1
|
Zhang H, Wang J, Hu H, Ma L. A highly transparent dopamine-copolymerized hydrogel with enhanced ROS-scavenging and tissue-adhesive properties for chronic diabetic wounds. Acta Biomater 2025; 198:161-173. [PMID: 40246261 DOI: 10.1016/j.actbio.2025.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Chronic diabetic wounds with complex symptoms represent a major challenge in clinical practice, causing a serious threat to human health and life. Excessive oxidative stress and persistent inflammatory responses are the important reasons for the long-term difficult healing of diabetic wounds. Designing wound dressing materials with intrinsic antioxidant performance, high transparency, adhesiveness, and favorable mechanical properties is of great significance for promoting wound healing, especially in movable parts. Here, a dopamine-copolymerized highly transparent antioxidant hydrogel was developed for the treatment of chronic diabetic wounds. The hydrogel was easily prepared via free radical polymerization using acrylated dopamine monomer (ADA), acrylamide (AM), and phenylboronic acid modified dextran (DP). The dynamic phenylborate ester bonds formed between the catechol of polydopamine and phenylboronic acid effectively mitigated the darkening of the hydrogel color caused by the auto-oxidation of catechol, resulting in the PAM/PDA/DP hydrogel (DP3) with durable transparency. In addition, this hydrogel had good adhesiveness and mechanical properties, as well as desirable reactive oxygen species (ROS)-scavenging performance. Furthermore, in vivo results demonstrated that DP3 hydrogel can stimulate the polarization of macrophages toward anti-inflammatory M2 phenotype, increase the secretion of anti-inflammatory factors, so as to smooth the transition of wound healing from the inflammatory phase to the proliferative phase, and accelerate the repair of diabetic wounds by promoting angiogenesis and collagen deposition. Therefore, the DP3 hydrogel holds great potential for remolding the tissue regeneration microenvironment and serving as a promising dressing for chronic diabetic wounds. STATEMENT OF SIGNIFICANCE: Polydopamine (PDA)-based hydrogels have been widely explored. However, existing PDA-based hydrogels suffer from low content of catechol groups and inferior transparency, and are prone to oxidation darkening during storage. In this study, a dopamine-copolymerized hydrogel with high catechol content was developed. The catechol groups are partially protected by phenylboronic acid-modified dextran, resulting in durable transparency and good adhesiveness of the hydrogel. The hydrogel exhibits desirable antioxidant performance and can effectively promote chronic diabetic wound healing by relieving oxidative stress and regulating immune function. This highly transparent hydrogel with intrinsic antioxidation and self-adhesiveness properties represents a potential and effective strategy for chronic wound management.
Collapse
Affiliation(s)
- Haiqi Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jinze Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongtao Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
2
|
Peña OA, Martin P. Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol 2024; 25:599-616. [PMID: 38528155 DOI: 10.1038/s41580-024-00715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/27/2024]
Abstract
Wound healing is a complex process that involves the coordinated actions of many different tissues and cell lineages. It requires tight orchestration of cell migration, proliferation, matrix deposition and remodelling, alongside inflammation and angiogenesis. Whereas small skin wounds heal in days, larger injuries resulting from trauma, acute illness or major surgery can take several weeks to heal, generally leaving behind a fibrotic scar that can impact tissue function. Development of therapeutics to prevent scarring and successfully repair chronic wounds requires a fuller knowledge of the cellular and molecular mechanisms driving wound healing. In this Review, we discuss the current understanding of the different phases of wound healing, from clot formation through re-epithelialization, angiogenesis and subsequent scar deposition. We highlight the contribution of different cell types to skin repair, with emphasis on how both innate and adaptive immune cells in the wound inflammatory response influence classically studied wound cell lineages, including keratinocytes, fibroblasts and endothelial cells, but also some of the less-studied cell lineages such as adipocytes, melanocytes and cutaneous nerves. Finally, we discuss newer approaches and research directions that have the potential to further our understanding of the mechanisms underpinning tissue repair.
Collapse
Affiliation(s)
- Oscar A Peña
- School of Biochemistry, University of Bristol, Bristol, UK.
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
3
|
Anerillas C, Perramon-Güell A, Altés G, Cuesta S, Vaquero M, Olomí A, Rodríguez-Barrueco R, Llobet-Navàs D, Egea J, Dolcet X, Yeramian A, Encinas M. Sprouty1 is a broad mediator of cellular senescence. Cell Death Dis 2024; 15:296. [PMID: 38670941 PMCID: PMC11053034 DOI: 10.1038/s41419-024-06689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Genes of the Sprouty family (Spry1-4) restrain signaling by certain receptor tyrosine kinases. Consequently, these genes participate in several developmental processes and function as tumor suppressors in adult life. Despite these important roles, the biology of this family of genes still remains obscure. Here we show that Sprouty proteins are general mediators of cellular senescence. Induction of cellular senescence by several triggers in vitro correlates with upregulation of Sprouty protein levels. More importantly, overexpression of Sprouty genes is sufficient to cause premature cellular senescence, via a conserved N-terminal tyrosine (Tyrosine 53 of Sprouty1). Accordingly, fibroblasts from knockin animals lacking that tyrosine escape replicative senescence. In vivo, heterozygous knockin mice display delayed induction of cellular senescence during cutaneous wound healing and upon chemotherapy-induced cellular senescence. Unlike other functions of this family of genes, induction of cellular senescence appears to be independent of activation of the ERK1/2 pathway. Instead, we show that Sprouty proteins induce cellular senescence upstream of the p38 pathway in these in vitro and in vivo paradigms.
Collapse
Affiliation(s)
- Carlos Anerillas
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain.
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA.
- Homeostasis de tejidos y órganos program, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Autónoma de Madrid, Madrid, Spain.
| | - Aida Perramon-Güell
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Gisela Altés
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Sara Cuesta
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
- Fundación de Investigación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Novena Planta, Investigación, Av Ana de Viya, 21, Cádiz, Spain
| | - Marta Vaquero
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
- Hospital Universitari Arnau de Vilanova, Rovira Roure, 80, Lleida, Spain
| | - Anna Olomí
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Ruth Rodríguez-Barrueco
- Laboratory of Precision Medicine, Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l'Hospitalet, Barcelona, Spain
| | - David Llobet-Navàs
- Laboratory of Precision Medicine, Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l'Hospitalet, Barcelona, Spain
| | - Joaquim Egea
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Xavi Dolcet
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Andrée Yeramian
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Mario Encinas
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain.
| |
Collapse
|
4
|
Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 2023; 26:313-347. [PMID: 37060495 PMCID: PMC10105163 DOI: 10.1007/s10456-023-09876-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/26/2023] [Indexed: 04/16/2023]
Abstract
In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Microbiology, Immunology and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
闵 磊, 蒋 文, 李 忠, 李 潇, 刁 珺, 刘 任, 邰 天, 白 逃. [Animal experimental study on the effects of different levels of amputation on cardiovascular system]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:515-521. [PMID: 37380391 PMCID: PMC10307619 DOI: 10.7507/1001-5515.202211004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/20/2023] [Indexed: 06/30/2023]
Abstract
Vascular injury resulting from lower limb amputation leads to the redistribution of blood flow and changes in vascular terminal resistance, which can affect the cardiovascular system. However, there was no clear understanding of how different amputation levels affect the cardiovascular system in animal experiments. Therefore, this study established two animal models of above-knee amputation (AKA) and below-knee amputation (BKA) to explore the effects of different amputation levels on the cardiovascular system through blood and histopathological examinations. The results showed that amputation caused pathological changes in the cardiovascular system of animals, including endothelial injury, inflammation, and angiosclerosis. The degree of cardiovascular injury was higher in the AKA group than in the BKA group. This study sheds light on the internal mechanisms of amputation's impact on the cardiovascular system. Based on the amputation level of patients, the findings recommend more comprehensive and targeted monitoring after surgery and necessary interventions to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- 磊 闵
- 四川大学 建筑与环境学院 力学科学与工程系(成都 610065)Department of Mechanics & Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R.China
- 四川大学 生物力学工程四川省重点实验室(成都 610065)Sichuan Key Laboratory of Biomechanical Engineering, Sichuan University, Chengdu 610065, P.R.China
| | - 文涛 蒋
- 四川大学 建筑与环境学院 力学科学与工程系(成都 610065)Department of Mechanics & Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R.China
- 四川大学 生物力学工程四川省重点实验室(成都 610065)Sichuan Key Laboratory of Biomechanical Engineering, Sichuan University, Chengdu 610065, P.R.China
| | - 忠友 李
- 四川大学 建筑与环境学院 力学科学与工程系(成都 610065)Department of Mechanics & Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R.China
- 四川大学 生物力学工程四川省重点实验室(成都 610065)Sichuan Key Laboratory of Biomechanical Engineering, Sichuan University, Chengdu 610065, P.R.China
| | - 潇 李
- 四川大学 建筑与环境学院 力学科学与工程系(成都 610065)Department of Mechanics & Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R.China
- 四川大学 生物力学工程四川省重点实验室(成都 610065)Sichuan Key Laboratory of Biomechanical Engineering, Sichuan University, Chengdu 610065, P.R.China
| | - 珺杰 刁
- 四川大学 建筑与环境学院 力学科学与工程系(成都 610065)Department of Mechanics & Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R.China
- 四川大学 生物力学工程四川省重点实验室(成都 610065)Sichuan Key Laboratory of Biomechanical Engineering, Sichuan University, Chengdu 610065, P.R.China
| | - 任静 刘
- 四川大学 建筑与环境学院 力学科学与工程系(成都 610065)Department of Mechanics & Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R.China
- 四川大学 生物力学工程四川省重点实验室(成都 610065)Sichuan Key Laboratory of Biomechanical Engineering, Sichuan University, Chengdu 610065, P.R.China
| | - 天翔 邰
- 四川大学 建筑与环境学院 力学科学与工程系(成都 610065)Department of Mechanics & Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R.China
- 四川大学 生物力学工程四川省重点实验室(成都 610065)Sichuan Key Laboratory of Biomechanical Engineering, Sichuan University, Chengdu 610065, P.R.China
| | - 逃萍 白
- 四川大学 建筑与环境学院 力学科学与工程系(成都 610065)Department of Mechanics & Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R.China
- 四川大学 生物力学工程四川省重点实验室(成都 610065)Sichuan Key Laboratory of Biomechanical Engineering, Sichuan University, Chengdu 610065, P.R.China
| |
Collapse
|
6
|
Liu J, Yang L, Liu K, Gao F. Hydrogel scaffolds in bone regeneration: Their promising roles in angiogenesis. Front Pharmacol 2023; 14:1050954. [PMID: 36860296 PMCID: PMC9968752 DOI: 10.3389/fphar.2023.1050954] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Bone tissue engineering (BTE) has become a hopeful potential treatment strategy for large bone defects, including bone tumors, trauma, and extensive fractures, where the self-healing property of bone cannot repair the defect. Bone tissue engineering is composed of three main elements: progenitor/stem cells, scaffold, and growth factors/biochemical cues. Among the various biomaterial scaffolds, hydrogels are broadly used in bone tissue engineering owing to their biocompatibility, controllable mechanical characteristics, osteoconductive, and osteoinductive properties. During bone tissue engineering, angiogenesis plays a central role in the failure or success of bone reconstruction via discarding wastes and providing oxygen, minerals, nutrients, and growth factors to the injured microenvironment. This review presents an overview of bone tissue engineering and its requirements, hydrogel structure and characterization, the applications of hydrogels in bone regeneration, and the promising roles of hydrogels in bone angiogenesis during bone tissue engineering.
