1
|
Poppenborg T, Saljic A, Bruns F, Abu-Taha I, Dobrev D, Fender AC. A short history of the atrial NLRP3 inflammasome and its distinct role in atrial fibrillation. J Mol Cell Cardiol 2025; 202:13-23. [PMID: 40057301 DOI: 10.1016/j.yjmcc.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/21/2025] [Accepted: 02/24/2025] [Indexed: 04/23/2025]
Abstract
Inflammasomes are multiprotein complexes of the innate immune system that mediate inflammatory responses to infection and to local and systemic stress and tissue injury. The principal function is to facilitate caspase-1 auto-activation and subsequently maturation and release of the effectors interleukin (IL)-1β and IL-18. The atrial-specific NLRP3 inflammasome is a unifying causal feature of atrial fibrillation (AF) development, progression and recurrence after ablation. Many AF-associated risk factors and co-morbidities converge mechanistically on the activation of this central inflammatory signaling platform. This review presents the historical conceptual development of a distinct atrial inflammasome and its potential causal involvement in AF. We follow the early observations linking systemic and local inflammation with AF, to the emergence of an atrial-intrinsic NLRP3 inflammasome operating within not just immune cells but also in resident atrial fibroblasts and cardiomyocytes. We outline the key developments in understanding how the atrial NLRP3 inflammasome and its effector IL-1β contribute causally to cellular and tissue-level arrhythmogenesis in different pathological settings, and outline candidate therapeutic concepts verified in preclinical models of atrial cardiomyopathy and AF.
Collapse
Affiliation(s)
| | - Arnela Saljic
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Florian Bruns
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
| | - Issam Abu-Taha
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA; Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
| | - Anke C Fender
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Zhao Y, Hu Y, Wang Y, Qian H, Zhu C, Dong H, Hao C, Zhang Y, Ji Z, Li X, Chen Y, Xu R, Jiang J, Cao H, Ma G, Chen L. Cardiac fibroblast-derived mitochondria-enriched sEVs regulate tissue inflammation and ventricular remodeling post-myocardial infarction through NLRP3 pathway. Pharmacol Res 2025; 214:107676. [PMID: 40015386 DOI: 10.1016/j.phrs.2025.107676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/30/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Resident cardiac fibroblasts (CFs) play crucial roles in sensing injury signals and regulating inflammatory responses post-myocardial infarction (MI). Damaged mitochondria can be transferred extracellularly via various mechanisms, including extracellular vesicles (EVs). In this study, we aimed to investigate whether CFs could transfer damaged mitochondrial components via small EVs (sEVs) and elucidate their role in regulating inflammatory responses post-MI. Left anterior descending coronary artery ligation was performed in mice. Mitochondrial components in sEVs were detected using nanoflow cytometry. Differential protein expression in sEVs from normoxia and normoglycemia CFs (CFs-Nor-sEVs) and CFs post oxygen-glucose deprivation (CFs-OGD-sEVs) was identified using label-free proteomics. CFs-sEVs were co-cultured with mouse bone marrow-derived macrophages (BMDMs) to assess macrophage inflammatory responses. Effects of intramyocardial injection of CFs-sEVs were assessed in MI mice in the absence or presence of NLRP3 inhibitor CY-09. Results demonstrated that mitochondrial components were detected in CFs-derived sEVs post-MI. Damaged mitochondrial components were enriched in CFs-OGD-sEVs (CFs-mt-sEVs), which promoted pro-inflammatory phenotype activation of BMDMs in vitro. Myocardial injection of CFs-mt-sEVs enhanced tissue inflammation, aggravated cardiac dysfunction, and exacerbated maladaptive ventricular remodeling post-MI in vivo. Mechanistically, above effects were achieved via activation of NLRP3 and above effects could be reversed by NLRP3 inhibitor CY-09. This study indicates that CFs could transfer damaged mitochondrial components via the sEVs post-MI, promote macrophage inflammatory activation and exacerbate maladaptive ventricular remodeling post MI by activating NLRP3. Our findings highlight the potential therapeutic effects of inhibiting CFs-mt-sEVs and NLRP3 to improve cardiac function and attenuate ventricular remodeling post-MI.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Ya Hu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Yifei Wang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Hao Qian
- Department of Cardiology, Huai 'an No.1 People's Hospital Affiliated to Nanjing Medical University, PR China
| | - Chenxu Zhu
- Institute for Computational Biomedicine - Disease Modeling, RWTH Aachen University, Aachen, Germany
| | - Hongjian Dong
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Chunshu Hao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Yao Zhang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Xinxin Li
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Yue Chen
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Rongfeng Xu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Jie Jiang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Hailong Cao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China.
