AAA progression in the largest Danish AAA cohort, suggesting COL4A1/A2 proteolysis to be an important feature of AAA formation. In sum, we identify COL4A1/A2 as a critical regulator of VSMC phenotype and a protective factor in AAA formation.
Collapse
|
39
|
Yari A, Saleh-Gohari N, Mirzaee M, Hashemi F, Saeidi K. A Study of Associations Between rs9349379 (PHACTR1), rs2891168 (CDKN2B-AS), rs11838776 (COL4A2) and rs4880 (SOD2) Polymorphic Variants and Coronary Artery Disease in Iranian Population. Biochem Genet 2021; 60:106-126. [PMID: 34109516 DOI: 10.1007/s10528-021-10089-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022]
Abstract
Recent genome-wide association studies reported the association of polymorphic alleles of PHACTR1 (rs9349379 (G)), CDDKN2B-AS1 (rs2891168 (G)), COL4A2 (rs11838776 (A)) and SOD2 (rs4880 (T)) with increased risk of coronary artery disease (CAD). The aim of our study was to assess the association of genetic variants with risk of CAD and its severity and in Southeast Iranian population. This study was examined in 250 CAD-suspected patients (mean age 53.49 ± 6.9 years) and 250 healthy individuals (mean age 52.96 ± 5.9 years). The Taqman SNP genotyping assay was used for genotyping of rs9349379 and rs2891168 variants. Tetra-primer Amplified refractory mutation system-PCR (Tetra-primer ARMS-PCR) was employed for rs11838776 and rs4880. Multivariate logistic regression analyses indicated that the G allele of rs9349379 and rs2891168 were associated with increased risk of CAD. The GG homozygous genotype of rs9349379 and rs2891168 had also been associated with risk of CAD. Additionally, the AG genotype of rs2891168 was associated with CAD. The significance of association of rs2891168 (G, GG, AG) increases with severity of CAD; but the rs9349379 (G, GG) have shown reverse association with severity of CAD. The genetic variants of COL4A2 (rs11838776) and SOD2 (rs4880) reflected no association with CAD in Southeast Iranian population. The findings of this study revealed that the PHACTR1 (rs9349379) and CDKN2B-AS1 (rs2891168) genetic variants might serve as genetic risk factor in CAD.
Collapse
Affiliation(s)
- Abolfazl Yari
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Department of Medical Genetics, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nasrollah Saleh-Gohari
- Department of Medical Genetics, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Moghaddameh Mirzaee
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Hashemi
- Department of Medical Genetics, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Student Research Committee, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Kolsoum Saeidi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Medical Genetics, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
40
|
Suissa L, Guigonis JM, Graslin F, Robinet-Borgomano E, Chau Y, Sedat J, Lindenthal S, Pourcher T. Combined Omic Analyzes of Cerebral Thrombi: A New Molecular Approach to Identify Cardioembolic Stroke Origin. Stroke 2021; 52:2892-2901. [PMID: 34015939 DOI: 10.1161/strokeaha.120.032129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Laurent Suissa
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), Nice, France (L.S., J.-M.G., F.G., S.L., T.P.).,Stroke Unit (L.S.), University Hospital, Nice, France.,Stroke Unit, University Hospital, Marseille, France (L.S., E.R.-B.)
| | - Jean-Marie Guigonis
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), Nice, France (L.S., J.-M.G., F.G., S.L., T.P.)
| | - Fanny Graslin
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), Nice, France (L.S., J.-M.G., F.G., S.L., T.P.)
| | | | - Yves Chau
- Interventional Radiology Unit (Y.C., J.S.), University Hospital, Nice, France
| | - Jacques Sedat
- Interventional Radiology Unit (Y.C., J.S.), University Hospital, Nice, France
| | - Sabine Lindenthal
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), Nice, France (L.S., J.-M.G., F.G., S.L., T.P.)
| | - Thierry Pourcher
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), Nice, France (L.S., J.-M.G., F.G., S.L., T.P.)
