1
|
Lu Y, Liang X, Song J, Guan Y, Yang L, Shen R, Niu Y, Guo Z, Zhu N. Niclosamide modulates phenotypic switch and inflammatory responses in human pulmonary arterial smooth muscle cells. Mol Cell Biochem 2025; 480:1583-1593. [PMID: 38980591 DOI: 10.1007/s11010-024-05061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) represent key steps of pulmonary vascular remodeling, leading to the development of pulmonary arterial hypertension (PAH) and right ventricular failure. Niclosamide (NCL), an FDA-approved anthelmintic, has been shown to regulate cell proliferation, migration, invasion, and apoptosis through a variety of signaling pathways. However, its role on modulating the phenotypic switch and inflammatory responses in PASMCs remains unclear. In this study, cell proliferation assay showed that NCL inhibited PDGF-BB induced proliferation of human PASMCs in a dose-dependent manner. Western blot analysis further confirmed a notable reduction in the expression of cyclin D1 and PCNA proteins. Subsequently, flow cytometry analysis demonstrated that NCL induced an increased percentage of cells in the G1 phase while promoting apoptosis in PASMCs. Moreover, both scratch wound assay and transwell assay confirmed that NCL decreased PDGF-BB-induced migration of PASMCs. Mechanistically, western blot revealed that pretreatment of PASMCs with NCL markedly restored the protein levels of SMA, SM22, and calponin, while reducing phosphorylation of P38/STAT3 signaling in the presence of PDGF-BB. Interestingly, macrophages adhesion assay showed that NCL markedly reduced recruitment of Calcein-AM labeled RAW264.7 by TNFα-stimulated PASMCs. Western blot revealed that NCL suppressed TNFα-induced expression of both of VCAM-1 and ICAM-1 proteins. Furthermore, pretreatment of PASMCs with NCL significantly inhibited NLRP3 inflammasome activity through reducing NLRP3, AIM2, mature interleukin-1β (IL-β), and cleaved Caspase-1 proteins expression. Together, these results suggested versatile effects of NCL on controlling of proliferation, migration, and inflammatory responses in PASMCs through modulating different pathways, indicating that repurposing of NCL may emerge as a highly effective drug for PAH treatment.
Collapse
Affiliation(s)
- Yuwen Lu
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xiaogan Liang
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jingwen Song
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yugen Guan
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Liang Yang
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Rongrong Shen
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yunpu Niu
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Zhifu Guo
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Ni Zhu
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
2
|
Xu Q, Sun J, Holden CM, Neto HCF, Wang T, Zhang C, Fu Z, Joseph G, Shi R, Wang J, Leask A, Taylor WR, Lin Z. Cellular communication network factor 2 regulates smooth muscle cell transdifferentiation and lipid accumulation in atherosclerosis. Cardiovasc Res 2024; 120:2191-2207. [PMID: 39365752 DOI: 10.1093/cvr/cvae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 10/06/2024] Open
Abstract
AIMS Accruing evidence illustrates an emerging paradigm of dynamic vascular smooth muscle cell (SMC) transdifferentiation during atherosclerosis progression. However, the molecular regulators that govern SMC phenotype diversification remain poorly defined. This study aims to elucidate the functional role and underlying mechanisms of cellular communication network factor 2 (CCN2), a matricellular protein, in regulating SMC plasticity in the context of atherosclerosis. METHODS AND RESULTS In both human and murine atherosclerosis, an up-regulation of CCN2 is observed in transdifferentiated SMCs. Using an inducible murine SMC CCN2 deletion model, we demonstrate that SMC-specific CCN2 knockout mice are hypersusceptible to atherosclerosis development as evidenced by a profound increase in lipid-rich plaques along the entire aorta. Single-cell RNA sequencing studies reveal that SMC deficiency of CCN2 positively regulates machinery involved in endoplasmic reticulum stress, endocytosis, and lipid accumulation in transdifferentiated macrophage-like SMCs during the progression of atherosclerosis, findings recapitulated in CCN2-deficient human aortic SMCs. CONCLUSION Our studies illuminate an unanticipated protective role of SMC-CCN2 against atherosclerosis. Disruption of vascular wall homeostasis resulting from vascular SMC CCN2 deficiency predisposes mice to atherosclerosis development and progression.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Cell Transdifferentiation
- Humans
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Disease Models, Animal
- Connective Tissue Growth Factor/metabolism
- Connective Tissue Growth Factor/genetics
- Lipid Metabolism
- Cells, Cultured
- Plaque, Atherosclerotic
- Mice, Knockout
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Signal Transduction
- Endoplasmic Reticulum Stress
- Endocytosis
- Mice, Inbred C57BL
- Phenotype
- Male
- Cell Plasticity
- Aorta/pathology
- Aorta/metabolism
- Mice
Collapse
Affiliation(s)
- Qian Xu
- Cardiology Division, Department of Medicine, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA 30322, USA
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Jisheng Sun
- Cardiology Division, Department of Medicine, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA 30322, USA
| | - Claire M Holden
- Cardiology Division, Department of Medicine, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA 30322, USA
| | | | - Ti Wang
- Cardiology Division, Department of Medicine, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA 30322, USA
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Yangzhou University Medical College, Jiangsu, China
| | - Chiyuan Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Zuli Fu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Giji Joseph
- Cardiology Division, Department of Medicine, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA 30322, USA
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Jinhu Wang
- Cardiology Division, Department of Medicine, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA 30322, USA
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, Canada
| | - W Robert Taylor
- Cardiology Division, Department of Medicine, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA 30322, USA
| | - Zhiyong Lin
- Cardiology Division, Department of Medicine, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Guan X, Hu Y, Hao J, Lu M, Zhang Z, Hu W, Li D, Li C. Stress, Vascular Smooth Muscle Cell Phenotype and Atherosclerosis: Novel Insight into Smooth Muscle Cell Phenotypic Transition in Atherosclerosis. Curr Atheroscler Rep 2024; 26:411-425. [PMID: 38814419 DOI: 10.1007/s11883-024-01220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW Our work is to establish more distinct association between specific stress and vascular smooth muscle cells (VSMCs) phenotypes to alleviate atherosclerotic plaque burden and delay atherosclerosis (AS) progression. RECENT FINDING In recent years, VSMCs phenotypic transition has received significant interests. Different stresses were found to be associated with VSMCs phenotypic transition. However, the explicit correlation between VSMCs phenotype and specific stress has not been elucidated clearly yet. We discover that VSMCs phenotypic transition, which is widely involved in the progression of AS, is associated with specific stress. We discuss approaches targeting stresses to intervene VSMCs phenotypic transition, which may contribute to develop innovative therapies for AS.
Collapse
Affiliation(s)
- Xiuya Guan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiaqi Hao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenxian Hu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, China.
| | - Dongxiao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, China.
| |
Collapse
|
4
|
Zhu N, Guo ZF, Kazama K, Yi B, Tongmuang N, Yao H, Yang R, Zhang C, Qin Y, Han L, Sun J. Epigenetic regulation of vascular smooth muscle cell phenotypic switch and neointimal formation by PRMT5. Cardiovasc Res 2023; 119:2244-2255. [PMID: 37486354 PMCID: PMC10578915 DOI: 10.1093/cvr/cvad110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 03/20/2023] [Accepted: 04/08/2023] [Indexed: 07/25/2023] Open
Abstract
AIMS Phenotypic transition of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic state is involved in the development of cardiovascular diseases, including atherosclerosis, hypertension, and post-angioplasty restenosis. Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs) has been implicated in multiple cellular processes, however, its role in VSMC biology remains undetermined. The objective of this study was to determine the role of PRMTs in VSMC phenotypic switch and vascular remodelling after injury. METHODS AND RESULTS Our results show that PRMT5 is the most abundantly expressed PRMT in human aortic SMCs, and its expression is up-regulated in platelet-derived growth factor (PDGF)-stimulated VSMCs, human atherosclerotic lesions, and rat carotid arteries after injury, as determined by western blot and immunohistochemical staining. PRMT5 overexpression inhibits the expression of SMC marker genes and promotes VSMC proliferation and migration, while silencing PRMT5 exerts the opposite effects. Mechanistically, we found that PRMT5 overexpression led to histone di-methylation of H3R8 and H4R3, which in turn attenuates acetylation of H3K9 and H4, thus limiting recruitment of the SRF/myocardin complexes to the CArG boxes of SMC marker genes. Furthermore, both SMC-specific deletion of PRMT5 in mice and local delivery of lentivirus expressing shPRMT5 to rat carotid arteries significantly attenuated neointimal formation after injury. Likewise, pharmacological inhibition of PRMT5 by EPZ015666 markedly inhibited carotid artery ligation-induced neointimal formation in mice. CONCLUSIONS Our results identify PRMT5 as a novel regulator in VSMC phenotypic switch and suggest that inhibition of PRMT5 may represent an effective therapeutic strategy for proliferative vascular diseases.
Collapse
Affiliation(s)
- Ni Zhu
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Zhi-Fu Guo
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Kyosuke Kazama
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Bing Yi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Nopprarat Tongmuang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Huijuan Yao
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Ruifeng Yang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Chen Zhang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Yongwen Qin
- Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai 200433, China
| | - Lin Han
- Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai 200433, China
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Pineda-Castillo SA, Acar H, Detamore MS, Holzapfel GA, Lee CH. Modulation of Smooth Muscle Cell Phenotype for Translation of Tissue-Engineered Vascular Grafts. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:574-588. [PMID: 37166394 PMCID: PMC10618830 DOI: 10.1089/ten.teb.2023.0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Translation of small-diameter tissue-engineered vascular grafts (TEVGs) for the treatment of coronary artery disease (CAD) remains an unfulfilled promise. This is largely due to the limited integration of TEVGs into the native vascular wall-a process hampered by the insufficient smooth muscle cell (SMC) infiltration and extracellular matrix deposition, and low vasoactivity. These processes can be promoted through the judicious modulation of the SMC toward a synthetic phenotype to promote remodeling and vascular integration; however, the expression of synthetic markers is often accompanied by a decrease in the expression of contractile proteins. Therefore, techniques that can precisely modulate the SMC phenotypical behavior could have the potential to advance the translation of TEVGs. In this review, we describe the phenotypic diversity of SMCs and the different environmental cues that allow the modulation of SMC gene expression. Furthermore, we describe the emerging biomaterial approaches to modulate the SMC phenotype in TEVG design and discuss the limitations of current techniques. In addition, we found that current studies in tissue engineering limit the analysis of the SMC phenotype to a few markers, which are often the characteristic of early differentiation only. This limited scope has reduced the potential of tissue engineering to modulate the SMC toward specific behaviors and applications. Therefore, we recommend using the techniques presented in this review, in addition to modern single-cell proteomics analysis techniques to comprehensively characterize the phenotypic modulation of SMCs. Expanding the holistic potential of SMC modulation presents a great opportunity to advance the translation of living conduits for CAD therapeutics.
