1
|
Çakir MU, Karduz G, Aksu U. Experimental and clinical perspectives on glycocalyx integrity and its relation to acute respiratory distress syndrome. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167745. [PMID: 39987847 DOI: 10.1016/j.bbadis.2025.167745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/02/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
The development of microcirculation imaging devices has significantly advanced our comprehension of the capillary environment's dynamics. Early research suggested that erythrocytes did not contact the vessel's inner surface due to the Fåhraeus effect, implying the presence of a covering on the endothelial cell surface. Subsequent electron microscopy studies revealed this layer to be a complex part of the vessel wall, now known as the endothelial glycocalyx (EG). The EG is a network of proteoglycans and glycoproteins bound to the endothelial membrane, incorporating soluble molecules from the endothelium and plasma. Over time, studies have elucidated the structure, function, and therapeutic targets of the glycocalyx, underscoring its pivotal role in vascular biology. The presence of cellular extensions of lung tissue cells in both vascular and nonvascular areas demonstrates the pivotal role of the glycocalyx in pulmonary vascular leak, surfactant dysfunction, impaired lung compliance and gas exchange abnormalities, which are hallmarks of acute respiratory distress syndrome (ARDS). It is of the utmost importance to elucidate the mechanisms underlying alveolocapillary glycocalyx degradation to develop efficacious treatments for ARDS, which has a mortality rate of 35 %. An understanding of the glycocalyx's role in vascular integrity provides a foundation for exploring new therapeutic avenues to mitigate lung injury and improve clinical outcomes in ARDS patients.
Collapse
Affiliation(s)
- Muzaffer Utku Çakir
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Gülsüm Karduz
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Ugur Aksu
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye.
| |
Collapse
|
2
|
Costa FC, Silva BR, Filho FFC, Bezerra VS, Azevedo VAN, Silva AA, Silva JRV. Ascorbic acid and resveratrol improve the structural integrity of the extracellular matrix and enhance follicular survival in cultured bovine ovarian tissue. Theriogenology 2025; 235:231-244. [PMID: 39874799 DOI: 10.1016/j.theriogenology.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 12/28/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
This study aimed to investigate the changes induced by the culture system and the effect of ascorbic acid and resveratrol on collagen fibers, stromal cells, follicle growth and survival, as well as antioxidant enzyme activity in cultured bovine ovarian tissues. In experiment 1, bovine ovarian fragments were cultured in α-minimum essential medium (α-MEM+) for 6 days. Before and after culturing, the fragments were fixed and processed to assess follicular morphology and diameters, stromal cell survival, collagen fibers, and glycosaminoglycans (GAGs). Uncultured and cultured tissues were also used to measure mRNA expression for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and peroxiredoxin (PRDX). Thiol levels and activity of CAT, SOD, and GPX enzymes were also investigated. In experiment 2, bovine ovarian fragments were cultured in α-MEM+ alone or supplemented with 50 μg/mL ascorbic acid or both 50 μg/mL ascorbic acid and 20 μM resveratrol for 6 days. In experiment 1, cultured tissues had higher percentages of growing follicles, but higher percentage of degenerated follicles than uncultured slices (P < 0.05). Additionally, the collagen and GAGs network became disorganized, with reduced deposition around primordial and primary follicles (P < 0.05). The number of stromal and granulosa cells, as well as follicular and oocyte diameters were reduced in both follicular categories compared to uncultured tissue (P < 0.05). Expression of mRNA for CAT, SOD, GPX, and PRDX was downregulated in 6-day cultured tissues (P < 0.05). Similarly, thiol levels and CAT activity were also reduced (P < 0.05). In experiment 2, ascorbic acid or both ascorbic acid and resveratrol increased the rate of follicular diameters and survival, and the number of granulosa and stromal cells compared to tissues cultured in the control medium (P < 0.05). Both ascorbic acid and resveratrol improved collagen density and preserved the GAG network, as well as increased thiol levels and CAT activity (P < 0.05). In conclusion, in vitro culture of ovarian tissue favored follicular activation, but reduced the proportion of normal follicles, collagen, GAG network, stromal cell numbers, and tissue antioxidant protection. Ascorbic acid alone or in association with resveratrol improved the preservation of extracellular matrix components and enhanced follicular survival.
Collapse
Affiliation(s)
- F C Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - B R Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará - UECE, Fortaleza, CE, Brazil
| | - F F C Filho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - V S Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - V A N Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - A A Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - J R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil.
| |
Collapse
|
3
|
Zhan JH, Wei J, Liu YJ, Wang PX, Zhu XY. Sepsis-associated endothelial glycocalyx damage: a review of animal models, clinical evidence, and molecular mechanisms. Int J Biol Macromol 2025; 295:139548. [PMID: 39788232 DOI: 10.1016/j.ijbiomac.2025.139548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/21/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
In the mammalian cardiovascular system, endothelial glycocalyx is a gel-like layer that covers the luminal surface of endothelial cells (ECs) and plays crucial roles in vascular homeostasis, permeability and leukocyte adhesion. Degradation of this structure occurs early in sepsis and becomes accordingly dysfunctional. In severe cases, it is not self-regulated by the organism. However, the relationship between the glycocalyx and the occurrence and development of sepsis remains poorly understood. One possibility is that thinned glycocalyx promotes leukocyte recognition and adhesion, thereby facilitating the elimination of pathogens from infected areas. This may represent a protective mechanism developed by the organism during through evolutionary processes. However, if the damage persists and disrupts the dynamic balance of the microcirculation, interstitial edema or organ failure can occur. Thus, we asked the questions, what is the precise composition and structure of the glycocalyx? How is it degraded? What animal models are available to study the relationship between the glycocalyx and sepsis? What glycocalyx biomarkers are found in the blood of patients with sepsis? To determine whether sepsis can be treated by interfering with the glycocalyx, this study provides a systematic summary and discussion of the latest progress in addressing these questions.
Collapse
Affiliation(s)
- Jun-Hui Zhan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Physiology, Naval Medical University, Shanghai 200433, China
| | - Juan Wei
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Peng-Xiang Wang
- Department of Physiology, Naval Medical University, Shanghai 200433, China.
| | - Xiao-Yan Zhu
- Department of Physiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
4
|
Wang J, Ma L, Fang Y, Ye T, Li H, Lan P. Factors influencing glycocalyx degradation: a narrative review. Front Immunol 2025; 15:1490395. [PMID: 39885987 PMCID: PMC11779607 DOI: 10.3389/fimmu.2024.1490395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/30/2024] [Indexed: 02/01/2025] Open
Abstract
The glycocalyx is a layer of villus-like structure covering the luminal surface of vascular endothelial cells. Damage to the glycocalyx has been proven linked to the development of many diseases. However, the factors that promote damage to the glycocalyx are not fully elaborated. This review summarizes factors leading to the reduction of the glycocalyx in detail, including inflammatory factors, ischemia-reperfusion, oxidative stress, lipids, glucose, high sodium, female sex hormones and others. Additionally, the mechanisms underlying its degradation are discussed. To better prevent and treat related diseases induced by glycocalyx degradation, it is a meaningful measure to avoid these factors.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Lan Ma
- Department of Neurology, Wenzhou Traditional Chinese Medicine (TCM) Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Yu Fang
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Tengteng Ye
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Hongbo Li
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Peng Lan
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
5
|
Li S, Nordick KV, Murrieta-Álvarez I, Kirby RP, Bhattacharya R, Garcia I, Hochman-Mendez C, Rosengart TK, Liao KK, Mondal NK. Prolonged Cardiopulmonary Bypass Time-Induced Endothelial Dysfunction via Glypican-1 Shedding, Inflammation, and Matrix Metalloproteinase 9 in Patients Undergoing Cardiac Surgery. Biomedicines 2024; 13:33. [PMID: 39857617 PMCID: PMC11763025 DOI: 10.3390/biomedicines13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVES A prolonged cardiopulmonary bypass (CPB) time of over 180 min is linked to poorer outcomes and higher mortality in cardiac surgery. This study examines how glypican-1 shedding, matrix metallopeptidase 9 (MMP9), and the pro-inflammatory cytokine IL-1β may contribute to endothelial dysfunction in patients undergoing on-pump surgery with an extended CPB. METHODS Fifty-one patients undergoing cardiac surgical procedures were divided into two groups based on the intraoperative CPB duration: (i) normal CPB (<180 min, n = 23) and (ii) prolonged CPB (>180 min, n = 28). The preoperative, intraoperative, and postoperative plasma levels of glypican-1, MMP9, and IL-1β were measured. RESULTS Before surgery, the plasma levels of glypican-1, MMP9, and IL-1β were comparable between the normal CPB and the prolonged CPB groups. However, after the end of the CPB, all three markers showed significant elevation in the prolonged CPB group compared to the normal CPB group. Significant correlations were observed between the intraoperative and postoperative levels of MMP9, IL-1β, and glypican-1. A strong positive correlation was also observed between the intraoperative and postoperative levels of glypican-1 and the duration of the CPB. CONCLUSIONS A prolonged CPB triggers a systemic inflammatory response and activates MMP9, leading to glypican-1 shedding and endothelial dysfunction.
Collapse
Affiliation(s)
- Shiyi Li
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katherine V. Nordick
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA
| | - Iván Murrieta-Álvarez
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA
| | - Randall P. Kirby
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rishav Bhattacharya
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ismael Garcia
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA
| | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX 77030, USA
| | - Todd K. Rosengart
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kenneth K. Liao
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nandan K. Mondal
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX 77030, USA
| |
Collapse
|
6
|
Diab L, Al Kattar S, Oueini N, Hawi J, Chrabieh A, Dosh L, Jurjus R, Leone A, Jurjus A. Syndecan-1: a key player in health and disease. Immunogenetics 2024; 77:9. [PMID: 39688651 DOI: 10.1007/s00251-024-01366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024]
Abstract
Syndecan-1 (SDC-1) is a transmembrane protein localized on the basolateral surface of epithelial cells, encompassing a core protein with heparin sulfate and chondroitin sulfate glycosaminoglycan side chains. SDC-1 is involved in a panoply of cellular mechanisms including cell-to-cell adhesion, extracellular matrix interactions, cell cycle modulation, and lipid clearance. Alterations in the expression and function of SDC-1 are implicated in numerous disease entities, making it an attractive diagnostic and therapeutic target. However, despite its broad involvement in several disease processes, the underlying mechanism contributing to its diverse functions, pathogenesis, and therapeutic uses remains underexplored. Therefore, this review examines the role of SDC-1 in health and disease, focusing on liver pathologies, inflammatory diseases, infectious diseases, and cancer, and sheds light on SDC-1-based therapeutic approaches. Moreover, it delves into the mechanisms through which SDC-1 contributes to these diseases, emphasizing cell-type specific mechanisms. By comprehensively summarizing the significance of SDC-1, its association with several diseases, and its underlying mechanisms of action, the findings of this review could inform future research directions toward the development of targeted therapies and early diagnosis for a multitude of disease entities.
Collapse
Affiliation(s)
- Lara Diab
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Sahar Al Kattar
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Naim Oueini
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University, Kaslik, Jounieh, Lebanon
| | - Jihad Hawi
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Antoine Chrabieh
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Laura Dosh
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
7
|
Ye W, Xu S, Liu Y, Ye Z. Role of endothelial glycocalyx in central nervous system diseases and evaluation of the targeted therapeutic strategies for its protection: a review of clinical and experimental data. Rev Neurosci 2024; 35:839-853. [PMID: 39034663 DOI: 10.1515/revneuro-2024-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/22/2024] [Indexed: 07/23/2024]
Abstract
Central nervous system (CNS) diseases, such as stroke, traumatic brain injury, dementia, and demyelinating diseases, are generally characterized by high morbidity and mortality, which impose a heavy economic burden on patients and their caregivers throughout their lives as well as on public health. The occurrence and development of CNS diseases are closely associated with a series of pathophysiological changes including inflammation, blood-brain barrier disruption, and abnormal coagulation. Endothelial glycocalyx (EG) plays a key role in these changes, making it a novel intervention target for CNS diseases. Herein, we review the current understanding of the role of EG in common CNS diseases, from the perspective of individual pathways/cytokines in pathophysiological and systematic processes. Furthermore, we emphasize the recent developments in therapeutic agents targeted toward protection or restoration of EG. Some of these treatments have yielded unexpected pharmacological results, as previously unknown mechanisms underlying the degradation and destruction of EG has been brought to light. Furthermore, the anti-inflammatory, anticoagulative, and antioxidation effects of EG and its protective role exerted via the blood-brain barrier have been recognized.