Collapse
Affiliation(s)
- Jun Liu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lili Yang
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kexin Liu
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Feng Gao,
| |
Collapse
|
7
|
Liu T, Lu Y, Zhan R, Qian W, Luo G. Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing. Adv Drug Deliv Rev 2023; 193:114670. [PMID: 36538990 DOI: 10.1016/j.addr.2022.114670] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Various factors could damage the structure and integrity of skin to cause wounds. Nonhealing or chronic wounds seriously affect the well-being of patients and bring heavy burdens to the society. The past few decades have witnessed application of numerous nanomaterials to promote wound healing. Owing to the unique physicochemical characteristics at nanoscale, nanomaterials-based therapy has been regarded as a potential approach to promote wound healing. In this review, we first overview the wound categories, wound healing process and critical influencing factors. Then applications of nanomaterials with intrinsic therapeutic effect and nanomaterials-based drug delivery systems to promote wound healing are addressed in detail. Finally, current limitations and future perspectives of nanomaterials in wound healing are discussed.
Collapse
Affiliation(s)
- Tengfei Liu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yifei Lu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rixing Zhan
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wei Qian
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
8
|
Lyttle BD, Vaughn AE, Bardill JR, Apte A, Gallagher LT, Zgheib C, Liechty KW. Effects of microRNAs on angiogenesis in diabetic wounds. Front Med (Lausanne) 2023; 10:1140979. [PMID: 37020673 PMCID: PMC10067680 DOI: 10.3389/fmed.2023.1140979] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
Diabetes mellitus is a morbid condition affecting a growing number of the world population, and approximately one third of diabetic patients are afflicted with diabetic foot ulcers (DFU), which are chronic non-healing wounds that frequently progress to require amputation. The treatments currently used for DFU focus on reducing pressure on the wound, staving off infection, and maintaining a moist environment, but the impaired wound healing that occurs in diabetes is a constant obstacle that must be faced. Aberrant angiogenesis is a major contributor to poor wound healing in diabetes and surgical intervention is often necessary to establish peripheral blood flow necessary for healing wounds. Over recent years, microRNAs (miRNAs) have been implicated in the dysregulation of angiogenesis in multiple pathologies including diabetes. This review explores the pathways of angiogenesis that become dysregulated in diabetes, focusing on miRNAs that have been identified and the mechanisms by which they affect angiogenesis.
Collapse
Affiliation(s)
- Bailey D. Lyttle
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Bailey D. Lyttle,
| | - Alyssa E. Vaughn
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States
| | - James R. Bardill
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States
| | - Anisha Apte
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, College of Medicine, University of Arizona Health Sciences College of Medicine—Tucson, Tucson, AZ, United States
| | - Lauren T. Gallagher
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, College of Medicine, University of Arizona Health Sciences College of Medicine—Tucson, Tucson, AZ, United States
| | - Kenneth W. Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, College of Medicine, University of Arizona Health Sciences College of Medicine—Tucson, Tucson, AZ, United States
| |
Collapse
|
9
|
de Almeida BM, dos Santos IDD, de Carvalho FMA, Correa LC, Cunha JLS, Dariva C, Severino P, Cardoso JC, Souto EB, de Albuquerque-Júnior RLC. Himatanthus bracteatus-Composed In Situ Polymerizable Hydrogel for Wound Healing. Int J Mol Sci 2022; 23:ijms232315176. [PMID: 36499503 PMCID: PMC9739771 DOI: 10.3390/ijms232315176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/27/2022] [Accepted: 10/18/2022] [Indexed: 12/12/2022] Open
Abstract
The Himatanthus genus presents anti-inflammatory, antioxidant activities, suggesting potential wound-healing properties. This study aimed to develop and analyze the wound-healing properties of a photopolymerizable gelatin-based hydrogel (GelMA) containing an ethanolic extract of Himatanthus bracteatus in a murine model. The extract was obtained under high pressure conditions, incorporated (2%) into the GelMA (GelMA-HB), and physically characterized. The anti-inflammatory activity of the extract was assessed using a carrageenan-induced pleurisy model and the GelMA-HB scarring properties in a wound-healing assay. The extract reduced IL-1β and TNF-α levels (48.5 ± 6.7 and 64.1 ± 4.9 pg/mL) compared to the vehicle (94.4 ± 2.3 pg/mL and 106.3 ± 5.7 pg/mL; p < 0.001). GelMA-HB depicted significantly lower swelling and increased resistance to mechanical compression compared to GelMA (p < 0.05). GelMA-HB accelerated wound closure over the time course of the experiment (p < 0.05) and promoted a significantly greater peak of myofibroblast differentiation (36.1 ± 6.6 cells) and microvascular density (23.1 ± 0.7 microvessels) on day 7 in comparison to GelMA (31.9 ± 5.3 cells and 20.2 ± 0.6 microvessels) and the control (25.8 ± 4.6 cells and 17.5 ± 0.5 microvessels) (p < 0.05). In conclusion, GelMA-HB improved wound healing in rodents, probably by modulating the inflammatory response and myofibroblastic and microvascular differentiation.
Collapse
Affiliation(s)
- Bernadeth M. de Almeida
- Biotechnological Postgraduate Program—RENORBIO, Tiradentes University, Aracaju 49010-390, SE, Brazil
| | | | - Felipe M. A. de Carvalho
- Postgraduate Program in Health and Environment, Tiradentes University, Aracaju 49032-490, SE, Brazil
| | - Luana C. Correa
- School of Physiotherapy, Tiradentes University, Aracaju 49032-490, SE, Brazil
| | - John L. S. Cunha
- Department of Odontology, Paraiba State University, Campina Grande 58429 500, PB, Brazil
| | - Claudio Dariva
- Laboratory for Colloidal Systems Studies, Institute of Technology and Research (ITP), Tiradentes University, Aracaju 49010-390, SE, Brazil
| | - Patricia Severino
- Biotechnological Postgraduate Program—RENORBIO, Tiradentes University, Aracaju 49010-390, SE, Brazil
| | - Juliana C. Cardoso
- Biotechnological Postgraduate Program—RENORBIO, Tiradentes University, Aracaju 49010-390, SE, Brazil
- Postgraduate Program in Health and Environment, Tiradentes University, Aracaju 49032-490, SE, Brazil
| | - Eliana B. Souto
- Biotechnological Postgraduate Program—RENORBIO, Tiradentes University, Aracaju 49010-390, SE, Brazil
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº. 228, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº. 228, 4050-313 Porto, Portugal
- Correspondence: (E.B.S.); (R.L.C.d.A.-J.)
| | | |
Collapse
|
10
|
Tregub PP, Averchuk AS, Baranich TI, Ryazanova MV, Salmina AB. Physiological and Pathological Remodeling of Cerebral Microvessels. Int J Mol Sci 2022; 23:12683. [PMID: 36293539 PMCID: PMC9603917 DOI: 10.3390/ijms232012683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
There is growing evidence that the remodeling of cerebral microvessels plays an important role in plastic changes in the brain associated with development, experience, learning, and memory consolidation. At the same time, abnormal neoangiogenesis, and deregulated regulation of microvascular regression, or pruning, could contribute to the pathogenesis of neurodevelopmental diseases, stroke, and neurodegeneration. Aberrant remodeling of microvesselsis associated with blood-brain barrier breakdown, development of neuroinflammation, inadequate microcirculation in active brain regions, and leads to the dysfunction of the neurovascular unit and progressive neurological deficits. In this review, we summarize current data on the mechanisms of blood vessel regression and pruning in brain plasticity and in Alzheimer's-type neurodegeneration. We discuss some novel approaches to modulating cerebral remodeling and preventing degeneration-coupled aberrant microvascular activity in chronic neurodegeneration.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Federal State Budgetary Scientific Institution Research Center of Neurology, 125367 Moscow, Russia
| | | | | | | | | |
Collapse
|
11
|
Abstract
Angiogenesis, or the growth of new blood vessels from the preexisting vasculature, is a visible and important component of wound repair. When tissue damage occurs, disruption of the vasculature structure leads to hypoxia. The restoration of normoxia is essential for appropriate and durable tissue repair. Angiogenesis in wounds is regulated by endogenous proangiogenic mediators, which cause rapid growth of a new vascular bed that is much denser than that of normal tissue. Such rapid growth of the capillary bed results in capillaries that are abnormal, and the newly formed vessels are tortuous, dilated, and immature. During wound resolution, this substantial neocapillary bed is pruned back to normal density with attendant maturation. Many poorly healing wounds, including nonhealing ulcers and scars, exhibit an aberrant angiogenic response. The fine-tuning of capillary regrowth in wounds is an area of significant therapeutic potential.
