1
|
Zhang J, Yan H, Wang Y, Yue X, Wang M, Liu L, Qiao P, Zhu Y, Li Z. Emerging insights into pulmonary hypertension: the potential role of mitochondrial dysfunction and redox homeostasis. Mol Cell Biochem 2025; 480:1407-1429. [PMID: 39254871 DOI: 10.1007/s11010-024-05096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Pulmonary hypertension (PH) is heterogeneous diseases that can lead to death due to progressive right heart failure. Emerging evidence suggests that, in addition to its role in ATP production, changes in mitochondrial play a central role in their pathogenesis, regulating integrated metabolic and signal transduction pathways. This review focuses on the basic principles of mitochondrial redox status in pulmonary vascular and right ventricular disorders, a series of dysfunctional processes including mitochondrial quality control (mitochondrial biogenesis, mitophagy, mitochondrial dynamics, mitochondrial unfolded protein response) and mitochondrial redox homeostasis. In addition, we will summarize how mitochondrial renewal and dynamic changes provide innovative insights for studying and evaluating PH. This will provide us with a clearer understanding of the initial signal transmission of mitochondria in PH, which would further improve our understanding of the pathogenesis of PH.
Collapse
Affiliation(s)
- Junming Zhang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Huimin Yan
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yan Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Xian Yue
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Meng Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Limin Liu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Pengfei Qiao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yixuan Zhu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Zhichao Li
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China.
| |
Collapse
|
2
|
Meng Q, Song L, Wang H, Wang G, Zhou G. Levosimendan mediates the BMP/Smad axis through upregulation of circUSP34-targeted miR-1298 to alleviate pulmonary hypertension. Respir Res 2024; 25:316. [PMID: 39160536 PMCID: PMC11334555 DOI: 10.1186/s12931-024-02945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a long-term disease that impacts approximately 1% of the world's population. Currently, levosimendan (Lev) is proposed for PH treatment. However, the mechanism of Lev in the treatment of PH is unknown. METHODS We used hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) to establish a PH cell model. A number of cell biology methods were performed to assay alterations in cell proliferation, migration and apoptosis after Lev treatment. qRT-PCR and WB were performed to test the levels of circUSP34 and miR-1298, and BMP/Smad protein respectively. In addition, the regulatory relationship between circUSP34 or BMPR2 with miR-1298 was verified through the use of double luciferase as well as RIP assay. In addition, we explored the regulatory effect of Lev on the circUSP34/miR-1298/BMP/Smad axis using a rat PH model. RESULTS Our results demonstrate that Lev inhibited PASMCs cell proliferation, migration and promoted apoptosis exposed to hypoxia. In hypoxia-treated PASMCs, circUSP34 expression got downregulated while miR-1298 upregulated, whereas the addition with Lev resulted in upregulation of circUSP34 expression and downregulation of miR-1298 expression, indicating that circUSP34 can target and regulate miR-1298. In addition, miR-1298 targets and regulates the expression of BMPR2. In a rat PH model induced by hypoxia combined with SU5416, Lev upregulated circUSP34 targeting miR-1298-mediated BMP/Smad axis to alleviate the PH phenotype. CONCLUSION We have shown that Lev can be used as a therapeutic drug for PH patients, which works through the circUSP34/miR-1298/BMP/Smad axis to alleviate PH symptoms.
Collapse
MESH Headings
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Animals
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Rats
- Up-Regulation/drug effects
- Rats, Sprague-Dawley
- Simendan/pharmacology
- Male
- Cells, Cultured
- Smad Proteins/metabolism
- Bone Morphogenetic Proteins/metabolism
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Cell Proliferation/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Signal Transduction/drug effects
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Apoptosis/drug effects
Collapse
Affiliation(s)
- Qiang Meng
- Department of Pediatric Cardiac Surgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 10010, P.R. China
| | - Linhong Song
- Department of Pediatric Cardiac Surgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 10010, P.R. China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, P.R. China
| | - Hui Wang
- Department of Pediatric Cardiac Surgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 10010, P.R. China
| | - Gang Wang
- Department of Pediatric Cardiac Surgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 10010, P.R. China
| | - Gengxu Zhou
- Department of Pediatric Cardiac Surgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 10010, P.R. China.
| |
Collapse
|
3
|
Tang L, Niu S, Xu J, Lu W, Zhou L. miR-221-3p is upregulated in acute pulmonary embolism complicated with pulmonary hypertension and promotes pulmonary arterial smooth muscle cells proliferation and migration by inhibiting PTEN. Cytotechnology 2024; 76:453-463. [PMID: 38933873 PMCID: PMC11196540 DOI: 10.1007/s10616-024-00628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/18/2024] [Indexed: 06/28/2024] Open
Abstract
Pulmonary arterial smooth muscle cells (PASMCs) functions are associated with the pathogenesis of pulmonary hypertension (PH) which is a life-threatening complication of acute pulmonary embolism (APE). This study sought to explore the expression pattern of microRNA (miR)-221-3p in APE-PH patients and its role in PASMCs proliferation and migration. The clinical data and venous blood of APE-PH patients were collected. The expression levels of miR-221-3p and phosphatase and tensin homolog (PTEN) in serum were determined, followed by receiver operator characteristic curve analysis of miR-221-3p diagnostic efficacy. PASMCs were transfected with miR-221-3p mimics and PTEN-overexpressed vector, followed by assessment of cell viability, proliferation, and migration through cell counting kit-8, 5-ethynyl-2'-deoxyuridine, Transwell, and wound healing assays. The binding between miR-221-3p and PTEN 3'UTR region was testified by the dual-luciferase assay. miR-221 was upregulated in the serum of APE-PH patients and presented with good diagnostic efficacy with 1.155 cutoff value, 66.25% sensitivity, and 67.50% specificity. miR-221 was negatively correlated with PTEN in APE-PH patients. miR-221 overexpression facilitated PASMCs proliferation and migration in vitro. miR-221-3p bound to PTEN 3'UTR region to decrease PTEN protein levels. PTEN overexpression abolished the promotive role of miR-221-3p in PASMCs. Overall, miR-221-3p targeted PTEN to facilitate PASMC proliferation and migration.
Collapse
Affiliation(s)
- Lei Tang
- Vascular Surgery Department, Hebei General Hospital, Shijiazhuang City, 050000 China
| | - Shuai Niu
- Vascular Surgery Department, Hebei General Hospital, Shijiazhuang City, 050000 China
| | - Jinwei Xu
- Respiratory Medicine Department, Hebei General Hospital, Shijiazhuang City, 050000 China
| | - Wei Lu
- Respiratory Medicine Department, Hebei Medical University Third Hospital, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang City, 050000 Hebei Province China
| | - Li Zhou
- Respiratory Medicine Department, Hebei Medical University Third Hospital, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang City, 050000 Hebei Province China
| |
Collapse
|
4
|
Zhang W, Li M, Ye X, Jiang M, Wu X, Tang Z, Hu L, Zhang H, Li Y, Pan J. Disturbance of mitochondrial dynamics in myocardium of broilers with pulmonary hypertension syndrome. Br Poult Sci 2024; 65:154-164. [PMID: 38380624 DOI: 10.1080/00071668.2024.2308277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/05/2023] [Indexed: 02/22/2024]
Abstract
1. The following study investigated the relationship between pulmonary hypertension syndrome (PHS) and mitochondrial dynamics in broiler cardiomyocytes.2. An animal model for PHS was established by injecting broiler chickens with CM-32 cellulose particles. Broiler myocardial cells were cultured under hypoxic conditions to establish an in vitro model. The ascites heart index, histomorphology, mitochondrial ultrastructure, and mitochondrial dynamic-related gene and protein expression were evaluated.3. The myocardial fibres from PHS broilers had wider spaces and were wavy and twisted and the number of mitochondria increased. Compared with the control group, the gene and protein expression levels were decreased for Opa1, Mfn1, and Mfn2 in the myocardium of PHS broilers. The gene and protein expression was significantly increased for Drp1 and Mff.4. This study showed that PHS in broilers may cause myocardial mitochondrial dysfunction, specifically by diminishing mitochondrial fusion and enhancing fission, causing disturbances in the mitochondrial dynamics of the heart.
Collapse
Affiliation(s)
- W Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - M Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - X Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - M Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - X Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - Z Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - L Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - H Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - Y Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - J Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
5
|
Alghamdi A. A detailed review of pharmacology of MFN1 (mitofusion-1)-mediated mitochondrial dynamics: Implications for cellular health and diseases. Saudi Pharm J 2024; 32:102012. [PMID: 38463181 PMCID: PMC10924208 DOI: 10.1016/j.jsps.2024.102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
The mitochondria are responsible for the production of cellular ATP, the regulation of cytosolic calcium levels, and the organization of numerous apoptotic proteins through the release of cofactors necessary for the activation of caspases. This level of functional adaptability can only be attained by sophisticated structural alignment. The morphology of the mitochondria does not remain unchanged throughout time; rather, it undergoes change as a result of processes known as fusion and fission. Fzo in flies, Fzo1 in yeast, and mitofusins in mammals are responsible for managing the outer mitochondrial membrane fusion process, whereas Mgm1 in yeast and optic atrophy 1 in mammals are responsible for managing the inner mitochondrial membrane fusion process. The fusion process is composed of two phases. MFN1, a GTPase that is located on the outer membrane of the mitochondria, is involved in the process of linking nearby mitochondria, maintaining the potential of the mitochondrial membrane, and apoptosis. This article offers specific information regarding the functions of MFN1 in a variety of cells and organs found in living creatures. According to the findings of the literature review, MFN1 plays an important part in a number of diseases and organ systems; nevertheless, the protein's function in other disease models and cell types has to be investigated in the near future so that it can be chosen as a promising marker for the therapeutic and diagnostic potentials it possesses. Overall, the major findings of this review highlight the pivotal role of mitofusin (MFN1) in regulating mitochondrial dynamics and its implications across various diseases, including neurodegenerative disorders, cardiovascular diseases, and metabolic syndromes. Our review identifies novel therapeutic targets within the MFN1 signaling pathways and underscores the potential of MFN1 modulation as a promising strategy for treating mitochondrial-related diseases. Additionally, the review calls for further research into MFN1's molecular mechanisms to unlock new avenues for clinical interventions, emphasizing the need for targeted therapies that address MFN1 dysfunction.