Collapse
Affiliation(s)
- Weihao Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Shang Xu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ying Liu
- Department of Rehabilitation Medicine, 117742The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ziming Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
8
|
Yang H, Guo K, Ding P, Ning J, Zhang Y, Wang Y, Wang Z, Liu G, Shao C, Pan M, Ma Z, Yan X, Han J. Histone deacetylases: Regulation of vascular homeostasis via endothelial cells and vascular smooth muscle cells and the role in vascular pathogenesis. Genes Dis 2024; 11:101216. [PMID: 39281836 PMCID: PMC11396065 DOI: 10.1016/j.gendis.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 09/18/2024] Open
Abstract
Histone deacetylases (HDACs) are proteases that play a key role in chromosome structural modification and gene expression regulation, and the involvement of HDACs in cancer, the nervous system, and the metabolic and immune system has been well reviewed. Our understanding of the function of HDACs in the vascular system has recently progressed, and a significant variety of HDAC inhibitors have been shown to be effective in the treatment of vascular diseases. However, few reviews have focused on the role of HDACs in the vascular system. In this study, the role of HDACs in the regulation of the vascular system mainly involving endothelial cells and vascular smooth muscle cells was discussed based on recent updates, and the role of HDACs in different vascular pathogenesis was summarized as well. Furthermore, the therapeutic effects and prospects of HDAC inhibitors were also addressed in this review.
Collapse
Affiliation(s)
- Hanyi Yang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jiayi Ning
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Guanglin Liu
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, Beijing 100853, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| |
Collapse
|
9
|
Ćurko-Cofek B, Jenko M, Taleska Stupica G, Batičić L, Krsek A, Batinac T, Ljubačev A, Zdravković M, Knežević D, Šoštarič M, Sotošek V. The Crucial Triad: Endothelial Glycocalyx, Oxidative Stress, and Inflammation in Cardiac Surgery-Exploring the Molecular Connections. Int J Mol Sci 2024; 25:10891. [PMID: 39456673 PMCID: PMC11508174 DOI: 10.3390/ijms252010891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Since its introduction, the number of heart surgeries has risen continuously. It is a high-risk procedure, usually involving cardiopulmonary bypass, which is associated with an inflammatory reaction that can lead to perioperative and postoperative organ dysfunction. The extent of complications following cardiac surgery has been the focus of interest for several years because of their impact on patient outcomes. Recently, numerous scientific efforts have been made to uncover the complex mechanisms of interaction between inflammation, oxidative stress, and endothelial dysfunction that occur after cardiac surgery. Numerous factors, such as surgical and anesthetic techniques, hypervolemia and hypovolemia, hypothermia, and various drugs used during cardiac surgery trigger the development of systemic inflammatory response and the release of oxidative species. They affect the endothelium, especially endothelial glycocalyx (EG), a thin surface endothelial layer responsible for vascular hemostasis, its permeability and the interaction between leukocytes and endothelium. This review highlights the current knowledge of the molecular mechanisms involved in endothelial dysfunction, particularly in the degradation of EG. In addition, the major inflammatory events and oxidative stress responses that occur in cardiac surgery, their interaction with EG, and the clinical implications of these events have been summarized and discussed in detail. A better understanding of the complex molecular mechanisms underlying cardiac surgery, leading to endothelial dysfunction, is needed to improve patient management during and after surgery and to develop effective strategies to prevent adverse outcomes that complicate recovery.
Collapse
Affiliation(s)
- Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Matej Jenko
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
- Medical Faculty, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Gordana Taleska Stupica
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Antea Krsek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
| | - Aleksandra Ljubačev
- Department of Surgery, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Marko Zdravković
- Department of Anaesthesiology, Intensive Care and Pain Management, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia;
| | - Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Maja Šoštarič
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
- Medical Faculty, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| |
Collapse
|
10
|
Wu QJ, Li Q, Yang P, Du L. Itaconate to treat acute lung injury: recent advances and insights from preclinical models. Am J Transl Res 2024; 16:3480-3497. [PMID: 39262751 PMCID: PMC11384376 DOI: 10.62347/nuin2087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/22/2024] [Indexed: 09/13/2024]
Abstract
Acute lung injury (ALI) is defined as the acute onset of diffuse bilateral pulmonary infiltration, leading to PaO2/FiO2 ≤ 300 mmHg without clinical evidence of left atrial hypertension. Acute respiratory distress syndrome (ARDS) involves more severe hypoxemia (PaO2/FiO2 ≤ 200 mmHg). Treatment of ALI and ARDS has received renewed attention as the incidence of ALI caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has increased. Itaconate and its derivatives have shown therapeutic potential against ALI. This review provides an in-depth summary of the mechanistic research of itaconate in the field of acute lung injury, including inducing autophagy, preventing ferroptosis and pyroptosis, shifting macrophage polarization to an anti-inflammatory M2 phenotype, inhibiting neutrophil activation, regulating epigenetic modifications, and repressing aerobic glycolysis. These compounds merit further consideration in clinical trials. We anticipate that the clinical translation of itaconate-based drugs can be accelerated.
Collapse
Affiliation(s)
- Qin Juan Wu
- Department of Anesthesiology, West China Hospital of Sichuan University Chengdu 610041, Sichuan, China
- Department of Anesthesiology, Chengdu Second People's Hospital Chengdu 610000, Sichuan, China
| | - Qian Li
- Department of Anesthesiology, West China Hospital of Sichuan University Chengdu 610041, Sichuan, China
| | - Ping Yang
- Department of Anesthesiology, Chongqing University Three Gorges Hospital Chongqing 404100, China
- Department of Anesthesiology, West China Hospital of Sichuan University Chengdu 610041, Sichuan, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital of Sichuan University Chengdu 610041, Sichuan, China
| |
Collapse
|
11
|
Idouz K, Belhaj A, Rondelet B, Dewachter L, Flamion B, Kirschvink N, Dogné S. Cascading renal injury after brain death: Unveiling glycocalyx alteration and the potential protective role of tacrolimus. Front Cell Dev Biol 2024; 12:1449209. [PMID: 39165663 PMCID: PMC11333349 DOI: 10.3389/fcell.2024.1449209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Brain death (BD) is a complex medical state that triggers systemic disturbances and a cascade of pathophysiological processes. This condition significantly impairs both kidney function and structural integrity, thereby presenting considerable challenges to graft viability and the long-term success of transplantation endeavors. Tacrolimus (FK506), an immunosuppressive drug, was used in this study to assess its impact as a pretreatment on brain death-induced renal injury. This study aimed to investigate changes associated with brain death-induced renal injury in a 4-month-old female porcine model. The experimental groups included brain death placebo-pretreated (BD; n = 9), brain death tacrolimus-pretreated using the clinical dose of 0.25 mg/kg the day before surgery, followed by 0.05 mg/kg/day 1 hour before the procedure (BD + FK506; n = 8), and control (ctrl, n = 7) piglets, which did not undergo brain death induction. Furthermore, we aimed to assess the effect of FK506 on these renal alterations through graft preconditioning. We hypothesized that immunosuppressive properties of FK506 reduce tissue inflammation and preserve the glycocalyx. Our findings revealed a series of interconnected events triggered by BD, leading to a deterioration of renal function and increased proteinuria, increased apoptosis in the vessels, glomeruli and tubules, significant leukocyte infiltration into renal tissue, and degradation of the glycocalyx in comparison with ctrl group. Importantly, treatment with FK506 demonstrated significant efficacy in attenuating these adverse effects. FK506 helped reduce apoptosis, maintain glycocalyx integrity, regulate neutrophil infiltration, and mitigate renal injury following BD. This study offers new insights into the pathophysiology of BD-induced renal injury, emphasizing the potential of FK506 pretreatment as a promising therapeutic intervention for organ preservation, through maintaining endothelial function with the additional benefit of limiting the risk of rejection.
Collapse
Affiliation(s)
- Kaoutar Idouz
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
| | - Asmae Belhaj
- Department of Cardio-Vascular, Thoracic Surgery and Lung Transplantation, CHU UCL Namur, UCLouvain, Yvoir, Belgium
| | - Benoit Rondelet
- Department of Cardio-Vascular, Thoracic Surgery and Lung Transplantation, CHU UCL Namur, UCLouvain, Yvoir, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Brussels, Belgium
| | - Bruno Flamion
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
- Clinical Development, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Nathalie Kirschvink
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
| | - Sophie Dogné
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
| |
Collapse
|
12
|
Daude RB, Bhadane R, Shah JS. Alpha-cyperone mitigates renal ischemic injury via modulation of HDAC-2 expression in diabetes: Insights from molecular dynamics simulations and experimental evaluation. Eur J Pharmacol 2024; 975:176643. [PMID: 38754539 DOI: 10.1016/j.ejphar.2024.176643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Chronic diabetes mellitus is reported to be associated with acute kidney injury. The enzyme histone deacetylase-2 (HDAC-2) was found to be upregulated in diabetes-related kidney damage. Alpha-cyperone (α-CYP) is one of the active ingredients of Cyperus rotundus that possesses antioxidant and anti-inflammatory effects. We evaluated the effect of α-CYP on improving oxidative stress and tissue inflammation following renal ischemia/reperfusion (I/R) injury in diabetic rats. The effect of α-CYP on HDAC-2 expression in renal homogenates and in the NRK-52 E cell line was evaluated following renal I/R injury and high glucose conditions, respectively. Molecular docking was used to investigate the binding of α-CYP with the HDAC-2 active site. Both renal function and oxidative stress were shown to be impaired in diabetic rats due to renal I/R injury. Significant improvements in kidney/body weight ratio, creatinine clearance, serum creatinine, blood urea nitrogen (BUN), and uric acid were observed in diabetic rats treated with α-CYP (50 mg/kg) two weeks prior to renal I/R injury. α-CYP treatment also improved histological alterations in renal tissue and lowered levels of malondialdehyde, myeloperoxidase, and hydroxyproline. Treatment with α-CYP suppressed the increased HDAC-2 expression in the renal tissue of diabetic rats and in the NRK-52 E cell line. The molecular docking reveals that α-CYP binds to HDAC-2 with good affinity, ascertained by molecular dynamics simulations and binding free energy analysis. Overall, our data suggest that α-CYP can effectively prevent renal injury in diabetic rats by regulating oxidative stress, tissue inflammation, fibrosis and inhibiting HDAC-2 activity.
Collapse
Affiliation(s)
- Rakesh B Daude
- Department of Pharmacy, Government Polytechnic, 425001, Jalgaon, Maharashtra, India
| | - Rajendra Bhadane
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520, Turku, Finland; Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520, Turku, Finland; Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, FI-20520, Turku, Finland
| | - Jigna S Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, 382481, Ahmedabad, Gujrat, India.
| |
Collapse
|
13
|
Rabia B, Thanigaimani S, Golledge J. The potential involvement of glycocalyx disruption in abdominal aortic aneurysm pathogenesis. Cardiovasc Pathol 2024; 70:107629. [PMID: 38461960 DOI: 10.1016/j.carpath.2024.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysm is a weakening and expansion of the abdominal aorta. Currently, there is no drug treatment to limit abdominal aortic aneurysm growth. The glycocalyx is the outermost layer of the cell surface, mainly composed of glycosaminoglycans and proteoglycans. OBJECTIVE The aim of this review was to identify a potential relationship between glycocalyx disruption and abdominal aortic aneurysm pathogenesis. METHODS A narrative review of relevant published research was conducted. RESULTS Glycocalyx disruption has been reported to enhance vascular permeability, impair immune responses, dysregulate endothelial function, promote extracellular matrix remodeling and modulate mechanotransduction. All these effects are implicated in abdominal aortic aneurysm pathogenesis. Glycocalyx disruption promotes inflammation through exposure of adhesion molecules and release of proinflammatory mediators. Glycocalyx disruption affects how the endothelium responds to shear stress by reducing nitric oxide availabilty and adversely affecting the storage and release of several antioxidants, growth factors, and antithromotic proteins. These changes exacerbate oxidative stress, stimulate vascular smooth muscle cell dysfunction, and promote thrombosis, all effects implicated in abdominal aortic aneurysm pathogenesis. Deficiency of key component of the glycocalyx, such as syndecan-4, were reported to promote aneurysm formation and rupture in the angiotensin-II and calcium chloride induced mouse models of abdominal aortic aneurysm. CONCLUSION This review provides a summary of past research which suggests that glycocalyx disruption may play a role in abdominal aortic aneurysm pathogenesis. Further research is needed to establish a causal link between glycocalyx disruption and abdominal aortic aneurysm development.
