1
|
Theodoridis X, Chourdakis M, Papaemmanouil A, Chaloulakou S, Georgakou AV, Chatzis G, Triantafyllou A. The Effect of Diet on Vascular Aging: A Narrative Review of the Available Literature. Life (Basel) 2024; 14:267. [PMID: 38398776 PMCID: PMC10890697 DOI: 10.3390/life14020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Early vascular aging is related to various cardiovascular diseases including hypertension, coronary heart disease, and stroke. Healthful lifestyle practices and interventions, including dietary regimens and consistent aerobic exercise, exert favorable modulation on these processes, thereby diminishing the risk of cardiovascular disease with advancing age. The principal objective of this review was to conduct a comprehensive evaluation and synthesis of the available literature regarding the effectiveness of different diets on vascular health, such as arterial stiffness and endothelial function. To conduct this review, a thorough search of electronic databases including PubMed, Scopus, and Web of Science Core Collection was carried out. Based on the existing evidence, the Mediterranean, Dietary Approaches to Stop Hypertension, and low-calorie diets may have a beneficial effect on vascular health. However, more randomized controlled trials with sufficient sample sizes, longer follow-ups, rigorous methodologies, and, possibly, head-to-head comparisons between the different diets are needed to shed light on this topic.
Collapse
Affiliation(s)
- Xenophon Theodoridis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (A.V.G.)
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Michail Chourdakis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (A.V.G.)
| | - Androniki Papaemmanouil
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (A.V.G.)
| | - Stavroula Chaloulakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (A.V.G.)
| | - Athina Vasiliki Georgakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (A.V.G.)
| | - Georgios Chatzis
- School of Physical Education and Sports Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| |
Collapse
|
2
|
Rabkin SW. Collagen type IV as the link between arterial stiffness and dementia. Am J Transl Res 2023; 15:5961-5971. [PMID: 37969177 PMCID: PMC10641358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/14/2023] [Indexed: 11/17/2023]
Abstract
Arterial stiffness has been linked to impaired cognitive function and dementia but the reason for the association is uncertain. This review proposes that collagen type IV is a critical factor linking arterial stiffness and dementia. Several genome wide association studies have related arterial stiffness to Collagen type IVα. Proteomic studies of arteries, demonstrated higher levels of collagen IVα1 in persons with high arterial stiffness. Collagen type IV defects are associated genetic causes of dementia as well as dementia of a variety of other causes. There are plausible causal roles for collagen type IV in dementia. Disorders of Collagen type IV can produce (I) fibro-hyalinosis and elastosis of small arterioles leading to cerebral ischemia and infarction; (II) dysfunction of the blood brain barrier leading to cerebral hemorrhage; (III) carotid artery stiffness with increase pulse pressure induces cerebral blood vessel damage leading to cerebral atrophy. The mechanisms by which Collagen type IV can lead to vascular stiffness include its degradation by matrix metalloprotease type 2 that (a) stimulates vascular smooth muscle cells to produce more extracellular matrix or (b) liberates peptides that damage the subendothelial space. Factors, such as TGF-β1, and LDL cholesterol especially oxidized LDL can increase collagen type IV and produce vascular stiffness and dementia. Fibroblast growth factor 23, and abnormal NO signaling have been linked to collagen type IV or increased vascular stiffness and an increased risk of dementia. Recognition of the central role of collagen type IV in arterial stiffness and dementia will inspire new research focused on determining whether its modification can benefit arterial and brain health.
Collapse
Affiliation(s)
- Simon W Rabkin
- Department of Medicine, University of British Columbia Vancouver, B.C., Canada
| |
Collapse
|
3
|
Bruno RM, Varbiro S, Pucci G, Nemcsik J, Lønnebakken MT, Kublickiene K, Schluchter H, Park C, Mozos I, Guala A, Hametner B, Seeland U, Boutouyrie P. Vascular function in hypertension: does gender dimension matter? J Hum Hypertens 2023; 37:634-643. [PMID: 37061653 DOI: 10.1038/s41371-023-00826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/27/2023] [Accepted: 03/27/2023] [Indexed: 04/17/2023]
Abstract
Blood pressure and vascular ageing trajectories differ between men and women. These differences develop due to sex-related factors, attributable to sex chromosomes or sex hormones, and due to gender-related factors, mainly related to different sociocultural behaviors. The present review summarizes the relevant facts regarding gender-related differences in vascular function in hypertension. Among sex-related factors, endogenous 17ß-estradiol plays a key role in protecting pre-menopausal women from vascular ageing. However, as vascular ageing (preceding and inducing hypertension) has a steeper increase in women than in men starting already from the third decade, it is likely that gender-related factors play a prominent role, especially in the young. Among gender-related factors, psychological stress (including that one related to gender-based violence and discrimination), depression, some psychological traits, but also low socioeconomic status, are more common in women than men, and their impact on vascular ageing is likely to be greater in women. Men, on the contrary, are more exposed to the vascular adverse consequences of alcohol consumption, as well as of social deprivation, while "toxic masculinity" traits may result in lower adherence to lifestyle and preventive strategies. Unhealthy diet habits are more prevalent in men and smoking is equally prevalent in the two sexes, but have a disproportional negative effect on women's vascular health. In conclusion, given the major and complex role of gender-related factors in driving vascular alterations and blood pressure patterns, gender dimension should be systematically integrated into future research on vascular function and hypertension and to tailor cardiovascular prevention strategies.
Collapse
Affiliation(s)
- Rosa-Maria Bruno
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France.
- Pharmacology Unit, Hôpital Européen Georges Pompidou, Paris, France.
| | - Szabolcs Varbiro
- Workgroup for Science Management, Doctoral School, Semmelweis University, Budapest, Hungary
- Department of Obstetrics and Gynecology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Giacomo Pucci
- Internal Medicine Unit, "Santa Maria" Terni Hospital and Department of Medicine and Surgery-University of Perugia, Perugia, Italy
| | - János Nemcsik
- Department of Family Medicine and Health Service of Zuglo (ZESZ), Semmelweis University, Budapest, Hungary
| | - Mai Tone Lønnebakken
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Karolina Kublickiene
- Institution for Clinical Science, Intervention and Technology, Department of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Schluchter
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Chloe Park
- MRC Unit for Lifelong Health and Ageing at UCL, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Ioana Mozos
- Department of Functional Sciences-Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Andrea Guala
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
| | - Bernhard Hametner
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Vienna, Austria
| | - Ute Seeland
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Pierre Boutouyrie
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Pharmacology Unit, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
4
|
Pucci G, Martina MR, Bianchini E, D’abbondanza M, Curcio R, Battista F, Anastasio F, Crapa ME, Sanesi L, Gemignani V, Vaudo G. Relationship between measures of adiposity, blood pressure and arterial stiffness in adolescents. The MACISTE study. J Hypertens 2023; 41:1100-1107. [PMID: 37071447 PMCID: PMC10241423 DOI: 10.1097/hjh.0000000000003433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/06/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVE Children and adolescents with adiposity excess are at increased risk of future cardiovascular (CV) disease. Fat accumulation promotes the development of elevated blood pressure (BP) and arterial stiffness, two main determinants of CV risk which are strongly inter-related. We aimed at investigating whether the association between overweight and arterial stiffness, taken at different arterial segments, is mediated by increased BP or is BP-independent. METHODS Three hundred and twenty-two Italian healthy adolescents (mean age 16.9±1.4 years, 12% with overweight) attending the "G. Donatelli" High School in Terni, Italy, underwent measurement of arterial stiffness by arterial tonometry (aortic stiffness) and semiautomatical detection of pressure-volume ratio of the common carotid (carotid stiffness). The mediator effect of BP was tested for each anthropometric or biochemical measure of fat excess related to arterial stiffness. RESULTS Both carotid and aortic stiffness showed positive correlations with body mass index, waist, hip, and neck circumferences (NC). Only carotid stiffness, but not aortic stiffness, was associated with serum markers of fat accumulation and metabolic impairment such as insulin, homeostatic model of insulin resistance (HOMA-IR), serum gamma-glutamyl transferase (sGGT) and uric acid. The association with NC was stronger for carotid than for aortic stiffness (Fisher z -to- R 2.07, P = 0.04), and independent from BP. CONCLUSIONS In healthy adolescents, fat accumulation is associated with arterial stiffness. The degree of this association differs by arterial segments, since carotid stiffness is more strongly associated to adipose tissue excess than aortic stiffness and shows a BP-independent association with NC whereas aortic stiffness does not.
Collapse
Affiliation(s)
- Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia – Unit of Internal Medicine, “Santa Maria” University Hospital, Terni
| | - Maria R. Martina
- Institute of Clinical Physiology, Italian National Research Council, Pisa
| | | | - Marco D’abbondanza
- Department of Medicine and Surgery, University of Perugia – Unit of Internal Medicine, “Santa Maria” University Hospital, Terni
| | - Rosa Curcio
- Department of Medicine and Surgery, University of Perugia – Unit of Internal Medicine, “Santa Maria” University Hospital, Terni
| | - Francesca Battista
- Sports and Exercise Medicine Division, Department of Medicine, University of Padova, Padova
| | | | - Mariano E. Crapa
- U.O. Medicina Interna, Asl Taranto, Presidio Ospedaliero Occidentale, Castellaneta, Italy
| | - Leandro Sanesi
- Department of Medicine and Surgery, University of Perugia – Unit of Internal Medicine, “Santa Maria” University Hospital, Terni
| | - Vincenzo Gemignani
- Institute of Clinical Physiology, Italian National Research Council, Pisa
| | - Gaetano Vaudo
- Department of Medicine and Surgery, University of Perugia – Unit of Internal Medicine, “Santa Maria” University Hospital, Terni
| |
Collapse
|
5
|
Dona MSI, Hsu I, Meuth AI, Brown SM, Bailey CA, Aragonez CG, Russell JJ, Krstevski C, Aroor AR, Chandrasekar B, Martinez-Lemus LA, DeMarco VG, Grisanti LA, Jaffe IZ, Pinto AR, Bender SB. Multi-omic analysis of the cardiac cellulome defines a vascular contribution to cardiac diastolic dysfunction in obese female mice. Basic Res Cardiol 2023; 118:11. [PMID: 36988733 PMCID: PMC10060343 DOI: 10.1007/s00395-023-00983-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023]
Abstract
Coronary microvascular dysfunction (CMD) is associated with cardiac dysfunction and predictive of cardiac mortality in obesity, especially in females. Clinical data further support that CMD associates with development of heart failure with preserved ejection fraction and that mineralocorticoid receptor (MR) antagonism may be more efficacious in obese female, versus male, HFpEF patients. Accordingly, we examined the impact of smooth muscle cell (SMC)-specific MR deletion on obesity-associated coronary and cardiac diastolic dysfunction in female mice. Obesity was induced in female mice via western diet (WD) feeding alongside littermates fed standard diet. Global MR blockade with spironolactone prevented coronary and cardiac dysfunction in obese females and specific deletion of SMC-MR was sufficient to prevent obesity-associated coronary and cardiac diastolic dysfunction. Cardiac gene expression profiling suggested reduced cardiac inflammation in WD-fed mice with SMC-MR deletion independent of blood pressure, aortic stiffening, and cardiac hypertrophy. Further mechanistic studies utilizing single-cell RNA sequencing of non-cardiomyocyte cell populations revealed novel impacts of SMC-MR deletion on the cardiac cellulome in obese mice. Specifically, WD feeding induced inflammatory gene signatures in non-myocyte populations including B/T cells, macrophages, and endothelium as well as increased coronary VCAM-1 protein expression, independent of cardiac fibrosis, that was prevented by SMC-MR deletion. Further, SMC-MR deletion induced a basal reduction in cardiac mast cells and prevented WD-induced cardiac pro-inflammatory chemokine expression and leukocyte recruitment. These data reveal a central role for SMC-MR signaling in obesity-associated coronary and cardiac dysfunction, thus supporting the emerging paradigm of a vascular origin of cardiac dysfunction in obesity.
Collapse
Affiliation(s)
- Malathi S I Dona
- Baker Heart and Diabetes Research Institute, 75 Commercial Rd Prahran, Melbourne, VIC, 3004, Australia
| | - Ian Hsu
- Baker Heart and Diabetes Research Institute, 75 Commercial Rd Prahran, Melbourne, VIC, 3004, Australia
| | - Alex I Meuth
- Biomedical Sciences, University of Missouri, E102 Vet Med Bldg, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Scott M Brown
- Biomedical Sciences, University of Missouri, E102 Vet Med Bldg, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Chastidy A Bailey
- Biomedical Sciences, University of Missouri, E102 Vet Med Bldg, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Christian G Aragonez
- Biomedical Sciences, University of Missouri, E102 Vet Med Bldg, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Jacob J Russell
- Biomedical Sciences, University of Missouri, E102 Vet Med Bldg, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Crisdion Krstevski
- Baker Heart and Diabetes Research Institute, 75 Commercial Rd Prahran, Melbourne, VIC, 3004, Australia
| | - Annayya R Aroor
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
- Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Bysani Chandrasekar
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
- Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Vincent G DeMarco
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
- Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Laurel A Grisanti
- Biomedical Sciences, University of Missouri, E102 Vet Med Bldg, Columbia, MO, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Alexander R Pinto
- Baker Heart and Diabetes Research Institute, 75 Commercial Rd Prahran, Melbourne, VIC, 3004, Australia.
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia.
