1
|
Michel LY, Esfahani H, De Mulder D, Verdoy R, Ambroise J, Roelants V, Bouchard B, Fabian N, Savary J, Dewulf JP, Doumont T, Bouzin C, Haufroid V, Luiken JJ, Nabben M, Singleton ML, Bertrand L, Ruiz M, Des Rosiers C, Balligand JL. An NRF2/β3-Adrenoreceptor Axis Drives a Sustained Antioxidant and Metabolic Rewiring Through the Pentose-Phosphate Pathway to Alleviate Cardiac Stress. Circulation 2025; 151:1312-1328. [PMID: 40071326 PMCID: PMC12052078 DOI: 10.1161/circulationaha.124.067876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 01/13/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Cardiac β3-adrenergic receptors (ARs) are upregulated in diseased hearts and mediate antithetic effects to those of β1AR and β2AR. β3AR agonists were recently shown to protect against myocardial remodeling in preclinical studies and to improve systolic function in patients with severe heart failure. However, the underlying mechanisms remain elusive. METHODS To dissect functional, transcriptional, and metabolic effects, hearts and isolated ventricular myocytes from mice harboring a moderate, cardiac-specific expression of a human ADRB3 transgene (β3AR-Tg) and subjected to transverse aortic constriction were assessed with echocardiography, RNA sequencing, positron emission tomography scan, metabolomics, and metabolic flux analysis. Subsequently, signaling and metabolic pathways were further investigated in vivo in β3AR-Tg and ex vivo in neonatal rat ventricular myocytes adenovirally infected to express β3AR and subjected to neurohormonal stress. These results were complemented with an analysis of single-nucleus RNA-sequencing data from human cardiac myocytes from patients with heart failure. RESULTS Compared with wild-type littermates, β3AR-Tg mice were protected from hypertrophy after transaortic constriction, and systolic function was preserved. β3AR-expressing hearts displayed enhanced myocardial glucose uptake under stress in the absence of increased lactate levels. Instead, metabolomic and metabolic flux analyses in stressed hearts revealed an increase in intermediates of the pentose-phosphate pathway in β3AR-Tg, an alternative route of glucose utilization, paralleled with increased transcript levels of NADPH-producing and rate-limiting enzymes of the pentose-phosphate pathway, without fueling the hexosamine metabolism. The ensuing increased content of NADPH and of reduced glutathione decreased myocyte oxidant stress, whereas downstream oxidative metabolism assessed by oxygen consumption was preserved with higher glucose oxidation in β3AR-Tg mice after transaortic constriction compared with wild type, together with increased mitochondrial biogenesis. Unbiased transcriptomics and pathway analysis identified NRF2 (NFE2L2) as an upstream transcription factor that was functionally verified in vivo and in β3AR-expressing cardiac myocytes, where its translocation and nuclear activity were dependent on β3AR activation of nitric oxide synthase and nitric oxide production through S-nitrosation of the NRF2-negative regulator Keap1. CONCLUSIONS Moderate expression of cardiac β3AR, at levels observed in human cardiac myocardium, exerts metabolic and antioxidant effects through activation of the pentose-phosphate pathway and NRF2 pathway through S-nitrosation of Keap1, thereby preserving myocardial oxidative metabolism, function, and integrity under pathophysiological stress.
Collapse
Affiliation(s)
- Lauriane Y.M. Michel
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St. Luc and Université catholique de Louvain, Brussels, Belgium (L.Y.M.M., H.E., D.d.M., R.V., N.F., J.-L.B.)
| | - Hrag Esfahani
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St. Luc and Université catholique de Louvain, Brussels, Belgium (L.Y.M.M., H.E., D.d.M., R.V., N.F., J.-L.B.)
| | - Delphine De Mulder
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St. Luc and Université catholique de Louvain, Brussels, Belgium (L.Y.M.M., H.E., D.d.M., R.V., N.F., J.-L.B.)
| | - Roxane Verdoy
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St. Luc and Université catholique de Louvain, Brussels, Belgium (L.Y.M.M., H.E., D.d.M., R.V., N.F., J.-L.B.)
| | - Jérôme Ambroise
- Institute of Experimental and Clinical Research (IREC), Centre des Technologies Moléculaires Appliquées, Université catholique de Louvain, Brussels, Belgium (J.A.)
| | - Véronique Roelants
- Institute of Experimental and Clinical Research (IREC), Molecular imagery, radiotherapy, oncology (MIRO), Cliniques Universitaires St. Luc and Université catholique de Louvain, Brussels, Belgium (V.R., T.D.)
- Nuclear Medicine Department, Cliniques Universitaires St. Luc and Université Catholique de Louvain, Brussels, Belgium (V.R.)
| | - Bertrand Bouchard
- Montreal Heart Institute Research Center, Quebec, Canada (B.B., M.R., C.D.R.)
| | - Nathalie Fabian
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St. Luc and Université catholique de Louvain, Brussels, Belgium (L.Y.M.M., H.E., D.d.M., R.V., N.F., J.-L.B.)
| | - Jérôme Savary
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Louvain-la-Neuve, Belgium (J.S., M.L.S.)
| | - Joseph P. Dewulf
- Clinical Chemistry Department, Cliniques universitaires St. Luc and Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Brussels, Belgium (J.P.D., V.H.)
| | - Thomas Doumont
- Institute of Experimental and Clinical Research (IREC), Molecular imagery, radiotherapy, oncology (MIRO), Cliniques Universitaires St. Luc and Université catholique de Louvain, Brussels, Belgium (V.R., T.D.)
| | - Caroline Bouzin
- 2IP-IREC Imaging Platform, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, RRID:SCR_023378, Brussels, Belgium (C.B.)
| | - Vincent Haufroid
- Clinical Chemistry Department, Cliniques universitaires St. Luc and Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Brussels, Belgium (J.P.D., V.H.)
| | - Joost J.F.P. Luiken
- Departments of Genetics & Cell Biology and Clinical Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, the Netherlands (J.J.F.P.L., M.N.)
| | - Miranda Nabben
- Departments of Genetics & Cell Biology and Clinical Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, the Netherlands (J.J.F.P.L., M.N.)
| | - Michael L. Singleton
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Louvain-la-Neuve, Belgium (J.S., M.L.S.)
| | - Luc Bertrand
- Institute of Experimental and Clinical Research (IREC), Pole of Cardiovascular Research (CARD), Université catholique de Louvain, Brussels, Belgium (L.B.)
- WELBIO Department, WEL Research Institute, Wavre, Belgium (L.B., J.-L.B.)
| | - Matthieu Ruiz
- Montreal Heart Institute Research Center, Quebec, Canada (B.B., M.R., C.D.R.)
- Department of Nutrition, Université de Montréal, Quebec, Canada (M.R., C.D.R.)
| | - Christine Des Rosiers
- Montreal Heart Institute Research Center, Quebec, Canada (B.B., M.R., C.D.R.)
- Department of Nutrition, Université de Montréal, Quebec, Canada (M.R., C.D.R.)
| | - Jean-Luc Balligand
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St. Luc and Université catholique de Louvain, Brussels, Belgium (L.Y.M.M., H.E., D.d.M., R.V., N.F., J.-L.B.)
- WELBIO Department, WEL Research Institute, Wavre, Belgium (L.B., J.-L.B.)
| |
Collapse
|
2
|
Ng JCM, Schooling CM. Sex-specific Mendelian randomization phenome-wide association study of basal metabolic rate. Sci Rep 2025; 15:14368. [PMID: 40274879 PMCID: PMC12022104 DOI: 10.1038/s41598-025-98017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Observationally, higher basal metabolic rate (BMR) is associated with metabolism-related disorders, cancer, aging, and mortality. In this Mendelian randomization (MR) phenome-wide association study, using two-sample MR methods, we systematically and comprehensively investigated the health effects of genetically predicted BMR across the phenome sex-specifically. We obtained sex-specific genetic variants strongly (p < 5 × 10- 8) and independently (r2 < 0.001) predicting BMR from the UK Biobank and applied them to over 1,000 phenotypes within the same study. We combined genetic variant-specific Wald estimates using inverse-variance weighting, supplemented by sensitivity analysis. We used a false-discovery rate correction to allow for multiple comparisons as well as multivariable MR adjusted for body mass index and testosterone to investigate the independent effects of BMR on phenotypes with significant univariable associations. We obtained 217/219 genetic variants predicting BMR and applied them to 1,150/1,242 phenotypes in men/women, respectively. BMR was associated with 190/270 phenotypes in univariable analysis and 122/123 phenotypes in multivariable analysis in men/women. Examples of robust associations in multivariable analysis included those with neoplasms, diseases of the circulatory system, and growth and reproductive investment. In conclusion, BMR might affect a wide range of health-related outcomes. The underlying mechanisms and interactions between phenotypes warrant further study, as BMR is modifiable.
Collapse
Affiliation(s)
- Jack C M Ng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region, China
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region, China.
- Graduate School of Public Health and Health Policy, The City University of New York, 55 West 125th St, New York, NY, 10027, USA.
| |
Collapse
|
3
|
Li Y, Hsu CT, Yang TT, Cheng KC. Syringaldehyde Alleviates Cardiac Hypertrophy Induced by Hyperglycemia in H9c2 Cells Through GLP-1 Receptor Signals. Pharmaceuticals (Basel) 2025; 18:110. [PMID: 39861172 PMCID: PMC11768131 DOI: 10.3390/ph18010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Cardiac hypertrophy is a significant complication of diabetes, often triggered by hyperglycemia. Glucagon-like peptide-1 (GLP-1) receptor agonists alleviate cardiac hypertrophy, but their efficacy diminishes under GLP-1 resistance. Syringaldehyde (SA), a natural phenolic compound, may activate GLP-1 receptors and mitigate hypertrophy. This study explores SA's therapeutic potential in hyperglycemia-induced cardiac hypertrophy in H9c2 cardiomyocytes. Methods: H9c2 cells were exposed to high glucose to induce hypertrophy. Cells were treated with varying SA concentrations, and hypertrophic biomarkers were analyzed using ELISA, qPCR, and Western blot. Results: SA reduced cell size and hypertrophic biomarkers in a dose-dependent manner while increasing GLP-1 receptor expression and cAMP levels. These effects were attenuated in GLP-1-resistant cells, highlighting the role of GLP-1 receptor activation. AMPK activation was essential, as its inhibition abolished SA's effects. SA also decreased O-linked N-acetylglucosamine transferase (OGT) expression via AMPK activation, contributing to reduced hypertrophy. Conclusions: SA alleviates hyperglycemia-induced cardiac hypertrophy in H9c2 cells by activating the GLP-1 receptor and AMPK signaling pathway.
Collapse
Affiliation(s)
- Yingxiao Li
- Department of Anatomy, College of Medicine, I-Shou University, Kaohsiung 824005, Taiwan;
| | - Chao-Tien Hsu
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung 824005, Taiwan;
| | - Ting-Ting Yang
- School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung 824005, Taiwan;
| | - Kai-Chun Cheng
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan
| |
Collapse
|
4
|
Jie H, Zhang J, Wu S, Yu L, Li S, Dong B, Yan F. Interplay between energy metabolism and NADPH oxidase-mediated pathophysiology in cardiovascular diseases. Front Pharmacol 2025; 15:1503824. [PMID: 39867658 PMCID: PMC11757639 DOI: 10.3389/fphar.2024.1503824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Sustained production of reactive oxygen species (ROS) and an imbalance in the antioxidant system have been implicated in the development of cardiovascular diseases (CVD), especially when combined with diabetes, hypercholesterolemia, and other metabolic disorders. Among them, NADPH oxidases (NOX), including NOX1-5, are major sources of ROS that mediate redox signaling in both physiological and pathological processes, including fibrosis, hypertrophy, and remodeling. Recent studies have demonstrated that mitochondria produce more proteins and energy in response to adverse stress, corresponding with an increase in superoxide radical anions. Novel NOX4-mediated modulatory mechanisms are considered crucial for maintaining energy metabolism homeostasis during pathological states. In this review, we integrate the latest data to elaborate on the interactions between oxidative stress and energy metabolism in various CVD, aiming to elucidate the higher incidence of CVD in individuals with metabolic disorders. Furthermore, the correlations between NOX and ferroptosis, based on energy metabolism, are preliminarily discussed. Further discoveries of these mechanisms might promote the development of novel therapeutic drugs targeting NOX and their crosstalk with energy metabolism, potentially offering efficient management strategies for CVD.