Collapse
Affiliation(s)
- Sergio A. Pineda-Castillo
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
| | - Handan Acar
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
6
|
Camargo LL, Touyz RM. Phenotype-Specific Induced Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells to Model Vascular Disease: Implications of Differentiation Protocols. Hypertension 2023; 80:754-756. [PMID: 36921028 DOI: 10.1161/hypertensionaha.123.20871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Livia L Camargo
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
8
|
Ando J, Yamamoto K. Hemodynamic Forces, Endothelial Mechanotransduction, and Vascular Diseases. Magn Reson Med Sci 2022; 21:258-266. [PMID: 34024868 PMCID: PMC9680547 DOI: 10.2463/mrms.rev.2021-0018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/23/2021] [Indexed: 11/09/2022] Open
Abstract
Cells in the tissues and organs of a living body are subjected to mechanical forces, such as pressure, friction, and tension from their surrounding environment. Cells are equipped with a mechanotransduction mechanism by which they perceive mechanical forces and transmit information into the cell interior, thereby causing physiological or pathogenetic mechano-responses. Endothelial cells (ECs) lining the inner surface of blood vessels are constantly exposed to shear stress caused by blood flow and a cyclic strain caused by intravascular pressure. A number of studies have shown that ECs are sensitive to changes in these hemodynamic forces and alter their morphology and function, sometimes by modifying gene expression. The mechanism of endothelial mechanotransduction has been elucidated, and the plasma membrane has recently been shown to act as a mechanosensor. The lipid order and cholesterol content of plasma membranes change immediately upon the exposure of ECs to hemodynamic forces, resulting in a change in membrane fluidity. These changes in a plasma membrane's physical properties affect the conformation and function of various ion channels, receptors, and microdomains (such as caveolae and primary cilia), thereby activating a wide variety of downstream signaling pathways. Such endothelial mechanotransduction works to maintain circulatory homeostasis; however, errors in endothelial mechanotransduction can cause abnormalities in vascular physiological function, leading to the initiation and progression of various vascular diseases, such as hypertension, thrombosis, aneurysms, and atherosclerosis. Recent advances in detailed imaging technology and computational fluid dynamics analysis have enabled us to evaluate the hemodynamic forces acting on vascular tissue accurately, contributing greatly to our understanding of vascular mechanotransduction and the pathogenesis of vascular diseases, as well as the development of new therapies for vascular diseases.
Collapse
Affiliation(s)
- Joji Ando
- Laboratory of Biomedical Engineering, School of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Kimiko Yamamoto
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Tharp DL, Bowles DK. K Ca3.1 Inhibition Decreases Size and Alters Composition of Atherosclerotic Lesions Induced by Low, Oscillatory Flow. Artery Res 2021; 27:93-100. [PMID: 34457083 PMCID: PMC8388312 DOI: 10.2991/artres.k.210202.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low, oscillatory flow/shear patterns are associated with atherosclerotic lesion development. Increased expression of KCa3.1 has been found in Vascular Smooth Muscle (VSM), macrophages and T-cells in lesions from humans and mice. Increased expression of KCa3.1, is also required for VSM cell proliferation and migration. Previously, we showed that the specific KCa3.1 inhibitor, TRAM-34, could inhibit coronary neointimal development following balloon injury in swine. Atherosclerosis develops in regions with a low, oscillatory (i.e. atheroprone) flow pattern. Therefore, we used the Partial Carotid Ligation (PCL) model in high-fat fed, Apoe−/− mice to determine the role of KCa3.1 in atherosclerotic lesion composition and development. PCL was performed on 8–10 week old male Apoe−/− mice and subsequently placed on a Western diet (TD.88137, Teklad) for 4 weeks. Mice received daily s.c. injections of TRAM-34 (120 mg/kg) or equal volumes of vehicle (peanut oil, PO). 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) treatment reduced lesion size ~50% (p < 0.05). In addition, lesions from TRAM-34 treated mice contained less collagen (6% ± 1% vs. 15% ± 2%; p < 0.05), fibronectin (14% ± 3% vs. 32% ± 3%; p < 0.05) and smooth muscle content (19% ± 2% vs. 29% ± 3%; p < 0.05). Conversely, TRAM-34 had no effect on total cholesterol (1455 vs. 1334 mg/dl, PO and TRAM, resp.) or body weight (29.1 vs. 28.8 g, PO and TRAM, resp.). Medial smooth muscle of atherosclerotic carotids showed diminished RE1-Silencing Transcription Factor (REST)/Neural Restrictive Silencing Factor (NRSF) expression, while REST overexpression in vitro inhibited smooth muscle migration. Together, these data support a downregulation of REST/NRSF and upregulation of KCa3.1 in determining smooth muscle and matrix content of atherosclerotic lesions.
Collapse
Affiliation(s)
- Darla L Tharp
- Department of Biomedical Sciences, E102 Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Douglas K Bowles
- Department of Biomedical Sciences, E102 Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Shawer H, Norman K, Cheng CW, Foster R, Beech DJ, Bailey MA. ORAI1 Ca 2+ Channel as a Therapeutic Target in Pathological Vascular Remodelling. Front Cell Dev Biol 2021; 9:653812. [PMID: 33937254 PMCID: PMC8083964 DOI: 10.3389/fcell.2021.653812] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
In the adult, vascular smooth muscle cells (VSMC) are normally physiologically quiescent, arranged circumferentially in one or more layers within blood vessel walls. Remodelling of native VSMC to a proliferative state for vascular development, adaptation or repair is driven by platelet-derived growth factor (PDGF). A key effector downstream of PDGF receptors is store-operated calcium entry (SOCE) mediated through the plasma membrane calcium ion channel, ORAI1, which is activated by the endoplasmic reticulum (ER) calcium store sensor, stromal interaction molecule-1 (STIM1). This SOCE was shown to play fundamental roles in the pathological remodelling of VSMC. Exciting transgenic lineage-tracing studies have revealed that the contribution of the phenotypically-modulated VSMC in atherosclerotic plaque formation is more significant than previously appreciated, and growing evidence supports the relevance of ORAI1 signalling in this pathologic remodelling. ORAI1 has also emerged as an attractive potential therapeutic target as it is accessible to extracellular compound inhibition. This is further supported by the progression of several ORAI1 inhibitors into clinical trials. Here we discuss the current knowledge of ORAI1-mediated signalling in pathologic vascular remodelling, particularly in the settings of atherosclerotic cardiovascular diseases (CVDs) and neointimal hyperplasia, and the recent developments in our understanding of the mechanisms by which ORAI1 coordinates VSMC phenotypic remodelling, through the activation of key transcription factor, nuclear factor of activated T-cell (NFAT). In addition, we discuss advances in therapeutic strategies aimed at the ORAI1 target.
Collapse
Affiliation(s)
- Heba Shawer
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Norman
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Chew W Cheng
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Richard Foster
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Marc A Bailey
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
11
|
Xue Y, Guo Y, Luo S, Zhou W, Xiang J, Zhu Y, Xiang Z, Shen J. Aberrantly Methylated-Differentially Expressed Genes Identify Novel Atherosclerosis Risk Subtypes. Front Genet 2020; 11:569572. [PMID: 33381146 PMCID: PMC7767999 DOI: 10.3389/fgene.2020.569572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence has indicated that modulation of epigenetic mechanisms, especially methylation and long-non-coding RNA (lncRNA) regulation, plays a pivotal role in the process of atherosclerosis; however, few studies focused on revealing the epigenetic-related subgroups during atherosclerotic progression using unsupervised clustering analysis. Hence, we aimed to identify the epigenetics-related differentially expressed genes associated with atherosclerosis subtypes and characterize their clinical utility in atherosclerosis. Eighty samples with expression data (GSE40231) and 49 samples with methylation data (GSE46394) from a large artery plaque were downloaded from the GEO database, and aberrantly methylated-differentially expressed (AMDE) genes were identified based on the relationship between methylation and expression. Furthermore, we conducted weighted correlation network analysis (WGCNA) and co-expression analysis to identify the core AMDE genes strongly involved in atherosclerosis. K-means clustering was used to characterize two subtypes of atherosclerosis in GSE40231, and then 29 samples were recognized as validation dataset (GSE28829). In a blood sample cohort (GSE90074), chi-square test and logistic analysis were performed to explore the clinical implication of the K-means clusters. Furthermore, significance analysis of microarrays and prediction analysis of microarrays (PAM) were applied to identify the signature AMDE genes. Moreover, the classification performance of signature AMDE gene-based classifier from PAM was validated in another blood sample cohort (GSE34822). A total of 1,569 AMDE mRNAs and eight AMDE long non-coding RNAs (lncRNAs) were identified by differential analysis. Through the WGCNA and co-expression analysis, 32 AMDE mRNAs and seven AMDE lncRNAs were identified as the core genes involved in atherosclerosis development. Functional analysis revealed that AMDE genes were strongly related to inflammation and axon guidance. In the clinical analysis, the atherosclerotic subtypes were associated with the severity of coronary artery disease and risk of adverse events. Eight genes, including PARP15, SERGEF, PDGFD, MRPL45, UBR1, STAU1, WIZ, and LSM4, were selected as the signature AMDE genes that most significantly differentiated between atherosclerotic subtypes. Ultimately, the area under the curve of signature AMDE gene-based classifier for atherosclerotic subtypes was 0.858 and 0.812 in GSE90074 and GSE34822, respectively. This study identified the AMDE genes (lncRNAs and mRNAs) that could be implemented in clinical clustering to recognize high-risk atherosclerotic patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jian Shen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Wu K, Tang H, Lin R, Carr SG, Wang Z, Babicheva A, Ayon RJ, Jain PP, Xiong M, Rodriguez M, Rahimi S, Balistrieri F, Rahimi S, Valdez-Jasso D, Simonson TS, Desai AA, Garcia JG, Shyy JYJ, Thistlethwaite PA, Wang J, Makino A, Yuan JXJ. Endothelial platelet-derived growth factor-mediated activation of smooth muscle platelet-derived growth factor receptors in pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020948470. [PMID: 33294172 PMCID: PMC7707860 DOI: 10.1177/2045894020948470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Platelet-derived growth factor is one of the major growth factors found in human and mammalian serum and tissues. Abnormal activation of platelet-derived growth factor signaling pathway through platelet-derived growth factor receptors may contribute to the development and progression of pulmonary vascular remodeling and obliterative vascular lesions in patients with pulmonary arterial hypertension. In this study, we examined the expression of platelet-derived growth factor receptor isoforms in pulmonary arterial smooth muscle and pulmonary arterial endothelial cells and investigated whether platelet-derived growth factor secreted from pulmonary arterial smooth muscle cell or pulmonary arterial endothelial cell promotes pulmonary arterial smooth muscle cell proliferation. Our results showed that the protein expression of platelet-derived growth factor receptor α and platelet-derived growth factor receptor β in pulmonary arterial smooth muscle cell was upregulated in patients with idiopathic pulmonary arterial hypertension compared to normal subjects. Platelet-derived growth factor activated platelet-derived growth factor receptor α and platelet-derived growth factor receptor β in pulmonary arterial smooth muscle cell, as determined by phosphorylation of platelet-derived growth factor receptor α and platelet-derived growth factor receptor β. The platelet-derived growth factor-mediated activation of platelet-derived growth factor receptor α/platelet-derived growth factor receptor β was enhanced in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell compared to normal cells. Expression level of platelet-derived growth factor-AA and platelet-derived growth factor-BB was greater in the conditioned media collected from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell than from normal pulmonary arterial endothelial cell. Furthermore, incubation of idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell with conditioned culture media from normal pulmonary arterial endothelial cell induced more platelet-derived growth factor receptor α activation than in normal pulmonary arterial smooth muscle cell. Accordingly, the conditioned media from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell resulted in more pulmonary arterial smooth muscle cell proliferation than the media from normal pulmonary arterial endothelial cell. These data indicate that (a) the expression and activity of platelet-derived growth factor receptor are increased in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell compared to normal pulmonary arterial smooth muscle cell, and (b) pulmonary arterial endothelial cell from idiopathic pulmonary arterial hypertension patients secretes higher level of platelet-derived growth factor than pulmonary arterial endothelial cell from normal subjects. The enhanced secretion (and production) of platelet-derived growth factor from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell and upregulated platelet-derived growth factor receptor expression (and function) in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell may contribute to enhancing platelet-derived growth factor/platelet-derived growth factor receptor-associated pulmonary vascular remodeling in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Kang Wu