Collapse
Affiliation(s)
- Chen Han
- Center for Wound Healing and Tissue Regeneration, Colleges of Dentistry and Medicine, University of Illinois Chicago, Chicago, Illinois 60612, USA
| | - May Barakat
- Center for Wound Healing and Tissue Regeneration, Colleges of Dentistry and Medicine, University of Illinois Chicago, Chicago, Illinois 60612, USA
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, Colleges of Dentistry and Medicine, University of Illinois Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|
12
|
Li-Villarreal N, Wong RLY, Garcia MD, Udan RS, Poché RA, Rasmussen TL, Rhyner AM, Wythe JD, Dickinson ME. FOXO1 represses sprouty 2 and sprouty 4 expression to promote arterial specification and vascular remodeling in the mouse yolk sac. Development 2022; 149:274922. [PMID: 35297995 PMCID: PMC8995087 DOI: 10.1242/dev.200131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/04/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Establishing a functional circulatory system is required for post-implantation development during murine embryogenesis. Previous studies in loss-of-function mouse models showed that FOXO1, a Forkhead family transcription factor, is required for yolk sac (YS) vascular remodeling and survival beyond embryonic day (E) 11. Here, we demonstrate that at E8.25, loss of Foxo1 in Tie2-cre expressing cells resulted in increased sprouty 2 (Spry2) and Spry4 expression, reduced arterial gene expression and reduced Kdr (also known as Vegfr2 and Flk1) transcripts without affecting overall endothelial cell identity, survival or proliferation. Using a Dll4-BAC-nlacZ reporter line, we found that one of the earliest expressed arterial genes, delta like 4, is significantly reduced in Foxo1 mutant YS without being substantially affected in the embryo proper. We show that FOXO1 binds directly to previously identified Spry2 gene regulatory elements (GREs) and newly identified, evolutionarily conserved Spry4 GREs to repress their expression. Furthermore, overexpression of Spry4 in transient transgenic embryos largely recapitulates the reduced expression of arterial genes seen in conditional Foxo1 mutants. Together, these data reveal a novel role for FOXO1 as a key transcriptional repressor regulating both pre-flow arterial specification and subsequent vessel remodeling within the murine YS.
Collapse
Affiliation(s)
- Nanbing Li-Villarreal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rebecca Lee Yean Wong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Monica D. Garcia
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ryan S. Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ross A. Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tara L. Rasmussen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Alexander M. Rhyner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Joshua D. Wythe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
13
|
Masood F, Bhattaram R, Rosenblatt MI, Kazlauskas A, Chang JH, Azar DT. Lymphatic Vessel Regression and Its Therapeutic Applications: Learning From Principles of Blood Vessel Regression. Front Physiol 2022; 13:846936. [PMID: 35392370 PMCID: PMC8980686 DOI: 10.3389/fphys.2022.846936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/25/2022] [Indexed: 02/03/2023] Open
Abstract
Aberrant lymphatic system function has been increasingly implicated in pathologies such as lymphedema, organ transplant rejection, cardiovascular disease, obesity, and neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. While some pathologies are exacerbated by lymphatic vessel regression and dysfunction, induced lymphatic regression could be therapeutically beneficial in others. Despite its importance, our understanding of lymphatic vessel regression is far behind that of blood vessel regression. Herein, we review the current understanding of blood vessel regression to identify several hallmarks of this phenomenon that can be extended to further our understanding of lymphatic vessel regression. We also summarize current research on lymphatic vessel regression and an array of research tools and models that can be utilized to advance this field. Additionally, we discuss the roles of lymphatic vessel regression and dysfunction in select pathologies, highlighting how an improved understanding of lymphatic vessel regression may yield therapeutic insights for these disease states.
Collapse
|
14
|
Morbidelli L, Genah S, Cialdai F. Effect of Microgravity on Endothelial Cell Function, Angiogenesis, and Vessel Remodeling During Wound Healing. Front Bioeng Biotechnol 2021; 9:720091. [PMID: 34631676 PMCID: PMC8493071 DOI: 10.3389/fbioe.2021.720091] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Wound healing is a complex phenomenon that involves different cell types with various functions, i.e., keratinocytes, fibroblasts, and endothelial cells, all influenced by the action of soluble mediators and rearrangement of the extracellular matrix (ECM). Physiological angiogenesis occurs in the granulation tissue during wound healing to allow oxygen and nutrient supply and waste product removal. Angiogenesis output comes from a balance between pro- and antiangiogenic factors, which is finely regulated in a spatial and time-dependent manner, in order to avoid insufficient or excessive nonreparative neovascularization. The understanding of the factors and mechanisms that control angiogenesis and their change following unloading conditions (in a real or simulated space environment) will allow to optimize the tissue response in case of traumatic injury or medical intervention. The potential countermeasures under development to optimize the reparative angiogenesis that contributes to tissue healing on Earth will be discussed in relation to their exploitability in space.
Collapse
Affiliation(s)
| | - Shirley Genah
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Francesca Cialdai
- ASA Campus Joint Laboratory, ASA Research Division & Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
15
|
Pretto C, Tang M, Chen M, Xu H, Subrizi A, Urtti A, van Hest JCM. Cowpea Chlorotic Mottle Virus-Like Particles as Potential Platform for Antisense Oligonucleotide Delivery in Posterior Segment Ocular Diseases. Macromol Biosci 2021; 21:e2100095. [PMID: 34031995 DOI: 10.1002/mabi.202100095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Indexed: 01/08/2023]
Abstract
Due to its small size, easy accessibility and immune privileged environment, the eye represents an ideal target for therapeutic nucleic acids in the treatment of posterior segment ocular diseases, such as age-related macular degeneration (AMD). Among nanocarriers that can be used to achieve nucleic acid delivery, virus-like particles (VLPs) obtained from the Cowpea chlorotic mottle virus (CCMV) are an appealing platform, because of their loading capacity, ease of manufacture and amenability for functionalization. Herein, antisense oligonucleotide-loaded CCMV nanoparticles, intended for intravitreal injection, are evaluated for selective silencing of miR-23, an important target in AMD. CCMV nanoparticles loaded with anti-miR-23 locked nucleic acid and stabilized using the 3,3'-dithiobis(sulfosuccinimidyl propionate) (DTSSP) cross-linker, are assembled in vitro with a loading efficiency up to 80%. VLPs are found to be stable at 37 °C in the vitreous humor up to 24 hours. Nanoparticle cytotoxicity, cellular uptake and transfection efficacy are evaluated in endothelial cells. Selective miRNA down-regulation is achieved by the loaded CCMV VLPs both in absence and presence of Lipofectamine, with efficacies of ≈40% and more than 80%, respectively. The authors' findings pave the way for the future development of CCMV nanoparticles as oligonucleotide delivery platform to treat posterior segment ocular diseases.
Collapse
Affiliation(s)
- Chiara Pretto
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Miao Tang
- The Welcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Mei Chen
- The Welcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Heping Xu
- The Welcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Astrid Subrizi
- School of Pharmacy, University of Eastern Finland, Kuopio, 70210, Finland
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, Kuopio, 70210, Finland
| | - Jan C M van Hest
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
16
|
Chico TJA, Kugler EC. Cerebrovascular development: mechanisms and experimental approaches. Cell Mol Life Sci 2021; 78:4377-4398. [PMID: 33688979 PMCID: PMC8164590 DOI: 10.1007/s00018-021-03790-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
The cerebral vasculature plays a central role in human health and disease and possesses several unique anatomic, functional and molecular characteristics. Despite their importance, the mechanisms that determine cerebrovascular development are less well studied than other vascular territories. This is in part due to limitations of existing models and techniques for visualisation and manipulation of the cerebral vasculature. In this review we summarise the experimental approaches used to study the cerebral vessels and the mechanisms that contribute to their development.
Collapse
Affiliation(s)
- Timothy J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| | - Elisabeth C Kugler
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| |
Collapse
|
17
|
Zhu XL, Li T, Cao Y, Yao QP, Liu X, Li Y, Guan YY, Deng JJ, Jiang R, Jiang J. tRNA-derived fragments tRF GlnCTG induced by arterial injury promote vascular smooth muscle cell proliferation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:603-613. [PMID: 33552681 PMCID: PMC7819823 DOI: 10.1016/j.omtn.2020.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/09/2020] [Indexed: 01/20/2023]
Abstract
tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs) are originated from the specific cleavage of endogenous tRNAs or their precursors and regulate gene expression when the cells are in stressful circumstances. Here, we replicated the rat common carotid artery (CCA) intimal hyperplasia model and investigated the expression of tRFs/tiRNAs in the artery. The normal and the balloon-injured rat CCAs were subjected to small RNA sequencing, and then the differentially expressed tRFs/tiRNAs were identified and analyzed. The expression profiles of tRFs/tiRNAs in the healthy and injured CCAs were remarkably different. tRNAGlnCTG-derived fragments (tRFGlnCTG) were found to be overexpressed with a high abundance in the injured CCA. In in vitro experiments, the synthetic tRFGlnCTG mimetics elevated the proliferation and migration of rat vascular smooth muscle cells (VSMCs). Through bioinformatics analysis and an overexpression experiment, tRFGlnCTG was found to negatively regulate the expression of FAS cell surface death receptor (FAS). This study revealed that tRFGlnCTG is a crucial regulator in promoting VSMC proliferation. The investigation of the roles of tRFs/tiRNAs is of significance for understanding the mechanism, diagnosis, and treatment of intimal hyperplasia.