Collapse
Affiliation(s)
- Haipeng Jie
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Zhang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuzhen Wu
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Luyao Yu
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shengnan Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Yan
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
5
|
Xu J, Dai P, Zhang C, Dong N, Li C, Tang C, Jin Z, Lin S, Ye L, Sun T, Jin Y, Wu F, Luo L, Wu P, Li S, Li X, Hsu S, Jiang D, Wang Z. Injectable Hierarchical Bioactive Hydrogels with Fibroblast Growth Factor 21/Edaravone/Caffeic Acid Asynchronous Delivery for Treating Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412020. [PMID: 39630931 PMCID: PMC11775539 DOI: 10.1002/advs.202412020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Parkinson's disease (PD) is one of the most common long-term neurodegenerative disorders, with multiple comorbid psychiatric and behavioral abnormalities. The combination of clinical drugs targeting different symptoms with smart hydrogels to achieve asynchronous releases is highly translational and challenging. Here, a hierarchical bioactive hydrogel (OACDP) is designed with asynchronous release based on PD pathology. The hydrogel with caffeic acid-grafted polymer main chain is crosslinked using a micellar nanocrosslinker, with sufficient modulus (≈167 Pa), antioxidant activity (> 50%), injectability (30-gauge syringe needle), and shape-adaptability. Each of the three drugs (caffeic acid, fibroblast growth factor 21, and Edaravone) is separately engaged in different micro- or nanostructures of the hydrogel and released with asynchronous kinetics of first-order release, zero-order release, or matching Korsmeyer-Peppas model. The triple-loaded hydrogel is injected into the brains of PD rats, showing behavioral improvement. Histological analysis revealed that the triple-loaded OACDP hydrogels are effective in achieving immediate neuroprotection, i.e., reduction the loss of tyrosine hydroxylase in substantia nigra compacta and striatum (retained ≈10-fold versus control), decreasing oxidative stress, reducing astrocyte and microglia activation, and stimulating the AMPK/PGC-1α axis to regulate the mitochondrial function, providing a multi-dimensional PD therapy. The asynchronous release of OACDP hydrogel provides a new conception for PD treatment and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Junpeng Xu
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Peng Dai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Chen Zhang
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang324025China
| | - Na Dong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Caiyan Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Chonghui Tang
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
| | - Zhihao Jin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Shih‐Ho Lin
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipeiTaiwan106319Republic of China
| | - Luyang Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Tianmiao Sun
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
| | - Yukai Jin
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
| | - Fenzan Wu
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
| | - Lihua Luo
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang324025China
| | - Ping Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Shengcun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- Rehabilitation Medicine CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Shan‐hui Hsu
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipeiTaiwan106319Republic of China
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan350401Republic of China
| | - Dawei Jiang
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Zhouguang Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| |
Collapse
|
6
|
Vanni E, Beauloye C, Horman S, Bertrand L. AMPK and O-GlcNAcylation: interplay in cardiac pathologies and heart failure. Essays Biochem 2024; 68:363-377. [PMID: 39319471 DOI: 10.1042/ebc20240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Heart failure (HF) represents a multifaceted clinical syndrome characterized by the heart's inability to pump blood efficiently to meet the body's metabolic demands. Despite advances in medical management, HF remains a major cause of morbidity and mortality worldwide. In recent years, considerable attention has been directed toward understanding the molecular mechanisms underlying HF pathogenesis, with a particular focus on the role of AMP-activated protein kinase (AMPK) and protein O-GlcNAcylation. This review comprehensively examines the current understanding of AMPK and O-GlcNAcylation signalling pathways in HF, emphasizing their interplay and dysregulation. We delve into the intricate molecular mechanisms by which AMPK and O-GlcNAcylation contribute to cardiac energetics, metabolism, and remodelling, highlighting recent preclinical and clinical studies that have explored novel therapeutic interventions targeting these pathways.
Collapse
Affiliation(s)
- Ettore Vanni
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
7
|
Peart LA, Draper M, Tarasov AI. The impact of GLP-1 signalling on the energy metabolism of pancreatic islet β-cells and extrapancreatic tissues. Peptides 2024; 178:171243. [PMID: 38788902 DOI: 10.1016/j.peptides.2024.171243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Glucagon-like peptide-1 signalling impacts glucose homeostasis and appetite thereby indirectly affecting substrate availability at the whole-body level. The incretin canonically produces an insulinotropic effect, thereby lowering blood glucose levels by promoting the uptake and inhibiting the production of the sugar by peripheral tissues. Likewise, GLP-1 signalling within the central nervous system reduces the appetite and food intake, whereas its gastric effect delays the absorption of nutrients, thus improving glycaemic control and reducing the risk of postprandial hyperglycaemia. We review the molecular aspects of the GLP-1 signalling, focusing on its impact on intracellular energy metabolism. Whilst the incretin exerts its effects predominantly via a Gs receptor, which decodes the incretin signal into the elevation of intracellular cAMP levels, the downstream signalling cascades within the cell, acting on fast and slow timescales, resulting in an enhancement or an attenuation of glucose catabolism, respectively.
Collapse
Affiliation(s)
- Leah A Peart
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Matthew Draper
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Andrei I Tarasov
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
8
|
Ahmad Y, Seo DS, Jang Y. Metabolic Effects of Ketogenic Diets: Exploring Whole-Body Metabolism in Connection with Adipose Tissue and Other Metabolic Organs. Int J Mol Sci 2024; 25:7076. [PMID: 39000187 PMCID: PMC11241756 DOI: 10.3390/ijms25137076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The ketogenic diet (KD) is characterized by minimal carbohydrate, moderate protein, and high fat intake, leading to ketosis. It is recognized for its efficiency in weight loss, metabolic health improvement, and various therapeutic interventions. The KD enhances glucose and lipid metabolism, reducing triglycerides and total cholesterol while increasing high-density lipoprotein levels and alleviating dyslipidemia. It significantly influences adipose tissue hormones, key contributors to systemic metabolism. Brown adipose tissue, essential for thermogenesis and lipid combustion, encounters modified UCP1 levels due to dietary factors, including the KD. UCP1 generates heat by uncoupling electron transport during ATP synthesis. Browning of the white adipose tissue elevates UCP1 levels in both white and brown adipose tissues, a phenomenon encouraged by the KD. Ketone oxidation depletes intermediates in the Krebs cycle, requiring anaplerotic substances, including glucose, glycogen, or amino acids, for metabolic efficiency. Methylation is essential in adipogenesis and the body's dietary responses, with DNA methylation of several genes linked to weight loss and ketosis. The KD stimulates FGF21, influencing metabolic stability via the UCP1 pathways. The KD induces a reduction in muscle mass, potentially involving anti-lipolytic effects and attenuating proteolysis in skeletal muscles. Additionally, the KD contributes to neuroprotection, possesses anti-inflammatory properties, and alters epigenetics. This review encapsulates the metabolic effects and signaling induced by the KD in adipose tissue and major metabolic organs.
Collapse
Affiliation(s)
- Yusra Ahmad
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Dong Soo Seo
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Younghoon Jang
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
9
|
Park B, Bakbak E, Teoh H, Krishnaraj A, Dennis F, Quan A, Rotstein OD, Butler J, Hess DA, Verma S. GLP-1 receptor agonists and atherosclerosis protection: the vascular endothelium takes center stage. Am J Physiol Heart Circ Physiol 2024; 326:H1159-H1176. [PMID: 38426865 DOI: 10.1152/ajpheart.00574.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Atherosclerotic cardiovascular disease is a chronic condition that often copresents with type 2 diabetes and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin mimetics endorsed by major professional societies for improving glycemic status and reducing atherosclerotic risk in people living with type 2 diabetes. Although the cardioprotective efficacy of GLP-1RAs and their relationship with traditional risk factors are well established, there is a paucity of publications that have summarized the potentially direct mechanisms through which GLP-1RAs mitigate atherosclerosis. This review aims to narrow this gap by providing comprehensive and in-depth mechanistic insight into the antiatherosclerotic properties of GLP-1RAs demonstrated across large outcome trials. Herein, we describe the landmark cardiovascular outcome trials that triggered widespread excitement around GLP-1RAs as a modern class of cardioprotective agents, followed by a summary of the origins of GLP-1RAs and their mechanisms of action. The effects of GLP-1RAs at each major pathophysiological milestone of atherosclerosis, as observed across clinical trials, animal models, and cell culture studies, are described in detail. Specifically, this review provides recent preclinical and clinical evidence that suggest GLP-1RAs preserve vessel health in part by preventing endothelial dysfunction, achieved primarily through the promotion of angiogenesis and inhibition of oxidative stress. These protective effects are in addition to the broad range of atherosclerotic processes GLP-1RAs target downstream of endothelial dysfunction, which include systemic inflammation, monocyte recruitment, proinflammatory macrophage and foam cell formation, vascular smooth muscle cell proliferation, and plaque development.
Collapse
Affiliation(s)
- Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fallon Dennis
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Ori D Rotstein
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of General Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, United States
- Department of Medicine, University of Mississippi, Jackson, Mississippi, United States
| | - David A Hess
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Boshchenko AA, Maslov LN, Mukhomedzyanov AV, Zhuravleva OA, Slidnevskaya AS, Naryzhnaya NV, Zinovieva AS, Ilinykh PA. Peptides Are Cardioprotective Drugs of the Future: The Receptor and Signaling Mechanisms of the Cardioprotective Effect of Glucagon-like Peptide-1 Receptor Agonists. Int J Mol Sci 2024; 25:4900. [PMID: 38732142 PMCID: PMC11084666 DOI: 10.3390/ijms25094900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The high mortality rate among patients with acute myocardial infarction (AMI) is one of the main problems of modern cardiology. It is quite obvious that there is an urgent need to create more effective drugs for the treatment of AMI than those currently used in the clinic. Such drugs could be enzyme-resistant peptide analogs of glucagon-like peptide-1 (GLP-1). GLP-1 receptor (GLP1R) agonists can prevent ischemia/reperfusion (I/R) cardiac injury. In addition, chronic administration of GLP1R agonists can alleviate the development of adverse cardiac remodeling in myocardial infarction, hypertension, and diabetes mellitus. GLP1R agonists can protect the heart against oxidative stress and reduce proinflammatory cytokine (IL-1β, TNF-α, IL-6, and MCP-1) expression in the myocardium. GLP1R stimulation inhibits apoptosis, necroptosis, pyroptosis, and ferroptosis of cardiomyocytes. The activation of the GLP1R augments autophagy and mitophagy in the myocardium. GLP1R agonists downregulate reactive species generation through the activation of Epac and the GLP1R/PI3K/Akt/survivin pathway. The GLP1R, kinases (PKCε, PKA, Akt, AMPK, PI3K, ERK1/2, mTOR, GSK-3β, PKG, MEK1/2, and MKK3), enzymes (HO-1 and eNOS), transcription factors (STAT3, CREB, Nrf2, and FoxO3), KATP channel opening, and MPT pore closing are involved in the cardioprotective effect of GLP1R agonists.
Collapse
Affiliation(s)
- Alla A. Boshchenko
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Leonid N. Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alexander V. Mukhomedzyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Olga A. Zhuravleva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alisa S. Slidnevskaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Natalia V. Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Arina S. Zinovieva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Philipp A. Ilinykh
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
11
|
Athari SZ, Farajdokht F, Keyhanmanesh R, Mohaddes G. AMPK Signaling Pathway as a Potential Therapeutic Target for Parkinson's Disease. Adv Pharm Bull 2024; 14:120-131. [PMID: 38585465 PMCID: PMC10997932 DOI: 10.34172/apb.2024.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease caused by the loss of dopaminergic neurons. Genetic factors, inflammatory responses, oxidative stress, metabolic disorders, cytotoxic factors, and mitochondrial dysfunction are all involved in neuronal death in neurodegenerative diseases. The risk of PD can be higher in aging individuals due to decreased mitochondrial function, energy metabolism, and AMP-activated protein kinase (AMPK) function. The potential of AMPK to regulate neurodegenerative disorders lies in its ability to enhance antioxidant capacity, reduce oxidative stress, improve mitochondrial function, decrease mitophagy and macroautophagy, and inhibit inflammation. In addition, it has been shown that modulating the catalytic activity of AMPK can protect the nervous system. This article reviews the mechanisms by which AMPK activation can modulate PD.
Collapse
Affiliation(s)
- Seyed Zanyar Athari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA
| |
Collapse
|
12
|
Gao Y, Hua R, Peng K, Yin Y, Zeng C, Guo Y, Wang Y, Li L, Li X, Qiu Y, Wang Z. High-starchy carbohydrate diet aggravates NAFLD by increasing fatty acids influx mediated by NOX2. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Gheibi S, Cataldo LR, Hamilton A, Huang M, Kalamajski S, Fex M, Mulder H. Reduced Expression Level of Protein Phosphatase PPM1E Serves to Maintain Insulin Secretion in Type 2 Diabetes. Diabetes 2023; 72:455-466. [PMID: 36662636 DOI: 10.2337/db22-0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
Reversible phosphorylation is an important regulatory mechanism. Regulation of protein phosphorylation in β-cells has been extensively investigated, but less is known about protein dephosphorylation. To understand the role of protein dephosphorylation in β-cells and type 2 diabetes (T2D), we first examined mRNA expression of the type 2C family (PP2C) of protein phosphatases in islets from T2D donors. Phosphatase expression overall was changed in T2D, and that of PPM1E was the most markedly downregulated. PPM1E expression correlated inversely with HbA1c. Silencing of PPM1E increased glucose-stimulated insulin secretion (GSIS) in INS-1 832/13 cells and/or islets from patients with T2D, whereas PPM1E overexpression decreased GSIS. Increased GSIS after PPM1E silencing was associated with decreased oxidative stress, elevated cytosolic Ca2+ levels and ATP to ADP ratio, increased hyperpolarization of the inner mitochondrial membrane, and phosphorylation of CaMKII, AMPK, and acetyl-CoA carboxylase. Silencing of PPM1E, however, did not change insulin content. Increased GSIS, cell viability, and activation of AMPK upon metformin treatment in β-cells were observed upon PPM1E silencing. Thus, protein dephosphorylation via PPM1E abrogates GSIS. Consequently, reduced PPM1E expression in T2D may be a compensatory response of β-cells to uphold insulin secretion under metabolic duress. Targeting PPM1E in β-cells may thus represent a novel therapeutic strategy for treatment of T2D.