| |
Collapse
|
41
|
Kostov K, Blazhev A. Serum Anti-Collagen IV IgM and IgG Antibodies as Indicators of Low Vascular Turnover of Collagen IV in Patients with Long-Term Complications of Type 2 Diabetes. Diagnostics (Basel) 2021; 11:900. [PMID: 34069322 PMCID: PMC8158678 DOI: 10.3390/diagnostics11050900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022] Open
Abstract
Thickening of the vascular basement membrane (BM) is a fundamental structural change in the small blood vessels in diabetes. Collagen type IV (CIV) is a major component of the BMs, and monitoring the turnover of this protein in type 2 diabetes (T2D) can provide important information about the mechanisms of vascular damage. The aim of the study was through the use of non-invasive biomarkers of CIV (autoantibodies, derivative peptides, and immune complexes) to investigate vascular turnover of CIV in patients with long-term complications of T2D. We measured serum levels of these biomarkers in 59 T2D patients with micro- and/or macrovascular complications and 20 healthy controls using an ELISA. Matrix metalloproteinases-2 and -9 (MMP-2 and MMP-9) were also tested. In the T2D group, significantly lower levels of CIV markers and significantly higher levels of MMP-2 and MMP-9 were found compared to controls. A significant positive correlation was found between IgM antibody levels against CIV and MMP-2. These findings suggest that vascular metabolism of CIV is decreased in T2D with long-term complications and show that a positive linear relationship exists between MMP-2 levels and CIV turnover in the vascular wall.
Collapse
Affiliation(s)
- Krasimir Kostov
- Department of Pathophysiology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria
| | - Alexander Blazhev
- Department of Biology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria;
| |
Collapse
|
42
|
Kato B, Wisser G, Agrawal DK, Wood T, Thankam FG. 3D bioprinting of cardiac tissue: current challenges and perspectives. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:54. [PMID: 33956236 PMCID: PMC8102287 DOI: 10.1007/s10856-021-06520-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/30/2021] [Indexed: 05/02/2023]
Abstract
Demand for donor hearts has increased globally due to cardiovascular diseases. Recently, three-dimensional (3D) bioprinting technology has been aimed at creating clinically viable cardiac constructs for the management of myocardial infarction (MI) and associated complications. Advances in 3D bioprinting show promise in aiding cardiac tissue repair following injury/infarction and offer an alternative to organ transplantation. This article summarizes the basic principles of 3D bioprinting and recent attempts at reconstructing functional adult native cardiac tissue with a focus on current challenges and prospective strategies.
Collapse
Affiliation(s)
- Brian Kato
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Gary Wisser
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Tim Wood
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
43
|
Altered Vascular Extracellular Matrix in the Pathogenesis of Atherosclerosis. J Cardiovasc Transl Res 2021; 14:647-660. [PMID: 33420681 DOI: 10.1007/s12265-020-10091-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease continues to grow as a massive global health burden, with coronary artery disease being one of its most lethal varieties. The pathogenesis of atherosclerosis induces changes in the blood vessel and its extracellular matrix (ECM) in each vascular layer. The alteration of the ECM homeostasis has significant modulatory effects on the inflammatory response, the proliferation and migration of vascular smooth muscle cells, neointimal formation, and vascular fibrosis seen in atherosclerosis. In this literature review, the role of the ECM, the multitude of components, and alterations to these components in the pathogenesis of atherosclerosis are discussed with a focus on versatile cellular phenotypes in the structure of blood vessel. An understanding of the various effects of ECM alterations opens up a plethora of therapeutic options that would mitigate the substantial health toll of atherosclerosis on the global population.
Collapse
|
44
|
Murphy PA, Jailkhani N, Nicholas SA, Del Rosario AM, Balsbaugh JL, Begum S, Kimble A, Hynes RO. Alternative Splicing of FN (Fibronectin) Regulates the Composition of the Arterial Wall Under Low Flow. Arterioscler Thromb Vasc Biol 2021; 41:e18-e32. [PMID: 33207933 PMCID: PMC8428803 DOI: 10.1161/atvbaha.120.314013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Exposure of the arterial endothelium to low and disturbed flow is a risk factor for the erosion and rupture of atherosclerotic plaques and aneurysms. Circulating and locally produced proteins are known to contribute to an altered composition of the extracellular matrix at the site of lesions, and to contribute to inflammatory processes within the lesions. We have previously shown that alternative splicing of FN (fibronectin) protects against flow-induced hemorrhage. However, the impact of alternative splicing of FN on extracellular matrix composition remains unknown. Approach and Results: Here, we perform quantitative proteomic analysis of the matrisome of murine carotid arteries in mice deficient in the production of FN splice isoforms containing alternative exons EIIIA and EIIIB (FN-EIIIAB null) after exposure to low and disturbed flow in vivo. We also examine serum-derived and endothelial-cell contributions to the matrisome in a simplified in vitro system. We found flow-induced differences in the carotid artery matrisome that were impaired in FN-EIIIAB null mice. One of the most interesting differences was reduced recruitment of FBLN1 (fibulin-1), abundant in blood and not locally produced in the intima. This defect was validated in our in vitro assay, where FBLN1 recruitment from serum was impaired by the absence of these alternatively spliced segments. CONCLUSIONS Our results reveal the extent of the dynamic alterations in the matrisome in the acute response to low and disturbed flow and show how changes in the splicing of FN, a common response in vascular inflammation and remodeling, can affect matrix composition.
