1
|
Montero M, Rajaram PS, Zamora Alvarado JE, McCloskey KE, Baxter RD, Andresen Eguiluz RC. Cannabidiol Toxicity Driven by Hydroxyquinone Formation. Chem Res Toxicol 2025; 38:231-235. [PMID: 39880402 PMCID: PMC11837211 DOI: 10.1021/acs.chemrestox.4c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Oxidative byproducts of cannabidiol (CBD) are known to be cytotoxic. However, CBD susceptibility to oxidation and resulting toxicity dissolved in two common solvents, ethanol (EtOH) and dimethyl sulfoxide (DMSO), is seldom discussed. Furthermore, CBD products contain a wide range of concentrations, making it challenging to link general health risks associated with CBD cytotoxicity. Here, we report on the effect of CBD and CBD analogues dissolved in EtOH or DMSO at various concentrations. The cells used in these studies were human umbilical vascular endothelial cells (HUVECs). Our findings show significant CBD oxidation to cannabidiol-quinone (CBD-Q) and subsequent cytotoxicity, occurring at 10 μM concentration, regardless of the solution delivery vehicle. Moreover, a new analogue of CBD, cannabidiol-diacetate (CBD-DA), exhibits significantly more stability and reduced toxicity compared with CBD or CBD-Q, respectively. This knowledge is important for determining concentration-dependent health risks of complex cannabinoid mixtures and establishing legal limits.
Collapse
Affiliation(s)
- Metzli
I. Montero
- Materials
and Biomaterials Science and Engineering Graduate Program, Chemistry Graduate
Program, Chemical and Materials Engineering, Chemistry and Biochemistry, Health Sciences Research Institute, University of California Merced, 5200 N. Lake Road, Merced, California 95344, United States
| | - Pravien S. Rajaram
- Materials
and Biomaterials Science and Engineering Graduate Program, Chemistry Graduate
Program, Chemical and Materials Engineering, Chemistry and Biochemistry, Health Sciences Research Institute, University of California Merced, 5200 N. Lake Road, Merced, California 95344, United States
| | - Jose E. Zamora Alvarado
- Materials
and Biomaterials Science and Engineering Graduate Program, Chemistry Graduate
Program, Chemical and Materials Engineering, Chemistry and Biochemistry, Health Sciences Research Institute, University of California Merced, 5200 N. Lake Road, Merced, California 95344, United States
| | - Kara E. McCloskey
- Materials
and Biomaterials Science and Engineering Graduate Program, Chemistry Graduate
Program, Chemical and Materials Engineering, Chemistry and Biochemistry, Health Sciences Research Institute, University of California Merced, 5200 N. Lake Road, Merced, California 95344, United States
| | - Ryan D. Baxter
- Materials
and Biomaterials Science and Engineering Graduate Program, Chemistry Graduate
Program, Chemical and Materials Engineering, Chemistry and Biochemistry, Health Sciences Research Institute, University of California Merced, 5200 N. Lake Road, Merced, California 95344, United States
| | - Roberto C. Andresen Eguiluz
- Materials
and Biomaterials Science and Engineering Graduate Program, Chemistry Graduate
Program, Chemical and Materials Engineering, Chemistry and Biochemistry, Health Sciences Research Institute, University of California Merced, 5200 N. Lake Road, Merced, California 95344, United States
| |
Collapse
|
2
|
Blessing E, Teichmann E, Hinz B. Anandamide Inhibits Vascular Smooth Muscle Migration, Endothelial Adhesion Protein Expression and Monocyte Adhesion of Human Coronary Artery Cells. Cells 2024; 13:2108. [PMID: 39768198 PMCID: PMC11727187 DOI: 10.3390/cells13242108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Endocannabinoids have been shown to play a complex role in the pathophysiology of a number of cardiovascular disorders. In the present study, the effects of the two major endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were investigated in human coronary artery smooth muscle cells (HCASMC) and human coronary artery endothelial cells (HCAEC) with regard to potential atheroprotective and anti-inflammatory effects. In HCASMC, AEA showed an inhibitory effect on platelet-derived growth factor-induced migration, but not proliferation, independent of major cannabinoid-activatable receptors (CB1, CB2, TRPV1), while 2-AG left both responses unaffected. In HCAEC, AEA at concentrations of 6 and 10 µM significantly inhibited the interleukin (IL)-1β- and lipopolysaccharide (LPS)-stimulated expression of vascular cell adhesion molecule-1 (VCAM-1) and LPS-induced intercellular adhesion molecule-1 (ICAM-1), again independently of the abovementioned receptors. Corresponding effects were observed to a lesser extent in the presence of 2-AG, in most cases not significantly. The detection of activated phosphoproteins as well as experiments with inhibitors of corresponding signaling pathways suggest that AEA interferes with IL-1β-induced VCAM-1 expression via inhibition of protein kinase B/Akt and Src kinase activation and attenuates LPS-induced VCAM-1 and ICAM-1 expression via inhibition of signal transducer and activator of transcription 3 (STAT3) phosphorylation. As expected, AEA also led to a significant inhibition of monocyte adhesion to IL-1β- and LPS-stimulated HCAEC, with siRNA experiments confirming the functional role of VCAM-1 and ICAM-1 in this assay. 2-AG showed a comparatively weaker but, in the case of LPS stimulation, still significant inhibition of adhesion. In summary, the results emphasize the potential of AEA as a protective regulator of atherosclerotic and inflammation-related changes in HCASMC and HCAEC and encourage further corresponding preclinical studies with this endocannabinoid.
Collapse
Affiliation(s)
| | | | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (E.B.)
| |
Collapse
|
3
|
Pędzińska-Betiuk A, Gergs U, Weresa J, Remiszewski P, Harasim-Symbor E, Malinowska B. Comparison of Cardioprotective Potential of Cannabidiol and β-Adrenergic Stimulation Against Hypoxia/Reoxygenation Injury in Rat Atria and Ventricular Papillary Muscles. Pharmaceuticals (Basel) 2024; 17:1379. [PMID: 39459019 PMCID: PMC11509923 DOI: 10.3390/ph17101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Hypoxia is one of the most significant pathogenic factors in cardiovascular diseases. Preclinical studies suggest that nonpsychoactive cannabidiol (CBD) and β-adrenoceptor stimulation might possess cardioprotective potential against ischemia-reperfusion injury. The current study evaluates the influence of hypoxia-reoxygenation (H/R) on the function of atria and ventricular papillary muscles in the presence of CBD and the nonselective β-adrenoceptor agonist isoprenaline (ISO). METHODS The concentration curves for ISO were constructed in the presence of CBD (1 µM) before or after H/R. In chronic experiments (CBD 10 mg/kg, 14 days), the left atria isolated from spontaneously hypertensive (SHR) and their normotensive control (WKY) rats were subjected to H/R following ISO administration. RESULTS Hypoxia decreased the rate and force of contractions in all compartments. The right atria were the most resistant to hypoxia regardless of prior β-adrenergic stimulation. Previous β-adrenergic stimulation improved recovery in isolated left atria and right (but not left) papillary muscles. Acute (but not chronic) CBD administration increased the effects of ISO in left atria and right (but not left) papillary muscles. Hypertension accelerates left atrial recovery during reoxygenation. CONCLUSIONS H/R directly modifies the function of particular cardiac compartments in a manner dependent on cardiac region and β-adrenergic prestimulation. The moderate direct cardioprotective potential of CBD and β-adrenergic stimulation against H/R is dependent on the cardiac region, and it is less than in the whole heart with preserved coronary flow. In clinical terms, our research expands the existing knowledge about the impact of cannabidiol on cardiac ischemia, the world's leading cause of death.
Collapse
Affiliation(s)
- Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany;
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| | - Patryk Remiszewski
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| |
Collapse
|
4
|
Anvari Aliabad R, Hassanpour K, Norooznezhad AH. Cannabidiol as a possible treatment for endometriosis through suppression of inflammation and angiogenesis. Immun Inflamm Dis 2024; 12:e1370. [PMID: 39110084 PMCID: PMC11304901 DOI: 10.1002/iid3.1370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Endometriosis is associated with a wide variety of signs and symptoms and can lead to infertility, embryo death, and even miscarriage. Although the exact pathogenesis and etiology of endometriosis is still unclear, it has been shown that it has a chronic inflammatory nature and angiogenesis is also involved in it. OBJECTIVE This review aims to explore the role of inflammation and angiogenesis in endometriosis and suggest a potential treatment targeting these pathways. FINDINGS Among the pro-inflammatory cytokines, studies have shown solid roles for interleukin 1β (IL-β), IL-6, and tumor necrosis factor α (TNF-α) in the pathogenesis of this condition. Other than inflammation, angiogenesis, the formation of new blood vessels from pre-existing capillaries, is also involved in the pathogenesis of endometriosis. Among angiogenic factors, vascular endothelial growth factor (VEGF), hypoxia-inducible factor 1α (HIF-1α), transforming growth factor β1 (TGF-β1), and matrix metalloproteinases (MMPs) are more essential in the pathogenesis of endometriosis. Interestingly, it has been shown that inflammation and angiogenesis share some similar pathways with each other that could be potentially targeted for treatment of diseases caused by these two processes. Cannabidiol (CBD) is a non-psychoactive member of cannabinoids which has well-known and notable anti-inflammatory and antiangiogenic properties. This agent has been shown to decrease IL-1β, IL-6, TNF-α, VEGF, TGFβ, and MMPs in different animal models of diseases. CONCLUSION It seems that CBD could be a possible treatment for endometriosis due to its anti-inflammatory and antiangiogenic activity, however, further studies are needed.
Collapse
Affiliation(s)
| | - Kamyab Hassanpour
- School of Medicine, Hamadan University of Medical SciencesHamadanIran
| | - Amir Hossein Norooznezhad
- Medical Biology Research Center, Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
5
|
Naya NM, Kelly J, Hogwood A, Abbate A, Toldo S. Therapeutic potential of cannabidiol (CBD) in the treatment of cardiovascular diseases. Expert Opin Investig Drugs 2024; 33:699-712. [PMID: 38703078 DOI: 10.1080/13543784.2024.2351513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Cannabidiol (CBD) is the primary non-psychoactive chemical derived from Cannabis Sativa, and its growing popularity is due to its potential therapeutic properties while avoiding the psychotropic effects of other phytocannabinoids, such as tetrahydrocannabinol (THC). Numerous pre-clinical studies in cellular and animal models and human clinical trials have demonstrated a positive impact of CBD on physiological and pathological processes. Recently, the FDA approved its use for the treatment of seizures, and clinical trials to test the efficacy of CBD in myocarditis and pericarditis are ongoing. AREAS COVERED We herein reviewed the current literature on the reported effects of CBD in the cardiovascular system, highlighting the physiological effects and the outcomes of using CBD as a therapeutic tool in pathological conditions to address this significant global health concern. EXPERT OPINION The comprehensive examination of the literature emphasizes the potential of CBD as a therapeutic option for treating cardiovascular diseases through its anti-inflammatory, vasodilatory, anti-fibrotic, and antioxidant properties in different conditions such as diabetic cardiomyopathy, myocarditis, doxorubicin-induced cardiotoxicity, and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Austin Hogwood
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
6
|
Echeverria-Villalobos M, Guevara Y, Mitchell J, Ryskamp D, Conner J, Bush M, Periel L, Uribe A, Weaver TE. Potential perioperative cardiovascular outcomes in cannabis/cannabinoid users. A call for caution. Front Cardiovasc Med 2024; 11:1343549. [PMID: 38978789 PMCID: PMC11228818 DOI: 10.3389/fcvm.2024.1343549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/15/2024] [Indexed: 07/10/2024] Open
Abstract
Background Cannabis is one of the most widely used psychoactive substances. Its components act through several pathways, producing a myriad of side effects, of which cardiovascular events are the most life-threatening. However, only a limited number of studies address cannabis's perioperative impact on patients during noncardiac surgery. Methods Studies were identified by searching the PubMed, Medline, EMBASE, and Google Scholar databases using relevant keyword combinations pertinent to the topic. Results Current evidence shows that cannabis use may cause several cardiovascular events, including abnormalities in cardiac rhythm, myocardial infarction, heart failure, and cerebrovascular events. Additionally, cannabis interacts with anticoagulants and antiplatelet agents, decreasing their efficacy. Finally, the interplay of cannabis with inhalational and intravenous anesthetic agents may lead to adverse perioperative cardiovascular outcomes. Conclusions The use of cannabis can trigger cardiovascular events that may depend on factors such as the duration of consumption, the route of administration of the drug, and the dose consumed, which places these patients at risk of drug-drug interactions with anesthetic agents. However, large prospective randomized clinical trials are needed to further elucidate gaps in the body of knowledge regarding which patient population has a greater risk of perioperative complications after cannabis consumption.