Collapse
Affiliation(s)
- Sevda Gheibi
- Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| | - Luis Rodrigo Cataldo
- Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Hamilton
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö, Sweden
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mi Huang
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
| | - Sebastian Kalamajski
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
| | - Malin Fex
- Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| | - Hindrik Mulder
- Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|
14
|
Mahmoud AMA, Mantawy EM, Wahdan SA, Ammar RM, El-Demerdash E. Vildagliptin restores cognitive function and mitigates hippocampal neuronal apoptosis in cisplatin-induced chemo-brain: Imperative roles of AMPK/Akt/CREB/ BDNF signaling cascades. Biomed Pharmacother 2023; 159:114238. [PMID: 36640673 DOI: 10.1016/j.biopha.2023.114238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent used to treat many human cancers. Nonetheless, most patients receiving CP suffer from cognitive deficits, a phenomenon termed "chemo-brain". Recently, vildagliptin (Vilda), a DPP-4 inhibitor, has demonstrated promising neuroprotective properties against various neurological diseases. Therefore, the present study aims to investigate the potential neuroprotective properties of Vilda against CP-induced neurotoxicity and elucidate the underlying molecular mechanisms. Chemo-brain was induced in Sprague-Dawley rats by i.p injection of CP at a dose of 5 mg/kg once weekly for four weeks. Vilda was administered daily at a dose (10 mg/kg; P.O) for four weeks. The results revealed that Vilda restored the cognitive function impaired by CP, as assessed by the Morris water maze, Y-maze, and passive avoidance tests. Moreover, Vilda alleviated the CP-induced neurodegeneration, as shown by toluidine blue staining, besides markedly reduced amyloid plaque deposition, as evidenced by Congo red staining. Notably, Vilda boosted cholinergic neurotransmission through the downregulation of the acetylcholinesterase enzyme. In addition, the neuroprotective mechanisms of Vilda include diminishing oxidative stress by reducing MDA levels while raising GSH levels and SOD activity, repressing neuronal apoptosis as shown by elevated Bcl-2 levels together with diminished Bax and caspase-3 expressions, inhibiting neuroinflammation as shown by decreased GFAP expression, and finally boosting hippocampal neurogenesis and survival by upregulating expressions of BDNF and PCNA. These effects were mainly mediated by activating AMPK/Akt/CREB signaling cascades. In summary, Vilda can be considered a promising candidate for guarding against CP-induced chemo-brain and neurodegeneration, thus improving the quality of life of cancer patients.
Collapse
Affiliation(s)
- Abdulla M A Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ramy M Ammar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafr-Elsheikh, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
15
|
A blast from the past: To tame time with metformin. Mech Ageing Dev 2022; 208:111743. [PMID: 36279989 DOI: 10.1016/j.mad.2022.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
The strong evidence of metformin use in subjects affected by type 2 diabetes (T2DM) on health outcomes, together with data from pre-clinical studies, has led the gerontological research to study the therapeutic potential of such a drug as a slow-aging strategy. However, despite clinical use for over fifty years as an anti-diabetic drug, the mechanisms of action beyond glycemic control remain unclear. In this review, we have deeply examined the literature, doing a narrative review from the metformin story, through mechanisms of action to slow down aging potential, from lower organisms to humans. Based on the available evidence, we conclude that metformin, as shown in lower organisms and mice, may be effective in humans' longevity. A complete analysis and follow-up of ongoing clinical trials may provide more definitive answers as to whether metformin should be promoted beyond its use to treat T2DM as a drug that enhances both healthspan and lifespan.
Collapse
|
16
|
Role of AMPK in Myocardial Ischemia-Reperfusion Injury-Induced Cell Death in the Presence and Absence of Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7346699. [PMID: 36267813 PMCID: PMC9578802 DOI: 10.1155/2022/7346699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022]
Abstract
Recent studies indicate cell death is the hallmark of cardiac pathology in myocardial infarction and diabetes. The AMP-activated protein kinase (AMPK) signalling pathway is considered a putative salvaging phenomenon, plays a decisive role in almost all cellular, metabolic, and survival functions, and therefore entails precise regulation of its activity. AMPK regulates various programmed cell death depending on the stimuli and context, including autophagy, apoptosis, necroptosis, and ferroptosis. There is substantial evidence suggesting that AMPK is down-regulated in cardiac tissues of animals and humans with type 2 diabetes or metabolic syndrome compared to non-diabetic control and that stimulation of AMPK (physiological or pharmacological) can ameliorate diabetes-associated cardiovascular complications, such as myocardial ischemia-reperfusion injury. Furthermore, AMPK is an exciting therapeutic target for developing novel drug candidates to treat cell death in diabetes-associated myocardial ischemia-reperfusion injury. Therefore, in this review, we summarized how AMPK regulates autophagic, apoptotic, necroptotic, and ferroptosis pathways in the context of myocardial ischemia-reperfusion injury in the presence and absence of diabetes.
Collapse
|
17
|
Parmar UM, Jalgaonkar MP, Kulkarni YA, Oza MJ. Autophagy-nutrient sensing pathways in diabetic complications. Pharmacol Res 2022; 184:106408. [PMID: 35988870 DOI: 10.1016/j.phrs.2022.106408] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
The incidence of diabetes has been increasing in recent decades which is affecting the population of both, developed and developing countries. Diabetes is associated with micro and macrovascular complications which predominantly result from hyperglycemia and disrupted metabolic pathways. Persistent hyperglycemia leads to increased reactive oxygen species (ROS) generation, formation of misfolded and abnormal proteins, and disruption of normal cellular functioning. The inability to maintain metabolic homeostasis under excessive energy and nutrient input, which induces insulin resistance, is a crucial feature during the transition from obesity to diabetes. According to various study reports, redox alterations, intracellular stress and chronic inflammation responses have all been linked to dysregulated energy metabolism and insulin resistance. Autophagy has been considered a cleansing mechanism to prevent these anomalies and restore cellular homeostasis. However, disrupted autophagy has been linked to the pathogenesis of metabolic disorders such as obesity and diabetes. Recent studies have reported that the regulation of autophagy has a beneficial role against these conditions. When there is plenty of food, nutrient-sensing pathways activate anabolism and storage, but the shortage of food activates homeostatic mechanisms like autophagy, which mobilises internal stockpiles. These nutrient-sensing pathways are well conserved in eukaryotes and are involved in the regulation of autophagy which includes SIRT1, mTOR and AMPK. The current review focuses on the role of SIRT1, mTOR and AMPK in regulating autophagy and suggests autophagy along with these nutrient-sensing pathways as potential therapeutic targets in reducing the progression of various diabetic complications.
Collapse
Affiliation(s)
- Urvi M Parmar
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Manjiri P Jalgaonkar
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Manisha J Oza
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
18
|
The Beneficial Effects of Chinese Herbal Monomers on Ameliorating Diabetic Cardiomyopathy via Nrf2 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3959390. [PMID: 35656019 PMCID: PMC9155920 DOI: 10.1155/2022/3959390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 12/05/2022]
Abstract
Diabetic cardiomyopathy (DCM) is the main factor responsible for poor prognosis and survival in patients with diabetes. The highly complex pathogenesis of DCM involves multiple signaling pathways, including nuclear factor-κB (NF-κB) signaling pathway, adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, phosphatidylinositol 3-kinase-protein kinase B (Akt) signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and transforming growth factor-β (TGF-β) signaling pathway. Nuclear factor erythroid-2-related factor 2 (Nrf2) seems essential to the amelioration of the progression of DCM, not only through counterbalancing oxidative stress, but also through interacting with other signaling pathways to combat inflammation, the disorder in energy homeostasis and insulin signaling, and fibrosis. It has been evidenced that Chinese herbal monomers could attenuate DCM through the crosstalk of Nrf2 with other signaling pathways. This article has summarized the pathogenesis of DCM (especially in oxidative stress), the beneficial effects of ameliorating DCM via the Nrf2 signaling pathway and its crosstalk, and examples of Chinese herbal monomers. It will facilitate pharmacological research and development to promote the utilization of traditional Chinese medicine in DCM.
Collapse
|
19
|
Renguet E, De Loof M, Fourny N, Ginion A, Bouzin C, Poüs C, Horman S, Beauloye C, Bultot L, Bertrand L. α-Tubulin acetylation on Lysine 40 controls cardiac glucose uptake. Am J Physiol Heart Circ Physiol 2022; 322:H1032-H1043. [PMID: 35486479 DOI: 10.1152/ajpheart.00664.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Our group previously demonstrated that an excess of nutrients, as observed in diabetes, provokes an increase in cardiac protein acetylation responsible for a reduced insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane. The acetylated proteins involved in this event have yet not been identified. α-Tubulin is a promising candidate as a major cytoskeleton component involved, among other things, in the translocation of GLUT4-containing vesicles from their intracellular pools towards the plasma membrane. Moreover, α-tubulin is known to be acetylated, Lys40 (K40) being its best characterized acetylated residue. The present work sought to evaluate the impact of α-tubulin K40 acetylation on cardiac glucose entry, with a particular interest in GLUT4 translocation. First, we observed that a mouse model of high-fat diet-induced obesity presented an increase in cardiac α-tubulin K40 acetylation level. Next, we showed that treatment of insulin-sensitive primary cultured adult rat cardiomyocytes with tubacin, a specific tubulin acetylation inducer, reduced insulin-stimulated glucose uptake and GLUT4 translocation. Conversely, decreasing α-tubulin K40 acetylation by expressing a non-acetylable dominant form of α-tubulin (mCherry α-tubulin K40A mutant) remarkably intensified insulin-induced glucose transport. Finally, mCherry α-tubulin K40A expression similarly improved glucose transport in insulin-resistant cardiomyocytes or after AMP-activated protein kinase activation. Taken together, our study demonstrates that modulation of α-tubulin K40 acetylation level affects glucose transport in cardiomyocytes, offering new putative therapeutic insights regarding modulation of glucose metabolism in insulin-resistant and diabetic hearts.
Collapse
Affiliation(s)
- Edith Renguet
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Marine De Loof
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Natacha Fourny
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Audrey Ginion
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Caroline Bouzin
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, IREC Imaging Platform (2IP), Brussels, Belgium
| | - Christian Poüs
- Université Paris-Saclay, INSERM UMR-S-1193, Châtenay-Malabry, France; AP-HP, Biochimie-Hormonologie, Hôpital Antoine Béclère, Clamart, France
| | - Sandrine Horman
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Christophe Beauloye
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.,Cliniques Universitaires Saint-Luc, Division of Cardiology, Brussels, Belgium
| | - Laurent Bultot
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Luc Bertrand
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| |
Collapse
|
20
|
Abd El-Fattah EE, Saber S, Youssef ME, Eissa H, El-Ahwany E, Amin NA, Alqarni M, Batiha GES, Obaidullah AJ, Kaddah MMY, Ahmed Gaafar AG, Mourad AAE, Mostafa-Hedeab G, Abdelhamid AM. AKT-AMPKα-mTOR-dependent HIF-1α Activation is a New Therapeutic Target for Cancer Treatment: A Novel Approach to Repositioning the Antidiabetic Drug Sitagliptin for the Management of Hepatocellular Carcinoma. Front Pharmacol 2022; 12:720173. [PMID: 35095479 PMCID: PMC8790251 DOI: 10.3389/fphar.2021.720173] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
HIF-1α is a key factor promoting the development of hepatocellular carcinoma (HCC). As well, AKT-AMPKα-mTOR signaling is a promising target for cancer therapy. Yet, the AKT-AMPKα-mTOR-dependent activation of HIF-1α has not been studied in livers with HCC. In addition, the mechanisms underlying the potential antineoplastic effects of sitagliptin (STGPT), an antidiabetic agent, have not yet been elucidated. For that purpose, the N-nitrosodiethylamine (NDEA)-induced HCC mouse model was used in the present study using a dose of 100 mg/kg/week, i.p., for 8 weeks. NDEA-induced HCC mice received STGPT 20, 40, or 80 mg/kg starting on day 61 up to day 120. The present study revealed that STGPT inhibited HIF-1α activation via the interference with the AKT-AMPKα-mTOR axis and the interruption of IKKβ, P38α, and ERK1/2 signals as well. Accordingly, STGPT prolonged the survival, restored the histological features and improved liver function. Additionally, STGPT inhibited angiogenesis, as revealed by a significant downregulation in the VEGF and mRNA expression of CD309 with concomitant inhibition of tissue invasion was evident by an increased ratio of TIMP-1/MMP-2. STGPT exhibited apoptotic stimulatory effect as indicated upon calculating the BCL-2/Bax ratio and by the gene expression of p53. The decrease in AFP and liver index calculation, gene expression of Ki-67 confirmed the antiproliferative activity of STGPT. The anti-inflammatory potential was revealed by the decreased TNF-α level and the downregulation of MCP-1 gene expression. Moreover, an antifibrotic potential was supported by lower levels of TGF-β. These effects appear to be GLP1R-independent. The present study provides a potential basis for repurposing STGPT for the inhibition of HCC progression. Since STGPT is unlikely to cause hypoglycemia, it may be promising as monotherapy or adjuvant therapy to treat diabetic or even normoglycemic patients with HCC.