Collapse
Affiliation(s)
- Patrick A. Murphy
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- UCONN Health, Farmington, CT 06030
| | - Noor Jailkhani
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
| | | | | | | | - Shahinoor Begum
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | | | - Richard O. Hynes
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
45
|
Angbohang A, Huang L, Li Y, Zhao Y, Gong Y, Fu Y, Mao C, Morales J, Luo P, Ehteramyan M, Gao Y, Margariti A, Gu W, Zhang M, Smith A, Shah AM, Li T, Kong W, Zeng L. X-box binding protein 1-mediated COL4A1s secretion regulates communication between vascular smooth muscle and stem/progenitor cells. J Biol Chem 2021; 296:100541. [PMID: 33722606 PMCID: PMC8063738 DOI: 10.1016/j.jbc.2021.100541] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) contribute to the deposition of extracellular matrix proteins (ECMs), including Type IV collagen, in the vessel wall. ECMs coordinate communication among different cell types, but mechanisms underlying this communication remain unclear. Our previous studies have demonstrated that X-box binding protein 1 (XBP1) is activated and contributes to VSMC phenotypic transition in response to vascular injury. In this study, we investigated the participation of XBP1 in the communication between VSMCs and vascular progenitor cells (VPCs). Immunofluorescence and immunohistology staining revealed that Xbp1 gene was essential for type IV collagen alpha 1 (COL4A1) expression during mouse embryonic development and vessel wall ECM deposition and stem cell antigen 1-positive (Sca1+)-VPC recruitment in response to vascular injury. The Western blot analysis elucidated an Xbp1 gene dose-dependent effect on COL4A1 expression and that the spliced XBP1 protein (XBP1s) increased protease-mediated COL4A1 degradation as revealed by Zymography. RT-PCR analysis revealed that XBP1s in VSMCs not only upregulated COL4A1/2 transcription but also induced the occurrence of a novel transcript variant, soluble type IV collagen alpha 1 (COL4A1s), in which the front part of exon 4 is joined with the rear part of exon 42. Chromatin-immunoprecipitation, DNA/protein pulldown and in vitro transcription demonstrated that XBP1s binds to exon 4 and exon 42, directing the transcription from exon 4 to exon 42. This leads to transcription complex bypassing the internal sequences, producing a shortened COL4A1s protein that increased Sca1+-VPC migration. Taken together, these results suggest that activated VSMCs may recruit Sca1+-VPCs via XBP1s-mediated COL4A1s secretion, leading to vascular injury repair or neointima formation.
Collapse
Affiliation(s)
- Angshumonik Angbohang
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Lei Huang
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK; Department of Heart Center, Tianjin Third Central Hospital, Tianjin, P.R. China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, P.R. China
| | - Yi Li
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Yue Zhao
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK; Department of Heart Center, Tianjin Third Central Hospital, Tianjin, P.R. China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, P.R. China
| | - Yijie Gong
- The Third Central Clinical College of Tianjin Medical University, Tianjin, P.R. China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P.R. China
| | - Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P.R. China
| | - Jose Morales
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Peiyi Luo
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Mazdak Ehteramyan
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, P.R. China; Tianjin Institute of Hepatobiliary Disease, the Third Affiliated Hospital of Nankai University, Tianjin, P.R. China
| | - Andriana Margariti
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Wenduo Gu
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Min Zhang
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Alberto Smith
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Tong Li
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, P.R. China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, P.R. China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P.R. China.