| | - Lijuan Chen
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China; Department of Cardiology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Nanjing 211200, PR China.
| |
Collapse
|
3
|
Lee IT, Yang CC, Lin YJ, Wu WB, Lin WN, Lee CW, Tseng HC, Tsai FJ, Hsiao LD, Yang CM. Mevastatin-Induced HO-1 Expression in Cardiac Fibroblasts: A Strategy to Combat Cardiovascular Inflammation and Fibrosis. ENVIRONMENTAL TOXICOLOGY 2025; 40:264-280. [PMID: 39431643 DOI: 10.1002/tox.24429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
Mevastatin (MVS) is known for its anti-inflammatory effects, potentially achieved by upregulating heme oxygenase-1 (HO-1), an enzyme involved in cytoprotection against oxidative injury. Nonetheless, the specific processes by which MVS stimulates HO-1 expression in human cardiac fibroblasts (HCFs) are not yet fully understood. In this study, we found that MVS treatment increased HO-1 mRNA and protein levels in HCFs. This induction was inhibited by pretreatment with specific inhibitors of p38 MAPK, JNK1/2, and FoxO1, and by siRNAs targeting NOX2, p47phox, p38, JNK1, FoxO1, Keap1, and Nrf2. MVS also triggered ROS generation and activated JNK1/2 and p38 MAPK, both attenuated by NADPH oxidase or ROS inhibitors. Additionally, MVS promoted the phosphorylation of FoxO1 and Nrf2, which was suppressed by p38 MAPK or JNK1/2 inhibitor. Furthermore, MVS inhibited TNF-α-induced NF-κB activation and vascular cell adhesion molecule-1 (VCAM-1) expression via the HO-1/CO pathway in HCFs. In summary, the induction of HO-1 expression in HCFs by MVS is mediated through two primary signaling pathways: NADPH oxidase/ROS/p38 MAPK, and JNK1/2/FoxO1 and Nrf2. This research illuminates the underlying processes through which MVS exerts its anti-inflammatory effects by modulating HO-1 in cardiac fibroblasts.
Collapse
Affiliation(s)
- I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Jyun Lin
- Institute of Translational Medicine and new Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hui-Ching Tseng
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan
| | - Li-Der Hsiao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
4
|
Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol 2024; 25:617-638. [PMID: 38589640 DOI: 10.1038/s41580-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew E Miller
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Zamanian MY, Alsaab HO, Golmohammadi M, Yumashev A, Jabba AM, Abid MK, Joshi A, Alawadi AH, Jafer NS, Kianifar F, Obakiro SB. NF-κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. Cell Biochem Funct 2024; 42:e4030. [PMID: 38720663 DOI: 10.1002/cbf.4030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 08/03/2024]
Abstract
Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic β-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor β1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1β), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Abeer Mhussan Jabba
- Colleges of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Abhishek Joshi
- Department of Liberal Arts School of Liberal Arts, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Noor S Jafer
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Farzaneh Kianifar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| |
Collapse
|
6
|
Nelson AR, Christiansen SL, Naegle KM, Saucerman JJ. Logic-based mechanistic machine learning on high-content images reveals how drugs differentially regulate cardiac fibroblasts. Proc Natl Acad Sci U S A 2024; 121:e2303513121. [PMID: 38266046 PMCID: PMC10835125 DOI: 10.1073/pnas.2303513121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
Fibroblasts are essential regulators of extracellular matrix deposition following cardiac injury. These cells exhibit highly plastic responses in phenotype during fibrosis in response to environmental stimuli. Here, we test whether and how candidate anti-fibrotic drugs differentially regulate measures of cardiac fibroblast phenotype, which may help identify treatments for cardiac fibrosis. We conducted a high-content microscopy screen of human cardiac fibroblasts treated with 13 clinically relevant drugs in the context of TGFβ and/or IL-1β, measuring phenotype across 137 single-cell features. We used the phenotypic data from our high-content imaging to train a logic-based mechanistic machine learning model (LogiMML) for fibroblast signaling. The model predicted how pirfenidone and Src inhibitor WH-4-023 reduce actin filament assembly and actin-myosin stress fiber formation, respectively. Validating the LogiMML model prediction that PI3K partially mediates the effects of Src inhibition, we found that PI3K inhibition reduces actin-myosin stress fiber formation and procollagen I production in human cardiac fibroblasts. In this study, we establish a modeling approach combining the strengths of logic-based network models and regularized regression models. We apply this approach to predict mechanisms that mediate the differential effects of drugs on fibroblasts, revealing Src inhibition acting via PI3K as a potential therapy for cardiac fibrosis.