Collapse
Affiliation(s)
- Bibi Rabia
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; Department of Pharmacy, Hazara University, Mansehra 21300, Pakistan
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland 4810, Australia.
| |
Collapse
|
14
|
Ou D, Xu W, Feng Z, Yang Y, Xue W, Zhang Q, Li X, Zhu Y, Huang J, Fang Y. Vascular endothelial glycocalyx shedding in ventilator-induced lung injury in rats. Microvasc Res 2024; 153:104658. [PMID: 38266910 DOI: 10.1016/j.mvr.2024.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Endothelial permeability deterioration is involved in ventilator-induced lung injury (VILI). The integrality of vascular endothelial glycocalyx (EG) is closely associated with endothelial permeability. The hypothesis was that vascular EG shedding participates in VILI through promoting endothelial permeability. In the present study, male Sprague-Dawley (SD) rats were ventilated with high tidal volume (VT =40 ml/kg) or low tidal volume (VT =8 ml/kg) to investigate the effects of different tidal volume and ventilation durations on EG in vivo. We report disruption of EG during the period of high tidal volume ventilation characterized by increased glycocalyx structural components (such as syndecan-1, heparan sulfate, hyaluronan) in the plasma and decreased the expression of syndecan-1 in the lung tissues. Mechanistically, the disruption of EG was associated with increased proinflammatory cytokines and matrix metalloproteinase in the lung tissues. Collectively, these results demonstrate that the degradation of EG is involved in the occurrence and development of VILI in rats, and the inflammatory mechanism mediated by activation of the NF-κB signaling pathway may be partly responsible for the degradation of EG in VILI in rats. This study enhances our understanding of the pathophysiological processes underlying VILI, shedding light on potential therapeutic targets to mitigate VILI.
Collapse
Affiliation(s)
- Dingqin Ou
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenxia Xu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhaosen Feng
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yihan Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenqiang Xue
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qinyu Zhang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xuan Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuyang Zhu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jie Huang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Yu Fang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
15
|
Kršek A, Batičić L, Ćurko-Cofek B, Batinac T, Laškarin G, Miletić-Gršković S, Sotošek V. Insights into the Molecular Mechanism of Endothelial Glycocalyx Dysfunction during Heart Surgery. Curr Issues Mol Biol 2024; 46:3794-3809. [PMID: 38785504 PMCID: PMC11119104 DOI: 10.3390/cimb46050236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
The endothelial glycocalyx (EGC) is a layer of proteoglycans (associated with glycosaminoglycans) and glycoproteins, which adsorbs plasma proteins on the luminal surface of endothelial cells. Its main function is to participate in separating the circulating blood from the inner layers of the vessels and the surrounding tissues. Physiologically, the EGC stimulates mechanotransduction, the endothelial charge, thrombocyte adhesion, leukocyte tissue recruitment, and molecule extravasation. Hence, severe impairment of the EGC has been implicated in various pathological conditions, including sepsis, diabetes, chronic kidney disease, inflammatory disorders, hypernatremia, hypervolemia, atherosclerosis, and ischemia/reperfusion injury. Moreover, alterations in EGC have been associated with altered responses to therapeutic interventions in conditions such as cardiovascular diseases. Investigation into the function of the glycocalyx has expanded knowledge about vascular disorders and indicated the need to consider new approaches in the treatment of severe endothelial dysfunction. This review aims to present the current understanding of the molecular mechanisms underlying cardiovascular diseases and to elucidate the impact of heart surgery on EGC dysfunction.
Collapse
Affiliation(s)
- Antea Kršek
- Faculty of Rijeka, University of Medicine, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (B.Ć.-C.); (G.L.)
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
| | - Gordana Laškarin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (B.Ć.-C.); (G.L.)
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism “Thalassotherapia-Opatija”, M. Tita 188, 51410 Opatija, Croatia;
| | - Silvija Miletić-Gršković
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism “Thalassotherapia-Opatija”, M. Tita 188, 51410 Opatija, Croatia;
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
16
|
Deshmukh K, Bit A. Numerical analysis of scaffold degradation in cryogenic environment: impact of cell migration and cell apoptosis. Biomed Phys Eng Express 2024; 10:035010. [PMID: 38447212 DOI: 10.1088/2057-1976/ad30cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
The analysis of degradation in the presence of cell death and migration is a critical aspect of research in various biological fields, such as tissue engineering, regenerative medicine, and disease pathology. In present study, numerical study of degradation of scaffold were performed in present of cells, cell apoptosis and cell migration. A poly electrolyte complex (PEC) silk fibroin scaffold was used for degradation study. Degradation study in the presence of cells and migration were performed at fixed pH concentration 7.2. Similarly, degradation study of scaffold were performed at different pH cell apoptosis. A transient analysis of scaffold was evaluated in COMSOL 5.5 in presence of cryogenic temperature at different temperature gradient. The parameters; temperature, stress, strain tensor and deformation gradient associated with the degradation of polyelectrolyte complex scaffold were evaluated. Result shows that in both geometries minimum temperature had been achieved as 230.051 K at point P4 in series view and parallel view and at a point P3 for cell migration study for -5 k min-1and -1 k min-1, respectively. The maximum stress had been generated for 5.57 × 107N m-2for the temperature gradient of -2 K min-1at T cycle in the case of cell migration study. In contrast in series view the maximum stress 2.9 × 107 N m-2were observed at P4 which was higher as compare to P3. Similarly, for a parallel view, maximum stress (3.93 × 107 N m-2) was obtained for point P3. It had been observed that the maximum strain tensor 5.21 × 10-3, 5.15 × 10-3and 5.26 × 10-3was generated in series view at 230 k on a point P3 for - 1, -2 and -5 K min-1, respectively. Similarly, the maximum strain tensor 8.16 × 10-3, 8.09 × 10-3and 8.09 × 10-3was generated in parallel view at 230 k on a point P3 for -1, -2 and -5 K min-1, respectively. In the presence of cells, at a point P4 for temperature gradient of -1 and -2 K min-1, it had been closed to the scaffold wall, which had a different temperature profile than the point P3 and scaffold comes to the contact with the cells. The analysis of PEC scaffold degradation in the presence of cells, including cell apoptosis and migration, offers significant insights into the relationship between scaffold properties, cell behaviour, and tissue regeneration.
Collapse
Affiliation(s)
- Khemraj Deshmukh
- Department of Biomedical Engineering, Parul Institute of Technology (Parul University), Vadodra, Gujraat , India
| | - Arindam Bit
- Department of Biomedical Engineering, National Institute of Technology, Raipur, India
| |
Collapse
|
17
|
Anand T, Crawford AE, Sjoquist M, Hashmi ZG, Richter RP, Joseph B, Richter JR. Decreased Glycocalyx Shedding on Presentation in Hemorrhaging Geriatric Trauma Patients. J Surg Res 2024; 293:709-716. [PMID: 37844411 PMCID: PMC11075129 DOI: 10.1016/j.jss.2023.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Plasma levels of syndecan-1 (Sdc-1), a biomarker of endothelial glycocalyx (EG) damage, correlate with worse outcomes in trauma patients. However, EG injury is not well characterized in injured older adults (OA). The aims of this study were to characterize Sdc-1 shedding in OA trauma patients relative to younger adults (YA) and determine associations with putative regulators of EG sheddases. METHODS We performed a secondary analysis of data from the Pragmatic, Randomized Optimal Platelet, and Plasma Ratios (PROPPR) trial, stratifying bluntly injured subjects into OA and YA groups based on upper age quartile (57 y). Plasma Sdc-1 levels were compared in OA and YA at hospital arrival through postinjury day 3, and the independent association between age and Sdc-1 level at arrival was determined after adjusting for differences in gender, shock index (SI), and pre-existing comorbidities. In a follow-up analysis, case-control matching was used to create populations of OA and YA with equivalent SI and injury severity score. Levels of Sdc-1 were compared between these matched groups, and the relationships with candidate regulators of EG shedding were assessed. RESULTS Of 680 subjects in the Pragmatic, Randomized Optimal Platelet, and Plasma Ratios trial, 350 (51%) had blunt injuries, and 92 (26.3%) of these were OA. Plasma Sdc-1 levels at arrival, 2 h, and 6 h were significantly lower in OA compared to YA (all P < 0.05). After adjusting for sex, pre-existing morbidities and SI, age was associated with decreased Sdc-1 levels at arrival. In the matched analyses, Sdc-1, high-mobility group box 1 and tissue inhibitor of metalloproteinase-2 levels were lower in OA compared to YA. Both high-mobility group box-1 and tissue inhibitor of metalloproteinase-2 significantly correlated with arrival Sdc-1 and were inversely associated with age. CONCLUSIONS This study indicates that increased age is independently associated with decreased Sdc-1 levels among patients with blunt injuries. Suppressed plasma levels of sheddases in relation to diminished Sdc-1 shedding suggest that mechanisms regulating EG cleavage may be impaired in injured older adults. These findings provide novel insight into the age-dependent impact of injury on the vascular endothelium, which could have important implications for the clinical management of older adults following trauma.
Collapse
Affiliation(s)
- Tanya Anand
- Division of Trauma, Critical Care, Burn & Emergency Surgery, Department of Surgery, University of Arizona, Tucson, Arizona. https://twitter.com/tanyaanand8
| | - Anna E Crawford
- University of Alabama at Birmingham Heersink College of Medicine, Birmingham, Alabama
| | | | - Zain G Hashmi
- Division of Trauma & Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama; Center for Injury Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert P Richter
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, Alabama; Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bellal Joseph
- Division of Trauma, Critical Care, Burn & Emergency Surgery, Department of Surgery, University of Arizona, Tucson, Arizona
| | - Jillian R Richter
- Division of Trauma & Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama; Center for Injury Science, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
18
|
Iwata H, Katoh T, Truong SK, Sato T, Kawashima S, Mimuro S, Nakajima Y. Hydrogen attenuates endothelial glycocalyx damage associated with partial cardiopulmonary bypass in rats. PLoS One 2023; 18:e0295862. [PMID: 38113214 PMCID: PMC10729991 DOI: 10.1371/journal.pone.0295862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Cardiopulmonary bypass (CPB) causes systemic inflammation and endothelial glycocalyx damage. Hydrogen has anti-oxidant and anti-inflammatory properties; therefore, we hypothesized that hydrogen would alleviate endothelial glycocalyx damage caused by CPB. Twenty-eight male Sprague-Dawley rats were randomly divided into four groups (n = 7 per group), as follows: sham, control, 2% hydrogen, and 4% hydrogen. The rats were subjected to 90 minutes of partial CPB followed by 120 minutes of observation. In the hydrogen groups, hydrogen was administered via the ventilator and artificial lung during CPB, and via the ventilator for 60 minutes after CPB. After observation, blood collection, lung extraction, and perfusion fixation were performed, and the heart, lung, and brain endothelial glycocalyx thickness was measured by electron microscopy. The serum syndecan-1 concentration, a glycocalyx component, in the 4% hydrogen group (5.7 ± 4.4 pg/mL) was lower than in the control (19.5 ± 6.6 pg/mL) and 2% hydrogen (19.8 ± 5.0 pg/mL) groups (P < 0.001 for each), but it was not significantly different from the sham group (6.2 ± 4.0 pg/mL, P = 0.999). The endothelial glycocalyces of the heart and lung in the 4% hydrogen group were thicker than in the control group. The 4% hydrogen group had lower inflammatory cytokine concentrations (interleukin-1β and tumor necrosis factor-α) in serum and lung tissue, as well as a lower serum malondialdehyde concentration, than the control group. The 2% hydrogen group showed no significant difference in the serum syndecan-1 concentration compared with the control group. However, non-significant decreases in serum and lung tissue inflammatory cytokine concentrations, as well as in serum malondialdehyde concentration, were observed. Administration of 4% hydrogen via artificial and autologous lungs attenuated endothelial glycocalyx damage caused by partial CPB in rats, which might be mediated by the anti-inflammatory and anti-oxidant properties of hydrogen.