| | - Lingfang Zeng
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK.
| |
Collapse
|
46
|
Abstract
The glomerular filtration barrier is a highly specialized capillary wall comprising fenestrated endothelial cells, podocytes, and an intervening basement membrane. In glomerular disease, this barrier loses functional integrity, allowing the passage of macromolecules and cells, and there are associated changes in both cell morphology and the extracellular matrix. Over the past 3 decades, there has been a transformation in our understanding about glomerular disease, fueled by genetic discovery, and this is leading to exciting advances in our knowledge about glomerular biology and pathophysiology. In current clinical practice, a genetic diagnosis already has important implications for management, ranging from estimating the risk of disease recurrence post-transplant to the life-changing advances in the treatment of atypical hemolytic uremic syndrome. Improving our understanding about the mechanistic basis of glomerular disease is required for more effective and personalized therapy options. In this review, we describe genotype and phenotype correlations for genetic disorders of the glomerular filtration barrier, with a particular emphasis on how these gene defects cluster by both their ontology and patterns of glomerular pathology.
Collapse
Affiliation(s)
- Anna S. Li
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Department of Nephrology, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jack F. Ingham
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Rachel Lennon
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
47
|
Vaisar T, Hu JH, Airhart N, Fox K, Heinecke J, Nicosia RF, Kohler T, Potter ZE, Simon GM, Dix MM, Cravatt BF, Gharib SA, Dichek DA. Parallel Murine and Human Plaque Proteomics Reveals Pathways of Plaque Rupture. Circ Res 2020; 127:997-1022. [PMID: 32762496 PMCID: PMC7508285 DOI: 10.1161/circresaha.120.317295] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE Plaque rupture is the proximate cause of most myocardial infarctions and many strokes. However, the molecular mechanisms that precipitate plaque rupture are unknown. OBJECTIVE By applying proteomic and bioinformatic approaches in mouse models of protease-induced plaque rupture and in ruptured human plaques, we aimed to illuminate biochemical pathways through which proteolysis causes plaque rupture and identify substrates that are cleaved in ruptured plaques. METHODS AND RESULTS We performed shotgun proteomics analyses of aortas of transgenic mice with macrophage-specific overexpression of urokinase (SR-uPA+/0 mice) and of SR-uPA+/0 bone marrow transplant recipients, and we used bioinformatic tools to evaluate protein abundance and functional category enrichment in these aortas. In parallel, we performed shotgun proteomics and bioinformatics studies on extracts of ruptured and stable areas of freshly harvested human carotid plaques. We also applied a separate protein-analysis method (protein topography and migration analysis platform) to attempt to identify substrates and proteolytic fragments in mouse and human plaque extracts. Approximately 10% of extracted aortic proteins were reproducibly altered in SR-uPA+/0 aortas. Proteases, inflammatory signaling molecules, as well as proteins involved with cell adhesion, the cytoskeleton, and apoptosis, were increased. ECM (Extracellular matrix) proteins, including basement-membrane proteins, were decreased. Approximately 40% of proteins were altered in ruptured versus stable areas of human carotid plaques, including many of the same functional categories that were altered in SR-uPA+/0 aortas. Collagens were minimally altered in SR-uPA+/0 aortas and ruptured human plaques; however, several basement-membrane proteins were reduced in both SR-uPA+/0 aortas and ruptured human plaques. Protein topography and migration analysis platform did not detect robust increases in proteolytic fragments of ECM proteins in either setting. CONCLUSIONS Parallel studies of SR-uPA+/0 mouse aortas and human plaques identify mechanisms that connect proteolysis with plaque rupture, including inflammation, basement-membrane protein loss, and apoptosis. Basement-membrane protein loss is a prominent feature of ruptured human plaques, suggesting a major role for basement-membrane proteins in maintaining plaque stability.