Collapse
Affiliation(s)
- Anders R. Nelson
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA22903
| | - Steven L. Christiansen
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA22903
- Department of Biochemistry, Brigham Young University, Provo, UT84602
| | - Kristen M. Naegle
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA22903
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA22903
| |
Collapse
|
7
|
Li J, Lin A, Jiang R, Chen P, Xu C, Hou Y. Exosomes-mediated drug delivery for the treatment of myocardial injury. Ann Med Surg (Lond) 2024; 86:292-299. [PMID: 38222684 PMCID: PMC10783224 DOI: 10.1097/ms9.0000000000001473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 01/16/2024] Open
Abstract
Cardiovascular disease has become a major cause of death worldwide. Myocardial injury (MI) caused by myocardial infarction, myocarditis, and drug overdose can lead to impaired cardiac function, culminating in serious consequences such as angina pectoris, arrhythmias, and heart failure. Exosomes exhibit high biocompatibility and target specificity, rendering them an important non-cellular therapy for improving MI. Exosomes are diminutive vesicles that encapsulate nucleic acids and proteins. Exosomes derived from cardiac stem cells themselves have therapeutic effects, and they can also serve as carriers to deliver therapeutic drugs to recipient cells, thereby exerting a therapeutic effect. The molecules within exosomes are encapsulated in a lipid bilayer, allowing them to stably exist in body fluids without being affected by nucleases. Therefore, the utilization of exosomes as drug delivery systems (DDS) for disease treatment has been extensively investigated and is currently undergoing clinical trials. This review summarizes the therapeutic effects of exosomes on MI and provides an overview of current research progress on their use as DDS in MI.
Collapse
Affiliation(s)
- Jiang Li
- Zhengzhou Railway Vocational and Technical College
| | - Aiqin Lin
- Zhengzhou Railway Vocational and Technical College
| | - Rui Jiang
- Zhengzhou Railway Vocational and Technical College
| | | | - Chengyang Xu
- Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Yuanyuan Hou
- Zhengzhou Railway Vocational and Technical College
| |
Collapse
|
8
|
He F, Xie T, Ni D, Tang T, Cheng X. Efficacy and safety of inhibiting the NLRP3/IL-1β/IL-6 pathway in patients with ST-elevation myocardial infarction: A meta-analysis. Eur J Clin Invest 2023; 53:e14062. [PMID: 37427709 DOI: 10.1111/eci.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND The NLRP3/IL-1β/IL-6 pathway plays a key role in mediating inflammatory responses after ST-elevation myocardial infarction (STEMI). However, the clinical benefits of inhibiting this pathway in STEMI are uncertain. We aimed to evaluate the efficacy and safety of inhibiting the NLRP3/IL-1β/IL-6 pathway in STEMI patients. METHODS This study followed PRISMA guidelines. PubMed, Embase, CENTRAL and ClinicalTrials.gov databases were searched for randomized controlled trials (RCTs) of inhibiting the NLRP3/IL-1β/IL-6 pathway in STEMI patients within 7 days of symptom onset. The efficacy outcomes included all-cause death, cardiovascular death, recurrent MI, new-onset or worsening heart failure (HF) and stroke. The safety outcomes were serious infection, gastrointestinal adverse events and injection site reactions. RESULTS Of 316 screened records, nine trials with 1211 patients were included in the meta-analysis. Colchicine reduced the risk of recurrent MI (RR 0.28, 95% CI 0.10-0.74; I2 = 0.0%). Anakinra was associated with reduced risk of new-onset or worsening HF (RR 0.32, 95% CI 0.13-0.77; I2 = 0.0%) and decreased C-reactive protein levels (SMD -1.34, 95% CI -2.04 to -0.65; I2 = 0.0%). Colchicine and anakinra increased the risk of gastrointestinal adverse events (RR 4.43, 95% CI 2.75-7.13; I2 = 38.1%) and injection site reactions (RR 4.52, 95% CI 1.32-15.49; I2 = 0.8%), respectively. None of the three medications affected the risks of all-cause death, cardiovascular death, stroke and serious infection. CONCLUSIONS There is still no large-scale RCT evidence on the efficacy and safety of inhibiting the NLRP3/IL-1β/IL-6 pathway for the treatment of STEMI. Preliminary results from the available RCTs suggest colchicine and anakinra may respectively reduce the risks of recurrent MI and new-onset or worsening HF. The available RCTs in this meta-analysis lack power to determine any differences on mortality.