Collapse
Affiliation(s)
- Xiao-Ling Zhu
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Li
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Yu Cao
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ying Li
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang-Yang Guan
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ji-Jun Deng
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rui Jiang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Corresponding author: Rui Jiang, Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan Province, China.
| | - Jun Jiang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
- Corresponding author: Jun Jiang, Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan Province, China.
| |
Collapse
|
18
|
Ma D, Chen L, Shi J, Zhao Y, Vasani S, Chen K, Romana‐Souza B, Henkin J, DiPietro LA. Pigment epithelium‐derived factor attenuates angiogenesis and collagen deposition in hypertrophic scars. Wound Repair Regen 2020; 28:684-695. [DOI: 10.1111/wrr.12828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Da Ma
- Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital Guanghua School of Stomatology, SunYat‐sen University Guangzhou Guangdong China
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Junhe Shi
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Yan Zhao
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Shruti Vasani
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Kevin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Bruna Romana‐Souza
- Tissue Repair Laboratory State University of Rio de Janeiro Rio de Janeiro Brazil
| | - Jack Henkin
- Center for Developmental Therapeutics and Department of Chemistry Northwestern University Evanston Illinois USA
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| |
Collapse
|
19
|
Okonkwo UA, Chen L, Ma D, Haywood VA, Barakat M, Urao N, DiPietro LA. Compromised angiogenesis and vascular Integrity in impaired diabetic wound healing. PLoS One 2020; 15:e0231962. [PMID: 32324828 PMCID: PMC7179900 DOI: 10.1371/journal.pone.0231962] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
Vascular deficits are a fundamental contributing factor of diabetes-associated diseases. Although previous studies have demonstrated that the pro-angiogenic phase of wound healing is blunted in diabetes, a comprehensive understanding of the mechanisms that regulate skin revascularization and capillary stabilization in diabetic wounds is lacking. Using a mouse model of diabetic wound healing, we performed microCT analysis of the 3-dimensional architecture of the capillary bed. As compared to wild type, vessel surface area, branch junction number, total vessel length, and total branch number were significantly decreased in wounds of diabetic mice as compared to WT mice. Diabetic mouse wounds also had significantly increased capillary permeability and decreased pericyte coverage of capillaries. Diabetic wounds exhibited significant perturbations in the expression of factors that affect vascular regrowth, maturation and stability. Specifically, the expression of VEGF-A, Sprouty2, PEDF, LRP6, Thrombospondin 1, CXCL10, CXCR3, PDGFR-β, HB-EGF, EGFR, TGF-β1, Semaphorin3a, Neuropilin 1, angiopoietin 2, NG2, and RGS5 were down-regulated in diabetic wounds. Together, these studies provide novel information about the complexity of the perturbation of angiogenesis in diabetic wounds. Targeting factors responsible for wound resolution and vascular pruning, as well those that affect pericyte recruitment, maturation, and stability may have the potential to improve diabetic skin wound healing.
Collapse
Affiliation(s)
- Uzoagu A. Okonkwo
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Da Ma
- Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Guanghua School of Stomatology, SunYat-sen University, Guangzhou, Guangdong, China
| | - Veronica A. Haywood
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, United States of America
| | - May Barakat
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Norifumi Urao
- Department of Pharmacology, Upstate Medical University, Syracuse, NY, United States of America
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
20
|
Bautista-Sánchez D, Arriaga-Canon C, Pedroza-Torres A, De La Rosa-Velázquez IA, González-Barrios R, Contreras-Espinosa L, Montiel-Manríquez R, Castro-Hernández C, Fragoso-Ontiveros V, Álvarez-Gómez RM, Herrera LA. The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:409-420. [PMID: 32244168 PMCID: PMC7118281 DOI: 10.1016/j.omtn.2020.03.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding transcripts that posttranscriptionally regulate gene expression via base-pairing complementarity. Their role in cancer can be related to tumor suppression or oncogenic function. Moreover, they have been linked to processes recognized as hallmarks of cancer, such as apoptosis, invasion, metastasis, and proliferation. Particularly, one of the first oncomiRs found upregulated in a variety of cancers, such as gliomas, breast cancer, and colorectal cancer, was microRNA-21 (miR-21). Some of its target genes associated with cancer are PTEN (phosphatase and tensin homolog), PDCD4 (programmed cell death protein 4), RECK (reversion-inducing cysteine-rich protein with Kazal motifs), and STAT3 (signal transducer activator of transcription 3). As a result, miR-21 has been proposed as a plausible diagnostic and prognostic biomarker, as well as a therapeutic target for several types of cancer. Currently, research and clinical trials to inhibit miR-21 through anti-miR-21 oligonucleotides and ADM-21 are being conducted. As all of the evidence suggests, miR-21 is involved in carcinogenic processes; therefore, inhibiting it could have effects on more than one type of cancer. However, whether miR-21 can be used as a tissue-specific biomarker should be analyzed with caution. Consequently, the purpose of this review is to outline the available information and recent advances regarding miR-21 as a potential biomarker in the clinical setting and as a therapeutic target in cancer to highlight its importance in the era of precision medicine.
Collapse
Affiliation(s)
- Diana Bautista-Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Abraham Pedroza-Torres
- CONACYT-Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | | | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Laura Contreras-Espinosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Rogelio Montiel-Manríquez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Verónica Fragoso-Ontiveros
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Rosa María Álvarez-Gómez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico; Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, Tlalpan, CP 14610, Mexico City, Mexico.
| |
Collapse
|
21
|
Michalczyk ER, Chen L, Maia MB, DiPietro LA. A Role for Low-Density Lipoprotein Receptor-Related Protein 6 in Blood Vessel Regression in Wound Healing. Adv Wound Care (New Rochelle) 2020; 9:1-8. [PMID: 31871825 PMCID: PMC6918844 DOI: 10.1089/wound.2019.1019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/25/2019] [Indexed: 01/22/2023] Open
Abstract
Objective: The healing of skin wounds is typified by a pattern of robust angiogenesis followed by vascular regression. Pigment epithelium-derived factor (PEDF), a recognized endogenous antiangiogenic protein, regulates vascular regression in resolving wounds through an unknown receptor. Among the multiple receptors for PEDF that have been identified, low-density lipoprotein receptor-related protein 6 (Lrp6) has been described as a regulator of angiogenesis in multiple systems. The purpose of the current study was to determine if the Lrp6 receptor plays a role in vessel regression in wounds. Approach: Excisional skin wounds were prepared on C57BL/6 mice. RT-PCR and immunoblots were performed to measure Lrp6 expression over a time course of wound healing. Immunohistochemistry was performed to localize Lrp6 in both recombinant PEDF (rPEDF)-treated and control wounds. To examine whether Lrp6 is critical to the regulation of capillary regression in vivo, wounds were treated with Lrp6 siRNA to minimize its presence in wounds. Immunohistochemistry for CD31 was performed to quantify blood vessel density. Results: PCR and immunoblots revealed significant increases in Lrp6 expression during the vascular regression phase of wound healing. Lrp6 was found to colocalize with CD31+ endothelial cells in wounds. The addition of rPEDF to wounds caused an increase in Lrp6-CD31+ endothelial cell colocalization. Inhibition of Lrp6 by siRNA impeded the vascular regression phase of healing. Innovation: This study is the first to demonstrate an association between Lrp6 and vessel regression in wound healing. Conclusion: Lrp6 is expressed in wounds in a temporal and spatial manner that suggests it may be a receptor for PEDF during vascular regression. PEDF increases Lrp6 expression in the wound vasculature, and inhibition of Lrp6 blocked vascular regression in wounds. The results suggest that Lrp6 is important to vascular regression in wounds, possibly through direct interaction with PEDF.
Collapse
Affiliation(s)
- Elizabeth R. Michalczyk
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Mariana B. Maia
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
22
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 562] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
23
|
Gordon-Weeks A, Lim SY, Yuzhalin A, Lucotti S, Vermeer JAF, Jones K, Chen J, Muschel RJ. Tumour-Derived Laminin α5 (LAMA5) Promotes Colorectal Liver Metastasis Growth, Branching Angiogenesis and Notch Pathway Inhibition. Cancers (Basel) 2019; 11:E630. [PMID: 31064120 PMCID: PMC6562694 DOI: 10.3390/cancers11050630] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 12/27/2022] Open
Abstract
Hepatic metastatic growth is dependent upon stromal factors including the matrisomal proteins that make up the extracellular matrix (ECM). Laminins are ECM glycoproteins with several functions relevant to tumour progression including angiogenesis. We investigated whether metastatic colon cancer cells produce the laminins required for vascular basement membrane assembly as a mechanism for the promotion of angiogenesis and liver metastasis growth. qPCR was performed using human-specific primers to laminin chains on RNA from orthotopic human colorectal liver metastases. Laminin α5 (LAMA5) expression was inhibited in colon cancer cells using shRNA. Notch pathway gene expression was determined in endothelia from hepatic metastases. Orthotopic hepatic metastases expressed human laminin chains α5, β1 and γ1 (laminin 511), all of which are required for vascular basement membrane assembly. The expression of Laminin 511 was associated with reduced survival in several independent colorectal cancer cohorts and angiogenesis signatures or vessel density significantly correlated with LAMA5 expression. Colorectal cancer cells in culture made little LAMA5, but its levels were increased by culture in a medium conditioned by tumour-derived CD11b+ myeloid cells through TNFα/NFκB pathway signalling. Down-regulation of LAMA5 in cancer cells impaired liver metastatic growth and resulted in reduced intra-tumoural vessel branching and increased the expression of Notch pathway genes in metastasis-derived endothelia. This data demonstrates a mechanism whereby tumour inflammation induces LAMA5 expression in colorectal cancer cells. LAMA5 is required for the successful growth of hepatic metastases where it promotes branching angiogenesis and modulates Notch signalling.
Collapse
Affiliation(s)
- Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX39DU, UK.
| | - Su Yin Lim
- Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Arseniy Yuzhalin
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX37LE, UK.
| | - Serena Lucotti
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX37LE, UK.
| | | | - Keaton Jones
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX37LE, UK.
| | - Jianzhou Chen
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX37LE, UK.
| | - Ruth J Muschel
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX37LE, UK.
| |
Collapse
|
24
|
Michalczyk ER, Chen L, Fine D, Zhao Y, Mascarinas E, Grippo PJ, DiPietro LA. Pigment Epithelium-Derived Factor (PEDF) as a Regulator of Wound Angiogenesis. Sci Rep 2018; 8:11142. [PMID: 30042381 PMCID: PMC6057962 DOI: 10.1038/s41598-018-29465-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022] Open
Abstract
Although the inflammatory and proliferative phases of wound healing have been well described, much less is known about how healing resolves. During the resolution phase, pruning of the capillary bed and maturation of capillaries occurs and influences the final strength and fidelity of the wound. PEDF, an endogenous anti-angiogenic factor, is produced in wounds and may contribute to the removal of capillaries during wound resolution. This study utilized PEDF-/- mice to examine how PEDF influences wound angiogenesis, particularly capillary density and permeability. The absence of PEDF led to transient changes in dermal wound closure and collagen content, but caused substantial changes in wound angiogenesis. Compared to wild type (WT) mice, wounds from PEDF-/- mice exhibited a significant increase in capillaries during the proangiogenic phase of repair, and a delay in capillary pruning. Conversely, the addition of rPEDF caused a reduction in capillary density within skin wounds in WT mice. In vitro studies showed that PEDF inhibited migration and tube formation by dermal microvascular endothelial cells, and caused a decrease in the expression of VEGFR2, VCAM-1, and other surface receptors. The results demonstrate that loss of PEDF causes a distinctive wound healing phenotype that is characterized by increased angiogenesis and delayed resolution. The findings suggest that PEDF most likely acts through multiple mechanisms to regulate proper capillary refinement in wounds.