Collapse
Affiliation(s)
- Adel Alghamdi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Baha University, P.O. Box 1988 Al-Baha, Saudi Arabia
| |
Collapse
|
6
|
Samidurai A, Olex AL, Ockaili R, Kraskauskas D, Roh SK, Kukreja RC, Das A. Integrated Analysis of lncRNA-miRNA-mRNA Regulatory Network in Rapamycin-Induced Cardioprotection against Ischemia/Reperfusion Injury in Diabetic Rabbits. Cells 2023; 12:2820. [PMID: 38132140 PMCID: PMC10742118 DOI: 10.3390/cells12242820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The inhibition of mammalian target of rapamycin (mTOR) with rapamycin (RAPA) provides protection against myocardial ischemia/reperfusion (I/R) injury in diabetes. Since interactions between transcripts, including long non-coding RNA (lncRNA), microRNA(miRNA) and mRNA, regulate the pathophysiology of disease, we performed unbiased miRarray profiling in the heart of diabetic rabbits following I/R injury with/without RAPA treatment to identify differentially expressed (DE) miRNAs and their predicted targets of lncRNAs/mRNAs. Results showed that among the total of 806 unique miRNAs targets, 194 miRNAs were DE after I/R in diabetic rabbits. Specifically, eight miRNAs, including miR-199a-5p, miR-154-5p, miR-543-3p, miR-379-3p, miR-379-5p, miR-299-5p, miR-140-3p, and miR-497-5p, were upregulated and 10 miRNAs, including miR-1-3p, miR-1b, miR-29b-3p, miR-29c-3p, miR-30e-3p, miR-133c, miR-196c-3p, miR-322-5p, miR-499-5p, and miR-672-5p, were significantly downregulated after I/R injury. Interestingly, RAPA treatment significantly reversed these changes in miRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated the participation of miRNAs in the regulation of several signaling pathways related to I/R injury, including MAPK signaling and apoptosis. Furthermore, in diabetic hearts, the expression of lncRNAs, HOTAIR, and GAS5 were induced after I/R injury, but RAPA suppressed these lncRNAs. In contrast, MALAT1 was significantly reduced following I/R injury, with the increased expression of miR-199a-5p and suppression of its target, the anti-apoptotic protein Bcl-2. RAPA recovered MALAT1 expression with its sponging effect on miR-199-5p and restoration of Bcl-2 expression. The identification of novel targets from the transcriptome analysis in RAPA-treated diabetic hearts could potentially lead to the development of new therapeutic strategies for diabetic patients with myocardial infarction.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Amy L. Olex
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Ramzi Ockaili
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Donatas Kraskauskas
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Sean K. Roh
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Rakesh C. Kukreja
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| |
Collapse
|
7
|
Toro V, Jutras-Beaudoin N, Boucherat O, Bonnet S, Provencher S, Potus F. Right Ventricle and Epigenetics: A Systematic Review. Cells 2023; 12:2693. [PMID: 38067121 PMCID: PMC10705252 DOI: 10.3390/cells12232693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
There is an increasing recognition of the crucial role of the right ventricle (RV) in determining the functional status and prognosis in multiple conditions. In the past decade, the epigenetic regulation (DNA methylation, histone modification, and non-coding RNAs) of gene expression has been raised as a critical determinant of RV development, RV physiological function, and RV pathological dysfunction. We thus aimed to perform an up-to-date review of the literature, gathering knowledge on the epigenetic modifications associated with RV function/dysfunction. Therefore, we conducted a systematic review of studies assessing the contribution of epigenetic modifications to RV development and/or the progression of RV dysfunction regardless of the causal pathology. English literature published on PubMed, between the inception of the study and 1 January 2023, was evaluated. Two authors independently evaluated whether studies met eligibility criteria before study results were extracted. Amongst the 817 studies screened, 109 studies were included in this review, including 69 that used human samples (e.g., RV myocardium, blood). While 37 proposed an epigenetic-based therapeutic intervention to improve RV function, none involved a clinical trial and 70 are descriptive. Surprisingly, we observed a substantial discrepancy between studies investigating the expression (up or down) and/or the contribution of the same epigenetic modifications on RV function or development. This exhaustive review of the literature summarizes the relevant epigenetic studies focusing on RV in human or preclinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | - François Potus
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (V.T.); (N.J.-B.); (O.B.); (S.B.); (S.P.)
| |
Collapse
|
8
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
9
|
Kuang Z, Wu J, Tan Y, Zhu G, Li J, Wu M. MicroRNA in the Diagnosis and Treatment of Doxorubicin-Induced Cardiotoxicity. Biomolecules 2023; 13:biom13030568. [PMID: 36979503 PMCID: PMC10046787 DOI: 10.3390/biom13030568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Doxorubicin (DOX), a broad-spectrum chemotherapy drug, is widely applied to the treatment of cancer; however, DOX-induced cardiotoxicity (DIC) limits its clinical therapeutic utility. However, it is difficult to monitor and detect DIC at an early stage using conventional detection methods. Thus, sensitive, accurate, and specific methods of diagnosis and treatment are important in clinical practice. MicroRNAs (miRNAs) belong to non-coding RNAs (ncRNAs) and are stable and easy to detect. Moreover, miRNAs are expected to become biomarkers and therapeutic targets for DIC; thus, there are currently many studies focusing on the role of miRNAs in DIC. In this review, we list the prominent studies on the diagnosis and treatment of miRNAs in DIC, explore the feasibility and difficulties of using miRNAs as diagnostic biomarkers and therapeutic targets, and provide recommendations for future research.
Collapse
Affiliation(s)
- Ziyu Kuang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingyuan Wu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Tan
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guanghui Zhu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Min Wu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
10
|
Yue P, Zhang Y, Liu L, Zhou K, Xia S, Peng M, Yan H, Tang X, Chen Z, Zhang D, Guo J, Pu WT, Guo Y, Hua Y, Li Y. Yap1 modulates cardiomyocyte hypertrophy via impaired mitochondrial biogenesis in response to chronic mechanical stress overload. Am J Cancer Res 2022; 12:7009-7031. [PMID: 36276651 PMCID: PMC9576622 DOI: 10.7150/thno.74563] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
Rationale: Chronic pressure overload is a major trigger of cardiac pathological hypertrophy that eventually leads to heart disease and heart failure. Understanding the mechanisms governing hypertrophy is the key to develop therapeutic strategies for heart diseases. Methods: We built chronic pressure overload mice model by abdominal aortic constriction (AAC) to explore the features of Yes-associated protein 1 (YAP1). Then AAV-cTNT-Cre was applied to Yap1F/F mice to induce mosaic depletion of YAP1. Myh6CreERT2; H11CAG-LSL-YAP1 mice were involved to establish YAP1 overexpression model by Tomaxifen injection. ATAC-seq and bioChIP-seq were used to explore the potential targets of YAP1, which were verified by a series of luciferase reporter assays. Dnm1l and Mfn1 were re-expressed in AAC mice by AAV-cTNT-Dnm1l and AAV-cTNT-Mfn1. Finally, Verteprofin was used to inhibit YAP1 to rescue cardiac hypertrophy. Results: We found that pathological hypertrophy was accompanied with the activation of YAP1. Cardiomyocyte-specific deletion of Yap1 attenuated AAC-induced hypertrophy. Overexpression of YAP1 was sufficient to phenocopy AAC-induced hypertrophy. YAP1 activation resulted in the perturbation of mitochondria ultrastructure and function, which was associated with the repression of mitochondria dynamics regulators Dnm1l and Mfn1. Mitochondrial-related genes Dnm1l and Mfn1, are significantly targeted by TEAD1/YAP complex. Overexpression of Dnm1l and Mfn1 synergistically rescued YAP1-induced mitochondrial damages and cardiac hypertrophy. Pharmacological repression of YAP1 by verteporfin attenuated mitochondrial damages and pathological hypertrophy in AAC-treated mice. Interestingly, YAP1-induced mitochondria damages also led to increased reactive oxidative species, DNA damages, and the suppression of cardiomyocyte proliferation. Conclusion: Together, these data uncovered YAP signaling as a therapeutic target for pressure overload-induced heart diseases and cautioned the efforts to induce cardiomyocyte regeneration by activating YAP.
Collapse
Affiliation(s)
- Peng Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shutao Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, Hubei 430062, China
| | - Mou Peng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hualin Yan
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhan Chen
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, Hubei 430062, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115 USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138 USA
| | - Yuxuan Guo
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
11
|
Ghafouri-Fard S, Shirvani-Farsani Z, Hussen BM, Taheri M, Samsami M. The key roles of non-coding RNAs in the pathophysiology of hypertension. Eur J Pharmacol 2022; 931:175220. [PMID: 35995213 DOI: 10.1016/j.ejphar.2022.175220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
Hypertension is a multifactorial condition in which several genetic and environmental elements contribute. Recent investigations have revealed contribution of non-coding region of the transcriptome in this trait. CDKN2B-AS1, AK098656, MEG3, H19, PAXIP1-AS1, TUG1, GAS5, CASC2 and CPS1-IT are among long non-coding RNAs participating in the pathophysiology of hypertension. Several miRNAs have also been found to be implicated in this disorder. miR-296, miR-637, miR-296, miR-637, hsa-miR-361-5p, miR-122-5p, miR-199a-3p, miR-208a-3p, miR-423-5p, miR-223-5p and miR-140-5p are among dysregulated miRNAs in this condition whose application as diagnostic biomarkers for hypertension has been evaluated. Finally, hsa-circ-0005870, hsa_circ_0037911 and hsa_circ_0014243 are examples of dysregulated circular RNAs in hypertensive patients. In the current review, we describe the role of these non-coding RNAs in the pathophysiology of hypertension.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Yang Y, Yang H, Lian X, Yang S, Shen H, Wu S, Wang X, Lyu G. Circulating microRNA: Myocardium-derived prenatal biomarker of ventricular septal defects. Front Genet 2022; 13:899034. [PMID: 36035156 PMCID: PMC9403759 DOI: 10.3389/fgene.2022.899034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Recently, circulating microRNAs (miRNAs) from maternal blood and amniotic fluid have been used as biomarkers for ventricular septal defect (VSD) diagnosis. However, whether circulating miRNAs are associated with fetal myocardium remains unknown.Methods: Dimethadione (DMO) induced a VSD rat model. The miRNA expression profiles of the myocardium, amniotic fluid and maternal serum were analyzed. Differentially expressed microRNAs (DE-microRNAs) were verified by qRT–PCR. The target gene of miR-1-3p was confirmed by dual luciferase reporter assays. Expression of amniotic fluid-derived DE-microRNAs was verified in clinical samples.Results: MiRNAs were differentially expressed in VSD fetal rats and might be involved in cardiomyocyte differentiation and apoptosis. MiR-1-3p, miR-1b and miR-293-5p were downregulated in the myocardium and upregulated in amniotic fluid/maternal serum. The expression of amniotic fluid-derived DE-microRNAs (miR-1-3p, miR-206 and miR-184) was verified in clinical samples. Dual luciferase reporter assays confirmed that miR-1-3p directly targeted SLC8A1/NCX1.Conclusion: MiR-1-3p, miR-1b and miR-293-5p are downregulated in VSD myocardium and upregulated in circulation and may be released into circulation by cardiomyocytes. MiR-1-3p targets SLC8A1/NCX1 and participates in myocardial apoptosis. MiR-1-3p upregulation in circulation is a direct and powerful indicator of fetal VSD and is expected to serve as a prenatal VSD diagnostic marker.
Collapse
Affiliation(s)
- Yiru Yang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hainan Yang
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xihua Lian
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shuping Yang
- Department of Ultrasound, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Haolin Shen
- Department of Ultrasound, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Shufen Wu
- Department of Ultrasound, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Xiali Wang
- Collaborative Innovation Center for Maternal and Infant Health Service Application Technology, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Guorong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Collaborative Innovation Center for Maternal and Infant Health Service Application Technology, Quanzhou Medical College, Quanzhou, Fujian, China
- *Correspondence: Guorong Lyu,
| |
Collapse
|
13
|
Yang LP, Zheng JH, Zhang JK, Huang XH. Dysregulated miR-222-3p in plasma exosomes of preeclampsia patients and its In vitro effect on HTR8/SVneo extravillous trophoblast cells by targeting STMN1. Hum Exp Toxicol 2022; 41:9603271221138550. [PMID: 36475430 DOI: 10.1177/09603271221138550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the diagnostic efficiency of miR-222-3p in plasma exosomes (Exos) and plasma for preeclampsia (PE) and the effect of miR-222-3p targeting STMN1 in PE. METHODS MiR-222-3p levels in total plasma and plasma Exos were detected in PE patients and healthy controls. A bioinformatics database and dual-luciferase reporter assay were employed to verify the targeting relationship between miR-222-3p and STMN1. Trophoblast HTR-8/Svneo cells were transfected with miR-222-3p inhibitors with/without STMN1 shRNA, followed by MTT, wound healing and Transwell invasion assays. The mRNA and protein expressions were measured by qRT‒PCR and Western blotting, respectively. RESULTS MiR-222-3p levels in total plasma and plasma Exos were higher in PE patients than in healthy controls, particularly in severe PE patients. In addition, miR-222-3p levels in total plasma and plasma Exos from PE patients were positively correlated with diastolic and systolic blood pressure. The area under the curve (AUC) of miR-222-3p in total plasma for PE diagnostic efficiency was 0.798, with a sensitivity of 76.67% and specificity of 71.93%, while the AUC of miR-222-3p in plasma Exos was 0.708 (sensitivity: 61.67%; specificity: 78.95%). In vitro, miR-222-3p targeted STMN1 in HTR-8/Svneo cells. Low miR-222-3p expression reversed the inhibitory effect of STMN1 shRNA on the proliferation, invasion and migration of HTR/SVneo cells. CONCLUSION PE patients had increased miR-222-3p expression in total plasma and plasma Exos, which both have high diagnostic efficiency for PE. MiR-222-3p can target STMN1 to promote the proliferation, invasion and migration of HTR-8/Svneo cells and is a potential therapeutic target of PE.
