1
|
Boccanegra B, Cappellari O, Mantuano P, Trisciuzzi D, Mele A, Tulimiero L, De Bellis M, Cirmi S, Sanarica F, Cerchiara AG, Conte E, Meanti R, Rizzi L, Bresciani E, Denoyelle S, Fehrentz JA, Cruciani G, Nicolotti O, Liantonio A, Torsello A, De Luca A. Growth hormone secretagogues modulate inflammation and fibrosis in mdx mouse model of Duchenne muscular dystrophy. Front Immunol 2023; 14:1119888. [PMID: 37122711 PMCID: PMC10130389 DOI: 10.3389/fimmu.2023.1119888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Growth hormone secretagogues (GHSs) exert multiple actions, being able to activate GHS-receptor 1a, control inflammation and metabolism, to enhance GH/insulin-like growth factor-1 (IGF-1)-mediated myogenesis, and to inhibit angiotensin-converting enzyme. These mechanisms are of interest for potentially targeting multiple steps of pathogenic cascade in Duchenne muscular dystrophy (DMD). Methods Here, we aimed to provide preclinical evidence for potential benefits of GHSs in DMD, via a multidisciplinary in vivo and ex vivo comparison in mdx mice, of two ad hoc synthesized compounds (EP80317 and JMV2894), with a wide but different profile. 4-week-old mdx mice were treated for 8 weeks with EP80317 or JMV2894 (320 µg/kg/d, s.c.). Results In vivo, both GHSs increased mice forelimb force (recovery score, RS towards WT: 20% for EP80317 and 32% for JMV2894 at week 8). In parallel, GHSs also reduced diaphragm (DIA) and gastrocnemius (GC) ultrasound echodensity, a fibrosis-related parameter (RS: ranging between 26% and 75%). Ex vivo, both drugs ameliorated DIA isometric force and calcium-related indices (e.g., RS: 40% for tetanic force). Histological analysis highlighted a relevant reduction of fibrosis in GC and DIA muscles of treated mice, paralleled by a decrease in gene expression of TGF-β1 and Col1a1. Also, decreased levels of pro-inflammatory genes (IL-6, CD68), accompanied by an increment in Sirt-1, PGC-1α and MEF2c expression, were observed in response to treatments, suggesting an overall improvement of myofiber metabolism. No detectable transcript levels of GHS receptor-1a, nor an increase of circulating IGF-1 were found, suggesting the presence of a novel receptor-independent mechanism in skeletal muscle. Preliminary docking studies revealed a potential binding capability of JMV2894 on metalloproteases involved in extracellular matrix remodeling and cytokine production, such as ADAMTS-5 and MMP-9, overactivated in DMD. Discussion Our results support the interest of GHSs as modulators of pathology progression in mdx mice, disclosing a direct anti-fibrotic action that may prove beneficial to contrast pathological remodeling.
Collapse
Affiliation(s)
- Brigida Boccanegra
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Ornella Cappellari
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Mantuano
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Daniela Trisciuzzi
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Lisamaura Tulimiero
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Santa Cirmi
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Francesca Sanarica
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Elena Conte
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Ramona Meanti
- School of Medicine and Surgery, University of Milan-BICOCCA, Milan, Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milan-BICOCCA, Milan, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milan-BICOCCA, Milan, Italy
| | - Severine Denoyelle
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Orazio Nicolotti
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milan-BICOCCA, Milan, Italy
| | - Annamaria De Luca
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
2
|
Zhong C, Min K, Zhao Z, Zhang C, Gao E, Huang Y, Zhang X, Baldini M, Roy R, Yang X, Koch WJ, Bennett AM, Yu J. MAP Kinase Phosphatase-5 Deficiency Protects Against Pressure Overload-Induced Cardiac Fibrosis. Front Immunol 2021; 12:790511. [PMID: 34992607 PMCID: PMC8724134 DOI: 10.3389/fimmu.2021.790511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibrosis, a pathological condition due to excessive extracellular matrix (ECM) deposition in the myocardium, is associated with nearly all forms of heart disease. The processes and mechanisms that regulate cardiac fibrosis are not fully understood. In response to cardiac injury, macrophages undergo marked phenotypic and functional changes and act as crucial regulators of myocardial fibrotic remodeling. Here we show that the mitogen-activated protein kinase (MAPK) phosphatase-5 (MKP-5) in macrophages is involved in pressure overload-induced cardiac fibrosis. Cardiac pressure overload resulting from transverse aortic constriction (TAC) leads to the upregulation of Mkp-5 gene expression in the heart. In mice lacking MKP-5, p38 MAPK and JNK were hyperactivated in the heart, and TAC-induced cardiac hypertrophy and myocardial fibrosis were attenuated. MKP-5 deficiency upregulated the expression of the ECM-degrading matrix metalloproteinase-9 (Mmp-9) in the Ly6Clow (M2-type) cardiac macrophage subset. Consistent with in vivo findings, MKP-5 deficiency promoted MMP-9 expression and activity of pro-fibrotic macrophages in response to IL-4 stimulation. Furthermore, using pharmacological inhibitors against p38 MAPK, JNK, and ERK, we demonstrated that MKP-5 suppresses MMP-9 expression through a combined effect of p38 MAPK/JNK/ERK, which subsequently contributes to the inhibition of ECM-degrading activity. Taken together, our study indicates that pressure overload induces MKP-5 expression and facilitates cardiac hypertrophy and fibrosis. MKP-5 deficiency attenuates cardiac fibrosis through MAPK-mediated regulation of MMP-9 expression in Ly6Clow cardiac macrophages.
Collapse
Affiliation(s)
- Chao Zhong
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Translational Medicine, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Kisuk Min
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Kinesiology, University of Texas at El Paso, El Paso, TX, United States
| | - Zhiqiang Zhao
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Cheng Zhang
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Erhe Gao
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yan Huang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Xinbo Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Margaret Baldini
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Rajika Roy
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Walter J. Koch
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Anton M. Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, United States
| | - Jun Yu
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Gupta S, Mitra A. Heal the heart through gut (hormone) ghrelin: a potential player to combat heart failure. Heart Fail Rev 2020; 26:417-435. [PMID: 33025414 DOI: 10.1007/s10741-020-10032-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Ghrelin, a small peptide hormone (28 aa), secreted mainly by X/A-like cells of gastric mucosa, is also locally produced in cardiomyocytes. Being an orexigenic factor (appetite stimulant), it promotes release of growth hormone (GH) and exerts diverse physiological functions, viz. regulation of energy balance, glucose, and/or fat metabolism for body weight maintenance. Interestingly, administration of exogenous ghrelin significantly improves cardiac functions in CVD patients as well as experimental animal models of heart failure. Ghrelin ameliorates pathophysiological condition of the heart in myocardial infarction, cardiac hypertrophy, fibrosis, cachexia, and ischemia reperfusion injury. This peptide also exerts significant impact at the level of vasculature leading to lowering high blood pressure and reversal of endothelial dysfunction and atherosclerosis. However, the molecular mechanism of actions elucidating the healing effects of ghrelin on the cardiovascular system is still a matter of conjecture. Some experimental data indicate its beneficial effects via complex cellular cross talks between autonomic nervous system and cardiovascular cells, some other suggest more direct receptor-mediated molecular actions via autophagy or ionotropic regulation and interfering with apoptotic and inflammatory pathways of cardiomyocytes and vascular endothelial cells. Here, in this review, we summarise available recent data to encourage more research to find the missing links of unknown ghrelin receptor-mediated pathways as we see ghrelin as a future novel therapy in cardiovascular protection.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman, 713347, India
| | - Arkadeep Mitra
- Department of Zoology, City College , 102/1, Raja Rammohan Sarani, Kolkata, 700009, India.