Collapse
Affiliation(s)
- Hiroki Iwata
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takasumi Katoh
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Sang Kien Truong
- Department of Anesthesiology and Surgical Critical Care, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Tsunehisa Sato
- Institute for Physiological Sciences, Justus-Liebig-University, Giessen, Germany
| | - Shingo Kawashima
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Soichiro Mimuro
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshiki Nakajima
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
19
|
Sun L, Wang L, Ye KX, Wang S, Zhang R, Juan Z, Feng L, Min S. Endothelial Glycocalyx in Aging and Age-related Diseases. Aging Dis 2023; 14:1606-1617. [PMID: 37196119 PMCID: PMC10529737 DOI: 10.14336/ad.2023.0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 05/19/2023] Open
Abstract
The worldwide population is aging exponentially, creating burdens to patients, their families and society. Increasing age is associated with higher risk of a wide range of chronic diseases, and aging of the vascular system is closely linked to the development of many age-related diseases. Endothelial glycocalyx is a layer of proteoglycan polymers on the surface of the inner lumen of blood vessels. It plays an important role in maintaining vascular homeostasis and protecting various organ functions. Endothelial glycocalyx loss happens through the aging process and repairing the endothelial glycocalyx may alleviate the symptoms of age-related diseases. Given the important role of the glycocalyx and its regenerative properties, it is posited that the endothelial glycocalyx may be a potential therapeutic target for aging and age-related diseases and repairing endothelial glycocalyx could play a role in the promotion of healthy aging and longevity. Here, we review the composition, function, shedding, and manifestation of the endothelial glycocalyx in aging and age-related diseases, as well as regeneration of endothelial glycocalyx.
Collapse
Affiliation(s)
- Lina Sun
- School of Anesthesiology, Weifang Medical University, Weifang, China.
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lingyan Wang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaisy Xinhong Ye
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Shoushi Wang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Rui Zhang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhaodong Juan
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lei Feng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
20
|
Li Z, Xu Y, Lu S, Gao Y, Deng Y. Bone mesenchymal stem cell extracellular vesicles delivered miR let-7-5p alleviate endothelial glycocalyx degradation and leakage via targeting ABL2. Cell Commun Signal 2023; 21:205. [PMID: 37587494 PMCID: PMC10428537 DOI: 10.1186/s12964-023-01229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/15/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Endothelial glycocalyx (EG) is an active player and treatment target in inflammatory-related vascular leakage. The bone marrow mesenchymal stem cells (bMSCs) are promising potential treatments for leakage; however, the therapeutic effect and mechanism of bMSC on EG degradation needs to be elucidated. METHODS EG degradation and leakage were evaluated in both lipopolysaccharide (LPS)-induced mice ear vascular leakage model and LPS-stimulated human umbilical vein endothelial cells (HUVECs) model treated with bMSCs. Extracellular vesicles (EVs) were extracted from bMSCs and the containing microRNA profile was analyzed. EV and miR let-7-5p were inhibited to determine their function in the therapeutic process. The ABL2 gene was knockdown in HUVECs to verify its role as a therapeutic target in EG degradation. RESULTS bMSCs treatment could alleviate LPS-induced EG degradation and leakage in vivo and in vitro, whereas EVs/let-7-5p-deficient bMSCs were insufficient to reduce EG degradation. LPS down-regulated the expression of let-7-5p while upregulated endothelial expression of ABL2 in HUVECs and induced EG degradation and leakage. bMSC-EVs uptaken by HUVECs could deliver let-7-5p targeting endothelial ABL2, which suppressed the activation of downstream p38MAPK and IL-6, IL-1β levels, and thus reversed LPS-induced EG degradation and leakage. CONCLUSION bMCSs alleviate LPS-induced EG degradation and leakage through EV delivery of miR let-7-5p targeting endothelial ABL2.
Collapse
Affiliation(s)
- Zhe Li
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200120, China
| | - Yuqing Xu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200120, China
| | - Shiyue Lu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200120, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200120, China.
| | - Yuxiao Deng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200120, China.
| |
Collapse
|
21
|
Abdullah S, Ghio M, Cotton-Betteridge A, Vinjamuri A, Drury R, Packer J, Aras O, Friedman J, Karim M, Engelhardt D, Kosowski E, Duong K, Shaheen F, McGrew PR, Harris CT, Reily R, Sammarco M, Chandra PK, Pociask D, Kolls J, Katakam PV, Smith A, Taghavi S, Duchesne J, Jackson-Weaver O. Succinate metabolism and membrane reorganization drives the endotheliopathy and coagulopathy of traumatic hemorrhage. SCIENCE ADVANCES 2023; 9:eadf6600. [PMID: 37315138 PMCID: PMC10266735 DOI: 10.1126/sciadv.adf6600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Acute hemorrhage commonly leads to coagulopathy and organ dysfunction or failure. Recent evidence suggests that damage to the endothelial glycocalyx contributes to these adverse outcomes. The physiological events mediating acute glycocalyx shedding are undefined, however. Here, we show that succinate accumulation within endothelial cells drives glycocalyx degradation through a membrane reorganization-mediated mechanism. We investigated this mechanism in a cultured endothelial cell hypoxia-reoxygenation model, in a rat model of hemorrhage, and in trauma patient plasma samples. We found that succinate metabolism by succinate dehydrogenase mediates glycocalyx damage through lipid oxidation and phospholipase A2-mediated membrane reorganization, promoting the interaction of matrix metalloproteinase 24 (MMP24) and MMP25 with glycocalyx constituents. In a rat hemorrhage model, inhibiting succinate metabolism or membrane reorganization prevented glycocalyx damage and coagulopathy. In patients with trauma, succinate levels were associated with glycocalyx damage and the development of coagulopathy, and the interaction of MMP24 and syndecan-1 was elevated compared to healthy controls.
Collapse
Affiliation(s)
- Sarah Abdullah
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Michael Ghio
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Robert Drury
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Jacob Packer
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Oguz Aras
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Jessica Friedman
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mardeen Karim
- Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Kelby Duong
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Farhana Shaheen
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Patrick R. McGrew
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Charles T. Harris
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Robert Reily
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Mimi Sammarco
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K. Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Derek Pociask
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, USA
| | - Jay Kolls
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, USA
| | - Prasad V. Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alison Smith
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Sharven Taghavi
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Juan Duchesne
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Olan Jackson-Weaver
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
22
|
Knežević D, Ćurko-Cofek B, Batinac T, Laškarin G, Rakić M, Šoštarič M, Zdravković M, Šustić A, Sotošek V, Batičić L. Endothelial Dysfunction in Patients Undergoing Cardiac Surgery: A Narrative Review and Clinical Implications. J Cardiovasc Dev Dis 2023; 10:jcdd10050213. [PMID: 37233179 DOI: 10.3390/jcdd10050213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Cardiac surgery is one of the highest-risk procedures, usually involving cardiopulmonary bypass and commonly inducing endothelial injury that contributes to the development of perioperative and postoperative organ dysfunction. Substantial scientific efforts are being made to unravel the complex interaction of biomolecules involved in endothelial dysfunction to find new therapeutic targets and biomarkers and to develop therapeutic strategies to protect and restore the endothelium. This review highlights the current state-of-the-art knowledge on the structure and function of the endothelial glycocalyx and mechanisms of endothelial glycocalyx shedding in cardiac surgery. Particular emphasis is placed on potential strategies to protect and restore the endothelial glycocalyx in cardiac surgery. In addition, we have summarized and elaborated the latest evidence on conventional and potential biomarkers of endothelial dysfunction to provide a comprehensive synthesis of crucial mechanisms of endothelial dysfunction in patients undergoing cardiac surgery, and to highlight their clinical implications.
Collapse
Affiliation(s)
- Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
| | - Gordana Laškarin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", M. Tita 188, 51410 Opatija, Croatia
| | - Marijana Rakić
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", M. Tita 188, 51410 Opatija, Croatia
| | - Maja Šoštarič
- Clinical Department of Anesthesiology and Perioperative Intensive Therapy, Division of Cardiac Anesthesiology and Intensive Therapy, University Clinical Center Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia
- Department of Anesthesiology and Reanimatology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Marko Zdravković
- Department of Anaesthesiology, Intensive Care and Pain Management, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Alan Šustić
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Vlatka Sotošek
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
23
|
Kaur G, Harris NR. Endothelial glycocalyx in retina, hyperglycemia, and diabetic retinopathy. Am J Physiol Cell Physiol 2023; 324:C1061-C1077. [PMID: 36939202 PMCID: PMC10125029 DOI: 10.1152/ajpcell.00188.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
The endothelial glycocalyx (EG) is a meshlike network present on the apical surface of the endothelium. Membrane-bound proteoglycans, the major backbone molecules of the EG, consist of glycosaminoglycans attached to core proteins. In addition to maintaining the integrity of the endothelial barrier, the EG regulates inflammation and perfusion and acts as a mechanosensor. The loss of the EG can cause endothelial dysfunction and drive the progression of vascular diseases including diabetic retinopathy. Therefore, the EG presents a novel therapeutic target for treatment of vascular complications. In this review article, we provide an overview of the structure and function of the EG in the retina. Our particular focus is on hyperglycemia-induced perturbations in the glycocalyx structure in the retina, potential underlying mechanisms, and clinical trials studying protective treatments against degradation of the EG.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| |
Collapse
|
24
|
Luo G, Liu B, Fu T, Liu Y, Li B, Li N, Geng Q. The Role of Histone Deacetylases in Acute Lung Injury-Friend or Foe. Int J Mol Sci 2023; 24:ijms24097876. [PMID: 37175583 PMCID: PMC10178380 DOI: 10.3390/ijms24097876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lung injury (ALI), caused by intrapulmonary or extrapulmonary factors such as pneumonia, shock, and sepsis, eventually disrupts the alveolar-capillary barrier, resulting in diffuse pulmonary oedema and microatasis, manifested by refractory hypoxemia, and respiratory distress. Not only is ALI highly lethal, but even if a patient survives, there are also multiple sequelae. Currently, there is no better treatment than supportive care, and we urgently need to find new targets to improve ALI. Histone deacetylases (HDACs) are epigenetically important enzymes that, together with histone acetylases (HATs), regulate the acetylation levels of histones and non-histones. While HDAC inhibitors (HDACis) play a therapeutic role in cancer, inflammatory, and neurodegenerative diseases, there is also a large body of evidence suggesting the potential of HDACs as therapeutic targets in ALI. This review explores the unique mechanisms of HDACs in different cell types of ALI, including macrophages, pulmonary vascular endothelial cells (VECs), alveolar epithelial cells (AECs), and neutrophils.
Collapse
Affiliation(s)
- Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
25
|
Ahn SJ, Le Master E, Granados ST, Levitan I. Impairment of endothelial glycocalyx in atherosclerosis and obesity. CURRENT TOPICS IN MEMBRANES 2023; 91:1-19. [PMID: 37080677 DOI: 10.1016/bs.ctm.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Endothelial glycocalyx is a negatively charged gel-like layer located on the apical surface of endothelial cells. It serves as a selective two-way physical barrier between the flowing blood and the endothelium, which regulates the access of macromolecules and of blood cells to the endothelial surface. In addition, endothelial glycocalyx plays a major role in sensing mechanical signals generated by the blood flow and transducing these signals to maintain endothelial functions; Thus, dysfunction or disruption of endothelial glycocalyx in pathological condition leads to endothelial dysfunction and contributes to the development of vascular diseases. In this review, we discuss the impact of atherosclerosis with the following viewpoints: (i) hypercholesterolemic effects on endothelial glycocalyx degradation in animal models and human patients, (ii) disruption of endothelial glycocalyx by atherogenic lipoproteins, (iii) proatherogenic disturbed flow effects on endothelial glycocalyx degradation, (iv) pathological consequences of the loss of glycocalyx integrity in atherogenesis, and (v) therapeutic effect of glycocalyx supplementation on atherosclerosis development. Additionally, we also discuss recent studies in pathological effects of obesity on the disruption of endothelial glycocalyx.
Collapse
Affiliation(s)
- Sang Joon Ahn
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| | - Elizabeth Le Master
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Sara T Granados
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
26
|
Grandys M, Majerczak J, Frolow M, Chlopicki S, Zoladz JA. Training-induced impairment of endothelial function in track and field female athletes. Sci Rep 2023; 13:3502. [PMID: 36859449 PMCID: PMC9977863 DOI: 10.1038/s41598-023-30165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Professional athletes are often exposed to high training loads that may lead to overfatigue, overreaching and overtraining that might have a detrimental effects on vascular health. We determined the effects of high training stress on endothelial function assessed by the flow-mediated dilation (FMD) and markers of glycocalyx shedding. Vascular examination as well as broad biochemical, hormonal and cardiometabolic evaluation of sprint and middle-distance female runners were performed after 2 months of preparatory training period and compared to age-matched control group of women. Female athletes presented with significantly reduced FMD (p < 0.01) and higher basal serum concentrations of hyaluronan (HA) and syndecan-1 (SDC-1) (p < 0.05 and p < 0.001, respectively), that was accompanied by significantly lower basal serum testosterone (T) and free testosterone (fT) concentrations (p < 0.05) and higher cortisol (C) concentration (p < 0.05). It resulted in significantly lower T/C and fT/C ratios in athletes when compared to controls (p < 0.01). Moreover, fT/C ratio were significantly positively correlated to FMD and negatively to HA concentrations in all studied women. Accordingly, the training load was significantly negatively correlated with T/C, fT/C and FMD and positively with the concentrations of HA and SDC-1. We concluded that young female track and field athletes subjected to physical training developed impairment of endothelial function that was associated with anabolic-catabolic hormone balance disturbances. Given that training-induced impairment of endothelial function may have a detrimental effects on vascular health, endothelial status should be regularly monitored in the time-course of training process to minimalize vascular health-risk in athletes.