Collapse
Affiliation(s)
- Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Hanan Eissa
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Noha A Amin
- Department of Hematology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmad J Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab, Egypt
| | - Ahmed Gaafar Ahmed Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Ahmed A E Mourad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, Jouf, Saudi Arabia.,Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
21
|
Heidary Moghaddam R, Samimi Z, Asgary S, Mohammadi P, Hozeifi S, Hoseinzadeh-Chahkandak F, Xu S, Farzaei MH. Natural AMPK Activators in Cardiovascular Disease Prevention. Front Pharmacol 2022; 12:738420. [PMID: 35046800 PMCID: PMC8762275 DOI: 10.3389/fphar.2021.738420] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVD), as a life-threatening global disease, is receiving worldwide attention. Seeking novel therapeutic strategies and agents is of utmost importance to curb CVD. AMP-activated protein kinase (AMPK) activators derived from natural products are promising agents for cardiovascular drug development owning to regulatory effects on physiological processes and diverse cardiometabolic disorders. In the past decade, different therapeutic agents from natural products and herbal medicines have been explored as good templates of AMPK activators. Hereby, we overviewed the role of AMPK signaling in the cardiovascular system, as well as evidence implicating AMPK activators as potential therapeutic tools. In the present review, efforts have been made to compile and update relevant information from both preclinical and clinical studies, which investigated the role of natural products as AMPK activators in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Reza Heidary Moghaddam
- Clinical Research Development Center, Imam Ali and Taleghani Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Samimi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute,.Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Hozeifi
- School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Suowen Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
22
|
Sodium Glucose Cotransporter 1 (SGLT1) Inhibitors in Cardiovascular Protection: Mechanism Progresses and Challenges. Pharmacol Res 2021; 176:106049. [PMID: 34971725 DOI: 10.1016/j.phrs.2021.106049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022]
Abstract
In recent years, multiple clinical trials have shown that sodium glucose cotransporter 1 (SGLT1) inhibitors have significant beneficial cardiovascular effects. This includes reducing the incidence of cardiovascular deaths and heart failure hospitalizations in people with and without diabetes, as well as those with and without generalized heart failure. The exact mechanism responsible for these beneficial effects is not completely understood. To explain the cardiovascular protective effects of SGLT1 inhibitors, several potential arguments have been proposed, including decreasing oxidative stress, regulating cardiac glucose uptake, preventing ischemia/reperfusion injury, alleviating the activation of cardiac fibroblasts, attenuating apoptosis, reducing intermittent high glucose-induced pyroptosis, ameliorating cardiac hypertrophy, attenuating arrhythmic vulnerabilities, and improving left ventricular systolic disorder. This article reviews the advantages and disadvantages of these mechanisms, and attempts to synthesize and prioritize mechanisms related to the reduction of clinical events.
Collapse
|
23
|
Brito VB, Nascimento LVM, Moura DJ, Saffi J. Cardioprotective Effect of Maternal Supplementation with Resveratrol on Toxicity Induced by Doxorubicin in Offspring Cardiomyocytes. Arq Bras Cardiol 2021; 117:1147-1158. [PMID: 34644787 PMCID: PMC8757151 DOI: 10.36660/abc.20200752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/27/2021] [Indexed: 11/28/2022] Open
Abstract
Fundamento A doxorrubicina (DOX) é frequentemente usada para tratar muitos tipos de cânceres, apesar da cardiotoxicidade dose-dependente. Como alternativa, o resveratrol é um polifenol que tem demonstrado efeitos cardioprotetores em vários modelos de disfunção cardíaca. Objetivo Este estudo investigou se o tratamento com resveratrol em ratas gestantes protege contra toxicidade induzida por doxorrubicina em cardiomiócitos da ninhada. Métodos Ratas Wistar (n-8) receberam sresveratrol como suplemento alimentar durante a gestação. No nascimento da ninhada, os corações (9-11) foram usados para se obter a cultura primária de cardiomiócitos. A cardiotoxicidade induzida por DOX e os efeitos da suplementação com resveratrol foram avaliados por marcadores de stress oxidativo, tais como oxidação da diclorofluoresceína diacetato, diminuição da atividade de enzimas antioxidantes, e oxidação do teor total de grupos sulfidrila, além da avaliação da viabilidade celular, geração de danos ao DNA, bem como a resposta de reparo aos danos ao DNA. Um valor de p <0,05 foi considerado estatisticamente significativo. Resultados Os cardiomiócitos de neonatos de ratas que receberam suplemento resveratrol apresentaram um aumento (p <0,01) na viabilidade das células, e diminuição (p <0,0001) de células apoptóticas/necróticas após o tratamento com DOX, o que está correlacionado às atividades de enzimas antioxidantes e produção de diclorofluoresceína. Além disso, o resveratrol protegeu os cardiomiócitos de danos ao DNA induzidos por DOX, apresentando uma diminuição (p <0,05) nas quebras de DNA induzidas por stress oxidativo, avaliadas pela atividade de enzimas reparadoras do DNA endonuclease III e formamidopirimidina glicosilase. A suplementação com resveratrol aumentou (p <0,05) a expressão da proteína reparadora Sirt6 nos cardiomiócitos dos filhotes. Conclusão Essa pesquisa indica que a suplementação com resveratrol durante o período gestacional tem um efeito cardioprotetor no coração da ninhada contra a toxicidade induzida por DOX, o que pode se dever a sua função antioxidante, e o aumento na resposta de danos ao DNA.
Collapse
Affiliation(s)
- Verônica Bidinotto Brito
- Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre , RS - Brasil.,Faculdades Integradas de Taquara , Taquara , RS - Brasil
| | | | | | - Jenifer Saffi
- Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre , RS - Brasil
| |
Collapse
|
24
|
Prasad A, Mahmood A, Gupta R, Bisoyi P, Saleem N, Naga Prasad SV, Goswami SK. In cardiac muscle cells, both adrenergic agonists and antagonists induce reactive oxygen species from NOX2 but mutually attenuate each other's effects. Eur J Pharmacol 2021; 908:174350. [PMID: 34265295 DOI: 10.1016/j.ejphar.2021.174350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022]
Abstract
In cardiac muscle cells adrenergic agonists stimulate the generation of reactive oxygen species, followed by redox signaling. We postulated that the antagonists would attenuate such reactive oxygen species generation by the agonists. H9c2 cardiac myoblasts, neonatal rat cardiac myocytes, and HEK293 cells expressing β1/β2 adrenoceptors were stimulated with several agonists and antagonists. All the agonists and antagonists independently generated reactive oxygen species; but its generation was minimum whenever an agonists was added together with an antagonist. We monitored the Ca++ signaling in the treated cells and obtained similar results. In all treatment sets, superoxide and H2O2 were generated in the mitochondria and the cytosol respectively. NOX2 inhibitor gp91ds-tat blocked reactive oxygen species generation by both the agonists and the antagonists. The level of p47phox subunit of NOX2 rapidly increased upon treatment, and it translocated to the plasma membrane, confirming NOX2 activation. Inhibitor studies showed that the activation of NOX2 involves ERK, PI3K, and tyrosine kinases. Recombinant promoter-reporter assays showed that reactive oxygen species generated by both the agonists and antagonists modulated downstream gene expression. Mice injected with the β-adrenergic agonist isoproterenol and fed with the antagonist metoprolol showed a robust induction of p47phox in the heart. We conclude that both the agonism and antagonism of adrenoceptors initiate redox signaling but when added together, they mutually counteract each other's effects. Our study thus highlights the importance of reactive oxygen species in adrenoceptor agonism and antagonism with relevance to the therapeutic use of the β blockers.
Collapse
Affiliation(s)
- Anamika Prasad
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Amena Mahmood
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India; DDU-Kaushal Kendra, Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Padmini Bisoyi
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Nikhat Saleem
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Sathyamangla V Naga Prasad
- NB50, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
25
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying unidirectional laminar shear stress-mediated Nrf2 activation in endothelial cells: Amplification of low shear stress signaling by primary cilia. Redox Biol 2021; 46:102103. [PMID: 34425388 PMCID: PMC8379703 DOI: 10.1016/j.redox.2021.102103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells are sensitive to mechanical stress and respond differently to oscillatory flow versus unidirectional flow. This review highlights the mechanisms by which a wide range of unidirectional laminar shear stress induces activation of the redox sensitive antioxidant transcription factor nuclear factor-E2-related factor 2 (Nrf2) in cultured endothelial cells. We propose that fibroblast growth factor-2 (FGF-2), brain-derived neurotrophic factor (BDNF) and 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) are potential Nrf2 activators induced by laminar shear stress. Shear stress-dependent secretion of FGF-2 and its receptor-mediated signaling is tightly controlled, requiring neutrophil elastase released by shear stress, αvβ3 integrin and the cell surface glycocalyx. We speculate that primary cilia respond to low laminar shear stress (<10 dyn/cm2), resulting in secretion of insulin-like growth factor 1 (IGF-1), which facilitates αvβ3 integrin-dependent FGF-2 secretion. Shear stress induces generation of heparan-binding epidermal growth factor-like growth factor (HB-EGF), which contributes to FGF-2 secretion and gene expression. Furthermore, HB-EGF signaling modulates FGF-2-mediated NADPH oxidase 1 activation that favors casein kinase 2 (CK2)-mediated phosphorylation/activation of Nrf2 associated with caveolin 1 in caveolae. Higher shear stress (>15 dyn/cm2) induces vesicular exocytosis of BDNF from endothelial cells, and we propose that BDNF via the p75NTR receptor could induce CK2-mediated Nrf2 activation. Unidirectional laminar shear stress upregulates gene expression of FGF-2 and BDNF and generation of 15d-PGJ2, which cooperate in sustaining Nrf2 activation to protect endothelial cells against oxidative damage.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
26
|
Grimbert L, Sanz MN, Gressette M, Rucker-Martin C, Novotova M, Solgadi A, Karoui A, Gomez S, Bedouet K, Jacquet E, Lemaire C, Veksler V, Mericskay M, Ventura-Clapier R, Piquereau J, Garnier A. Spatiotemporal AMPKα2 deletion in mice induces cardiac dysfunction, fibrosis and cardiolipin remodeling associated with mitochondrial dysfunction in males only. Biol Sex Differ 2021; 12:52. [PMID: 34535195 PMCID: PMC8447586 DOI: 10.1186/s13293-021-00394-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background The AMP-activated protein kinase (AMPK) is a major regulator of cellular energetics which plays key role in acute metabolic response and in long-term adaptation to stress. Recent works have also suggested non-metabolic effects. Methods To decipher AMPK roles in the heart, we generated a cardio-specific inducible model of gene deletion of the main cardiac catalytic subunit of AMPK (Ampkα2) in mice. This allowed us to avoid the eventual impact of AMPK-KO in peripheral organs. Results Cardio-specific Ampkα2 deficiency led to a progressive left ventricular systolic dysfunction and the development of cardiac fibrosis in males. We observed a reduction in complex I-driven respiration without change in mitochondrial mass or in vitro complex I activity, associated with a rearrangement of the cardiolipins and reduced integration of complex I into the electron transport chain supercomplexes. Strikingly, none of these defects were present in females. Interestingly, suppression of estradiol signaling by ovariectomy partially mimicked the male sensitivity to AMPK loss, notably the cardiac fibrosis and the rearrangement of cardiolipins, but not the cardiac function that remained protected. Conclusion Our results confirm the close link between AMPK and cardiac mitochondrial function, but also highlight links with cardiac fibrosis. Importantly, we show that AMPK is differently involved in these processes in males and females, which may have clinical implications for the use of AMPK activators in the treatment of heart failure. AMPK is a metabolic sensor of cellular energy which regulates energy homeostasis. We generated a cardiac-specific inducible deletion of Ampkα2 and demonstrated that this deletion induces mild cardiac dysfunction in male only. Cardiac dysfunction observed in males was associated with cardiac fibrosis and cardiac cardiolipin remodeling that are not seen in females. Although no significant cardiac function alteration was noticed in ovariectomized female Ampkα2ciKO mice, these latter exhibited cardiac fibrosis and mild cardiolipins remodeling. Our results show a higher dependence on AMPK signaling fibrosis and cardiolipin biosynthesis/maturation in males, either due to the absence of female hormones protection or/and to the action of male hormones. This may contribute to the known difference in cardiovascular risk and outcome between sexes.