Collapse
Affiliation(s)
- Fang He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Ni
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Nelson AR, Christiansen SL, Naegle KM, Saucerman JJ. Logic-based mechanistic machine learning on high-content images reveals how drugs differentially regulate cardiac fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530599. [PMID: 36909540 PMCID: PMC10002757 DOI: 10.1101/2023.03.01.530599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fibroblasts are essential regulators of extracellular matrix deposition following cardiac injury. These cells exhibit highly plastic responses in phenotype during fibrosis in response to environmental stimuli. Here, we test whether and how candidate anti-fibrotic drugs differentially regulate measures of cardiac fibroblast phenotype, which may help identify treatments for cardiac fibrosis. We conducted a high content microscopy screen of human cardiac fibroblasts treated with 13 clinically relevant drugs in the context of TGFβ and/or IL-1β, measuring phenotype across 137 single-cell features. We used the phenotypic data from our high content imaging to train a logic-based mechanistic machine learning model (LogiMML) for fibroblast signaling. The model predicted how pirfenidone and Src inhibitor WH-4-023 reduce actin filament assembly and actin-myosin stress fiber formation, respectively. Validating the LogiMML model prediction that PI3K partially mediates the effects of Src inhibition, we found that PI3K inhibition reduces actin-myosin stress fiber formation and procollagen I production in human cardiac fibroblasts. In this study, we establish a modeling approach combining the strengths of logic-based network models and regularized regression models, apply this approach to predict mechanisms that mediate the differential effects of drugs on fibroblasts, revealing Src inhibition acting via PI3K as a potential therapy for cardiac fibrosis.
Collapse
Affiliation(s)
- Anders R. Nelson
- University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Steven L. Christiansen
- University of Virginia School of Medicine, Charlottesville, VA 22903
- Brigham Young University Department of Biochemistry, Provo, UT 84602
| | - Kristen M. Naegle
- University of Virginia School of Medicine, Charlottesville, VA 22903
| | | |
Collapse
|
10
|
Johnson RD, Lei M, McVey JH, Camelliti P. Human myofibroblasts increase the arrhythmogenic potential of human induced pluripotent stem cell-derived cardiomyocytes. Cell Mol Life Sci 2023; 80:276. [PMID: 37668685 PMCID: PMC10480244 DOI: 10.1007/s00018-023-04924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have the potential to remuscularize infarcted hearts but their arrhythmogenicity remains an obstacle to safe transplantation. Myofibroblasts are the predominant cell-type in the infarcted myocardium but their impact on transplanted hiPSC-CMs remains poorly defined. Here, we investigate the effect of myofibroblasts on hiPSC-CMs electrophysiology and Ca2+ handling using optical mapping of advanced human cell coculture systems mimicking cell-cell interaction modalities. Human myofibroblasts altered the electrophysiology and Ca2+ handling of hiPSC-CMs and downregulated mRNAs encoding voltage channels (KV4.3, KV11.1 and Kir6.2) and SERCA2a calcium pump. Interleukin-6 was elevated in the presence of myofibroblasts and direct stimulation of hiPSC-CMs with exogenous interleukin-6 recapitulated the paracrine effects of myofibroblasts. Blocking interleukin-6 reduced the effects of myofibroblasts only in the absence of physical contact between cell-types. Myofibroblast-specific connexin43 knockdown reduced functional changes in contact cocultures only when combined with interleukin-6 blockade. This provides the first in-depth investigation into how human myofibroblasts modulate hiPSC-CMs function, identifying interleukin-6 and connexin43 as paracrine- and contact-mediators respectively, and highlighting their potential as targets for reducing arrhythmic risk in cardiac cell therapy.