Collapse
Affiliation(s)
- Marcin Grandys
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Ul. Skawinska 8, 31-066, Krakow, Poland.
| | - Joanna Majerczak
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Ul. Skawinska 8, 31-066, Krakow, Poland
| | - Marzena Frolow
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.,Department of Experimental Pharmacology, Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Jerzy A Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Ul. Skawinska 8, 31-066, Krakow, Poland.
| |
Collapse
|
27
|
Diebel LN, Liberati DM, Carge M. Effect of albumin solutions on endothelial oxidant injury: A microfluidic study. Surgery 2023; 173:876-882. [PMID: 36372576 DOI: 10.1016/j.surg.2022.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Studies have suggested a beneficial effect of early plasma-based resuscitation in patients following trauma-hemorrhagic shock. The underlying mechanism(s) are unknown but may be owing to protective effects of plasma components on the endothelium and its glycocalyx layer. Albumin, the major protein in plasma, influences vascular integrity and has antioxidant properties in vivo. Sphingosine 1-phosphate is a bioactive sphingolipid with diverse signaling functions, which include endothelial barrier protection in part owing to preservation of the glycocalyx. Sphingosine 1-phosphate is bound mainly to albumin and high-density lipids in the plasma. Debate continues about the beneficial effect of albumin solutions in shock resuscitation. Pharmacologic preparations may modify constituents of albumin solutions for clinical use. We examined the relative effects of sphingosine 1-phosphate concentrations in albumin solutions on the endothelial-glycocalyx barrier in an in vitro microfluidic platform. METHODS Endothelial cell monolayers were established in microfluidic perfusion devices and exposed to control or biomimetic shock conditions followed by 5% plasma or different albumin solutions ± exogenous sphingosine 1-phosphate perfusion. Biomarkers of endothelial and glycocalyx activation, damage, and oxidant injury were then determined. RESULTS Endothelial cell and glycocalyx barriers were damaged after biomimetic shock conditions. Plasma and sphingosine 1-phosphate loaded albumin solutions protected against barrier injury. Modest protective effects were noted with albumin alone; the efficacy varied with sphingosine 1-phosphate content of the albumin solution. CONCLUSION The protective effect of albumin on the endothelia-glycocalyx barrier against oxidant injury was dependent on its sphingosine 1-phosphate concentration. Our data may help explain the discrepancies regarding the effectiveness of albumin solutions in shock resuscitation.
Collapse
Affiliation(s)
- Lawrence N Diebel
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI.
| | - David M Liberati
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI
| | - Michael Carge
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI
| |
Collapse
|
28
|
Zhang H, Wang Y, Qu M, Li W, Wu D, Cata JP, Miao C. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med 2023; 13:e1170. [PMID: 36629024 PMCID: PMC9832433 DOI: 10.1002/ctm2.1170] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Sepsis is a persistent systemic inflammatory condition involving multiple organ failures resulting from a dysregulated immune response to infection, and one of the hallmarks of sepsis is endothelial dysfunction. During its progression, neutrophils are the first line of innate immune defence against infection. Aside from traditional mechanisms, such as phagocytosis or the release of inflammatory cytokines, reactive oxygen species and other antibacterial substances, activated neutrophils also release web-like structures composed of tangled decondensed DNA, histone, myeloperoxidase and other granules called neutrophil extracellular traps (NETs), which can efficiently ensnare bacteria in the circulation. In contrast, excessive neutrophil activation and NET release may induce endothelial cells to shift toward a pro-inflammatory and pro-coagulant phenotype. Furthermore, neutrophils and NETs can degrade glycocalyx on the endothelial cell surface and increase endothelium permeability. Consequently, the endothelial barrier collapses, contributing to impaired microcirculatory blood flow, tissue hypoperfusion and life-threatening organ failure in the late phase of sepsis.
Collapse
Affiliation(s)
- Hao Zhang
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Yanghanzhao Wang
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Mengdi Qu
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Wenqian Li
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
| | - Dan Wu
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Juan P. Cata
- Department of Anesthesiology and Perioperative MedicineThe University of Texas‐MD Anderson Cancer CenterHoustonTexasUSA
- Anesthesiology and Surgical Oncology Research GroupHoustonTexasUSA
| | - Changhong Miao
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| |
Collapse
|
29
|
Zharikov AY, Kalnitsky AS, Mazko ON, Makarova OG, Bobrov IP. Effect of Carnosine on the Activity of Matrix Metalloproteinase-2 and Oxidative Stress in the Kidneys in Experimental Urate Nephrolithiasis. Bull Exp Biol Med 2023; 174:326-329. [PMID: 36723739 DOI: 10.1007/s10517-023-05701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 02/02/2023]
Abstract
The effect of carnosine on MMP-2 activity and oxidative stress in the kidneys in experimental urate nephrolithiasis was studied. Urate nephrolithiasis was modeled in Wistar rats by intragastric administration of a mixture of oxonic and uric acids. Carnosine was administered intragastrically through a tube in a dose of 15 mg/kg. In rats treated with carnosine, the concentration of MMP-2 in the urine decreased by 3.7 times, and the excretion of MMP-2 with urine decreased by 4.3 times. In the homogenate of the kidneys from rats treated with carnosine, the concentration of TBA-reactive substances decreased by 5 times and the concentration of MMP-2 decreased by 12.7%. After treatment with carnosine, the number of histologically confirmed cases of urate nephrolithiasis decreased by 2 times, while the mean size of urate deposits decreased by 2.7 times. Thus, carnosine inhibits MMP-2 and reduces the intensity of oxidative stress in the kidneys, which prevents the development of urate nephrolithiasis.
Collapse
Affiliation(s)
- A Yu Zharikov
- Altai State Medical University, Ministry of Health of the Russian Federation, Barnaul, Russia
| | - A S Kalnitsky
- Altai State Medical University, Ministry of Health of the Russian Federation, Barnaul, Russia.
| | - O N Mazko
- Altai State Medical University, Ministry of Health of the Russian Federation, Barnaul, Russia
| | - O G Makarova
- Altai State Medical University, Ministry of Health of the Russian Federation, Barnaul, Russia
| | - I P Bobrov
- Altai State Medical University, Ministry of Health of the Russian Federation, Barnaul, Russia
| |
Collapse
|
30
|
Li L, Cook C, Liu Y, Li J, Jiang J, Li S. Endothelial glycocalyx in hepatopulmonary syndrome: An indispensable player mediating vascular changes. Front Immunol 2022; 13:1039618. [PMID: 36618396 PMCID: PMC9815560 DOI: 10.3389/fimmu.2022.1039618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular complication that causes respiratory insufficiency in patients with chronic liver diseases. HPS is characterized by two central pathogenic features-intrapulmonary vascular dilatation (IPVD) and angiogenesis. Endothelial glycocalyx (eGCX) is a gel-like layer covering the luminal surface of blood vessels which is involved in a variety of physiological and pathophysiological processes including controlling vascular tone and angiogenesis. In terms of lung disorders, it has been well established that eGCX contributes to dysregulated vascular contraction and impaired blood-gas barrier and fluid clearance, and thus might underlie the pathogenesis of HPS. Additionally, pharmacological interventions targeting eGCX are dramatically on the rise. In this review, we aim to elucidate the potential role of eGCX in IPVD and angiogenesis and describe the possible degradation-reconstitution equilibrium of eGCX during HPS through a highlight of recent literature. These studies strongly underscore the therapeutic rationale in targeting eGCX for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yale Liu
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| |
Collapse
|
31
|
Taghavi S, Abdullah S, Shaheen F, Mueller L, Gagen B, Duchesne J, Steele C, Pociask D, Kolls J, Jackson-Weaver O. Glycocalyx degradation and the endotheliopathy of viral infection. PLoS One 2022; 17:e0276232. [PMID: 36260622 PMCID: PMC9581367 DOI: 10.1371/journal.pone.0276232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
The endothelial glycocalyx (EGX) contributes to the permeability barrier of vessels and regulates the coagulation cascade. EGX damage, which occurs in numerous disease states, including sepsis and trauma, results in endotheliopathy. While influenza and other viral infections are known to cause endothelial dysfunction, their effect on the EGX has not been described. We hypothesized that the H1N1 influenza virus would cause EGX degradation. Human umbilical vein endothelial cells (HUVECs) were exposed to varying multiplicities of infection (MOI) of the H1N1 strain of influenza virus for 24 hours. A dose-dependent effect was examined by using an MOI of 5 (n = 541), 15 (n = 714), 30 (n = 596), and 60 (n = 653) and compared to a control (n = 607). Cells were fixed and stained with FITC-labelled wheat germ agglutinin to quantify EGX. There was no difference in EGX intensity after exposure to H1N1 at an MOI of 5 compared to control (6.20 vs. 6.56 Arbitrary Units (AU), p = 0.50). EGX intensity was decreased at an MOI of 15 compared to control (5.36 vs. 6.56 AU, p<0.001). The degree of EGX degradation was worse at higher doses of the H1N1 virus; however, the decrease in EGX intensity was maximized at an MOI of 30. Injury at MOI of 60 was not worse than MOI of 30. (4.17 vs. 4.47 AU, p = 0.13). The H1N1 virus induces endothelial dysfunction by causing EGX degradation in a dose-dependent fashion. Further studies are needed to characterize the role of this EGX damage in causing clinically significant lung injury during acute viral infection.
Collapse
Affiliation(s)
- Sharven Taghavi
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Sarah Abdullah
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Farhana Shaheen
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Lauren Mueller
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Brennan Gagen
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Juan Duchesne
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Chad Steele
- Department of Microbiology, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Derek Pociask
- Department of Internal Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Jay Kolls
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Olan Jackson-Weaver
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
- * E-mail:
| |
Collapse
|
32
|
Foote CA, Soares RN, Ramirez-Perez FI, Ghiarone T, Aroor A, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. Endothelial Glycocalyx. Compr Physiol 2022; 12:3781-3811. [PMID: 35997082 PMCID: PMC10214841 DOI: 10.1002/cphy.c210029] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.