Collapse
Affiliation(s)
- Elizabeth R Michalczyk
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - David Fine
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yan Zhao
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Emman Mascarinas
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paul J Grippo
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
25
|
Walker DJ, Land SC. Regulation of vascular signalling by nuclear Sprouty2 in fetal lung epithelial cells: Implications for co-ordinated airway and vascular branching in lung development. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:105-114. [PMID: 29409968 PMCID: PMC6078907 DOI: 10.1016/j.cbpb.2018.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/14/2018] [Accepted: 01/24/2018] [Indexed: 11/25/2022]
Abstract
Sprouty2 (Spry2) acts as a central regulator of tubular growth and branch patterning in the developing mammalian lung by controlling both magnitude and duration of growth factor signalling. To determine if this protein coordinates airway and vascular growth factor signalling, we tested the hypothesis that Spry2 links the primary cue for airway outgrowth, fibroblast growth factor-10 (FGF-10), to genomic events underpinning the expression and release of vascular endothelial growth factor-A (VEGF-A). Using primary fetal distal lung epithelial cells (FDLE) from rat, and immortalised human bronchial epithelial cells (16HBE14o-), we identified a nuclear sub-population of Spry2 which interacted with regions of the rat and human VEGF-A promoter spanning the hypoxia response element (HRE) and adjacent 3' sites. In FDLE cultured at the PO2 of the fetal lung, FGF-10 relieved the Spry2 interaction at the HRE region by promoting clearance of a 39 kDa form and this was accompanied by histone-3 S10K14 phosphoacetylation, promoter de-methylation, hypoxia inducible factor-1α activation and VEGF-A expression. This repressive characteristic of nuclear Spry2 was relieved in 16HBE14o- by shRNA knockdown, and stable expression of mutants (C218A; C221A) that do not interact with the VEGF-A promoter HRE region. We conclude that nuclear Spry2 acts as a molecular link which co-ordinates airway and vascular growth of the cardiopulmonary system. This identifies Spry2 as a contributing determinant of design optimality in the mammalian lung.
Collapse
Affiliation(s)
- David J Walker
- D'Arcy Thomson Unit, Biological and Biomedical Science Education, School of Life Sciences, University of Dundee, Dundee, DD1 4HN, Scotland, UK
| | - Stephen C Land
- D'Arcy Thomson Unit, Biological and Biomedical Science Education, School of Life Sciences, University of Dundee, Dundee, DD1 4HN, Scotland, UK..
| |
Collapse
|
26
|
Yap YS, Kwok LL, Syn N, Chay WY, Chia JWK, Tham CK, Wong NS, Lo SK, Dent RA, Tan S, Mok ZY, Koh KX, Toh HC, Koo WH, Loh M, Ng RCH, Choo SP, Soong RCT. Predictors of Hand-Foot Syndrome and Pyridoxine for Prevention of Capecitabine-Induced Hand-Foot Syndrome: A Randomized Clinical Trial. JAMA Oncol 2017; 3:1538-1545. [PMID: 28715540 DOI: 10.1001/jamaoncol.2017.1269] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Hand-foot syndrome (HFS) is a common adverse effect of capecitabine treatment. Objective To compare the incidence and time to onset of grade 2 or greater HFS in patients receiving pyridoxine vs placebo and to identify biomarkers predictive of HFS. Design, Setting, and Participants This single-center, randomized double-blind, placebo-controlled phase 3 trial conducted at National Cancer Centre Singapore assessed whether oral pyridoxine could prevent the onset of grade 2 or higher HFS in 210 patients scheduled to receive single-agent capecitabine chemotherapy for breast, colorectal, and other cancers. Interventions Patients were randomized to receive concurrent pyridoxine (200 mg) or placebo daily for a maximum of 8 cycles of capecitabine, with stratification by sex and use in adjuvant or neoadjuvant vs palliative setting. Patients were withdrawn from the study on development of grade 2 or higher HFS or cessation of capecitabine. Main Outcomes and Measures Primary end point was the incidence of grade 2 or higher HFS in patients receiving pyridoxine. Secondary end points included the time to onset (days) of grade 2 or higher HFS and identification of biomarkers predictive of HFS, including baseline folate and vitamin B12 levels, as well as genetic polymorphisms with genome-wide arrays. Results In this cohort of 210 patients (median [range] age, 58 [26-82] years; 162 women) grade 2 or higher HFS occurred in 33 patients (31.4%) in the pyridoxine arm vs 39 patients (37.1%) in the placebo arm (P = .38). The median time to onset of grade 2 or higher HFS was not reached in both arms. In univariate analysis, the starting dose of capecitabine (odds ratio [OR], 1.99; 95% CI, 1.32-3.00; P = .001), serum folate levels (OR, 1.27; 95% CI, 1.10-1.47; P = .001), and red blood cell folate levels (OR, 1.25; 95% CI, 1.08-1.44; P = .003) were associated with increased risk of grade 2 or higher HFS. In multivariate analyses, serum folate (OR, 1.30; 95% CI, 1.12-1.52; P < .001) and red blood cell folate (OR, 1.28; 95% CI, 1.10-1.49; P = .001) were the only significant predictors of grade 2 or higher HFS. Grade 2 or higher HFS was associated with 300 DNA variants at genome-wide significance (P < 5 × 10-8), including a novel DPYD variant (rs75267292; P = 1.57 × 10-10), and variants in the MACF1 (rs183324967, P = 4.80 × 10-11; rs148221738, P = 5.73 × 10-10) and SPRY2 (rs117876855, P < 1.01 × 10-8; rs139544515, P = 1.30 × 10-8) genes involved in wound healing. Conclusions and Relevance Pyridoxine did not significantly prevent or delay the onset of grade 2 or higher HFS. Serum and red blood cell folate levels are independent predictors of HFS. Trial Registration clinicaltrials.gov Identifier: NCT00486213.
Collapse
Affiliation(s)
- Yoon-Sim Yap
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Li-Lian Kwok
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore
| | - Nicholas Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Wen Yee Chay
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | | | - Chee Kian Tham
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Nan Soon Wong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Soo Kien Lo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | | | - Sili Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Zuan Yu Mok
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - King Xin Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Wen Hsin Koo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Marie Loh
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research, Singapore.,Department of Epidemiology and Biostatistics of the School of Public Health, Imperial College London, London, United Kingdom
| | | | - Su Pin Choo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Richie Chuan Teck Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pathology, National University of Singapore, Singapore
| |
Collapse
|
27
|
Maddaluno L, Urwyler C, Werner S. Fibroblast growth factors: key players in regeneration and tissue repair. Development 2017; 144:4047-4060. [PMID: 29138288 DOI: 10.1242/dev.152587] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue injury initiates a complex repair process, which in some organisms can lead to the complete regeneration of a tissue. In mammals, however, the repair of most organs is imperfect and results in scar formation. Both regeneration and repair are orchestrated by a highly coordinated interplay of different growth factors and cytokines. Among the key players are the fibroblast growth factors (FGFs), which control the migration, proliferation, differentiation and survival of different cell types. In addition, FGFs influence the expression of other factors involved in the regenerative response. Here, we summarize current knowledge on the roles of endogenous FGFs in regeneration and repair in different organisms and in different tissues and organs. Gaining a better understanding of these FGF activities is important for appropriate modulation of FGF signaling after injury to prevent impaired healing and to promote organ regeneration in humans.
Collapse
Affiliation(s)
- Luigi Maddaluno
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Corinne Urwyler
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
28
|
Okonkwo UA, DiPietro LA. Diabetes and Wound Angiogenesis. Int J Mol Sci 2017; 18:E1419. [PMID: 28671607 PMCID: PMC5535911 DOI: 10.3390/ijms18071419] [Citation(s) in RCA: 592] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/10/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022] Open
Abstract
Diabetes Mellitus Type II (DM2) is a growing international health concern with no end in sight. Complications of DM2 involve a myriad of comorbidities including the serious complications of poor wound healing, chronic ulceration, and resultant limb amputation. In skin wound healing, which has definite, orderly phases, diabetes leads to improper function at all stages. While the etiology of chronic, non-healing diabetic wounds is multi-faceted, the progression to a non-healing phenotype is closely linked to poor vascular networks. This review focuses on diabetic wound healing, paying special attention to the aberrations that have been described in the proliferative, remodeling, and maturation phases of wound angiogenesis. Additionally, this review considers therapeutics that may offer promise to better wound healing outcomes.
Collapse
Affiliation(s)
- Uzoagu A Okonkwo
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA.
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA.