Collapse
Affiliation(s)
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - John H McVey
- School of Biosciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
11
|
Hu Z, Hua X, Mo X, Chang Y, Chen X, Xu Z, Tao M, Hu G, Song J. Inhibition of NETosis via PAD4 alleviated inflammation in giant cell myocarditis. iScience 2023; 26:107162. [PMID: 37534129 PMCID: PMC10391931 DOI: 10.1016/j.isci.2023.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 04/11/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023] Open
Abstract
Giant cell myocarditis (GCM) is a rare, usually rapidly progressive, and potentially fatal disease. Detailed inflammatory responses remain unknown, in particular the formation of multinucleate giant cells. We performed single-cell RNA sequencing analysis on 15,714 Cd45+ cells extracted from the hearts of GCM rats and normal rats. NETosis has been found to contribute to the GCM process. An inhibitor of NETosis, GSK484, alleviated GCM inflammation in vivo. MPO (a marker of neutrophils) and H3cit (a marker of NETosis) were expressed at higher levels in patients with GCM than in patients with DCM and healthy controls. Imaging mass cytometry analysis revealed that immune cell types within multinucleate giant cells included CD4+ T cells, CD8+ T cells, neutrophils, and macrophages but not B cells. We elucidated the role of NETosis in GCM pathogenesis, which may serve as a potential therapeutic target in the clinic.
Collapse
Affiliation(s)
- Zhan Hu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, Tianjin 300071, China
| | - Xiuxue Mo
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, Tianjin 300071, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, Tianjin 300071, China
| | - Zhenyu Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Pathology Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Mengtao Tao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, Tianjin 300071, China
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, Tianjin 300071, China
| |
Collapse
|
12
|
Sonkawade SD, Xu S, Kim M, Nepali S, Karambizi VG, Sexton S, Turowski SG, Li K, Spernyak JA, Lovell JF, George A, Suwal S, Sharma UC, Pokharel S. Phospholipid Encapsulation of an Anti-Fibrotic Endopeptide to Enhance Cellular Uptake and Myocardial Retention. Cells 2023; 12:1589. [PMID: 37371059 PMCID: PMC10296995 DOI: 10.3390/cells12121589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Cardioprotective effects of N-acetyl-ser-asp-lys-pro (Ac-SDKP) have been reported in preclinical models of myocardial remodeling. However, the rapid degradation of this endogenous peptide in vivo limits its clinical use. METHOD To prolong its bioavailability, Ac-SDKP was encapsulated by phosphocholine lipid bilayers (liposomes) similar to mammalian cell membranes. The physical properties of the liposome structures were assessed by dynamic light scattering and scanning electron microscopy. The uptake of Ac-SDKP by RAW 264.7 macrophages and human and murine primary cardiac fibroblasts was confirmed by fluorescence microscopy and flow cytometry. Spectrum computerized tomography and competitive enzyme-linked immunoassays were performed to measure the ex vivo cardiac biodistribution of Ac-SDKP. The biological effects of this novel synthetic compound were examined in cultured macrophages and cardiac fibroblasts and in a murine model of acute myocardial infarction induced by permanent coronary artery ligation. RESULTS A liposome formulation resulted in the greater uptake of Ac-SDKP than the naked peptide by cultured RAW 264.7 macrophages and cardiac fibroblasts. Liposome-delivered Ac-SDKP decreased fibroinflammatory genes in cultured cardiac fibroblasts co-treated with TGF-β1 and macrophages stimulated with LPS. Serial tissue and serum immunoassays showed the high bioavailability of Ac-SDKP in mouse myocardium and in circulation. Liposome-delivered Ac-SDKP improved cardiac function and reduced myocardial fibroinflammatory responses in mice with acute myocardial infarction. CONCLUSION Encapsulation of Ac-SDKP in a cell membrane-like phospholipid bilayer enhances its plasma and tissue bioavailability and offers cardioprotection against ischemic myocardial injury. Future clinical trials can use this novel approach to test small protective endogenous peptides in myocardial remodeling.