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, E102 Vet Med Bldg, Columbia, MO, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA.
| |
Collapse
|
6
|
Ghiarone T, Castorena-Gonzalez JA, Foote CA, Ramirez-Perez FI, Ferreira-Santos L, Cabral-Amador FJ, de la Torre R, Ganga RR, Wheeler AA, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. ADAM17 cleaves the insulin receptor ectodomain on endothelial cells and causes vascular insulin resistance. Am J Physiol Heart Circ Physiol 2022; 323:H688-H701. [PMID: 36018759 PMCID: PMC9512115 DOI: 10.1152/ajpheart.00039.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022]
Abstract
Inflammation and vascular insulin resistance are hallmarks of type 2 diabetes (T2D). However, several potential mechanisms causing abnormal endothelial insulin signaling in T2D need further investigation. Evidence indicates that the activity of ADAM17 (a disintegrin and metalloproteinase-17) and the presence of insulin receptor (IR) in plasma are increased in subjects with T2D. Accordingly, we hypothesized that in T2D, increased ADAM17 activity sheds the IR ectodomain from endothelial cells and impairs insulin-induced vasodilation. We used small visceral arteries isolated from a cross-sectional study of subjects with and without T2D undergoing bariatric surgery, human cultured endothelial cells, and recombinant proteins to test our hypothesis. Here, we demonstrate that arteries from subjects with T2D had increased ADAM17 expression, reduced presence of tissue inhibitor of metalloproteinase-3 (TIMP3), decreased extracellular IRα, and impaired insulin-induced vasodilation versus those from subjects without T2D. In vitro, active ADAM17 cleaved the ectodomain of the IRβ subunit. Endothelial cells with ADAM17 overexpression or exposed to the protein kinase-C activator, PMA, had increased ADAM17 activity, decreased IRα presence on the cell surface, and increased IR shedding. Moreover, pharmacological inhibition of ADAM17 with TAPI-0 rescued PMA-induced IR shedding and insulin-signaling impairments in endothelial cells and insulin-stimulated vasodilation in human arteries. In aggregate, our findings suggest that ADAM17-mediated shedding of IR from the endothelial surface impairs insulin-mediated vasodilation. Thus, we propose that inhibition of ADAM17 sheddase activity should be considered a strategy to restore vascular insulin sensitivity in T2D.NEW & NOTEWORTHY To our knowledge, this is the first study to investigate the involvement of ADAM17 in causing impaired insulin-induced vasodilation in T2D. We provide evidence that ADAM17 activity is increased in the vasculature of patients with T2D and support the notion that ADAM17-mediated shedding of endothelial IRα ectodomains is a novel mechanism causing vascular insulin resistance. Our results highlight that targeting ADAM17 activity may be a potential therapeutic strategy to correct vascular insulin resistance in T2D.
Collapse
Affiliation(s)
- Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jorge A Castorena-Gonzalez
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- Department of Pharmacology, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Christopher A Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri
| | | | | | | | - Rama R Ganga
- Department of Surgery, University of Missouri, Columbia, Missouri
| | - Andrew A Wheeler
- Department of Surgery, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
7
|
Kiernan R, Persand D, Maddie N, Cai W, Carrillo-Sepulveda MA. Obesity-related vascular dysfunction persists after weight loss and is associated with decreased vascular glucagon-like peptide (GLP-1) receptor in female rats. Am J Physiol Heart Circ Physiol 2022; 323:H301-H311. [PMID: 35749717 PMCID: PMC9291415 DOI: 10.1152/ajpheart.00031.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity-related cardiovascular complications are a major health problem worldwide. Overconsumption of the Western diet is a well-known culprit for the development of obesity. While short-term weight loss through switching from a Western diet to a normal diet is known to promote metabolic improvement, its short-term effects on vascular parameters are not well-characterized. Glucagon-like peptide 1 (GLP-1), an incretin with vasculo-protective properties, is decreased in plasma from obese patients. We hypothesize that obesity causes persistent vascular dysfunction in association with downregulation of vascular GLP-1R. Female Wistar rats were randomized into three groups: lean received a chow diet for 28 weeks, obese received a Western diet for 28 weeks, and reverse obese received a Western diet for 18 weeks followed by 12 weeks of standard chow diet. The obese group exhibited increased body weight and body mass index, while the reverse obese group lost weight. Weight loss failed to reverse impaired vasodilation and high systolic blood pressure in obese rats. Strikingly, our results show that obese rats exhibit decreased serum levels of GLP-1 accompanied by decreased vascular GLP-1R expression. Weight loss recovered GLP-1 serum levels, however GLP-1R expression remained downregulated. Decreased Akt phosphorylation was observed in the obese and reverse obese group, suggesting that GLP-1/Akt signaling is persistently downregulated. Our results support that GLP-1 signaling is associated with obesity-related vascular dysfunction in females and short-term weight loss does not guarantee recovery of vascular function. This study suggests that GLP-1R may be a potential target for therapeutic intervention in obesity-related hypertension in females.
Collapse
Affiliation(s)
- Risa Kiernan
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, United States
| | - Dhandevi Persand
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, United States
| | - Nicole Maddie
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, United States
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, United States
| | | |
Collapse
|
8
|
Castorena-Gonzalez JA. Lymphatic Valve Dysfunction in Western Diet-Fed Mice: New Insights Into Obesity-Induced Lymphedema. Front Pharmacol 2022; 13:823266. [PMID: 35308249 PMCID: PMC8931217 DOI: 10.3389/fphar.2022.823266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
A two-way connection between obesity and lymphatic dysfunction has now been established. Clinical studies have demonstrated that obesity significantly increases the risk for developing secondary lymphedema. Using animal-models, obesity and metabolic syndrome have been linked to different aspects of lymphatic structural abnormalities and lymphatic dysfunction, including impaired contractility, impaired flow-mediated responses, impaired fluid transport, as well as increased permeability, and abnormal dendritic cell migration among others. Dysfunction of lymphatic valves is a main form of lymphatic dysfunction, known to result in severe edematous phenotypes; however, the extent of lymphatic valve deficiency in secondary lymphedema, including obesity-induced lymphedema, remains unknown. Therefore, the aims of the present study were 1) to determine whether western diet-induced obesity results in lymphatic valve dysfunction, and 2) to determine whether lymphatic valve dysfunction in western diet-induced obesity results from the diet itself, or as a consequence of the metabolic alterations induced by the diet. First, we quantitatively assessed and compared valve function in isolated popliteal and mesenteric collecting lymphatic vessels from control and western diet-induced obese C57BL/6J (WT) mice. Feeding a western diet for 14 weeks induced obesity and elevated plasma glucose and cholesterol levels when compared to controls. The function of lymphatic valves in popliteal lymphatics was not affected by diet-induced obesity; however, significant back-leak of pressure was observed in mesenteric lymphatic valves. Dysfunctional, leaky valves from obese animals also required significantly higher adverse pressure to trigger valve closure. Importantly, when subjected to treatment with a western diet, globally deficient PAI-1 mice were significantly protected against metabolic dysfunction and displayed fully functional, competent mesenteric lymphatic valves. In conclusion, our findings show for the first time that, in association with the metabolic alterations induced by the western diet, lymphatic valve dysfunction can be a critical component of obesity-induced lymphedema.
Collapse
|
9
|
Ramirez-Perez FI, Cabral-Amador FJ, Whaley-Connell AT, Aroor AR, Morales-Quinones M, Woodford ML, Ghiarone T, Ferreira-Santos L, Jurrissen TJ, Manrique-Acevedo CM, Jia G, DeMarco VG, Padilla J, Martinez-Lemus LA, Lastra G. Cystamine reduces vascular stiffness in Western diet-fed female mice. Am J Physiol Heart Circ Physiol 2022; 322:H167-H180. [PMID: 34890280 PMCID: PMC8742720 DOI: 10.1152/ajpheart.00431.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Consumption of diets high in fat, sugar, and salt (Western diet, WD) is associated with accelerated arterial stiffening, a major independent risk factor for cardiovascular disease (CVD). Women with obesity are more prone to develop arterial stiffening leading to more frequent and severe CVD compared with men. As tissue transglutaminase (TG2) has been implicated in vascular stiffening, our goal herein was to determine the efficacy of cystamine, a nonspecific TG2 inhibitor, at reducing vascular stiffness in female mice chronically fed a WD. Three experimental groups of female mice were created. One was fed regular chow diet (CD) for 43 wk starting at 4 wk of age. The second was fed a WD for the same 43 wk, whereas a third cohort was fed WD, but also received cystamine (216 mg/kg/day) in the drinking water during the last 8 wk on the diet (WD + C). All vascular stiffness parameters assessed, including aortic pulse wave velocity and the incremental modulus of elasticity of isolated femoral and mesenteric arteries, were significantly increased in WD- versus CD-fed mice, and reduced in WD + C versus WD-fed mice. These changes coincided with respectively augmented and diminished vascular wall collagen and F-actin content, with no associated effect in blood pressure. In cultured human vascular smooth muscle cells, cystamine reduced TG2 activity, F-actin:G-actin ratio, collagen compaction capacity, and cellular stiffness. We conclude that cystamine treatment represents an effective approach to reduce vascular stiffness in female mice in the setting of WD consumption, likely because of its TG2 inhibitory capacity.NEW & NOTEWORTHY This study evaluates the novel role of transglutaminase 2 (TG2) inhibition to directly treat vascular stiffness. Our data demonstrate that cystamine, a nonspecific TG2 inhibitor, improves vascular stiffness induced by a diet rich in fat, fructose, and salt. This research suggests that TG2 inhibition might bear therapeutic potential to reduce the disproportionate burden of cardiovascular disease in females in conditions of chronic overnutrition.
Collapse
Affiliation(s)
- Francisco I. Ramirez-Perez
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Biomedical, Biological, and Chemical Engineering Department, University of Missouri, Columbia, Missouri
| | | | - Adam T. Whaley-Connell
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,4Division of Nephrology and Hypertension, Department of Medicine, University of Missouri, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - Annayya R. Aroor
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | | | - Makenzie L. Woodford
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Thaysa Ghiarone
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Larissa Ferreira-Santos
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,6Instituto do Coracao, Hospital das Clínicas da Faculdade de
Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade
de São Paulo, São Paulo, Brazil
| | - Thomas J. Jurrissen
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,7Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Camila M. Manrique-Acevedo
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - GuangHong Jia
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - Vincent G. DeMarco
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,4Division of Nephrology and Hypertension, Department of Medicine, University of Missouri, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri,8Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,7Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Luis A. Martinez-Lemus
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Biomedical, Biological, and Chemical Engineering Department, University of Missouri, Columbia, Missouri,8Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Guido Lastra
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
10
|
González-Blázquez R, Alcalá M, Cárdenas-Rebollo JM, Viana M, Steckelings UM, Boisvert WA, Unger T, Fernández-Alfonso MS, Somoza B, Gil-Ortega M. AT2R stimulation with C21 prevents arterial stiffening and endothelial dysfunction in the abdominal aorta from mice fed a high-fat diet. Clin Sci (Lond) 2021; 135:2763-2780. [PMID: 34854902 DOI: 10.1042/cs20210971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to evaluate the effect of Compound 21 (C21), a selective AT2R agonist, on the prevention of endothelial dysfunction, extracellular matrix (ECM) remodeling and arterial stiffness associated with diet-induced obesity (DIO). Five-week-old male C57BL/6J mice were fed a standard (Chow) or high-fat diet (HF) for 6 weeks. Half of the animals of each group were simultaneously treated with C21 (1 mg/kg/day, in the drinking water), generating four groups: Chow C, Chow C21, HF C, and HF C21. Vascular function and mechanical properties were determined in the abdominal aorta. To evaluate ECM remodeling, collagen deposition and TGF-β1 concentrations were determined in the abdominal aorta and the activity of metalloproteinases (MMP) 2 and 9 was analyzed in the plasma. Abdominal aortas from HF C mice showed endothelial dysfunction as well as enhanced contractile but reduced relaxant responses to Ang II. This effect was abrogated with C21 treatment by preserving NO availability. A left-shift in the tension-stretch relationship, paralleled by an augmented β-index (marker of intrinsic arterial stiffness), and enhanced collagen deposition and MMP-2/-9 activities were also detected in HF mice. However, when treated with C21, HF mice exhibited lower TGF-β1 levels in abdominal aortas together with reduced MMP activities and collagen deposition compared with HF C mice. In conclusion, these data demonstrate that AT2R stimulation by C21 in obesity preserves NO availability and prevents unhealthy vascular remodeling, thus protecting the abdominal aorta in HF mice against the development of endothelial dysfunction, ECM remodeling and arterial stiffness.
Collapse
Affiliation(s)
- Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925, Madrid, Spain
| | - José Miguel Cárdenas-Rebollo
- Departamento de Matemática Aplicada y Estadística. Facultad de Ciencias Económicas y Empresariales. Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925, Madrid, Spain
| | - Ulrike Muscha Steckelings
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB311, Honolulu, HI 96813, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., Kazan 420008, Russia
| | - Thomas Unger
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar, Unidad de Cartografía Cerebral, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| |
Collapse
|
11
|
Reho JJ, Guo DF, Beyer AM, Wegman-Points L, Pierce GL, Rahmouni K. Vascular effects of disrupting endothelial mTORC1 signaling in obesity. Am J Physiol Regul Integr Comp Physiol 2021; 321:R228-R237. [PMID: 34189960 PMCID: PMC8409911 DOI: 10.1152/ajpregu.00113.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) signaling complex is emerging as a critical regulator of cardiovascular function with alterations in this pathway implicated in cardiovascular diseases. In this study, we used animal models and human tissues to examine the role of vascular mTORC1 signaling in the endothelial dysfunction associated with obesity. In mice, obesity induced by high-fat/high-sucrose diet feeding for ∼2 mo resulted in aortic endothelial dysfunction without appreciable changes in vascular mTORC1 signaling. On the other hand, chronic high-fat diet feeding (45% or 60% kcal: ∼9 mo) in mice resulted in endothelial dysfunction associated with elevated vascular mTORC1 signaling. Endothelial cells and visceral adipose vessels isolated from obese humans display a trend toward elevated mTORC1 signaling. Surprisingly, genetic disruption of endothelial mTORC1 signaling through constitutive or tamoxifen inducible deletion of endothelial Raptor (critical subunit of mTORC1) did not prevent or rescue the endothelial dysfunction associated with high-fat diet feeding in mice. Endothelial mTORC1 deficiency also failed to reverse the endothelial dysfunction evoked by a high-fat/high-sucrose diet in mice. Taken together, these data show increased vascular mTORC1 signaling in obesity, but this vascular mTORC1 activation appears not to be required for the development of endothelial impairment in obesity.