Collapse
Affiliation(s)
- Lucile Grimbert
- Faculté de Pharmacie, UMR-S1180, INSERM, Université Paris-Saclay, 5 rue J-B Clément, 92296, Châtenay-Malabry, France
| | - Maria-Nieves Sanz
- Faculté de Pharmacie, UMR-S1180, INSERM, Université Paris-Saclay, 5 rue J-B Clément, 92296, Châtenay-Malabry, France
| | - Mélanie Gressette
- Faculté de Pharmacie, UMR-S1180, INSERM, Université Paris-Saclay, 5 rue J-B Clément, 92296, Châtenay-Malabry, France
| | - Catherine Rucker-Martin
- Université Paris-Saclay, Inserm, Hypertension Artérielle Pulmonaire: Physiopathologie et Innovation Thérapeutique, 92350, Le Plessis Robinson, France
| | - Marta Novotova
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Audrey Solgadi
- Service d'Analyse des Médicaments et Métabolites, Université Paris-Saclay, Inserm, CNRS, Institut Paris Saclay d'Innovation Thérapeutique, 92296, Châtenay-Malabry, France
| | - Ahmed Karoui
- Faculté de Pharmacie, UMR-S1180, INSERM, Université Paris-Saclay, 5 rue J-B Clément, 92296, Châtenay-Malabry, France
| | - Susana Gomez
- Faculté de Pharmacie, UMR-S1180, INSERM, Université Paris-Saclay, 5 rue J-B Clément, 92296, Châtenay-Malabry, France
| | - Kaveen Bedouet
- Faculté de Pharmacie, UMR-S1180, INSERM, Université Paris-Saclay, 5 rue J-B Clément, 92296, Châtenay-Malabry, France
| | - Eric Jacquet
- Université Paris-Saclay, CNRS, Institut de Chimie Des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Christophe Lemaire
- Faculté de Pharmacie, UMR-S1180, INSERM, Université Paris-Saclay, 5 rue J-B Clément, 92296, Châtenay-Malabry, France.,Université Versailles St-Quentin, Université Paris-Saclay, Inserm, UMR-S 1180, 92296, Châtenay-Malabry, France
| | - Vladimir Veksler
- Faculté de Pharmacie, UMR-S1180, INSERM, Université Paris-Saclay, 5 rue J-B Clément, 92296, Châtenay-Malabry, France
| | - Mathias Mericskay
- Faculté de Pharmacie, UMR-S1180, INSERM, Université Paris-Saclay, 5 rue J-B Clément, 92296, Châtenay-Malabry, France
| | - Renée Ventura-Clapier
- Faculté de Pharmacie, UMR-S1180, INSERM, Université Paris-Saclay, 5 rue J-B Clément, 92296, Châtenay-Malabry, France
| | - Jérôme Piquereau
- Faculté de Pharmacie, UMR-S1180, INSERM, Université Paris-Saclay, 5 rue J-B Clément, 92296, Châtenay-Malabry, France.
| | - Anne Garnier
- Faculté de Pharmacie, UMR-S1180, INSERM, Université Paris-Saclay, 5 rue J-B Clément, 92296, Châtenay-Malabry, France
| |
Collapse
|
27
|
Guo C, Ye FX, Jian YH, Liu CH, Tu ZH, Yang DP. MicroRNA-214-5p aggravates sepsis-related acute kidney injury in mice. Drug Dev Res 2021; 83:339-350. [PMID: 34370322 DOI: 10.1002/ddr.21863] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI) is a devastating comorbidity in sepsis and correlates with a very poor prognosis and increased mortality. Currently, we use lipopolysaccharide (LPS) to establish sepsis-related AKI and try to demonstrate the pathophysiological role of microRNA-214-5p (miR-214-5p) in this process. Mice were intravenously injected with the miR-214-5p agomir, antagomir or negative controls for three consecutive days and then received a single intraperitoneal injection of LPS (10 mg/kg) for 24 h to induce AKI. Besides, the Boston University mouse proximal tubular cell lines were stimulated with LPS (10 μg/ml) for 8 h to investigate the role of miR-214-5p in vitro. To inhibit adenosine monophosphate-activated protein kinase (AMPK), compound C (CpC) was used in vivo. For glucagon-like peptide-1 receptor (GLP-1R) silence, cells were transfected with the small interfering RNA against GLP-1R. miR-214-5p level was upregulated in LPS-treated kidneys and proximal tubular cell lines. The miR-214-5p antagomir reduced LPS-induced renal inflammation and oxidative stress, thereby preventing renal damage and dysfunction. In contrast, the miR-214-5p agomir aggravated LPS-induced inflammation, oxidative stress and AKI in vivo and in vitro. Mechanistically, we found that the miR-214-5p antagomir prevented septic AKI via activating AMPK and that CpC treatment completely abrogated its renoprotective effect in mice. Further detection showed that miR-214-5p directly bound to the 3'-untranslational region of GLP-1R to inhibit GLP-1R/AMPK axis. Our data identify miR-214-5p as a promising therapeutic candidate to treat sepsis-related AKI.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang-Xiong Ye
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong-Hong Jian
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chun-Hua Liu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Hui Tu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ding-Ping Yang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Montiel V, Bella R, Michel LYM, Esfahani H, De Mulder D, Robinson EL, Deglasse JP, Tiburcy M, Chow PH, Jonas JC, Gilon P, Steinhorn B, Michel T, Beauloye C, Bertrand L, Farah C, Dei Zotti F, Debaix H, Bouzin C, Brusa D, Horman S, Vanoverschelde JL, Bergmann O, Gilis D, Rooman M, Ghigo A, Geninatti-Crich S, Yool A, Zimmermann WH, Roderick HL, Devuyst O, Balligand JL. Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Sci Transl Med 2021; 12:12/564/eaay2176. [PMID: 33028705 DOI: 10.1126/scitranslmed.aay2176] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/24/2019] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Abstract
Pathological remodeling of the myocardium has long been known to involve oxidant signaling, but strategies using systemic antioxidants have generally failed to prevent it. We sought to identify key regulators of oxidant-mediated cardiac hypertrophy amenable to targeted pharmacological therapy. Specific isoforms of the aquaporin water channels have been implicated in oxidant sensing, but their role in heart muscle is unknown. RNA sequencing from human cardiac myocytes revealed that the archetypal AQP1 is a major isoform. AQP1 expression correlates with the severity of hypertrophic remodeling in patients with aortic stenosis. The AQP1 channel was detected at the plasma membrane of human and mouse cardiac myocytes from hypertrophic hearts, where it colocalized with NADPH oxidase-2 and caveolin-3. We show that hydrogen peroxide (H2O2), produced extracellularly, is necessary for the hypertrophic response of isolated cardiac myocytes and that AQP1 facilitates the transmembrane transport of H2O2 through its water pore, resulting in activation of oxidant-sensitive kinases in cardiac myocytes. Structural analysis of the amino acid residues lining the water pore of AQP1 supports its permeation by H2O2 Deletion of Aqp1 or selective blockade of the AQP1 intrasubunit pore inhibited H2O2 transport in mouse and human cells and rescued the myocyte hypertrophy in human induced pluripotent stem cell-derived engineered heart muscle. Treatment of mice with a clinically approved AQP1 inhibitor, Bacopaside, attenuated cardiac hypertrophy. We conclude that cardiac hypertrophy is mediated by the transmembrane transport of H2O2 by the water channel AQP1 and that inhibitors of AQP1 represent new possibilities for treating hypertrophic cardiomyopathies.
Collapse
Affiliation(s)
- Virginie Montiel
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Ramona Bella
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Lauriane Y M Michel
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Hrag Esfahani
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Delphine De Mulder
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Emma L Robinson
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KULeuven, 3000 Leuven, Belgium
| | - Jean-Philippe Deglasse
- Institute of Experimental and Clinical Research (IREC), Endocrinology, Diabetes and Nutrition (EDIN), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, 37075 Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Pak Hin Chow
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Jean-Christophe Jonas
- Institute of Experimental and Clinical Research (IREC), Endocrinology, Diabetes and Nutrition (EDIN), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Patrick Gilon
- Institute of Experimental and Clinical Research (IREC), Endocrinology, Diabetes and Nutrition (EDIN), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Benjamin Steinhorn
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 2115, USA
| | - Thomas Michel
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 2115, USA
| | - Christophe Beauloye
- Institute of Experimental and Clinical Research (IREC), Pole of Cardiovascular Research (CARD), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Luc Bertrand
- Institute of Experimental and Clinical Research (IREC), Pole of Cardiovascular Research (CARD), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Charlotte Farah
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Flavia Dei Zotti
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Huguette Debaix
- Institute of Experimental and Clinical Research (IREC), Nephrology (NEFR), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.,Institute of Physiology, University of Zürich, CH 8057 Zürich, Switzerland
| | - Caroline Bouzin
- 2IP-IREC Imaging Platform, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Davide Brusa
- Flow Cytometry Platform, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Sandrine Horman
- Institute of Experimental and Clinical Research (IREC), Pole of Cardiovascular Research (CARD), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Jean-Louis Vanoverschelde
- Institute of Experimental and Clinical Research (IREC), Pole of Cardiovascular Research (CARD), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Olaf Bergmann
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01062 Dresden, Germany.,Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dimitri Gilis
- Computational Biology and Bioinformatics (3BIO-BioInfo), Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics (3BIO-BioInfo), Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Alessandra Ghigo
- Molecular Biotechnology Center, Università di Torino, 10124 Torino, Italy
| | | | - Andrea Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, 37075 Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KULeuven, 3000 Leuven, Belgium
| | - Olivier Devuyst
- Institute of Experimental and Clinical Research (IREC), Nephrology (NEFR), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.,Institute of Physiology, University of Zürich, CH 8057 Zürich, Switzerland
| | - Jean-Luc Balligand
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| |
Collapse
|
29
|
Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med 2021; 169:317-342. [PMID: 33910093 PMCID: PMC8285002 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Even in the absence of coronary artery disease and hypertension, diabetes mellitus (DM) may increase the risk for heart failure development. This risk evolves from functional and structural alterations induced by diabetes in the heart, a cardiac entity termed diabetic cardiomyopathy (DbCM). Oxidative stress, defined as the imbalance of reactive oxygen species (ROS) has been increasingly proposed to contribute to the development of DbCM. There are several sources of ROS production including the mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. Overproduction of ROS in DbCM is thought to be counterbalanced by elevated antioxidant defense enzymes such as catalase and superoxide dismutase. Excess ROS in the cardiomyocyte results in further ROS production, mitochondrial DNA damage, lipid peroxidation, post-translational modifications of proteins and ultimately cell death and cardiac dysfunction. Furthermore, ROS modulates transcription factors responsible for expression of antioxidant enzymes. Lastly, evidence exists that several pharmacological agents may convey cardiovascular benefit by antioxidant mechanisms. As such, increasing our understanding of the pathways that lead to increased ROS production and impaired antioxidant defense may enable the development of therapeutic strategies against the progression of DbCM. Herein, we review the current knowledge about causes and consequences of ROS in DbCM, as well as the therapeutic potential and strategies of targeting oxidative stress in the diabetic heart.
Collapse
Affiliation(s)
- Nikole J Byrne
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
30
|
Chen QQ, Wang FX, Cai YY, Zhang YK, Fang JK, Qi LW, Zhang L, Huang FQ. Untargeted metabolomics and lipidomics uncovering the cardioprotective effects of Huanglian Jiedu Decoction on pathological cardiac hypertrophy and remodeling. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113646. [PMID: 33264659 DOI: 10.1016/j.jep.2020.113646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classic herbal prescription, Huanglian Jiedu Decoction (HLJDD) exhibits positive effects against cardiac dysfunction. However, its cardioprotective effects and potential mechanism(s) of action still need to be systematically investigated. AIM OF THE STUDY This study aimed to reveal the underlying therapeutic mechanism of HLJDD on transverse aortic constriction (TAC)-induced pathological cardiac hypertrophy and remodeling. MATERIALS AND METHODS TAC-induced cardiac hypertrophy and remodeling mice model was established to evaluate the therapeutic effects of HLJDD. Serum untargeted metabolomics and lipidomic profiling were performed using ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry coupled with multivariate statistical analyses. RESULTS Oral administration of HLJDD (2.5 g/kg/day, 5.0 g/kg/day) significantly improved the heart morphology, enhanced the heart function, and alleviated the accumulation of fibrosis in the interstitial space and the infiltration of inflammatory cells in TAC-stimulated mice. Serum untargeted metabolomics analysis showed that significant alterations were observed in metabolic signatures between the TAC-model and sham group. Principal component analysis and orthogonal partial least-squares discriminant analysis screened 59 differential metabolic features and 13 metabolites were identified. The disturbed metabolic pathways in TAC group mainly related to lipid metabolism. Further serum lipidomic profiling showed that most lipids including cholesterol esters, ceramides, glycerides, fatty acids and phospholipids were decreased in TAC group and these alterations were reversed after HLJDD intervention. CONCLUSION HLJDD alleviates TAC-induced pathological cardiac hypertrophy and remodeling, and its potential therapeutic mechanism involves the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Qian-Qian Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Feng-Xiang Wang
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuan-Yuan Cai
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yan-Ke Zhang
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jing-Kai Fang
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Feng-Qing Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
31
|
Rodríguez C, Muñoz M, Contreras C, Prieto D. AMPK, metabolism, and vascular function. FEBS J 2021; 288:3746-3771. [PMID: 33825330 DOI: 10.1111/febs.15863] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/04/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress that plays a key role in maintaining energy homeostasis. This ubiquitous signaling pathway has been implicated in multiple functions including mitochondrial biogenesis, redox regulation, cell growth and proliferation, cell autophagy and inflammation. The protective role of AMPK in cardiovascular function and the involvement of dysfunctional AMPK in the pathogenesis of cardiovascular disease have been highlighted in recent years. In this review, we summarize and discuss the role of AMPK in the regulation of blood flow in response to metabolic demand and the basis of the AMPK physiological anticontractile, antioxidant, anti-inflammatory, and antiatherogenic actions in the vascular system. Investigations by others and us have demonstrated the key role of vascular AMPK in the regulation of endothelial function, redox homeostasis, and inflammation, in addition to its protective role in the hypoxia and ischemia/reperfusion injury. The pathophysiological implications of AMPK involvement in vascular function with regard to the vascular complications of metabolic disease and the therapeutic potential of AMPK activators are also discussed.