Collapse
Affiliation(s)
| | - Yosira Guevara
- Department of Anesthesiology, St Elizabeth’s Medical Center, Brighton, MA, United States
| | - Justin Mitchell
- Department of Anesthesiology & Perioperative Medicine, UCLA Medical Center, Los Angeles, CA, United States
| | - David Ryskamp
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Joshua Conner
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Margo Bush
- University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States
| | - Luis Periel
- Touro College of Osteopathic Medicine, New York, NW, United States
| | - Alberto Uribe
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Tristan E. Weaver
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
7
|
Topsakal S, Ozmen O, Karakuyu NF, Bedir M, Sancer O. Cannabidiol Mitigates Lipopolysaccharide-Induced Pancreatic Pathology: A Promising Therapeutic Strategy. Cannabis Cannabinoid Res 2024; 9:809-818. [PMID: 37903028 DOI: 10.1089/can.2023.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Background: Lipopolysaccharides (LPSs) are a component of certain types of bacteria and can induce an inflammatory response in the body, including in the pancreas. Cannabidiol (CBD), a nonpsychoactive compound found in cannabis, has been shown to have anti-inflammatory effects and may offer potential therapeutic benefits for conditions involving inflammation and damage. The aim of this study was to investigate any potential preventative effects of CBD on experimental LPS-induced pancreatic pathology in rats. Materials and Methods: Thirty-two rats were randomly divided into four groups as control, LPS (5 mg/kg, intraperitoneally [i.p.]), LPS+CBD, and CBD (5 mg/kg, i.p.) groups. Six hours after administering LPS, the rats were euthanized, and blood and pancreatic tissue samples were taken for biochemical, polymerase chain reaction (PCR), histopathological, and immunohistochemical examinations. Results: The results indicated that LPS decreased serum glucose levels and increased lipase levels. It also caused severe hyperemia, increased vacuolization in endocrine cells, edema, and slight inflammatory cell infiltrations at the histopathological examination. Insulin and amylin expressions decreased during immunohistochemical analyses. At the PCR analysis, Silent Information Regulator 2 homolog 1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha expressions decreased and tumor protein p53 expressions increased in the LPS group. CBD improved the biochemical, PCR, histopathological, and immunohistochemical results. Conclusions: The findings of the current investigation demonstrated that LPS damages both the endocrine and exocrine pancreas. However, CBD demonstrated marked ameliorative effects in the pancreas in LPS induced rat model pancreatitis.
Collapse
Affiliation(s)
- Senay Topsakal
- Department of Endocrinology and Metabolism, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Nasif Fatih Karakuyu
- Department of Pharmacology, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet Bedir
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Okan Sancer
- Genetic Research Unit, Innovative Technologies Application and Research Center, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
8
|
Galpayage Dona KNU, Benmassaoud MM, Gipson CD, McLaughlin JP, Ramirez SH, Andrews AM. Something to talk about; crosstalk disruption at the neurovascular unit during HIV infection of the CNS. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:97-111. [PMID: 39958876 PMCID: PMC11823645 DOI: 10.1515/nipt-2024-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/11/2024] [Indexed: 02/18/2025]
Abstract
Although treatable with antiretroviral therapy, HIV infection persists in people living with HIV (PLWH). It is well known that the HIV virus finds refuge in places for which antiretroviral medications do not reach therapeutic levels, mainly the CNS. It is clear that as PLWH age, the likelihood of developing HIV-associated neurological deficits increases. At the biochemical level neurological dysfunction is the manifestation of altered cellular function and ineffective intercellular communication. In this review, we examine how intercellular signaling in the brain is disrupted in the context of HIV. Specifically, the concept of how the blood-brain barrier can be a convergence point for crosstalk, is explored. Crosstalk between the cells of the neurovascular unit (NVU) (endothelium, pericytes, astrocytes, microglia and neurons) is critical for maintaining proper brain function. In fact, the NVU allows for rapid matching of neuronal metabolic needs, regulation of blood-brain barrier (BBB) dynamics for nutrient transport and changes to the level of immunosurveillance. This review invites the reader to conceptually consider the BBB as a router or convergence point for NVU crosstalk, to facilitate a better understanding of the intricate signaling events that underpin the function of the NVU during HIV associated neuropathology.
Collapse
Affiliation(s)
- Kalpani N. Udeni Galpayage Dona
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mohammed M. Benmassaoud
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Cassandra D. Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Servio H. Ramirez
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Allison M. Andrews
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Rakha A, Rasheed H, Altemimi AB, Tul-Muntaha S, Fatima I, Butt MS, Hussain S, Bhat ZF, Mousavi Khaneghah A, Aadil RM. Tapping the nutraceutical potential of industrial hemp against arthritis and diabetes - A comprehensive review. FOOD BIOSCI 2024; 59:104195. [DOI: 10.1016/j.fbio.2024.104195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Pollak U, Avniel-Aran A, Binshtok AM, Bar-Yosef O, Bronicki RA, Checchia PA, Finkelstein Y. Exploring the Possible Role of Cannabinoids in Managing Post-cardiac Surgery Complications: A Narrative Review of Preclinical Evidence and a Call for Future Research Directions. J Cardiovasc Pharmacol 2024; 83:537-546. [PMID: 38498618 DOI: 10.1097/fjc.0000000000001560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
ABSTRACT Open-heart surgery with cardiopulmonary bypass often leads to complications including pain, systemic inflammation, and organ damage. Traditionally managed with opioids, these pain relief methods bring potential long-term risks, prompting the exploration of alternative treatments. The legalization of cannabis in various regions has reignited interest in cannabinoids, such as cannabidiol, known for their anti-inflammatory, analgesic, and neuroprotective properties. Historical and ongoing research acknowledges the endocannabinoid system's crucial role in managing physiological processes, suggesting that cannabinoids could offer therapeutic benefits in postsurgical recovery. Specifically, cannabidiol has shown promise in managing pain, moderating immune responses, and mitigating ischemia/reperfusion injury, underscoring its potential in postoperative care. However, the translation of these findings into clinical practice faces challenges, highlighting the need for extensive research to establish effective, safe cannabinoid-based therapies for patients undergoing open-heart surgery. This narrative review advocates for a balanced approach, considering both the therapeutic potential of cannabinoids and the complexities of their integration into clinical settings.
Collapse
Affiliation(s)
- Uri Pollak
- Section of Pediatric Critical Care, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Avniel-Aran
- Section of Pediatric Critical Care, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Omer Bar-Yosef
- Pediatric Neurology and Child Development, The Edmond and Lily Safra Children's Hospital, The Chaim Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronald A Bronicki
- Department of Pediatrics, Critical Care Medicine and Cardiology, Baylor College of Medicine, Houston, TX
- Pediatric Cardiovascular Intensive Care Unit, Texas Children's Hospital, Houston, TX
| | - Paul A Checchia
- Department of Pediatrics, Critical Care Medicine and Cardiology, Baylor College of Medicine, Houston, TX
- Pediatric Cardiovascular Intensive Care Unit, Texas Children's Hospital, Houston, TX
| | - Yaron Finkelstein
- Division of Emergency Medicine, Faculty of Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; and
- Division of Clinical Pharmacology and Toxicology, Faculty of Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Nasta TZ, Tabandeh MR, Amini K, Abbasi A, Dayer D, Jalili C. The influence of indole propionic acid on molecular markers of steroidogenesis, ER stress, and apoptosis in rat granulosa cells exposed to high glucose conditions. J Steroid Biochem Mol Biol 2024; 240:106509. [PMID: 38508473 DOI: 10.1016/j.jsbmb.2024.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Hyperglycemia is known as one of the main causes of infertility in human societies. Indole propionic acid (IPA) is produced by intestinal microbiota and has antioxidant and anti-inflammatory properties. This study aims to investigate the effects of IPA on molecular indices of steroidogenesis, ER stress, and apoptosis induced by high glucose (HG) in granulosa cells. Primary GCs, isolated from ovarian follicles of Rats were cultured in 5 mM (control) and 30 mM (HG) of glucose and in the presence of 10 and 20 µM of IPA for 24 h. The cell viability was assessed by MTT. The gene expression of P450SCC, 3βHSD, CYP19A, BAX, BCL2, and STAR was evaluated by Real-Time PCR. Protein expression of ATF6, PERK, GRP78, and CHOP determined by western blot. Progesterone, estradiol, IL-1β, and TNF-α were measured by ELISA. HG decreased the viability, and expression of P450SCC, 3βHSD, CYP19A, BCL2, STAR, and increased BAX. 10 and 20 µM of IPA increased cell viability, expression of P450SCC, 3βHSD, CYP19A, BCL2 and STAR and decreased BAX compared to the HG group. The expression of ATF6, PERK, GRP78, and CHOP proteins increased by HG and IPA decreased the expression of these proteins compared to the HG group. Also, HG decreased progesterone and estradiol levels and increased IL-1β and TNF-α. IPA significantly increased progesterone and estradiol and decreased IL-1β and TNF-α compared to the HG group. IPA can improve the side effects of HG in GCs of rats, as responsible cells for fertility, by improving steroidogenesis, regulation of ER-stress pathway, suppression of inflammation, and apoptosis.