Collapse
Affiliation(s)
- John J Reho
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| | - Andreas M Beyer
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | | | - Gary L Pierce
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
- Iowa City Veterans Affairs Health Care System, Iowa City, Iowa
| |
Collapse
|
12
|
Dunn S, Hilgers RH, Das KC. Thioredoxin deficiency exacerbates vascular dysfunction during diet-induced obesity in small mesenteric artery in mice. Microcirculation 2020; 28:e12674. [PMID: 33316843 DOI: 10.1111/micc.12674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/07/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Thioredoxin (Trx) is a small cellular redox protein with established antioxidant and disulfide reductase properties. We hypothesized that Trx deficiency in mice would cause increased oxidative stress with consequent redox imbalance that would exacerbate obesity-induced vascular dysfunction. METHODS Non-transgenic (NT, C57BL/6) and dominant-negative Trx (dnTrx-Tg, low levels of redox-active protein) mice were either fed a normal diet (NC) or high fat diet plus sucrose (HFS) diet for 4 months (3-month HFD+ 1-month HFS). Weight gain, glucose tolerance test (GTT), insulin tolerance test (ITT), and other metabolic parameters were performed following NC or HFS diet. Arterial structural remodeling and functional parameters were assessed by myography. RESULTS Our study found that dnTrx mice with lower levels of active Trx exacerbated myogenic tone, inward arterial remodeling, arterial stiffening, phenylephrine-induced contraction, and endothelial dysfunction of MA. Additionally, FeTMPyP, a peroxynitrite decomposition catalyst, acutely decreased myogenic tone and contraction and normalized endothelial function in MA from dnTrx-Tg mice on HFS via increasing nitric oxide (NO)-mediated relaxation. CONCLUSIONS Our results indicate that deficiency of active Trx exacerbates MA contractile and relaxing properties during diet-induced obesity demonstrating that loss of redox balance in obesity is a key mechanism of vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Shannon Dunn
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert H Hilgers
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kumuda C Das
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
13
|
Morales-Quinones M, Ramirez-Perez FI, Foote CA, Ghiarone T, Ferreira-Santos L, Bloksgaard M, Spencer N, Kimchi ET, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. LIMK (LIM Kinase) Inhibition Prevents Vasoconstriction- and Hypertension-Induced Arterial Stiffening and Remodeling. Hypertension 2020; 76:393-403. [PMID: 32594801 DOI: 10.1161/hypertensionaha.120.15203] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased arterial stiffness and vascular remodeling precede and are consequences of hypertension. They also contribute to the development and progression of life-threatening cardiovascular diseases. Yet, there are currently no agents specifically aimed at preventing or treating arterial stiffening and remodeling. Previous research indicates that vascular smooth muscle actin polymerization participates in the initial stages of arterial stiffening and remodeling and that LIMK (LIM kinase) promotes F-actin formation and stabilization via cofilin phosphorylation and consequent inactivation. Herein, we hypothesize that LIMK inhibition is able to prevent vasoconstriction- and hypertension-associated arterial stiffening and inward remodeling. We found that small visceral arteries isolated from hypertensive subjects are stiffer and have greater cofilin phosphorylation than those from nonhypertensives. We also show that LIMK inhibition prevents arterial stiffening and inward remodeling in isolated human small visceral arteries exposed to prolonged vasoconstriction. Using cultured vascular smooth muscle cells, we determined that LIMK inhibition prevents vasoconstrictor agonists from increasing cofilin phosphorylation, F-actin volume, and cell cortex stiffness. We further show that localized LIMK inhibition prevents arteriolar inward remodeling in hypertensive mice. This indicates that hypertension is associated with increased vascular smooth muscle cofilin phosphorylation, cytoskeletal stress fiber formation, and heightened arterial stiffness. Our data further suggest that pharmacological inhibition of LIMK prevents vasoconstriction-induced arterial stiffening, in part, via reductions in vascular smooth muscle F-actin content and cellular stiffness. Accordingly, LIMK inhibition should represent a promising therapeutic means to stop the progression of arterial stiffening and remodeling in hypertension.
Collapse
Affiliation(s)
- Mariana Morales-Quinones
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Francisco I Ramirez-Perez
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Christopher A Foote
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Thaysa Ghiarone
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Larissa Ferreira-Santos
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Instituto do Coração (InCor), Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, Brazil (L.F.-S.)
| | - Maria Bloksgaard
- Department of Molecular Medicine, University of Southern Denmark, Odense (M.B.)
| | | | - Eric T Kimchi
- Department of Surgery (E.T.K.), University of Missouri, Columbia, MO.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (E.T.K., C.M.-A.)
| | - Camila Manrique-Acevedo
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism (C.M.-A.), University of Missouri, Columbia, MO.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (E.T.K., C.M.-A.)
| | - Jaume Padilla
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, MO
| | - Luis A Martinez-Lemus
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology (L.A.M.-L.), University of Missouri, Columbia, MO
| |
Collapse
|
14
|
Hyperglycemia-induced transcriptional regulation of ROCK1 and TGM2 expression is involved in small artery remodeling in obese diabetic Göttingen Minipigs. Clin Sci (Lond) 2020; 133:2499-2516. [PMID: 31830262 DOI: 10.1042/cs20191066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
Obesity and diabetes in humans are associated with hypertrophic remodeling and increased media:lumen ratio of small resistance arteries, which is an independent predictor of cardiovascular events. In order to minimize increases in media:lumen ratio, hypertrophic remodeling should be accompanied by outward remodeling. We aimed to investigate the mechanisms of structural remodeling in small pial arteries (PAs) and terminal mesenteric arteries (TMAs) from obese Göttingen Minipigs with or without diabetes. Göttingen Minipigs received either control diet (lean control (LC)), high fat/high fructose/high cholesterol diet (FFC), or FFC diet with streptozotocin (STZ)-induced diabetes (FFC/STZ) for 13 months. At the end of the study (20 months), we assessed body weight, fasting plasma biochemistry, passive vessel dimensions, mRNA expression (matrix metallopeptidases 2/9 (MMP2, MMP9), tissue inhibitor of metallopeptidase 1 (TIMP1), transglutaminase 2 (TGM2), Rho-kinase 1 (ROCK1), TGFβ-receptor 2 (TGFBR2), and IGF1-receptor (IGFR1) genes), and immunofluorescence in PAs and TMAs. We performed multiple linear correlation analyses using plasma values, structural data, and gene expression data. We detected outward hypertrophic remodeling in TMAs and hypertrophic remodeling in PAs from FFC/STZ animals. ROCK1 and TGM2 genes were up-regulated in PAs and TMAs from the FFC/STZ group. Passive lumen diameter (PLD) of TMAs was correlated with plasma values of glucose (GLU), fructosamine (FRA), total cholesterol (TC), and triglycerides (TGs). ROCK1 and TGM2 expressions in TMAs were correlated with PLD, plasma GLU, fructosamine, and TC. ROCK1 and TGM2 proteins were immunolocalized in the media of PAs and TMAs, and their fluorescence levels were increased in the FFC/STZ group. Hyperglycemia/hyperlipidemia is involved in regulation of ROCK1 and TGM2 expression leading to outward remodeling of small resistance arteries in obese diabetic Göttingen Minipigs.
Collapse
|
15
|
Castorena-Gonzalez JA, Srinivasan RS, King PD, Simon AM, Davis MJ. Simplified method to quantify valve back-leak uncovers severe mesenteric lymphatic valve dysfunction in mice deficient in connexins 43 and 37. J Physiol 2020; 598:2297-2310. [PMID: 32267537 PMCID: PMC8170716 DOI: 10.1113/jp279472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Lymphatic valve defects are one of the major causes of lymph transport dysfunction; however, there are no accessible methods for quantitatively assessing valve function. This report describes a novel technique for quantifying lymphatic valve back-leak. Postnatal endothelial-specific deletion of connexin 43 (Cx43) in connexin 37 null (Cx37-/- ) mice results in rapid regression of valve leaflets and severe valve dysfunction. This method can also be used for assessing the function of venous and lymphatic valves from various species, including humans. ABSTRACT The lymphatic system relies on robust, spontaneous contractions of collecting lymphatic vessels and one-way secondary lymphatic valves to efficiently move lymph forward. Secondary valves prevent reflux and allow for the generation of propulsive pressure during each contraction cycle. Lymphatic valve defects are one of the major causes of lymph transport dysfunction. Genetic mutations in multiple genes have been associated with the development of primary lymphoedema in humans; and many of the same mutations in mice result in valve defects that subsequently lead to chylous ascites or chylothorax. At present the only experimental technique for the quantitative assessment of lymphatic valve function utilizes the servo-null micropressure system, which is highly accurate and precise, but relatively inaccessible and difficult to use. We developed a novel, simplified alternative method for quantifying valve function and determining the degree of pressure back-leak through an intact valve in pressurized, single-valve segments of isolated lymphatic vessels. With this diameter-based method, the competence of each lymphatic valve is challenged over a physiological range of pressures (e.g. 0.5-10cmH2 O) and pressure back-leak is extrapolated from calibrated, pressure-driven changes in diameter upstream from the valve. Using mesenteric lymphatic vessels from C57BL/6J, Ub-CreERT2 ;Rasa1fx/fx , Foxc2Cre/+ , Lyve1-Cre;Cx43fx/fx , and Prox1-CreERT2 ;Cx43fx/fx ;Cx37-/- mice, we tested our method on lymphatic valves displaying a wide range of dysfunction, from fully competent to completely incompetent. Our results were validated by simultaneous direct measurement of pressure back-leak using a servo-null micropressure system. Our diameter-based technique can be used to quantify valve function in isolated lymphatic valves from a variety of species. This method also revealed that haplodeficiency in Foxc2 (Foxc2Cre/+ ) is not sufficient to cause significant valve dysfunction; however, postnatal endothelial-specific deletion of Cx43 in Cx37-/- mice results in rapid regression of valve leaflets and severe valve dysfunction.
Collapse
Affiliation(s)
- Jorge A Castorena-Gonzalez
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Michael J Davis
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
16
|
Xiong Y, Aroor AR, Ramirez-Perez FI, Jia G, Habibi J, Manrique-Acevedo C, Lastra G, Chen D, DeMarco VG, Martinez-Lemus LA, Hill MA, Jaisser F, Sowers JR, Whaley-Connell A. Western diet induces renal artery endothelial stiffening that is dependent on the epithelial Na + channel. Am J Physiol Renal Physiol 2020; 318:F1220-F1228. [PMID: 32281419 DOI: 10.1152/ajprenal.00517.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Consumption of a Western diet (WD) induces central aortic stiffening that contributes to the transmittance of pulsatile blood flow to end organs, including the kidney. Our recent work supports that endothelial epithelial Na+ channel (EnNaC) expression and activation enhances aortic endothelial cell stiffening through reductions in endothelial nitric oxide (NO) synthase (eNOS) and bioavailable NO that result in inflammatory and oxidant responses and perivascular fibrosis. However, the role that EnNaC activation has on endothelial responses in the renal circulation remains unknown. We hypothesized that cell-specific deletion of the α-subunit of EnNaC would prevent WD-induced central aortic stiffness and protect the kidney from endothelial dysfunction and vascular stiffening. Twenty-eight-week-old female αEnNaC knockout and wild-type mice were fed either mouse chow or WD containing excess fat (46%), sucrose, and fructose (17.5% each). WD feeding increased fat mass, indexes of vascular stiffening in the aorta and renal artery (in vivo pulse wave velocity and ultrasound), and renal endothelial cell stiffening (ex vivo atomic force microscopy). WD further impaired aortic endothelium-dependent relaxation and renal artery compliance (pressure myography) without changes in blood pressure. WD-induced renal arterial stiffening occurred in parallel to attenuated eNOS activation, increased oxidative stress, and aortic and renal perivascular fibrosis. αEnNaC deletion prevented these abnormalities and support a novel mechanism by which WD contributes to renal arterial stiffening that is endothelium and Na+ channel dependent. These results demonstrate that cell-specific EnNaC is important in propagating pulsatility into the renal circulation, generating oxidant stress, reduced bioavailable NO, and renal vessel wall fibrosis and stiffening.