Collapse
Affiliation(s)
- Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
32
|
Marino A, Hausenloy DJ, Andreadou I, Horman S, Bertrand L, Beauloye C. AMP-activated protein kinase: A remarkable contributor to preserve a healthy heart against ROS injury. Free Radic Biol Med 2021; 166:238-254. [PMID: 33675956 DOI: 10.1016/j.freeradbiomed.2021.02.047] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
Heart failure is one of the leading causes of death and disability worldwide. Left ventricle remodeling, fibrosis, and ischemia/reperfusion injury all contribute to the deterioration of cardiac function and predispose to the onset of heart failure. Adenosine monophosphate-activated protein kinase (AMPK) is the universally recognized energy sensor which responds to low ATP levels and restores cellular metabolism. AMPK activation controls numerous cellular processes and, in the heart, it plays a pivotal role in preventing onset and progression of disease. Excessive reactive oxygen species (ROS) generation, known as oxidative stress, can activate AMPK, conferring an additional role of AMPK as a redox-sensor. In this review, we discuss recent insights into the crosstalk between ROS and AMPK. We describe the molecular mechanisms by which ROS activate AMPK and how AMPK signaling can further prevent heart failure progression. Ultimately, we review the potential therapeutic approaches to target AMPK for the treatment of cardiovascular disease and prevention of heart failure.
Collapse
Affiliation(s)
- Alice Marino
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, UK; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Division of Cardiology, Cliniques universitaires Saint Luc, Brussels, Belgium.
| |
Collapse
|
33
|
Tsai KL, Hsieh PL, Chou WC, Cheng HC, Huang YT, Chan SH. Dapagliflozin attenuates hypoxia/reoxygenation-caused cardiac dysfunction and oxidative damage through modulation of AMPK. Cell Biosci 2021; 11:44. [PMID: 33637129 PMCID: PMC7913252 DOI: 10.1186/s13578-021-00547-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/30/2021] [Indexed: 11/16/2022] Open
Abstract
Background Emerging evidence demonstrated dapagliflozin (DAPA), a sodium-glucose cotransporter 2 inhibitor, prevented various cardiovascular events. However, the detailed mechanisms underlying its cardioprotective properties remained largely unknown. Results In the present study, we sought to investigate the effects of DAPA on the cardiac ischemia/reperfusion (I/R) injury. Results from in vitro experiments showed that DAPA induced the phosphorylation of AMPK, resulting in the downregulation of PKC in the cardiac myoblast H9c2 cells following hypoxia/reoxygenation (H/R) condition. We demonstrated that DAPA treatment diminished the H/R-elicited oxidative stress via the AMPK/ PKC/ NADPH oxidase pathway. In addition, DAPA prevented the H/R-induced abnormality of PGC-1α expression, mitochondrial membrane potential, and mitochondrial DNA copy number through AMPK/ PKC/ NADPH oxidase signaling. Besides, DAPA reversed the H/R-induced apoptosis. Furthermore, we demonstrated that DAPA improved the I/R-induced cardiac dysfunction by echocardiography and abrogated the I/R-elicited apoptosis in the myocardium of rats. Also, the administration of DAPA mitigated the production of myocardial infarction markers. Conclusions In conclusion, our data suggested that DAPA treatment holds the potential to ameliorate the I/R-elicited oxidative stress and the following cardiac apoptosis via modulation of AMPK, which attenuates the cardiac dysfunction caused by I/R injury.
Collapse
Affiliation(s)
- Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wan-Ching Chou
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ching Cheng
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ting Huang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Hung Chan
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
34
|
Ferté L, Marino A, Battault S, Bultot L, Van Steenbergen A, Bol A, Cumps J, Ginion A, Koepsell H, Dumoutier L, Hue L, Horman S, Bertrand L, Beauloye C. New insight in understanding the contribution of SGLT1 in cardiac glucose uptake: evidence for a truncated form in mice and humans. Am J Physiol Heart Circ Physiol 2021; 320:H838-H853. [PMID: 33416451 PMCID: PMC8082801 DOI: 10.1152/ajpheart.00736.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/10/2023]
Abstract
Although sodium glucose cotransporter 1 (SGLT1) has been identified as one of the major SGLT isoforms expressed in the heart, its exact role remains elusive. Evidence using phlorizin, the most common inhibitor of SGLTs, has suggested its role in glucose transport. However, phlorizin could also affect classical facilitated diffusion via glucose transporters (GLUTs), bringing into question the relevance of SGLT1 in overall cardiac glucose uptake. Accordingly, we assessed the contribution of SGLT1 in cardiac glucose uptake using the SGLT1 knockout mouse model, which lacks exon 1. Glucose uptake was similar in cardiomyocytes isolated from SGLT1-knockout (Δex1KO) and control littermate (WT) mice either under basal state, insulin, or hyperglycemia. Similarly, in vivo basal and insulin-stimulated cardiac glucose transport measured by micro-PET scan technology did not differ between WT and Δex1KO mice. Micromolar concentrations of phlorizin had no impact on glucose uptake in either isolated WT or Δex1KO-derived cardiomyocytes. However, higher concentrations (1 mM) completely inhibited insulin-stimulated glucose transport without affecting insulin signaling nor GLUT4 translocation independently from cardiomyocyte genotype. Interestingly, we discovered that mouse and human hearts expressed a shorter slc5a1 transcript, leading to SGLT1 protein lacking transmembrane domains and residues involved in glucose and sodium bindings. In conclusion, cardiac SGLT1 does not contribute to overall glucose uptake, probably due to the expression of slc5a1 transcript variant. The inhibitory effect of phlorizin on cardiac glucose uptake is SGLT1-independent and can be explained by GLUT transporter inhibition. These data open new perspectives in understanding the role of SGLT1 in the heart.NEW & NOTEWORTHY Ever since the discovery of its expression in the heart, SGLT1 has been considered as similar as the intestine and a potential contributor to cardiac glucose transport. For the first time, we have demonstrated that a slc5a1 transcript variant is present in the heart that has no significant impact on cardiac glucose handling.
Collapse
Affiliation(s)
- Laura Ferté
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Alice Marino
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Sylvain Battault
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Laurent Bultot
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Anne Van Steenbergen
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Anne Bol
- Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Julien Cumps
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Audrey Ginion
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius von Sachs Institute, University of Würzburg, Würzburg, Germany
| | - Laure Dumoutier
- Médecine Expérimentale, Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Louis Hue
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
35
|
Cortassa S, Juhaszova M, Aon MA, Zorov DB, Sollott SJ. Mitochondrial Ca 2+, redox environment and ROS emission in heart failure: Two sides of the same coin? J Mol Cell Cardiol 2021; 151:113-125. [PMID: 33301801 PMCID: PMC7880885 DOI: 10.1016/j.yjmcc.2020.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/05/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is a progressive, debilitating condition characterized, in part, by altered ionic equilibria, increased ROS production and impaired cellular energy metabolism, contributing to variable profiles of systolic and diastolic dysfunction with significant functional limitations and risk of premature death. We summarize current knowledge concerning changes of intracellular Na+ and Ca2+ control mechanisms during the disease progression and their consequences on mitochondrial Ca2+ homeostasis and the shift in redox balance. Absent existing biological data, our computational modeling studies advance a new 'in silico' analysis to reconcile existing opposing views, based on different experimental HF models, regarding variations in mitochondrial Ca2+ concentration that participate in triggering and perpetuating oxidative stress in the failing heart and their impact on cardiac energetics. In agreement with our hypothesis and the literature, model simulations demonstrate the possibility that the heart's redox status together with cytoplasmic Na+ concentrations act as regulators of mitochondrial Ca2+ levels in HF and of the bioenergetics response that will ultimately drive ATP supply and oxidative stress. The resulting model predictions propose future directions to study the evolution of HF as well as other types of heart disease, and to develop novel testable mechanistic hypotheses that may lead to improved therapeutics.
Collapse
Affiliation(s)
- Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States.
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States.
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States; Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States.
| | - Dmitry B Zorov
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States.
| |
Collapse
|
36
|
Empagliflozin and Liraglutide Differentially Modulate Cardiac Metabolism in Diabetic Cardiomyopathy in Rats. Int J Mol Sci 2021; 22:ijms22031177. [PMID: 33503985 PMCID: PMC7865477 DOI: 10.3390/ijms22031177] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Glucagon-like peptide 1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) are antihyperglycemic agents with cardioprotective properties against diabetic cardiomyopathy (DCM). However, the distinctive mechanisms underlying GLP-1RAs and SGLT2is in DCM are not fully elucidated. The purpose of this study was to investigate the impacts of GLP1RAs and/or SGLT2is on myocardial energy metabolism, cardiac function, and apoptosis signaling in DCM. Biochemistry and echocardiograms were studied before and after treatment with empagliflozin (10 mg/kg/day, oral gavage), and/or liraglutide (200 μg/kg every 12 h, subcutaneously) for 4 weeks in male Wistar rats with streptozotocin (65 mg/kg intraperitoneally)-induced diabetes. Cardiac fibrosis, apoptosis, and protein expression of metabolic and inflammatory signaling molecules were evaluated by histopathology and Western blotting in ventricular cardiomyocytes of different groups. Empagliflozin and liraglutide normalized myocardial dysfunction in diabetic rats. Upregulation of phosphorylated-acetyl coenzyme A carboxylase, carnitine palmitoyltransferase 1β, cluster of differentiation 36, and peroxisome proliferator-activated receptor-gamma coactivator, and downregulation of glucose transporter 4, the ratio of phosphorylated adenosine monophosphate-activated protein kinase α2 to adenosine monophosphate-activated protein kinase α2, and the ratio of phosphorylated protein kinase B to protein kinase B in diabetic cardiomyocytes were restored by treatment with empagliflozin or liraglutide. Nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3, interleukin-1β, tumor necrosis factor-α, and cleaved caspase-1 were significantly downregulated in empagliflozin-treated and liraglutide-treated diabetic rats. Both empagliflozin-treated and liraglutide-treated diabetic rats exhibited attenuated myocardial fibrosis and apoptosis. Empagliflozin modulated fatty acid and glucose metabolism, while liraglutide regulated inflammation and apoptosis in DCM. The better effects of combined treatment with GLP-1RAs and SGLT2is may lead to a potential strategy targeting DCM.
Collapse
|
37
|
Liu J, Sun X, Jin H, Yan XL, Huang S, Guo ZN, Yang Y. Remote ischemic conditioning: A potential therapeutic strategy of type 2 diabetes. Med Hypotheses 2020; 146:110409. [PMID: 33277103 DOI: 10.1016/j.mehy.2020.110409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/12/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2D) is one of the major public diseases which is characterized by peripheral insulin resistance (IR) and progressive pancreatic β-cell failure. While in the past few years, some new factors, such as inflammation, oxidative stress, immune responses and other potential pathways, have been identified to play critical roles in T2D, and thereby provide novel promising targets for the treatment of T2D. Remote ischemic conditioning (RIC) is a non-invasive and convenient operation performed by transient, repeated ischemia in distant place. Nowadays, RIC has been established as a potentially powerful therapeutic tool for many diseases, especially in I/R injuries. Through activating a series of neural, humoral and immune pathways, it can release multiple protective signals, which then regulating inflammation, oxidative stress, immune response and so on. Interestingly, several recent studies have discovered that the beneficial effects of RIC on I/R injuries might be abolished by T2D, wherein the higher basal levels of inflammation and oxidative stress, dysregulation of immune system and some potential pathways secondary to hyperglycemia may play critical roles. In contrast, a higher intensity of conditioning could restore the protective effects. Based on the overlapped mechanisms RIC and T2D performs, we provide a hypothesis that RIC may also play a protective role in T2D via targeting these signaling pathways.
Collapse
Affiliation(s)
- Jie Liu
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China; China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, No. 1 Xinmin Street, Changchun 130021, China
| | - Xin Sun
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China; China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
| | - Hang Jin
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China; China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
| | - Xiu-Li Yan
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
| | - Shuo Huang
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China; China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, No. 1 Xinmin Street, Changchun 130021, China
| | - Zhen-Ni Guo
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China; China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, No. 1 Xinmin Street, Changchun 130021, China.
| | - Yi Yang
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China; China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, No. 1 Xinmin Street, Changchun 130021, China.
| |
Collapse
|
38
|
Battault S, Renguet E, Van Steenbergen A, Horman S, Beauloye C, Bertrand L. Myocardial glucotoxicity: Mechanisms and potential therapeutic targets. Arch Cardiovasc Dis 2020; 113:736-748. [PMID: 33189592 DOI: 10.1016/j.acvd.2020.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Besides coronary artery disease, which remains the main cause of heart failure in patients with diabetes, factors independent of coronary artery disease are involved in the development of heart failure in the onset of what is called diabetic cardiomyopathy. Among them, hyperglycaemia - a hallmark of type 2 diabetes - has both acute and chronic deleterious effects on myocardial function, and clearly participates in the establishment of diabetic cardiomyopathy. In the present review, we summarize the cellular and tissular events that occur in a heart exposed to hyperglycaemia, and depict the complex molecular mechanisms proposed to be involved in glucotoxicity. Finally, from a more translational perspective, different therapeutic strategies targeting hyperglycaemia-mediated molecular mechanisms will be detailed.