Collapse
Affiliation(s)
- Touraj Zamir Nasta
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Komail Amini
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
12
|
Jordan EN, Shirali Hossein Zade R, Pillay S, van Lent P, Abeel T, Kayser O. Integrated omics of Saccharomyces cerevisiae CENPK2-1C reveals pleiotropic drug resistance and lipidomic adaptations to cannabidiol. NPJ Syst Biol Appl 2024; 10:63. [PMID: 38821949 PMCID: PMC11143246 DOI: 10.1038/s41540-024-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Yeast metabolism can be engineered to produce xenobiotic compounds, such as cannabinoids, the principal isoprenoids of the plant Cannabis sativa, through heterologous metabolic pathways. However, yeast cell factories continue to have low cannabinoid production. This study employed an integrated omics approach to investigate the physiological effects of cannabidiol on S. cerevisiae CENPK2-1C yeast cultures. We treated the experimental group with 0.5 mM CBD and monitored CENPK2-1C cultures. We observed a latent-stationary phase post-diauxic shift in the experimental group and harvested samples in the inflection point of this growth phase for transcriptomic and metabolomic analysis. We compared the transcriptomes of the CBD-treated yeast and the positive control, identifying eight significantly overexpressed genes with a log fold change of at least 1.5 and a significant adjusted p-value. Three notable genes were PDR5 (an ABC-steroid and cation transporter), CIS1, and YGR035C. These genes are all regulated by pleiotropic drug resistance linked promoters. Knockout and rescue of PDR5 showed that it is a causal factor in the post-diauxic shift phenotype. Metabolomic analysis revealed 48 significant spectra associated with CBD-fed cell pellets, 20 of which were identifiable as non-CBD compounds, including fatty acids, glycerophospholipids, and phosphate-salvage indicators. Our results suggest that mitochondrial regulation and lipidomic remodeling play a role in yeast's response to CBD, which are employed in tandem with pleiotropic drug resistance (PDR). We conclude that bioengineers should account for off-target product C-flux, energy use from ABC-transport, and post-stationary phase cell growth when developing cannabinoid-biosynthetic yeast strains.
Collapse
Affiliation(s)
- Erin Noel Jordan
- Technical Biochemistry, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany.
| | - Ramin Shirali Hossein Zade
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephanie Pillay
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
| | - Paul van Lent
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Oliver Kayser
- Technical Biochemistry, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany.
| |
Collapse
|
13
|
Zagórska-Dziok M, Nowak A, Zgadzaj A, Oledzka E, Kędra K, Wiącek AE, Sobczak M. New Polymeric Hydrogels with Cannabidiol and α-Terpineol as Potential Materials for Skin Regeneration-Synthesis and Physicochemical and Biological Characterization. Int J Mol Sci 2024; 25:5934. [PMID: 38892121 PMCID: PMC11173307 DOI: 10.3390/ijms25115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Dermatology and cosmetology currently prioritize healthy, youthful-looking skin. As a result, research is being conducted worldwide to uncover natural substances and carriers that allow for controlled release, which could aid in the battle against a variety of skin illnesses and slow the aging process. This study examined the biological and physicochemical features of novel hydrogels containing cannabidiol (CBD) and α-terpineol (TER). The hydrogels were obtained from ε-caprolactone (CL) and poly(ethylene glycol) (PEG) copolymers, diethylene glycol (DEG), poly(tetrahydrofuran) (PTHF), 1,6-diisocyanatohexane (HDI), and chitosan (CHT) components, whereas the biodegradable oligomers were synthesized using the enzyme ring-opening polymerization (e-ROP) method. The in vitro release rate of the active compounds from the hydrogels was characterized by mainly first-order kinetics, without a "burst release". The antimicrobial, anti-inflammatory, cytotoxic, antioxidant, and anti-aging qualities of the designed drug delivery systems (DDSs) were evaluated. The findings indicate that the hydrogel carriers that were developed have the ability to scavenge free radicals and impact the activity of antioxidant enzymes while avoiding any negative effects on keratinocytes and fibroblasts. Furthermore, they have anti-inflammatory qualities by impeding protein denaturation as well as the activity of proteinase and lipoxygenase. Additionally, their ability to reduce the multiplication of pathogenic bacteria and inhibit the activity of collagenase and elastase has been demonstrated. Thus, the developed hydrogel carriers may be effective systems for the controlled delivery of CBD, which may become a valuable tool for cosmetologists and dermatologists.
Collapse
Affiliation(s)
- Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Faculty of Medicine, University of Information Technology and Management in Rzeszow, 2 Sucharskiego St., 35-225 Rzeszow, Poland;
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Anna Zgadzaj
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland;
| | - Ewa Oledzka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| | - Karolina Kędra
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka St., 01-224 Warsaw, Poland;
| | - Agnieszka Ewa Wiącek
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, pl. Sq. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland;
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| |
Collapse
|
14
|
Stasiłowicz-Krzemień A, Szymanowska D, Szulc P, Cielecka-Piontek J. Antimicrobial, Probiotic, and Immunomodulatory Potential of Cannabis sativa Extract and Delivery Systems. Antibiotics (Basel) 2024; 13:369. [PMID: 38667045 PMCID: PMC11047504 DOI: 10.3390/antibiotics13040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
The compounds present in hemp show multidirectional biological activity. It is related to the presence of secondary metabolites, mainly cannabinoids, terpenes, and flavonoids, and the synergy of their biological activity. The aim of this study was to assess the activity of the Henola Cannabis sativae extract and its combinations with selected carriers (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, magnesium aluminometasilicate, and hydroxypropyl-β-cyclodextrin) in terms of antimicrobial, probiotic, and immunobiological effects. As a result of the conducted research, the antimicrobial activity of the extract was confirmed in relation to the following microorganisms: Clostridium difficile, Listeria monocytogenes, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus pyrogenes, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Pseudomonas aereuginosa, and Candida albicans (microorganism count was reduced from ~102 CFU mL-1 to <10 CFU mL-1 in most cases). Additionally, for the system with hydroxypropyl-β-cyclodextrin, a significant probiotic potential against bacterial strains was established for strains Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus rhamnosus, Lactobacillus reuteri, Pediococcus pentosaceus, Lactococcus lactis, Lactobacillus fermentum, and Streptococcus thermophilus (microorganism count was increased from ~102 to 104-107). In terms of immunomodulatory properties, it was determined that the tested extract and the systems caused changes in IL-6, IL-8, and TNF-α levels.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Daria Szymanowska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
15
|
Martinez Naya N, Kelly J, Corna G, Golino M, Polizio AH, Abbate A, Toldo S, Mezzaroma E. An Overview of Cannabidiol as a Multifunctional Drug: Pharmacokinetics and Cellular Effects. Molecules 2024; 29:473. [PMID: 38257386 PMCID: PMC10818442 DOI: 10.3390/molecules29020473] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Cannabidiol (CBD), a non-psychoactive compound derived from Cannabis Sativa, has garnered increasing attention for its diverse therapeutic potential. This comprehensive review delves into the complex pharmacokinetics of CBD, including factors such as bioavailability, distribution, safety profile, and dosage recommendations, which contribute to the compound's pharmacological profile. CBD's role as a pharmacological inhibitor is explored, encompassing interactions with the endocannabinoid system and ion channels. The compound's anti-inflammatory effects, influencing the Interferon-beta and NF-κB, position it as a versatile candidate for immune system regulation and interventions in inflammatory processes. The historical context of Cannabis Sativa's use for recreational and medicinal purposes adds depth to the discussion, emphasizing CBD's emergence as a pivotal phytocannabinoid. As research continues, CBD's integration into clinical practice holds promise for revolutionizing treatment approaches and enhancing patient outcomes. The evolution in CBD research encourages ongoing exploration, offering the prospect of unlocking new therapeutic utility.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Giuliana Corna
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires 1199, Argentina;
| | - Michele Golino
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23220, USA;
- Department of Medicine and Surgery, University of Insubria, 2110 Varese, Italy
| | - Ariel H. Polizio
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23220, USA;
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Eleonora Mezzaroma
- School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23220, USA
| |
Collapse
|
16
|
Guo Y, Wei R, Deng J, Guo W. Research progress in the management of vascular disease with cannabidiol: a review. J Cardiothorac Surg 2024; 19:6. [PMID: 38172934 PMCID: PMC10765825 DOI: 10.1186/s13019-023-02476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
The morbidity and mortality rates associated with vascular disease (VD) have been gradually increasing. Currently, the most common treatment for VD is surgery, with the progress in drug therapy remaining slow. Cannabidiol (CBD) is a natural extract of Cannabis sativa L. with sedative, analgesic, and nonaddictive properties. CBD binds to 56 cardiovascular-related receptors and exerts extensive regulatory effects on the cardiovascular system, making it a potential pharmacological agent for the management of VD. However, most CBD studies have focused on neurological and cardiac diseases, and research on the management of VD with CBD is still rare. In this review, we summarize the currently available data on CBD in the management of VD, addressing four aspects: the major molecular targets of CBD in VD management, pharmacokinetic properties, therapeutic effects of CBD on common VDs, and side effects. The findings indicate that CBD has anti-anxiety, anti-oxidation, and anti-inflammatory properties and can inhibit abnormal proliferation and apoptosis of vascular smooth muscle and endothelial cells; these effects suggest CBD as a therapeutic agent for atherosclerosis, stress-induced hypertension, diabetes-related vasculopathy, ischemia-reperfusion injury, and vascular damage caused by smoking and alcohol abuse. This study provides a theoretical basis for further research on CBD in the management of VD.
Collapse
Affiliation(s)
- Yilong Guo
- Medical School of Chinese PLA, Beijing, 100037, China
- Department of Vascular and Endovascular Surgery, The First Medical Centre of PLA General Hospital, 28#, Fuxing Road, Beijing, 100037, China
| | - Ren Wei
- Department of Vascular and Endovascular Surgery, The First Medical Centre of PLA General Hospital, 28#, Fuxing Road, Beijing, 100037, China
| | - Jianqing Deng
- Senior Department of Cardiology, The Six Medical Centre of PLA General Hospital, Beijing, 100037, China
| | - Wei Guo
- Medical School of Chinese PLA, Beijing, 100037, China.
- Department of Vascular and Endovascular Surgery, The First Medical Centre of PLA General Hospital, 28#, Fuxing Road, Beijing, 100037, China.
| |
Collapse
|
17
|
Scott C, Hall S, Zhou J, Lehmann C. Cannabinoids and the Endocannabinoid System in Early SARS-CoV-2 Infection and Long COVID-19-A Scoping Review. J Clin Med 2023; 13:227. [PMID: 38202234 PMCID: PMC10779964 DOI: 10.3390/jcm13010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Coronavirus disease-19 (COVID-19) is a highly contagious illness caused by the SARS-CoV-2 virus. The clinical presentation of COVID-19 is variable, often including symptoms such as fever, cough, headache, fatigue, and an altered sense of smell and taste. Recently, post-acute "long" COVID-19 has emerged as a concern, with symptoms persisting beyond the acute infection. Vaccinations remain one of the most effective preventative methods against severe COVID-19 outcomes and the development of long-term COVID-19. However, individuals with underlying health conditions may not mount an adequate protective response to COVID-19 vaccines, increasing the likelihood of severe symptoms, hospitalization, and the development of long-term COVID-19 in high-risk populations. This review explores the potential therapeutic role of cannabinoids in limiting the susceptibility and severity of infection, both pre- and post-SARS-CoV-19 infection. Early in the SARS-CoV-19 infection, cannabinoids have been shown to prevent viral entry, mitigate oxidative stress, and alleviate the associated cytokine storm. Post-SARS-CoV-2 infection, cannabinoids have shown promise in treating symptoms associated with post-acute long COVID-19, including depression, anxiety, post-traumatic stress injury, insomnia, pain, and decreased appetite. While current research primarily focuses on potential treatments for the acute phase of COVID-19, there is a gap in research addressing therapeutics for the early and post-infectious phases. This review highlights the potential for future research to bridge this gap by investigating cannabinoids and the endocannabinoid system as a potential treatment strategy for both early and post-SARS-CoV-19 infection.