| |
Collapse
|
4
|
Krebber MM, van Dijk CGM, Vernooij RWM, Brandt MM, Emter CA, Rau CD, Fledderus JO, Duncker DJ, Verhaar MC, Cheng C, Joles JA. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Extracellular Matrix Remodeling during Left Ventricular Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction: A Systematic Review and Meta-Analysis. Int J Mol Sci 2020; 21:ijms21186742. [PMID: 32937927 PMCID: PMC7555240 DOI: 10.3390/ijms21186742] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are pivotal regulators of extracellular matrix (ECM) composition and could, due to their dynamic activity, function as prognostic tools for fibrosis and cardiac function in left ventricular diastolic dysfunction (LVDD) and heart failure with preserved ejection fraction (HFpEF). We conducted a systematic review on experimental animal models of LVDD and HFpEF published in MEDLINE or Embase. Twenty-three studies were included with a total of 36 comparisons that reported established LVDD, quantification of cardiac fibrosis and cardiac MMP or TIMP expression or activity. LVDD/HFpEF models were divided based on underlying pathology: hemodynamic overload (17 comparisons), metabolic alteration (16 comparisons) or ageing (3 comparisons). Meta-analysis showed that echocardiographic parameters were not consistently altered in LVDD/HFpEF with invasive hemodynamic measurements better representing LVDD. Increased myocardial fibrotic area indicated comparable characteristics between hemodynamic and metabolic models. Regarding MMPs and TIMPs; MMP2 and MMP9 activity and protein and TIMP1 protein levels were mainly enhanced in hemodynamic models. In most cases only mRNA was assessed and there were no correlations between cardiac tissue and plasma levels. Female gender, a known risk factor for LVDD and HFpEF, was underrepresented. Novel studies should detail relevant model characteristics and focus on MMP and TIMP protein expression and activity to identify predictive circulating markers in cardiac ECM remodeling.
Collapse
Affiliation(s)
- Merle M. Krebber
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
| | - Christian G. M. van Dijk
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
| | - Robin W. M. Vernooij
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Maarten M. Brandt
- Experimental Cardiology, Department of Cardiology, Thorax center, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.M.B.); (D.J.D.)
| | - Craig A. Emter
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA;
| | - Christoph D. Rau
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA;
| | - Joost O. Fledderus
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
| | - Dirk J. Duncker
- Experimental Cardiology, Department of Cardiology, Thorax center, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.M.B.); (D.J.D.)
| | - Marianne C. Verhaar
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
| | - Caroline Cheng
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
| | - Jaap A. Joles
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
- Correspondence:
| |
Collapse
|
5
|
Banesh S, Trivedi V. Therapeutic Potentials of Scavenger Receptor CD36 Mediated Innate Immune Responses Against Infectious and Non-Infectious Diseases. Curr Drug Discov Technol 2020; 17:299-317. [PMID: 31376823 DOI: 10.2174/1570163816666190802153319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/18/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
CD36 is a multifunctional glycoprotein, expressed in different types of cells and known to play a significant role in the pathophysiology of the host. The structural studies revealed that the scavenger receptor consists of short cytosolic domains, two transmembrane domains, and a large ectodomain. The ectodomain serves as a receptor for a diverse number of endogenous and exogenous ligands. The CD36-specific ligands are involved in regulating the immune response during infectious and non-infectious diseases in the host. The role of CD36 in regulating the innate immune response during Pneumonia, Tuberculosis, Malaria, Leishmaniasis, HIV, and Sepsis in a ligand- mediated fashion. Apart from infectious diseases, it is also considered to be involved in metabolic disorders such as Atherosclerosis, Alzheimer's, cancer, and Diabetes. The ligand binding to scavenger receptor modulates the CD36 down-stream innate immune response, and it can be exploited to design suitable immuno-modulators. Hence, the current review focused on the role of the CD36 in innate immune response and therapeutic potentials of novel heterocyclic compounds as CD36 ligands during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Sooram Banesh
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
6
|
Raghay K, Akki R, Bensaid D, Errami M. Ghrelin as an anti-inflammatory and protective agent in ischemia/reperfusion injury. Peptides 2020; 124:170226. [PMID: 31786283 DOI: 10.1016/j.peptides.2019.170226] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
Ischemia/reperfusion (I/R) continue to be the most frequent cause of damaged tissues. Injured tissues resulted from the first ischemic insult, which is determined by the interruption in the blood supply, followed by subsequent impairment induced by reperfusion. In addition, ischemia-reperfusion injury is mediated by tumor necrosis factor (TNF) and other cytokines that activate complements and proteases responsible for free radical production. However, earlier studies have reported the protective roles of bioactive peptides during ischemia reperfusion injury. In fact, ghrelin is a peptide hormone discovered since 1999 as GH secretagogue and its production was identified in gastric X/A-like endocrine cells in rats and P/D1 type cells in humans. To date, this peptide receives growing attention due to its pleiotropic action in the organism and its role in maintaining energy homeostasis. Ghrelin is also involved in stress responses, assuming a modulatory action on immune pathways. Previous studies have identified many other functions related to an anti-inflammatory role in ischemia reperfusion injury. Under these challenging conditions, studies described acylated and unacylated ghrelin in activation and/or inhibition processes related to ischemia-reperfusion injury. The aim of this article is to provide a minireview about ghrelin mechanisms involved in the proinflammatory response of I/R injury. However, the regulatory processes of ghrelin in this pathologic event are still very limited and warrant further investigation.