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- State Key Laboratory of Respiratory
Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
| | - Haiyang Tang
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- State Key Laboratory of Respiratory
Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
| | - Ruizhu Lin
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Department of Genetics and
Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical
University, Guangzhou, China
| | - Shane G. Carr
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
| | - Ziyi Wang
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- State Key Laboratory of Respiratory
Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Aleksandra Babicheva
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Ramon J. Ayon
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Department of Molecular Physiology and
Biological Physics, University of Virginia, Charlottesville, USA
| | - Pritesh P. Jain
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Mingmei Xiong
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
- Department of Critical Medicine, The
Third Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
| | - Marisela Rodriguez
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Shamin Rahimi
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Francesca Balistrieri
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Shayan Rahimi
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University
of California, San Diego, La Jolla, USA
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Ankit A. Desai
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Department of Medicine, Indiana
University, Indinappolis, IN, USA
| | - Joe G.N. Garcia
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
| | - John Y.-J. Shyy
- Division of Cardiovascular Medicine,
University of California, San Diego, La Jolla, USA
| | | | - Jian Wang
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- State Key Laboratory of Respiratory
Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Ayako Makino
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Endocrinology
and Metabolism, Department of Medicine, University of California, San Diego, La
Jolla, USA
| | - Jason X.-J. Yuan
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| |
Collapse
|
13
|
Chen Y, Su X, Qin Q, Yu Y, Jia M, Zhang H, Li H, Pei L. New insights into phenotypic switching of VSMCs induced by hyperhomocysteinemia: Role of endothelin-1 signaling. Biomed Pharmacother 2020; 123:109758. [DOI: 10.1016/j.biopha.2019.109758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
|
14
|
Wong D, Turner AW, Miller CL. Genetic Insights Into Smooth Muscle Cell Contributions to Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2020; 39:1006-1017. [PMID: 31043074 DOI: 10.1161/atvbaha.119.312141] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coronary artery disease is a complex cardiovascular disease involving an interplay of genetic and environmental influences over a lifetime. Although considerable progress has been made in understanding lifestyle risk factors, genetic factors identified from genome-wide association studies may capture additional hidden risk undetected by traditional clinical tests. These genetic discoveries have highlighted many candidate genes and pathways dysregulated in the vessel wall, including those involving smooth muscle cell phenotypic modulation and injury responses. Here, we summarize experimental evidence for a few genome-wide significant loci supporting their roles in smooth muscle cell biology and disease. We also discuss molecular quantitative trait locus mapping as a powerful discovery and fine-mapping approach applied to smooth muscle cell and coronary artery disease-relevant tissues. We emphasize the critical need for alternative genetic strategies, including cis/trans-regulatory network analysis, genome editing, and perturbations, as well as single-cell sequencing in smooth muscle cell tissues and model organisms, under both normal and disease states. By integrating multiple experimental and analytical modalities, these multidimensional datasets should improve the interpretation of coronary artery disease genome-wide association studies and molecular quantitative trait locus signals and inform candidate targets for therapeutic intervention or risk prediction.
Collapse
Affiliation(s)
- Doris Wong
- From the Center for Public Health Genomics (D.W., A.W.T., C.L.M.), University of Virginia, Charlottesville.,Department of Biochemistry and Molecular Genetics (D.W., C.L.M.), University of Virginia, Charlottesville
| | - Adam W Turner
- From the Center for Public Health Genomics (D.W., A.W.T., C.L.M.), University of Virginia, Charlottesville
| | - Clint L Miller
- From the Center for Public Health Genomics (D.W., A.W.T., C.L.M.), University of Virginia, Charlottesville.,Department of Biochemistry and Molecular Genetics (D.W., C.L.M.), University of Virginia, Charlottesville.,Department of Biomedical Engineering (C.L.M.), University of Virginia, Charlottesville.,Department of Public Health Sciences (C.L.M.), University of Virginia, Charlottesville
| |
Collapse
|
15
|
Long Noncoding RNA HOXA-AS3 Integrates NF-κB Signaling To Regulate Endothelium Inflammation. Mol Cell Biol 2019; 39:MCB.00139-19. [PMID: 31285272 DOI: 10.1128/mcb.00139-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
The long noncoding RNA HOXA-AS3 has recently been reported to act as a critical regulator in inflammation-linked lung adenocarcinoma. However, the roles of HOXA-AS3 in endothelium inflammation and related vascular disorders remain poorly defined. In the current study, we identified HOXA-AS3 to be a critical activator to promote NF-κB-mediated endothelium inflammation. HOXA-AS3, a chromatin-associated regulator which colocalizes with NF-κB at specific gene promoters, was found to interact with NF-κB and positively regulate its activity through control of the expression of the NF-κB inhibitor protein IκBα and the acetylation status at the K310 site of p65. More importantly, clinicopathological analysis showed that HOXA-AS3 expression has a significant positive correlation with atherosclerosis. Thus, we conclude that HOXA-AS3 may serve as a crucial biomarker for the clinical diagnosis of atherosclerosis, as well as a promising therapeutic target for the treatment of multiple inflammatory vascular diseases. In addition, this study suggests the functional importance of HOXA-AS3 in the regulation of inflammatory disorders.
Collapse
|
16
|
Allahverdian S, Chaabane C, Boukais K, Francis GA, Bochaton-Piallat ML. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc Res 2019; 114:540-550. [PMID: 29385543 DOI: 10.1093/cvr/cvy022] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Current knowledge suggests that intimal smooth muscle cells (SMCs) in native atherosclerotic plaque derive mainly from the medial arterial layer. During this process, SMCs undergo complex structural and functional changes giving rise to a broad spectrum of phenotypes. Classically, intimal SMCs are described as dedifferentiated/synthetic SMCs, a phenotype characterized by reduced expression of contractile proteins. Intimal SMCs are considered to have a beneficial role by contributing to the fibrous cap and thereby stabilizing atherosclerotic plaque. However, intimal SMCs can lose their properties to such an extent that they become hard to identify, contribute significantly to the foam cell population, and acquire inflammatory-like cell features. This review highlights mechanisms of SMC plasticity in different stages of native atherosclerotic plaque formation, their potential for monoclonal or oligoclonal expansion, as well as recent findings demonstrating the underestimated deleterious role of SMCs in this disease.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Chiraz Chaabane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet-1, 1211 Geneva 4, Switzerland
| | - Kamel Boukais
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Gordon A Francis
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Marie-Luce Bochaton-Piallat
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet-1, 1211 Geneva 4, Switzerland
| |
Collapse
|
17
|
Tang Y, Huang Q, Liu C, Ou H, Huang D, Peng F, Liu C, Mo Z. p22phox promotes Ang-II-induced vascular smooth muscle cell phenotypic switch by regulating KLF4 expression. Biochem Biophys Res Commun 2019; 514:280-286. [PMID: 31030942 DOI: 10.1016/j.bbrc.2019.04.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
NADPH oxidase (Nox) is the main source of reactive oxygen species in vascular diseases, which have been implicated in promoting VSMCs phenotypic switch. P22phox, the indispensable component of the complex Nox, is required for their activity and stability. Krüppel-like factor 4 (KLF4) is an important transcriptional regulator of VSMCs phenotypic switch. Both KLF4 and p22phox are involved in the proliferation, migration and differentiation of VSMC. This study aims to determine whether and how p22phox regulates KLF4 expression in phenotypic switching of VSMCs. In cultured primary rat VSMCs, we noticed that the expression of P22phox was significantly increased in combination with VSMCs phenotypic switch and up-regulated KLF4 expression in Ang-II-treated cells. Ang-II-induced VSMC dedifferentiation, proliferation, migration, KLF4 expression, H2O2 production and the phosphorylation of AKT, ERK1/2 were all inhibited by knockdown of P22phox. Furthermore, H2O2 treatment effectively enhanced the phosphorylation of AKT, ERK1/2 and the expression of KLF4, whereas LY294002 (a specific inhibitor of PI3K), U0126 (a specific inhibitor of ERK1/2) significantly attenuated the H2O2-induced up-regulation of KLF4. In conclusion, these results demonstrated that p22phox promotes Ang-II-induced VSMC phenotypic switch via the H2O2-ERK1/2/AKT-KLF4 signaling pathway.
Collapse
Affiliation(s)
- Yixin Tang
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qin Huang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Chaoyan Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hongji Ou
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Dan Huang
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Fengling Peng
- Department of Neurology, First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Changhui Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Zhongcheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
18
|
Park S, Lee CJ, Jhee JH, Yun HR, Kim H, Jung SY, Kee YK, Yoon CY, Park JT, Kim HC, Han SH, Kang SW, Park S, Yoo TH. Extracellular Fluid Excess Is Significantly Associated With Coronary Artery Calcification in Patients With Chronic Kidney Disease. J Am Heart Assoc 2018; 7:e008935. [PMID: 29960990 PMCID: PMC6064889 DOI: 10.1161/jaha.118.008935] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/21/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Extracellular fluid (ECF) excess is an independent predictor of cardiovascular morbidity in patients undergoing dialysis. This study aimed to investigate the relationship between ECF status, which is affected by renal function, and coronary artery calcification (CAC), which is a marker of cardiovascular disease, in patients with chronic kidney disease (CKD). METHODS AND RESULTS A total of 1741 patients at all stages of pre-dialysis CKD from the prospective observational cohort of CMERC-HI (Cardiovascular and Metabolic Disease Etiology Research Center-High Risk) were analyzed for the association between ECF status and CAC. ECF status was defined as extracellular water-to-total body water ratio (ECW/TBW) measured using bioelectrical impedance analysis. ECF excess was defined as ECW/TBW ≥0.390 or ≥0.400 depending on its severity. To define CAC, Agatston coronary artery calcium scores were measured. A total coronary artery calcium score of ≥400 was defined as CAC. The CKD stages were defined according to estimated glomerular filtration rate calculated using the CKD Epidemiology Collaboration equation. ECW/TBW and the proportion of ECF excess increased with progressing CKD stages. Multivariable logistic regression analyses showed that ECW/TBW was independently associated with CAC (per 0.01 increase of ECW/TBW, odds ratio 1.168, 95% confidence interval, 1.079-1.264, P<0.001). The adjusted R2 for predicting higher coronary artery calcium scores and CAC significantly improved after ECW/TBW was added to conventional factors. This association was further confirmed by net reclassification and integrated discriminant improvements, sensitivity analysis, and subgroup analysis. CONCLUSIONS ECF status is independently associated with a high risk of CAC in patients with CKD. STUDY REGISTRATION URL: https://www.clinicaltrials.gov/. Unique identifier: NCT02003781.