Collapse
Affiliation(s)
- Li-Ping Yang
- Department of Obstetrics and Gynaecology, 71213The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jia-Hua Zheng
- Department of Obstetrics and Gynaecology, 71213The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing-Kun Zhang
- Department of Obstetrics and Gynaecology, 71213The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiang-Hua Huang
- Department of Obstetrics and Gynaecology, 71213The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
MiR-702-3p inhibits the inflammatory injury in septic H9c2 cells by regulating NOD1. Transpl Immunol 2021; 70:101493. [PMID: 34774740 DOI: 10.1016/j.trim.2021.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cardiac insufficiency is a common complication of sepsis and septic shock and is the most common cause of death in critically ill patients. Recent studies have found that microRNAs (miRNAs) play a potential role in sepsis as markers, but little is known about their functional effects on sepsis-induced cardiomyopathy (SIC). OBJECTIVE This study is designed to explore the possible role and underlying mechanisms of miR-702-3p in septic cardiomyopathy. METHODS As expected, H9c2 cells were induced with lipopolysaccharide (LPS) to construct the model of septic cardiomyopathy. The expression of miR-702-3p was detected by qRT-PCR assay and those of IL-1β, IL-6 and TNF-α by ELISA assay. The viability, proliferation and apoptosis of LPS-treated H9c2 cells were determined by CCK-8, EdU, flow cytometry and western blot assays. Moreover, Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) was predicted and confirmed as a direct target of miR-702-3p by TargetScan, miRwalk and miRDB prediction and dual-luciferase reporter gene assays. RESULTS While LPS can weaken the viability of H9c2 cells, miR-702-3p enhances that of LPS-treated H9c2 cells by inhibit the expressions of TNF-α, IL-6, IL-1β. We found NOD1 is a target gene of miR-702-3p, and over-expression of NOD1 restores the inhibitory effects of miR-702-3p on the LPS-treated H9c2 cells. CONCLUSION MiR-702-3p played an important role in the pathogenesis of sepsis cardiomyopathy via targeting NOD1, suggesting that miR-702-3p may be a potential new target for the treatment of SIC.
Collapse
|
15
|
Yang H, Zhang L, Wang Q. MicroRNA-221-3p alleviates cell apoptosis and inflammatory response by targeting cyclin dependent kinase inhibitor 1B in chronic obstructive pulmonary disease. Bioengineered 2021; 12:5705-5715. [PMID: 34516316 PMCID: PMC8806819 DOI: 10.1080/21655979.2021.1967837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
As a chronic bronchitis or emphysema featured by airflow obstruction, chronic obstructive pulmonary disease (COPD) can further develop into respiratory failure and pulmonary heart diseases. MicroRNAs (miRNAs) are crucial mediators in COPD. Nevertheless, the specific role and molecular mechanism of microRNA-221-3p (miR-221-3p) in COPD are unclear. This research aimed to probe into the role of miR-221-3p in COPD. Bioinformatics analysis and a series of assays including western blot, luciferase reporter, reverse transcription quantitative polymerase chain reaction, flow cytometry, cell counting kit-8 and enzyme linked immunosorbent assay were used to explore the functions and mechanism of miR-221-3p in COPD. First, miR-221-3p level was validated to be lowly expressed in the lung tissues of COPD patients and 16HBE cells stimulated by cigarette smoke extract (CSE). Functionally, miR-221-3p overexpression inhibited inflammatory response and apoptosis in CSE-treated 16HBE cells. Moreover, we predicted 5 potential targets of miR-221-3p and found that miR-221-3p shared binding site with cyclin dependent kinase inhibitor 1B (CDKN1B). CDKN1B was targeted by miR-221-3p in CSE-treated 16HBE cells. CDKN1B was negatively modulated by miR-221-3p. Finally, rescue experiments demonstrated that overexpressed CDKN1B counteracted the influences of miR-221-3p on apoptosis and inflammatory response in CSE-treated 16HBE cells. Our data showed that miR-221-3p alleviated cell apoptosis and inflammatory response via targeting CDKN1B in an in vitro model of COPD.
Collapse
Affiliation(s)
- Hua Yang
- Department of Gerontology, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Lijuan Zhang
- Department of Gerontology, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Quandong Wang
- Department of Gerontology, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
16
|
Liu J, Deng Y, Fan Z, Xu S, Wei L, Huang X, Xing X, Yang J. Construction and analysis of the abnormal lncRNA-miRNA-mRNA network in hypoxic pulmonary hypertension. Biosci Rep 2021; 41:BSR20210021. [PMID: 34374413 PMCID: PMC8390787 DOI: 10.1042/bsr20210021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023] Open
Abstract
The incidence of hypoxic pulmonary hypertension (HPH) is increasing. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) play an important role in HPH, but the functions and mechanism have yet to be fully elucidated. In the present study, we established a HPH rat model with 8 h of hypoxia exposure (10% O2) per day for 21 days. High-throughput sequencing identified 60 differentially expressed (DE) lncRNAs, 20 DE miRNAs and 695 DE mRNAs in rat lung tissue. qRT-PCR verified the accuracy of the results. The DE mRNAs were significantly enriched in immune response, inflammatory response, leukocyte migration, cell cycle, cellular response to interleukin-1, IL-17 signalling pathway, cytokine-cytokine receptor interaction and Toll-like receptor signalling pathway. According to the theory of competing endogenous RNA (ceRNA) networks, lncRNA-miRNA-mRNA network was constructed by Cytoscape software, 16 miRNAs and 144 mRNAs. The results suggested that seven DE lncRNAs (Ly6l, AABR07038849.2, AABR07069008.2, AABR07064873.1, AABR07001382.1, AABR07068161.1 and AABR07060341.2) may serve as molecular sponges of the corresponding miRNAs and play a major role in HPH.
Collapse
MESH Headings
- Animals
- Databases, Genetic
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation
- Gene Regulatory Networks
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypoxia/complications
- Male
- Protein Interaction Maps
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Signal Transduction
- Transcriptome
- Rats
Collapse
Affiliation(s)
- Jie Liu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, Kunming 650021, Yunnan, China
| | - Yishu Deng
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Zeqin Fan
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Shuanglan Xu
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Li Wei
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Xiaoxian Huang
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Xiqian Xing
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Jiao Yang
- First Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| |
Collapse
|
17
|
Overexpression of miR-1298 attenuates myocardial ischemia-reperfusion injury by targeting PP2A. J Thromb Thrombolysis 2021; 53:136-148. [PMID: 34351558 DOI: 10.1007/s11239-021-02540-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Previous studies reported that microRNA-1298 was abnormally expressed in the myocardium of rat hearts after hypoxia/normoxia injury. This study aims to investigate the function and specific mechanism of miR-1298 in myocardial ischemia/reperfusion (IR) injury. Neonatal rat cardiomyocytes (NRCMs) were isolated from neonatal rat hearts and subjected to oxygen/glucose deprivation/reperfusion (OGD/R) to induce I/R injury. The rat model with I/R injury was induced by ligating the proximal left anterior descending artery (LAD). MiR-1298 expression was detected by qRT-PCR. The levels of PP2A, Bcl-2, Bax, and AMPK signaling members (p-AMPK, p-GSK3β) was detected by Western blot. Cell apoptosis was evaluated by TUNEL staining assay and flow cytometry. The infarct size of rat hearts was assessed by TTC staining assay. Premature and mature MiR-1298 were significantly downregulated while PP2A was significantly upregulated during I/R injury both in vitro and in vivo. The prediction of Starbase suggested that PP2A was a potential target of miR-1298. MiR-1298 overexpression significantly reduced cardiomyocyte apoptosis in vitro, and its protective effect was obviously attenuated by PP2A overexpression. Luciferase reporter assay showed that miR-1298 targeted PP2A directly. In addition, miR-1298 overexpression significantly reduced infarct size and cardiomyocyte apoptosis in the hearts of rats received with I/R injury in vivo. Moreover, miR-1298 overexpression significantly elevated the levels of Bcl-2 and AMPK signaling members (p-AMPK, p-GSK3β) while decreased Bax level, and these effects were partially reversed by PP2A overexpression. MiR-1298 participated in myocardial I/R injury by targeting the PP2A/AMPK/GSK3β signaling pathway, suggesting that miR-1298 might be a potential therapeutic target for myocardial I/R injury.
Collapse
|
18
|
Errington N, Iremonger J, Pickworth JA, Kariotis S, Rhodes CJ, Rothman AM, Condliffe R, Elliot CA, Kiely DG, Howard LS, Wharton J, Thompson AAR, Morrell NW, Wilkins MR, Wang D, Lawrie A. A diagnostic miRNA signature for pulmonary arterial hypertension using a consensus machine learning approach. EBioMedicine 2021; 69:103444. [PMID: 34186489 PMCID: PMC8243351 DOI: 10.1016/j.ebiom.2021.103444] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a rare but life shortening disease, the diagnosis of which is often delayed, and requires an invasive right heart catheterisation. Identifying diagnostic biomarkers may improve screening to identify patients at risk of PAH earlier and provide new insights into disease pathogenesis. MicroRNAs are small, non-coding molecules of RNA, previously shown to be dysregulated in PAH, and contribute to the disease process in animal models. METHODS Plasma from 64 treatment naïve patients with PAH and 43 disease and healthy controls were profiled for microRNA expression by Agilent Microarray. Following quality control and normalisation, the cohort was split into training and validation sets. Four separate machine learning feature selection methods were applied to the training set, along with a univariate analysis. FINDINGS 20 microRNAs were identified as putative biomarkers by consensus feature selection from all four methods. Two microRNAs (miR-636 and miR-187-5p) were selected by all methods and used to predict PAH diagnosis with high accuracy. Integrating microRNA expression profiles with their associated target mRNA revealed 61 differentially expressed genes verified in two independent, publicly available PAH lung tissue data sets. Two of seven potentially novel gene targets were validated as differentially expressed in vitro in human pulmonary artery smooth muscle cells. INTERPRETATION This consensus of multiple machine learning approaches identified two miRNAs that were able to distinguish PAH from both disease and healthy controls. These circulating miRNA, and their target genes may provide insight into PAH pathogenesis and reveal novel regulators of disease and putative drug targets. FUNDING This work was supported by a National Institute for Health Research Rare Disease Translational Research Collaboration (R29065/CN500) and British Heart Foundation Project Grant (PG/11/116/29288).