Collapse
Affiliation(s)
- Yuxin Xiong
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Division of Nephrology and Hypertension, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Endocrinology, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Annayya R Aroor
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Bioengineering, University of Missouri, Columbia, Missouri
| | - Guanghong Jia
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Javad Habibi
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Guido Lastra
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Donqqing Chen
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Vincent G DeMarco
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Bioengineering, University of Missouri, Columbia, Missouri
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Frederic Jaisser
- Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Cordeliers Research Center, Sorbonne University, University Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - James R Sowers
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Adam Whaley-Connell
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Nephrology and Hypertension, University of Missouri-Columbia School of Medicine, Columbia, Missouri.,Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| |
Collapse
|
17
|
Sorop O, van de Wouw J, Chandler S, Ohanyan V, Tune JD, Chilian WM, Merkus D, Bender SB, Duncker DJ. Experimental animal models of coronary microvascular dysfunction. Cardiovasc Res 2020; 116:756-770. [PMID: 31926020 PMCID: PMC7061277 DOI: 10.1093/cvr/cvaa002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Coronary microvascular dysfunction (CMD) is commonly present in patients with metabolic derangements and is increasingly recognized as an important contributor to myocardial ischaemia, both in the presence and absence of epicardial coronary atherosclerosis. The latter condition is termed 'ischaemia and no obstructive coronary artery disease' (INOCA). Notwithstanding the high prevalence of INOCA, effective treatment remains elusive. Although to date there is no animal model for INOCA, animal models of CMD, one of the hallmarks of INOCA, offer excellent test models for enhancing our understanding of the pathophysiology of CMD and for investigating novel therapies. This article presents an overview of currently available experimental models of CMD-with an emphasis on metabolic derangements as risk factors-in dogs, swine, rabbits, rats, and mice. In all available animal models, metabolic derangements are most often induced by a high-fat diet (HFD) and/or diabetes mellitus via injection of alloxan or streptozotocin, but there is also a wide variety of spontaneous as well as transgenic animal models which develop metabolic derangements. Depending on the number, severity, and duration of exposure to risk factors-all these animal models show perturbations in coronary microvascular (endothelial) function and structure, similar to what has been observed in patients with INOCA and comorbid conditions. The use of these animal models will be instrumental in identifying novel therapeutic targets and for the subsequent development and testing of novel therapeutic interventions to combat ischaemic heart disease, the number one cause of death worldwide.
Collapse
Affiliation(s)
- Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jens van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Selena Chandler
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Johnathan D Tune
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Marchioninistr. 27, 81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 81377 Munich, Germany
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
18
|
McCallinhart PE, Biwer LA, Clark OE, Isakson BE, Lilly B, Trask AJ. Myoendothelial Junctions of Mature Coronary Vessels Express Notch Signaling Proteins. Front Physiol 2020; 11:29. [PMID: 32116749 PMCID: PMC7010921 DOI: 10.3389/fphys.2020.00029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
RATIONALE Myoendothelial junctions (MEJs) within the fenestrae of the internal elastic lamina (IEL) are critical sites that allow for endothelial cell (EC) - vascular smooth muscle cell (VSMC) contact and communication. Vascular Notch signaling is a critical determinant of normal vasculogenesis and remodeling, and it regulates cell phenotype via contact between ECs and VSMCs. To date, no studies have linked Notch signaling to the MEJ despite it requiring cell-cell contact. Furthermore, very little is known about Notch in the adult coronary circulation or the localization of Notch signaling and activity within the mature intact blood vessel. OBJECTIVE We tested the hypothesis that vascular Notch signaling between ECs and VSMCs occurs at MEJs. METHODS AND RESULTS Notch receptor and ligand immunofluorescence was performed in human coronary EC and VSMC co-cultures across transwell inserts (in vitro MEJs) and in the intact mouse coronary circulation. Human coronary VSMC Notch activity induced by human coronary ECs at the in vitro MEJ was assessed using a CBF-luciferase construct. We observed Jagged1, Notch1, Notch2, and Notch3 expression within the in vitro and in vivo MEJs. We also demonstrated a 3-fold induction (p < 0.001) of human coronary VSMC Notch signaling by ECs at the in vitro MEJ, which was completely blocked by the Notch inhibitor, DAPT (p < 0.01). CONCLUSION We demonstrate for the first time in mature blood vessels that Notch receptors and ligands are expressed within and are active at coronary MEJs, demonstrating a previously unrecognized mode of Notch signaling regulation between the endothelium and smooth muscle.
Collapse
Affiliation(s)
- Patricia E. McCallinhart
- Center for Cardiovascular Research, The Heart Center, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Lauren A. Biwer
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Olivia E. Clark
- Center for Cardiovascular Research, The Heart Center, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Brenda Lilly
- Center for Cardiovascular Research, The Heart Center, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Aaron J. Trask
- Center for Cardiovascular Research, The Heart Center, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
19
|
Padilla J, Woodford ML, Lastra-Gonzalez G, Martinez-Diaz V, Fujie S, Yang Y, Lising AMC, Ramirez-Perez FI, Aroor AR, Morales-Quinones M, Ghiarone T, Whaley-Connell A, Martinez-Lemus LA, Hill MA, Manrique-Acevedo C. Sexual Dimorphism in Obesity-Associated Endothelial ENaC Activity and Stiffening in Mice. Endocrinology 2019; 160:2918-2928. [PMID: 31617909 PMCID: PMC6853665 DOI: 10.1210/en.2019-00483] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023]
Abstract
Obesity and insulin resistance stiffen the vasculature, with females appearing to be more adversely affected. As augmented arterial stiffness is an independent predictor of cardiovascular disease (CVD), the increased predisposition of women with obesity and insulin resistance to arterial stiffening may explain their heightened risk for CVD. However, the cellular mechanisms by which females are more vulnerable to arterial stiffening associated with obesity and insulin resistance remain largely unknown. In this study, we provide evidence that female mice are more susceptible to Western diet-induced endothelial cell stiffening compared with age-matched males. Mechanistically, we show that the increased stiffening of the vascular intima in Western diet-fed female mice is accompanied by enhanced epithelial sodium channel (ENaC) activity in endothelial cells (EnNaC). Our data further indicate that: (i) estrogen signaling through estrogen receptor α (ERα) increases EnNaC activity to a larger extent in females compared with males, (ii) estrogen-induced activation of EnNaC is mediated by the serum/glucocorticoid inducible kinase 1 (SGK-1), and (iii) estrogen signaling stiffens endothelial cells when nitric oxide is lacking and this stiffening effect can be reduced with amiloride, an ENaC inhibitor. In aggregate, we demonstrate a sexual dimorphism in obesity-associated endothelial stiffening, whereby females are more vulnerable than males. In females, endothelial stiffening with obesity may be attributed to estrogen signaling through the ERα-SGK-1-EnNaC axis, thus establishing a putative therapeutic target for female obesity-related vascular stiffening.
Collapse
Affiliation(s)
- Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Guido Lastra-Gonzalez
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
| | - Vanesa Martinez-Diaz
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
| | - Shumpei Fujie
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Faculty of Sport and Health Sciences, University of Tsukuba, Ibaraki, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Alexandre M C Lising
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Biological Engineering, University of Missouri, Columbia, Missouri
| | - Annayya R Aroor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
| | | | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Adam Whaley-Connell
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- Division of Nephrology, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Biological Engineering, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- Correspondence: Camila Manrique-Acevedo, MD, Department of Medicine, University of Missouri, D109 Diabetes Center UHC, One Hospital Drive, Columbia, Missouri 65212. E-mail:
| |
Collapse
|
20
|
Olver TD, Grunewald ZI, Ghiarone T, Restaino RM, Sales ARK, Park LK, Thorne PK, Ganga RR, Emter CA, Lemon PWR, Shoemaker JK, Manrique-Acevedo C, Martinez-Lemus LA, Padilla J. Persistent insulin signaling coupled with restricted PI3K activation causes insulin-induced vasoconstriction. Am J Physiol Heart Circ Physiol 2019; 317:H1166-H1172. [PMID: 31603345 DOI: 10.1152/ajpheart.00464.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin modulates vasomotor tone through vasodilator and vasoconstrictor signaling pathways. The purpose of the present work was to determine whether insulin-stimulated vasoconstriction is a pathophysiological phenomenon that can result from a combination of persistent insulin signaling, suppressed phosphatidylinositol-3 kinase (PI3K) activation, and an ensuing relative increase in MAPK/endothelin-1 (ET-1) activity. First, we examined previously published work from our group where we assessed changes in lower-limb blood flow in response to an oral glucose tolerance test (endogenous insulin stimulation) in lean and obese subjects. The new analyses showed that the peak rise in vascular resistance during the postprandial state was greater in obese compared with lean subjects. We next extended on these findings by demonstrating that insulin-induced vasoconstriction in isolated resistance arteries from obese subjects was attenuated with ET-1 receptor antagonism, thus implicating ET-1 signaling in this constriction response. Last, we examined in isolated resistance arteries from pigs the dual roles of persistent insulin signaling and blunted PI3K activation in modulating vasomotor responses to insulin. We found that prolonged insulin stimulation did not alter vasomotor responses to insulin when insulin-signaling pathways remained unrestricted. However, prolonged insulinization along with pharmacological suppression of PI3K activity resulted in insulin-induced vasoconstriction, rather than vasodilation. Notably, such aberrant vascular response was rescued with either MAPK inhibition or ET-1 receptor antagonism. In summary, we demonstrate that insulin-induced vasoconstriction is a pathophysiological phenomenon that can be recapitulated when sustained insulin signaling is coupled with depressed PI3K activation and the concomitant relative increase in MAPK/ET-1 activity.NEW & NOTEWORTHY This study reveals that insulin-induced vasoconstriction is a pathophysiological phenomenon. We also provide evidence that in the setting of persistent insulin signaling, impaired phosphatidylinositol-3 kinase activation appears to be a requisite feature precipitating MAPK/endothelin 1-dependent insulin-induced vasoconstriction.
Collapse
Affiliation(s)
- T Dylan Olver
- Department of Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Zachary I Grunewald
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Robert M Restaino
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, New York
| | - Allan R K Sales
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil.,D'Or Institute for Research and Education, São Paulo, Brazil
| | - Lauren K Park
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Pamela K Thorne
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Rama Rao Ganga
- Department of Surgery, University of Missouri, Columbia, Missouri
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Peter W R Lemon
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri.,Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
21
|
Reho JJ, Guo DF, Morgan DA, Rahmouni K. Smooth Muscle Cell-Specific Disruption of the BBSome Causes Vascular Dysfunction. Hypertension 2019; 74:817-825. [PMID: 31422694 DOI: 10.1161/hypertensionaha.119.13382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The BBSome-a complex consisting of 8 Bardet-Biedl syndrome proteins-is involved in the regulation of various cellular processes. Recently, the BBSome complex has emerged as an important regulator of cardiovascular function with implications for disease. In this study, we examined the role of the BBSome in vascular smooth muscle and its effects on the regulation of cardiovascular function. Smooth muscle-specific disruption of the BBSome through tamoxifen-inducible deletion of Bbs1 gene-a critical component of the BBSome complex-reduces relaxation and enhances contractility of vascular rings and increases aortic stiffness independent of changes in arterial blood pressure. Mechanistically, we demonstrate that smooth muscle Bbs1 gene deletion increases vascular angiotensinogen gene expression implicating the renin-angiotensin system in these altered cardiovascular responses. Additionally, we report that smooth muscle-specific Bbs1 knockout mice demonstrate enhanced ET-1 (endothelin-1)-induced contractility of mesenteric arteries-an effect reversed by blockade of the AT1 (angiotensin type 1 receptor) with losartan. These findings highlight the importance of the smooth muscle BBSome in the control of vascular function and arterial stiffness through modulation of renin-angiotensin system signaling.
Collapse
Affiliation(s)
- John J Reho
- From the Department of Pharmacology (J.J.R., D.-F.G., D.A.M., K.R.), University of Iowa Carver College of Medicine
| | - Deng-Fu Guo
- From the Department of Pharmacology (J.J.R., D.-F.G., D.A.M., K.R.), University of Iowa Carver College of Medicine
| | - Donald A Morgan
- From the Department of Pharmacology (J.J.R., D.-F.G., D.A.M., K.R.), University of Iowa Carver College of Medicine
| | - Kamal Rahmouni
- From the Department of Pharmacology (J.J.R., D.-F.G., D.A.M., K.R.), University of Iowa Carver College of Medicine.,Department of Internal Medicine (K.R.), University of Iowa Carver College of Medicine.,Obesity Education and Research Initiative (K.R.), University of Iowa Carver College of Medicine.,Fraternal Order of Eagles Diabetes Research Center (K.R.), University of Iowa Carver College of Medicine.,Veterans Affairs Health Care System, Iowa City, IA (K.R.)
| |
Collapse
|
22
|
Khan M, Meuth AI, Brown SM, Chandrasekar B, Bowles DK, Bender SB. Aldosterone impairs coronary adenosine-mediated vasodilation via reduced functional expression of Ca 2+-activated K + channels. Am J Physiol Heart Circ Physiol 2019; 317:H357-H363. [PMID: 31199187 DOI: 10.1152/ajpheart.00081.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Elevated plasma aldosterone (Aldo) levels are associated with greater risk of cardiac ischemic events and cardiovascular mortality. Adenosine-mediated coronary vasodilation is a critical cardioprotective mechanism during ischemia; however, whether this response is impaired by increased Aldo is unclear. We hypothesized that chronic Aldo impairs coronary adenosine-mediated vasodilation via downregulation of vascular K+ channels. Male C57BL/6J mice were treated with vehicle (Con) or subpressor Aldo for 4 wk. Coronary artery function, assessed by wire myography, revealed Aldo-induced reductions in vasodilation to adenosine and the endothelium-dependent vasodilator acetylcholine but not to the nitric oxide donor sodium nitroprusside. Coronary vasoconstriction to endothelin-1 and the thromboxane A2 mimetic U-46619 was unchanged by Aldo. Additional mechanistic studies revealed impaired adenosine A2A, not A2B, receptor-dependent vasodilation by Aldo with a tendency for Aldo-induced reduction of coronary A2A gene expression. Adenylate cyclase inhibition attenuated coronary adenosine dilation but did not eliminate group differences, and adenosine-stimulated vascular cAMP production was similar between Con and Aldo mice. Similarly, blockade of inward rectifier K+ channels reduced but did not eliminate group differences in adenosine dilation whereas group differences were eliminated by blockade of Ca2+-activated K+ (KCa) channels that blunted and abrogated adenosine and A2A-dependent dilation, respectively. Gene expression of several coronary KCa channels was reduced by Aldo. Together, these data demonstrate Aldo-induced impairment of adenosine-mediated coronary vasodilation involving blunted A2A-KCa-dependent vasodilation, independent of blood pressure, providing important insights into the link between plasma Aldo and cardiac mortality and rationale for aldosterone antagonist use to preserve coronary microvascular function.NEW & NOTEWORTHY Increased plasma aldosterone levels are associated with worsened cardiac outcomes in diverse patient groups by unclear mechanisms. We identified that, in male mice, elevated aldosterone impairs coronary adenosine-mediated vasodilation, an important cardioprotective mechanism. This aldosterone-induced impairment involves reduced adenosine A2A, not A2B, receptor-dependent vasodilation associated with downregulation of coronary KCa channels and does not involve altered adenylate cyclase/cAMP signaling. Importantly, this effect of aldosterone occurred independent of changes in coronary vasoconstrictor responsiveness and blood pressure.