Collapse
Affiliation(s)
- K Raghay
- Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - R Akki
- Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - D Bensaid
- Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - M Errami
- Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| |
Collapse
|
7
|
Ren Q, Lin P, Wang Q, Zhang B, Feng L. Chronic peripheral ghrelin injection exerts antifibrotic effects by increasing growth differentiation factor 15 in rat hearts with myocardial fibrosis induced by isoproterenol. Physiol Res 2019; 69:439-450. [PMID: 31852204 DOI: 10.33549/physiolres.934183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This study aimed to investigate the anti-fibrotic effects of ghrelin in isoproterenol (ISO)-induced myocardial fibrosis and the underlying mechanism. Sprague-Dawley rats were randomized to control, ISO, and ISO + ghrelin groups. ISO (2 mg/kg per day, subcutaneous) or vehicle was administered once daily for 7 days, then ghrelin (100 microg/kg per day, subcutaneous) was administered once daily for the next 3 weeks. Ghrelin treatment greatly improved the cardiac function of ISO-treated rats. Ghrelin also decreased plasma brain natriuretic peptide level and ratios of heart weight to body weight and left ventricular weight to body weight. Ghrelin significantly reduced myocardial collagen area and hydroxyproline content, accompanied by decreased mRNA levels of collagen type I and III. Furthermore, ghrelin increased plasma level of growth differentiation factor 15 (GDF15) and GDF15 mRNA and protein levels in heart tissues, which were significantly decreased with ISO alone. The phosphorylation of Akt at Ser473 and GSK-3beta at Ser9 was decreased with ISO, and ghrelin significantly reversed the downregulation of p-Akt and p-GSK-3beta. Mediated by GDF15, ghrelin could attenuate ISO-induced myocardial fibrosis via Akt-GSK-3beta signaling.
Collapse
Affiliation(s)
- Q Ren
- Geriatric Department of the Third Hospital of Hangzhou, Hangzhou, China.
| | | | | | | | | |
Collapse
|
8
|
Cheng XL, Ding F, Wang DP, Zhou L, Cao JM. Hexarelin attenuates atherosclerosis via inhibiting LOX-1-NF-κB signaling pathway-mediated macrophage ox-LDL uptake in ApoE -/- mice. Peptides 2019; 121:170122. [PMID: 31386895 DOI: 10.1016/j.peptides.2019.170122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
Growth hormone secretagogues (GHS) have been proved to exert protective effects on the cardiovascular system, while their potential beneficial effects on macrophages in atherosclerosis (AS) are rarely been clarified. This study aimed to demonstrate whether hexarelin, a synthetic peptidyl GHS, can suppress AS progression via regulating the function of macrophages. AS was induced by chronic (3 months) feeding with high lipid diet in ApoE-/- mice. Mice were treated either with hexarelin (100 μg/kg s.c., q.d. for 3 months) (AS + Hex group) or saline (AS group). Age-matched C57BL/6 J mice were used as normal controls. AS and related signaling molecules in aortic tissues and RAW264.7 macrophages were identified with variant methods including histological staining, ELISA, western blotting, confocal microscopy and flow cytometry. AS significantly developed in ApoE-/- mice fed with high lipids diet. Hexarelin decreased serum TC, TG and LDL-c, increased serum HDL-c and attenuated the formation of atherosclerotic plaques and neointima compared with the AS group. Hexarelin decreased the aortic expressions of CD68 and LOX-1 which were elevated in the AS group. Hexarelin increased GHSR expression, suppressed ox-LDL uptake and LOX-1 expression and inhibited nuclear factor-kappa B (NF-κB) activation both in the aorta of ApoE-/- mice and in RAW264.7 macrophages. We conclude that hexarelin effectively attenuates AS progression in ApoE-/- mice by modulating circulatory lipids profile and inhibiting macrophage ox-LDL uptake via suppressing the LOX-1-NF-κB signaling pathway. The study supports the perspective of hexarelin as an anti-AS drug.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/drug therapy
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Biological Transport/drug effects
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Gene Expression Regulation
- Lipoproteins, LDL/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Oligopeptides/pharmacology
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- RAW 264.7 Cells
- Receptors, Ghrelin/genetics
- Receptors, Ghrelin/metabolism
- Scavenger Receptors, Class E/antagonists & inhibitors
- Scavenger Receptors, Class E/genetics
- Scavenger Receptors, Class E/metabolism
- Signal Transduction
- Triglycerides/blood
Collapse
Affiliation(s)
- Xiu-Li Cheng
- Department of Clinical Laboratory, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin Huanhu Hospital, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Fan Ding
- Office of Scientific R&D, Tsinghua University, Beijing, China
| | - De-Ping Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Lan Zhou
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
9
|
Growth Hormone Secretagogues and the Regulation of Calcium Signaling in Muscle. Int J Mol Sci 2019; 20:ijms20184361. [PMID: 31491959 PMCID: PMC6769538 DOI: 10.3390/ijms20184361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Growth hormone secretagogues (GHS) are a family of synthetic molecules, first discovered in the late 1970s for their ability to stimulate growth hormone (GH) release. Many effects of GHS are mediated by binding to GHS-R1a, the receptor for the endogenous hormone ghrelin, a 28-amino acid peptide isolated from the stomach. Besides endocrine functions, both ghrelin and GHS are endowed with some relevant extraendocrine properties, including stimulation of food intake, anticonvulsant and anti-inflammatory effects, and protection of muscle tissue in different pathological conditions. In particular, ghrelin and GHS inhibit cardiomyocyte and endothelial cell apoptosis and improve cardiac left ventricular function during ischemia–reperfusion injury. Moreover, in a model of cisplatin-induced cachexia, GHS protect skeletal muscle from mitochondrial damage and improve lean mass recovery. Most of these effects are mediated by GHS ability to preserve intracellular Ca2+ homeostasis. In this review, we address the muscle-specific protective effects of GHS mediated by Ca2+ regulation, but also highlight recent findings of their therapeutic potential in pathological conditions characterized by skeletal or cardiac muscle impairment.