Collapse
Affiliation(s)
- Seohyun Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Chan Joo Lee
- Division of Cardiology, Cardiovascular Hospital, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hyun Jhee
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Hae-Ryong Yun
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Hyoungnae Kim
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Su-Young Jung
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Youn Kyung Kee
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Chang-Yun Yoon
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Hyeon Chang Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Sungha Park
- Division of Cardiology, Cardiovascular Hospital, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Folestad E, Kunath A, Wågsäter D. PDGF-C and PDGF-D signaling in vascular diseases and animal models. Mol Aspects Med 2018; 62:1-11. [PMID: 29410092 DOI: 10.1016/j.mam.2018.01.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/14/2017] [Accepted: 01/22/2018] [Indexed: 01/06/2023]
Abstract
Members of the platelet-derived growth factor (PDGF) family are well known to be involved in different pathological conditions. The cellular and molecular mechanisms induced by the PDGF signaling have been well studied. Nevertheless, there is much more to discover about their functions and some important questions to be answered. This review summarizes the known roles of two of the PDGFs, PDGF-C and PDGF-D, in vascular diseases. There are clear implications for these growth factors in several vascular diseases, such as atherosclerosis and stroke. The PDGF receptors are broadly expressed in the cardiovascular system in cells such as fibroblasts, smooth muscle cells and pericytes. Altered expression of the receptors and the ligands have been found in various cardiovascular diseases and current studies have shown important implications of PDGF-C and PDGF-D signaling in fibrosis, neovascularization, atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Erika Folestad
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anne Kunath
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Dick Wågsäter
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
20
|
Dumont CM, Piselli J, Temple S, Dai G, Thompson DM. Endothelial Cells Exposed to Fluid Shear Stress Support Diffusion Based Maturation of Adult Neural Progenitor Cells. Cell Mol Bioeng 2017; 11:117-130. [PMID: 31719881 DOI: 10.1007/s12195-017-0516-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/18/2017] [Indexed: 12/21/2022] Open
Abstract
Introduction The neural stem cell (NSC) niche is a highly complex cellular and biochemical milieu supporting proliferating NSCs and neural progenitor cells (NPCs) with close apposition to the vasculature, primarily comprised of endothelial cells (ECs). Current in vitro models of the niche incorporate EC-derived factors, but do not reflect the physiologically relevant hemodynamic state of the ECs or the spatial resolution observed between cells within the niche. Methods In this work, we developed a novel in vitro model of the niche that (1) incorporates ECs cultured with fluid shear stress and (2) fosters paracrine cytokine gradients between ECs and NSCs in a spatiotemporal configuration mimicking the cytoarchitecture of the subventricular niche. A modified cone and plate viscometer was used to generate a shear stress of 10 dynes cm-2 for ECs cultured on a membrane, while statically cultured NPCs are 10 or 1000 μm below the ECs. Results NPCs cultured within 10 μm of dynamic ECs exhibit increased PSA-NCAM+ and OLIG2+ cells compared to progenitors in all other culture regimes and the hemodynamic EC phenotype results in distinct progeny phenotypes. This co-culture regime yields greater release of pro-neurogenic factors, suggesting a potential mechanism for the observed progenitor maturation. Conclusions Based on these results, models incorporating ECs exposed to shear stress allow for paracrine signaling gradients and regulate NPC lineage progression with appropriate niche spatial resolution occurring at 10 μm. This model could be used to evaluate cellular or pharmacological interactions within the healthy, diseased, or aged brain.
Collapse
Affiliation(s)
- C M Dumont
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - J Piselli
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - S Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144 USA
| | - G Dai
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - D M Thompson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| |
Collapse
|
21
|
Le Bras A, Yu B, Issa Bhaloo S, Hong X, Zhang Z, Hu Y, Xu Q. Adventitial Sca1+ Cells Transduced With ETV2 Are Committed to the Endothelial Fate and Improve Vascular Remodeling After Injury. Arterioscler Thromb Vasc Biol 2017; 38:232-244. [PMID: 29191922 PMCID: PMC5757665 DOI: 10.1161/atvbaha.117.309853] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 11/15/2017] [Indexed: 01/06/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Vascular adventitial Sca1+ (stem cell antigen-1) progenitor cells preferentially differentiate into smooth muscle cells, which contribute to vascular remodeling and neointima formation in vessel grafts. Therefore, directing the differentiation of Sca1+ cells toward the endothelial lineage could represent a new therapeutic strategy against vascular disease. Approach and Results— We thus developed a fast, reproducible protocol based on the single-gene transfer of ETV2 (ETS variant 2) to differentiate Sca1+ cells toward the endothelial fate and studied the effect of cell conversion on vascular hyperplasia in a model of endothelial injury. After ETV2 transduction, Sca1+ adventitial cells presented a significant increase in the expression of early endothelial cell genes, including VE-cadherin, Flk-1, and Tie2 at the mRNA and protein levels. ETV2 overexpression also induced the downregulation of a panel of smooth muscle cell and mesenchymal genes through epigenetic regulations, by decreasing the expression of DNA-modifying enzymes ten-eleven translocation dioxygenases. Adventitial Sca1+ cells grafted on the adventitial side of wire-injured femoral arteries increased vascular wall hyperplasia compared with control arteries with no grafted cells. Arteries seeded with ETV2-transduced cells, on the contrary, showed reduced hyperplasia compared with control. Conclusions— These data give evidence that the genetic manipulation of vascular progenitors is a promising approach to improve vascular function after endothelial injury.
Collapse
Affiliation(s)
- Alexandra Le Bras
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Baoqi Yu
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Shirin Issa Bhaloo
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Xuechong Hong
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Zhongyi Zhang
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Yanhua Hu
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Qingbo Xu
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom.
| |
Collapse
|
22
|
Platelet-derived growth factor-C and -D in the cardiovascular system and diseases. Mol Aspects Med 2017; 62:12-21. [PMID: 28965749 DOI: 10.1016/j.mam.2017.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022]
Abstract
The cardiovascular system is among the first organs formed during development and is pivotal for the formation and function of the rest of the organs and tissues. Therefore, the function and homeostasis of the cardiovascular system are finely regulated by many important molecules. Extensive studies have shown that platelet-derived growth factors (PDGFs) and their receptors are critical regulators of the cardiovascular system. Even though PDGF-C and PDGF-D are relatively new members of the PDGF family, their critical roles in the cardiovascular system as angiogenic and survival factors have been amply demonstrated. Understanding the functions of PDGF-C and PDGF-D and the signaling pathways involved may provide novel insights into both basic biomedical research and new therapeutic possibilities for the treatment of cardiovascular diseases.
Collapse
|
23
|
Tian DY, Jin XR, Zeng X, Wang Y. Notch Signaling in Endothelial Cells: Is It the Therapeutic Target for Vascular Neointimal Hyperplasia? Int J Mol Sci 2017; 18:ijms18081615. [PMID: 28757591 PMCID: PMC5578007 DOI: 10.3390/ijms18081615] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 01/09/2023] Open
Abstract
Blood vessels respond to injury through a healing process that includes neointimal hyperplasia. The vascular endothelium is a monolayer of cells that separates the outer vascular wall from the inner circulating blood. The disruption and exposure of endothelial cells (ECs) to subintimal components initiate the neointimal formation. ECs not only act as a highly selective barrier to prevent early pathological changes of neointimal hyperplasia, but also synthesize and release molecules to maintain vascular homeostasis. After vascular injury, ECs exhibit varied responses, including proliferation, regeneration, apoptosis, phenotypic switching, interacting with other cells by direct contact or secreted molecules and the change of barrier function. This brief review presents the functional role of the evolutionarily-conserved Notch pathway in neointimal hyperplasia, notably by regulating endothelial cell functions (proliferation, regeneration, apoptosis, differentiation, cell-cell interaction). Understanding endothelial cell biology should help us define methods to prompt cell proliferation, prevent cell apoptosis and dysfunction, block neointimal hyperplasia and vessel narrowing.
Collapse
Affiliation(s)
- Ding-Yuan Tian
- Trainee Brigade, Third Military Medical University, Chongqing 400038, China.
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China.
| | - Xu-Rui Jin
- Trainee Brigade, Third Military Medical University, Chongqing 400038, China.
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China.
| | - Xi Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China.
| | - Yun Wang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
24
|
Franzoni M, Walsh MT. Towards the Identification of Hemodynamic Parameters Involved in Arteriovenous Fistula Maturation and Failure: A Review. Cardiovasc Eng Technol 2017; 8:342-356. [PMID: 28744783 DOI: 10.1007/s13239-017-0322-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
Abstract
Native arteriovenous fistulas have a high failure rate mainly due to the lack of maturation and uncontrolled neo-intimal hyperplasia development. Newly established hemodynamics is thought to be central in driving the fistula fate, after surgical creation. To investigate the effects of realistic wall shear stress stimuli on endothelial cells, an in vitro approach is necessary in order to reduce the complexity of the in vivo environment. After a systematic review, realistic WSS waveforms were selected and analysed in terms of magnitude, temporal gradient, presence of reversing phases (oscillatory shear index, OSI) and frequency content (hemodynamics index, HI). The effects induced by these waveforms in cellular cultures were also considered, together with the materials and methods used to cultivate and expose cells to WSS stimuli. The results show a wide heterogeneity of experimental approaches and WSS waveform features that prevent a complete understanding of the mechanisms that regulate mechanotransduction. Furthermore, the hemodynamics derived from the carotid bifurcation is the most investigated (in vitro), while the AVF scenario remains poorly addressed. In conclusion, standardisation of the materials and methods employed, as well as the decomposition of realistic WSS profiles, are required for a better understanding of the hemodynamic effects on AVF outcomes. This standardisation may also lead to a new classification of WSS features according to the risk associated with vascular dysfunction.
Collapse
Affiliation(s)
- Marco Franzoni
- Centre for Applied Biomedical Engineering Research, Health Research Institute, Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland
| | - Michael T Walsh
- Centre for Applied Biomedical Engineering Research, Health Research Institute, Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland.
| |
Collapse
|
25
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Effects of shear stress on endothelial cells: go with the flow. Acta Physiol (Oxf) 2017; 219:382-408. [PMID: 27246807 DOI: 10.1111/apha.12725] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/17/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022]
Abstract
Haemodynamic forces influence the functional properties of vascular endothelium. Endothelial cells (ECs) have a variety of receptors, which sense flow and transmit mechanical signals through mechanosensitive signalling pathways to recipient molecules that lead to phenotypic and functional changes. Arterial architecture varies greatly exhibiting bifurcations, branch points and curved regions, which are exposed to various flow patterns. Clinical studies showed that atherosclerotic plaques develop preferentially at arterial branches and curvatures, that is in the regions exposed to disturbed flow and shear stress. In the atheroprone regions, the endothelium has a proinflammatory phenotype associated with low nitric oxide production, reduced barrier function and increased proadhesive, procoagulant and proproliferative properties. Atheroresistant regions are exposed to laminar flow and high shear stress that induce prosurvival antioxidant signals and maintain the quiescent phenotype in ECs. Indeed, various flow patterns contribute to phenotypic and functional heterogeneity of arterial endothelium whose response to proatherogenic stimuli is differentiated. This may explain the preferential development of endothelial dysfunction in arterial sites with disturbed flow.