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA.
| |
Collapse
|
29
|
Jiang M, Ma W, Gao Y, Jia K, Zhang Y, Liu H, Sun Q. IL-22-induced miR-122-5p promotes keratinocyte proliferation by targeting Sprouty2. Exp Dermatol 2017; 26:368-374. [PMID: 27943426 DOI: 10.1111/exd.13270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
Psoriasis is a common inflammatory skin disease, but the exact pathogenesis is largely unknown. Interleukin-22 (IL-22) has demonstrated its vital role in T-cell-mediated immune response by interacting with keratinocytes in the pathogenesis of psoriasis. Here, we showed the differentially expressed miRNAs and their potential targets in HaCaT cells stimulated by IL-22 using miRNA and mRNA microarrays. We revealed a total of 20 significantly changed (more than twofold) miRNAs in HaCaT cells and validated the results with quantitative reverse transcriptase PCR (qRT-PCR). We demonstrated that miR-122-5p was up-regulated both in HaCaT cells stimulated by IL-22 and in psoriatic lesions. Then, we aimed to investigate the biological roles and potential mechanism of miR-122-5p in keratinocytes. As a result, CCK-8 assay indicated that overexpression of miR-122-5p in keratinocytes promoted proliferation and conversely inhibition of endogenous miR-122-5p suppressed proliferation. According to the microarray analysis, we assumed that Sprouty2 (Spry2), a negative regulator of extracellular signal regulated kinase/mitogen-activated protein kinase signalling pathway, was a direct target gene of miR-122-5p. We found that the staining of Spry2 in cytoplasm was mainly localized in both basal and suprabasal layers of epidermis and showed a markedly decreased expression in psoriasis than in normal control by immunohistochemistry. Luciferase reporter and Western blot assays in HaCaT cells demonstrated that Spry2 was a direct target gene of miR-122-5p. In conclusion, IL-22-induced miR-122-5p promotes keratinocyte proliferation possibly by downregulating the expression of Spry2 thus playing important roles in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Meng Jiang
- Department of Dermatology, Qilu Hospital, Shangdong University, Jinan, Shandong, China
| | - Weiyuan Ma
- Department of Dermatology, Qilu Hospital, Shangdong University, Jinan, Shandong, China
| | - Yumei Gao
- Department of Dermatology, Qilu Hospital, Shangdong University, Jinan, Shandong, China
| | - Kun Jia
- Shandong University School of Medicine, Jinan, Shandong, China
| | - Yan Zhang
- Shandong University School of Medicine, Jinan, Shandong, China
| | - Haidong Liu
- Department of Dermatology, Qilu Hospital, Shangdong University, Jinan, Shandong, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shangdong University, Jinan, Shandong, China
| |
Collapse
|
30
|
Gao X, Hicks KC, Neumann P, Patel TB. Hypoxia inducible factors regulate the transcription of the sprouty2 gene and expression of the sprouty2 protein. PLoS One 2017; 12:e0171616. [PMID: 28196140 PMCID: PMC5308774 DOI: 10.1371/journal.pone.0171616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Receptor Tyrosine Kinase (RTK) signaling plays a major role in tumorigenesis and normal development. Sprouty2 (Spry2) attenuates RTK signaling and inhibits processes such as angiogenesis, cell proliferation, migration and survival, which are all upregulated in tumors. Indeed in cancers of the liver, lung, prostate and breast, Spry2 protein levels are markedly decreased correlating with poor patient prognosis and shorter survival. Thus, it is important to understand how expression of Spry2 is regulated. While prior studies have focused on the post-translation regulation of Spry2, very few studies have focused on the transcriptional regulation of SPRY2 gene. Here, we demonstrate that in the human hepatoma cell line, Hep3B, the transcription of SPRY2 is inhibited by the transcription regulating hypoxia inducible factors (HIFs). HIFs are composed of an oxygen regulated alpha subunit (HIF1α or HIF2α) and a beta subunit (HIF1β). Intriguingly, silencing of HIF1α and HIF2α elevates SPRY2 mRNA and protein levels suggesting HIFs reduce the transcription of the SPRY2 promoter. In silico analysis identified ten hypoxia response elements (HREs) in the proximal promoter and first intron of SPRY2. Using chromatin immunoprecipitation (ChIP), we show that HIF1α/2α bind near the putative HREs in the proximal promoter and intron of SPRY2. Our studies demonstrated that not only is the SPRY2 promoter methylated, but silencing HIF1α/2α reduced the methylation. ChIP assays also showed DNA methyltransferase1 (DNMT1) binding to the proximal promoter and first intron of SPRY2 and silencing HIF1α/2α decreased this association. Additionally, silencing of DNMT1 mimicked the HIF1α/2α silencing-mediated increase in SPRY2 mRNA and protein. While simultaneous silencing of HIF1α/2α and DNMT1 increased SPRY2 mRNA a little more, the increase was not additive suggesting a common mechanism by which DNMT1 and HIF1α/2α regulate SPRY2 transcription. Together these data suggest that the transcription of SPRY2 is inhibited by HIFs, in part, via DNMT1- mediated methylation.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Kristin C. Hicks
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Paul Neumann
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Tarun B. Patel
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
DiPietro LA. Angiogenesis and wound repair: when enough is enough. J Leukoc Biol 2016; 100:979-984. [PMID: 27406995 DOI: 10.1189/jlb.4mr0316-102r] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/17/2016] [Indexed: 12/14/2022] Open
Abstract
All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes.
Collapse
Affiliation(s)
- Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
32
|
Li J, Luo H, Wang R, Lang J, Zhu S, Zhang Z, Fang J, Qu K, Lin Y, Long H, Yao Y, Tian G, Wu Q. Systematic Reconstruction of Molecular Cascades Regulating GP Development Using Single-Cell RNA-Seq. Cell Rep 2016; 15:1467-1480. [PMID: 27160914 DOI: 10.1016/j.celrep.2016.04.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/05/2016] [Accepted: 04/06/2016] [Indexed: 01/06/2023] Open
Abstract
The growth plate (GP) comprising sequentially differentiated cell layers is a critical structure for bone elongation and regeneration. Although several key regulators in GP development have been identified using genetic perturbation, systematic understanding is still limited. Here, we used single-cell RNA-sequencing (RNA-seq) to determine the gene expression profiles of 217 single cells from GPs and developed a bioinformatics pipeline named Sinova to de novo reconstruct physiological GP development in both temporal and spatial high resolution. Our unsupervised model not only confirmed prior knowledge, but also enabled the systematic discovery of genes, potential signal pathways, and surface markers CD9/CD200 to precisely depict development. Sinova further identified the effective combination of transcriptional factors (TFs) that regulates GP maturation, and the result was validated using an in vitro EGFP-Col10a screening system. Our case systematically reconstructed molecular cascades in GP development through single-cell profiling, and the bioinformatics pipeline is applicable to other developmental processes. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Junxiang Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haofei Luo
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jidong Lang
- School of Medicine, Tsinghua University, Beijing 10084, China
| | - Siyu Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhenming Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhuo Fang
- School of Medicine, Tsinghua University, Beijing 10084, China
| | - Keke Qu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuting Lin
- School of Medicine, Tsinghua University, Beijing 10084, China
| | - Haizhou Long
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic & System Biology, Tsinghua University, Beijing 10084, China
| | - Yi Yao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic & System Biology, Tsinghua University, Beijing 10084, China
| | - Geng Tian
- School of Medicine, Tsinghua University, Beijing 10084, China
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic & System Biology, Tsinghua University, Beijing 10084, China.
| |
Collapse
|
33
|
Atomura R, Sanui T, Fukuda T, Tanaka U, Toyoda K, Taketomi T, Yamamichi K, Akiyama H, Nishimura F. Inhibition of Sprouty2 polarizes macrophages toward an M2 phenotype by stimulation with interferon γ and Porphyromonas gingivalis lipopolysaccharide. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:98-110. [PMID: 27042307 PMCID: PMC4768065 DOI: 10.1002/iid3.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 01/10/2023]
Abstract
Periodontitis is a chronic inflammatory disorder caused by specific bacteria residing in the biofilm, particularly Porphyromonas gingivalis (Pg). Sprouty2 (Spry2) functions as a negative regulator of the fibroblast growth factor (FGF) signaling pathway. We previously demonstrated that sequestration of Spry2 induced proliferation and osteogenesis in osteoblastic cells by basic FGF (bFGF) and epidermal growth factor (EGF) stimulation in vitro, but diminished cell proliferation in gingival epithelial cells. In addition, Spry2 knockdown in combination with bFGF and EGF stimulation increases periodontal ligament cell proliferation and migration accompanied by prevention of osteoblastic differentiation. In this study, we investigated the mechanisms through which Spry2 depletion by interferon (IFN) γ and Pg lipopolysaccharide (LPS) stimulation affected the physiology of macrophages in vitro. Transfection of macrophages with Spry2 small‐interfering RNA (siRNA) promoted the expression of genes characteristic of M2 alternative activated macrophages, induced interleukin (IL)‐10 expression, and enhanced arginase activity, even in cells stimulated with IFNγ and Pg LPS. In addition, we found that phosphoinositide 3‐kinase (PI3K) and AKT activation by Spry2 downregulation enhanced efferocytosis of apoptotic cells by increasing Rac1 activation and decreasing nuclear factor kappa B (NFκB) p65 phosphorylation but not signal transducer and activator of transcription 1 (STAT1) phosphorylation. Collectively, our results suggested that topical administration of Spry2 inhibitors may efficiently resolve inflammation in periodontal disease as macrophage‐based anti‐inflammatory immunotherapy and may create a suitable environment for periodontal wound healing. These in vitro findings provide a molecular basis for new therapeutic approaches in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Ryo Atomura
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Terukazu Sanui
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Takao Fukuda
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Urara Tanaka
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Kyosuke Toyoda
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center Kurume University School of Medicine Fukuoka Japan
| | - Kensuke Yamamichi
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Hajime Akiyama
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Fusanori Nishimura
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| |
Collapse
|
34
|
Tanaka U, Sanui T, Fukuda T, Toyoda K, Taketomi T, Atomura R, Yamamichi K, Maeda H, Nishimura F. Sprouty2 inhibition promotes proliferation and migration of periodontal ligament cells. Oral Dis 2015; 21:977-86. [DOI: 10.1111/odi.12369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/16/2015] [Accepted: 08/26/2015] [Indexed: 11/30/2022]
Affiliation(s)
- U Tanaka
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - T Sanui
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - T Fukuda
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - K Toyoda
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - T Taketomi
- Dental and Oral Medical Centre; Kurume University School of Medicine; Fukuoka Japan
| | - R Atomura
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - K Yamamichi
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - H Maeda
- Department of Endodontology and Operative Dentistry; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - F Nishimura
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| |
Collapse
|
35
|
Wietecha MS, Król MJ, Michalczyk ER, Chen L, Gettins PG, DiPietro LA. Pigment epithelium-derived factor as a multifunctional regulator of wound healing. Am J Physiol Heart Circ Physiol 2015; 309:H812-26. [PMID: 26163443 DOI: 10.1152/ajpheart.00153.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/08/2015] [Indexed: 01/12/2023]
Abstract
During dermal wound repair, hypoxia-driven proliferation results in dense but highly permeable, disorganized microvascular networks, similar to those in solid tumors. Concurrently, activated dermal fibroblasts generate an angiopermissive, provisional extracellular matrix (ECM). Unlike cancers, wounds naturally resolve via blood vessel regression and ECM maturation, which are essential for reestablishing tissue homeostasis. Mechanisms guiding wound resolution are poorly understood; one candidate regulator is pigment epithelium-derived factor (PEDF), a secreted glycoprotein. PEDF is a potent antiangiogenic in models of pathological angiogenesis and a promising cancer and cardiovascular disease therapeutic, but little is known about its physiological function. To examine the roles of PEDF in physiological wound repair, we used a reproducible model of excisional skin wound healing in BALB/c mice. We show that PEDF is abundant in unwounded and healing skin, is produced primarily by dermal fibroblasts, binds to resident microvascular endothelial cells, and accumulates in dermal ECM and epidermis. PEDF transcript and protein levels were low during the inflammatory and proliferative phases of healing but increased in quantity and colocalization with microvasculature during wound resolution. Local antibody inhibition of endogenous PEDF delayed vessel regression and collagen maturation during the remodeling phase. Treatment of wounds with intradermal injections of exogenous, recombinant PEDF inhibited nascent angiogenesis by repressing endothelial proliferation, promoted vascular integrity and function, and increased collagen maturity. These results demonstrate that PEDF contributes to the resolution of healing wounds by causing regression of immature blood vessels and stimulating maturation of the vascular microenvironment, thus promoting a return to tissue homeostasis after injury.