Collapse
Affiliation(s)
- Christopher A. Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Rogerio N. Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Annayya Aroor
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
33
|
Prudovsky I, Kacer D, Zucco VV, Palmeri M, Falank C, Kramer R, Carter D, Rappold J. Tranexamic acid: Beyond antifibrinolysis. Transfusion 2022; 62 Suppl 1:S301-S312. [PMID: 35834488 DOI: 10.1111/trf.16976] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
Tranexamic acid (TXA) is a popular antifibrinolytic drug widely used in hemorrhagic trauma patients and cardiovascular, orthopedic, and gynecological surgical patients. TXA binds plasminogen and prevents its maturation to the fibrinolytic enzyme plasmin. A number of studies have demonstrated the broad life-saving effects of TXA in trauma, superior to those of other antifibrinolytic agents. Besides preventing fibrinolysis and blood loss, TXA has been reported to suppress posttraumatic inflammation and edema. Although the efficiency of TXA transcends simple inhibition of fibrinolysis, little is known about its mechanisms of action besides the suppression of plasmin maturation. Understanding the broader effects of TXA at the cell, organ, and organism levels are required to elucidate its potential mechanisms of action transcending antifibrinolytic activity. In this article, we provide a brief review of the current clinical use of TXA and then focus on the effects of TXA beyond antifibrinolytics such as its anti-inflammatory activity, protection of the endothelial and epithelial monolayers, stimulation of mitochondrial respiration, and suppression of melanogenesis.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, USA
| | - Doreen Kacer
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, USA
| | - Victoria Vieira Zucco
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, USA
| | - Monica Palmeri
- Maine Medical Center Cardiovascular Institute, Maine Medical Center, Portland, Maine, USA
| | - Carolyne Falank
- Department of Trauma, Maine Medical Center, Maine Medical Center, Portland, Maine, USA
| | - Robert Kramer
- Maine Medical Center Cardiovascular Institute, Maine Medical Center, Portland, Maine, USA
| | - Damien Carter
- Department of Trauma, Maine Medical Center, Maine Medical Center, Portland, Maine, USA
| | - Joseph Rappold
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, USA.,Department of Trauma, Maine Medical Center, Maine Medical Center, Portland, Maine, USA
| |
Collapse
|
34
|
Simões G, Pereira T, Caseiro A. Matrix metaloproteinases in vascular pathology. Microvasc Res 2022; 143:104398. [PMID: 35671836 DOI: 10.1016/j.mvr.2022.104398] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/01/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022]
Abstract
Vascular diseases are the main cause of morbidity and mortality. The vascular extracellular matrix (ECM) is essential in mechanical support, also regulating the cellular behavior fundamental to vascular function and homeostasis. Vascular remodeling is an adaptive response to various physiological and pathological changes and is associated with aging and vascular diseases. The aim of this review is provide a general overview of the involvement of MMPs in the pathogenesis of vascular diseases, namely, arterial hypertension, atherosclerosis, aortic aneurysms and myocardial infarction. The change in the composition of the ECM by matrix metalloproteinases (MMPs) generates a pro-inflammatory microenvironment that modifies the phenotypes of endothelial cells and vascular smooth muscle cells. They play a central role in morphogenesis, tissue repair and remodeling in response to injury, e.g., after myocardial infarction, and in progression of diseases such as atherosclerosis. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension and aneurysm formation. MMPs are regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio generally determines the extent of ECM protein degradation and tissue remodeling. Studies are currently focused on improving the diagnostic and prognostic value of MMPs involved in the pathogenic process, increasing their therapeutic potential, and monitoring the disease. New selective MMP inhibitors may improve the specificity of these inhibitors, target specific MMPs in relevant pathological conditions and mitigate some of the side effects.
Collapse
Affiliation(s)
- Gonçalo Simões
- Politécnico de Coimbra, ESTeSC, Ciências Biomédicas Laboratoriais, Rua 5 de Outubro, 3046-854 Coimbra, Portugal.
| | - Telmo Pereira
- LABINSAÚDE - Laboratório de Investigação em Ciências Aplicadas à Saúde, Instituto Politécnico de Coimbra, ESTeSC, Rua 5 de Outubro, 3046-854 Coimbra, Portugal; Politécnico de Coimbra, ESTeSC, Fisiologia Clínica, Rua 5 de Outubro, 3046-854 Coimbra, Portugal.
| | - Armando Caseiro
- Politécnico de Coimbra, ESTeSC, Ciências Biomédicas Laboratoriais, Rua 5 de Outubro, 3046-854 Coimbra, Portugal; LABINSAÚDE - Laboratório de Investigação em Ciências Aplicadas à Saúde, Instituto Politécnico de Coimbra, ESTeSC, Rua 5 de Outubro, 3046-854 Coimbra, Portugal; Unidade I&D Química-Física Molecular, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal.
| |
Collapse
|
35
|
Richter RP, Payne GA, Ambalavanan N, Gaggar A, Richter JR. The endothelial glycocalyx in critical illness: A pediatric perspective. Matrix Biol Plus 2022; 14:100106. [PMID: 35392182 PMCID: PMC8981764 DOI: 10.1016/j.mbplus.2022.100106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium is the interface between circulating blood and end organs and thus has a critical role in preserving organ function. The endothelium is lined by a glycan-rich glycocalyx that uniquely contributes to endothelial function through its regulation of leukocyte and platelet interactions with the vessel wall, vascular permeability, coagulation, and vasoreactivity. Degradation of the endothelial glycocalyx can thus promote vascular dysfunction, inflammation propagation, and organ injury. The endothelial glycocalyx and its role in vascular pathophysiology has gained increasing attention over the last decade. While studies characterizing vascular glycocalyx injury and its downstream consequences in a host of adult human diseases and in animal models has burgeoned, studies evaluating glycocalyx damage in pediatric diseases are relatively few. As children have unique physiology that differs from adults, significant knowledge gaps remain in our understanding of the causes and effects of endothelial glycocalyx disintegrity in pediatric critical illness. In this narrative literature overview, we offer a unique perspective on the role of the endothelial glycocalyx in pediatric critical illness, drawing from adult and preclinical data in addition to pediatric clinical experience to elucidate how marked derangement of the endothelial surface layer may contribute to aberrant vascular biology in children. By calling attention to this nascent field, we hope to increase research efforts to address important knowledge gaps in pediatric vascular biology that may inform the development of novel therapeutic strategies.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- CD, cell differentiation marker
- COVID-19, coronavirus disease 2019
- CPB, cardiopulmonary bypass
- CT, component therapy
- Children
- Critical illness
- DENV NS1, dengue virus nonstructural protein 1
- DM, diabetes mellitus
- ECLS, extracorporeal life support
- ECMO, extracorporeal membrane oxygenation
- EG, endothelial glycocalyx
- Endothelial glycocalyx
- FFP, fresh frozen plasma
- GAG, glycosaminoglycan
- GPC, glypican
- HPSE, heparanase
- HSV, herpes simplex virus
- IV, intravenous
- MIS-C, multisystem inflammatory syndrome in children
- MMP, matrix metalloproteinase
- Pragmatic, Randomized Optimal Platelet and Plasma Ratios
- RHAMM, receptor for hyaluronan-mediated motility
- S protein, spike protein
- SAFE, Saline versus Albumin Fluid Evaluation
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SDC, syndecan
- SDF, sidestream darkfield
- SIRT1, sirtuin 1
- TBI, traumatic brain injury
- TBSA, total body surface area
- TMPRSS2, transmembrane protease serine 2
- Th2, type 2 helper T cell
- VSMC, vascular smooth muscle cell
- Vascular biology
- WB+CT, whole blood and component therapy
- eNOS, endothelial nitric oxide synthase
Collapse
Affiliation(s)
- Robert P. Richter
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory A. Payne
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namasivayam Ambalavanan
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Translational Research in Normal and Disordered Development Program, University of Alabama, Birmingham, AL, USA
| | - Amit Gaggar
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jillian R. Richter
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
36
|
Rotaru M, Iancu G, Baldovin I. A prospective study on hyperhomocysteinemia as an aggravating factor in chronic venous insufficiency. Exp Ther Med 2022; 24:449. [DOI: 10.3892/etm.2022.11376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maria Rotaru
- Department of Dermatology, Faculty of Medicine, ‘Lucian Blaga’ University of Sibiu, 550169 Sibiu, Romania
| | - Gabriela Iancu
- Department of Dermatology, Faculty of Medicine, ‘Lucian Blaga’ University of Sibiu, 550169 Sibiu, Romania
| | - Ioana Baldovin
- Clinic of Dermatology, County Emergency Hospital of Sibiu, 550245 Sibiu, Romania
| |
Collapse
|
37
|
Milusev A, Rieben R, Sorvillo N. The Endothelial Glycocalyx: A Possible Therapeutic Target in Cardiovascular Disorders. Front Cardiovasc Med 2022; 9:897087. [PMID: 35647072 PMCID: PMC9136230 DOI: 10.3389/fcvm.2022.897087] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
The physiological, anti-inflammatory, and anti-coagulant properties of endothelial cells (ECs) rely on a complex carbohydrate-rich layer covering the luminal surface of ECs, called the glycocalyx. In a range of cardiovascular disorders, glycocalyx shedding causes endothelial dysfunction and inflammation, underscoring the importance of glycocalyx preservation to avoid disease initiation and progression. In this review we discuss the physiological functions of the glycocalyx with particular focus on how loss of endothelial glycocalyx integrity is linked to cardiovascular risk factors, like hypertension, aging, diabetes and obesity, and contributes to the development of thrombo-inflammatory conditions. Finally, we consider the role of glycocalyx components in regulating inflammatory responses and discuss possible therapeutic interventions aiming at preserving or restoring the endothelial glycocalyx and therefore protecting against cardiovascular disease.
Collapse
Affiliation(s)
- Anastasia Milusev
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nicoletta Sorvillo
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- *Correspondence: Nicoletta Sorvillo
| |
Collapse
|
38
|
Xia H, Wang Z, Tian M, Liu Z, Zhou Z. Low-Molecular-Weight Heparin Versus Aspirin in Early Management of Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:823391. [PMID: 35281068 PMCID: PMC8908308 DOI: 10.3389/fimmu.2022.823391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To evaluate the difference between low-molecular-weight heparin (LMWH) and aspirin in preventing early neurological deterioration (END) and recurrent ischemic stroke (RIS), post-recovery independence, and safety outcomes in acute ischemic stroke. Materials and Methods We performed systematic searches of the PubMed, Embase, Web of Science, and Cochrane Library databases for full-text articles of randomized controlled trials (RCTs) of LMWH vs. aspirin in the early management of acute ischemic stroke. Information on study design, eligibility criteria, baseline information, and outcomes was extracted. Synthesized relative risks (RRs) with 95% confidence intervals (CIs) are used to present the differences between the two treatments based on fixed-effects models. Results Five RCTs were retrieved from the online databases. The results showed no significant difference in efficacy outcomes between the two groups among unselected patients. Subgroup analysis showed that LMWH was significantly related to a lower incidence of END events [relative risk (RR): 0.44, 95% confidence interval (CI): 0.35-0.56] and reduced occurrence of RIS during treatment (OR: 0.34, 95% CI: 0.16-0.75) in non-cardioembolic stroke. LMWH significantly increased the number of patients with a modified Rankin scale (mRS) score of 0-1 at 6 months in patients with large-artery occlusive disease (LAOD) (RR: 0.50, 95% CI: 0.27-0.91). LMWH had a similar effect on symptomatic intracranial hemorrhage (sICH) and major extracranial hemorrhage during treatment to that of aspirin, except that LMWH was related to an increased likelihood of extracranial hemorrhage. Conclusions In patients with acute non-cardioembolic ischemic stroke, especially that with large-artery stenosis, LMWH treatment significantly reduced the incidence of END and RIS, and improved the likelihood of independence (mRS 0-1) at 6 months compared with those with aspirin treatment. LMWH was related to an increased likelihood of extracranial hemorrhage among all patients; however, the difference in major extracranial hemorrhage and sICH was not significant. Choosing the appropriate patients and paying attention to the start time and duration of treatment are very important in the use of anticoagulation. Systematic Review Registration http://www.crd.york.ac.uk/PROSPERO, identifier CRD42020185446.
Collapse
Affiliation(s)
- Hui Xia
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Ziyao Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Min Tian
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Zunjing Liu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
39
|
Garcia C, Compagnon B, Poëtte M, Gratacap MP, Lapébie FX, Voisin S, Minville V, Payrastre B, Vardon-Bounes F, Ribes A. Platelet Versus Megakaryocyte: Who Is the Real Bandleader of Thromboinflammation in Sepsis? Cells 2022; 11:1507. [PMID: 35563812 PMCID: PMC9104300 DOI: 10.3390/cells11091507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Platelets are mainly known for their key role in hemostasis and thrombosis. However, studies over the last two decades have shown their strong implication in mechanisms associated with inflammation, thrombosis, and the immune system in various neoplastic, inflammatory, autoimmune, and infectious diseases. During sepsis, platelets amplify the recruitment and activation of innate immune cells at the site of infection and contribute to the elimination of pathogens. In certain conditions, these mechanisms can lead to thromboinflammation resulting in severe organ dysfunction. Here, we discuss the interactions of platelets with leukocytes, neutrophil extracellular traps (NETs), and endothelial cells during sepsis. The intrinsic properties of platelets that generate an inflammatory signal through the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome are discussed. As an example of immunothrombosis, the implication of platelets in vaccine-induced immune thrombotic thrombocytopenia is documented. Finally, we discuss the role of megakaryocytes (MKs) in thromboinflammation and their adaptive responses.
Collapse
Affiliation(s)
- Cédric Garcia
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (C.G.); (S.V.); (B.P.)
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
| | - Baptiste Compagnon
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France;
| | - Michaël Poëtte
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France;
| | - Marie-Pierre Gratacap
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
| | - François-Xavier Lapébie
- Service de Médecine Vasculaire, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France;
| | - Sophie Voisin
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (C.G.); (S.V.); (B.P.)
| | - Vincent Minville
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France;
| | - Bernard Payrastre
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (C.G.); (S.V.); (B.P.)
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
| | - Fanny Vardon-Bounes
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France;
| | - Agnès Ribes
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (C.G.); (S.V.); (B.P.)