Collapse
Affiliation(s)
- D. A. Chistiakov
- Department of Medical Nanobiotechnology; Pirogov Russian State Medical University; Moscow Russia
| | - A. N. Orekhov
- Institute of General Pathology and Pathophysiology; Russian Academy of Medical Sciences; Moscow Russia
- Institute for Atherosclerosis Research; Skolkovo Innovative Center; Moscow Russia
- Department of Biophysics; Biological Faculty; Moscow State University; Moscow Russia
| | - Y. V. Bobryshev
- Institute of General Pathology and Pathophysiology; Russian Academy of Medical Sciences; Moscow Russia
- Faculty of Medicine and St Vincent's Centre for Applied Medical Research; University of New South Wales; Sydney NSW Australia
- School of Medicine; University of Western Sydney; Campbelltown NSW Australia
| |
Collapse
|
26
|
Sistare FD, Mattes WB, LeCluyse EL. The Promise of New Technologies to Reduce, Refine, or Replace Animal Use while Reducing Risks of Drug Induced Liver Injury in Pharmaceutical Development. ILAR J 2017; 57:186-211. [DOI: 10.1093/ilar/ilw025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/25/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022] Open
|
27
|
Gladh H, Folestad EB, Muhl L, Ehnman M, Tannenberg P, Lawrence AL, Betsholtz C, Eriksson U. Mice Lacking Platelet-Derived Growth Factor D Display a Mild Vascular Phenotype. PLoS One 2016; 11:e0152276. [PMID: 27032083 PMCID: PMC4816573 DOI: 10.1371/journal.pone.0152276] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/12/2016] [Indexed: 12/28/2022] Open
Abstract
Platelet-derived growth factor D (PDGF-D) is the most recently discovered member of the PDGF family. PDGF-D signals through PDGF receptor β, but its biological role remains largely unknown. In contrast to other members of the PDGF family of growth factors, which have been extensively investigated using different knockout approaches in mice, PDGF-D has until now not been characterized by gene inactivation in mice. Here, we present the phenotype of a constitutive Pdgfd knockout mouse model (Pdgfd-/-), carrying a LacZ reporter used to visualize Pdgfd promoter activity. Inactivation of the Pdgfd gene resulted in a mild phenotype in C57BL/6 mice, and the offspring was viable, fertile and generally in good health. We show that Pdgfd reporter gene activity was consistently localized to vascular structures in both postnatal and adult tissues. The expression was predominantly arterial, often localizing to vascular bifurcations. Endothelial cells appeared to be the dominating source for Pdgfd, but reporter gene activity was occasionally also found in subpopulations of mural cells. Tissue-specific analyses of vascular structures revealed that NG2-expressing pericytes of the cardiac vasculature were disorganized in Pdgfd-/- mice. Furthermore, Pdgfd-/- mice also had a slightly elevated blood pressure. In summary, the vascular expression pattern together with morphological changes in NG2-expressing cells, and the increase in blood pressure, support a function for PDGF-D in regulating systemic arterial blood pressure, and suggests a role in maintaining vascular homeostasis.
Collapse
Affiliation(s)
- Hanna Gladh
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Erika Bergsten Folestad
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (EF); (UE)
| | - Lars Muhl
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Ehnman
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Philip Tannenberg
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Division of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Anna-Lisa Lawrence
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christer Betsholtz
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (EF); (UE)
| |
Collapse
|
28
|
Kapustin AN, Shanahan CM. Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation. J Physiol 2016; 594:2905-14. [PMID: 26864864 DOI: 10.1113/jp271340] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/25/2015] [Indexed: 12/26/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) phenotypic conversion from a contractile to 'synthetic' state contributes to vascular pathologies including restenosis, atherosclerosis and vascular calcification. We have recently found that the secretion of exosomes is a feature of 'synthetic' VSMCs and that exosomes are novel players in vascular repair processes as well as pathological vascular thrombosis and calcification. Pro-inflammatory cytokines and growth factors as well as mineral imbalance stimulate exosome secretion by VSMCs, most likely by the activation of sphingomyelin phosphodiesterase 3 (SMPD3) and cytoskeletal remodelling. Calcium stress induces dramatic changes in VSMC exosome composition and accumulation of phosphatidylserine (PS), annexin A6 and matrix metalloproteinase-2, which converts exosomes into a nidus for calcification. In addition, by presenting PS, VSMC exosomes can also provide the catalytic surface for the activation of coagulation factors. Recent data showing that VSMC exosomes are loaded with proteins and miRNA regulating cell adhesion and migration highlight VSMC exosomes as potentially important communication messengers in vascular repair. Thus, the identification of signalling pathways regulating VSMC exosome secretion, including activation of SMPD3 and cytoskeletal rearrangements, opens up novel avenues for a deeper understanding of vascular remodelling processes.
Collapse
Affiliation(s)
- A N Kapustin
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| | - C M Shanahan
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| |
Collapse
|
29
|
Shi N, Chen SY. Smooth Muscle Cell Differentiation: Model Systems, Regulatory Mechanisms, and Vascular Diseases. J Cell Physiol 2015; 231:777-87. [DOI: 10.1002/jcp.25208] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Ning Shi
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| | - Shi-You Chen
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| |
Collapse
|
30
|
Han J, Li H, Wu D, Zeng N, Wu Z, Cai L, Chen W, Zuo W, Zhang Y. A study on the association of rs7950273 polymorphism in the PDGFD with ischaemic stroke in the Chinese Han population. Ann Hum Biol 2015; 43:78-80. [DOI: 10.3109/03014460.2015.1016552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Zhu J, Geisler M. Keeping it all together: auxin-actin crosstalk in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4983-98. [PMID: 26085676 DOI: 10.1093/jxb/erv308] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Polar auxin transport and the action of the actin cytoskeleton are tightly interconnected, which is documented by the finding that auxin transporters reach their final destination by active movement of secretory vesicles along F-actin tracks. Moreover, auxin transporter polarity and flexibility is thought to depend on transporter cycling that requires endocytosis and exocytosis of vesicles. In this context, we have reviewed the current literature on an involvement of the actin cytoskeleton in polar auxin transport and identify known similarities and differences in its structure, function and dynamics in comparison to non-plant organisms. By describing how auxin modulates actin expression and actin organization and how actin and its stability affects auxin-transporter endocytosis and recycling, we discuss the current knowledge on regulatory auxin-actin feedback loops. We focus on known effects of auxin and of auxin transport inhibitors on the stability and organization of actin and examine the functionality of auxin and/or auxin transport inhibitor-binding proteins with respect to their suitability to integrate auxin/auxin transport inhibitor action. Finally, we indicate current difficulties in the interpretation of organ, time and concentration-dependent auxin/auxin transport inhibitor treatments and formulate simple future experimental guidelines.
Collapse
Affiliation(s)
- Jinsheng Zhu
- University of Fribourg, Department of Biology-Plant Biology, CH-1700 Fribourg, Switzerland
| | - Markus Geisler
- University of Fribourg, Department of Biology-Plant Biology, CH-1700 Fribourg, Switzerland
| |
Collapse
|
32
|
Ha JM, Yun SJ, Kim YW, Jin SY, Lee HS, Song SH, Shin HK, Bae SS. Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammalian target of rapamycin complex 1. Biochem Biophys Res Commun 2015; 464:57-62. [DOI: 10.1016/j.bbrc.2015.05.097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
|
33
|
Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular biology of atherosclerosis. ACTA ACUST UNITED AC 2015; 209:13-22. [PMID: 25869663 PMCID: PMC4395483 DOI: 10.1083/jcb.201412052] [Citation(s) in RCA: 742] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Atherosclerosis occurs in the subendothelial space (intima) of medium-sized arteries at regions of disturbed blood flow and is triggered by an interplay between endothelial dysfunction and subendothelial lipoprotein retention. Over time, this process stimulates a nonresolving inflammatory response that can cause intimal destruction, arterial thrombosis, and end-organ ischemia. Recent advances highlight important cell biological atherogenic processes, including mechanotransduction and inflammatory processes in endothelial cells, origins and contributions of lesional macrophages, and origins and phenotypic switching of lesional smooth muscle cells. These advances illustrate how in-depth mechanistic knowledge of the cellular pathobiology of atherosclerosis can lead to new ideas for therapy.
Collapse
Affiliation(s)
- Ira Tabas
- Department of Medicine, Department of Pathology and Cell Biology, and Department of Physiology, Columbia University Medical Center, New York, NY 10032 Department of Medicine, Department of Pathology and Cell Biology, and Department of Physiology, Columbia University Medical Center, New York, NY 10032 Department of Medicine, Department of Pathology and Cell Biology, and Department of Physiology, Columbia University Medical Center, New York, NY 10032
| | - Guillermo García-Cardeña
- Program in Human Biology and Translational Medicine, Harvard Medical School, Boston, MA 02115 Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
34
|
KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 2015; 21:628-37. [PMID: 25985364 PMCID: PMC4552085 DOI: 10.1038/nm.3866] [Citation(s) in RCA: 884] [Impact Index Per Article: 88.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/22/2015] [Indexed: 12/18/2022]
Abstract
Previous studies investigating the role of smooth muscle cells (SMCs) and macrophages in the pathogenesis of atherosclerosis have provided controversial results owing to the use of unreliable methods for clearly identifying each of these cell types. Here, using Myh11-CreER(T2) ROSA floxed STOP eYFP Apoe(-/-) mice to perform SMC lineage tracing, we find that traditional methods for detecting SMCs based on immunostaining for SMC markers fail to detect >80% of SMC-derived cells within advanced atherosclerotic lesions. These unidentified SMC-derived cells exhibit phenotypes of other cell lineages, including macrophages and mesenchymal stem cells (MSCs). SMC-specific conditional knockout of Krüppel-like factor 4 (Klf4) resulted in reduced numbers of SMC-derived MSC- and macrophage-like cells, a marked reduction in lesion size, and increases in multiple indices of plaque stability, including an increase in fibrous cap thickness as compared to wild-type controls. On the basis of in vivo KLF4 chromatin immunoprecipitation-sequencing (ChIP-seq) analyses and studies of cholesterol-treated cultured SMCs, we identified >800 KLF4 target genes, including many that regulate pro-inflammatory responses of SMCs. Our findings indicate that the contribution of SMCs to atherosclerotic plaques has been greatly underestimated, and that KLF4-dependent transitions in SMC phenotype are critical in lesion pathogenesis.
Collapse
|
35
|
Liu L, Zhang J, Zhu Y, Xiao X, Peng X, Yang G, Zang J, Liu S, Li T. Beneficial effects of platelet-derived growth factor on hemorrhagic shock in rats and the underlying mechanisms. Am J Physiol Heart Circ Physiol 2014; 307:H1277-87. [PMID: 25172895 DOI: 10.1152/ajpheart.00006.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Studies have shown that local application of platelet-derived growth factor (PDGF) can be used for the treatment of acute and chronic wounds. We investigated if systemic application of PDGF has a protective effect on acute hemorrhagic shock in rats in the present study. Using hemorrhagic shock rats and isolated superior mesenteric arteries, the effects of PDGF-BB on hemodynamics, animal survival, and vascular reactivity as well as the roles of the gap junction proteins connexin (Cx)40 and Cx43, PKC, and Rho kinase were observed. PDGF-BB (1–15 μg/kg iv) significantly improved the hemodynamics and blood perfusion to vital organs (liver and kidney) as well as vascular reactivity and improved the animal survival in hemorrhagic shock rats. PDGF recovering shock-induced vascular hyporeactivity depended on the integrity of the endothelium and myoendothelial gap junction. Cx43 antisense oligodeoxynucleotide abolished these improving effects of PDGF, whereas Cx40 oligodeoxynucleotide did not. Further study indicated that PDGF increased the activity of Rho kinase and PKC as well as vascular Ca2+ sensitivity, whereas it did not interfere with the intracellular Ca2+ concentration in hypoxia-treated vascular smooth muscle cells. In conclusion, systemic application of PDGF-BB may exert beneficial effects on hemorrhagic shock, which are closely related to the improvement of vascular reactivity and hemodynamics. The improvement of PDGF-BB in vascular reactivity is vascular endothelium and myoendothelial gap junction dependent. Cx43, Rho kinase, and PKC play very important role in this process. These findings suggest that PDGF may be a potential measure to treat acute clinical critical diseases such as severe trauma, shock, and sepsis.