Collapse
Affiliation(s)
- Cassidy Scott
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (C.S.); (J.Z.)
| | - Stefan Hall
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (C.S.); (J.Z.)
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (C.S.); (J.Z.)
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| |
Collapse
|
18
|
Hassan FU, Liu C, Mehboob M, Bilal RM, Arain MA, Siddique F, Chen F, Li Y, Zhang J, Shi P, Lv B, Lin Q. Potential of dietary hemp and cannabinoids to modulate immune response to enhance health and performance in animals: opportunities and challenges. Front Immunol 2023; 14:1285052. [PMID: 38111585 PMCID: PMC10726122 DOI: 10.3389/fimmu.2023.1285052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Cannabinoids are a group of bioactive compounds abundantly present in Cannabis sativa plant. The active components of cannabis with therapeutic potential are known as cannabinoids. Cannabinoids are divided into three groups: plant-derived cannabinoids (phytocannabinoids), endogenous cannabinoids (endocannabinoids), and synthetic cannabinoids. These compounds play a crucial role in the regulation various physiological processes including the immune modulation by interacting with the endocannabinoid system (A complex cell-signaling system). Cannabinoid receptor type 1 (CB1) stimulates the binding of orexigenic peptides and inhibits the attachment of anorexigenic proteins to hypothalamic neurons in mammals, increasing food intake. Digestibility is unaffected by the presence of any cannabinoids in hemp stubble. Endogenous cannabinoids are also important for the peripheral control of lipid processing in adipose tissue, in addition to their role in the hypothalamus regulation of food intake. Regardless of the kind of synaptic connection or the length of the transmission, endocannabinoids play a crucial role in inhibiting synaptic transmission through a number of mechanisms. Cannabidiol (CBD) mainly influences redox equilibrium through intrinsic mechanisms. Useful effects of cannabinoids in animals have been mentioned e.g., for disorders of the cardiovascular system, pain treatment, disorders of the respiratory system or metabolic disorders. Dietary supplementation of cannabinoids has shown positive effects on health, growth and production performance of small and large animals. Animal fed diet supplemented with hemp seeds (180 g/day) or hemp seed cake (143 g/kg DM) had achieved batter performance without any detrimental effects. But the higher level of hemp or cannabinoid supplementation suppress immune functions and reduce productive performance. With an emphasis on the poultry and ruminants, this review aims to highlight the properties of cannabinoids and their derivatives as well as their significance as a potential feed additive in their diets to improve the immune status and health performance of animals.
Collapse
Affiliation(s)
- Faiz-ul Hassan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Chunjie Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Maryam Mehboob
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Bilal
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Faisal Siddique
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jingmeng Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Biguang Lv
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
19
|
Boehm E, Droessler L, Amasheh S. Cannabidiol attenuates inflammatory impairment of intestinal cells expanding biomaterial-based therapeutic approaches. Mater Today Bio 2023; 23:100808. [PMID: 37779918 PMCID: PMC10539670 DOI: 10.1016/j.mtbio.2023.100808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Cannabis-based biomaterials have the potential to deliver anti-inflammatory therapeutics specifically to desired cells, tissues, and organs, enhancing drug delivery and the effectiveness of anti-inflammatory treatment while minimizing toxicity. As a major component of Cannabis, Cannabidiol (CBD) has gained major attention in recent years because of its potential therapeutic properties, e.g., for restoring a disturbed barrier resulting from inflammatory conditions. The aim of this study was to test the hypothesis that CBD has beneficial effects under normal and inflammatory conditions in the established non-transformed intestinal epithelial cell model IPEC-J2. CBD induced a significant increase in transepithelial electrical resistance (TER) values and a decrease in the paracellular permeability of [³H]-D-Mannitol, indicating a strengthening effect on the barrier. Under inflammatory conditions induced by tumor necrosis factor alpha (TNFα), CBD stabilized the TER and mitigated the increase in paracellular permeability. Additionally, CBD prevented the barrier-disrupting effects of TNFα on the distribution and localization of sealing TJ proteins. CBD also affected the expression of TNF receptors. These findings demonstrate the potential of CBD as a component of Cannabis-based biomaterials used in the development of novel therapeutic approaches against inflammatory pathogenesis.
Collapse
Affiliation(s)
- Elisa Boehm
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Linda Droessler
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Salah Amasheh
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| |
Collapse
|
20
|
Rancan L, Linillos-Pradillo B, Centeno J, Paredes SD, Vara E, Tresguerres JAF. Protective Actions of Cannabidiol on Aging-Related Inflammation, Oxidative Stress and Apoptosis Alterations in Liver and Lung of Long Evans Rats. Antioxidants (Basel) 2023; 12:1837. [PMID: 37891916 PMCID: PMC10604065 DOI: 10.3390/antiox12101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Aging is characterised by the progressive accumulation of oxidative damage which leads to inflammation and apoptosis in cells. This affects all tissues in the body causing the deterioration of several organs. Previous studies observed that cannabidiol (CBD) could extend lifespan and health span by its antioxidant, anti-inflammatory and autophagy properties. However, research on the anti-aging effect of CBD is still in the beginning stages. This study aimed to investigate the role of cannabidiol (CBD) in the prevention of age-related alterations in liver and lung using a murine model. METHODS 15-month-old Long Evans rats were treated with 10 mg/kg b.w./day of CBD for 10 weeks and compared to animals of the same age as old control and 2-month-old animals as young control. Gene and/or protein expressions, by RT-qPCR and Western blotting, respectively, were assessed in terms of molecules related to oxidative stress (GST, GPx, GR and HO-1d), inflammation (NFκB, IL-1β and TNF-α) and apoptosis (BAX, Bcl-2, AIF, and CASP-1). In addition, MDA and MPO levels were measured by colorimetric assay. Results were analysed by ANOVA followed by Tukey-Kramer test, considering statistically significant a p < 0.05. RESULTS GST, GPx and GR expressions were significantly reduced (p < 0.01) in liver samples from old animals compared to young ones and CBD treatment was able to revert it. A significant increase was observed in old animals compared to young ones in relation to oxidative stress markers (MDA and HO-1d), proinflammatory molecules (NFκB, IL-1β and TNF-α), MPO levels and proapoptotic molecules (BAX, AIF and CASP-1), while no significant alterations were observed in the antiapoptotic molecules (Bcl-2). All these changes were more noticeable in the liver, while the lung seemed to be less affected. In almost all the measured parameters, CBD treatment was able to revert the alterations caused by age restoring the levels to those observed in the group of young animals. CONCLUSIONS Chronic treatment with CBD in 15-month-old rats showed beneficial effects in lung and more significantly in liver by reducing the levels of inflammatory, oxidative and apoptotic mediators, and hence the cell damage associated with these three processes inherent to aging.
Collapse
Affiliation(s)
- Lisa Rancan
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (L.R.); (B.L.-P.); (E.V.)
| | - Beatriz Linillos-Pradillo
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (L.R.); (B.L.-P.); (E.V.)
| | - Julia Centeno
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (L.R.); (B.L.-P.); (E.V.)
| | - Sergio D. Paredes
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Elena Vara
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (L.R.); (B.L.-P.); (E.V.)
| | - Jesús A. F. Tresguerres
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
21
|
Zhang J, Lin C, Jin S, Wang H, Wang Y, Du X, Hutchinson MR, Zhao H, Fang L, Wang X. The pharmacology and therapeutic role of cannabidiol in diabetes. EXPLORATION (BEIJING, CHINA) 2023; 3:20230047. [PMID: 37933286 PMCID: PMC10582612 DOI: 10.1002/exp.20230047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 11/08/2023]
Abstract
In recent years, cannabidiol (CBD), a non-psychotropic cannabinoid, has garnered substantial interest in drug development due to its broad pharmacological activity and multi-target effects. Diabetes is a chronic metabolic disease that can damage multiple organs in the body, leading to the development of complications such as abnormal kidney function, vision loss, neuropathy, and cardiovascular disease. CBD has demonstrated significant therapeutic potential in treating diabetes mellitus and its complications owing to its various pharmacological effects. This work summarizes the role of CBD in diabetes and its impact on complications such as cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy. Strategies for discovering molecular targets for CBD in the treatment of diabetes and its complications are also proposed. Moreover, ways to optimize the structure of CBD based on known targets to generate new CBD analogues are explored.
Collapse
Affiliation(s)
- Jin Zhang
- Department of GeriatricsThe First Hospital of Jilin UniversityChangchunPeople's Republic of China
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingPeople's Republic of China
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Sha Jin
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and EcologyCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenPeople's Republic of China
| | - Mark R. Hutchinson
- Discipline of PhysiologyAdelaide Medical SchoolUniversity of AdelaideThe Commonwealth of AustraliaAdelaideAustralia
- ARC Centre for Nanoscale BioPhotonicsUniversity of AdelaideThe Commonwealth of AustraliaAdelaideAustralia
| | - Huiying Zhao
- Department of GeriatricsThe First Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Le Fang
- Department of NeurologyThe China‐Japan Union Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Xiaohui Wang
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingPeople's Republic of China
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
- Beijing National Laboratory for Molecular SciencesBeijingPeople's Republic of China
| |
Collapse
|
22
|
Teichmann E, Blessing E, Hinz B. Non-Psychoactive Phytocannabinoids Inhibit Inflammation-Related Changes of Human Coronary Artery Smooth Muscle and Endothelial Cells. Cells 2023; 12:2389. [PMID: 37830604 PMCID: PMC10571842 DOI: 10.3390/cells12192389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Atherosclerosis is associated with vascular smooth muscle cell proliferation, chronic vascular inflammation, and leukocyte adhesion. In view of the cardioprotective effects of cannabinoids described in recent years, the present study investigated the impact of the non-psychoactive phytocannabinoids cannabidiol (CBD) and tetrahydrocannabivarin (THCV) on proliferation and migration of human coronary artery smooth muscle cells (HCASMC) and on inflammatory markers in human coronary artery endothelial cells (HCAEC). In HCASMC, CBD and THCV at nontoxic concentrations exhibited inhibitory effects on platelet-derived growth factor-triggered proliferation (CBD) and migration (CBD, THCV). When interleukin (IL)-1β- and lipopolysaccharide (LPS)-stimulated HCAEC were examined, both cannabinoids showed a concentration-dependent decrease in the expression of vascular cell adhesion molecule-1 (VCAM-1), which was mediated independently of classical cannabinoid receptors and was not accompanied by a comparable inhibition of intercellular adhesion molecule-1. Further inhibitor experiments demonstrated that reactive oxygen species, p38 mitogen-activated protein kinase activation, histone deacetylase, and nuclear factor κB (NF-κB) underlie IL-1β- and LPS-induced expression of VCAM-1. In this context, CBD and THCV were shown to inhibit phosphorylation of NF-κB regulators in LPS- but not IL-1β-stimulated HCAEC. Stimulation of HCAEC with IL-1β and LPS was associated with increased adhesion of monocytes, which, however, could not be significantly abolished by CBD and THCV. In summary, the results highlight the potential of the non-psychoactive cannabinoids CBD and THCV to regulate inflammation-related changes in HCASMC and HCAEC. Considering their effect on both cell types studied, further preclinical studies could address the use of CBD and THCV in drug-eluting stents for coronary interventions.