Collapse
Affiliation(s)
- Maloree Khan
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Alex I Meuth
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Scott M Brown
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Bysani Chandrasekar
- Medicine-Cardiology, University of Missouri School of Medicine, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Douglas K Bowles
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| |
Collapse
|
23
|
DuPont JJ, Kenney RM, Patel AR, Jaffe IZ. Sex differences in mechanisms of arterial stiffness. Br J Pharmacol 2019; 176:4208-4225. [PMID: 30767200 DOI: 10.1111/bph.14624] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 12/24/2022] Open
Abstract
Arterial stiffness progressively increases with aging and is an independent predictor of cardiovascular disease (CVD) risk. Evidence supports that there are sex differences in the time course of aging-related arterial stiffness and the associated CVD risk, which increases disproportionately in postmenopausal women. The association between arterial stiffness and mortality is almost twofold higher in women versus men. The differential clinical characteristics of the development of arterial stiffness between men and women indicate the involvement of sex-specific mechanisms. This review summarizes the current literature on sex differences in vascular stiffness induced by aging, obesity, hypertension, and sex-specific risk factors as well as the impact of hormonal status, diet, and exercise on vascular stiffness in males and females. An understanding of the mechanisms driving sex differences in vascular stiffness has the potential to identify novel sex-specific therapies to lessen CVD risk, the leading cause of death in males and females. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Rachel M Kenney
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Ayan R Patel
- Division of Cardiology, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America.,Division of Cardiology, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| |
Collapse
|
24
|
Rafuse M, Xu X, Stenmark K, Neu CP, Yin X, Tan W. Layer-specific arterial micromechanics and microstructure: Influences of age, anatomical location, and processing technique. J Biomech 2019; 88:113-121. [PMID: 31010593 DOI: 10.1016/j.jbiomech.2019.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/24/2019] [Accepted: 03/18/2019] [Indexed: 01/15/2023]
Abstract
The importance of matrix micromechanics is increasingly recognized in cardiovascular research due to the intimate role they play in local vascular cell physiology. However, variations in micromechanics among arterial layers (i.e. intima, media, adventitia), as well as dependency on local matrix composition and/or structure, anatomical location or developmental stage remain largely unknown. This study determined layer-specific stiffness in elastic arteries, including the main pulmonary artery, ascending aorta, and carotid artery using atomic force indentation. To compare stiffness with age and frozen processing techniques, neonatal and adult pulmonary arteries were tested, while fresh (vibratomed) and frozen (cryotomed) tissues were tested from the adult aorta. Results revealed that the mean compressive modulus varied among the intima, sub-luminal media, inner-middle media, and adventitia layers in the range of 1-10 kPa for adult arteries. Adult samples, when compared to neonatal pulmonary arteries, exhibited increased stiffness in all layers except adventitia. Compared to freshly isolated samples, frozen preparation yielded small stiffness increases in each layer to varied degrees, thus inaccurately representing physiological stiffness. To interpret micromechanics measurements, composition and structure analyses of structural matrix proteins were conducted with histology and multiphoton imaging modalities including second harmonic generation and two-photon fluorescence. Composition analysis of matrix protein area density demonstrated that decrease in the elastin-to-collagen and/or glycosaminoglycan-to-collagen ratios corresponded to stiffness increases in identical layers among different types of arteries. However, composition analysis was insufficient to interpret stiffness variations between layers which had dissimilar microstructure. Detailed microstructure analyses may contribute to more complete understanding of arterial micromechanics.
Collapse
Affiliation(s)
- Michael Rafuse
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Xiaobo Yin
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
25
|
Aragonez CG, de Beer VJ, Tharp DL, Bowles DK, Laughlin MH, Merkus D, Duncker DJ, Bender SB. Differential impact of severe familial hypercholesterolemia on regional skeletal muscle and organ blood flows during exercise: Effects of PDE5 inhibition. Microcirculation 2019; 26:e12539. [PMID: 30821858 DOI: 10.1111/micc.12539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/22/2019] [Accepted: 02/25/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Swine with familial hypercholesterolemia (FH) exhibit attenuated exercise-induced systemic vasodilation that is restored by phosphodiesterase 5 (PDE5) inhibition. Whether the impacts of FH and PDE5 inhibition to impair and restore exercise-induced vasodilation, respectively, results from tissue-specific or generalized effects remains unclear. Thus, we hypothesized that FH induces generalized impairment of skeletal muscle vasodilation that would be alleviated by PDE5 inhibition. METHODS Systemic vascular responses to exercise were assessed in chronically instrumented normal and FH swine before and after PDE5 inhibition with EMD360527. Skeletal muscle and organ blood flows and conductances were determined via the microsphere technique. RESULTS As previously reported, vs normal swine, FH swine have pronounced elevation of total cholesterol and impaired exercise-induced vasodilation that is restored by PDE5 inhibition. Blood flows to several, not all, skeletal muscle vascular beds were severely impaired by FH associated with reduced blood flow to many visceral organs. PDE5 inhibition differentially impacted skeletal muscle and organ blood flows in normal and FH swine. CONCLUSIONS These data indicate that FH induces regional, not generalized, vasomotor dysfunction and that FH and normal swine exhibit unique tissue blood flow responses to PDE5 inhibition thereby adding to accumulating evidence of vascular bed-specific dysfunction in co-morbid conditions.
Collapse
Affiliation(s)
- Christian G Aragonez
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Vincent J de Beer
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Darla L Tharp
- Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Douglas K Bowles
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - M Harold Laughlin
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
26
|
Fulop GA, Ramirez-Perez FI, Kiss T, Tarantini S, Valcarcel Ares MN, Toth P, Yabluchanskiy A, Conley SM, Ballabh P, Martinez-Lemus LA, Ungvari Z, Csiszar A. IGF-1 Deficiency Promotes Pathological Remodeling of Cerebral Arteries: A Potential Mechanism Contributing to the Pathogenesis of Intracerebral Hemorrhages in Aging. J Gerontol A Biol Sci Med Sci 2019; 74:446-454. [PMID: 29931048 PMCID: PMC6417448 DOI: 10.1093/gerona/gly144] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 01/01/2023] Open
Abstract
Clinical and experimental studies show that age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels promotes the pathogenesis of intracerebral hemorrhages, which critically contribute to the development of vascular cognitive impairment and disability in older adults. Yet, the mechanisms by which IGF-1 deficiency compromises structural integrity of the cerebral vasculature are not completely understood. To determine the role of IGF-1 deficiency in pathological remodeling of middle cerebral arteries (MCAs), we compared alterations in vascular mechanics, morphology, and remodeling-related gene expression profile in mice with liver-specific knockdown of IGF-1 (Igf1f/f + TBG-Cre-AAV8) and control mice with or without hypertension induced by angiotensin-II treatment. We found that IGF-1 deficiency resulted in thinning of the media and decreased wall-to-lumen ratio in MCAs. MCAs of control mice exhibited structural adaptation to hypertension, manifested as a significant increase in wall thickness, vascular smooth muscle cell (VSMC) hypertrophy, decreased internal diameter and up-regulation of extracellular matrix (ECM)-related genes. IGF-1 deficiency impaired hypertension-induced adaptive media hypertrophy and dysregulated ECM remodeling, decreasing elastin content and attenuating adaptive changes in ECM-related gene expression. Thus, circulating IGF-1 plays a critical role in maintenance of the structural integrity of cerebral arteries. Alterations of VSMC phenotype and pathological remodeling of the arterial wall associated with age-related IGF-1 deficiency have important translational relevance for the pathogenesis of intracerebral hemorrhages and vascular cognitive impairment in elderly hypertensive patients.
Collapse
Affiliation(s)
- Gabor A Fulop
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center; Departments of Biological Engineering and Medical Pharmacology and Physiology, University of Missouri, Columbia
| | - Tamas Kiss
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary
| | - Stefano Tarantini
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Marta Noa Valcarcel Ares
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Peter Toth
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Neurosurgery, Medical School, University of Pecs, Hungary
| | - Andriy Yabluchanskiy
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Shannon M Conley
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City
| | - Praveen Ballabh
- Department of Pediatrics, Albert Einstein College of Medicine, New York
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center; Departments of Biological Engineering and Medical Pharmacology and Physiology, University of Missouri, Columbia
| | - Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary
| |
Collapse
|
27
|
Syed-Abdul MM, Hu Q, Jacome-Sosa M, Padilla J, Manrique-Acevedo C, Heimowitz C, Parks EJ. Effect of carbohydrate restriction-induced weight loss on aortic pulse wave velocity in overweight men and women. Appl Physiol Nutr Metab 2018; 43:1247-1256. [DOI: 10.1139/apnm-2018-0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Increased aortic stiffness, measured by carotid-to-femoral pulse wave velocity (PWV), is an independent predictor of cardiovascular disease, and past data have shown that low-fat and low-energy diets, fed for 8–24 weeks, lower PWV. The purpose of this study was to determine whether a reduction in PWV would be achieved by dietary carbohydrate (CHO) restriction, shown to bring about weight loss over a shorter timeframe. Men (n = 10, age: 41.8 ± 10.2 years, BMI: 34.2 ± 3.0 kg/m2 (mean ± SD)) and women (n = 10, age: 38.6 ± 6.1 years, BMI: 33.5 ± 3.8 kg/m2) with characteristics of insulin resistance and the metabolic syndrome consumed a structured, CHO-restricted diet for 4 weeks (energy deficit, 645 kcal/day). For the whole group, subjects lost 5.4% ± 0.5% (P < 0.001) of body weight and experienced significant reductions in blood pressure (6%–8%), plasma insulin (34%), and triglycerides (34%). PWV was reduced by 6% ± 2% (7.1 ± 0.2 m/s to 6.7 ± 0.2 m/s, P = 0.008) and surprisingly, in women, it fell significantly (from 7.2 ± 0.3 m/s to 6.3 ± 0.3 m/s, P = 0.028), while no changes were observed in men (7.2 ± 0.3 vs. 7.0 ± 0.3 m/s, P = 0.144). This is the first study to demonstrate that weight loss can improve PWV in as little as 4 weeks and that dietary CHO restriction may be an effective treatment for reducing aortic stiffness in women. Future studies are needed to establish the mechanisms by which dietary CHO restriction may confer more cardiovascular benefits to women than to men.
Collapse
Affiliation(s)
- Majid M. Syed-Abdul
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Qiong Hu
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Miriam Jacome-Sosa
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Camila Manrique-Acevedo
- Division of Endocrinology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | | | - Elizabeth J. Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
28
|
Kramer B, França LM, Zhang Y, Paes AMDA, Gerdes AM, Carrillo-Sepulveda MA. Western diet triggers Toll-like receptor 4 signaling-induced endothelial dysfunction in female Wistar rats. Am J Physiol Heart Circ Physiol 2018; 315:H1735-H1747. [PMID: 30265151 DOI: 10.1152/ajpheart.00218.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Overconsumption of a diet rich in fat and carbohydrates, called the Western diet, is a major contributor to the global epidemic of cardiovascular disease. Despite previously documented cardiovascular protection exhibited in female rats, this safeguard may be lost under certain metabolic stressors. We hypothesized that female Wistar rats challenged by a Western diet composed of 21% fat and 50% carbohydrate (34.1% sucrose) for 17 wk would develop endothelial dysfunction via endothelial Toll-like receptor 4 (TLR4) signaling. Western diet-fed female rats exhibited dysregulation of metabolism, revealing increased body weight and abdominal fat, decreased expression of adiponectin in white adipose tissue, glucose intolerance, and impaired insulin sensitivity. Western diet exposure increased hepatic triglycerides and cholesterol alongside hepatic steatosis, categorizing nonalcoholic fatty liver disease. Moreover, a Western diet negatively affected vascular function, revealing hypertension, impaired endothelium-dependent vasorelaxation, aortic remodeling, and increased reactive oxygen species (ROS) production. Aortic protein expression of TLR4 and its downstream proteins were markedly increased in the Western diet-fed group in association with elevated serum levels of free fatty acids. In vitro experiments were conducted to test whether free fatty acids contribute to vascular ROS overproduction via the TLR4 signaling pathway. Cultured endothelial cells were stimulated with palmitate in the presence of TAK-242, a TLR4 signaling inhibitor. Palmitate-induced overgeneration of ROS in endothelial cells was abolished in the presence of TAK-242. Our data show that a Western diet induced endothelial dysfunction in female rats and suggest that endothelial TLR4 signaling may play a key role in abolishing female cardiovascular protection. NEW & NOTEWORTHY A Western diet induced elevated levels of free fatty acids, produced nonalcoholic fatty liver disease, and provoked endothelial dysfunction in female rats in association with Toll-like receptor 4 signaling-mediated vascular reactive oxygen species production. Limited consumption of a Western diet in premenopausal women may decrease their risk of cardiovascular complications.