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
| |
Collapse
|
40
|
Schreiner TG, Romanescu C, Popescu BO. The Blood-Brain Barrier-A Key Player in Multiple Sclerosis Disease Mechanisms. Biomolecules 2022; 12:538. [PMID: 35454127 PMCID: PMC9025898 DOI: 10.3390/biom12040538] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, multiple sclerosis (MS), a chronic neuroinflammatory disease with severe personal and social consequences, has undergone a steady increase in incidence and prevalence rates worldwide. Despite ongoing research and the development of several novel therapies, MS pathology remains incompletely understood, and the prospect for a curative treatment continues to be unpromising in the near future. A sustained research effort, however, should contribute to a deeper understanding of underlying disease mechanisms, which will undoubtedly yield improved results in drug development. In recent years, the blood-brain barrier (BBB) has increasingly become the focus of many studies as it appears to be involved in both MS disease onset and progression. More specifically, neurovascular unit damage is believed to be involved in the critical process of CNS immune cell penetration, which subsequently favors the development of a CNS-specific immune response, leading to the classical pathological and clinical hallmarks of MS. The aim of the current narrative review is to merge the relevant evidence on the role of the BBB in MS pathology in a comprehensive and succinct manner. Firstly, the physiological structure and functions of the BBB as a component of the more complex neurovascular unit are presented. Subsequently, the authors review the specific alteration of the BBB encountered in different stages of MS, focusing on both the modifications of BBB cells in neuroinflammation and the CNS penetration of immune cells. Finally, the currently accepted theories on neurodegeneration in MS are summarized.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| | - Constantin Romanescu
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Section IV, “St. Parascheva” Infectious Disease Hospital, 700116 Iași, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
41
|
Bauer C, Piani F, Banks M, Ordoñez FA, de Lucas-Collantes C, Oshima K, Schmidt EP, Zakharevich I, Segarra A, Martinez C, Roncal-Jimenez C, Satchell SC, Bjornstad P, Lucia MS, Blaine J, Thurman JM, Johnson RJ, Cara-Fuentes G. Minimal Change Disease Is Associated With Endothelial Glycocalyx Degradation and Endothelial Activation. Kidney Int Rep 2022; 7:797-809. [PMID: 35497798 PMCID: PMC9039905 DOI: 10.1016/j.ekir.2021.11.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/03/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Introduction Minimal change disease (MCD) is considered a podocyte disorder triggered by unknown circulating factors. Here, we hypothesized that the endothelial cell (EC) is also involved in MCD. Methods We studied 45 children with idiopathic nephrotic syndrome (44 had steroid sensitive nephrotic syndrome [SSNS], and 12 had biopsy-proven MCD), 21 adults with MCD, and 38 healthy controls (30 children, 8 adults). In circulation, we measured products of endothelial glycocalyx (EG) degradation (syndecan-1, heparan sulfate [HS] fragments), HS proteoglycan cleaving enzymes (matrix metalloprotease-2 [MMP-2], heparanase activity), and markers of endothelial activation (von Willebrand factor [vWF], thrombomodulin) by enzyme-linked immunosorbent assay (ELISA) and mass spectrometry. In human kidney tissue, we assessed glomerular EC (GEnC) activation by immunofluorescence of caveolin-1 (n = 11 MCD, n = 5 controls). In vitro, we cultured immortalized human GEnC with sera from control subjects and patients with MCD/SSNS sera in relapse (n = 5 per group) and performed Western blotting of thrombomodulin of cell lysates as surrogate marker of endothelial activation. Results In circulation, median concentrations of all endothelial markers were higher in patients with active disease compared with controls and remained high in some patients during remission. In the MCD glomerulus, caveolin-1 expression was higher, in an endothelial-specific pattern, compared with controls. In cultured human GEnC, sera from children with MCD/SSNS in relapse increased thrombomodulin expression compared with control sera. Conclusion Our data show that alterations involving the systemic and glomerular endothelium are nearly universal in patients with MCD and SSNS, and that GEnC can be directly activated by circulating factors present in the MCD/SSNS sera during relapse.
Collapse
Affiliation(s)
- Colin Bauer
- Section of Pediatric Nephrology, Department of Pediatrics, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Federica Piani
- Section of Pediatric Nephrology, Department of Pediatrics, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Mindy Banks
- Division of Pediatric Nephrology, Rocky Mountain Children’s Hospital, Denver, Colorado, USA
| | - Flor A. Ordoñez
- Division of Pediatric Nephrology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Kaori Oshima
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric P. Schmidt
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Igor Zakharevich
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alfons Segarra
- Department of Nephrology, Hospital Universitario Arnau de Vilanova, Lleida, Spain
- Lleida Institute for Biomedical Research Dr. Pifarré Foundation, Lleida, Spain
- Division of Nephrology, Hospital General Vall d’Hebron, Barcelona, Spain
| | - Cristina Martinez
- Lleida Institute for Biomedical Research Dr. Pifarré Foundation, Lleida, Spain
| | - Carlos Roncal-Jimenez
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Petter Bjornstad
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, Section of Pediatric Endocrinology, Children’s Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marshall Scott Lucia
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Judith Blaine
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joshua M. Thurman
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard J. Johnson
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gabriel Cara-Fuentes
- Section of Pediatric Nephrology, Department of Pediatrics, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
42
|
Jakob A, Bohlig S, König M, Nussbaum C, Dalla-Pozza R, Hermann M, Haas NA, Pastor-Villaescusa B. Kawasaki disease and increased cardiovascular risk: Is there a link to circulating glycocalyx biomarkers? Microvasc Res 2022; 140:104269. [PMID: 34699846 DOI: 10.1016/j.mvr.2021.104269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
AIMS Kawasaki disease (KD) is an acute systemic vasculitis with possible long-term impact of general cardio-vascular health. An endothelial glycocalyx disorder during the disease's acute phase might predispose to long-term vascular anomalies leading to endothelial dysfunction and atherosclerosis. To investigate any association between increased cardiovascular risk and endothelial glycocalyx, we assessed circulating glycocalyx components in patients with a KD history, and analysed their association with acute-phase clinical features and more importantly, with patients' current cardiovascular risk factors. METHODS This prospective observational cohort study included 51 subjects: 31 patients with a history of KD, and 20 healthy subjects matched for age and sex. We analysed serum syndecan-1 and hyaluronan via ELISA. We assessed features reported during the acute phase of KD such as blood counts, C-reactive protein (CRP) levels and coronary artery aneurysms (CAA), and their current blood pressure and lipid markers in relation to measured glycocalyx components. RESULTS Our multivariate analysis revealed that hyaluronan and syndecan-1 levels were not associated with KD. However, the latter exhibited a significant association with acute-phase blood count alterations in patients with KD. Furthermore, significant interactions of hyaluronan and syndecan-1 with certain cardiovascular risk factors like blood lipids and blood pressure were only present in KD patients. CONCLUSION Vasculitis during KD's acute phase might predispose to a long-term endothelial glycocalyx alteration, influenced by other factors having a vascular impact such as blood pressure and circulating lipids. CLINICAL TRIAL REGISTRATION German Clinical Trials Register on 25th February 2016, DRKS00010071 https://www.drks.de/drks_web/.
Collapse
Affiliation(s)
- André Jakob
- Ludwig-Maximilians-University of Munich, Department of Pediatric Cardiology, Marchioninistr. 15, 81377 Munich, Germany.
| | - Sarah Bohlig
- Ludwig-Maximilians-University of Munich, Department of Pediatric Cardiology, Marchioninistr. 15, 81377 Munich, Germany
| | - Miriam König
- Ludwig-Maximilians-University of Munich, Department of Pediatric Cardiology, Marchioninistr. 15, 81377 Munich, Germany
| | - Claudia Nussbaum
- Div. of Neonatology, Dr. von Hauner Children's Hospital, LMU Munich, 80337 Munich, Germany
| | - Robert Dalla-Pozza
- Div. of Neonatology, Dr. von Hauner Children's Hospital, LMU Munich, 80337 Munich, Germany
| | - Mathias Hermann
- Ludwig-Maximilians-University of Munich, Department of Pediatric Cardiology, Marchioninistr. 15, 81377 Munich, Germany
| | - Nikolaus A Haas
- Ludwig-Maximilians-University of Munich, Department of Pediatric Cardiology, Marchioninistr. 15, 81377 Munich, Germany
| | - Belén Pastor-Villaescusa
- Ludwig-Maximilians-University of Munich, Department of Pediatric Cardiology, Marchioninistr. 15, 81377 Munich, Germany
| |
Collapse
|
43
|
Guo S, Wu X, Lei T, Zhong R, Wang Y, Zhang L, Zhao Q, Huang Y, Shi Y, Wu L. The Role and Therapeutic Value of Syndecan-1 in Cancer Metastasis and Drug Resistance. Front Cell Dev Biol 2022; 9:784983. [PMID: 35118073 PMCID: PMC8804279 DOI: 10.3389/fcell.2021.784983] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
Metastasis and relapse are major causes of cancer-related fatalities. The elucidation of relevant pathomechanisms and adoption of appropriate countermeasures are thus crucial for the development of clinical strategies that inhibit malignancy progression as well as metastasis. An integral component of the extracellular matrix, the type 1 transmembrane glycoprotein syndecan-1 (SDC-1) binds cytokines and growth factors involved in tumor microenvironment modulation. Alterations in its localization have been implicated in both cancer metastasis and drug resistance. In this review, available data regarding the structural characteristics, shedding process, and nuclear translocation of SDC-1 are detailed with the aim of highlighting strategies directly targeting SDC-1 as well as SDC-1-mediated carcinogenesis.
Collapse
Affiliation(s)
- Sen Guo
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - XinYi Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Lei
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Zhong
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YiRan Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - QingYi Zhao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Yin Shi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Yin Shi, ; Luyi Wu,
| | - Luyi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Yin Shi, ; Luyi Wu,
| |
Collapse
|
44
|
Fernández-Sarmiento J, Schlapbach LJ, Acevedo L, Santana CR, Acosta Y, Diana A, Monsalve M, Carcillo JA. Endothelial Damage in Sepsis: The Importance of Systems Biology. Front Pediatr 2022; 10:828968. [PMID: 35356443 PMCID: PMC8959536 DOI: 10.3389/fped.2022.828968] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
The early diagnosis and appropriate stratification of sepsis continues to be one of the most important challenges in modern medicine. Single isolated biomarkers have not been enough to improve diagnostic and prognostic strategies and to progress toward therapeutic goals. The information generated by the human genome project has allowed a more holistic approach to the problem. The integration of genomics, transcriptomics, proteomics and metabolomics in sepsis has allowed us to progress in the knowledge of new pathways which are pathophysiologically involved in this disease. Thus, we have understood the importance of and complex interaction between the inflammatory response and the endothelium. Understanding the role of important parts of the microcirculation, such as the endothelial glycocalyx and its interaction with the inflammatory response, has provided early recognition elements for clinical practice that allow the rational use of traditional medical interventions in sepsis. This comprehensive approach, which differs from the classical mechanistic approach, uses systems biology to increase the diagnostic and prognostic spectrum of endothelial damage biomarkers in sepsis, and to provide information on new pathways involved in the pathophysiology of the disease. This, in turn, provides tools for perfecting traditional medical interventions, using them at the appropriate times according to the disease's pathophysiological context, while at the same time discovering new and improved therapeutic alternatives. We have the challenge of transferring this ideal scenario to our daily clinical practice to improve our patients' care. The purpose of this article is to provide a general description of the importance of systems biology in integrating the complex interaction between the endothelium and the inflammatory response in sepsis.