Collapse
Affiliation(s)
| | | | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (E.T.); (E.B.)
| |
Collapse
|
23
|
Yan G, Zhang X, Li H, Guo Y, Yong VW, Xue M. Anti-oxidant effects of cannabidiol relevant to intracerebral hemorrhage. Front Pharmacol 2023; 14:1247550. [PMID: 37841923 PMCID: PMC10568629 DOI: 10.3389/fphar.2023.1247550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with a high mortality rate. Oxidative stress cascades play an important role in brain injury after ICH. Cannabidiol, a major non-psychotropic phytocannabinoids, has drawn increasing interest in recent years as a potential therapeutic intervention for various neuropsychiatric disorders. Here we provide a comprehensive review of the potential therapeutic effects of cannabidiol in countering oxidative stress resulting from ICH. The review elaborates on the various sources of oxidative stress post-ICH, including mitochondrial dysfunction, excitotoxicity, iron toxicity, inflammation, and also highlights cannabidiol's ability to inhibit ROS/RNS generation from these sources. The article also delves into cannabidiol's role in promoting ROS/RNS scavenging through the Nrf2/ARE pathway, detailing both extranuclear and intranuclear regulatory mechanisms. Overall, the review underscores cannabidiol's promising antioxidant effects in the context of ICH and suggests its potential as a therapeutic option.
Collapse
Affiliation(s)
- Gaili Yan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Guo
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - V. Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Ni B, Liu Y, Dai M, Zhao J, Liang Y, Yang X, Han B, Jiang M. The role of cannabidiol in aging. Biomed Pharmacother 2023; 165:115074. [PMID: 37418976 DOI: 10.1016/j.biopha.2023.115074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
Aging is usually considered a key risk factor associated with multiple diseases, such as neurodegenerative diseases, cardiovascular diseases and cancer. Furthermore, the burden of age-related diseases has become a global challenge. It is of great significance to search for drugs to extend lifespan and healthspan. Cannabidiol (CBD), a natural nontoxic phytocannabinoid, has been regarded as a potential candidate drug for antiaging. An increasing number of studies have suggested that CBD could benefit healthy longevity. Herein, we summarized the effect of CBD on aging and analyzed the possible mechanism. All these conclusions may provide a perspective for further study of CBD on aging.
Collapse
Affiliation(s)
- Beibei Ni
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yanying Liu
- Department of Basic Medical, Qingdao Huanghai University, Qingdao 266427, China
| | - Meng Dai
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jun Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yu Liang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xue Yang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Bing Han
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Man Jiang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
25
|
Martinez Naya N, Kelly J, Corna G, Golino M, Abbate A, Toldo S. Molecular and Cellular Mechanisms of Action of Cannabidiol. Molecules 2023; 28:5980. [PMID: 37630232 PMCID: PMC10458707 DOI: 10.3390/molecules28165980] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cannabidiol (CBD) is the primary non-psychoactive chemical from Cannabis Sativa, a plant used for centuries for both recreational and medicinal purposes. CBD lacks the psychotropic effects of Δ9-tetrahydrocannabinol (Δ9-THC) and has shown great therapeutic potential. CBD exerts a wide spectrum of effects at a molecular, cellular, and organ level, affecting inflammation, oxidative damage, cell survival, pain, vasodilation, and excitability, among others, modifying many physiological and pathophysiological processes. There is evidence that CBD may be effective in treating several human disorders, like anxiety, chronic pain, psychiatric pathologies, cardiovascular diseases, and even cancer. Multiple cellular and pre-clinical studies using animal models of disease and several human trials have shown that CBD has an overall safe profile. In this review article, we summarize the pharmacokinetics data, the putative mechanisms of action of CBD, and the physiological effects reported in pre-clinical studies to give a comprehensive list of the findings and major effects attributed to this compound.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| | - Giuliana Corna
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires 1199, Argentina
| | - Michele Golino
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
- Department of Medicine and Surgery, University of Insubria, 2110 Varese, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| |
Collapse
|
26
|
Martinez-Paz C, García-Cabrera E, Vilches-Arenas Á. Effectiveness and Safety of Cannabinoids as an Add-On Therapy in the Treatment of Resistant Spasticity in Multiple Sclerosis: A Systematic Review. Cannabis Cannabinoid Res 2023; 8:580-588. [PMID: 37057959 DOI: 10.1089/can.2022.0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Background: Spasticity continues to be a very prevalent, highly invalidating, and difficult-to-manage symptom in patients with multiple sclerosis (MS). The aim of this systematic review is to evaluate the effectiveness of the use of cannabis and cannabinoids in these patients, evaluating its use as an additional therapy. Methods: We performed a systematic review of the literature searching in the major scientific databases (PubMed, Scopus, EMBASE, WOS, and Cochrane Library) for articles from January 2017 to May 2022 containing information about the effectiveness of cannabis and cannabinoids in patients with insufficient response to first-line oral antispastic treatment. Results: A total of five medium high-quality articles were selected to be part of the study and all evaluated the effectiveness of the tetrahydrocannabinol (THC) and cannabidiol (CBD) spray. The effectiveness of this drug and the significant improvements are produced on the patient-related spasticity assessment scales, obtaining improvement up to 45%; and on quality of life, producing a decrease in the appearance of symptoms related to spasticity, as well as an increase in the development of basic activities of daily living. The average dose is 5-7 sprays/day. The discontinuation rate for these treatments is around 40% due to lack of effectiveness and adverse events. All reported adverse effects are mild to moderate in severity and their incidence is ∼17%, although this figure tends to decrease with drug use. Conclusions: Adding the THC:CBD sprays have been shown to be more effective in treating MS spasticity than optimizing the dose of first-line antispastic drugs in selected responders patients. The safety and tolerability profiles remain in line with those obtained in other trials. More patients would benefit from treatment if the initial response search period was extended.
Collapse
Affiliation(s)
- Carmen Martinez-Paz
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Seville, Seville, Spain
| | - Emilio García-Cabrera
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Seville, Seville, Spain
| | - Ángel Vilches-Arenas
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
27
|
Wittig F, Henkel L, Prüser JL, Merkord J, Ramer R, Hinz B. Inhibition of Monoacylglycerol Lipase Decreases Angiogenic Features of Endothelial Cells via Release of Tissue Inhibitor of Metalloproteinase-1 from Lung Cancer Cells. Cells 2023; 12:1757. [PMID: 37443791 PMCID: PMC10340590 DOI: 10.3390/cells12131757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the well-described anticarcinogenic effects of endocannabinoids, the influence of the endocannabinoid system on tumor angiogenesis is still debated. In the present study, conditioned medium (CM) from A549 and H358 lung cancer cells treated with ascending concentrations of the monoacylglycerol lipase (MAGL) inhibitor JZL184 and 2-arachidonoylglycerol (2-AG), a prominent MAGL substrate, caused a concentration-dependent reduction in human umbilical vein endothelial cell (HUVEC) migration and tube formation compared with CM from vehicle-treated cancer cells. Comparative experiments with MAGL inhibitors JW651 and MJN110 showed the same results. On the other hand, the angiogenic properties of HUVECs were not significantly altered by direct stimulation with JZL184 or 2-AG or by exposure to CM of JZL184- or 2-AG-treated non-cancerous bronchial epithelial cells (BEAS-2B). Inhibition of HUVEC migration and tube formation by CM of JZL184- and 2-AG-treated A549 cells was abolished in the presence of the CB1 antagonist AM-251. Increased release of tissue inhibitor of metalloproteinase-1 (TIMP-1) from JZL184- or 2-AG-stimulated A549 or H358 cells was shown to exert an antiangiogenic effect on HUVECs, as confirmed by siRNA experiments. In addition, JZL184 caused a dose-dependent regression of A549 tumor xenografts in athymic nude mice, which was associated with a decreased number of CD31-positive cells and upregulation of TIMP-1-positive cells in xenograft tissue. In conclusion, our data suggest that elevation of 2-AG by MAGL inhibition leads to increased release of TIMP-1 from lung cancer cells, which mediates an antiangiogenic effect on endothelial cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.H.); (J.L.P.); (J.M.); (R.R.)
| |
Collapse
|
28
|
Manivasakam P, Ravi A, Ramesh J, Bhuvarahamurthy D, Kasirajan K, Vijayapoopathi S, Venugopal B, Fliri AF. Autophagy: An Emerging Target for Developing Effective Analgesics. ACS OMEGA 2023; 8:9445-9453. [PMID: 36936313 PMCID: PMC10018516 DOI: 10.1021/acsomega.2c06949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Inadequate treatment of acute and chronic pain causes depression, anxiety, sleep disturbances, and increased mortality. Abuse and overdose of opioids and the side effects associated with chronic use of NSAID illustrate the need for development of safer and effective pain medication. Working toward this end, an in silico tool based on an emergent intelligence analytical platform that examines interactions between protein networks was used to identify molecular mechanisms involved in regulating the body's response to painful stimuli and drug treatments. Examining interactions between protein networks associated with the expression of over 20 different pain types suggests that the regulation of autophagy plays a central role in modulation of pain symptoms (see Materials and Methods). Using the topology of this regulatory scheme as an in silico screening tool, we identified that combinations of functions targeted by cannabidiol, myo-inositol, and fish oils with varying ratios of eicosapentaenoic and docosahexaenoic acids are projected to produce superior analgesia. For validating this prediction, we administered combinations of cannabidiol, myo-inositol, and fish oils to rats that received formalin injections in hind paws, prior to substance administration, and showed that analgesic effects produced by these combinations were comparable or superior to known NSAID analgesics, which suggests that these combinations have potential in treatment of pain.
Collapse
Affiliation(s)
| | - Atchayaa Ravi
- Department
of Medical Biochemistry, Dr. A.L.M. Postgraduate
Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, Tamil
Nadu, India
| | - Janani Ramesh
- Department
of Medical Biochemistry, Dr. A.L.M. Postgraduate
Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, Tamil
Nadu, India
- Renal
Division, Brigham and Women’s Hospital,
BWH, Boston, Massachusetts 02115-6195, United
States
| | | | - Kalaiyarasi Kasirajan
- Department
of Medical Biochemistry, Dr. A.L.M. Postgraduate
Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, Tamil
Nadu, India
| | - Singaravel Vijayapoopathi
- Department
of Medical Biochemistry, Dr. A.L.M. Postgraduate
Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, Tamil
Nadu, India
| | - Bhuvarahamurthy Venugopal
- Department
of Medical Biochemistry, Dr. A.L.M. Postgraduate
Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, Tamil
Nadu, India
| | | |
Collapse
|
29
|
Kuret T, Kreft ME, Romih R, Veranič P. Cannabidiol as a Promising Therapeutic Option in IC/BPS: In Vitro Evaluation of Its Protective Effects against Inflammation and Oxidative Stress. Int J Mol Sci 2023; 24:ijms24055055. [PMID: 36902479 PMCID: PMC10003465 DOI: 10.3390/ijms24055055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Several animal studies have described the potential effect of cannabidiol (CBD) in alleviating the symptoms of interstitial cystitis/bladder pain syndrome (IC/BPS), a chronic inflammatory disease of the urinary bladder. However, the effects of CBD, its mechanism of action, and modulation of downstream signaling pathways in urothelial cells, the main effector cells in IC/BPS, have not been fully elucidated yet. Here, we investigated the effect of CBD against inflammation and oxidative stress in an in vitro model of IC/BPS comprised of TNFα-stimulated human urothelial cells SV-HUC1. Our results show that CBD treatment of urothelial cells significantly decreased TNFα-upregulated mRNA and protein expression of IL1α, IL8, CXCL1, and CXCL10, as well as attenuated NFκB phosphorylation. In addition, CBD treatment also diminished TNFα-driven cellular reactive oxygen species generation (ROS), by increasing the expression of the redox-sensitive transcription factor Nrf2, the antioxidant enzymes superoxide dismutase 1 and 2, and hem oxygenase 1. CBD-mediated effects in urothelial cells may occur by the activation of the PPARγ receptor since inhibition of PPARγ resulted in significantly diminished anti-inflammatory and antioxidant effects of CBD. Our observations provide new insights into the therapeutic potential of CBD through modulation of PPARγ/Nrf2/NFκB signaling pathways, which could be further exploited in the treatment of IC/BPS.