Collapse
Affiliation(s)
- Niamh Errington
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK
| | - James Iremonger
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Josephine A Pickworth
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Sokratis Kariotis
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK
| | - Christopher J Rhodes
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | - Alexander Mk Rothman
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, UK; Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Robin Condliffe
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, UK; Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Charles A Elliot
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, UK; Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - David G Kiely
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Luke S Howard
- National Pulmonary Hypertension Service, Imperial College Healthcare Trust NHS, Hammersmith Hospital, Du Cane Road, London, UK
| | - John Wharton
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | - A A Roger Thompson
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, UK; Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | | | - Martin R Wilkins
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | - Dennis Wang
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Computer Science, University of Sheffield, UK; Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Allan Lawrie
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, UK.
| |
Collapse
|
19
|
Kheyfets VO, Dufva MJ, Boehm M, Tian X, Qin X, Tabakh JE, Truong U, Ivy D, Spiekerkoetter E. The left ventricle undergoes biomechanical and gene expression changes in response to increased right ventricular pressure overload. Physiol Rep 2021; 8:e14347. [PMID: 32367677 PMCID: PMC7198956 DOI: 10.14814/phy2.14347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
Pulmonary hypertension (PH) results in right ventricular (RV) pressure overload and eventual failure. Current research efforts have focused on the RV while overlooking the left ventricle (LV), which is responsible for mechanically assisting the RV during contraction. The objective of this study is to evaluate the biomechanical and gene expression changes occurring in the LV due to RV pressure overload in a mouse model. Nine male mice were divided into two groups: (a) pulmonary arterial banding (PAB, N = 4) and (b) sham surgery (Sham, N = 5). Tagged and steady‐state free precision cardiac MRI was performed on each mouse at 1, 4, and 7 weeks after surgery. At/week7, the mice were euthanized following right/left heart catheterization with RV/LV tissue harvested for histology and gene expression (using RT‐PCR) studies. Compared to Sham mice, the PAB group revealed a significantly decreased LV and RV ejection fraction, and LV maximum torsion and torsion rate, within the first week after banding. In the PAB group, there was also a slight but significant increase in LV perivascular fibrosis, which suggests elevated myocardial stress. LV fibrosis was also accompanied with changes in gene expression in the hypertensive group, which was correlated with LV contractile mechanics. In fact, principal component (PC) analysis of LV gene expression effectively separated Sham and PAB mice along PC2. Changes in LV contractile mechanics were also significantly correlated with unfavorable changes in RV contractile mechanics, but a direct causal relationship was not established. In conclusion, a purely biomechanical insult of RV pressure overload resulted in biomechanical and transcriptional changes in both the RV and LV. Given that the RV relies on the LV for contractile energy assistance, considering the LV could provide prognostic and therapeutic targets for treating RV failure in PH.
Collapse
Affiliation(s)
- Vitaly O Kheyfets
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Department of Pediatrics, Section of Cardiology, Children's Hospital Colorado, Aurora, CO, USA
| | - Melanie J Dufva
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Department of Pediatrics, Section of Cardiology, Children's Hospital Colorado, Aurora, CO, USA
| | - Mario Boehm
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA.,German Center for Lung Research (DZL), Giessen, Germany
| | - Xuefeit Tian
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA
| | - Xulei Qin
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Jennifer E Tabakh
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Uyen Truong
- Department of Pediatrics, Section of Cardiology, Children's Hospital Colorado, Aurora, CO, USA.,Department of Pediatrics - Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Dunbar Ivy
- Department of Pediatrics, Section of Cardiology, Children's Hospital Colorado, Aurora, CO, USA
| | - Edda Spiekerkoetter
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA.,Cardiovascular Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
20
|
Zhang GQ, Wang SQ, Chen Y, Fu LY, Xu YN, Li L, Tao L, Shen XC. MicroRNAs Regulating Mitochondrial Function in Cardiac Diseases. Front Pharmacol 2021; 12:663322. [PMID: 34122082 PMCID: PMC8194257 DOI: 10.3389/fphar.2021.663322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are the key organelles that supply cellular energy. As the most active organ in the body, the energy required to maintain the mechanical function of the heart requires a high quantity of high-quality mitochondria in cardiomyocytes. MicroRNAs (miRNAs) are single-stranded noncoding RNAs, approximately 22 nt in length, which play key roles in mediating post-transcriptional gene silencing. Numerous studies have confirmed that miRNAs can participate in the occurrence and development of cardiac diseases by regulating mitochondrial function-related genes and signaling pathways. Therefore, elucidating the crosstalk that occurs between miRNAs and mitochondria is important for the prevention and treatment of cardiac diseases. In this review, we discuss the biogenesis of miRNAs, the miRNA-mediated regulation of major genes involved in the maintenance of mitochondrial function, and the effects of miRNAs on mitochondrial function in cardiac diseases in order to provide a theoretical basis for the clinical prevention and treatment of cardiac disease and the development of new drugs.
Collapse
Affiliation(s)
- Guang-Qiong Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Sheng-Quan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Ling-Yun Fu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Yi-Ni Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Ling Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| |
Collapse
|
21
|
Iwatani N, Kubota K, Ikeda Y, Tokushige A, Miyanaga S, Higo K, Ohishi M. Different characteristics of mitochondrial dynamics-related miRNAs on the hemodynamics of pulmonary artery hypertension and chronic thromboembolic pulmonary hypertension. J Cardiol 2021; 78:24-30. [PMID: 33836917 DOI: 10.1016/j.jjcc.2021.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Mitochondria are dynamic organelles that undergo fission or fusion. These mitochondrial dynamics are reported to be associated with pulmonary hypertension (PH). PH is divided into 5 groups, including pulmonary artery hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH), based on its pathogenesis. However, it is still unknown whether and how miRNAs related to mitochondrial dynamics (MD) affect PAH and CTEPH. METHODS We investigated patients who underwent right heart catheterization between October 2016 and January 2019. Out of 34 PH patients, 12 were diagnosed with PAH, and 22 were diagnosed with CTEPH. In addition, there were 30 patients diagnosed with left heart disease. We enrolled the 34 PH patients as the PH group and 30 left heart disease patients as the control group. RESULTS Among MD-related miRNAs, the circulating levels of miR-140-3p were higher, and those of miR-485-5p were lower in the PH group than in the control group (p < 0.01), suggesting that miRNAs inducing mitochondrial fission are related to PH. The miR-140-3p levels in the PAH and CTEPH groups were higher than those in the control group (p < 0.01). The levels of miR-140-3p and miR-485-5p in the PAH group correlated with pulmonary vascular resistance (r = 0.582, p = 0.046) and cardiac index (r = -0.36, p = 0.04), respectively. The miR-485-5p levels in the CTEPH group correlated with right atrium pressure (r = -0.456, p = 0.049). CONCLUSION MD-related miRNAs levels change to induce fission and are closely related to the hemodynamics of PAH and CTEPH.
Collapse
Affiliation(s)
- Noriko Iwatani
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Kayoko Kubota
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Akihiro Tokushige
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Sunao Miyanaga
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Kenjuro Higo
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| |
Collapse
|
22
|
Prisco SZ, Thenappan T, Prins KW. Treatment Targets for Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. JACC Basic Transl Sci 2020; 5:1244-1260. [PMID: 33426379 PMCID: PMC7775863 DOI: 10.1016/j.jacbts.2020.07.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/10/2023]
Abstract
Right ventricle (RV) dysfunction is the strongest predictor of mortality in pulmonary arterial hypertension (PAH), but, at present, there are no therapies directly targeting the failing RV. Although there are shared molecular mechanisms in both RV and left ventricle (LV) dysfunction, there are important differences between the 2 ventricles that may allow for the development of RV-enhancing or RV-directed therapies. In this review, we discuss the current understandings of the dysregulated pathways that promote RV dysfunction, highlight RV-enriched or RV-specific pathways that may be of particular therapeutic value, and summarize recent and ongoing clinical trials that are investigating RV function in PAH. It is hoped that development of RV-targeted therapies will improve quality of life and enhance survival for this deadly disease.
Collapse
Key Words
- FAO, fatty acid oxidation
- IPAH, idiopathic pulmonary arterial hypertension
- LV, left ventricle/ventricular
- PAH, pulmonary arterial hypertension
- PH, pulmonary hypertension
- RAAS, renin-angiotensin-aldosterone system
- RV, right ventricle/ventricular
- RVH, right ventricular hypertrophy
- SSc-PAH, systemic sclerosis-associated pulmonary arterial hypertension
- clinical trials
- miRNA/miR, micro-ribonucleic acid
- pulmonary arterial hypertension
- right ventricle
Collapse
Affiliation(s)
- Sasha Z. Prisco
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thenappan Thenappan
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kurt W. Prins
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
23
|
Epigenetic Regulation of Pulmonary Arterial Hypertension-Induced Vascular and Right Ventricular Remodeling: New Opportunities? Int J Mol Sci 2020; 21:ijms21238901. [PMID: 33255338 PMCID: PMC7727715 DOI: 10.3390/ijms21238901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary artery hypertension (PAH) is a rare chronic disease with high impact on patients’ quality of life and currently no available cure. PAH is characterized by constant remodeling of the pulmonary artery by increased proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), fibroblasts (FBs) and endothelial cells (ECs). This remodeling eventually leads to increased pressure in the right ventricle (RV) and subsequent right ventricle hypertrophy (RVH) which, when left untreated, progresses into right ventricle failure (RVF). PAH can not only originate from heritable mutations, but also develop as a consequence of congenital heart disease, exposure to drugs or toxins, HIV, connective tissue disease or be idiopathic. While much attention was drawn into investigating and developing therapies related to the most well understood signaling pathways in PAH, in the last decade, a shift towards understanding the epigenetic mechanisms driving the disease occurred. In this review, we reflect on the different epigenetic regulatory factors that are associated with the pathology of RV remodeling, and on their relevance towards a better understanding of the disease and subsequently, the development of new and more efficient therapeutic strategies.
Collapse
|
24
|
Santos-Ferreira CA, Abreu MT, Marques CI, Gonçalves LM, Baptista R, Girão HM. Micro-RNA Analysis in Pulmonary Arterial Hypertension: Current Knowledge and Challenges. ACTA ACUST UNITED AC 2020; 5:1149-1162. [PMID: 33294743 PMCID: PMC7691282 DOI: 10.1016/j.jacbts.2020.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/18/2023]
Abstract
The role of miRNAs in PAH is fast expanding, and it is increasingly difficult to identify which molecules have the highest translational potential. This review discusses the challenges in miRNA analysis and interpretation in PAH and highlights 4 promising miRNAs in this field. Additional pre-clinical studies and clinical trials are urgently needed to bring miRNAs from the bench to the bedside soon.
Pulmonary arterial hypertension (PAH) is a rare, chronic disease of the pulmonary vasculature that is associated with poor outcomes. Its pathogenesis is multifactorial and includes micro-RNA (miRNA) deregulation. The understanding of the role of miRNAs in PAH is expanding quickly, and it is increasingly difficult to identify which miRNAs have the highest translational potential. This review summarizes the current knowledge of miRNA expression in PAH, discusses the challenges in miRNA analysis and interpretation, and highlights 4 promising miRNAs in this field (miR-29, miR-124, miR-140, and miR-204).
Collapse
Key Words
- BMPR2, bone morphogenetic protein receptor type 2
- EPC, endothelial progenitor cell
- HIF, hypoxia-inducible factor
- HPAH, hereditary pulmonary arterial hypertension
- MCT, monocrotaline
- PAAF, pulmonary arterial adventitial fibroblast
- PAEC, pulmonary artery endothelial cell
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary artery smooth muscle cells
- PH, pulmonary hypertension
- RV, right ventricle
- SU/Hx/Nx, association of Sugen 5416 with chronic hypoxia followed by normoxia
- WHO, World Health Organization
- animal model
- lncRNA, long noncoding RNA
- mRNA, messenger RNA
- miRNA, micro-RNA
- micro-RNA
- microarray
- ncRNAs, noncoding RNAs
- pulmonary arterial hypertension
Collapse
Affiliation(s)
- Cátia A Santos-Ferreira
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Mónica T Abreu
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Carla I Marques
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Lino M Gonçalves
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Rui Baptista
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal.,Cardiology Department, Centro Hospitalar Entre Douro e Vouga, Santa Maria de Feira, Portugal
| | - Henrique M Girão
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| |
Collapse
|
25
|
Hsu JY, Major JL, Riching AS, Sen R, Pires da Silva J, Bagchi RA. Beyond the genome: challenges and potential for epigenetics-driven therapeutic approaches in pulmonary arterial hypertension. Biochem Cell Biol 2020; 98:631-646. [PMID: 32706995 DOI: 10.1139/bcb-2020-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease of the cardiopulmonary system caused by the narrowing of the pulmonary arteries, leading to increased vascular resistance and pressure. This leads to right ventricle remodeling, dysfunction, and eventually, death. While conventional therapies have largely focused on targeting vasodilation, other pathological features of PAH including aberrant inflammation, mitochondrial dynamics, cell proliferation, and migration have not been well explored. Thus, despite some recent improvements in PAH treatment, the life expectancy and quality of life for patients with PAH remains poor. Showing many similarities to cancers, PAH is characterized by increased pulmonary arterial smooth muscle cell proliferation, decreased apoptotic signaling pathways, and changes in metabolism. The recent successes of therapies targeting epigenetic modifiers for the treatment of cancer has prompted epigenetic research in PAH, revealing many new potential therapeutic targets. In this minireview we discuss the emergence of epigenetic dysregulation in PAH and highlight epigenetic-targeting compounds that may be effective for the treatment of PAH.