Collapse
|
10
|
Agbo E, Liu D, Li M, Saahene RO, Chen L, Zhao L, Wang Y, Tian G. Modulation of PTEN by hexarelin attenuates coronary artery ligation-induced heart failure in rats. Turk J Med Sci 2019; 49:945-958. [PMID: 31091855 PMCID: PMC7018219 DOI: 10.3906/sag-1812-49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background/aim Hexarelin is a synthetic growth hormone-releasing peptide that exerts cardioprotective effects. However, its cardioprotective effect against heart failure (HF) is yet to be explained. This study investigated the therapeutic role of hexarelin and the mechanisms underlying its cardioprotective effects against coronary artery ligation (CAL)-induced HF in rats. Materials and methods Rats with four weeks of permanent CAL, induced myocardial infarction, and HF were randomly separated into four groups: the control group (Ctrl), sham group (Sham), hexarelin treatment group (HF + Hx), and heart failure group (HF). The rats were treated with subcutaneous injection of hexarelin (100 µg/kg) in the treatment group or saline in the other groups twice a day for 30 days. Left ventricular (LV) function, oxidative stress, apoptosis, molecular analyses, and cardiac structural and pathological changes in rats were assessed. Results The treatment of HF rats with hexarelin significantly induced the upregulation of phosphatase and tensin homologue (PTEN) expression and inhibited the phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) to significantly improve LV function, ameliorate myocardial remodeling, and reduce oxidative stress. Conclusion These findings indicate that hexarelin attenuates CAL-induced HF in rats by ameliorating myocardial remodeling, LV dysfunction, and oxidative stress via the upmodulation of PTEN signaling and downregulation of the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Elvis Agbo
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Donhai Liu
- College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Meixiu Li
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Roland Osei Saahene
- Department of Immunology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Liqiang Chen
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Lunpeng Zhao
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Yiquan Wang
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Guozhong Tian
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| |
Collapse
|
11
|
Warbrick I, Rabkin SW. Effect of the peptides Relaxin, Neuregulin, Ghrelin and Glucagon-like peptide-1, on cardiomyocyte factors involved in the molecular mechanisms leading to diastolic dysfunction and/or heart failure with preserved ejection fraction. Peptides 2019; 111:33-41. [PMID: 29807087 DOI: 10.1016/j.peptides.2018.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents an important cardiac condition because of its increasing prevalence, resistance to treatment and high associated morbidity and mortality. Two of the major mechanisms responsible for HFpEF are impaired cardiomyocyte sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2a), which is responsible for calcium reuptake into the SR, and cardiac fibroblasts/myofibroblasts that produce collagen or myocardial fibrosis. Phospholamban (PLB), in the SR and endoplasmic reticulum, is the primary regulator of SERCA2a in the heart and acts as a reversible inhibitor of SERCA2a. Glucagon-like peptide-1, a 30 amino acid peptide, improves diastolic function through increasing SERCA2a expression and activity as well as by decreasing phosphorylation of Ryanodine receptors. It also enhances collagen production through enhanced procollagen IalphaI/IIIalphaI, connective tissue growth factor, fibronectin, TGF-β3 as well as Interleukin -10, -1beta, and -6 gene expression. Relaxin-2, a two chain, 53 amino acid peptide, increases Ser16- and Thr17-phosphorylation levels of PLB, thereby relieving SERCA2a of its inhibition. H3 Relaxin inhibits TGF-β1-stimulated collagen deposition through H3 relaxin-induced increases in pSmad2. Neuregulin-1, an epidermal growth factor, induces nitric oxide and PI-3 kinase activation that enhance SERCA2 activity. Neuregulin-1 was associated with less myocardial macrophage infiltration and cytokine expression reducing collagen deposition. Ghrelin, a 28 amino acid peptide, improves SERCA2a function by inducing PLB phosphorylation. Ghrelin also reduces cardiac fibrosis. In summary, Glucagon-like peptide-1, Relaxin-2, Neuregulin-1, and Ghrelin each modify calcium dynamics, collagen expression, and myocardial fibrosis through attenuation of deleterious signaling cascades, and induction of adaptive pathways, representing potential therapeutic targets for HFpEF.
Collapse
Affiliation(s)
| | - Simon W Rabkin
- University of British Columbia, Canada; Department of Medicine (Cardiology), Canada.
| |
Collapse
|
12
|
McDonald H, Peart J, Kurniawan N, Galloway G, Royce S, Samuel CS, Chen C. Hexarelin treatment preserves myocardial function and reduces cardiac fibrosis in a mouse model of acute myocardial infarction. Physiol Rep 2018; 6:e13699. [PMID: 29756411 PMCID: PMC5949285 DOI: 10.14814/phy2.13699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022] Open
Abstract
Ischemic heart disease (IHD) is a leading cause of morbidity and mortality worldwide. Growth hormone secretagogues (GHS) have been shown to improve cardiac function in models of IHD. This study determined whether hexarelin (HEX), a synthetic GHS, preserves cardiac function and morphology in a mouse model of myocardial infarction (MI). MI was induced by ligation of the left descending coronary artery in C57BL/6J mice followed by vehicle (VEH; n = 10) or HEX (0.3 mg/kg/day; n = 11) administration for 21 days. MI-injured and sham mice (treated with VEH; n = 6 or HEX; n = 5) underwent magnetic resonance imaging for measurement of left ventricular (LV) function, mass and infarct size at 24 h and 14 days post-MI. MI-HEX mice displayed a significant improvement (P < 0.05) in LV function compared with MI-VEH mice after 14 days treatment. A significant decrease in LV mass, interstitial collagen and collagen concentration was demonstrated with chronic HEX treatment (for 21 days), accompanied by a decrease in TGF-β1 expression, myofibroblast differentiation and an increase in collagen-degrading MMP-13 expression levels. Furthermore, heart rate variability analysis demonstrated that HEX treatment shifted the balance of autonomic nervous activity toward a parasympathetic predominance and sympathetic downregulation. This was combined with a HEX-dependent decrease in troponin-I, IL-1β and TNF-α levels suggestive of amelioration of cardiomyocyte injury. These results demonstrate that GHS may preserve ventricular function, reduce inflammation and favorably remodel the process of fibrotic healing in a mouse model of MI and hold the potential for translational application to patients suffering from MI.
Collapse
Affiliation(s)
- Hayley McDonald
- School of Biomedical ScienceUniversity of QueenslandBrisbaneAustralia
| | - Jason Peart
- Menzies Health Institute of QueenslandGriffith UniversityGold CoastAustralia
| | - Nyoman Kurniawan
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
| | - Graham Galloway
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
| | - Simon Royce
- Cardiovascular Disease ProgramBiomedical Discovery Institute and Department of PharmacologyMonash UniversityVictoriaAustralia
- Central Clinical SchoolMonash UniversityVictoriaAustralia
| | - Chrishan S. Samuel
- Cardiovascular Disease ProgramBiomedical Discovery Institute and Department of PharmacologyMonash UniversityVictoriaAustralia
| | - Chen Chen
- School of Biomedical ScienceUniversity of QueenslandBrisbaneAustralia
| |
Collapse
|
13
|
Zhang X, Qu L, Chen L, Chen C. Improvement of cardiomyocyte function by in vivo hexarelin treatment in streptozotocin-induced diabetic rats. Physiol Rep 2018; 6:e13612. [PMID: 29446246 PMCID: PMC5812882 DOI: 10.14814/phy2.13612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 01/27/2023] Open
Abstract
Diabetic cardiomyopathy is characterized by diastolic and systolic cardiac dysfunction, yet no therapeutic drug to specifically treat it. Hexarelin has been demonstrated to improve heart function in various types of cardiomyopathy via its receptor GHS-R. This experiment aims to test the effect of hexarelin on cardiomyocytes under experimental diabetes. Streptozotocin (STZ, 65 mg/kg)-induced diabetic rat model was employed with vehicle injection group as control. Daily hexarelin (100 μg/kg) treatment was performed for 2 weeks after 4-week STZ-induced diabetes. Cardiomyocytes were isolated by enzyme treatment under O2 -saturated perfusion for single-cell shortening, [Ca2+ ]i transient, and electrophysiology recordings. GHS-R expression and apoptosis-related signaling proteins Bax, Bcl-2, caspase-3 and 9, were assessed by western blot. Experimental data demonstrated a reduced cell contraction and relaxation in parallel with depressed rise and fall of [Ca2+ ]i transients in diabetic cardiomyocytes. Hexarelin reversed the changes in both contraction and [Ca2+ ]i . Action potential duration and transient outward potassium current (Ito ) density were dramatically increased in diabetic cardiomyocytes and hexarelin treatment reverse such changes. Upregulated GHS receptor (GHS-R) expression was observed in both control and diabetic groups after hexarelin treatment, which also caused antiapoptotic changes of Bax, Bcl-2, caspase-3 and 9 expression. In STZ-induced diabetic rats, hexarelin is able to improve cardiomyocyte function through recovery of Ito K+ currents, intracellular Ca2+ homeostasis and antiapoptotic signaling pathways.