Collapse
Affiliation(s)
- Jaime Fernández-Sarmiento
- Department of Pediatrics and Intensive Care, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Escuela de Graduados CES, Bogotá, Colombia
| | - Luregn J Schlapbach
- Department of Paediatric Critical Care Research Group, The University of Queensland and Queensland Children's Hospital, Brisbane, QLD, Australia.,Department of Paediatric Critical Care, Queensland Children's Hospital, Brisbane, QLD, Australia.,Department of Paediatric Critical Care, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Lorena Acevedo
- Department of Pediatrics and Intensive Care, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Escuela de Graduados CES, Bogotá, Colombia
| | - Carolina Ramírez Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yeny Acosta
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Ampudia Diana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Joseph A Carcillo
- Department of Critical Care Medicine and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
45
|
Aloe vera increases collagen fibres in extracellular matrix and mRNA expression of peroxiredoxin-6 in bovine ovarian cortical tissues cultured in vitro. ZYGOTE 2021; 30:365-372. [PMID: 34851249 DOI: 10.1017/s0967199421000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In vitro culture of ovarian tissue containing primordial follicles is an important tool to study the initiation of follicular populations and to develop efficient culture systems to support in vitro follicle growth. Considering that in vitro culture favours oxidative stress, it is very important to supplement culture medium with antioxidant substances such as Aloe vera extract. This study aims to evaluate the effects of different concentrations of Aloe vera on the distribution of collagen fibres in the extracellular matrix, follicular activation, development and survival in bovine ovarian cortical tissues cultured in vitro, as well as on expression of mRNAs for antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxiredoxin 6 (PRDX6) and glutathione peroxidase 1 (GPX1)]. To this end, ovarian cortical tissues were cultured for 6 days in α-MEM alone or supplemented with different concentrations of Aloe vera extract (1.0, 5.0, 10.0 or 50.0%). After culture, fragments were fixed and processed histologically to evaluate follicular morphology and activation, as well as the extracellular matrix by staining with picrosirius red. The levels of mRNA for SOD, CAT, PRDX6 and GPX1 in cultured ovarian tissues were evaluated by real-time polymerase chain reaction (PCR). Ovarian tissues cultured with 10.0 or 50.0% Aloe vera had higher percentages of collagen fibres than tissues cultured in control medium. A significant increase in developing follicles was observed in ovarian tissues cultured in α-MEM alone or supplemented with 10% Aloe vera when compared with fresh control or tissues cultured with 1.0% Aloe vera. Presence of Aloe vera did not influence the percentage of morphologically normal follicles when compared with control medium. Ovarian tissues cultured with 50.0% Aloe vera had higher percentages of morphologically normal follicles than those cultured with 10.0% Aloe vera. Furthermore, 10% Aloe vera significantly increased mRNA levels for PRDX6. In conclusion, 10.0% Aloe vera improves extracellular matrix distribution in cultured tissues and increases the expression of mRNA for PRDX6 after 6 days in vitro.
Collapse
|
46
|
Kaur G, Rogers J, Rashdan NA, Cruz-Topete D, Pattillo CB, Hartson SD, Harris NR. Hyperglycemia-induced effects on glycocalyx components in the retina. Exp Eye Res 2021; 213:108846. [PMID: 34801534 PMCID: PMC8665121 DOI: 10.1016/j.exer.2021.108846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE Diabetic retinopathy is a vision-threatening complication of diabetes characterized by endothelial injury and vascular dysfunction. The loss of the endothelial glycocalyx, a dynamic layer lining all endothelial cells, contributes to several microvascular pathologies, including an increase in vascular permeability, leukocyte plugging, and capillary occlusion, and may drive the progression of retinopathy. Previously, a significant decrease in glycocalyx thickness has been observed in diabetic retinas. However, the effects of diabetes on specific components of the retinal glycocalyx have not yet been studied. Therefore, the aim of our study was to investigate changes in synthesis, expression, and shedding of retinal glycocalyx components induced by hyperglycemia, which could provide a novel therapeutic target for diabetic retinopathy. METHODS Primary rat retinal microvascular endothelial cells (RRMECs) were grown under normal glucose (5 mM) or high-glucose (25 mM) conditions for 6 days. The mRNA and protein levels of the glycocalyx components were examined using qRT-PCR and Western blot analysis, respectively. Further, mass spectrometry was used to analyze protein intensities of core proteins. In addition, the streptozotocin-induced Type 1 diabetic rat model was used to study changes in the expression of the retinal glycocalyx in vivo. The shedding of the glycocalyx was studied in both culture medium and in plasma using Western blot analysis. RESULTS A significant increase in the shedding of syndecan-1 and CD44 was observed both in vitro and in vivo under high-glucose conditions. The mRNA levels of syndecan-3 were significantly lower in the RRMECs grown under high glucose conditions, whereas those of syndecan-1, syndecan-2, syndecan-4, glypican-1, glypican-3, and CD44 were significantly higher. The protein expression of syndecan-3 and glypican-1 in RRMECs was reduced considerably following exposure to high glucose, whereas that of syndecan-1 and CD44 increased significantly. In addition, mass spectrometry data also suggests a significant increase in syndecan-4 and a significant decrease in glypican-3 protein levels with high glucose stimulation. In vivo, our data also suggest a significant decrease in the mRNA transcripts of syndecan-3 and an increase in mRNA levels of glypican-1 and CD44 in the retinas of diabetic rats. The diabetic rats exhibited a significant reduction in the retinal expression of syndecan-3 and CD44. However, the expression of syndecan-1 and glypican-1 increased significantly in the diabetic retina. CONCLUSIONS One of the main findings of our study was the considerable diversity of glucose-induced changes in expression and shedding of various components of endothelial glycocalyx, for example, increased endothelial and retinal syndecan-1, but decreased endothelial and retinal syndecan-3. This indicates that the reported decrease in the retinal glycocalyx in diabetes in not a result of a non-specific shedding mechanism. Moreover, mRNA measurements indicated a similar diversity, with increases in endothelial and/or retinal levels of syndecan-1, glypican-1, and CD44, but a decrease for syndecan-3, with these increases in mRNA potentially a compensatory reaction to the overall loss of glycocalyx.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Louisiana State University Health Science Center-Shreveport, LA, Department of Molecular and Cellular Physiology, USA
| | - Janet Rogers
- Oklahoma State University, OK, Department of Biochemistry and Molecular Biology, USA
| | - Nabil A Rashdan
- Louisiana State University Health Science Center-Shreveport, LA, Department of Molecular and Cellular Physiology, USA
| | - Diana Cruz-Topete
- Louisiana State University Health Science Center-Shreveport, LA, Department of Molecular and Cellular Physiology, USA
| | - Christopher B Pattillo
- Louisiana State University Health Science Center-Shreveport, LA, Department of Molecular and Cellular Physiology, USA
| | - Steven D Hartson
- Oklahoma State University, OK, Department of Biochemistry and Molecular Biology, USA
| | - Norman R Harris
- Louisiana State University Health Science Center-Shreveport, LA, Department of Molecular and Cellular Physiology, USA.
| |
Collapse
|
47
|
Joffre J, Hellman J. Oxidative Stress and Endothelial Dysfunction in Sepsis and Acute Inflammation. Antioxid Redox Signal 2021; 35:1291-1307. [PMID: 33637016 DOI: 10.1089/ars.2021.0027] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Under homeostatic conditions, the endothelium dynamically regulates vascular barrier function, coagulation pathways, leukocyte adhesion, and vasomotor tone. During sepsis and acute inflammation, endothelial cells (ECs) undergo multiple phenotypic and functional modifications that are initially adaptive but eventually become harmful, leading to microvascular dysfunction and multiorgan failure. Critical Issues and Recent Advances: Sepsis unbalances the redox homeostasis toward a pro-oxidant state, characterized by an excess production of reactive oxygen species and reactive nitrogen species, mitochondrial dysfunction, and a breakdown of antioxidant systems. In return, oxidative stress (OS) alters multiple EC functions and promotes a proinflammatory, procoagulant, and proadhesive phenotype. The OS also induces glycocalyx deterioration, cell death, increased permeability, and impaired vasoreactivity. Thus, during sepsis, the ECs are both a significant source and one of the main targets of OS. Future Directions: This review aims at covering the current understanding of the role of OS in the endothelial adaptive or maladaptive multifaceted response to sepsis and to outline the therapeutic potential and issues of targeting OS and endothelial dysfunction during sepsis and septic shock. One of the many challenges in the management of sepsis is now based on the detection and correction of these anomalies of endothelial function.
Collapse
Affiliation(s)
- Jérémie Joffre
- Department of Anesthesia and Perioperative Care, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco School of Medicine, San Francisco, California, USA
| |
Collapse
|
48
|
Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. COVID-19: A Redox Disease-What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxid Redox Signal 2021; 35:1226-1268. [PMID: 33985343 DOI: 10.1089/ars.2021.0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), affects every aspect of human life by challenging bodily, socioeconomic, and political systems at unprecedented levels. As vaccines become available, their distribution, safety, and efficacy against emerging variants remain uncertain, and specific treatments are lacking. Recent Advances: Initially affecting the lungs, COVID-19 is a complex multisystems disease that disturbs the whole-body redox balance and can be long-lasting (Long-COVID). Numerous risk factors have been identified, but the reasons for variations in susceptibility to infection, disease severity, and outcome are poorly understood. The reactive species interactome (RSI) was recently introduced as a framework to conceptualize how cells and whole organisms sense, integrate, and accommodate stress. Critical Issues: We here consider COVID-19 as a redox disease, offering a holistic perspective of its effects on the human body, considering the vulnerability of complex interconnected systems with multiorgan/multilevel interdependencies. Host/viral glycan interactions underpin SARS-CoV-2's extraordinary efficiency in gaining cellular access, crossing the epithelial/endothelial barrier to spread along the vascular/lymphatic endothelium, and evading antiviral/antioxidant defences. An inflammation-driven "oxidative storm" alters the redox landscape, eliciting epithelial, endothelial, mitochondrial, metabolic, and immune dysfunction, and coagulopathy. Concomitantly reduced nitric oxide availability renders the sulfur-based redox circuitry vulnerable to oxidation, with eventual catastrophic failure in redox communication/regulation. Host nutrient limitations are crucial determinants of resilience at the individual and population level. Future Directions: While inflicting considerable damage to health and well-being, COVID-19 may provide the ultimate testing ground to improve the diagnosis and treatment of redox-related stress diseases. "Redox phenotyping" of patients to characterize whole-body RSI status as the disease progresses may inform new therapeutic approaches to regain redox balance, reduce mortality in COVID-19 and other redox diseases, and provide opportunities to tackle Long-COVID. Antioxid. Redox Signal. 35, 1226-1268.
Collapse
Affiliation(s)
- Andrew F Cumpstey
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anna D Clark
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), Biochemistry, Biophysics and Structural Biology, CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Alan A Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Martin Feelisch
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
49
|
Zhu J, Yang G. H 2S signaling and extracellular matrix remodeling in cardiovascular diseases: A tale of tense relationship. Nitric Oxide 2021; 116:14-26. [PMID: 34428564 DOI: 10.1016/j.niox.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network that not only provides mechanical support but also transduces essential molecular signals in organ functions. ECM is constantly remodeled to control tissue homeostasis, responsible for cell adhesion, cell migration, cell-to-cell communication, and cell differentiation, etc. The dysregulation of ECM components contributes to various diseases, including cardiovascular diseases, fibrosis, cancer, and neurodegenerative diseases, etc. Aberrant ECM remodeling is initiated by various stress, such as oxidative stress, inflammation, ischemia, and mechanical stress, etc. Hydrogen sulfide (H2S) is a gasotransmitter that exhibits a wide variety of cytoprotective and physiological functions through its anti-oxidative and anti-inflammatory actions. Amounting research shows that H2S can attenuate aberrant ECM remodeling. In this review, we discussed the implications and mechanisms of H2S in the regulation of ECM remodeling in cardiovascular diseases, and highlighted the potential of H2S in the prevention and treatment of cardiovascular diseases through attenuating adverse ECM remodeling.
Collapse
Affiliation(s)
- Jiechun Zhu
- School of Biological, Chemical & Forensic Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- School of Biological, Chemical & Forensic Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
50
|
Jin J, Fang F, Gao W, Chen H, Wen J, Wen X, Chen J. The Structure and Function of the Glycocalyx and Its Connection With Blood-Brain Barrier. Front Cell Neurosci 2021; 15:739699. [PMID: 34690703 PMCID: PMC8529036 DOI: 10.3389/fncel.2021.739699] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022] Open
Abstract
The vascular endothelial glycocalyx is a dense, bush-like structure that is synthesized and secreted by endothelial cells and evenly distributed on the surface of vascular endothelial cells. The blood-brain barrier (BBB) is mainly composed of pericytes endothelial cells, glycocalyx, basement membranes, and astrocytes. The glycocalyx in the BBB plays an indispensable role in many important physiological functions, including vascular permeability, inflammation, blood coagulation, and the synthesis of nitric oxide. Damage to the fragile glycocalyx can lead to increased permeability of the BBB, tissue edema, glial cell activation, up-regulation of inflammatory chemokines expression, and ultimately brain tissue damage, leading to increased mortality. This article reviews the important role that glycocalyx plays in the physiological function of the BBB. The review may provide some basis for the research direction of neurological diseases and a theoretical basis for the diagnosis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Jing Jin
- Zhejiang Center for Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fuquan Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Gao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanjian Chen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Wen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuehua Wen
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Junfa Chen
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|