Collapse
Affiliation(s)
- Benjamin Kramer
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Lucas Martins França
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão , Sao Luis , Brazil
| | - Youhua Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão , Sao Luis , Brazil
| | - A Martin Gerdes
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Maria Alicia Carrillo-Sepulveda
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| |
Collapse
|
29
|
Ogola BO, Zimmerman MA, Clark GL, Abshire CM, Gentry KM, Miller KS, Lindsey SH. New insights into arterial stiffening: does sex matter? Am J Physiol Heart Circ Physiol 2018; 315:H1073-H1087. [PMID: 30028199 DOI: 10.1152/ajpheart.00132.2018] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review discusses sexual dimorphism in arterial stiffening, disease pathology interactions, and the influence of sex on mechanisms and pathways. Arterial stiffness predicts cardiovascular mortality independent of blood pressure. Patients with increased arterial stiffness have a 48% higher risk for developing cardiovascular disease. Like other cardiovascular pathologies, arterial stiffness is sexually dimorphic. Young women have lower stiffness than aged-matched men, but this sex difference reverses during normal aging. Estrogen therapy does not attenuate progressive stiffening in postmenopausal women, indicating that currently prescribed drugs do not confer protection. Although remodeling of large arteries is a protective adaptation to higher wall stress, arterial stiffening increases afterload to the left ventricle and transmits higher pulsatile pressure to smaller arteries and target organs. Moreover, an increase in aortic stiffness may precede or exacerbate hypertension, particularly during aging. Additional studies are needed to elucidate the mechanisms by which females are protected from arterial stiffness to provide insight into its mechanisms and, ultimately, therapeutic targets for treating this pathology.
Collapse
Affiliation(s)
- Benard O Ogola
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| | | | - Gabrielle L Clark
- Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| | - Caleb M Abshire
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| | - Kaylee M Gentry
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| |
Collapse
|
30
|
Dunn SM, Hilgers R, Das KC. Decreased EDHF-mediated relaxation is a major mechanism in endothelial dysfunction in resistance arteries in aged mice on prolonged high-fat sucrose diet. Physiol Rep 2018; 5:5/23/e13502. [PMID: 29212858 PMCID: PMC5727270 DOI: 10.14814/phy2.13502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 02/01/2023] Open
Abstract
High‐fat sucrose (HFS) diet in aged individuals causes severe weight gain (obesity) with much higher risk of cardiovascular diseases such as hypertension or atherosclerosis. Endothelial dysfunction is a major contributor for these vascular disorders. We hypothesize that prolonged ingestion of HFS diet by aged mice would accentuate endothelial dysfunction in the small resistance arteries. Male C57BL/6J mice at 12 weeks of age were divided into four groups and fed either normal chow (NC) or high‐fat sucrose diet (HFS). Young group received NC for 4 months, and high‐fat diet (HFD) for 3 months and 1 month HFS + 10% Sucrose (HFS diet). Aged mice received NC for 12 months. Aged HFS group received HFD for 4 months + 1 month HFD + 10% sucrose + 8 months HFD. Total body weight, plasma blood glucose levels, and glucose tolerance were determined in all groups. Isolated mesenteric arteries were assessed for arterial remodeling, myogenic tone, and vasomotor responses using pressure and wire myography. Both young and aged HFS mice showed impaired glucose tolerance (Y‐NC, 137 ± 8.5 vs. Y‐NC HFS, 228 ± 11.71; A‐NC, 148 ± 6.42 vs. A‐HFS, 225 ± 10.99), as well as hypercholesterolemia (Y‐NC 99.50 ± 6.35 vs. Y‐HFS 220.40 ± 16.34 mg/dL; A‐NC 108.6 ± vs. A‐HFS 279 ± 21.64) and significant weight gain (Y‐NC 32.13 ± 0.8 g vs. Y‐HFS 47.87 ± 2.18 g; A‐NC 33.72 vs. A‐HFS 56.28 ± 3.47 g) compared to both groups of mice on NC. The mesenteric artery from mice with prolonged HFS diet resulted in outward hypertrophic remodeling, increased stiffness, reduced myogenic tone, impaired vasodilation, increased contractility and blunted nitric oxide (NO) and EDH‐mediated relaxations. Ebselen, a peroxinitrite scavenger rescued the endothelium derived relaxing factor (EDHF)‐mediated relaxations. Our findings suggest that prolonged diet‐induced obesity of aged mice can worsen small resistance artery endothelial dysfunction due to decrease in NO and EDHF‐mediated relaxation, but, EDHF‐mediated relaxation is a major contributor to overall endothelial dysfunction.
Collapse
Affiliation(s)
- Shannon M Dunn
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | | | - Kumuda C Das
- The Department of Translational & Vascular Biology, University of Texas Health Sciences Center at Tyler, Tyler, Texas
| |
Collapse
|
31
|
Gao P, Wu W, Ye J, Lu YW, Adam AP, Singer HA, Long X. Transforming growth factor β1 suppresses proinflammatory gene program independent of its regulation on vascular smooth muscle differentiation and autophagy. Cell Signal 2018; 50:160-170. [PMID: 30006123 DOI: 10.1016/j.cellsig.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/19/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
Abstract
Transforming growth factor β (TGFβ) signaling plays crucial roles in maintaining vascular integrity and homeostasis, and is established as a strong activator of vascular smooth muscle cell (VSMC) differentiation. Chronic inflammation is a hallmark of various vascular diseases. Although TGFβ signaling has been suggested to be protective against inflammatory aortic aneurysm progression, its exact effects on VSMC inflammatory process and the underlying mechanisms are not fully unraveled. Here we revealed that TGFβ1 suppressed the expression of a broad array of proinflammatory genes while potently induced the expression of contractile genes in cultured primary human coronary artery SMCs (HCASMCs). The regulation of TGFβ1 on VSMC contractile and proinflammatory gene programs appeared to occur in parallel and both processes were through a SMAD4-dependent canonical pathway. We also showed evidence that the suppression of TGFβ1 on VSMC proinflammatory genes was mediated, at least partially through the blockade of signal transducer and activator of transcription 3 (STAT3) and NF-κB pathways. Interestingly, our RNA-seq data also revealed that TGFβ1 suppressed gene expression of a battery of autophagy mediators, which was validated by western blot for the conversion of microtubule-associated protein light chain 3 (LC3) and by immunofluo-rescence staining for LC3 puncta. However, impairment of VSMC autophagy by ATG5 deletion failed to rescue TGFβ1 influence on both VSMC contractile and proinflammatory gene programs, suggesting that TGFβ1-regulated VSMC differentiation and inflammation are not attributed to TGFβ1 suppression on autophagy. In summary, our results demonstrated an important role of TGFβ signaling in suppressing proinflammatory gene program in cultured primary human VSMCs via the blockade on STAT3 and NF-κB pathway, therefore providing novel insights into the mechanisms underlying the protective role of TGFβ signaling in vascular diseases.
Collapse
Affiliation(s)
- Ping Gao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Wen Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Jiemei Ye
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Yao Wei Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Alejandro Pablo Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States; Department of Ophthalmology, Albany Medical College, Albany, NY, United States
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States.
| |
Collapse
|
32
|
Jia G, Aroor AR, Sowers JR. The role of mineralocorticoid receptor signaling in the cross-talk between adipose tissue and the vascular wall. Cardiovasc Res 2018; 113:1055-1063. [PMID: 28838041 DOI: 10.1093/cvr/cvx097] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/08/2017] [Indexed: 12/23/2022] Open
Abstract
Vascular dysfunction and impaired endothelial mediated relaxation are powerful underlying abnormalities in the pathogenesis of hypertension, coronary heart disease, and stroke. Obesity, type 2 diabetes mellitus, and other metabolic abnormalities are associated with activation of mineralocorticoid receptor (MRs) in the vasculature and adipose tissue. While MR signaling is involved in the normal physiological differentiation and maturation of adipocyte, enhanced activation of MRs also contributes to increase oxidative stress, release of pro-inflammatory adipokines, and dysregulation of adipocyte autophagy. This, in turn, increases the maladaptive expansion of subcutaneous, visceral and perivascular adipose tissue, resulting in systemic and cardiovascular (CV) insulin resistance and increased CV stiffness and impaired vascular and cardiac relaxation. This review summarizes the normal role of MR activation in adipose tissues and explores the mechanisms by which excessive MR activation mediates adipose tissue inflammation and vascular dysfunction. Potential preventative and therapeutic strategies directed in the prevention of MR activation and CV disease are also discussed.
Collapse
Affiliation(s)
- Guanghong Jia
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65212, USA
| | - Annayya R Aroor
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65212, USA
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65212, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
33
|
Bloksgaard M, Thorsted B, Brewer JR, De Mey JGR. Assessing Collagen and Elastin Pressure-dependent Microarchitectures in Live, Human Resistance Arteries by Label-free Fluorescence Microscopy. J Vis Exp 2018. [PMID: 29683445 DOI: 10.3791/57451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathogenic contribution of resistance artery remodeling is documented in essential hypertension, diabetes and the metabolic syndrome. Investigations and development of microstructurally motivated mathematical models for understanding the mechanical properties of human resistance arteries in health and disease have the potential to aid understanding how disease and medical treatments affect the human microcirculation. To develop these mathematical models, it is essential to decipher the relationship between the mechanical and microarchitectural properties of the microvascular wall. In this work, we describe an ex vivo method for passive mechanical testing and simultaneous label-free three-dimensional imaging of the microarchitecture of elastin and collagen in the arterial wall of isolated human resistance arteries. The imaging protocol can be applied to resistance arteries of any species of interest. Image analyses are described for quantifying i) pressure-induced changes in internal elastic lamina branching angles and adventitial collagen straightness using Fiji and ii) collagen and elastin volume densities determined using Ilastik software. Preferably all mechanical and imaging measurements are performed on live, perfused arteries, however, an alternative approach using standard video-microscopy pressure myography in combination with post-fixation imaging of re-pressurized vessels is discussed. This alternative method provides users with different options for analysis approaches. The inclusion of the mechanical and imaging data in mathematical models of the arterial wall mechanics is discussed, and future development and additions to the protocol are proposed.
Collapse
Affiliation(s)
- Maria Bloksgaard
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark;
| | - Bjarne Thorsted
- Department of Biochemistry and Molecular Biology, University of Southern Denmark
| | - Jonathan R Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark
| | - Jo G R De Mey
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark; Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital
| |
Collapse
|
34
|
Kohn JC, Azar J, Seta F, Reinhart-King CA. High-Fat, High-Sugar Diet-Induced Subendothelial Matrix Stiffening is Mitigated by Exercise. Cardiovasc Eng Technol 2018; 9:84-93. [PMID: 29159794 PMCID: PMC5797500 DOI: 10.1007/s13239-017-0335-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
Abstract
Consumption of a high-fat, high-sugar diet and sedentary lifestyle are correlated with bulk arterial stiffening. While measurements of bulk arterial stiffening are used to assess cardiovascular health clinically, they cannot account for changes to the tissue occurring on the cellular scale. The compliance of the subendothelial matrix in the intima mediates vascular permeability, an initiating step in atherosclerosis. High-fat, high-sugar diet consumption and a sedentary lifestyle both cause micro-scale subendothelial matrix stiffening, but the impact of these factors in concert remains unknown. In this study, mice on a high-fat, high-sugar diet were treated with aerobic exercise or returned to a normal diet. We measured bulk arterial stiffness through pulse wave velocity and subendothelial matrix stiffness ex vivo through atomic force microscopy. Our data indicate that while diet reversal mitigates high-fat, high-sugar diet-induced macro- and micro-scale stiffening, exercise only significantly decreases micro-scale stiffness and not macro-scale stiffness, during the time-scale studied. These data underscore the need for both healthy diet and exercise to maintain vascular health. These data also indicate that exercise may serve as a key lifestyle modification to partially reverse the deleterious impacts of high-fat, high-sugar diet consumption, even while macro-scale stiffness indicators do not change.
Collapse
Affiliation(s)
- Julie C Kohn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Julian Azar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Francesca Seta
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA
| | - Cynthia A Reinhart-King
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 351631, USA.
| |
Collapse
|
35
|
Olver TD, Grunewald ZI, Jurrissen TJ, MacPherson REK, LeBlanc PJ, Schnurbusch TR, Czajkowski AM, Laughlin MH, Rector RS, Bender SB, Walters EM, Emter CA, Padilla J. Microvascular insulin resistance in skeletal muscle and brain occurs early in the development of juvenile obesity in pigs. Am J Physiol Regul Integr Comp Physiol 2017; 314:R252-R264. [PMID: 29141949 DOI: 10.1152/ajpregu.00213.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Impaired microvascular insulin signaling may develop before overt indices of microvascular endothelial dysfunction and represent an early pathological feature of adolescent obesity. Using a translational porcine model of juvenile obesity, we tested the hypotheses that in the early stages of obesity development, impaired insulin signaling manifests in skeletal muscle (triceps), brain (prefrontal cortex), and corresponding vasculatures, and that depressed insulin-induced vasodilation is reversible with acute inhibition of protein kinase Cβ (PKCβ). Juvenile Ossabaw miniature swine (3.5 mo of age) were divided into two groups: lean control ( n = 6) and obese ( n = 6). Obesity was induced by feeding the animals a high-fat/high-fructose corn syrup/high-cholesterol diet for 10 wk. Juvenile obesity was characterized by excess body mass, hyperglycemia, physical inactivity (accelerometer), and marked lipid accumulation in the skeletal muscle, with no evidence of overt atherosclerotic lesions in athero-prone regions, such as the abdominal aorta. Endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) vasomotor responses in the brachial and carotid arteries (wire myography), as well as in the skeletal muscle resistance and 2A pial arterioles (pressure myography) were unaltered, but insulin-induced microvascular vasodilation was impaired in the obese group. Blunted insulin-stimulated vasodilation, which was reversed with acute PKCβ inhibition (LY333-531), occurred alongside decreased tissue perfusion, as well as reduced insulin-stimulated Akt signaling in the prefrontal cortex, but not the triceps. In the early stages of juvenile obesity development, the microvasculature and prefrontal cortex exhibit impaired insulin signaling. Such adaptations may underscore vascular and neurological derangements associated with juvenile obesity.