Collapse
Affiliation(s)
- Xinli Zhang
- School of Biomedical SciencesUniversity of QueenslandSt LuciaBrisbaneQueenslandAustralia
| | - Linbing Qu
- State Key Laboratories of Respiratory DiseasesGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Ling Chen
- State Key Laboratories of Respiratory DiseasesGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Chen Chen
- School of Biomedical SciencesUniversity of QueenslandSt LuciaBrisbaneQueenslandAustralia
| |
Collapse
|
14
|
Dietary soya protein improves intra-myocardial lipid deposition and altered glucose metabolism in a hypertensive, dyslipidaemic, insulin-resistant rat model. Br J Nutr 2017; 119:131-142. [PMID: 29268800 DOI: 10.1017/s000711451700321x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study investigates the effects of replacing dietary casein by soya protein on the underlying mechanisms involved in the impaired metabolic fate of glucose and lipid metabolisms in the heart of dyslipidaemic rats chronically fed (8 months) a sucrose-rich (62·5 %) diet (SRD). To test this hypothesis, Wistar rats were fed an SRD for 4 months. From months 4 to 8, half the animals continued with the SRD and the other half were fed an SRD in which casein was substituted by soya. The control group received a diet with maize starch as the carbohydrate source. Compared with the SRD-fed group, the following results were obtained. First, soya protein significantly (P<0·001) reduced the plasma NEFA levels and normalised dyslipidaemia and glucose homoeostasis, improving insulin resistance. The protein levels of fatty acid translocase at basal state and under insulin stimulation and the protein levels and activity of muscle-type carnitine palmitoyltransferase 1 were normalised. Second, a significant (P<0·001) reduction of TAG, long-chain acyl CoA and diacylglycerol levels was observed in the heart muscle. Third, soya protein significantly increased (P<0·01) GLUT4 protein level under insulin stimulation and normalised glucose phosphorylation and oxidation. A reduction of phosphorylated AMP protein kinase protein level was recorded without changes in uncoupling protein 2 and PPARα. Fourth, hydroxyproline concentration decreased in the left ventricle and hypertension was normalised. The new information provided shows the beneficial effects of soya protein upon the altered pathways of glucose and lipid metabolism in the heart muscle of this rat model.
Collapse
|
15
|
Berlanga-Acosta J, Abreu-Cruz A, Herrera DGDB, Mendoza-Marí Y, Rodríguez-Ulloa A, García-Ojalvo A, Falcón-Cama V, Hernández-Bernal F, Beichen Q, Guillén-Nieto G. Synthetic Growth Hormone-Releasing Peptides (GHRPs): A Historical Appraisal of the Evidences Supporting Their Cytoprotective Effects. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2017; 11:1179546817694558. [PMID: 28469491 PMCID: PMC5392015 DOI: 10.1177/1179546817694558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Growth hormone-releasing peptides (GHRPs) constitute a group of small synthetic peptides that stimulate the growth hormone secretion and the downstream axis activity. Mounting evidences since the early 1980s delineated unexpected pharmacological cardioprotective and cytoprotective properties for the GHRPs. However, despite intense basic pharmacological research, alternatives to prevent cell and tissue demise before lethal insults have remained as an empty niche in the clinical armamentarium. Here, we have rigorously reviewed the investigational development of GHRPs and their clinical niching perspectives. METHODOLOGY PubMed/MEDLINE databases, including original research and review articles, were explored. The search design was date escalated from 1980 and included articles in English only. RESULTS AND CONCLUSIONS GHRPs bind to two different receptors (GHS-R1a and CD36), which redundantly or independently exert relevant biological effects. GHRPs' binding to CD36 activates prosurvival pathways such as PI-3K/AKT1, thus reducing cellular death. Furthermore, GHRPs decrease reactive oxygen species (ROS) spillover, enhance the antioxidant defenses, and reduce inflammation. These cytoprotective abilities have been revealed in cardiac, neuronal, gastrointestinal, and hepatic cells, representing a comprehensive spectrum of protection of parenchymal organs. Antifibrotic effects have been attributed to some of the GHRPs by counteracting fibrogenic cytokines. In addition, GHRP family members have shown a potent myotropic effect by promoting anabolia and inhibiting catabolia. Finally, GHRPs exhibit a broad safety profile in preclinical and clinical settings. Despite these fragmented lines incite to envision multiple pharmacological uses for GHRPs, especially as a myocardial reperfusion damage-attenuating candidate, this family of "drugable" peptides awaits for a definitive clinical niche.