Collapse
Affiliation(s)
- Mateusz S Wietecha
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Mateusz J Król
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Elizabeth R Michalczyk
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Peter G Gettins
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
36
|
Weinheimer-Haus EM, Mirza RE, Koh TJ. Nod-like receptor protein-3 inflammasome plays an important role during early stages of wound healing. PLoS One 2015; 10:e0119106. [PMID: 25793779 PMCID: PMC4368510 DOI: 10.1371/journal.pone.0119106] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/28/2015] [Indexed: 12/16/2022] Open
Abstract
The Nod-like receptor protein (NLRP)-3 inflammasome/IL-1β pathway is involved in the pathogenesis of various inflammatory skin diseases, but its biological role in wound healing remains to be elucidated. Since inflammation is typically thought to impede healing, we hypothesized that loss of NLRP-3 activity would result in a downregulated inflammatory response and accelerated wound healing. NLRP-3 null mice, caspase-1 null mice and C57Bl/6 wild type control mice (WT) received four 8 mm excisional cutaneous wounds; inflammation and healing were assessed during the early stage of wound healing. Consistent with our hypothesis, wounds from NLRP-3 null and caspase-1 null mice contained lower levels of the pro-inflammatory cytokines IL-1β and TNF-α compared to WT mice and had reduced neutrophil and macrophage accumulation. Contrary to our hypothesis, re-epithelialization, granulation tissue formation, and angiogenesis were delayed in NLRP-3 null mice and caspase-1 null mice compared to WT mice, indicating that NLRP-3 signaling is important for early events in wound healing. Topical treatment of excisional wounds with recombinant IL-1β partially restored granulation tissue formation in wounds of NLRP-3 null mice, confirming the importance of NLRP-3-dependent IL-1β production during early wound healing. Despite the improvement in healing, angiogenesis and levels of the pro-angiogenic growth factor VEGF were further reduced in IL-1β treated wounds, suggesting that IL-1β has a negative effect on angiogenesis and that NLRP-3 promotes angiogenesis in an IL-1β-independent manner. These findings indicate that the NLRP-3 inflammasome contributes to the early inflammatory phase following skin wounding and is important for efficient healing.
Collapse
Affiliation(s)
- Eileen M. Weinheimer-Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rita E. Mirza
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Timothy J. Koh
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
37
|
Sanui T, Tanaka U, Fukuda T, Toyoda K, Taketomi T, Atomura R, Yamamichi K, Nishimura F. Mutation of Spry2 Induces Proliferation and Differentiation of Osteoblasts but Inhibits Proliferation of Gingival Epithelial Cells. J Cell Biochem 2015; 116:628-39. [DOI: 10.1002/jcb.25014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/06/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Terukazu Sanui
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Urara Tanaka
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Takao Fukuda
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Kyosuke Toyoda
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center; Kurume University School of Medicine; Kurume Fukuoka Japan
| | - Ryo Atomura
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Kensuke Yamamichi
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Fusanori Nishimura
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| |
Collapse
|
38
|
Biggs LC, Goudy SL, Dunnwald M. Palatogenesis and cutaneous repair: A two-headed coin. Dev Dyn 2014; 244:289-310. [PMID: 25370680 DOI: 10.1002/dvdy.24224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The reparative mechanism that operates following post-natal cutaneous injury is a fundamental survival function that requires a well-orchestrated series of molecular and cellular events. At the end, the body will have closed the hole using processes like cellular proliferation, migration, differentiation and fusion. RESULTS These processes are similar to those occurring during embryogenesis and tissue morphogenesis. Palatogenesis, the formation of the palate from two independent palatal shelves growing towards each other and fusing, intuitively, shares many similarities with the closure of a cutaneous wound from the two migrating epithelial fronts. CONCLUSIONS In this review, we summarize the current information on cutaneous development, wound healing, palatogenesis and orofacial clefting and propose that orofacial clefting and wound healing are conserved processes that share common pathways and gene regulatory networks.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
39
|
van Solingen C, Araldi E, Chamorro-Jorganes A, Fernández-Hernando C, Suárez Y. Improved repair of dermal wounds in mice lacking microRNA-155. J Cell Mol Med 2014; 18:1104-12. [PMID: 24636235 PMCID: PMC4112003 DOI: 10.1111/jcmm.12255] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/22/2014] [Indexed: 12/12/2022] Open
Abstract
Wound healing is a well-regulated but complex process that involves haemostasis, inflammation, proliferation and maturation. Recent reports suggest that microRNAs (miRs) play important roles in dermal wound healing. In fact, miR deregulation has been linked with impaired wound repair. miR-155 has been shown to be induced by inflammatory mediators and plays a central regulatory role in immune responses. We have investigated the potential role of miR-155 in wound healing. By creating punch wounds in the skin of mice, we found an increased expression of miR-155 in wound tissue when compared with healthy skin. Interestingly, analysis of wounds of mice lacking the expression of miR-155 (miR-155(-/-) ) revealed an increased wound closure when compared with wild-type animals. Also, the accelerated wound closing correlated with elevated numbers of macrophages in wounded tissue. Gene expression analysis of wounds tissue and macrophages isolated from miR-155(-/-) mice that were treated with interleukin-4 demonstrated an increased expression of miR-155 targets (BCL6, RhoA and SHIP1) as well as, the finding in inflammatory zone-1 (FIZZ1) gene, when compared with WT mice. Moreover, the up-regulated levels of FIZZ1 in the wound tissue of miR-155(-/-) mice correlated with an increased deposition of type-1 collagens, a phenomenon known to be beneficial in wound closure. Our data indicate that the absence of miR-155 has beneficial effects in the wound healing process.
Collapse
Affiliation(s)
- Coen van Solingen
- Department of Medicine, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
40
|
Mirza RE, Fang MM, Weinheimer-Haus EM, Ennis WJ, Koh TJ. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes 2014; 63:1103-14. [PMID: 24194505 PMCID: PMC3931398 DOI: 10.2337/db13-0927] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hypothesis of this study was that sustained activity of the Nod-like receptor protein (NLRP)-3 inflammasome in wounds of diabetic humans and mice contributes to the persistent inflammatory response and impaired healing characteristic of these wounds. Macrophages (Mp) isolated from wounds on diabetic humans and db/db mice exhibited sustained inflammasome activity associated with low level of expression of endogenous inflammasome inhibitors. Soluble factors in the biochemical milieu of these wounds are sufficient to activate the inflammasome, as wound-conditioned medium activates caspase-1 and induces release of interleukin (IL)-1β and IL-18 in cultured Mp via a reactive oxygen species-mediated pathway. Importantly, inhibiting inflammasome activity in wounds of db/db mice using topical application of pharmacological inhibitors improved healing of these wounds, induced a switch from proinflammatory to healing-associated Mp phenotypes, and increased levels of prohealing growth factors. Furthermore, data generated from bone marrow-transfer experiments from NLRP-3 or caspase-1 knockout to db/db mice indicated that blocking inflammasome activity in bone marrow cells is sufficient to improve healing. Our findings indicate that sustained inflammasome activity in wound Mp contributes to impaired early healing responses of diabetic wounds and that the inflammasome may represent a new therapeutic target for improving healing in diabetic individuals.
Collapse
Affiliation(s)
- Rita E. Mirza
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| | - Milie M. Fang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| | - Eileen M. Weinheimer-Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
- Center for Tissue Repair and Regeneration, University of Illinois at Chicago, Chicago, IL
| | - William J. Ennis
- Center for Tissue Repair and Regeneration, University of Illinois at Chicago, Chicago, IL
- Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Timothy J. Koh
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
- Center for Tissue Repair and Regeneration, University of Illinois at Chicago, Chicago, IL
- Corresponding author: Timothy J. Koh,
| |
Collapse
|
41
|
Hsieh CL, Kim CC, Ryba BE, Niemi EC, Bando JK, Locksley RM, Liu J, Nakamura MC, Seaman WE. Traumatic brain injury induces macrophage subsets in the brain. Eur J Immunol 2013; 43:2010-22. [PMID: 23630120 DOI: 10.1002/eji.201243084] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/08/2013] [Accepted: 04/24/2013] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) elicits innate inflammatory responses that can lead to secondary brain injury. To better understand the mechanisms involved in TBI-induced inflammation, we examined the nature of macrophages responding to TBI in mice. In this model, brain macrophages were increased >20-fold the day after injury and >77-fold 4 days after injury in the ipsilateral hemisphere compared with sham controls. TBI macrophage subsets were identified by using a reporter mouse strain (YARG) that expresses eYFP from an internal ribosome entry site (IRES) inserted at the 3' end of the gene for arginase-1 (Arg1), a hallmark of alternatively activated (M2) macrophages. One day after TBI, 21 ± 1.5% of ipsilateral brain macrophages expressed relatively high levels of Arg1 as detected by yellow fluorescent protein, and this subpopulation declined thereafter. Arg1(+) cells localized with macrophages near the TBI lesion. Gene expression analysis of sorted Arg1(+) and Arg1(-) brain macrophages revealed that both populations had profiles that included features of conventional M2 macrophages and classically activated (M1) macrophages. The Arg1(+) cells differed from Arg1(-) cells in multiple aspects, most notably in their chemokine repertoires. Thus, the macrophage response to TBI initially involves heterogeneous polarization toward at least two major subsets.