Collapse
Affiliation(s)
- Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer L Major
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew S Riching
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rwik Sen
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie Pires da Silva
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rushita A Bagchi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
26
|
Lock MC, Tellam RL, Darby JRT, Soo JY, Brooks DA, Seed M, Selvanayagam JB, Morrison JL. Identification of Novel miRNAs Involved in Cardiac Repair Following Infarction in Fetal and Adolescent Sheep Hearts. Front Physiol 2020; 11:614. [PMID: 32587529 PMCID: PMC7298149 DOI: 10.3389/fphys.2020.00614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/15/2020] [Indexed: 01/14/2023] Open
Abstract
Aims Animal models have been used to show that there are critical molecular mechanisms that can be activated to induce myocardial repair at specific times in development. For example, specific miRNAs are critical for regulating the response to myocardial infarction (MI) and improving the response to injury. Manipulating these miRNAs in small animal models provides beneficial effects post-MI; however it is not known if these miRNAs are regulated similarly in large mammals. Studying a large animal where the timing of heart development in relation to birth is similar to humans may provide insights to better understand the capacity to repair a developing mammalian heart and its application to the adult heart. Methods We used a sheep model of MI that included permanent ligation of the left anterior descending (LAD) coronary artery. Surgery was performed on fetuses (at 105 days gestation when all cardiomyocytes are mononucleated and proliferative) and adolescent sheep (at 6 months of age when all cardiomyocytes contribute to heart growth by hypertrophy). A microarray was utilized to determine the expression of known miRNAs within the damaged and undamaged tissue regions in fetal and adolescent hearts after MI. Results 73 miRNAs were up-regulated and 58 miRNAs were down-regulated significantly within the fetal infarct compared to remote cardiac samples. From adolescent hearts 69 non-redundant miRNAs were up-regulated and 63 miRNAs were down-regulated significantly in the infarct area compared to remote samples. Opposite differential expression profiles of 10 miRNAs within tissue regions (Infarct area, Border zone and Remote area of the left ventricle) occurred between the fetuses and adolescent sheep. These included miR-558 and miR-1538, which when suppressed using LNA anti-miRNAs in cell culture, increased cardiomyoblast proliferation. Conclusion There were significant differences in miRNA responses in fetal and adolescent sheep hearts following a MI, suggesting that the modulation of novel miRNA expression may have therapeutic potential, by promoting proliferation or repair in a damaged heart.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Doug A Brooks
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.,Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mike Seed
- Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Joseph B Selvanayagam
- Cardiac Imaging Research, Department of Heart Health, South Australian Health & Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
27
|
Kitagawa A, Kizub I, Jacob C, Michael K, D'Alessandro A, Reisz JA, Grzybowski M, Geurts AM, Rocic P, Gupte R, Miano JM, Gupte SA. CRISPR-Mediated Single Nucleotide Polymorphism Modeling in Rats Reveals Insight Into Reduced Cardiovascular Risk Associated With Mediterranean G6PD Variant. Hypertension 2020; 76:523-532. [PMID: 32507041 DOI: 10.1161/hypertensionaha.120.14772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidemiological studies suggest that individuals in the Mediterranean region with a loss-of-function, nonsynonymous single nucleotide polymorphism (S188F), in glucose-6-phosphate dehydrogenase (G6pd) are less susceptible to vascular diseases. However, this association has not yet been experimentally proven. Here, we set out to determine whether the Mediterranean mutation confers protection from vascular diseases and to discover the underlying protective mechanism. We generated a rat model with the Mediterranean single nucleotide polymorphism (G6PDS188F) using CRISPR-Cas9 genome editing. In rats carrying the mutation, G6PD activity, but not expression, was reduced to 20% of wild-type (WT) littermates. Additionally, unbiased metabolomics analysis revealed that the pentose phosphate pathway and other ancillary metabolic pathways connected to the pentose phosphate pathway were reduced (P<0.05) in the arteries of G6PDS188F versus WT rats. Intriguingly, G6PDS188F mutants, as compared with WT rats, developed less large arterial stiffness and hypertension evoked by high-fat diet and nitric oxide synthase inhibition with L-NG-nitroarginine methyl ester. Intravenous injection of a voltage-gated L-type Ca2+ channel agonist (methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate; Bay K8644) acutely increased blood pressure in WT but not in G6PDS188F rats. Finally, our results suggested that (1) lower resting membrane potential of smooth muscle caused by increased expression of K+ channel proteins and (2) decreased voltage-gated Ca2+ channel activity in smooth muscle contributed to reduced hypertension and arterial stiffness evoked by L-NG-nitroarginine methyl ester and high-fat diet to G6PDS188F mutants as compared with WT rats. In summary, a mutation resulting in the replacement of a single amino acid (S188F) in G6PD, the rate-limiting enzyme in the pentose phosphate pathway, ascribed properties to the vascular smooth muscle that shields the organism from risk factors associated with vascular diseases.
Collapse
Affiliation(s)
- Atsushi Kitagawa
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Igor Kizub
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Christina Jacob
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Kevin Michael
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora (A.D., J.A.R.)
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora (A.D., J.A.R.)
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee (M.G., A.M.G.)
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee (M.G., A.M.G.)
| | - Petra Rocic
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | | | - Joseph M Miano
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University (J.M.M.)
| | - Sachin A Gupte
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| |
Collapse
|
28
|
Gupte R, Dhagia V, Rocic P, Ochi R, Gupte SA. Glucose-6-phosphate dehydrogenase increases Ca 2+ currents by interacting with Ca v1.2 and reducing intrinsic inactivation of the L-type calcium channel. Am J Physiol Heart Circ Physiol 2020; 319:H144-H158. [PMID: 32442021 DOI: 10.1152/ajpheart.00727.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pyridine nucleotides, such as NADPH and NADH, are emerging as critical players in the regulation of heart and vascular function. Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, is the primary source and regulator of cellular NADPH. In the current study, we have identified two isoforms of G6PD (slow and fast migrating) and functionally characterized the slow migrating isoform of G6PD (G6PD545) in bovine and human arteries. We found that G6PD545 is eluted in the caveolae fraction of vascular smooth muscle (VSM) and has a higher maximum rate of reaction (Vmax: 1.65-fold) than its fast migrating isoform (G6PD515). Interestingly, caveolae G6PD forms a complex with the pore-forming α1C-subunit of the L-type Ca2+ channel, Cav1.2, as demonstrated by a proximity ligation assay in fixed VSMCs. Additionally, Förster resonance energy transfer (FRET) analysis of HEK293-17T cells cotransfected with red fluorescent protein (RFP)-tagged G6PD545 (C-G6PD545) and green fluorescent protein (GFP)-tagged Cav1.2-(Cav1.2-GFP) demonstrated strong FRET signals as compared with cells cotransfected with Cav1.2-GFP and C-G6PD515. Furthermore, L-type Ca2+ channel conductance was larger and the voltage-independent component of availability (c1) was augmented in C-G6PD545 and Cav1.2-GFP cotransfectants compared with those expressing Cav1.2-GFP alone. Surprisingly, epiandrosterone, a G6PD inhibitor, disrupted the G6PD-Cav1.2 complex, also decreasing the amplitude of L-type Ca2+ currents and window currents, thereby reducing the availability of the c1 component. Moreover, overexpression of adeno-G6PD545-GFP augmented the KCl-induced contraction in coronary arteries compared with control. To determine whether overexpression of G6PD had any clinical implication, we investigated its activity in arteries from patients and rats with metabolic syndrome and found that G6PD activity was high in this disease condition. Interestingly, epiandrosterone treatment reduced elevated mean arterial blood pressure and peripheral vascular resistance in metabolic syndrome rats, suggesting that the increased activity of G6PD augmented vascular contraction and blood pressure in the metabolic syndrome. These data suggest that the novel G6PD-Cav1.2 interaction, in the caveolae fraction, reduces intrinsic voltage-dependent inactivation of the channel and contributes to regulate VSM L-type Ca2+ channel function and Ca2+ signaling, thereby playing a significant role in modulating vascular function in physiological/pathophysiological conditions.NEW & NOTEWORTHY In this study we have identified a novel isozyme of glucose-6-phosphate dehydrogenase (G6PD), a metabolic enzyme, that interacts with and contributes to regulate smooth muscle cell l-type Ca2+ ion channel function, which plays a crucial role in vascular function in physiology and pathophysiology. Furthermore, we demonstrate that expression and activity of this novel G6PD isoform are increased in arteries of individuals with metabolic syndrome and in inhibition of G6PD activity in rats of metabolic syndrome reduced blood pressure.