Collapse
Affiliation(s)
- Sylvain Battault
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Edith Renguet
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Anne Van Steenbergen
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Sandrine Horman
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Christophe Beauloye
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium; Division of cardiology, Cliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium.
| | - Luc Bertrand
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium; WELBIO, B-1300 Wavre, Belgium.
| |
Collapse
|
39
|
Lee MH, Kim HM, Chung HC, Lee JH. Licorice extract suppresses adipogenesis through regulation of mitotic clonal expansion and adenosine monophosphate-activated protein kinase in 3T3-L1 cells. J Food Biochem 2020; 44:e13528. [PMID: 33051883 DOI: 10.1111/jfbc.13528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Licorice, the root of Glycyrrhiza glabra, has been observed to possess an anti-obesity effect. Previous research has suggested that licorice acetone extract (LE) has an influence on mitotic clonal expansion (MCE) and adenosine monophosphate-activated protein kinase (AMPK), which play a key role in regulating adipogenesis. This study sought further insight into the molecular mechanism of LE's anti-obesity effect using 3T3-L1 adipocytes in vitro. LE inhibited 3T3-L1 adipogenesis, and the inhibitory effect of LE on adipogenesis was most significant in the early stage of adipogenic differentiation. LE inhibited the protein expression of cyclins and cyclin-dependent kinases in the MCE stage and arrested cells in the G1 phase of the cell cycle. Furthermore, it activated AMPK via phosphorylation. Moreover, the expression levels of lipid metabolism-related genes were regulated by LE. These findings suggest the anti-obesity effect of LE via MCE and AMPK regulation. PRACTICAL APPLICATIONS: Although the anti-obesity effects of licorice have been studied, the application of functional food-related anti-obesity effects of licorice has been less than that of other extracts. The present study increases the reliability of the anti-obesity effect of licorice by suggesting a new mechanism of action and expands the application of functional foods related to the anti-obesity effect of licorice. A new mechanistic insight will not only improve the scientific knowledge but will also help to predict the side effects of licorice's anti-obesity application.
Collapse
Affiliation(s)
- Mun-Hoe Lee
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul, Republic of Korea
| | - Hyeong-Min Kim
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul, Republic of Korea
| | - Hee-Chul Chung
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul, Republic of Korea
| | - Jin-Hee Lee
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul, Republic of Korea
| |
Collapse
|
40
|
Schubert M, Hansen S, Leefmann J, Guan K. Repurposing Antidiabetic Drugs for Cardiovascular Disease. Front Physiol 2020; 11:568632. [PMID: 33041865 PMCID: PMC7522553 DOI: 10.3389/fphys.2020.568632] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic diseases and diabetes represent an increasing global challenge for human health care. As associated with a strongly elevated risk of developing atherosclerosis, kidney failure and death from myocardial infarction or stroke, the treatment of diabetes requires a more effective approach than lowering blood glucose levels. This review summarizes the evidence for the cardioprotective benefits induced by antidiabetic agents, including sodium-glucose cotransporter 2 inhibitor (SGLT2i) and glucagon-like peptide-1 receptor agonist (GLP1-RA), along with sometimes conversely discussed effects of dipeptidyl peptidase-4 inhibitor (DPP4i) and metformin in patients with high cardiovascular risk with or without type 2 diabetes. Moreover, the proposed mechanisms of the different drugs are described based on the results of preclinical studies. Recent cardiovascular outcome trials unexpectedly confirmed a beneficial effect of GLP-1RA and SGLT2i in type 2 diabetes patients with high cardiovascular risk and with standard care, which was independent of glycaemic control. These results triggered a plethora of studies to clarify the underlying mechanisms and the relevance of these effects. Taken together, the available data strongly highlight the potential of repurposing the original antidiabetics GLP1-RA and SGLT2i to improve cardiovascular outcome even in non-diabetic patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Mario Schubert
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Sinah Hansen
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Julian Leefmann
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
41
|
Rahman SO, Kaundal M, Salman M, Shrivastava A, Parvez S, Panda BP, Akhter M, Akhtar M, Najmi AK. Alogliptin reversed hippocampal insulin resistance in an amyloid-beta fibrils induced animal model of Alzheimer's disease. Eur J Pharmacol 2020; 889:173522. [PMID: 32866503 DOI: 10.1016/j.ejphar.2020.173522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022]
Abstract
The complications of Alzheimer's disease (AD) have made the development of its treatment a challenging task. Several studies have indicated the disruption of insulin receptor substrate-1 (IRS-1) signaling during the development and progression of AD. The role of a dipeptidyl peptidase-4 (DPP-4) inhibitor on hippocampal IRS-1 signaling has not been investigated before. In this study, we evaluated the efficacy of alogliptin (DPP-4 inhibitor) on hippocampal insulin resistance and associated AD complications. In the present study, amyloid-β (1-42) fibrils were produced and administered intrahippocampally for inducing AD in Wistar rats. After 7 days of surgery, rats were treated with 10 and 20 mg/kg of alogliptin for 28 days. Morris water maze (MWM) test was performed in the last week of our experimental study. Post 24 h of final treatment, rats were euthanized and hippocampi were separated for biochemical and histopathological investigations. In-silico analysis revealed that alogliptin has a good binding affinity with Aβ and beta-secretase-1 (BACE-1). Alogliptin significantly restored cognitive functions in Aβ (1-42) fibrils injected rats during the MWM test. Alogliptin also significantly attenuated insulin level, IRS-1pS307 expression, Aβ (1-42) level, GSK-3β activity, TNF-α level and oxidative stress in the hippocampus. The histopathological analysis supported alogliptin mediated neuroprotective and anti-amyloidogenic effect. Immunohistochemical analysis also revealed a reduction in IRS-1pS307 expression after alogliptin treatment. The in-silico, behavioral, biochemical and histopathological analysis supports the protective effect of alogliptin against hippocampal insulin resistance and AD.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Madhu Kaundal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Apeksha Shrivastava
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Bibhu Prasad Panda
- Pharmaceutical Biotechnology Laboratory, Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
42
|
Bertrand L, Auquier J, Renguet E, Angé M, Cumps J, Horman S, Beauloye C. Glucose transporters in cardiovascular system in health and disease. Pflugers Arch 2020; 472:1385-1399. [PMID: 32809061 DOI: 10.1007/s00424-020-02444-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
Glucose transporters are essential for the heart to sustain its function. Due to its nature as a high energy-consuming organ, the heart needs to catabolize a huge quantity of metabolic substrates. For optimized energy production, the healthy heart constantly switches between various metabolites in accordance with substrate availability and hormonal status. This metabolic flexibility is essential for the maintenance of cardiac function. Glucose is part of the main substrates catabolized by the heart and its use is fine-tuned via complex molecular mechanisms that include the regulation of the glucose transporters GLUTs, mainly GLUT4 and GLUT1. Besides GLUTs, glucose can also be transported by cotransporters of the sodium-glucose cotransporter (SGLT) (SLC5 gene) family, in which SGLT1 and SMIT1 were shown to be expressed in the heart. This SGLT-mediated uptake does not seem to be directly linked to energy production but is rather associated with intracellular signalling triggering important processes such as the production of reactive oxygen species. Glucose transport is markedly affected in cardiac diseases such as cardiac hypertrophy, diabetic cardiomyopathy and heart failure. These alterations are not only fingerprints of these diseases but are involved in their onset and progression. The present review will depict the importance of glucose transport in healthy and diseased heart, as well as proposed therapies targeting glucose transporters.
Collapse
Affiliation(s)
- Luc Bertrand
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium.
| | - Julien Auquier
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Edith Renguet
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Marine Angé
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Julien Cumps
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Sandrine Horman
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Christophe Beauloye
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
43
|
The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? Mol Biol Rep 2020; 47:5587-5620. [PMID: 32564227 DOI: 10.1007/s11033-020-05590-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Nitro-oxidative stress and lowered antioxidant defences play a key role in neuropsychiatric disorders such as major depression, bipolar disorder and schizophrenia. The first part of this paper details mitochondrial antioxidant mechanisms and their importance in reactive oxygen species (ROS) detoxification, including details of NO networks, the roles of H2O2 and the thioredoxin/peroxiredoxin system, and the relationship between mitochondrial respiration and NADPH production. The second part highlights and identifies the causes of the multiple pathological sequelae arising from self-amplifying increases in mitochondrial ROS production and bioenergetic failure. Particular attention is paid to NAD+ depletion as a core cause of pathology; detrimental effects of raised ROS and reactive nitrogen species on ATP and NADPH generation; detrimental effects of oxidative and nitrosative stress on the glutathione and thioredoxin systems; and the NAD+-induced signalling cascade, including the roles of SIRT1, SIRT3, PGC-1α, the FOXO family of transcription factors, Nrf1 and Nrf2. The third part discusses proposed therapeutic interventions aimed at mitigating such pathology, including the use of the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside, both of which rapidly elevate levels of NAD+ in the brain and periphery following oral administration; coenzyme Q10 which, when given with the aim of improving mitochondrial function and reducing nitro-oxidative stress in the brain, may be administered via the use of mitoquinone, which is in essence ubiquinone with an attached triphenylphosphonium cation; and N-acetylcysteine, which is associated with improved mitochondrial function in the brain and produces significant decreases in oxidative and nitrosative stress in a dose-dependent manner.
Collapse
|
44
|
Wang C, Zhu L, Yuan W, Sun L, Xia Z, Zhang Z, Yao W. Diabetes aggravates myocardial ischaemia reperfusion injury via activating Nox2-related programmed cell death in an AMPK-dependent manner. J Cell Mol Med 2020; 24:6670-6679. [PMID: 32351005 PMCID: PMC7299688 DOI: 10.1111/jcmm.15318] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases such as myocardial ischaemia have a high fatality rate in patients with diabetes. This study was designed to expose the crosstalk between oxidative stress and AMPK, a vital molecule that controls biological energy metabolism, in myocardial ischaemia reperfusion injury (I/RI) in diabetic rats. Diabetes was stimulated in rats using streptozotocin injection. Rats were separated on random into control, control + I/R, Diabetes, Diabetes + I/R, Diabetes + I/R + N-acetylcysteine and Diabetes + I/R + Vas2870 groups. Myocardial infarct size was determined, and the predominant Nox family isoforms were analysed. In vitro, the H9C2 cells were administered excess glucose and exposed to hypoxia/reoxygenation to mimic diabetes and I/R. The AMPK siRNA or AICAR was used to inhibit or activate AMPK expression in H9C2 cells, respectively. Then, myocardial oxidative stress and programmed cell death were measured. Diabetes or high glucose levels were found to aggravate myocardial I/RI or hypoxia/reoxygenation in H9C2 cells, as demonstrated by an increase in myocardial infarct size or lactate dehydrogenase levels, oxidative stress generation and induction of programmed cell death. In diabetic rat hearts, cardiac Nox1, Nox2 and Nox4 were all heightened. The suppression of Nox2 expression using Vas2870 or Nox2-siRNA treatment in vivo or in vitro, respectively, protected diabetic rats from myocardial I/RI. AMPK gene knockout increased Nox2 protein expression while AMPK agonist decreased Nox2 expression. Therefore, diabetes aggravates myocardial I/RI by generating of Nox2-associated oxidative stress in an AMPK-dependent manner, which led to the induction of programmed cell death such as apoptosis, pyroptosis and ferroptosis.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of AnesthesiologyShenzhen People's Hospital and Shenzhen Anesthesiology Engineering CenterThe Second Clinical Medical College of Jinan UniversityShenzhenChina
- Department of PathophysiologySchool of MedicineShenzhen UniversityShenzhenChina
| | - Lijie Zhu
- Department of AnesthesiologyShenzhen People's Hospital and Shenzhen Anesthesiology Engineering CenterThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Wenlin Yuan
- Department of AnesthesiologyShenzhen People's Hospital and Shenzhen Anesthesiology Engineering CenterThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Lingbin Sun
- Department of AnesthesiologyShenzhen People's Hospital and Shenzhen Anesthesiology Engineering CenterThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Zhengyuan Xia
- Department of AnesthesiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Zhongjun Zhang
- Department of AnesthesiologyShenzhen People's Hospital and Shenzhen Anesthesiology Engineering CenterThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Weifeng Yao
- Department of AnesthesiologyThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
45
|
Rodríguez C, Contreras C, Sáenz-Medina J, Muñoz M, Corbacho C, Carballido J, García-Sacristán A, Hernandez M, López M, Rivera L, Prieto D. Activation of the AMP-related kinase (AMPK) induces renal vasodilatation and downregulates Nox-derived reactive oxygen species (ROS) generation. Redox Biol 2020. [PMID: 32470915 DOI: 10.1016/j.redox.2020.101575.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress to stimulate ATP production pathways and restore homeostasis. AMPK is widely expressed in the kidney and involved in mitochondrial protection and biogenesis upon acute renal ischemia, AMPK activity being blunted in metabolic disease-associated kidney disease. Since little is known about AMPK in the regulation of renal blood flow, the present study aimed to assess the role of AMPK in renal vascular function. Functional responses to the selective AMPK activator A769662 were assessed in intrarenal small arteries isolated from the kidney of renal tumour patients and Wistar rats and mounted in microvascular myographs to perform simultaneous measurements of intracellular calcium [Ca2+]i and tension. Superoxide (O2.-) and hydrogen peroxide (H2O2) production were measured by chemiluminescence and fluorescence and protein expression by Western blot. Activation of AMPK with A769662 increased AMPKα phosphorylation at Thr-172 and induced potent relaxations compared to AICAR in isolated human and rat intrarenal arteries, through both endothelium-dependent mechanisms involving nitric oxide (NO) and intermediate-conductance calcium-activated potassium (IKCa) channels, as well as activation of ATP-sensitive (KATP) channels and sarcoplasmic reticulum Ca2+-ATPase (SERCA) in vascular smooth muscle (VSM). Furthermore, AMPK activator reduced NADPH oxidase 4 (Nox4) and Nox2-derived reactive oxygen species (ROS) production. These results demonstrate that A769662 has potent vasodilator and antioxidant effects in intrarenal arteries. The benefits of AMPK activation in rat kidney are reproduced in human arteries and therefore vascular AMPK activation might be a therapeutic target in the treatment of metabolic disease-associated kidney injury.