Collapse
Affiliation(s)
| | - Angel Abreu-Cruz
- Cardiology Unit, Center for Medical and Surgical Research, Siboney, Playa, Havana, Cuba
| | | | - Yssel Mendoza-Marí
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | | | - Ariana García-Ojalvo
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | - Viviana Falcón-Cama
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | | | - Qu Beichen
- Xinkexian Biological Technology Co., Ltd, Haidian District, Beijing, China
| | | |
Collapse
|
16
|
Huang J, Li Y, Zhang J, Liu Y, Lu Q. The Growth Hormone Secretagogue Hexarelin Protects Rat Cardiomyocytes From in vivo Ischemia/Reperfusion Injury Through Interleukin-1 Signaling Pathway. Int Heart J 2017; 58:257-263. [DOI: 10.1536/ihj.16-241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jiannan Huang
- Department of Cardiology, The Second Hospital of Shandong University
- Department of Cardiology, The Central Hospital of Zibo City
| | - Yi Li
- Obstetric Genetic Disease Laboratory, Maternal and Child Health Hospital of Zibo City
| | - Juan Zhang
- Department of Cardiology, The Central Hospital of Zibo City
| | - Yusheng Liu
- Department of Cardiology, The Second Hospital of Shandong University
| | - Qinghua Lu
- Department of Cardiology, The Second Hospital of Shandong University
| |
Collapse
|
17
|
Li B, Zhou W, Yang X, Zhou Y, Tan Y, Yuan C, Song Y, Chen X, Zhang W. The CD147/MMP-2 signaling pathway may regulate early stage cardiac remodelling in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 2016; 43:1125-1133. [PMID: 27451961 DOI: 10.1111/1440-1681.12626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Bowei Li
- Department of Internal Cardiology; The First Affiliated Hospital of Guang Dong Pharmaceutical University (School of Clinical Medicine); Guangzhou China
| | - Wanxing Zhou
- Department of Internal Cardiology; The First Affiliated Hospital of Guang Dong Pharmaceutical University (School of Clinical Medicine); Guangzhou China
| | - Xiaorong Yang
- Department of Clinical Laboratory; The First Affiliated Hospital of Guang Dong Pharmaceutical University (School of Clinical Medicine); Guangzhou China
| | - Yuliang Zhou
- Department of Internal Cardiology; The First Affiliated Hospital of Guang Dong Pharmaceutical University (School of Clinical Medicine); Guangzhou China
| | - Yongjing Tan
- Department of Internal Cardiology; The First Affiliated Hospital of Guang Dong Pharmaceutical University (School of Clinical Medicine); Guangzhou China
| | - Congcong Yuan
- Department of Internal Cardiology; The First Affiliated Hospital of Guang Dong Pharmaceutical University (School of Clinical Medicine); Guangzhou China
| | - Yulan Song
- Department of Pathology; The First Affiliated Hospital of Guang Dong Pharmaceutical University (School of Clinical Medicine); Guangzhou China
| | - Xiao Chen
- The School of Life Science of Guang Dong Pharmaceutical University; Guangzhou China
| | - Wei Zhang
- Department of Internal Cardiology; The First Affiliated Hospital of Guang Dong Pharmaceutical University (School of Clinical Medicine); Guangzhou China
| |
Collapse
|
18
|
Abstract
Ghrelin is a growth hormone-releasing polypeptide that was first isolated from the rat stomach in 1999. High expression of growth hormone secretagogue receptor, the ghrelin receptor, in the heart, kidney, and blood vessels provides evidence of ghrelin activity in blood pressure regulation. Circulating ghrelin concentrations are reported to be inversely correlated with blood pressure, and the acute and chronic effects of ghrelin in decreasing blood pressure have been reported in animals with normal blood pressure, healthy individuals, animals and patients with heart failure, and animals with hypertension. The mechanism by which ghrelin regulates blood pressure appears to be related to modulation of the autonomic nervous system, direct vasodilatory activities, and kidney diuresis. Thus, modulation of the signaling pathway through ghrelin may provide a novel concept for treating hypertension. In this review, we discuss the current evidence and potential mechanisms of ghrelin activity in blood pressure regulation.
Collapse
|
19
|
Ma J, Ma SY, Ding CH. Curcumin reduces cardiac fibrosis by inhibiting myofibroblast differentiation and decreasing transforming growth factor β1 and matrix metalloproteinase 9 / tissue inhibitor of metalloproteinase 1. Chin J Integr Med 2016; 23:362-369. [PMID: 26956464 DOI: 10.1007/s11655-015-2159-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the effect of curcumin on fibroblasts in rats with cardiac fibrosis. METHODS The rats were randomly divided into 4 groups (n=12 in each group): the normal control, isoproterenol (ISO), ISO combined with low-dose curcumin (ISO+Cur-L), and ISO combined with high-dose curcumin (ISO+Cur-H) groups. ISO+Cur-L and ISO+Cur-H groups were treated with curcumin (150 or 300 mg•kg-1•day-1) for 28 days. The primary culture of rat cardiac fibroblast was processed by trypsin digestion method in vitro. The 3rd to 5th generation were used for experiment. Western blot method was used to test the expression of collagen type I/III, α-smooth muscle actin (α-SMA), transforming growth factor (TGF)-β1, matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinase (TIMP)-1. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was applied to test the proliferation of fibroblast. RESULT Curcumin significantly decreased interstitial and perivascular myocardial collagen deposition and cardiac weight index with reducing protein expression of collagen type I/III in hearts (P<0.05). In addition, curcumin directly inhibited angiotensin (Ang) II-induced fibroblast proliferation and collagen type I/III expression in cardiac fibroblasts (P<0.05). Curcumin also inhibited fibrosis by inhibiting myofibroblast differentiation, decreased TGF-β1, MMP-9 and TIMP-1 expression (P<0.05) but had no effects on Smad3 in Ang II incubated cardiac fibroblasts. CONCLUSIONS Curcumin reduces cardiac fibrosis in rats and Ang II-induced fibroblast proliferation by inhibiting myofibroblast differentiation, decreasing collagen synthesis and accelerating collagen degradation through reduction of TGF-β1, MMPs/TIMPs. The present findings also provided novel insights into the role of curcumin as an antifibrotic agent for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Jin Ma
- Cardiac Electrophysiology Research Lab, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510006, China
| | - Shi-Yu Ma
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Chun-Hua Ding
- Cardiac Electrophysiology Research Lab, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510006, China. .,Arrhythmia Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Xiao T, Luo J, Wu Z, Li F, Zeng O, Yang J. Effects of hydrogen sulfide on myocardial fibrosis and PI3K/AKT1-regulated autophagy in diabetic rats. Mol Med Rep 2015; 13:1765-73. [PMID: 26676365 DOI: 10.3892/mmr.2015.4689] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 11/06/2015] [Indexed: 11/05/2022] Open
Abstract
Myocardial fibrosis is the predominant pathological characteristic of diabetic myocardial damage. Previous studies have indicated that hydrogen sulfide (H2S) has beneficial effects in the treatment of various cardiovascular diseases. However, there is little research investigating the effect of H2S on myocardial fibrosis in diabetes. The present study aimed to investigate the effects of H2S on the progression of myocardial fibrosis induced by diabetes. Diabetes was induced in rats by intraperitoneal injection of streptozotocin. Sodium hydrosulfide (NaHS) was used as an exogenous donor of H2S. After 8 weeks, expression levels of cystathionine-γ-lyase were determined by western blot analysis and morphological changes in the myocardium were assessed by hematoxylin and eosin staining and Masson staining. The hydroxyproline content and fibrosis markers were determined by a basic hydrolysis method and western blot analysis, respectively. Autophagosomes were observed under transmission electron microscopy. Expression levels of autophagy-associated proteins and their upstream signaling molecules were also evaluated by western blotting. The results of the current study indicated that diabetes induced marked myocardial fibrosis, enhanced myocardial autophagy and suppressed the phosphatidylinositol-4,5-bisphosphate 3-kinase/RAC-α serine/threonine-protein kinase (PI3K/AKT1) signaling pathway. By contrast, following treatment with NaHS, myocardial fibrosis was ameliorated, myocardial autophagy was decreased and the PI3K/AKT1 pathway suppression was reversed. The results of the present study demonstrated that the protective effect of H2S against diabetes-induced myocardial fibrosis may be associated with the attenuation of autophagy via the upregulation of the PI3K/AKT1 signaling pathway.