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW One well described feature of wound healing is the ingrowth of new capillaries or angiogenesis. At its peak, the capillary content in healing wounds may reach three or more times that of normal uninjured tissue. This new vasculature is required to restore oxygenation and allow the growth of new tissue to fill the wound space. This review examines the assumption that a capillary content in excess of normal density is essential for adequate healing. RECENT FINDINGS The regulation of wound angiogenesis has been demonstrated to involve both proangiogenic and antiangiogenic stimuli, with the level of capillary growth reliant upon both sets of factors. Several studies now show that normal skin wounds heal adequately even when the angiogenic response is artificially reduced. In normal skin, a reduction of capillary growth to a level consistent with normal tissue does not affect wound closure and may even lead to highly favorable long term healing outcomes. SUMMARY The angiogenic response in normal wounds may exceed what is needed for optimal repair.
Collapse
|
43
|
Mahdipour E. Regulatory crosstalk between Hox genes and miRNAs during angiogenesis. Microvasc Res 2013; 87:1-6. [DOI: 10.1016/j.mvr.2013.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 02/24/2013] [Accepted: 02/28/2013] [Indexed: 11/28/2022]
|
44
|
Wietecha MS, DiPietro LA. Therapeutic Approaches to the Regulation of Wound Angiogenesis. Adv Wound Care (New Rochelle) 2013; 2:81-86. [PMID: 24527330 DOI: 10.1089/wound.2011.0348] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Indexed: 12/26/2022] Open
Abstract
SIGNIFICANCE Re-establishment of a functional vascular network is a critical component of successful wound repair. One of the most potent pro-angiogenic agents is vascular endothelial growth factor (VEGF), which, from a basic science and pre-clinical perspective, seems ideal for the therapeutic stimulation of blood vessel growth in non-healing wounds. CRITICAL ISSUES Current strategies to improve the dysfunctional angiogenesis that occurs in non-healing wounds are inadequate with regard to the nature and magnitude of the clinical problem. However, VEGF therapy has so far been unsuccessful in promoting healing in the clinic. More effective means of delivery to the wound, which take into account the biochemical and spatio-temporal aspects of angiogenesis, may be necessary to realize VEGF's therapeutic potential. Reviewed approaches for the regulation of wound angiogenesis include: targeting regulators of intracellular VEGF signaling, making use of collagen-binding VEGF fusion proteins for increased retention in the wound, and implantation of heterogeneous scaffold systems for spatial control of angiogenesis with simultaneous use of VEGF and its inhibitor. FUTURE DIRECTIONS To maximize efficacy of therapeutic VEGF, it may be necessary to also target its intracellular inhibitory mechanisms. Immobilizing VEGF to the wound matrix may increase its bioavailability and therapeutic efficacy. Gaining spatial control of angiogenesis opens up possibilities for advanced directed therapy. The reviewed studies present innovative approaches to in vivo directed modulation of angiogenesis utilizing VEGF biology which can, if taken further and validated in human subjects, have significant impact on clinical wound care in the future.
Collapse
Affiliation(s)
- Mateusz S. Wietecha
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
45
|
Fraisl P. Crosstalk between oxygen- and nitric oxide-dependent signaling pathways in angiogenesis. Exp Cell Res 2013; 319:1331-9. [PMID: 23485765 DOI: 10.1016/j.yexcr.2013.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 01/08/2023]
Abstract
With every heart beat blood rushes through a complex network of tubes to deliver essential ingredients of life, oxygen and nutrients. Consequently, this network of blood vessels is an indispensable part of vertebrate physiology. Its organization and architecture is highly dynamic in its form and function. Understanding how blood vessels develop, a process referred to as angiogenesis, is equally important as to know how they function considering that failure or misalignment of this process results in disorder and disease, in many cases of which death is inevitable. Much has been learned about the angiogenic process and the critical contributors of blood vessel function. A central determinant is oxygen, an evident contributor given the fact that oxygen delivery is a primary feature of blood vessel function. Not only is oxygen however essential for mitochondrial energy production, it also serves as a key molecule in various biochemical reactions, such as the formation of nitric oxide (NO), on its part a critical regulator of vascular tone and vessel homeostasis. Hence, oxygen abundance relates to the production of NO, and NO in turn regulates oxygen delivery and consumption. Given the importance of the intrinsic link these two molecules exert on angiogenesis and vessel function; this review shall highlight our current understanding on how these two molecules cooperate to form blood vessels.
Collapse
Affiliation(s)
- Peter Fraisl
- Cell Metabolism and Proliferation Laboratory, Vesalius Research Center (VRC), VIB, 3000 Leuven, Belgium.
| |
Collapse
|
46
|
Fitzpatrick LE, Lisovsky A, Sefton MV. The expression of sonic hedgehog in diabetic wounds following treatment with poly(methacrylic acid-co-methyl methacrylate) beads. Biomaterials 2012; 33:5297-307. [PMID: 22541537 DOI: 10.1016/j.biomaterials.2012.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/01/2012] [Indexed: 12/15/2022]
Abstract
The expression of native sonic hedgehog (Shh) was significantly increased in poly(methacrylic acid-co-methyl methacrylate) bead (MAA) treated wounds at day 4 compared to both poly(methyl methacrylate) bead (PMMA) treated and untreated wounds in diabetic db/db mice. MAA beads also increased the expression of the Shh transcription factor Gli3 at day 4. Previously, topical application of MAA beads (45 mol % methacrylic acid) improved wound closure and blood vessel density in excisional wounds in these mice, while PMMA beads did not. Gene expression within the granulation tissue of healing wounds was studied to provide insight into the mechanism of vessel formation and wound healing in the presence of MAA beads. In addition to the increased expression of Shh, MAA-treated wounds had increased expression of osteopontin (OPN), IL-1β and TNF-α, (at day 7) similar to the previously reported MAA response of macrophage-like and endothelial cells in vitro.
Collapse
Affiliation(s)
- Lindsay E Fitzpatrick
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
47
|
Mechanisms of vessel regression: toward an understanding of the resolution of angiogenesis. Curr Top Microbiol Immunol 2012; 367:3-32. [PMID: 23224648 DOI: 10.1007/82_2012_287] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Physiological angiogenesis refers to a naturally occurring process of blood vessel growth and regression, and it occurs as an integral component of tissue repair and regeneration. During wound healing, sprouting and branching results in an extensive yet immature and leaky neovascular network that ultimately resolves by systematic pruning of extraneous vessels to yield a stable, well-perfused vascular network ideally suited to maintain tissue homeostasis. While the molecular mechanisms of blood vessel growth have been explored in numerous cell and animal models in remarkable detail, the endogenous factors that prevent further angiogenesis and control vessel regression have not received much attention and are largely unknown. In this review, we introduce the relevant literature from various disciplines to fill the gaps in the current limited understanding of the major molecular and biomechanical inducers of vascular regression. The processes are described in the context of endothelial cell biology during wound healing: hypoxia-driven activation and sprouting followed by apoptosis or maturation of cells comprising the vasculature. We discuss and integrate the likely roles of a variety of endogenous factors, including oxygen availability, vessel perfusion and shear stress, intracellular negative feedback mechanisms (Spry2, vasohibin), soluble cytokines (CXCL10), matrix-binding proteins (TSP, PEDF), protein cleavage products (angiostatin, vasostatin), matrix-derived anti-angiogenic peptides (endostatin, arresten, canstatin, tumstatin), and the biomechanical properties of remodeling the extra-cellular matrix itself. These factors aid in the spatio-temporal control of blood vessel pruning by inducing specific anti-angiogenic signaling pathways in activated endothelial cells, pathways which compete with pro-angiogenic and maturation signals in the resolving wound. Gaining more insight into these mechanisms is bound to shed light on unresolved questions regarding scar formation, tissue regeneration, and increase our understanding of the many diseases with angiogenic phenotypes, especially cancer.
Collapse
|
48
|
Abstract
We discovered that miR-27b controls 2 critical vascular functions: it turns the angiogenic switch on by promoting endothelial tip cell fate and sprouting and it promotes venous differentiation. We have identified its targets, a Notch ligand Delta-like ligand 4 (Dll4) and Sprouty homologue 2 (Spry2). miR-27b knockdown in zebrafish and mouse tissues severely impaired vessel sprouting and filopodia formation. Moreover, miR-27b was necessary for the formation of the first embryonic vein in fish and controlled the expression of arterial and venous markers in human endothelium, including Ephrin B2 (EphB2), EphB4, FMS-related tyrosine kinase 1 (Flt1), and Flt4. In zebrafish, Dll4 inhibition caused increased sprouting and longer intersegmental vessels and exacerbated tip cell migration. Blocking Spry2 caused premature vessel branching. In contrast, Spry2 overexpression eliminated the tip cell branching in the intersegmental vessels. Blockade of Dll4 and Spry2 disrupted arterial specification and augmented the expression of venous markers. Blocking either Spry2 or Dll4 rescued the miR-27b knockdown phenotype in zebrafish and in mouse vascular explants, pointing to essential roles of these targets downstream of miR-27b. Our study identifies critical role of miR-27b in the control of endothelial tip cell fate, branching, and venous specification and determines Spry2 and Dll4 as its essential targets.
Collapse
|