Collapse
Affiliation(s)
- Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - César Corbacho
- Departamento de Anatomía Patológica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Joaquín Carballido
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | | | - Medardo Hernandez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, Universidad de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
46
|
Activation of the AMP-related kinase (AMPK) induces renal vasodilatation and downregulates Nox-derived reactive oxygen species (ROS) generation. Redox Biol 2020; 34:101575. [PMID: 32470915 PMCID: PMC7256643 DOI: 10.1016/j.redox.2020.101575] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress to stimulate ATP production pathways and restore homeostasis. AMPK is widely expressed in the kidney and involved in mitochondrial protection and biogenesis upon acute renal ischemia, AMPK activity being blunted in metabolic disease-associated kidney disease. Since little is known about AMPK in the regulation of renal blood flow, the present study aimed to assess the role of AMPK in renal vascular function. Functional responses to the selective AMPK activator A769662 were assessed in intrarenal small arteries isolated from the kidney of renal tumour patients and Wistar rats and mounted in microvascular myographs to perform simultaneous measurements of intracellular calcium [Ca2+]i and tension. Superoxide (O2.-) and hydrogen peroxide (H2O2) production were measured by chemiluminescence and fluorescence and protein expression by Western blot. Activation of AMPK with A769662 increased AMPKα phosphorylation at Thr-172 and induced potent relaxations compared to AICAR in isolated human and rat intrarenal arteries, through both endothelium-dependent mechanisms involving nitric oxide (NO) and intermediate-conductance calcium-activated potassium (IKCa) channels, as well as activation of ATP-sensitive (KATP) channels and sarcoplasmic reticulum Ca2+-ATPase (SERCA) in vascular smooth muscle (VSM). Furthermore, AMPK activator reduced NADPH oxidase 4 (Nox4) and Nox2-derived reactive oxygen species (ROS) production. These results demonstrate that A769662 has potent vasodilator and antioxidant effects in intrarenal arteries. The benefits of AMPK activation in rat kidney are reproduced in human arteries and therefore vascular AMPK activation might be a therapeutic target in the treatment of metabolic disease-associated kidney injury.
Collapse
|
47
|
Okabe K, Matsushima S, Ikeda S, Ikeda M, Ishikita A, Tadokoro T, Enzan N, Yamamoto T, Sada M, Deguchi H, Shinohara K, Ide T, Tsutsui H. DPP (Dipeptidyl Peptidase)-4 Inhibitor Attenuates Ang II (Angiotensin II)-Induced Cardiac Hypertrophy via GLP (Glucagon-Like Peptide)-1-Dependent Suppression of Nox (Nicotinamide Adenine Dinucleotide Phosphate Oxidase) 4-HDAC (Histone Deacetylase) 4 Pathway. Hypertension 2020; 75:991-1001. [PMID: 32160098 DOI: 10.1161/hypertensionaha.119.14400] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nox4 (NADPH [Nicotinamide adenine dinucleotide phosphate] oxidase 4) is a major source of oxidative stress and is intimately involved in cardiac hypertrophy. DPP (Dipeptidyl peptidase)-4 inhibitor has been reported to regulate Nox4 expression in adipose tissues. However, its effects on Nox4 in cardiac hypertrophy are still unclear. We investigated whether DPP-4 inhibitor could ameliorate cardiac hypertrophy by regulating Nox4 and its downstream targets. Ang II (Angiotensin II; 1.44 mg/kg per day) or saline was continuously infused into C57BL/6J mice with or without teneligliptin (a DPP-4 inhibitor, 30 mg/kg per day) in the drinking water for 1 week. Teneligliptin significantly suppressed plasma DPP-4 activity without any significant changing aortic blood pressure or metabolic parameters such as blood glucose and insulin levels. It attenuated Ang II-induced increases in left ventricular wall thickness and the ratio of heart weight to body weight. It also significantly suppressed Ang II-induced increases in Nox4 mRNA, 4-hydroxy-2-nonenal, and phosphorylation of HDAC4 (histone deacetylase 4), a downstream target of Nox4 and a crucial suppressor of cardiac hypertrophy, in the heart. Exendin-3 (150 pmol/kg per minute), a GLP-1 (glucagon-like peptide 1) receptor antagonist, abrogated these inhibitory effects of teneligliptin on Nox4, 4-hydroxy-2-nonenal, phosphorylation of HDAC4, and cardiac hypertrophy. In cultured neonatal cardiomyocytes, exendin-4 (100 nmol/L, 24 hours), a GLP-1 receptor agonist, ameliorated Ang II-induced cardiomyocyte hypertrophy and decreased in Nox4, 4-hydroxy-2-nonenal, and phosphorylation of HDAC4. Furthermore, exendin-4 prevented Ang II-induced decrease in nuclear HDAC4 in cardiomyocytes. In conclusion, GLP-1 receptor stimulation by DPP-4 inhibitor can attenuate Ang II-induced cardiac hypertrophy by suppressing of the Nox4-HDAC4 axis in cardiomyocytes.
Collapse
Affiliation(s)
- Kosuke Okabe
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.M.)
| | - Soichiro Ikeda
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Masataka Ikeda
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Akihito Ishikita
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Tomonori Tadokoro
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Nobuyuki Enzan
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Taishi Yamamoto
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Masashi Sada
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Hiroko Deguchi
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Keisuke Shinohara
- Department of Experimental and Clinical Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Japan (K.S., T.I.)
| | - Tomomi Ide
- Department of Experimental and Clinical Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Japan (K.S., T.I.)
| | - Hiroyuki Tsutsui
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| |
Collapse
|
48
|
Dubois-Deruy E, Gelinas R, Beauloye C, Esfahani H, Michel LYM, Dessy C, Bertrand L, Balligand JL. Beta 3 adrenoreceptors protect from hypertrophic remodelling through AMP-activated protein kinase and autophagy. ESC Heart Fail 2020; 7:920-932. [PMID: 32154661 PMCID: PMC7261558 DOI: 10.1002/ehf2.12648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
Aims The abundance of beta 3‐adrenergic receptors (β3‐ARs) is upregulated in diseased human myocardium. We previously showed that cardiac‐specific expression of β3‐AR inhibits the hypertrophic response to neurohormonal stimulation. Here, we further analysed signalling pathways involved in the anti‐hypertrophic effect of β3‐AR. Methods and results In vitro hypertrophic responses to phenylephrine (PE) were analysed in neonatal rat ventricular myocytes (NRVM) infected with a recombinant adenovirus expressing the human β3‐AR (AdVhβ3). We confirmed results in mice with cardiomyocyte‐specific moderate expression of human β3‐AR (β3‐TG) and wild‐type (WT) littermates submitted to thoracic transverse aortic constriction (TAC) for 9 weeks. We observed a colocalization of β3‐AR with the AMP‐activated protein kinase (AMPK) both in neonatal rat and in adult mouse cardiomyocytes. Treatment of NRVM with PE induced hypertrophy and a decrease in phosphorylation of Thr172‐AMPK (/2, P = 0.0487) and phosphorylation of Ser79‐acetyl‐CoA carboxylase (ACC) (/2.6, P = 0.0317), inducing an increase in phosphorylated Ser235/236 S6 protein (×2.5, P = 0.0367) known to be involved in protein synthesis. These effects were reproduced by TAC in WT mice but restored to basal levels in β3‐AR expressing cells/mice. siRNA targeting of AMPK partly abrogated the anti‐hypertrophic effect of β3‐AR in response to PE in NRVM. Concomitant with hypertrophy, autophagy was decreased by PE, as measured by microtubule‐associated protein 1 light chain 3 (LC3)‐II/LC3‐I ratio (/2.6, P = 0.0010) and p62 abundance (×3, P = 0.0016) in NRVM or by TAC in WT mice (LC3‐II/LC3‐I ratio: /5.4, P = 0.0159), but preserved in human β3‐AR expressing cells and mice, together with reduced hypertrophy. Conclusions Cardiac‐specific moderate expression of β3‐AR inhibits the hypertrophic response in part through AMPK activation followed by inhibition of protein synthesis and preservation of autophagy. Activation of the cardiac β3‐AR pathway may provide future therapeutic avenues for the modulation of hypertrophic remodelling.
Collapse
Affiliation(s)
- Emilie Dubois-Deruy
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, B1.57.04, 57 Avenue Hippocrate, Brussels, 1200, Belgium
| | - Roselle Gelinas
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Cardiovascular Pathology (CARD), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christophe Beauloye
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Cardiovascular Pathology (CARD), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Hrag Esfahani
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, B1.57.04, 57 Avenue Hippocrate, Brussels, 1200, Belgium
| | - Lauriane Y M Michel
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, B1.57.04, 57 Avenue Hippocrate, Brussels, 1200, Belgium
| | - Chantal Dessy
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, B1.57.04, 57 Avenue Hippocrate, Brussels, 1200, Belgium
| | - Luc Bertrand
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Cardiovascular Pathology (CARD), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Luc Balligand
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, B1.57.04, 57 Avenue Hippocrate, Brussels, 1200, Belgium
| |
Collapse
|
49
|
Angé M, Castanares-Zapatero D, Bertrand L, Horman S, Beauloye C. Role of AMP-activated protein kinase in sepsis-induced cardiovascular dysfunction. Am J Physiol Heart Circ Physiol 2020; 316:H934-H935. [PMID: 30946604 DOI: 10.1152/ajpheart.00015.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Marine Angé
- Pole de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels , Belgium
| | - Diego Castanares-Zapatero
- Pole de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels , Belgium.,Division of Intensive Care, Cliniques Universitaires Saint Luc, Brussels , Belgium
| | - Luc Bertrand
- Pole de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels , Belgium
| | - Sandrine Horman
- Pole de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels , Belgium
| | - Christophe Beauloye
- Pole de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels , Belgium.,Division of Cardiology, Cliniques Universitaires Saint Luc, Brussels , Belgium
| |
Collapse
|
50
|
FGF21 Protects Dopaminergic Neurons in Parkinson's Disease Models Via Repression of Neuroinflammation. Neurotox Res 2020; 37:616-627. [PMID: 31997152 DOI: 10.1007/s12640-019-00151-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factor21 (FGF21), a member of the FGF family, plays multiple biological functions including anti-inflammation, anti-oxidative stress, and anti-apoptosis. It has been shown that FGF21 protects cells from acute injury in several kinds of cells such as islet β-cells, endothelial cells, cardiomyocytes, and dopaminergic neurons. However, whether FGF21 plays neuroprotective roles against Parkinsonian syndrome in vivo has not been elucidated. Our results showed that FGF21 markedly improves cell survival in MPP+-treated SH-SY5Y cells and primary dopaminergic neurons. Furthermore, we treated MPTP-induced Parkinson's disease (PD) model mice with the recombinant FGF21 via intranasal pathway. The results showed that FGF21 treatment significantly improves behavioral performances and prevents tyrosine hydroxylase (TH) loss in the substantia nigra par compacta (SNpc) and striatum. Mechanistically, FGF21 stimulates the AMPK/PGC-1α axis to promote mitochondrial functions. Moreover, FGF21 attenuates microglia and astrocyte activation induced by MPTP, leading to a low level of inflammation in the brain. Our data indicate that FGF21 prevents dopaminergic neuron loss and shows beneficial effects against MPTP-induced PD syndrome in mice, indicating it might be a potent candidate for developing novel drugs to deal with PD.
Collapse
|