Collapse
|
30
|
Aychman MM, Goldman DL, Kaplan JS. Cannabidiol's neuroprotective properties and potential treatment of traumatic brain injuries. Front Neurol 2023; 14:1087011. [PMID: 36816569 PMCID: PMC9932048 DOI: 10.3389/fneur.2023.1087011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Cannabidiol (CBD) has numerous pharmacological targets that initiate anti-inflammatory, antioxidative, and antiepileptic properties. These neuroprotective benefits have generated interest in CBD's therapeutic potential against the secondary injury cascade from traumatic brain injury (TBI). There are currently no effective broad treatment strategies for combating the damaging mechanisms that follow the primary injury and lead to lasting neurological consequences or death. However, CBD's effects on different neurotransmitter systems, the blood brain barrier, oxidative stress mechanisms, and the inflammatory response provides mechanistic support for CBD's clinical utility in TBI. This review describes the cascades of damage caused by TBI and CBD's neuroprotective mechanisms to counter them. We also present challenges in the clinical treatment of TBI and discuss important future clinical research directions for integrating CBD in treatment protocols. The mechanistic evidence provided by pre-clinical research shows great potential for CBD as a much-needed improvement in the clinical treatment of TBI. Upcoming clinical trials sponsored by major professional sport leagues are the first attempts to test the efficacy of CBD in head injury treatment protocols and highlight the need for further clinical research.
Collapse
|
31
|
Reddy DS. Therapeutic and clinical foundations of cannabidiol therapy for difficult-to-treat seizures in children and adults with refractory epilepsies. Exp Neurol 2023; 359:114237. [PMID: 36206806 DOI: 10.1016/j.expneurol.2022.114237] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Novel and effective antiseizure medications are needed to treat refractory and rare forms of epilepsy. Cannabinoids, which are obtained from the cannabis plant, have a long history of medical use, including for neurologic conditions. In 2018, the US Food and Drug Administration approved the first phytocannabinoid, cannabidiol (CBD, Epidiolex), which is now indicated for severe seizures associated with three rare forms of developmental and epileptic encephalopathy: Dravet syndrome, Lennox-Gastaut syndrome, and tuberous sclerosis complex. Compelling evidence supports the efficacy of CBD in experimental models and patients with epilepsy. In randomized clinical trials, highly-purified CBD has demonstrated efficacy with an acceptable safety profile in children and adults with difficult-to-treat seizures. Although the underlying antiseizure mechanisms of CBD in humans have not yet been elucidated, the identification of novel antiseizure targets of CBD preclinically indicates multimodal mechanisms that include non-cannabinoid pathways. In addition to antiseizure effects, CBD possesses strong anti-inflammatory and neuroprotective activities, which might contribute to protective effects in epilepsy and other conditions. This article provides a succinct overview of therapeutic approaches and clinical foundations of CBD, emphasizing the clinical utility of CBD for the treatment of seizures associated with refractory and rare epilepsies. CBD has shown to be a safe and effective antiseizure medicine, demonstrating a broad spectrum of efficacy across multiple seizure types, including those associated with severe epilepsies with childhood onset. Despite such promise, there are many perils with CBD that hampers its widespread use, including limited understanding of pharmacodynamics, limited exposure-response relationship, limited information for seizure freedom with continued use, complex pharmacokinetics with drug interactions, risk of adverse effects, and lack of expert therapeutic guidelines. These scientific issues need to be resolved by further investigations, which would decide the unique role of CBD in the management of refractory epilepsy.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Health Institute of Pharmacology and Neurotherapeutics, School of Medicine, Texas A&M University, Bryan, TX, USA; Engineering Medicine, Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX, USA; Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
32
|
Henry N, Fraser JF, Chappell J, Langley T, Roberts JM. Cannabidiol’s Multifactorial Mechanisms Has Therapeutic Potential for Aneurysmal Subarachnoid Hemorrhage: a Review. Transl Stroke Res 2022; 14:283-296. [PMID: 36109476 PMCID: PMC10160197 DOI: 10.1007/s12975-022-01080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/08/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
AbstractSubarachnoid hemorrhage (SAH) is a major health burden that accounts for approximately 5% of all strokes. The most common cause of a non-traumatic SAH is the rupture of a cerebral aneurysm. The most common symptom associated with SAH is a headache, often described as “the worst headache of my life.” Delayed cerebral ischemia (DCI) is a major factor associated with patient mortality following SAH and is often associated with SAH-induced cerebral vasospasm (CV). Cannabidiol (CBD) is emerging as a potential drug for many therapeutic purposes, including epilepsy, anxiety, and pain relief. We aim to review the potential use of CBD as a treatment option for post-SAH critically ill patients. Through a literature review, we evaluated the known pharmacology and physiological effects of CBD and correlated those with the pathophysiological outcomes associated with cerebral vasospasm following subarachnoid hemorrhage. Although overlap exists, data were formatted into three major categories: anti-inflammatory, vascular, and neuroprotective effects. Based on the amount of information known about the actions of CBD, we hypothesize the anti-inflammatory effects are likely to be the most promising therapeutic mechanism. However, its cardiovascular effects through calcium regulation and its neuroprotective effects against cell death, excitotoxicity, and oxidative stress are all plausible mechanisms by which post-SAH critically ill patients may benefit from both early and late intervention with CBD. More research is needed to better understand if and how CBD might affect neurological and vascular functions in the brain following injury such as subarachnoid hemorrhage.
Collapse
|
33
|
Valenti C, Billi M, Pancrazi GL, Calabria E, Armogida NG, Tortora G, Pagano S, Barnaba P, Marinucci L. Biological Effects of Cannabidiol on Human Cancer Cells: Systematic Review of the Literature. Pharmacol Res 2022; 181:106267. [DOI: 10.1016/j.phrs.2022.106267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022]
|
34
|
Kongkadee K, Wisuitiprot W, Ingkaninan K, Waranuch N. Anti-inflammation and Gingival Wound Healing Activities of Cannabis sativa L. subsp. sativa (hemp) Extract and Cannabidiol: An in vitro Study. Arch Oral Biol 2022; 140:105464. [DOI: 10.1016/j.archoralbio.2022.105464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 11/28/2022]
|
35
|
Ashtar Nakhaei N, Najarian A, Farzaei MH, Norooznezhad AH. Endothelial dysfunction and angiogenesis: what is missing from COVID-19 and cannabidiol story? J Cannabis Res 2022; 4:21. [PMID: 35414120 PMCID: PMC9001822 DOI: 10.1186/s42238-022-00129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background Among pathways involved in the pathogenesis of coronavirus disease 2019 (COVID-19), impaired endothelial cell (EC) function and angiogenesis have been discussed less frequently than others such as cytokine storm. These two do play parts in the development of various clinical manifestations of COVID-19 including acute respiratory distress syndrome (ARDS) and the hyper-coagulation state. Methods This narrative review attempts to gather recent data on the possible potential of cannabidiol in the treatment of COVID-19 with an eye on angiogenesis and endothelial dysfunction. Keywords including cannabidiol AND angiogenesis OR endothelial cell as well as coronavirus disease 2019 OR COVID-19 AND angiogenesis OR endothelial dysfunction were searched among the databases of PubMed and Scopus. Results Cannabidiol (CBD), as a therapeutic phytocannabinoid, has been approved by the Food and Drug Administration (FDA) for two types of seizures. Due to the potent anti-inflammatory properties of CBD, this compound has been suggested as a candidate treatment for COVID-19 in the literature. Although its potential effect on ECs dysfunction and pathologic angiogenesis in COVID-19 has been overlooked, other than cytokines like interleukin 1β (IL-β), IL-6, IL-8, and tumour necrosis factor α (TNFα) that are common in inflammation and angiogenesis, CBD could affect other important factors related to ECs function and angiogenesis. Data shows that CBD could decrease pathologic angiogenesis via decreasing ECs proliferation, migration, and tube formation. These activities are achieved through the suppression of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), urokinase plasminogen activator (uPA), matrix metalloproteinase 2 (MMP-2), MMP-9, intracellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1). Moreover, in an animal model, ARDS and sepsis responded well to CBD treatment. Conclusion Altogether and considering the current use of CBD in the clinic, the conduction of further studies on CBD administration for patients with COVID-19 seems to be useful.
Collapse
|
36
|
Inflammation and Nitro-oxidative Stress as Drivers of Endocannabinoid System Aberrations in Mood Disorders and Schizophrenia. Mol Neurobiol 2022; 59:3485-3503. [PMID: 35347586 DOI: 10.1007/s12035-022-02800-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is composed of the endocannabinoid ligands anandamide (AEA) and 2-arachidonoylgycerol (2-AG), their target cannabinoid receptors (CB1 and CB2) and the enzymes involved in their synthesis and metabolism (N-acyltransferase and fatty acid amide hydrolase (FAAH) in the case of AEA and diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) in the case of 2-AG). The origins of ECS dysfunction in major neuropsychiatric disorders remain to be determined, and this paper explores the possibility that they may be associated with chronically increased nitro-oxidative stress and activated immune-inflammatory pathways, and it examines the mechanisms which might be involved. Inflammation and nitro-oxidative stress are associated with both increased CB1 expression, via increased activity of the NADPH oxidases NOX4 and NOX1, and increased CNR1 expression and DNA methylation; and CB2 upregulation via increased pro-inflammatory cytokine levels, binding of the transcription factor Nrf2 to an antioxidant response element in the CNR2 promoter region and the action of miR-139. CB1 and CB2 have antagonistic effects on redox signalling, which may result from a miRNA-enabled negative feedback loop. The effects of inflammation and oxidative stress are detailed in respect of AEA and 2-AG levels, via effects on calcium homeostasis and phospholipase A2 activity; on FAAH activity, via nitrosylation/nitration of functional cysteine and/or tyrosine residues; and on 2-AG activity via effects on MGLL expression and MAGL. Finally, based on these detailed molecular neurobiological mechanisms, it is suggested that cannabidiol and dimethyl fumarate may have therapeutic potential for major depressive disorder, bipolar disorder and schizophrenia.