Collapse
MESH Headings
- Angiogenesis Inducing Agents/pharmacology
- Angiogenesis Inducing Agents/therapeutic use
- Animals
- Becaplermin
- Calcium Signaling
- Connexin 43/genetics
- Connexin 43/metabolism
- Connexins/genetics
- Connexins/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gap Junctions/drug effects
- Gap Junctions/metabolism
- Gap Junctions/physiology
- Hemodynamics/drug effects
- Liver Circulation
- Mesenteric Artery, Superior/cytology
- Mesenteric Artery, Superior/metabolism
- Mesenteric Artery, Superior/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Protein Kinase C/metabolism
- Proto-Oncogene Proteins c-sis/pharmacology
- Proto-Oncogene Proteins c-sis/therapeutic use
- Rats
- Rats, Wistar
- Renal Circulation
- Shock, Hemorrhagic/drug therapy
- Shock, Hemorrhagic/metabolism
- Shock, Hemorrhagic/physiopathology
- rho-Associated Kinases/metabolism
- Gap Junction alpha-5 Protein
Collapse
|
36
|
Liu R, Leslie KL, Martin KA. Epigenetic regulation of smooth muscle cell plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:448-53. [PMID: 24937434 DOI: 10.1016/j.bbagrm.2014.06.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/08/2014] [Indexed: 01/03/2023]
Abstract
Smooth muscle cells (SMC) are the major cell type in blood vessels. Their principal function in the body is to regulate blood flow and pressure through vessel wall contraction and relaxation. Unlike many other mature cell types in the adult body, SMC do not terminally differentiate but retain a remarkable plasticity. They have the unique ability to toggle between a differentiated and quiescent "contractile" state and a highly proliferative and migratory "synthetic" phenotype in response to environmental stresses. While there have been major advances in our understanding of SMC plasticity through the identification of growth factors and signals that can influence the SMC phenotype, how these regulate SMC plasticity remains unknown. To date, several key transcription factors and regulatory cis elements have been identified that play a role in modulating SMC state. The frontier in understanding the molecular mechanisms underlying SMC plasticity has now advanced to the level of epigenetics. This review will summarize the epigenetic regulation of SMC, highlighting the role of histone modification, DNA methylation, and our most recent identification of a DNA demethylation pathway in SMC that is pivotal in the regulation of the SMC phenotypic state. Many disorders are associated with smooth muscle dysfunction, including atherosclerosis, the major underlying cause of stroke and coronary heart disease, as well as transplant vasculopathy, aneurysm, asthma, hypertension, and cancer. An increased understanding of the major regulators of SMC plasticity will lead to the identification of novel target molecules that may, in turn, lead to novel drug discoveries for the treatment of these diseases. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.
Collapse
Affiliation(s)
- Renjing Liu
- Agnes Ginges Laboratory for Diseases of the Aorta, Centre for the Endothelium, Vascular Biology Program, Centenary Institute, Sydney, Australia; Sydney Medical School, University of Sydney, Australia
| | - Kristen L Leslie
- Departments of Internal Medicine and Pharmacology, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511, USA
| | - Kathleen A Martin
- Departments of Internal Medicine and Pharmacology, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
37
|
Shi X, DiRenzo D, Guo LW, Franco SR, Wang B, Seedial S, Kent KC. TGF-β/Smad3 stimulates stem cell/developmental gene expression and vascular smooth muscle cell de-differentiation. PLoS One 2014; 9:e93995. [PMID: 24718260 PMCID: PMC3981734 DOI: 10.1371/journal.pone.0093995] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/11/2014] [Indexed: 01/09/2023] Open
Abstract
Atherosclerotic-associated diseases are the leading cause of death in the United States. Despite recent progress, interventional treatments for atherosclerosis can be complicated by restenosis resulting from neo-intimal hyperplasia. We have previously demonstrated that TGF-β and its downstream signaling protein Smad3∶1) are up-regulated following vascular injury, 2) together drive smooth muscle cell (SMC) proliferation and migration and 3) enhance the development of intimal hyperplasia. In order to determine a mechanism through which TGF-β/Smad3 promote these effects, Affymetrix gene expression arrays were performed on primary rat SMCs infected with Smad3 and stimulated with TGF-β or infected with GFP alone. More than 200 genes were differentially expressed (>2.0 fold change, p<0.05) in TGF-β/Smad3 stimulated SMCs. We then performed GO term enrichment analysis using the DAVID bioinformatics database and found that TGF-β/Smad3 activated the expression of multiple genes related to either development or cell differentiation, several of which have been shown to be associated with multipotent stem or progenitor cells. Quantitative real-time PCR confirmed up-regulation of several developmental genes including FGF1, NGF, and Wnt11 (by 2.5, 6 and 7 fold, respectively) as well as stem/progenitor cell associated genes CD34 and CXCR4 (by 10 and 45 fold, respectively). In addition, up-regulation of these factors at protein levels were also confirmed by Western blotting, or by immunocytochemistry (performed for CXCR4 and NGF). Finally, TGF-β/Smad3 down regulated transcription of SMC contractile genes as well as protein production of smooth muscle alpha actin, calponin, and smooth muscle myosin heavy chain. These combined results suggest that TGF-β/Smad3 stimulation drives SMCs to a phenotypically altered state of de-differentiation through the up-regulation of developmental related genes.
Collapse
MESH Headings
- Animals
- Aorta
- Cell Dedifferentiation/genetics
- Cell Division/genetics
- Cells, Cultured
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Hyperplasia
- Male
- Muscle Proteins/biosynthesis
- Muscle Proteins/genetics
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Recombinant Fusion Proteins/metabolism
- Smad3 Protein
- Transcription, Genetic/genetics
- Transcriptome
- Transduction, Genetic
- Transforming Growth Factor beta1
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Xudong Shi
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Daniel DiRenzo
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Lian-Wang Guo
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
- * E-mail: (LWG); (KCK)
| | - Sarah R. Franco
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Bowen Wang
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Stephen Seedial
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - K. Craig Kent
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
- * E-mail: (LWG); (KCK)
| |
Collapse
|
38
|
Chettimada S, Ata H, Rawat DK, Gulati S, Kahn AG, Edwards JG, Gupte SA. Contractile protein expression is upregulated by reactive oxygen species in aorta of Goto-Kakizaki rat. Am J Physiol Heart Circ Physiol 2014; 306:H214-24. [PMID: 24213617 PMCID: PMC3920128 DOI: 10.1152/ajpheart.00310.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/28/2013] [Indexed: 01/28/2023]
Abstract
Although it is known that blood vessels undergo remodeling in type 2 diabetes (T2D), the signaling pathways that underlie the structural and functional changes seen in diabetic arteries remain unclear. Our objective was to determine whether the remodeling in type 2 diabetic Goto-Kakizaki (GK) rats is evoked by elevated reactive oxygen species (ROS). Our results show that aortas from GK rats produced greater force (P < 0.05) in response to stimulation with KCl and U46619 than aortas from Wistar rats. Associated with these changes, aortic expression of contractile proteins (measured as an index of remodeling) and the microRNA (miR-145), which act to upregulate transcription of contractile protein genes, was twofold higher (P < 0.05) in GK than Wistar (age-matched control) rats, and there was a corresponding increase in ROS and decrease in nitric oxide signaling. Oral administration of the antioxidant Tempol (1 mmol/l) to Wistar and GK rats reduced (P < 0.05) myocardin and calponin expression. Tempol (1 mmol/l) decreased expression of miR-145 in Wistar and GK rat aorta. To elucidate the mechanism through which ROS increases miR-145, we measured their levels in freshly isolated aorta and cultured aortic smooth muscle cells incubated for 12 h in the presence of H2O2 (300 μmol/l). H2O2 increased expression of miR-145, and there were corresponding nuclear increases in myocardin, a miR-145 target protein. Intriguingly, H2O2-induced expression of miR-145 was decreased by U0126 (10 μmol/l), a MEK1/2 inhibitor, and myocardin was decreased by anti-miR-145 (50 nmol/l) and U0126 (10 μmol/l). Our novel findings demonstrate that ROS evokes vascular wall remodeling and dysfunction by enhancing expression of contractile proteins in T2D.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Aorta/metabolism
- Aorta/pathology
- Butadienes/pharmacology
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Cyclic N-Oxides/pharmacology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myosins/genetics
- Myosins/metabolism
- Nitric Oxide/metabolism
- Nitriles/pharmacology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Potassium Chloride/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Rats
- Rats, Wistar
- Reactive Oxygen Species/metabolism
- Spin Labels
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Up-Regulation
- Vasoconstrictor Agents/pharmacology
- Calponins
Collapse
Affiliation(s)
- Sukrutha Chettimada
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | | | | | | | | | | | | |
Collapse
|
39
|
Qiu J, Zheng Y, Hu J, Liao D, Gregersen H, Deng X, Fan Y, Wang G. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding. J R Soc Interface 2013; 11:20130852. [PMID: 24152813 DOI: 10.1098/rsif.2013.0852] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) have critical functions in vascular diseases. Haemodynamic factors are important regulators of VSMC functions in vascular pathophysiology. VSMCs are physiologically active in the three-dimensional matrix and interact with the shear stress sensor of endothelial cells (ECs). The purpose of this review is to illustrate how haemodynamic factors regulate VSMC functions under two-dimensional conditions in vitro or three-dimensional co-culture conditions in vivo. Recent advances show that high shear stress induces VSMC apoptosis through endothelial-released nitric oxide and low shear stress upregulates VSMC proliferation and migration through platelet-derived growth factor released by ECs. This differential regulation emphasizes the need to construct more actual environments for future research on vascular diseases (such as atherosclerosis and hypertension) and cardiovascular tissue engineering.
Collapse
Affiliation(s)
- Juhui Qiu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, College of Bioengineering, Chongqing University, , Chongqing 400044, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Miller CL, Anderson DR, Kundu RK, Raiesdana A, Nürnberg ST, Diaz R, Cheng K, Leeper NJ, Chen CH, Chang IS, Schadt EE, Hsiung CA, Assimes TL, Quertermous T. Disease-related growth factor and embryonic signaling pathways modulate an enhancer of TCF21 expression at the 6q23.2 coronary heart disease locus. PLoS Genet 2013; 9:e1003652. [PMID: 23874238 PMCID: PMC3715442 DOI: 10.1371/journal.pgen.1003652] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022] Open
Abstract
Coronary heart disease (CHD) is the leading cause of mortality in both developed and developing countries worldwide. Genome-wide association studies (GWAS) have now identified 46 independent susceptibility loci for CHD, however, the biological and disease-relevant mechanisms for these associations remain elusive. The large-scale meta-analysis of GWAS recently identified in Caucasians a CHD-associated locus at chromosome 6q23.2, a region containing the transcription factor TCF21 gene. TCF21 (Capsulin/Pod1/Epicardin) is a member of the basic-helix-loop-helix (bHLH) transcription factor family, and regulates cell fate decisions and differentiation in the developing coronary vasculature. Herein, we characterize a cis-regulatory mechanism by which the lead polymorphism rs12190287 disrupts an atypical activator protein 1 (AP-1) element, as demonstrated by allele-specific transcriptional regulation, transcription factor binding, and chromatin organization, leading to altered TCF21 expression. Further, this element is shown to mediate signaling through platelet-derived growth factor receptor beta (PDGFR-β) and Wilms tumor 1 (WT1) pathways. A second disease allele identified in East Asians also appears to disrupt an AP-1-like element. Thus, both disease-related growth factor and embryonic signaling pathways may regulate CHD risk through two independent alleles at TCF21.