Collapse
Affiliation(s)
- T Dylan Olver
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri
| | - Zachary I Grunewald
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - Thomas J Jurrissen
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | | | - Paul J LeBlanc
- Department of Health Sciences, Brock University , St. Catharines, Ontario , Canada
| | - Teagan R Schnurbusch
- National Swine Resource and Research Center University of Missouri , Columbia, Missouri
| | - Alana M Czajkowski
- National Swine Resource and Research Center University of Missouri , Columbia, Missouri
| | - M Harold Laughlin
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Affairs Hospital , Columbia, Missouri.,Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri , Columbia, Missouri
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Affairs Hospital , Columbia, Missouri
| | - Eric M Walters
- National Swine Resource and Research Center University of Missouri , Columbia, Missouri
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri.,Department of Child Health, University of Missouri , Columbia, Missouri
| |
Collapse
|
36
|
Brown SM, Smith CE, Meuth AI, Khan M, Aroor AR, Cleeton HM, Meininger GA, Sowers JR, DeMarco VG, Chandrasekar B, Nistala R, Bender SB. Dipeptidyl Peptidase-4 Inhibition With Saxagliptin Ameliorates Angiotensin II-Induced Cardiac Diastolic Dysfunction in Male Mice. Endocrinology 2017; 158:3592-3604. [PMID: 28977602 PMCID: PMC5659692 DOI: 10.1210/en.2017-00416] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022]
Abstract
Activation of the renin-angiotensin-aldosterone system is common in hypertension and obesity and contributes to cardiac diastolic dysfunction, a condition for which no treatment currently exists. In light of recent reports that antihyperglycemia incretin enhancing dipeptidyl peptidase (DPP)-4 inhibitors exert cardioprotective effects, we examined the hypothesis that DPP-4 inhibition with saxagliptin (Saxa) attenuates angiotensin II (Ang II)-induced cardiac diastolic dysfunction. Male C57BL/6J mice were infused with either Ang II (500 ng/kg/min) or vehicle for 3 weeks receiving either Saxa (10 mg/kg/d) or placebo during the final 2 weeks. Echocardiography revealed Ang II-induced diastolic dysfunction, evidenced by impaired septal wall motion and prolonged isovolumic relaxation, coincident with aortic stiffening. Ang II induced cardiac hypertrophy, coronary periarterial fibrosis, TRAF3-interacting protein 2 (TRAF3IP2)-dependent proinflammatory signaling [p-p65, p-c-Jun, interleukin (IL)-17, IL-18] associated with increased cardiac macrophage, but not T cell, gene expression. Flow cytometry revealed Ang II-induced increases of cardiac CD45+F4/80+CD11b+ and CD45+F4/80+CD11c+ macrophages and CD45+CD4+ lymphocytes. Treatment with Saxa reduced plasma DPP-4 activity and abrogated Ang II-induced cardiac diastolic dysfunction independent of aortic stiffening or blood pressure. Furthermore, Saxa attenuated Ang II-induced periarterial fibrosis and cardiac inflammation, but not hypertrophy or cardiac macrophage infiltration. Analysis of Saxa-induced changes in cardiac leukocytes revealed Saxa-dependent reduction of the Ang II-mediated increase of cardiac CD11c messenger RNA and increased cardiac CD8 gene expression and memory CD45+CD8+CD44+ lymphocytes. In summary, these results demonstrate that DPP-4 inhibition with Saxa prevents Ang II-induced cardiac diastolic dysfunction, fibrosis, and inflammation associated with unique shifts in CD11c-expressing leukocytes and CD8+ lymphocytes.
Collapse
Affiliation(s)
- Scott M. Brown
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Cassandra E. Smith
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Alex I. Meuth
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Maloree Khan
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Annayya R. Aroor
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Hannah M. Cleeton
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - James R. Sowers
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Vincent G. DeMarco
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Bysani Chandrasekar
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Ravi Nistala
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Nephrology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Shawn B. Bender
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
37
|
Foote CA, Martinez-Lemus LA. Uncovering novel roles for matrix metalloproteinases in preeclampsia. Am J Physiol Heart Circ Physiol 2017; 313:H687-H689. [PMID: 28710071 DOI: 10.1152/ajpheart.00374.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 11/22/2022]
Affiliation(s)
- Christopher A Foote
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
38
|
Reho JJ, Rahmouni K. Oxidative and inflammatory signals in obesity-associated vascular abnormalities. Clin Sci (Lond) 2017; 131:1689-1700. [PMID: 28667067 DOI: 10.1042/cs20170219] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2025]
Abstract
Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function.
Collapse
Affiliation(s)
- John J Reho
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, U.S.A
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, U.S.A.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, U.S.A
- Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa, U.S.A
- Center for Hypertension Research, University of Iowa, Iowa City, Iowa, U.S.A
| |
Collapse
|
39
|
Labazi H, Trask AJ. Coronary microvascular disease as an early culprit in the pathophysiology of diabetes and metabolic syndrome. Pharmacol Res 2017; 123:114-121. [PMID: 28700893 DOI: 10.1016/j.phrs.2017.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023]
Abstract
Metabolic syndrome (MetS) is a group of cardio-metabolic risk factors that includes obesity, insulin resistance, hypertension, and dyslipidemia; these are also a combination of independent coronary artery disease (CAD) risk factors. Alarmingly, the prevalence of MetS risk factors are increasing and a leading cause for mortality. In the vasculature, complications from MetS and type 2 diabetes (T2D) can be divided into microvascular (retinopathy and nephropathy) and macrovascular (cardiovascular diseases and erectile dysfunction). In addition to vascular and endothelial dysfunction, vascular remodeling and stiffness are also hallmarks of cardiovascular disease (CVD), and well-characterized vascular changes that are observed in the early stages of hypertension, T2D, and obesity [1-3]. In the heart, the link between obstructive atherosclerosis of coronary macrovessels and myocardial ischemia (MI) is well established. However, recent studies show that abnormalities in the coronary microcirculation are associated with functional and structural changes in coronary microvessels (classically defined as being ≤150-200μm internal diameter), which may cause or contribute to MI even in the absence of obstractive CAD. This suggests a prognostic value of an abnormal coronary microcirculation as an early sub-clinical culprit in the pathogenesis and progression of heart disease in T2D and MetS. The aim of this review is to summarize recent studies investigating the coronary microvascular remodeling in an early pre-atherosclerotic phase of MetS and T2D, and to explore potential mechanisms associated with the timing of coronary microvascular remodeling relative to that of the macrovasculature.
Collapse
Affiliation(s)
- Hicham Labazi
- Center for Cardiovascular Research and The Heart Center, The Research Institute at Nationwide Children's Hospital Columbus, OH, United States
| | - Aaron J Trask
- Center for Cardiovascular Research and The Heart Center, The Research Institute at Nationwide Children's Hospital Columbus, OH, United States; Department of Pediatrics, The Ohio State University Columbus, OH, United States.
| |
Collapse
|
40
|
Martinez-Lemus LA, Aroor AR, Ramirez-Perez FI, Jia G, Habibi J, DeMarco VG, Barron B, Whaley-Connell A, Nistala R, Sowers JR. Amiloride Improves Endothelial Function and Reduces Vascular Stiffness in Female Mice Fed a Western Diet. Front Physiol 2017; 8:456. [PMID: 28713285 PMCID: PMC5492307 DOI: 10.3389/fphys.2017.00456] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/15/2017] [Indexed: 01/25/2023] Open
Abstract
Obese premenopausal women lose their sex related cardiovascular disease protection and develop greater arterial stiffening than age matched men. In female mice, we have shown that consumption of a Western diet (WD), high in fat and refined sugars, is associated with endothelial dysfunction and vascular stiffening, which occur via activation of mineralocorticoid receptors and associated increases in epithelial Na+ channel (ENaC) activity on endothelial cells (EnNaC). Herein our aim was to determine the effect that reducing EnNaC activity with a very-low-dose of amiloride would have on decreasing endothelial and arterial stiffness in young female mice consuming a WD. To this end, we fed female mice either a WD or control diet and treated them with or without a very-low-dose of the ENaC-inhibitor amiloride (1 mg/kg/day) in the drinking water for 20 weeks beginning at 4 weeks of age. Mice consuming a WD were heavier and had greater percent body fat, proteinuria, and aortic stiffness as assessed by pulse-wave velocity than those fed control diet. Treatment with amiloride did not affect body weight, body composition, blood pressure, urinary sodium excretion, or insulin sensitivity, but significantly reduced the development of endothelial and aortic stiffness, aortic fibrosis, aortic oxidative stress, and mesenteric resistance artery EnNaC abundance and proteinuria in WD-fed mice. Amiloride also improved endothelial-dependent vasodilatory responses in the resistance arteries of WD-fed mice. These results indicate that a very-low-dose of amiloride, not affecting blood pressure, is sufficient to improve endothelial function and reduce aortic stiffness in female mice fed a WD, and suggest that EnNaC-inhibition may be sufficient to ameliorate the pathological vascular stiffening effects of WD-induced obesity in females.
Collapse
Affiliation(s)
- Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of MissouriColumbia, MO, United States.,Department of Biological Engineering, University of MissouriColumbia, MO, United States.,Department of Medical Pharmacology and Physiology, University of MissouriColumbia, MO, United States.,Research Service, Harry S. Truman Memorial Veterans' HospitalColumbia, MO, United States
| | - Annayya R Aroor
- Research Service, Harry S. Truman Memorial Veterans' HospitalColumbia, MO, United States.,Diabetes and Cardiovascular Research Center, University of MissouriColumbia, MO, United States
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of MissouriColumbia, MO, United States.,Department of Biological Engineering, University of MissouriColumbia, MO, United States
| | - Guanghong Jia
- Research Service, Harry S. Truman Memorial Veterans' HospitalColumbia, MO, United States.,Diabetes and Cardiovascular Research Center, University of MissouriColumbia, MO, United States
| | - Javad Habibi
- Diabetes and Cardiovascular Research Center, University of MissouriColumbia, MO, United States
| | - Vincent G DeMarco
- Department of Medical Pharmacology and Physiology, University of MissouriColumbia, MO, United States.,Research Service, Harry S. Truman Memorial Veterans' HospitalColumbia, MO, United States.,Diabetes and Cardiovascular Research Center, University of MissouriColumbia, MO, United States
| | - Brady Barron
- Research Service, Harry S. Truman Memorial Veterans' HospitalColumbia, MO, United States.,Diabetes and Cardiovascular Research Center, University of MissouriColumbia, MO, United States
| | - Adam Whaley-Connell
- Research Service, Harry S. Truman Memorial Veterans' HospitalColumbia, MO, United States.,Diabetes and Cardiovascular Research Center, University of MissouriColumbia, MO, United States.,Division of Nephrology and Hypertension, University of MissouriColumbia, MO, United States
| | - Ravi Nistala
- Diabetes and Cardiovascular Research Center, University of MissouriColumbia, MO, United States.,Division of Nephrology and Hypertension, University of MissouriColumbia, MO, United States
| | - James R Sowers
- Dalton Cardiovascular Research Center, University of MissouriColumbia, MO, United States.,Research Service, Harry S. Truman Memorial Veterans' HospitalColumbia, MO, United States.,Diabetes and Cardiovascular Research Center, University of MissouriColumbia, MO, United States
| |
Collapse
|
41
|
Manrique-Acevedo C, Ramirez-Perez FI, Padilla J, Vieira-Potter VJ, Aroor AR, Barron BJ, Chen D, Haertling D, Declue C, Sowers JR, Martinez-Lemus LA. Absence of Endothelial ERα Results in Arterial Remodeling and Decreased Stiffness in Western Diet-Fed Male Mice. Endocrinology 2017; 158:1875-1885. [PMID: 28430983 PMCID: PMC5460939 DOI: 10.1210/en.2016-1831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/13/2017] [Indexed: 01/16/2023]
Abstract
The role of estrogen receptor-α (ERα) signaling in the vasculature of females has been described under different experimental conditions and our group recently reported that lack of endothelial cell (EC) ERα in female mice fed a Western diet (WD) results in amelioration of vascular stiffness. Conversely, the role of ERα in the male vasculature in this setting has not been explored. In conditions of overnutrition and insulin resistance, augmented arterial stiffness, endothelial dysfunction, and arterial remodeling contribute to the development of cardiovascular disease. Here, we used a rodent model of decreased ERα expression in ECs [endothelial cell estrogen receptor-α knockout (EC-ERαKO)] to test the hypothesis that, similar to our findings in females, loss of ERα signaling in the endothelium of insulin-resistant males would result in decreased arterial stiffness. EC-ERαKO male mice and same-sex littermates were fed a WD (high in fructose and fat) for 20 weeks and then assessed for vascular function and stiffness. EC-ERαKO mice were heavier than littermates but exhibited decreased vascular stiffness without differences in endothelial-dependent vasodilatory responses. Mesenteric arteries from EC-ERαKO mice had significantly increased diameters, wall cross-sectional areas, and mean wall thicknesses, indicative of outward hypertrophic remodeling. This remodeling paralleled an increased vessel wall content of collagen and elastin, inhibition of matrix metalloproteinase activation and a decrease of the incremental modulus of elasticity. In addition, internal elastic lamina fenestrae were more abundant in the EC-ERαKO mice. In conclusion, loss of endothelial ERα reduces vascular stiffness in male mice fed a WD with an associated outward hypertrophic remodeling of resistance arteries.