Collapse
|
37
|
Possible actions of cannabidiol in obsessive-compulsive disorder by targeting the WNT/β-catenin pathway. Mol Psychiatry 2022; 27:230-248. [PMID: 33837269 DOI: 10.1038/s41380-021-01086-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/13/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder characterized by recurrent and distinctive obsessions and/or compulsions. The etiologies remain unclear. Recent findings have shown that oxidative stress, inflammation, and glutamatergic pathways play key roles in the causes of OCD. However, first-line therapies include cognitive-behavioral therapy but only 40% of the patients respond to this first-line therapy. Research for new treatment is mandatory. This review focuses on the potential effects of cannabidiol (CBD), as a potential therapeutic strategy, on OCD and some of the presumed mechanisms by which CBD provides its benefit properties. CBD medication downregulates GSK-3β, the main inhibitor of the WNT/β-catenin pathway. The activation of the WNT/β-catenin could be associated with the control of oxidative stress, inflammation, and glutamatergic pathway and circadian rhythms dysregulation in OCD. Future prospective clinical trials could focus on CBD and its different and multiple interactions in OCD.
Collapse
|
38
|
Sugimoto N, Yamagishi Y, Mikamo H. Effect of Empagliflozin on <i>Candida glabrata</i> Adhesion to Vaginal Epithelial Cells. Med Mycol J 2022; 63:43-47. [DOI: 10.3314/mmj.21-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Naomi Sugimoto
- Department of Clinical Infectious Diseases, Aichi Medical University School of Medicine
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University School of Medicine
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University School of Medicine
| |
Collapse
|
39
|
Abstract
INTRODUCTION Patients with severe epilepsy are at increased risk of cardiovascular disease and arrhythmias. Although antiseizure medications (ASMs) may have indirect protective effects against cardiovascular events by reducing seizure frequency and hence sudden death in epilepsy, some of them exert cardiotoxic effects. AREAS COVERED Patients with epilepsy, mainly those with severe forms, are at higher risk of cardiac disease because their heart can have structural alterations and electrical instability as a consequence of repeated seizures. Some ASMs have direct protective effects through anti-inflammatory, antioxidant, hypotensive, and lipid-reducing properties. Antiseizure medications can also have toxic cardiac effects including both long-term consequences, such as the increased risk of atherogenesis and subsequent cardiovascular disease due to the influence on lipid profile and pro-inflammatory milieu, and immediate effects as the increased risk of potentially fatal arrhythmias due to the influence on ion channels. Sodium channel blocking ASMs may also affect cardiac sodium channels and this effect is particularly observed in subjects with genetic mutations in cardiac ion channels. Fenfluramine cause valvulopathies in obese subjects and this effect need to be evaluated in epilepsy patients. EXPERT OPINION For the selection of treatment, cardiotoxic effects of ASMs should be considered; cardiac monitoring of treatment is advisable.
Collapse
Affiliation(s)
- Gaetano Zaccara
- Department of Eidemiology, Regional Health Agency of Tuscany, Firenze, Italy
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Francesco Brigo
- Department of Neurology, Hospital of Merano (Sabes-asdaa), Merano-Meran, Italy
| |
Collapse
|
40
|
Morissette F, Mongeau-Pérusse V, Rizkallah E, Thébault P, Lepage S, Brissette S, Bruneau J, Dubreucq S, Stip E, Cailhier JF, Jutras-Aswad D. Exploring cannabidiol effects on inflammatory markers in individuals with cocaine use disorder: a randomized controlled trial. Neuropsychopharmacology 2021; 46:2101-2111. [PMID: 34331010 PMCID: PMC8505631 DOI: 10.1038/s41386-021-01098-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 01/29/2023]
Abstract
Cocaine use disorder (CUD) is a major public health issue associated with physical, social, and psychological problems. Excessive and repeated cocaine use induces oxidative stress leading to a systemic inflammatory response. Cannabidiol (CBD) has gained substantial interest for its anti-inflammatory properties, safety, and tolerability profile. However, CBD anti-inflammatory properties have yet to be confirmed in humans. This exploratory study is based on a single-site randomized controlled trial that enrolled participants with CUD between 18 and 65 years, randomized (1:1) to daily receive either CBD (800 mg) or placebo for 92 days. The trial was divided into a 10-day detoxification (phase I) followed by a 12-week outpatient follow-up (phase II). Blood samples were collected from 48 participants at baseline, day 8, week 4, and week 12 and were analyzed to determine monocytes and lymphocytes phenotypes, and concentrations of various inflammatory markers such as cytokines. We used generalized estimating equations to detect group differences. Participants treated with CBD had lower levels of interleukin-6 (p = 0.017), vascular endothelial growth factor (p = 0.032), intermediate monocytes CD14+CD16+ (p = 0.024), and natural killer CD56negCD16hi (p = 0.000) compared with participants receiving placebo. CD25+CD4+T cells were higher in the CBD group (p = 0.007). No significant group difference was observed for B lymphocytes. This study suggests that CBD may exert anti-inflammatory effects in individuals with CUD.
Collapse
Affiliation(s)
- Florence Morissette
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada
| | - Violaine Mongeau-Pérusse
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada
| | - Elie Rizkallah
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada
| | - Paméla Thébault
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,Montreal Cancer Institute, Montreal, QC Canada
| | - Stéphanie Lepage
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,Montreal Cancer Institute, Montreal, QC Canada
| | - Suzanne Brissette
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Family and Emergency Medicine, Université de Montréal, Montreal, QC Canada
| | - Julie Bruneau
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Family and Emergency Medicine, Université de Montréal, Montreal, QC Canada
| | - Simon Dubreucq
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada
| | - Emmanuel Stip
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,grid.43519.3a0000 0001 2193 6666Department of Psychiatry and Behavioral Science, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Jean-François Cailhier
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,Montreal Cancer Institute, Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Division of Nephrology, Department of Medicine, Université de Montréal, Montreal, QC Canada
| | - Didier Jutras-Aswad
- Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC, Canada. .,Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada. .,University Institute on Addictions, Montreal, QC, Canada.
| |
Collapse
|
41
|
Vasoprotective Endothelial Effects of Chronic Cannabidiol Treatment and Its Influence on the Endocannabinoid System in Rats with Primary and Secondary Hypertension. Pharmaceuticals (Basel) 2021; 14:ph14111120. [PMID: 34832902 PMCID: PMC8624681 DOI: 10.3390/ph14111120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/20/2022] Open
Abstract
Our study aimed to examine the endothelium (vascular)-protecting effects of chronic cannabidiol (CBD) administration (10 mg/kg once daily for 2 weeks) in aortas and small mesenteric (G3) arteries isolated from deoxycorticosterone-induced hypertensive (DOCA-salt) rats and spontaneously hypertensive rats (SHR). CBD reduced hypertrophy and improved the endothelium-dependent vasodilation in response to acetylcholine in the aortas and G3 of DOCA-salt rats and SHR. The enhancement of vasorelaxation was prevented by the inhibition of nitric oxide (NO) with L-NAME and/or the inhibition of cyclooxygenase (COX) with indomethacin in the aortas and G3 of DOCA-salt and SHR, respectively. The mechanism of the CBD-mediated improvement of endothelial function in hypertensive vessels depends on the vessel diameter and may be associated with its NO-, the intermediate-conductance calcium-activated potassium channel- or NO-, COX-, the intermediate and the small-conductance calcium-activated potassium channels-dependent effect in aortas and G3, respectively. CBD increased the vascular expression of the cannabinoid CB1 and CB2 receptors and aortic levels of endocannabinoids with vasorelaxant properties e.g., anandamide, 2-arachidonoylglycerol and palmitoyl ethanolamide in aortas of DOCA-salt and/or SHR. In conclusion, CBD treatment has vasoprotective effects in hypertensive rats, in a vessel-size- and hypertension-model-independent manner, at least partly via inducing local vascular changes in the endocannabinoid system.
Collapse
|
42
|
Shah H, Fraser M, Agdamag AC, Maharaj V, Nzemenoh B, Martin CM, Alexy T, Garry DJ. Cardiac Transplantation and the Use of Cannabis. Life (Basel) 2021; 11:life11101063. [PMID: 34685434 PMCID: PMC8539629 DOI: 10.3390/life11101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Cardiac transplantation requires the careful allocation of a limited number of precious organs. Therefore, it is critical to select candidates that will receive the greatest anticipated medical benefit but will also serve as the best stewards of the organ. Individual transplant teams have established prerequisites pertaining to recreational drug, tobacco, alcohol, and controlled substance use in potential organ recipients and post-transplantation. Legalization of cannabis and implementation of its prescription-based use for the management of patients with chronic conditions have been increasing over the past years. Center requirements regarding abstinence from recreational and medical cannabis use vary due to rapidly changing state regulations, as well as the lack of clinical safety data in this population. This is evident by the results of the multicenter survey presented in this paper. Developing uniform guidelines around cannabis use will be imperative not only for providers but also for patients.
Collapse
Affiliation(s)
- Hirak Shah
- Lillehei Heart Institute and Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (H.S.); (A.C.A.); (V.M.); (C.M.M.)
- Advanced Heart Failure Program, Mechanical Circulatory Support Service and Cardiac Transplant Program, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Meg Fraser
- Advanced Heart Failure Program, Mechanical Circulatory Support Service and Cardiac Transplant Program, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Arianne C. Agdamag
- Lillehei Heart Institute and Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (H.S.); (A.C.A.); (V.M.); (C.M.M.)
- Advanced Heart Failure Program, Mechanical Circulatory Support Service and Cardiac Transplant Program, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Valmiki Maharaj
- Lillehei Heart Institute and Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (H.S.); (A.C.A.); (V.M.); (C.M.M.)
- Advanced Heart Failure Program, Mechanical Circulatory Support Service and Cardiac Transplant Program, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Bellony Nzemenoh
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Cindy M. Martin
- Lillehei Heart Institute and Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (H.S.); (A.C.A.); (V.M.); (C.M.M.)
- Advanced Heart Failure Program, Mechanical Circulatory Support Service and Cardiac Transplant Program, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Tamas Alexy
- Lillehei Heart Institute and Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (H.S.); (A.C.A.); (V.M.); (C.M.M.)
- Advanced Heart Failure Program, Mechanical Circulatory Support Service and Cardiac Transplant Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence: (T.A.); (D.J.G.)
| | - Daniel J. Garry
- Lillehei Heart Institute and Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (H.S.); (A.C.A.); (V.M.); (C.M.M.)
- Advanced Heart Failure Program, Mechanical Circulatory Support Service and Cardiac Transplant Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (T.A.); (D.J.G.)
| |
Collapse
|
43
|
Kruk-Slomka M, Biala G. Cannabidiol Attenuates MK-801-Induced Cognitive Symptoms of Schizophrenia in the Passive Avoidance Test in Mice. Molecules 2021; 26:molecules26195977. [PMID: 34641522 PMCID: PMC8513030 DOI: 10.3390/molecules26195977] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia is a chronic mental disorder that disturbs feelings and behavior. The symptoms of schizophrenia fall into three categories: positive, negative, and cognitive. Cognitive symptoms are characterized by memory loss or attentional deficits, and are especially difficult to treat. Thus, there is intense research into the development of new treatments for schizophrenia-related responses. One of the possible strategies is connected with cannabidiol (CBD), a cannabinoid compound. This research focuses on the role of CBD in different stages of memory (acquisition, consolidation, retrieval) connected with fear conditioning in the passive avoidance (PA) learning task in mice, as well as in the memory impairment typical of cognitive symptoms of schizophrenia. Memory impairment was provoked by an acute injection of the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (animal model of schizophrenia). Our results revealed that an acute injection of CBD (30 mg/kg; intraperitoneally (i.p.) improved all phases of long-term fear memory in the PA test in mice. Moreover, the acute injection of non-effective doses of CBD (1 or 5 mg/kg; i.p.) attenuated the memory impairment provoked by MK-801 (0.6 mg/kg; i.p.) in the consolidation and retrieval stages of fear memory, but not in the acquisition of memory. The present findings confirm that CBD has a positive influence on memory and learning processes in mice, and reveals that this cannabinoid compound is able to attenuate memory impairment connected with hypofunction of glutamate transmission in a murine model of schizophrenia.