Collapse
Affiliation(s)
- Ting Xiao
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Luo
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhixiong Wu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Fang Li
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ou Zeng
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
21
|
Mosa RMH, Zhang Z, Shao R, Deng C, Chen J, Chen C. Implications of ghrelin and hexarelin in diabetes and diabetes-associated heart diseases. Endocrine 2015; 49:307-23. [PMID: 25645463 DOI: 10.1007/s12020-015-0531-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/12/2015] [Indexed: 02/07/2023]
Abstract
Ghrelin and its synthetic analog hexarelin are specific ligands of growth hormone secretagogue (GHS) receptor. GHS have strong growth hormone-releasing effect and other neuroendocrine activities such as stimulatory effects on prolactin and adrenocorticotropic hormone secretion. Recently, several studies have reported other beneficial functions of GHS that are independent of GH. Ghrelin and hexarelin, for examples, have been shown to exert GH-independent cardiovascular activity. Hexarelin has been reported to regulate peroxisome proliferator-activated receptor gamma (PPAR-γ) in macrophages and adipocytes. PPAR-γ is an important regulator of adipogenesis, lipid metabolism, and insulin sensitization. Ghrelin also shows protective effects on beta cells against lipotoxicity through activation of phosphatidylinositol-3 kinase/protein kinase B, c-Jun N-terminal kinase (JNK) inhibition, and nuclear exclusion of forkhead box protein O1. Acylated ghrelin (AG) and unacylated ghrelin (UAG) administration reduces glucose levels and increases insulin-producing beta cell number, and insulin secretion in pancreatectomized rats and in newborn rats treated with streptozotocin, suggesting a possible role of GHS in pancreatic regeneration. Therefore, the discovery of GHS has opened many new perspectives in endocrine, metabolic, and cardiovascular research areas, suggesting the possible therapeutic application in diabetes and diabetic complications especially diabetic cardiomyopathy. Here, we review the physiological roles of ghrelin and hexarelin in the protection and regeneration of beta cells and their roles in the regulation of insulin release, glucose, and fat metabolism and present their potential therapeutic effects in the treatment of diabetes and diabetic-associated heart diseases.
Collapse
|
22
|
Angelino E, Reano S, Ferrara M, Agosti E, Graziani A, Filigheddu N. Antifibrotic activity of acylated and unacylated ghrelin. Int J Endocrinol 2015; 2015:385682. [PMID: 25960743 PMCID: PMC4415458 DOI: 10.1155/2015/385682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/01/2015] [Indexed: 12/15/2022] Open
Abstract
Fibrosis can affect almost all tissues and organs, it often represents the terminal stage of chronic diseases, and it is regarded as a major health issue for which efficient therapies are needed. Tissue injury, by inducing necrosis/apoptosis, triggers inflammatory response that, in turn, promotes fibroblast activation and pathological deposition of extracellular matrix. Acylated and unacylated ghrelin are the main products of the ghrelin gene. The acylated form, through its receptor GHSR-1a, stimulates appetite and growth hormone (GH) release. Although unacylated ghrelin does not bind or activate GHSR-1a, it shares with the acylated form several biological activities. Ghrelin peptides exhibit anti-inflammatory, antioxidative, and antiapoptotic activities, suggesting that they might represent an efficient approach to prevent or reduce fibrosis. The aim of this review is to summarize the available evidence regarding the effects of acylated and unacylated ghrelin on different pathologies and experimental models in which fibrosis is a predominant characteristic.
Collapse
Affiliation(s)
- Elia Angelino
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Simone Reano
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Michele Ferrara
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Emanuela Agosti
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Andrea Graziani
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Nicoletta Filigheddu
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- *Nicoletta Filigheddu:
| |
Collapse
|
23
|
Kaiya H, Konno N, Kangawa K, Uchiyama M, Miyazato M. Identification, tissue distribution and functional characterization of the ghrelin receptor in West African lungfish, Protopterus annectens. Gen Comp Endocrinol 2014; 209:106-17. [PMID: 25093625 DOI: 10.1016/j.ygcen.2014.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/16/2014] [Accepted: 07/26/2014] [Indexed: 12/29/2022]
Abstract
We identified two ghrelin receptor isoforms, the ghrelin receptor type-1a (GHS-R1a) and its alternative splice form (GHS-R1b) for West African lungfish, Protopterus annectens. Lungfish GHS-R1a and 1b comprised 361 and 281 amino acids, respectively. Lungfish GHS-R1a showed the highest identity to coelacanth GHS-R1a (80.4%). The highest expression of GHS-R1a mRNAs was seen in the brain, liver, ovary, heart, intestine, and gills. GHS-R1b mRNAs were also detected in the same tissues with GHS-R1a, but their expression level was 1/20 that of GHS-R1a. In human embryonic kidney 293 cells transiently expressing lungfish GHS-R1a, rat and bullfrog ghrelin, and two GHS-R1a agonists, GHRP-6 and hexarelin, increased intracellular Ca(2+) concentrations. The intensity of the Ca(2+) increases induced by GHS-R1a agonists was twice when compared to that induced by ghrelin, although the median effective doses (ED50) were similar, suggesting a long-lasting effect of GHS-R1a agonists with similar affinity. We also examined changes in the GHS-R gene expression during an eight-week estivation. Body weight was slightly lowered, but plasma sodium and glucose concentrations decreased; plasma urea concentration increased significantly 4weeks after the start of estivation. Overall, expression of GHS-R1a mRNA decreased, but changes in GHS-R1b mRNA expression were inconsistent with those of GHS-R1a during estivation, suggesting an involvement of GHS-R in energy homeostasis, as seen in mammals. Our results suggest that the ghrelin-GHS-R1a system is present in this lungfish although ghrelin has not yet been found. The structure of GHS-R1a is closer to that of tetrapods than Actinopterygian fish, indicating a process of evolution that follows the Crossopterygii such as coelacanth.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Minoru Uchiyama
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| |
Collapse
|
24
|
The cardiovascular action of hexarelin. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2014; 11:253-8. [PMID: 25278975 PMCID: PMC4178518 DOI: 10.11909/j.issn.1671-5411.2014.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/25/2014] [Accepted: 07/10/2014] [Indexed: 11/21/2022]
Abstract
Hexarelin, a synthetic growth hormone-releasing peptide, can bind to and activate the growth hormone secretagogue receptor (GHSR) in the brain similar to its natural analog ghrelin. However, the peripheral distribution of GHSR in the heart and blood vessels suggests that hexarelin might have direct cardiovascular actions beyond growth hormone release and neuroendocrine effects. Furthermore, the non-GHSR CD36 had been demonstrated to be a specific cardiac receptor for hexarelin and to mediate its cardioprotective effects. When compared with ghrelin, hexarelin is chemically more stable and functionally more potent. Therefore, it may be a promising therapeutic agent for some cardiovascular conditions. In this concise review, we discuss the current evidence for the cardiovascular action of hexarelin.