Collapse
Affiliation(s)
- Rakhee Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Department of Biochemistry, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Petra Rocic
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Department of Biochemistry, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Rikuo Ochi
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Department of Biochemistry, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Department of Biochemistry, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
29
|
Boengler K, Schlüter KD, Schermuly RT, Schulz R. Cardioprotection in right heart failure. Br J Pharmacol 2020; 177:5413-5431. [PMID: 31995639 PMCID: PMC7680005 DOI: 10.1111/bph.14992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Ischaemic and pharmacological conditioning of the left ventricle is mediated by the activation of signalling cascades, which finally converge at the mitochondria and reduce ischaemia/reperfusion (I/R) injury. Whereas the molecular mechanisms of conditioning in the left ventricle are well characterized, cardioprotection of the right ventricle is principally feasible but less established. Similar to what is known for the left ventricle, a dysregulation in signalling pathways seems to play a role in I/R injury of the healthy and failing right ventricle and in the ability/inability of the right ventricle to respond to a conditioning stimulus. The maintenance of mitochondrial function seems to be crucial in both ventricles to reduce I/R injury. As far as currently known, similar molecular mechanisms mediate ischaemic and pharmacological preconditioning in the left and right ventricles. However, the two ventricles seem to respond differently towards exercise‐induced preconditioning. LINKED ARTICLES This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | | | | | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
30
|
Gusic M, Prokisch H. ncRNAs: New Players in Mitochondrial Health and Disease? Front Genet 2020; 11:95. [PMID: 32180794 PMCID: PMC7059738 DOI: 10.3389/fgene.2020.00095] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
The regulation of mitochondrial proteome is unique in that its components have origins in both mitochondria and nucleus. With the development of OMICS technologies, emerging evidence indicates an interaction between mitochondria and nucleus based not only on the proteins but also on the non-coding RNAs (ncRNAs). It is now accepted that large parts of the non‐coding genome are transcribed into various ncRNA species. Although their characterization has been a hot topic in recent years, the function of the majority remains unknown. Recently, ncRNA species microRNA (miRNA) and long-non coding RNAs (lncRNA) have been gaining attention as direct or indirect modulators of the mitochondrial proteome homeostasis. These ncRNA can impact mitochondria indirectly by affecting transcripts encoding for mitochondrial proteins in the cytoplasm. Furthermore, reports of mitochondria-localized miRNAs, termed mitomiRs, and lncRNAs directly regulating mitochondrial gene expression suggest the import of RNA to mitochondria, but also transcription from the mitochondrial genome. Interestingly, ncRNAs have been also shown to hide small open reading frames (sORFs) encoding for small functional peptides termed micropeptides, with several examples reported with a role in mitochondria. In this review, we provide a literature overview on ncRNAs and micropeptides found to be associated with mitochondrial biology in the context of both health and disease. Although reported, small study overlap and rare replications by other groups make the presence, transport, and role of ncRNA in mitochondria an attractive, but still challenging subject. Finally, we touch the topic of their potential as prognosis markers and therapeutic targets.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| |
Collapse
|
31
|
Hashimoto R, Lanier GM, Dhagia V, Joshi SR, Jordan A, Waddell I, Tuder R, Stenmark KR, Wolin MS, McMurtry IF, Gupte SA. Pluripotent hematopoietic stem cells augment α-adrenergic receptor-mediated contraction of pulmonary artery and contribute to the pathogenesis of pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2020; 318:L386-L401. [PMID: 31913656 PMCID: PMC7052680 DOI: 10.1152/ajplung.00327.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Pulmonary hypertension (PH) is a multicellular and progressive disease with a high mortality rate. Among many cell types, hematopoietic stem cells (HSCs) are incriminated in the pathogenesis of PH. However, our understanding of the mechanisms that increase HSCs in blood and lungs of hypertensive animals or patients and the role played by HSCs in the pathogenesis of PH remains elusive. Studies suggest that glycolysis is critical for the survival and growth of HSCs. In various cell types from hypertensive lungs of animals and patients, glycolysis and the glucose-6-phosphate dehydrogenase (G6PD) activity are increased. Herein, we demonstrated in mice that chronic hypoxia increased HSCs (CD34+, CD117+, CD133+, CD34+/CD117+, and CD34+/CD133+) in bone marrow and blood and around hypertensive pulmonary arteries in a time-dependent manner. Intriguingly, we found fewer CD133+ cells in the bone marrow of C57BL/6 mice compared with Sv129J mice, and C57BL mice developed less severe chronic hypoxia-elicited PH and heart failure than Sv129J mice. Similarly, the numbers of CD34+ and CD117+ cells in blood of patients with pulmonary arterial hypertension (PAH) were higher (>3-fold) compared with healthy individuals. By allogeneic bone marrow transplantation, we found that GFP+ bone marrow cells infiltrated the lungs and accumulated around the pulmonary arteries in lungs of hypoxic mice, and these cells contributed to increased α-adrenergic receptor-mediated contraction of the pulmonary artery cultured in hypoxia. Inhibition of G6PD activity with (3β,5α)-3,21-dihydroxypregnan-20-one, a novel and potent G6PD inhibitor, decreased HSCs in bone marrow, blood, and lungs of hypoxic mice and reduced α-agonist-induced contraction of the pulmonary artery and established hypoxia-induced PH. We did not observe CD133+ cells around the pulmonary arteries in the lungs of chronically hypoxic G6PD-deficient mice. Furthermore, knockdown of G6PD and inhibition of G6PD activity: 1) downregulated canonical and noncanonical Wnt and Fzd receptors genes; 2) upregulated Bmpr1a; 3) decreased Cxcl12, and 4) reduced HSC (CD117+ and CD133+) numbers. In all, our findings demonstrate unexpected function for bone marrow-derived HSCs in augmenting α-adrenergic receptor-mediated contraction of pulmonary arteries and remodeling of pulmonary arteries that contribute to increase pulmonary vascular resistance in PAH patients and hypoxic mice and suggest that G6PD, by regulating expression of genes in the WNT and BMPR signaling, contributed to increase and release of HSCs from the bone marrow in response to hypoxic stimuli.
Collapse
Affiliation(s)
- Ryota Hashimoto
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Gregg M Lanier
- Department of Cardiology, and Heart and Vascular Institute, Westchester Medical Center and New York Medical College, Valhalla, New York
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Sachindra R Joshi
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Allan Jordan
- Drug Discovery Unit, Cancer Research, UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Ian Waddell
- Drug Discovery Unit, Cancer Research, UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Rubin Tuder
- Department of Pathology, University of Colorado Health Center, Denver, Colorado
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado Health Center, Denver, Colorado
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Ivan F McMurtry
- Department of Pharmacology and Medicine, University of South Alabama, Mobile, Alabama
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
32
|
Wang T, Zhai M, Xu S, Ponnusamy M, Huang Y, Liu CY, Wang M, Shan C, Shan PP, Gao XQ, Wang K, Chen XZ, Liu J, Xie JY, Zhang DY, Zhou LY, Wang K. NFATc3-dependent expression of miR-153-3p promotes mitochondrial fragmentation in cardiac hypertrophy by impairing mitofusin-1 expression. Am J Cancer Res 2020; 10:553-566. [PMID: 31903137 PMCID: PMC6929994 DOI: 10.7150/thno.37181] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/29/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial dysfunction is involved in the pathogenesis of various cardiovascular disorders. Although mitochondrial dynamics, including changes in mitochondrial fission and fusion, have been implicated in the development of cardiac hypertrophy, the underlying molecular mechanisms remain mostly unknown. Here, we show that NFATc3, miR-153-3p, and mitofusion-1 (Mfn1) constitute a signaling axis that mediates mitochondrial fragmentation and cardiomyocyte hypertrophy. Methods: Isoprenaline (ISO) was used to stimulate the hypertrophic response and mitochondrial fragmentation in cultured cardiomyocytes and in vivo. We performed immunoblotting, immunofluorescence, and quantitative real-time PCR to validate the function of Mfn1 in cardiomyocyte hypertrophy. Bioinformatic analyses, a luciferase reporter assay, and gain- and loss-of-function studies were used to demonstrate the biological function of miR-153-3p, which regulates mitochondrial fragmentation and hypertrophy by targeting Mfn1. Moreover, ChIP-qPCR and a luciferase reporter assay were performed to identify transcription factor NFATc3 as an upstream regulator to control the expression of miR-153-3p. Results: Our results show that ISO promoted mitochondrial fission and enhanced the expression of miR-153-3p in cardiomyocytes. Knockdown of miR-153-3p attenuated ISO-induced mitochondrial fission and hypertrophy in cultured primary cardiomyocytes. miR-153-3p suppression inhibited mitochondrial fragmentation in ISO-induced cardiac hypertrophy in a mouse model. We identified direct targeting of Mfn1, a key protein of the mitochondrial fusion process, by miR-153-3p. Also, miR-153-3p promoted ISO-induced mitochondrial fission by suppressing the translation of Mfn1. We further found that NFATc3 activated miR-153-3p expression. Knockdown of NFATc3 inhibited miR-153-3p expression and blocked mitochondrial fission and hypertrophic response in cardiomyocytes. Conclusions: Our data revealed a novel signaling pathway, involving NFATc3, miR-153-3p, and Mfn1, which could be a therapeutic target for the prevention and treatment of cardiac hypertrophy.
Collapse
|
33
|
Ikeda KT, Hale PT, Pauciulo MW, Dasgupta N, Pastura PA, Le Cras TD, Pandey MK, Nichols WC. Hypoxia-induced Pulmonary Hypertension in Different Mouse Strains: Relation to Transcriptome. Am J Respir Cell Mol Biol 2019; 60:106-116. [PMID: 30134121 DOI: 10.1165/rcmb.2017-0435oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Patients with pulmonary arterial hypertension (PAH) can harbor mutations in several genes, most commonly in BMPR2. However, disease penetrance in patients with BMPR2 mutations is low. In addition, most patients do not carry known PAH gene mutations, suggesting that other factors determine susceptibility to PAH. To begin to identify additional genomic factors contributing to PAH pathogenesis, we exposed 32 mouse strains to chronic hypoxia. We found that the PL/J strain has extremely high right ventricular systolic pressure (RVSP; 86.58 mm Hg) but minimal lung remodeling. To identify potential genomic factors contributing to the high RVSP, RNAseq analysis of PL/J lung mRNAs and microRNAs (miRNAs) after hypoxia was performed, and it demonstrated that 4 of 43 upregulated miRNAs in the Dlk1-Dio3 imprinting region are predicted to target T cell marker mRNAs. These target mRNAs, as well as the numbers of T cells were downregulated. In addition, C5a and its receptor, C5AR1, were increased. Analysis of Rho-associated protein kinase (Rock) 2 mRNA expression, in the RhoA/Rock pathway, demonstrated a significant increase in PL/J. Inhibition of Rock2 ameliorated a portion of the elevated RVSP. In addition, we identified miR-150-5p as a potential regulator of Rock2 expression. In conclusion, we identified two possible pathways contributing to the hypoxia pulmonary hypertension phenotype of extreme RVSP elevation: aberrant T cell expression driven by hypoxia-induced miRNAs and increased expression of C5a and C5AR1. We suggest that the PL/J mouse will be a good model for seeking mechanism(s) of RVSP elevation in hypoxia-induced PAH.
Collapse
Affiliation(s)
| | | | - Michael W Pauciulo
- 1 Division of Human Genetics and.,2 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Patricia A Pastura
- 3 Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - Timothy D Le Cras
- 3 Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and.,2 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - William C Nichols
- 1 Division of Human Genetics and.,2 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
34
|
Lahm T, Douglas IS, Archer SL, Bogaard HJ, Chesler NC, Haddad F, Hemnes AR, Kawut SM, Kline JA, Kolb TM, Mathai SC, Mercier O, Michelakis ED, Naeije R, Tuder RM, Ventetuolo CE, Vieillard-Baron A, Voelkel NF, Vonk-Noordegraaf A, Hassoun PM. Assessment of Right Ventricular Function in the Research Setting: Knowledge Gaps and Pathways Forward. An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2019; 198:e15-e43. [PMID: 30109950 DOI: 10.1164/rccm.201806-1160st] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Right ventricular (RV) adaptation to acute and chronic pulmonary hypertensive syndromes is a significant determinant of short- and long-term outcomes. Although remarkable progress has been made in the understanding of RV function and failure since the meeting of the NIH Working Group on Cellular and Molecular Mechanisms of Right Heart Failure in 2005, significant gaps remain at many levels in the understanding of cellular and molecular mechanisms of RV responses to pressure and volume overload, in the validation of diagnostic modalities, and in the development of evidence-based therapies. METHODS A multidisciplinary working group of 20 international experts from the American Thoracic Society Assemblies on Pulmonary Circulation and Critical Care, as well as external content experts, reviewed the literature, identified important knowledge gaps, and provided recommendations. RESULTS This document reviews the knowledge in the field of RV failure, identifies and prioritizes the most pertinent research gaps, and provides a prioritized pathway for addressing these preclinical and clinical questions. The group identified knowledge gaps and research opportunities in three major topic areas: 1) optimizing the methodology to assess RV function in acute and chronic conditions in preclinical models, human studies, and clinical trials; 2) analyzing advanced RV hemodynamic parameters at rest and in response to exercise; and 3) deciphering the underlying molecular and pathogenic mechanisms of RV function and failure in diverse pulmonary hypertension syndromes. CONCLUSIONS This statement provides a roadmap to further advance the state of knowledge, with the ultimate goal of developing RV-targeted therapies for patients with RV failure of any etiology.
Collapse
|
35
|
Soluble ST2 promotes oxidative stress and inflammation in cardiac fibroblasts: an in vitro and in vivo study in aortic stenosis. Clin Sci (Lond) 2019; 133:1537-1548. [DOI: 10.1042/cs20190475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Background: Soluble ST2 (interleukin 1 receptor-like 1) (sST2) is involved in inflammatory diseases and increased in heart failure (HF). We herein investigated sST2 effects on oxidative stress and inflammation in human cardiac fibroblasts and its pathological role in human aortic stenosis (AS).