Collapse
Affiliation(s)
- Tomáš Vaisar
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Jie H Hu
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Nathan Airhart
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Kate Fox
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Jay Heinecke
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Roberto F Nicosia
- Departments of Pathology and Laboratory Medicine (D.A.D., R.F.N.), University of Washington, Seattle.,Departments of Pathology and Laboratory Medicine (R.F.N.), VA Puget Sound Health Care System, Seattle, WA
| | - Ted Kohler
- Departments of Surgery (T.K.), University of Washington, Seattle.,Departments of Surgery (T.K.), VA Puget Sound Health Care System, Seattle, WA
| | - Zachary E Potter
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | | | - Melissa M Dix
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | - Sina A Gharib
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - David A Dichek
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle.,Departments of Pathology and Laboratory Medicine (D.A.D., R.F.N.), University of Washington, Seattle
| |
Collapse
|
48
|
Lacey M, Baribault C, Ehrlich KC, Ehrlich M. Atherosclerosis-associated differentially methylated regions can reflect the disease phenotype and are often at enhancers. Atherosclerosis 2018; 280:183-191. [PMID: 30529831 DOI: 10.1016/j.atherosclerosis.2018.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/05/2018] [Accepted: 11/22/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a widespread and complicated disease involving phenotypic modulation and transdifferentiation of vascular smooth muscle cells (SMCs), the predominant cells in aorta, as well as changes in endothelial cells and infiltrating monocytes. Alterations in DNA methylation are likely to play central roles in these phenotypic changes, just as they do in normal differentiation and cancer. METHODS We examined genome-wide DNA methylation changes in atherosclerotic aorta using more stringent criteria for differentially methylated regions (DMRs) than in previous studies and compared these DMRs to tissue-specific epigenetic features. RESULTS We found that disease-linked hypermethylated DMRs account for 85% of the total atherosclerosis-associated DMRs and often overlap aorta-associated enhancer chromatin. These hypermethylated DMRs were associated with functionally different sets of genes compared to atherosclerosis-linked hypomethylated DMRs. The extent and nature of the DMRs could not be explained as direct effects of monocyte/macrophage infiltration. Among the known atherosclerosis- and contractile SMC-related genes that exhibited hypermethylated DMRs at aorta enhancer chromatin were ACTA2 (aorta α2 smooth muscle actin), ELN (elastin), MYOCD (myocardin), C9orf3 (miR-23b and miR-27b host gene), and MYH11 (smooth muscle myosin). Our analyses also suggest a role in atherosclerosis for developmental transcription factor genes having little or no previous association with atherosclerosis, such as NR2F2 (COUP-TFII) and TBX18. CONCLUSIONS We provide evidence for atherosclerosis-linked DNA methylation changes in aorta SMCs that might help minimize or reverse the standard contractile character of many of these cells by down-modulating aorta SMC-related enhancers, thereby facilitating pro-atherosclerotic phenotypic changes in many SMCs.
Collapse
Affiliation(s)
- Michelle Lacey
- Tulane Cancer Center, Tulane University Health Sciences Center, LA, 70112, USA; Department of Mathematics, Tulane University, New Orleans, LA, 70118, USA
| | - Carl Baribault
- Tulane Cancer Center, Tulane University Health Sciences Center, LA, 70112, USA
| | - Kenneth C Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, USA
| | - Melanie Ehrlich
- Tulane Cancer Center, Tulane University Health Sciences Center, LA, 70112, USA; Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, USA; Hayward Genetics Center, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
49
|
Bloksgaard M, Lindsey M, Martinez-Lemus LA. Extracellular matrix in cardiovascular pathophysiology. Am J Physiol Heart Circ Physiol 2018; 315:H1687-H1690. [PMID: 30239231 DOI: 10.1152/ajpheart.00631.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) actively participates in diverse aspects of cardiovascular development and physiology as well as during disease development and progression. ECM roles are determined by its physical and mechanical properties and by its capacity to both release bioactive signals and activate cell signaling pathways. The ECM serves as a storage depot for a wide variety of molecules released in response to injury or with aging. Indeed, there is a plethora of examples describing how cells react to or modify ECM stiffness, how cells initiate intracellular signaling pathways, and how cells respond to the ECM. This Perspectives article reviews the contributions of 21 articles published in the American Journal of Physiology-Heart and Circulatory Physiology in response to a Call for Papers on this topic. Here, we summarize the contributions of these studies focused on the cardiac and vascular ECM. We highlight the translational importance of these studies and conclude that the ECM is a critical component of both the heart and vasculature. Readers are urged to examine and learn from this special Call for Papers.
Collapse
Affiliation(s)
- Maria Bloksgaard
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark
| | - Merry Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| |
Collapse
|