Collapse
|
25
|
Zhou L, Gao Q, Zhang P, Guo S, Gu J, Hao W, Cao JM. Activation of growth hormone secretagogue receptor induces time-dependent clock phase delay in mice. Am J Physiol Endocrinol Metab 2014; 307:E515-26. [PMID: 25074983 DOI: 10.1152/ajpendo.00535.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early studies have reported a phase-shifting effect of growth hormone secretagogues (GHSs). This study aimed to determine the mechanism of action of GHSs. We examined the response of the hypothalamic suprachiasmatic nuclei (SCN) to growth hormone releasing peptide-6 (GHRP-6) by assessing effects on the phase of locomotor activity rhythms, SCN neuronal discharges, and the potential signaling pathways involved in the drug action on circadian rhythms. The results showed that bolus administration of GHRP-6 (100 μg/kg ip) at the beginning of subjective night (CT12) induced a phase delay of the free-running rhythms in male C57BL/6J mice under constant darkness, but did not elicit phase shift at other checked circadian time (CT) points. The phase-delay effect of GHRP-6 was abolished by d-(+)-Lys-GHRP-6 (GHS receptor antagonist), KN-93 [calcium/calmodulin-dependent protein kinase II (CaMK) II inhibitor], or anti-phosphorylated (p)-cAMP response element-binding protein (CREB) antibody. Further analyses demonstrated that GHRP-6 at CT12 induced higher calcium mobilization and neuronal discharge in the SCN compared with that at CT6, decreased the levels of glutamate and γ-aminobutyric acid, increased the levels of p-CaMKII, p-CREB, and period 1, and delayed the circadian expressions of circadian locomotor output cycles kaput, Bmal1, and prokineticin 2 in the SCN; these signaling changes resulted in behavioral phase delay. Collectively, GHRP-6 induces a CT-dependent phase delay via activating GHS receptor and the downstream signaling, which is partially similar to the signaling cascade of light-induced phase delay at early night. These novel observations may help to better understand the role of GHSs in circadian physiology.
Collapse
Affiliation(s)
- Lan Zhou
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Qian Gao
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Zhang
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shu Guo
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jingli Gu
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Hao
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ji-Min Cao
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Yuan MJ, Huang H, Huang CX. Potential new role of the GHSR-1a-mediated signaling pathway in cardiac remodeling after myocardial infarction (Review). Oncol Lett 2014; 8:969-971. [PMID: 25120643 PMCID: PMC4114710 DOI: 10.3892/ol.2014.2245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 05/15/2014] [Indexed: 11/17/2022] Open
Abstract
The gastrointestinal hormone ghrelin has important cardiovascular protective effects, however, its specific mechanisms are not yet completely understood. Recent studies have shown that the ghrelin receptor, growth hormone secretagogue receptor type 1a (GHSR-1a), regulates cell proliferation, apoptosis and inflammation-related signaling pathways. In human aortic endothelial cells, ghrelin activates NO production through AMP-activated protein kinase (AMPK) and Akt activation, and these effects can be blocked by knockdown of GHSR-1a. Obese mice have been found to exhibit an increased GHSR-1a content and expression in the heart, associated with an increase in phosphatidylinositol 3-kinase (PI3K) content and an increase AKT content and phosphorylation. Furthermore, GHSR-1a expression was observed to be increased in heart failure after myocardial infarction (MI) in rats. Given such complexity in GHSR-1a signaling and crosstalk with the AMPK and PI3K/Akt signaling pathways, both of which are well-known factors involved in cardiac remodeling after MI, we speculate that GHSR-1a signaling may play a regulatory role in cardiac protection and hope to identify new drugs targets. However, to date, no direct association between GHSR-1a and cardiac remodeling has been found. Therefore, further studies are required.
Collapse
Affiliation(s)
- Ming-Jie Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
27
|
Pei XM, Yung BY, Yip SP, Ying M, Benzie IF, Siu PM. Desacyl ghrelin prevents doxorubicin-induced myocardial fibrosis and apoptosis via the GHSR-independent pathway. Am J Physiol Endocrinol Metab 2014; 306:E311-23. [PMID: 24326424 DOI: 10.1152/ajpendo.00123.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Doxorubicin is an effective chemotherapeutic agent used to treat malignancies, but it causes cardiomyopathy. Preliminary evidence suggests that desacyl ghrelin might have protective effects on doxorubicin cardiotoxicity. This study examined the cellular effects of desacyl ghrelin on myocardial fibrosis and apoptosis in a doxorubicin cardiomyopathy experimental model. Adult C57BL/6 mice received an intraperitoneal injection of doxorubicin to induce cardiomyopathy, followed by 4-day treatment of saline (control) or desacyl ghrelin with or without [d-Lys3]-GHRP-6 (a growth hormone secretagogue receptor or GHSR1a antagonist). Ventricular structural and functional parameters were evaluated by transthoracic echocardiography. Molecular and cellular measurements were performed in ventricular muscle to examine myocardial fibrosis and apoptosis. Cardiac dysfunction was induced by doxorubicin, as indicated by significant decreases in ventricular fractional shortening and ejection fraction. This doxorubicin-induced cardiac dysfunction was prevented by the treatment of desacyl ghrelin no matter with or without the presence of [d-Lys3]-GHRP-6. Doxorubicin induced fibrosis (accumulated collagen deposition and increased CTGF), activated apoptosis (increased TUNEL index, apoptotic DNA fragmentation, and caspase-3 activity and decreased Bcl-2/Bax ratio), and suppressed phosphorylation status of prosurvival signals (ERK1/2 and Akt) in ventricular muscles. All these molecular and cellular alterations induced by doxorubicin were not found in the animals treated with desacyl ghrelin. Notably, the changes in the major markers of apoptosis, fibrosis, and Akt phosphorylation were found to be similar in the animals following the treatment of desacyl ghrelin with and without GHSR antagonist [d-Lys3]-GHRP-6. These findings demonstrate clearly that desacyl ghrelin protects the cardiomyocytes against the doxorubicin-induced cardiomyopathy by preventing the activation of cardiac fibrosis and apoptosis, and the effects are probably mediated through GHSR-independent mechanism.
Collapse
Affiliation(s)
- Xiao M Pei
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|