Methods and results: Using proteomics and immunodetection approaches, we have identified that sST2 down-regulated mitofusin-1 (MFN-1), a protein involved in mitochondrial fusion, in human cardiac fibroblasts. In parallel, sST2 increased nitrotyrosine, protein oxidation and peroxide production. Moreover, sST2 enhanced the secretion of pro-inflammatory cytokines interleukin (IL)-6, IL-1β and monocyte chemoattractant protein-1 (CCL-2). Pharmacological inhibition of transcriptional factor nuclear factor κB (NFκB) restored MFN-1 levels and improved oxidative status and inflammation in cardiac fibroblasts. Mito-Tempo, a mitochondria-specific superoxide scavenger, as well as Resveratrol, a general antioxidant, attenuated oxidative stress and inflammation induced by sST2. In myocardial biopsies from 26 AS patients, sST2 up-regulation paralleled a decrease in MFN-1. Cardiac sST2 inversely correlated with MFN-1 levels and positively associated with IL-6 and CCL-2 in myocardial biopsies from AS patients.
Conclusions: sST2 affected mitochondrial fusion in human cardiac fibroblasts, increasing oxidative stress production and inflammatory markers secretion. The blockade of NFκB or mitochondrial reactive oxygen species restored MFN-1 expression, improving oxidative stress status and reducing inflammatory markers secretion. In human AS, cardiac sST2 levels associated with oxidative stress and inflammation. The present study reveals a new pathogenic pathway by which sST2 promotes oxidative stress and inflammation contributing to cardiac damage.
Collapse
|
36
|
|
37
|
Luna RCP, de Oliveira Y, Lisboa JVC, Chaves TR, de Araújo TAM, de Sousa EE, Miranda Neto M, Pirola L, Braga VA, de Brito Alves JL. Insights on the epigenetic mechanisms underlying pulmonary arterial hypertension. ACTA ACUST UNITED AC 2018; 51:e7437. [PMID: 30365723 PMCID: PMC6207290 DOI: 10.1590/1414-431x20187437] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension (PAH), characterized by localized increased
arterial blood pressure in the lungs, is a slow developing long-term disease
that can be fatal. PAH is characterized by inflammation, vascular tone
imbalance, pathological pulmonary vascular remodeling, and right-sided heart
failure. Current treatments for PAH are palliative and development of new
therapies is necessary. Recent and relevant studies have demonstrated that
epigenetic processes may exert key influences on the pathogenesis of PAH and may
be promising therapeutic targets in the prevention and/or cure of this
condition. The aim of the present mini-review is to summarize the occurrence of
epigenetic-based mechanisms in the context of PAH physiopathology, focusing on
the roles of DNA methylation, histone post-translational modifications and
non-coding RNAs. We also discuss the potential of epigenetic-based therapies for
PAH.
Collapse
Affiliation(s)
- R C P Luna
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - Y de Oliveira
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - J V C Lisboa
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - T R Chaves
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - T A M de Araújo
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - E E de Sousa
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - M Miranda Neto
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - L Pirola
- INSERM U1060, Lyon 1 University, Oullins, France
| | - V A Braga
- Departamento de Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - J L de Brito Alves
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil.,Departamento de Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| |
Collapse
|
38
|
Seong M, Lee J, Kang H. Hypoxia-induced regulation of mTOR signaling by miR-7 targeting REDD1. J Cell Biochem 2018; 120:4523-4532. [PMID: 30302791 DOI: 10.1002/jcb.27740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022]
Abstract
Oxygen is an important factor mediating cell growth and survival under physiological and pathological conditions. Therefore, cells have well-regulated response mechanisms in the face of changes in oxygen levels in their environment. A subset of microRNAs (miRNAs) termed the hypoxamir has been suggested to be a critical mediator of the cellular response to hypoxia. Regulated in development and DNA damage response 1 (REDD1) is a negative regulator of mammalian target of rapamycin (mTOR) signaling in the response to cellular stress, and is elevated in many cell types under hypoxia, with consequent inhibition of mTOR signaling. However, the underlying posttranscriptional regulatory mechanism by miRNAs that contribute to this hypoxia-induced reduction in REDD1 expression remain unknown. Therefore, the aim of the current study was to identify the miRNAs participating in the hypoxic cellular response by scanning the 3'-untranslated region (3'-UTR) of REDD1 for potential miRNA-binding sites using a computer algorithm, TargetScan. miR-7 emerged as a novel hypoxamir that regulates REDD1 expression and is involved in mTOR signaling. miR-7 could repress REDD1 expression posttranscriptionally by directly binding with the 3'-UTR. Upon hypoxia, miR-7 expression was downregulated in HeLa cells to consequently derepress REDD1, resulting in inhibition of mTOR signaling. Moreover, overexpression of miR-7 was sufficient to reverse the hypoxia-induced inhibition of mTOR signaling. Therefore, our findings suggest miR-7 as a key regulator of hypoxia-mediated mTOR signaling through modulation of REDD1 expression. These findings contribute new insight into the miRNA-mediated molecular mechanism of the hypoxic response through mTOR signaling, highlighting potential targets for tumor suppression.
Collapse
Affiliation(s)
- Minhyeong Seong
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Jihui Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| |
Collapse
|
39
|
Miao C, Chang J, Zhang G. Recent research progress of microRNAs in hypertension pathogenesis, with a focus on the roles of miRNAs in pulmonary arterial hypertension. Mol Biol Rep 2018; 45:2883-2896. [DOI: 10.1007/s11033-018-4335-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
|
40
|
Ren J, Liu W, Li GC, Jin M, You ZX, Liu HG, Hu Y. Atorvastatin Attenuates Myocardial Hypertrophy Induced by Chronic Intermittent Hypoxia In Vitro Partly through miR-31/PKCε Pathway. Curr Med Sci 2018; 38:405-412. [PMID: 30074205 DOI: 10.1007/s11596-018-1893-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/03/2018] [Indexed: 02/07/2023]
Abstract
Atorvastatin is proven to ameliorate cardiac hypertrophy induced by chronic intermittent hypoxia (CIH). However, little is known about the mechanism by which atorvastatin modulates CIH-induced cardiac hypertrophy, and whether specific hypertrophyrelated microRNAs are involved in the modulation. MiR-31 plays key roles in the development of cardiac hypertrophy induced by ischemia/hypoxia. This study examined whether miR-31 was involved in the protective role of atorvastatin against CIH-induced myocardial hypertrophy. H9c2 cells were subjected to 8-h intermittent hypoxia per day in the presence or absence of atorvastatin for 5 days. The size of cardiomyocytes, and the expression of caspase 3 and miR-31 were determined by Western blotting and RT-PCR, respectively. MiR-31 mimic or Ro 31-8220, a specific inhibitor of protein kinase C epsilon (PKCε), was used to determine the role of miR-31 in the anti-hypertrophic effect of atorvastatin on cardiomyocytes. PKCε in the cardiomyocytes with miR-31 upregulation or downregulation was detected using RT-PCR and Western blotting. The results showed that CIH induced obvious enlargement of cardiomyocytes, which was paralleled with increased atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and slow/beta cardiac myosin heavy-chain (MYH7) mRNA levels. All these changes were reversed by the treatment with atorvastatin. Meanwhile, miR-31 was increased by CIH in vitro. Of note, the atorvastatin pretreatment significantly increased the mRNA and protein expression of PKCe and decreased that of miR-31. Moreover, overexpression of miR-31 abolished the anti-hypertrophic effect of atorvastatin on cardiomyocytes. Upregulation and downregulation of miR-31 respectively decreased and increased the mRNA and protein expression of PKCε. These results suggest that atorvastatin provides the cardioprotective effects against CIH probably via up-regulating PKCε and down-regulating miR-31.
Collapse
Affiliation(s)
- Jie Ren
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Guang-Cai Li
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng Jin
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhen-Xi You
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Guo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yi Hu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430010, China.
| |
Collapse
|
41
|
Zhao L, Qi Y, Xu L, Tao X, Han X, Yin L, Peng J. MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol 2018; 15:284-296. [PMID: 29304479 PMCID: PMC5975069 DOI: 10.1016/j.redox.2017.12.013] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 01/25/2023] Open
Abstract
Clinical application of doxorubicin (DOX), an anthracycline antibiotic with potent anti- tumor effects, is limited because of its cardiotoxicity. However, its pathogenesis is still not entirely understood. The aim of this paper was to explore the mechanisms and new drug targets to treat DOX-induced cardiotoxicity. The in vitro model on H9C2 cells and the in vivo models on rats and mice were developed. The results showed that DOX markedly decreased H9C2 cell viability, increased the levels of CK, LDH, caused histopathological and ECG changes in rats and mice, and triggered myocardial oxidative damage via adjusting the levels of intracellular ROS, MDA, SOD, GSH and GSH-Px. Total of 18 differentially expressed microRNAs in rat heart tissue caused by DOX were screened out using microRNA microarray assay, especially showing that miR-140-5p was significantly increased by DOX which was selected as the target miRNA. Double-luciferase reporter assay showed that miR-140-5p directly targeted Nrf2 and Sirt2, as a result of affecting the expression levels of HO-1, NQO1, Gst, GCLM, Keap1 and FOXO3a, and thereby increasing DOX-caused myocardial oxidative damage. In addition, the levels of intracellular ROS were significantly increased or decreased in H9C2 cells treated with DOX after miR-140-5p mimic or miR-140-5p inhibitor transfection, respectively, as well as the changed expression levels of Nrf2 and Sirt2. Furthermore, DOX- induced myocardial oxidative damage was worsened in mice treated with miR-140-5p agomir, and however the injury was alleviated in the mice administrated with miR-140-5p antagomir. Therefore, miR-140-5p plays an important role in DOX-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Our data provide novel insights for investigating DOX-induced heart injury. In addition, miR-140-5p/ Nrf2 and miR-140-5p/Sirt2 may be the new targets to treat DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Lisha Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
42
|
Feng Q, Tian T, Liu J, Zhang L, Qi J, Lin X. Deregulation of microRNA‑31a‑5p is involved in the development of primary hypertension by suppressing apoptosis of pulmonary artery smooth muscle cells via targeting TP53. Int J Mol Med 2018; 42:290-298. [PMID: 29620173 PMCID: PMC5979825 DOI: 10.3892/ijmm.2018.3597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to identify the association between microRNA (miRNA/miR)-31a-5p and the development of hypertension, and its potential molecular mechanism. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analyses were performed to validate the candidate miRNA and genes involved in hypertension, following which an online miRNA database search, luciferase assay, and RT-qPCR and western blot analyses were performed to confirm the interaction between miR-31a-5p and TP53. A MTT assay and flow cytometric analysis were utilized to determine the effect of miR-31a-5p on cell growth and apoptosis. The results revealed that miR-31a-5p and TP53 were the candidate miRNA and gene regulating hypertension, and that TP53 was the virtual target gene of miR-31a-5p with a binding site located in the TP53 3′ untranslated region (3′UTR). It was confirmed by luciferase activity that miR-31a-5p markedly reduced the luciferase activity of the Luc-wild-type-TP53-3′UTR, whereas the mutated putative miR-31a-5p binding located on the TP53-3′UTR was found to eliminate such an inhibitory effect. miR-31a-5p had no effect on specificity protein 1, E2F transcription factor 2 or forkhead box P3 luciferase activity. Smooth muscle cells collected from spontaneously hypertensive rats treated with gold nano-particles containing anti-rno-miR-31a-5p exhibited a lower growth rate and a higher apoptotic rate. The results of the RT-qPCR and western blot analyses showed that miR-31a-5p negatively regulated the expression of TP53, and transfection with the hsa-miR-31a-5p mimic significantly promoted cell growth and inhibited cell apoptosis, whereas transfection with the anti-hsa-miR-31a-5p mimic significantly suppressed cell growth and induced cell apoptosis. Taken together, these findings indicated that miR-31a-5p is involved in hypertension via the accelerated proliferation of arterial smooth muscle cells and inhibition of apoptosis through targeting TP53.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Laboratory, The People's Hospital of Tongchuan, Tongchuan, Shaanxi 727000, P.R. China
| | - Tao Tian
- Department of Laboratory, Second Affiliated Hospital of Shaanxi Chinese Traditional Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Junfeng Liu
- Department of Infection, The People's Hospital of Tongchuan, Tongchuan, Shaanxi 727000, P.R. China
| | - Li Zhang
- Department of Gynecology and Obstetrics, The People's Hospital of Tongchuan, Tongchuan, Shaanxi 727000, P.R. China
| | - Jiangang Qi
- Department of Laboratory, Tongchuan Hospital of Chinese Traditional Medicine, Tongchuan, Shaanxi 727000, P.R. China
| | - Xiaojuan Lin
- Department of Cardiology, The People's Hospital of Tongchuan, Tongchuan, Shaanxi 727000, P.R. China
| |
Collapse
|
43
|
Li Y, Li L, Qian Z, Lin B, Chen J, Luo Y, Qu J, Raj JU, Gou D. Phosphatidylinositol 3-Kinase-DNA Methyltransferase 1-miR-1281-Histone Deacetylase 4 Regulatory Axis Mediates Platelet-Derived Growth Factor-Induced Proliferation and Migration of Pulmonary Artery Smooth Muscle Cells. J Am Heart Assoc 2018; 7:e007572. [PMID: 29514810 PMCID: PMC5907547 DOI: 10.1161/jaha.117.007572] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Platelet-derived growth factor BB, a potent mitogen of pulmonary artery smooth muscle cells (PASMCs), has been implicated in pulmonary arterial remodeling, which is a key pathogenic feature of pulmonary arterial hypertension. Previous microRNA profiling in platelet-derived growth factor BB-treated PASMCs found a significantly downregulated microRNA, miR-1281, but it has not been associated with any cellular function, and we investigated the possibility. METHODS AND RESULTS Real-time quantitative reverse transcription-polymerase chain reaction assay proved that downregulation of miR-1281 was a conserved phenomenon in human and rat PASMCs. Overexpression and inhibition of miR-1281 in PASMCs promoted and suppressed, respectively, the cell proliferation and migration. Bioinformatic prediction and 3'-untranslated region reporter assay identified histone deacetylase 4 to be a direct target of miR-1281. Supporting this, proliferation and migration assay demonstrated the cellular function of histone deacetylase 4 is inversely correlated with that of miR-1281. Mechanistically, it is found that platelet-derived growth factor BB activates the phosphatidylinositol 3-kinase pathway, which then induces the expression of DNA methyltransferase 1, leading to enhanced methylation of a flanking CpG island and repressed miR-1281 expression. Finally, a reduced miR-1281 level was consistently identified in hypoxic PASMCs in vitro, in pulmonary arteries of rats with monocrotaline-induced pulmonary arterial hypertension, and in serum of patients with coronary heart disease-pulmonary arterial hypertension. These data suggest that there may be a diagnostic and therapeutic use for miR-1281. CONCLUSIONS Herein, we report a novel regulatory axis, phosphatidylinositol 3-kinase-DNA methyltransferase 1-miR-1281-histone deacetylase 4, integrating multiple epigenetic regulators that participate in platelet-derived growth factor BB-stimulated PASMC proliferation and migration and pulmonary vascular remodeling.