Collapse
Affiliation(s)
- Clint L. Miller
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (CLM); (TQ)
| | - D. Ryan Anderson
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ramendra K. Kundu
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Azad Raiesdana
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sylvia T. Nürnberg
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Roxanne Diaz
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Karen Cheng
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nicholas J. Leeper
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chung-Hsing Chen
- Division of Biostatistics and Bioinformatics, National Health Research Institutes, Zhunan, Taiwan
| | - I-Shou Chang
- Division of Biostatistics and Bioinformatics, National Health Research Institutes, Zhunan, Taiwan
| | - Eric E. Schadt
- Institute for Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Chao Agnes Hsiung
- Division of Biostatistics and Bioinformatics, National Health Research Institutes, Zhunan, Taiwan
| | - Themistocles L. Assimes
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (CLM); (TQ)
| |
Collapse
|
41
|
Donovan J, Shiwen X, Norman J, Abraham D. Platelet-derived growth factor alpha and beta receptors have overlapping functional activities towards fibroblasts. FIBROGENESIS & TISSUE REPAIR 2013; 6:10. [PMID: 23663505 PMCID: PMC3667071 DOI: 10.1186/1755-1536-6-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/05/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Platelet-derived growth factor (PDGF) signalling is essential for many key cellular processes in mesenchymal cells. As there is redundancy in signalling between the five PDGF ligand isoforms and three PDGF receptor isoforms, and deletion of either of the receptors in vivo produces an embryonic lethal phenotype, it is not know which ligand and receptor combinations mediate specific cellular functions. Fibroblasts are key mediators in wound healing and tissues repair. Recent clinical trials using broad spectrum tyrosine kinase inhibitors in fibrotic diseases have highlighted the need to further examine the specific cellular roles each of the tyrosine kinases plays in fibrotic processes. In this study, we used PDGFR-specific neutralising antibodies to dissect out receptor-specific signalling events in fibroblasts in vitro, to further understand key cellular processes involved in wound healing and tissue repair. RESULTS Neutralising antibodies against PDGFRs were shown to block signalling through PDGFRα and PDGFRβ receptors, reduce human PDGF-AA and PDGF-BB-induced collagen gel remodelling in dermal fibroblasts, and reduce migration stimulated by all PDGF ligands in human dermal and lung fibroblasts. CONCLUSIONS PDGFRα and PDGFRβ neutralising antibodies can be a useful tool in studying PDGFR isoform-specific cellular events.
Collapse
Affiliation(s)
- Johanna Donovan
- Centre for Rheumatology and Connective Tissue Diseases and Division of Medicine, UCL Medical School, Royal Free Campus, London, UK
| | - Xu Shiwen
- Centre for Rheumatology and Connective Tissue Diseases and Division of Medicine, UCL Medical School, Royal Free Campus, London, UK
| | - Jill Norman
- Centre for Nephrology, Division of Medicine, UCL Medical School, Royal Free Campus, London, UK
| | - David Abraham
- Centre for Rheumatology and Connective Tissue Diseases and Division of Medicine, UCL Medical School, Royal Free Campus, London, UK
| |
Collapse
|
42
|
Koskinas KC, Sukhova GK, Baker AB, Papafaklis MI, Chatzizisis YS, Coskun AU, Quillard T, Jonas M, Maynard C, Antoniadis AP, Shi GP, Libby P, Edelman ER, Feldman CL, Stone PH. Thin-capped atheromata with reduced collagen content in pigs develop in coronary arterial regions exposed to persistently low endothelial shear stress. Arterioscler Thromb Vasc Biol 2013; 33:1494-504. [PMID: 23640495 DOI: 10.1161/atvbaha.112.300827] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The mechanisms promoting the focal formation of rupture-prone coronary plaques in vivo remain incompletely understood. This study tested the hypothesis that coronary regions exposed to low endothelial shear stress (ESS) favor subsequent development of collagen-poor, thin-capped plaques. APPROACH AND RESULTS Coronary angiography and 3-vessel intravascular ultrasound were serially performed at 5 consecutive time points in vivo in 5 diabetic, hypercholesterolemic pigs. ESS was calculated along the course of each artery with computational fluid dynamics at all 5 time points. At follow-up, 184 arterial segments with previously identified in vivo ESS underwent histopathologic analysis. Compared with other plaque types, eccentric thin-capped atheromata developed more in segments that experienced lower ESS during their evolution. Compared with lesions with higher preceding ESS, segments persistently exposed to low ESS (<1.2 Pa) exhibited reduced intimal smooth muscle cell content; marked intimal smooth muscle cell phenotypic modulation; attenuated procollagen-I gene expression; increased gene and protein expression of the interstitial collagenases matrix-metalloproteinase-1, -8, -13, and -14; increased collagenolytic activity; reduced collagen content; and marked thinning of the fibrous cap. CONCLUSIONS Eccentric thin-capped atheromata, lesions particularly prone to rupture, form more frequently in coronary regions exposed to low ESS throughout their evolution. By promoting an imbalance of attenuated synthesis and augmented collagen breakdown, low ESS favors the focal evolution of early lesions toward plaques with reduced collagen content and thin fibrous caps-2 critical determinants of coronary plaque vulnerability.
Collapse
Affiliation(s)
- Konstantinos C Koskinas
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yang X, Gong Y, Tang Y, Li H, He Q, Gower L, Liaw L, Friesel RE. Spry1 and Spry4 differentially regulate human aortic smooth muscle cell phenotype via Akt/FoxO/myocardin signaling. PLoS One 2013; 8:e58746. [PMID: 23554919 PMCID: PMC3598808 DOI: 10.1371/journal.pone.0058746] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/05/2013] [Indexed: 01/25/2023] Open
Abstract
Background Changes in the vascular smooth muscle cell (VSMC) contractile phenotype occur in pathological states such as restenosis and atherosclerosis. Multiple cytokines, signaling through receptor tyrosine kinases (RTK) and PI3K/Akt and MAPK/ERK pathways, regulate these phenotypic transitions. The Spry proteins are feedback modulators of RTK signaling, but their specific roles in VSMC have not been established. Methodology/Principal Findings Here, we report for the first time that Spry1, but not Spry4, is required for maintaining the differentiated state of human VSMC in vitro. While Spry1 is a known MAPK/ERK inhibitor in many cell types, we found that Spry1 has little effect on MAPK/ERK signaling but increases and maintains Akt activation in VSMC. Sustained Akt signaling is required for VSMC marker expression in vitro, while ERK signaling negatively modulates Akt activation and VSMC marker gene expression. Spry4, which antagonizes both MAPK/ERK and Akt signaling, suppresses VSMC differentiation marker gene expression. We show using siRNA knockdown and ChIP assays that FoxO3a, a downstream target of PI3K/Akt signaling, represses myocardin promoter activity, and that Spry1 increases, while Spry4 decreases myocardin mRNA levels. Conclusions Together, these data indicate that Spry1 and Spry4 have opposing roles in VSMC phenotypic modulation, and Spry1 maintains the VSMC differentiation phenotype in vitro in part through an Akt/FoxO/myocardin pathway.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- * E-mail: (XY); (RF)
| | - Yan Gong
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- Graduate School for Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Yuefeng Tang
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- Graduate School for Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Hongfang Li
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou, China
| | - Qing He
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- Graduate School for Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Lindsey Gower
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- Graduate School for Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Robert E. Friesel
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- Graduate School for Biomedical Sciences, University of Maine, Orono, Maine, United States of America
- * E-mail: (XY); (RF)
| |
Collapse
|
44
|
Dash A, Simmers MB, Deering TG, Berry DJ, Feaver RE, Hastings NE, Pruett TL, LeCluyse EL, Blackman BR, Wamhoff BR. Hemodynamic flow improves rat hepatocyte morphology, function, and metabolic activity in vitro. Am J Physiol Cell Physiol 2013; 304:C1053-63. [PMID: 23485712 DOI: 10.1152/ajpcell.00331.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In vitro primary hepatocyte systems typically elicit drug induction and toxicity responses at concentrations much higher than corresponding in vivo or clinical plasma C(max) levels, contributing to poor in vitro-in vivo correlations. This may be partly due to the absence of physiological parameters that maintain metabolic phenotype in vivo. We hypothesized that restoring hemodynamics and media transport would improve hepatocyte architecture and metabolic function in vitro compared with nonflow cultures. Rat hepatocytes were cultured for 2 wk either in nonflow collagen gel sandwiches with 48-h media changes or under controlled hemodynamics mimicking sinusoidal circulation within a perfused Transwell device. Phenotypic, functional, and metabolic parameters were assessed at multiple times. Hepatocytes in the devices exhibited polarized morphology, retention of differentiation markers [E-cadherin and hepatocyte nuclear factor-4α (HNF-4α)], the canalicular transporter [multidrug-resistant protein-2 (Mrp-2)], and significantly higher levels of liver function compared with nonflow cultures over 2 wk (albumin ~4-fold and urea ~5-fold). Gene expression of cytochrome P450 (CYP) enzymes was significantly higher (fold increase over nonflow: CYP1A1: 53.5 ± 10.3; CYP1A2: 64.0 ± 15.1; CYP2B1: 15.2 ± 2.9; CYP2B2: 2.7 ± 0.8; CYP3A2: 4.0 ± 1.4) and translated to significantly higher basal enzyme activity (device vs. nonflow: CYP1A: 6.26 ± 2.41 vs. 0.42 ± 0.015; CYP1B: 3.47 ± 1.66 vs. 0.4 ± 0.09; CYP3A: 11.65 ± 4.70 vs. 2.43 ± 0.56) while retaining inducibility by 3-methylcholanthrene and dexamethasone (fold increase over DMSO: CYP1A = 27.33 and CYP3A = 4.94). These responses were observed at concentrations closer to plasma levels documented in vivo in rats. The retention of in vivo-like hepatocyte phenotype and metabolic function coupled with drug response at more physiological concentrations emphasizes the importance of restoring in vivo physiological transport parameters in vitro.