Collapse
Affiliation(s)
- Camila Manrique-Acevedo
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Biological Engineering, University of Missouri, Columbia, Missouri 65211
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri 65211
- Department of Child Health, University of Missouri, Columbia, Missouri 65212
| | - Victoria J Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri 65211
| | - Annayya R Aroor
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
| | - Brady J Barron
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
| | - Dongqing Chen
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
| | - Dominic Haertling
- School of Medicine, University of Missouri, Columbia, Missouri 65212
| | - Cory Declue
- School of Medicine, University of Missouri, Columbia, Missouri 65212
| | - James R Sowers
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Biological Engineering, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212
| |
Collapse
|
42
|
Padilla J, Ramirez-Perez FI, Habibi J, Bostick B, Aroor AR, Hayden MR, Jia G, Garro M, DeMarco VG, Manrique C, Booth FW, Martinez-Lemus LA, Sowers JR. Regular Exercise Reduces Endothelial Cortical Stiffness in Western Diet-Fed Female Mice. Hypertension 2016; 68:1236-1244. [PMID: 27572153 DOI: 10.1161/hypertensionaha.116.07954] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022]
Abstract
We recently showed that Western diet-induced obesity and insulin resistance promotes endothelial cortical stiffness in young female mice. Herein, we tested the hypothesis that regular aerobic exercise would attenuate the development of endothelial and whole artery stiffness in female Western diet-fed mice. Four-week-old C57BL/6 mice were randomized into sedentary (ie, caged confined, n=6) or regular exercise (ie, access to running wheels, n=7) conditions for 16 weeks. Exercise training improved glucose tolerance in the absence of changes in body weight and body composition. Compared with sedentary mice, exercise-trained mice exhibited reduced endothelial cortical stiffness in aortic explants (sedentary 11.9±1.7 kPa versus exercise 5.5±1.0 kPa; P<0.05), as assessed by atomic force microscopy. This effect of exercise was not accompanied by changes in aortic pulse wave velocity (P>0.05), an in vivo measure of aortic stiffness. In comparison, exercise reduced femoral artery stiffness in isolated pressurized arteries and led to an increase in femoral internal artery diameter and wall cross-sectional area (P<0.05), indicative of outward hypertrophic remodeling. These effects of exercise were associated with an increase in femoral artery elastin content and increased number of fenestrae in the internal elastic lamina (P<0.05). Collectively, these data demonstrate for the first time that the aortic endothelium is highly plastic and, thus, amenable to reductions in stiffness with regular aerobic exercise in the absence of changes in in vivo whole aortic stiffness. Comparatively, the same level of exercise caused destiffening effects in peripheral muscular arteries, such as the femoral artery, that perfuse the working limbs.
Collapse
Affiliation(s)
- Jaume Padilla
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Francisco I Ramirez-Perez
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Javad Habibi
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Brian Bostick
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Annayya R Aroor
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Melvin R Hayden
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Guanghong Jia
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Mona Garro
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Vincent G DeMarco
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Camila Manrique
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Frank W Booth
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Luis A Martinez-Lemus
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - James R Sowers
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.).
| |
Collapse
|
43
|
Jia G, Bender SB, Sowers JR. Uncovering a Mineralocorticoid Receptor-Dependent Adipose-Vascular Axis: Implications for Vascular Dysfunction in Obesity? Diabetes 2016; 65:2127-9. [PMID: 27456620 PMCID: PMC4955983 DOI: 10.2337/dbi16-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Guanghong Jia
- Diabetes and Cardiovascular Research Center, Columbia, MO Department of Medicine, University of Missouri School of Medicine, Columbia, MO
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO
| | - James R Sowers
- Diabetes and Cardiovascular Research Center, Columbia, MO Diabetes and Cardiovascular Research Center, Columbia, MO Diabetes and Cardiovascular Research Center, Columbia, MO Diabetes and Cardiovascular Research Center, Columbia, MO Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO
| |
Collapse
|
44
|
Hwang MH, Lee S. Insulin resistance: vascular function and exercise. Integr Med Res 2016; 5:198-203. [PMID: 28462118 PMCID: PMC5390417 DOI: 10.1016/j.imr.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 12/19/2022] Open
Abstract
Insulin resistance associated with metabolic syndrome and Type 2 diabetes mellitus is an epidemic metabolic disorder, which increases the risk of cardiovascular complications. Impaired vascular endothelial function is an early marker for atherosclerosis, which causes cardiovascular complications. Both experimental and clinical studies indicate that endothelial dysfunction in vasculatures occurs with insulin resistance. The associated physiological mechanisms are not fully appreciated yet, however, it seems that augmented oxidative stress, a physiological imbalance between oxidants and antioxidants, in vascular cells is a possible mechanism involved in various vascular beds with insulin resistance and hyperglycemia. Regardless of the inclusion of resistance exercise, aerobic exercise seems to be beneficial for vascular endothelial function in both large conduit and small resistance vessels in both clinical and experimental studies with insulin resistance. In clinical cases, aerobic exercise over 8 weeks with higher intensity seems more beneficial than the cases with shorter duration and lower intensity. However, more studies are needed in the future to elucidate the physiological mechanisms by which vascular endothelial function is impaired in insulin resistance and improved with aerobic exercise.
Collapse
Affiliation(s)
- Moon-Hyon Hwang
- Division of Health and Exercise Science, Incheon National University, Incheon, Korea.,Sport Science Institute, Incheon National University, Incheon, Korea
| | - Sewon Lee
- Sport Science Institute, Incheon National University, Incheon, Korea.,Division of Sport Science, Incheon National University, Incheon, Korea
| |
Collapse
|
45
|
Pennington KA, Ramirez-Perez FI, Pollock KE, Talton OO, Foote CA, Reyes-Aldasoro CC, Wu HH, Ji T, Martinez-Lemus LA, Schulz LC. Maternal Hyperleptinemia Is Associated with Male Offspring's Altered Vascular Function and Structure in Mice. PLoS One 2016; 11:e0155377. [PMID: 27187080 PMCID: PMC4871503 DOI: 10.1371/journal.pone.0155377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/27/2016] [Indexed: 12/27/2022] Open
Abstract
Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT) offspring of hyperleptinemic, normoglycemic, Leprdb/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD) for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under a standard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post -natal environments to contribute to altered vascular function in offspring of diabetic pregnancies.
Collapse
Affiliation(s)
- Kathleen A. Pennington
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, United States of America
| | - Francisco I. Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, United States of America
| | - Kelly E. Pollock
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, United States of America
| | - Omonseigho O. Talton
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Christopher A. Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | | | - Ho-Hsiang Wu
- Department of Statistics, University of Missouri, Columbia, Missouri, United States of America
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri, United States of America
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (LAM); (LCS)
| | - Laura C. Schulz
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (LAM); (LCS)
| |
Collapse
|
46
|
Candela J, Velmurugan GV, White C. Hydrogen sulfide depletion contributes to microvascular remodeling in obesity. Am J Physiol Heart Circ Physiol 2016; 310:H1071-80. [DOI: 10.1152/ajpheart.00062.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/10/2016] [Indexed: 12/22/2022]
Abstract
Structural remodeling of the microvasculature occurs during obesity. Based on observations that impaired H2S signaling is associated with cardiovascular pathologies, the current study was designed to test the hypothesis that altered H2S homeostasis is involved in driving the remodeling process in a diet-induced mouse model of obesity. The structural and passive mechanical properties of mesenteric resistance arterioles isolated from 30-wk-old lean and obese mice were assessed using pressure myography, and vessel H2S levels were quantified using the H2S indicator sulfidefluor 7-AM. Remodeling gene expression was assessed using quantitative RT-PCR, and histological staining was used to quantify vessel collagen and elastin. Obesity was found to be associated with decreased vessel H2S concentration, inward hypertrophic remodeling, altered collagen-to-elastin ratio, and reduced vessel stiffness. In addition, mRNA levels of fibronectin, collagen types I and III, matrix metalloproteinases 2 and 9, and tissue inhibitor of metalloproteinase 1 were increased and elastin was decreased by obesity. Evidence that decreased H2S was responsible for the genetic changes was provided by experiments in which H2S levels were manipulated, either by inhibition of the H2S-generating enzyme cystathionine γ-lyase with dl-propargylglycine or by incubation with the H2S donor GYY4137. These data suggest that, during obesity, depletion of H2S is involved in orchestrating the genetic changes underpinning inward hypertrophic remodeling in the microvasculature.
Collapse
Affiliation(s)
- Joseph Candela
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Gopal V. Velmurugan
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Carl White
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
47
|
Manrique C, Lastra G, Ramirez-Perez FI, Haertling D, DeMarco VG, Aroor AR, Jia G, Chen D, Barron BJ, Garro M, Padilla J, Martinez-Lemus LA, Sowers JR. Endothelial Estrogen Receptor-α Does Not Protect Against Vascular Stiffness Induced by Western Diet in Female Mice. Endocrinology 2016; 157:1590-600. [PMID: 26872089 PMCID: PMC4816732 DOI: 10.1210/en.2015-1681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.
Collapse
Affiliation(s)
- Camila Manrique
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Guido Lastra
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Francisco I Ramirez-Perez
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Dominic Haertling
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Vincent G DeMarco
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Annayya R Aroor
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Guanghong Jia
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Dongqing Chen
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Brady J Barron
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Mona Garro
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Jaume Padilla
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Luis A Martinez-Lemus
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - James R Sowers
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
48
|
Foote CA, Castorena-Gonzalez JA, Ramirez-Perez FI, Jia G, Hill MA, Reyes-Aldasoro CC, Sowers JR, Martinez-Lemus LA. Arterial Stiffening in Western Diet-Fed Mice Is Associated with Increased Vascular Elastin, Transforming Growth Factor-β, and Plasma Neuraminidase. Front Physiol 2016; 7:285. [PMID: 27458385 PMCID: PMC4935726 DOI: 10.3389/fphys.2016.00285] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/23/2016] [Indexed: 01/06/2023] Open
Abstract
Consumption of excess fat and carbohydrate (Western diet, WD) is associated with alterations in the structural characteristics of blood vessels. This vascular remodeling contributes to the development of cardiovascular disease, particularly as it affects conduit and resistance arteries. Vascular remodeling is often associated with changes in the elastin-rich internal elastic lamina (IEL) and the activation of transforming growth factor (TGF)-β. In addition, obesity and type II diabetes have been associated with increased serum neuraminidase, an enzyme known to increase TGF-β cellular output. Therefore, we hypothesized that WD-feeding would induce structural modifications to the IEL of mesenteric resistance arteries in mice, and that these changes would be associated with increased levels of circulating neuraminidase and the up-regulation of elastin and TGF-β in the arterial wall. To test this hypothesis, a WD, high in fat and sugar, was used to induce obesity in mice, and the effect of this diet on the structure of mesenteric resistance arteries was investigated. 4-week old, Post-weaning mice were fed either a normal diet (ND) or WD for 16 weeks. Mechanically, arteries from WD-fed mice were stiffer and less distensible, with marginally increased wall stress for a given strain, and a significantly increased Young's modulus of elasticity. Structurally, the wall cross-sectional area and the number of fenestrae found in the internal elastic lamina (IEL) of mesenteric arteries from mice fed a WD were significantly smaller than those of arteries from the ND-fed mice. There was also a significant increase in the volume of elastin, but not collagen in arteries from the WD cohort. Plasma levels of neuraminidase and the amount of TGF-β in mesenteric arteries were elevated in mice fed a WD, while ex vivo, cultured vascular smooth muscle cells exposed to neuraminidase secreted greater amounts of tropoelastin and TGF-β than those exposed to vehicle. These data suggest that consumption of a diet high in fat and sugar causes stiffening of the vascular wall in resistance arteries through a process that may involve increased neuraminidase and TGF-β activity, elevated production of elastin, and a reduction in the size and number of fenestrae in the arterial IEL.
Collapse
Affiliation(s)
| | - Jorge A. Castorena-Gonzalez
- Dalton Cardiovascular Research Center, University of MissouriColumbia, MO, USA
- Department of Biological Engineering, University of MissouriColumbia, MO, USA
| | - Francisco I. Ramirez-Perez
- Dalton Cardiovascular Research Center, University of MissouriColumbia, MO, USA
- Department of Biological Engineering, University of MissouriColumbia, MO, USA
| | - Guanghong Jia
- Diabetes and Cardiovascular Research Center, University of MissouriColumbia, MO, USA
- Harry S. Truman Memorial Veterans HospitalColumbia, MO, USA
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of MissouriColumbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of MissouriColumbia, MO, USA
| | | | - James R. Sowers
- Diabetes and Cardiovascular Research Center, University of MissouriColumbia, MO, USA
- Harry S. Truman Memorial Veterans HospitalColumbia, MO, USA
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of MissouriColumbia, MO, USA
- Department of Biological Engineering, University of MissouriColumbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of MissouriColumbia, MO, USA
- *Correspondence: Luis A. Martinez-Lemus
| |
Collapse
|
49
|
Gooch KJ, Trask AJ. Tissue-specific vascular remodeling and stiffness associated with metabolic diseases. Am J Physiol Heart Circ Physiol 2015; 309:H555-6. [PMID: 26188025 DOI: 10.1152/ajpheart.00545.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/10/2015] [Indexed: 11/22/2022]
Affiliation(s)
- Keith J Gooch
- Department of Biomedical Engineering, Davis Heart and Lung Research Institute, The Ohio State University College of Engineering, Columbus, Ohio, and
| | - Aaron J Trask
- Center for Cardiovascular and Pulmonary Research and The Heart Center, The Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|