Collapse
|
44
|
Cannabidiol modulation of oxidative stress and signalling. Neuronal Signal 2021; 5:NS20200080. [PMID: 34497718 PMCID: PMC8385185 DOI: 10.1042/ns20200080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Cannabidiol (CBD), one of the primary non-euphoric components in the Cannabis sativa L. plant, has undergone clinical development over the last number of years as a therapeutic for patients with Lennox-Gastaut syndrome and Dravet syndromes. This phytocannabinoid demonstrates functional and pharmacological diversity, and research data indicate that CBD is a comparable antioxidant to common antioxidants. This review gathers the latest knowledge regarding the impact of CBD on oxidative signalling, with focus on the proclivity of CBD to regulate antioxidants and control the production of reactive oxygen species. CBD is considered an attractive therapeutic agent for neuroimmune disorders, and a body of literature indicates that CBD can regulate redox function at multiple levels, with a range of downstream effects on cells and tissues. However, pro-oxidant capacity of CBD has also been reported, and hence caution must be applied when considering CBD from a therapeutic standpoint. Such pro- and antioxidant functions of CBD may be cell- and model-dependent and may also be influenced by CBD dose, the duration of CBD treatment and the underlying pathology.
Collapse
|
45
|
Madden O, Walshe J, Kishore Patnala P, Barron J, Meaney C, Murray P. Phytocannabinoids - An Overview of the Analytical Methodologies for Detection and Quantification of Therapeutically and Recreationally Relevant Cannabis Compounds. Crit Rev Anal Chem 2021; 53:211-231. [PMID: 34328047 DOI: 10.1080/10408347.2021.1949694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The legalization of the cultivation of low Δ9-tetrahydrocannabinol (Δ9-THC) and high cannabidiol (CBD) Cannabis Sativa plants is gaining momentum around the world due to increasing demand for CBD-containing products. In many countries where CBD oils, extracts and CBD-infused foods and beverages are being sold in health shops and supermarkets, appropriate testing of these products is a legal requirement. Normally this involves determining the total Δ9-THC and CBD and their precursor tetrahydrocannabinolic acids (THCA) and cannabidiolic acid (CBDA). As our knowledge of the other relevant cannabinoids expands, it is likely so too will the demand for them as additives in many consumer products ensuring a necessity for quantification methods and protocols for their identification. This paper discusses therapeutically relevant cannabinoids found in Cannabis plant, the applicability and efficiency of existing extraction and analytical techniques as well as the legal requirements for these analyses.
Collapse
Affiliation(s)
- Olena Madden
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland
| | - Jessica Walshe
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland.,Department of Applied Science, Limerick Institute of Technology, Limerick, Ireland
| | - Prem Kishore Patnala
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland
| | | | - Claire Meaney
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland
| | - Patrick Murray
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland
| |
Collapse
|
46
|
Majimbi M, Brook E, Galettis P, Eden E, Al-Salami H, Mooranian A, Al-Sallami H, Lam V, Mamo JCL, Takechi R. Sodium alginate microencapsulation improves the short-term oral bioavailability of cannabidiol when administered with deoxycholic acid. PLoS One 2021; 16:e0243858. [PMID: 34138862 PMCID: PMC8211198 DOI: 10.1371/journal.pone.0243858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cannabidiol (CBD) confers therapeutic effects in some neurological disorders via modulation of inflammatory, oxidative and cell-signalling pathways. However, CBD is lipophilic and highly photooxidative with low oral bioavailability in plasma and brain. In this study, we aimed to design and test a CBD microencapsulation method as a drug delivery strategy to improve the absorption of CBD. Additionally, we evaluated the brain uptake of CBD capsules when administered alongside capsules containing a permeation-modifying bile acid, deoxycholic acid (DCA). METHODS Microcapsules containing either CBD or DCA were formed using the ionic gelation method with 1.5% sodium alginate formulations and 100 mM calcium chloride. C57BL/6J wild type mice randomly assigned to three treatment groups (3-4 mice per group) were administered CBD in the following preparations: 1) CBD capsules, 2) CBD capsules + DCA capsules and 3) naked CBD oil (control). To assess the short-term bioavailability of CBD, plasma and brain samples were collected at 0.3, 1 and 3 hours post administration and CBD levels were analysed with liquid chromatography mass spectrometer. RESULTS We produced spherical capsules at 400 ± 50 μm in size. The CBD capsules were calculated to have a drug loading of 2% and an encapsulation efficiency of 23%. Mice that received CBD capsules + DCA capsules showed a 40% and 47% increase in CBD plasma concentration compared to mice on CBD capsules and naked CBD oil, respectively. Furthermore, the CBD capsules + DCA capsules group showed a 48% and 25% increase in CBD brain concentration compared to mice on CBD capsules and naked CBD oil, respectively. In mice treated with CBD capsules + DCA capsules, the brain CBD concentration peaked at 0.3 hours with a 300% increased availability compared to CBD capsules and naked CBD oil groups, which peaked at 1 hour after administration. CONCLUSIONS The microencapsulation method combined with a permeation enhancer, DCA increased the short-term bioavailability of CBD in plasma and brain.
Collapse
Affiliation(s)
- Maimuna Majimbi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Emily Brook
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Peter Galettis
- School of Medicine and Public Health, University of Newcastle and The Australian Centre for Cannabinoid Clinical and Research Excellence, Newcastle, NSW, Australia
| | - Edward Eden
- School of Medicine and Public Health, University of Newcastle and The Australian Centre for Cannabinoid Clinical and Research Excellence, Newcastle, NSW, Australia
| | - Hani Al-Salami
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Armin Mooranian
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | | | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - John C. L. Mamo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
47
|
Liu C, Li H, Xu F, Jiang X, Ma H, Seeram NP. Cannabidiol Protects Human Skin Keratinocytes from Hydrogen-Peroxide-Induced Oxidative Stress via Modulation of the Caspase-1-IL-1β Axis. JOURNAL OF NATURAL PRODUCTS 2021; 84:1563-1572. [PMID: 33955754 DOI: 10.1021/acs.jnatprod.1c00083] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preclinical and clinical studies support cannabidiol (CBD)'s antioxidant and anti-inflammatory effects, which are linked to its skin protective effects, but there have been limited mechanistic studies reported. Herein we evaluated CBD's protective effects against hydrogen peroxide (H2O2)-induced oxidative stress in human keratinocyte HaCaT cells and explored its possible mechanism(s) of action. CBD (10 μM) protected HaCaT cells by alleviating H2O2 (200 μM)-induced cytotoxicity (by 11.3%) and reactive oxygen species (total- and mitochondrial-derived). Several NLRP3 inflammasome-related genes including CASP1 and IL1B were identified as potential molecular targets for CBD's antioxidant effects by multiplexed gene and network pharmacology analyses. CBD treatment down-regulated the mRNA expression levels of CASP1 and IL1B (by 32.9 and 51.0%, respectively) and reduced IL-1β level (by 16.2%) in H2O2-stimulated HaCaT cells. Furthermore, CBD inhibited the activity of caspase-1 enzyme (by 15.7%) via direct binding to caspase-1 protein, which was supported by data from a biophysical binding assay (surface plasmon resonance) and a computational docking experiment. In addition, CBD mitigated H2O2-induced pyroptosis (capase-1-mediated cell death) and apoptosis by 23.6 and 44.0%, respectively. The findings from the current study suggest that CBD exerts protective effects in human keratinocytes via the modulation of the caspase-1-IL-1β axis, supporting its potential skin health applications.
Collapse
Affiliation(s)
- Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Feng Xu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Xian Jiang
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
48
|
Mattes RG, Espinosa ML, Oh SS, Anatrella EM, Urteaga EM. Cannabidiol (CBD) Use in Type 2 Diabetes: A Case Report. Diabetes Spectr 2021; 34:198-201. [PMID: 34149261 PMCID: PMC8178711 DOI: 10.2337/ds20-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Raymond G. Mattes
- Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX
| | | | - Sam S. Oh
- Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX
| | | | | |
Collapse
|
49
|
Vallée A, Vallée JN, Lecarpentier Y. Potential role of cannabidiol in Parkinson's disease by targeting the WNT/β-catenin pathway, oxidative stress and inflammation. Aging (Albany NY) 2021; 13:10796-10813. [PMID: 33848261 PMCID: PMC8064164 DOI: 10.18632/aging.202951] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/26/2021] [Indexed: 04/11/2023]
Abstract
Parkinson's disease (PD) is a major neurodegenerative disease (ND), presenting a progressive degeneration of the nervous system characterized by a loss of dopamine in the substantia nigra pars compacta. Recent findings have shown that oxidative stress and inflammation play key roles in the development of PD. However, therapies remain uncertain and research for new treatment is of the utmost importance. This review focuses on the potential effects of using cannabidiol (CBD) as a potential therapeutic strategy for the treatment of PD and on some of the presumed mechanisms by which CBD provides its beneficial properties. CBD medication downregulates GSK-3β, the main inhibitor of the WNT/β-catenin pathway. Activation of the WNT/β-catenin could be associated with the control of oxidative stress and inflammation. Future prospective clinical trials should focus on CBD and its multiple interactions in the treatment of PD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, Suresnes 92150, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens 80054, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers 86000, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), Meaux 77100, France
| |
Collapse
|
50
|
Vallée A, Lecarpentier Y, Vallée JN. Cannabidiol and the Canonical WNT/β-Catenin Pathway in Glaucoma. Int J Mol Sci 2021; 22:ijms22073798. [PMID: 33917605 PMCID: PMC8038773 DOI: 10.3390/ijms22073798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Glaucoma is a progressive neurodegenerative disease which constitutes the main frequent cause of irreversible blindness. Recent findings have shown that oxidative stress, inflammation and glutamatergic pathway play key roles in the causes of glaucoma. Recent studies have shown a down regulation of the WNT/β-catenin pathway in glaucoma, associated with overactivation of the GSK-3β signaling. WNT/β-catenin pathway is mainly associated with oxidative stress, inflammation and glutamatergic pathway. Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa plant which possesses many therapeutic properties across a range of neuropsychiatric disorders. Since few years, CBD presents an increased interest as a possible drug in anxiolytic disorders. CBD administration is associated with increase of the WNT/β-catenin pathway and decrease of the GSK-3β activity. CBD has a lower affinity for CB1 but can act through other signaling in glaucoma, including the WNT/β-catenin pathway. CBD downregulates GSK3-β activity, an inhibitor of WNT/β-catenin pathway. Moreover, CBD was reported to suppress pro-inflammatory signaling and neuroinflammation, oxidative stress and glutamatergic pathway. Thus, this review focuses on the potential effects of cannabidiol, as a potential therapeutic strategy, on glaucoma and some of the presumed mechanisms by which this phytocannabinoid provides its possible benefit properties through the WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 rue Saint-Fiacre, 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|