Collapse
Affiliation(s)
- A Dash
- HemoShear, LLC, Charlottesville, VA 22902, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Santovito D, Mandolini C, Marcantonio P, De Nardis V, Bucci M, Paganelli C, Magnacca F, Ucchino S, Mastroiacovo D, Desideri G, Mezzetti A, Cipollone F. Overexpression of microRNA-145 in atherosclerotic plaques from hypertensive patients. Expert Opin Ther Targets 2013; 17:217-23. [PMID: 23339529 DOI: 10.1517/14728222.2013.745512] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous, non-coding, short, single-stranded RNAs and represent a new class of gene regulators. Recent evidence supports a role for miRNAs in cardiovascular pathophysiology and atherosclerosis development. We have previously demonstrated that miR-145 is widely expressed in human atherosclerotic lesions and its downregulation has been correlated with vascular smooth muscle cell dedifferentiation, a cardinal step in the development of atherosclerosis. However, no evidences are available at this time about modulation of miR-145 in the setting of hypertension. Thus, the aim of this study was to investigate the expression of miR-145 in complicated hypertension. MATERIALS AND METHODS Atherosclerotic plaques were obtained from 22 patients undergoing carotid endarterectomy for high-grade internal carotid artery stenosis. Plaques were subdivided into hypertension (n = 15) and control (n = 7) groups according to the presence or absence of hypertension (as defined by blood pressure > 140/90 mmHg or current antihypertensive treatment). In study plaques, miR-145 values were evaluated using real-time PCR. The level of induction has been tested by using ΔΔ cycle threshold method. RESULTS We found that miR-145 was significantly more expressed in atherosclerotic plaques of hypertensive patients than in control plaques (1.201 ± 0.260 vs 0.483 ± 0.148 fold induction ± SE; p = 0.026). Moreover, a post-hoc analysis showed that treatment with angiotensin receptor blockers may be associated with the maximum increase in miR-145 levels, although these data did not show any statistical significance probably due to the limited sample size. CONCLUSIONS To the best of our knowledge, this study is the first demonstration that hypertension may upregulate miR-145 expression in human atherosclerotic plaques. Future investigations will be necessary to establish the molecular readout of miR-145 upregulation in atherosclerotic lesions in hypertension.
Collapse
Affiliation(s)
- Donato Santovito
- G. d'Annunzio University, European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia, and Clinical Research Center, Center of Excellence on Aging (CeSI), Via dei Vestini, 66, 66100 Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Azahri NSM, Di Bartolo BA, Khachigian LM, Kavurma MM. Sp1, acetylated histone-3 and p300 regulate TRAIL transcription: mechanisms of PDGF-BB-mediated VSMC proliferation and migration. J Cell Biochem 2012; 113:2597-606. [PMID: 22415975 DOI: 10.1002/jcb.24135] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We recently reported that TNF-related apoptosis-inducing ligand (TRAIL) is important in atherogenesis, since it can induce vascular smooth muscle cell (VSMC) proliferation and arterial thickening following injury. Here we show the first demonstrate that TRAIL siRNA reduces platelet-derived growth factor-BB (PDGF-BB)-stimulated VSMC proliferation and migration. PDGF-BB-inducible VSMC proliferation was completely inhibited in VSMCs isolated from aortas of TRAIL(-/-) mice; whereas inducible migration was blocked compared to control VSMCs. TRAIL transcriptional control mediating this response is not established. TRAIL mRNA, protein and promoter activity was increased by PDGF-BB and subsequently inhibited by dominant-negative Sp1, suggesting that the transcription factor Sp1 plays a role. Sp1 bound multiple Sp1 sites on the TRAIL promoter, including two established (Sp1-1 and -2) and two novel Sp1-5/6 and -7 sites. PDGF-BB-inducible TRAIL promoter activity by Sp1 was mediated through these sites, since transverse mutations to each abolished inducible activity. PDGF-BB stimulation increased acetylation of histone-3 (ac-H3) and expression of the transcriptional co-activator p300, implicating chromatin remodelling. p300 overexpression increased TRAIL promoter activity, which was blocked by dominant-negative Sp1. Furthermore, PDGF-BB treatment increased the physical interaction of Sp1, p300 and ac-H3, while chromatin immunoprecipitation studies revealed Sp1, p300 and ac-H3 enrichment on the TRAIL promoter. Taken together, our studies demonstrate for the first time that PDGF-BB-induced TRAIL transcriptional activity requires the cooperation of Sp1, ac-H3 and p300, mediating increased expression of TRAIL which is important for VSMC proliferation and migration. Our findings have the promising potential for targeting TRAIL as a new therapeutic for vascular proliferative disorders.
Collapse
Affiliation(s)
- Nor Saadah M Azahri
- Centre for Vascular Research, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
47
|
Zhou J, Huang Y, Huang RS, Wang F, Xu L, Le Y, Yang X, Xu W, Huang X, Lian J, Duan S. A case-control study provides evidence of association for a common SNP rs974819 in PDGFD to coronary heart disease and suggests a sex-dependent effect. Thromb Res 2012; 130:602-6. [DOI: 10.1016/j.thromres.2012.05.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/26/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
|
48
|
Najy AJ, Jung YS, Won JJ, Conley-LaComb MK, Saliganan A, Kim CJ, Heath E, Cher ML, Bonfil RD, Kim HRC. Cediranib inhibits both the intraosseous growth of PDGF D-positive prostate cancer cells and the associated bone reaction. Prostate 2012; 72:1328-38. [PMID: 22213159 PMCID: PMC3369116 DOI: 10.1002/pros.22481] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/04/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND The major cause of death in prostate cancer (PCa) cases is due to distant metastatic lesions, with the bone being the most prevalent site for secondary colonization. Utilization of small molecule inhibitors to treat bone metastatic PCa have had limited success either as monotherapies or in combination with other chemotherapeutics due to intolerable toxicities. In the current study, we developed a clinically relevant in vivo intraosseous tumor model overexpressing the platelet-derived growth factor D (PDGF D) to test the efficacy of a newly characterized vascular endothelial growth factor receptor (VEGFR)/PDGFR inhibitor, cediranib (also called AZD2171). METHODS An intratibial-injection model was established utilizing DU145 cells with or without increased PDGF D expression. Tumor-bearing mice were treated by daily gavage administration of cediranib and/or weekly i.p. injection of docetaxel for 7 weeks. Tibiae were monitored by in vivo/ex vivo X-rays and histomorphometry analysis was performed to estimate tumor volume and tumor-associated trabecular bone growth. RESULTS Cediranib reduced intraosseous growth of prostate tumors as well as tumor-associated bone responses. When compared to the standard chemotherapeutic agent docetaxel, cediranib exhibited a stronger inhibition of tumor-associated bone response. The efficacy of cediranib was further enhanced when the drug was co-administered with docetaxel. Importantly, the therapeutic benefits of cediranib and docetaxel are more prominent in intraosseous prostate tumors overexpressing PDGF D. CONCLUSION These novel findings support the utilization of cediranib, either alone or in combination with docetaxel, to treat bone metastatic PCa exhibiting PDGF D expression.
Collapse
Affiliation(s)
- Abdo J. Najy
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - Young Suk Jung
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - Joshua J. Won
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - M. Katie Conley-LaComb
- Department of Urology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - Allen Saliganan
- Department of Urology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - Chong Jai Kim
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - Elisabeth Heath
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - Michael L. Cher
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Urology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - R. Daniel Bonfil
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Urology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - Hyeong-Reh Choi Kim
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
- To whom correspondence should be addressed: Department of Pathology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA, Tel: 313-577-2407, Fax: 313-577-0057,
| |
Collapse
|
49
|
Salmon M, Gomez D, Greene E, Shankman L, Owens GK. Cooperative binding of KLF4, pELK-1, and HDAC2 to a G/C repressor element in the SM22α promoter mediates transcriptional silencing during SMC phenotypic switching in vivo. Circ Res 2012; 111:685-96. [PMID: 22811558 DOI: 10.1161/circresaha.112.269811] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE We previously identified conserved G/C Repressor elements in the promoters of most smooth muscle cell (SMC) marker genes and demonstrated that mutation of this element within the SM22α promoter nearly abrogated repression of this transgene after vascular wire injury or within lesions of ApoE-/- mice. However, the mechanisms regulating the activity of the G/C Repressor are unknown, although we have previously shown that phenotypic switching of cultured SMC is dependent on Krupple-like factor (KLF)4. OBJECTIVE The goals of the present studies were to ascertain if (1) injury-induced repression of SM22α gene after vascular injury is mediated through KLF4 binding to the G/C Repressor element and (2) the transcriptional repressor activity of KLF4 on SMC marker genes is dependent on cooperative binding with pELK-1 (downstream activator of the mitogen-activated protein kinase pathway) and subsequent recruitment of histone de-acetylase 2 (HDAC2), which mediates epigenetic gene silencing. METHODS AND RESULTS Chromatin immunoprecipitation (ChIP) assays were performed on chromatin derived from carotid arteries of mice having either a wild-type or G/C Repressor mutant SM22α promoter-LacZ transgene. KLF4 and pELK-1 binding to the SM22α promoter was markedly increased after vascular injury and was G/C Repressor dependent. Sequential ChIP assays and proximity ligation analyses in cultured SMC treated with platelet-derived growth factor BB or oxidized phospholipids showed formation of a KLF4, pELK-1, and HDAC2 multiprotein complex dependent on the SM22α G/C Repressor element. CONCLUSIONS Silencing of SMC marker genes during phenotypic switching is partially mediated by sequential binding of pELK-1 and KLF4 to G/C Repressor elements. The pELK-1-KLF4 complex in turn recruits HDAC2, leading to reduced histone acetylation and epigenetic silencing.
Collapse
Affiliation(s)
- Morgan Salmon
- University of Virginia, School of Medicine, Robert M. Berne Cardiovascular Research Center, PO Box 801394, Charlottesville, VA 22908-1394, USA
| | | | | | | | | |
Collapse
|
50
|
Alexander MR, Murgai M, Moehle CW, Owens GK. Interleukin-1β modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-κB-dependent mechanisms. Physiol Genomics 2012; 44:417-29. [PMID: 22318995 PMCID: PMC3339851 DOI: 10.1152/physiolgenomics.00160.2011] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/17/2012] [Indexed: 12/14/2022] Open
Abstract
Smooth muscle cell (SMC) phenotypic modulation in atherosclerosis and in response to PDGF in vitro involves repression of differentiation marker genes and increases in SMC proliferation, migration, and matrix synthesis. However, SMCs within atherosclerotic plaques can also express a number of proinflammatory genes, and in cultured SMCs the inflammatory cytokine IL-1β represses SMC marker gene expression and induces inflammatory gene expression. Studies herein tested the hypothesis that IL-1β modulates SMC phenotype to a distinct inflammatory state relative to PDGF-DD. Genome-wide gene expression analysis of IL-1β- or PDGF-DD-treated SMCs revealed that although both stimuli repressed SMC differentiation marker gene expression, IL-1β distinctly induced expression of proinflammatory genes, while PDGF-DD primarily induced genes involved in cell proliferation. Promoters of inflammatory genes distinctly induced by IL-1β exhibited over-representation of NF-κB binding sites, and NF-κB inhibition in SMCs reduced IL-1β-induced upregulation of proinflammatory genes as well as repression of SMC differentiation marker genes. Interestingly, PDGF-DD-induced SMC marker gene repression was not NF-κB dependent. Finally, immunofluorescent staining of mouse atherosclerotic lesions revealed the presence of cells positive for the marker of an IL-1β-stimulated inflammatory SMC, chemokine (C-C motif) ligand 20 (CCL20), but not the PDGF-DD-induced gene, regulator of G protein signaling 17 (RGS17). Results demonstrate that IL-1β- but not PDGF-DD-induced phenotypic modulation of SMC is characterized by NF-κB-dependent activation of proinflammatory genes, suggesting the existence of a distinct inflammatory SMC phenotype. In addition, studies provide evidence for the possible utility of CCL20 and RGS17 as markers of inflammatory and proliferative state SMCs within atherosclerotic plaques in vivo.
Collapse
Affiliation(s)
- Matthew R Alexander
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|