Collapse
MESH Headings
- Animals
- Becaplermin/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- Disease Models, Animal
- HEK293 Cells
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Monocrotaline
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phosphatidylinositol 3-Kinase/metabolism
- Pulmonary Artery/enzymology
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Yanjiao Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Li Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhengjiang Qian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Boya Lin
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Jidong Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yixuan Luo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - J Usha Raj
- Department of Pediatrics, University of Illinois at Chicago, IL
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
44
|
Lee H, Tak H, Park SJ, Jo YK, Cho DH, Lee EK. microRNA-200a-3p enhances mitochondrial elongation by targeting mitochondrial fission factor. BMB Rep 2018; 50:214-219. [PMID: 28148392 PMCID: PMC5437966 DOI: 10.5483/bmbrep.2017.50.4.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Indexed: 12/31/2022] Open
Abstract
Mitochondria play pivotal roles in the ATP production, apoptosis and generation of reactive oxygen species. Although dynamic regulation of mitochondria morphology is a critical step to maintain cellular homeostasis, the regulatory mechanisms are not yet fully elucidated. In this study, we identified miR-200a-3p as a novel regulator of mitochondrial dynamics by targeting mitochondrial fission factor (MFF). We demonstrated that the ectopic expression of miR-200a-3p enhanced mitochondrial elongation, mitochondrial ATP synthesis, mitochondrial membrane potential and oxygen consumption rate. These results indicate that miR-200a-3p positively regulates mitochondrial elongation by downregulating MFF expression.
Collapse
Affiliation(s)
- Heejin Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyosun Tak
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - So Jung Park
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17014, Korea
| | - Yoon Kyung Jo
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17014, Korea
| | - Dong Hyung Cho
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17014, Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
45
|
Batkai S, Bär C, Thum T. MicroRNAs in right ventricular remodelling. Cardiovasc Res 2017; 113:1433-1440. [DOI: 10.1093/cvr/cvx153] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022] Open
|
46
|
Samson N, Paulin R. Epigenetics, inflammation and metabolism in right heart failure associated with pulmonary hypertension. Pulm Circ 2017; 7:572-587. [PMID: 28628000 PMCID: PMC5841893 DOI: 10.1177/2045893217714463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022] Open
Abstract
Right ventricular failure (RVF) is the most important prognostic factor for both morbidity and mortality in pulmonary arterial hypertension (PAH), but also occurs in numerous other common diseases and conditions, including left ventricle dysfunction. RVF remains understudied compared with left ventricular failure (LVF). However, right and left ventricles have many differences at the morphological level or the embryologic origin, and respond differently to pressure overload. Therefore, knowledge from the left ventricle cannot be extrapolated to the right ventricle. Few studies have focused on the right ventricle and have permitted to increase our knowledge on the right ventricular-specific mechanisms driving decompensation. Here we review basic principles such as mechanisms accounting for right ventricle hypertrophy, dysfunction, and transition toward failure, with a focus on epigenetics, inflammatory, and metabolic processes.
Collapse
Affiliation(s)
- Nolwenn Samson
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Roxane Paulin
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
47
|
Abstract
Hypertension (HTN) is a chronic medical condition that commonly affects the aging population worldwide. The prevalence of HTN is increasing in developing countries and is one of the leading causes of death in older individuals. HTN results from a complex interplay of genetic and environmental factors. Besides, HTN can result in various other health complications such as stroke and chronic kidney diseases, if not treated. Although various studies have explained the underlying mechanisms in the pathogenesis of HTN, limited information is available on their biomarkers. MicroRNAs (miRNAs) are RNA molecules that have been recognized as key regulators for HTN. miR-21 is a common microRNA that is has been reported to be significantly upregulated in HTN individuals. Hence, miR-21 can be a potential therapeutic target for HTN. The number of studies related to miR-21 on hypertension is limited. Therefore, the main thrust of this paper is to provide an overview of the current clinical evidence and significance of miR-21 in HTN.
Collapse
Affiliation(s)
- Durairaj Sekar
- Department of Biotechnology, School of Chemical and Biological Sciences, REVA University, Bangalore, 560064, India.
| | - B R Shilpa
- Department of Biotechnology, School of Chemical and Biological Sciences, REVA University, Bangalore, 560064, India
| | - Anupam J Das
- Department of Biotechnology, School of Chemical and Biological Sciences, REVA University, Bangalore, 560064, India
| |
Collapse
|
48
|
Hashimoto R, Joshi SR, Jiang H, Capdevila JH, McMurtry IF, Laniado Schwartzman M, Gupte SA. Cyp2c44 gene disruption is associated with increased hematopoietic stem cells: implication in chronic hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 2017; 313:H293-H303. [PMID: 28550179 DOI: 10.1152/ajpheart.00785.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/05/2017] [Accepted: 05/20/2017] [Indexed: 01/02/2023]
Abstract
We have recently demonstrated that disruption of the murine cytochrome P-450 2c44 gene (Cyp2c44) exacerbates chronic hypoxia-induced pulmonary artery remodeling and hypertension in mice. Subsequently, we serendipitously found that Cyp2c44 gene disruption also increases hematopoietic stem cell (HSC) numbers in bone marrow and blood. Therefore, the objective of the present study was to investigate whether CYP2C44-derived eicosanoids regulate HSC proliferation/cell growth and whether increased HSCs contribute to chronic hypoxia-induced remodeling of pulmonary arteries in Cyp2c44 knockout mice. Our findings demonstrated that lack of CYP2C44 epoxygenase, which catalyzed the oxidation of arachidonic acid to epoxyeicosatrienoic (EETs) and hydroxyeicosatetraenoic (HETE) acids, increases the numbers of 1) HSCs (CD34+, CD117+, and CD133+), 2) proangiogenic (CD34+CD133+ and CD34+CD117+CD133+) cells, and 3) immunogenic/inflammatory (CD34+CD11b+, CD133+CD11b+, F4/80+, CD11b+, and F4/80+CD11b+) macrophages in bone marrow and blood compared with wild-type mice. Among the various CYP2C44-derived arachidonic acids, only 15-HETE decreased CD117+ cell numbers when applied to bone marrow cell cultures. Interestingly, CD133+ and von Willebrand factor-positive cells, which are derived from proangiogenic stem cells, are increased in the bone marrow, blood, and lungs of mice exposed to chronic hypoxia and in remodeled and occluded pulmonary arteries of CYP2C44-deficient mice. In conclusion, our results demonstrate that CYP2C44-derived 15-HETE plays a critical role in downregulating HSC proliferation and growth, because disruption of the Cyp2c44 gene increased HSCs that potentially contribute to chronic hypoxia-induced pulmonary arterial remodeling and occlusion.NEW & NOTEWORTHY This study demonstrates that cytochrome P-450 2C44 plays a critical role in controlling the phenotype of hematopoietic stem cells and that when this enzyme is knocked out, stem cells are differentiated. These stem cells give rise to increased circulating monocytes and macrophages and contribute to the pathogenesis of chronic hypoxia-induced pulmonary artery remodeling and hypertension.
Collapse
Affiliation(s)
- Ryota Hashimoto
- Department of Pharmacology, and Translation Cardiovascular Institute, School of Medicine, New York Medical College, Valhalla, New York.,Department of Physiology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Sachindra Raj Joshi
- Department of Pharmacology, and Translation Cardiovascular Institute, School of Medicine, New York Medical College, Valhalla, New York
| | - Houli Jiang
- Department of Pharmacology, and Translation Cardiovascular Institute, School of Medicine, New York Medical College, Valhalla, New York
| | - Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Ivan F McMurtry
- Department of Pharmacology, University of South Alabama, Mobile, Alabama
| | - Michal Laniado Schwartzman
- Department of Pharmacology, and Translation Cardiovascular Institute, School of Medicine, New York Medical College, Valhalla, New York
| | - Sachin A Gupte
- Department of Pharmacology, and Translation Cardiovascular Institute, School of Medicine, New York Medical College, Valhalla, New York;
| |
Collapse
|
49
|
Zhao Y, Ponnusamy M, Dong Y, Zhang L, Wang K, Li P. Effects of miRNAs on myocardial apoptosis by modulating mitochondria related proteins. Clin Exp Pharmacol Physiol 2017; 44:431-440. [DOI: 10.1111/1440-1681.12720] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Yanfang Zhao
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| | - Murugavel Ponnusamy
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| | - Yanhan Dong
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| | - Lei Zhang
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| | - Kun Wang
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| | - Peifeng Li
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| |
Collapse
|