Collapse
Affiliation(s)
- Swati D. Sonkawade
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.D.S.)
- Laboratory Medicine, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Shirley Xu
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.D.S.)
- Laboratory Medicine, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Minhyung Kim
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Sarmila Nepali
- Laboratory Medicine, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Victoire-Grace Karambizi
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.D.S.)
- Laboratory Medicine, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Sandra Sexton
- Laboratory Animal Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Steven G. Turowski
- Translational Imaging Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Kunpeng Li
- Department of Physiology and Biophysics, Case Western Reserve School of Medicine, Cleveland, OH 44106, USA
| | - Joseph A. Spernyak
- Translational Imaging Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Anthony George
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Sujit Suwal
- Department of Chemistry, Buffalo State University, Buffalo, NY 14222, USA
| | - Umesh C. Sharma
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.D.S.)
| | - Saraswati Pokharel
- Laboratory Medicine, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
13
|
Diekmann J, Bengel FM. Cardiac Applications of Fibroblast Activation Protein Imaging. PET Clin 2023:S1556-8598(23)00030-5. [PMID: 37117121 DOI: 10.1016/j.cpet.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Several promising applications of cardiac molecular fibroblast activation protein (FAP) imaging are emerging. Myocardial fibrosis plays a key role in the complex process of cardiac remodeling and can lead to adverse clinical outcomes such as left ventricular dysfunction, propensity to arrhythmias, and reduction of perfusion. If fibrosis becomes irreversible, patients can develop heart failure. Therefore identification and early fibrosis treatment is highly warranted. FAP-targeted imaging enables new insights into pathogenesis and treatment response in various cardiac diseases such as myocardial infarction, heart failure or systemic diseases being a new selective biomarker.
Collapse
Affiliation(s)
- Johanna Diekmann
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Street. 1, Hannover 30625, Germany.
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Street. 1, Hannover 30625, Germany
| |
Collapse
|
14
|
Nelson AR, Bugg D, Davis J, Saucerman JJ. Network model integrated with multi-omic data predicts MBNL1 signals that drive myofibroblast activation. iScience 2023; 26:106502. [PMID: 37091233 PMCID: PMC10119756 DOI: 10.1016/j.isci.2023.106502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/09/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
RNA-binding protein muscleblind-like1 (MBNL1) was recently identified as a central regulator of cardiac wound healing and myofibroblast activation. To identify putative MBNL1 targets, we integrated multiple genome-wide screens with a fibroblast network model. We expanded the model to include putative MBNL1-target interactions and recapitulated published experimental results to validate new signaling modules. We prioritized 14 MBNL1 targets and developed novel fibroblast signaling modules for p38 MAPK, Hippo, Runx1, and Sox9 pathways. We experimentally validated MBNL1 regulation of p38 expression in mouse cardiac fibroblasts. Using the expanded fibroblast model, we predicted a hierarchy of MBNL1 regulated pathways with strong influence on αSMA expression. This study lays a foundation to explore the network mechanisms of MBNL1 signaling central to fibrosis.
Collapse
Affiliation(s)
- Anders R. Nelson
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, 5th Floor, PO Box 800735, Charlottesville, VA 22908-0735, USA
| | - Darrian Bugg
- Department of Lab Medicine & Pathology, University of Washington, 1959 NE Pacific Street Box 357470, Seattle, WA 98195, USA
| | - Jennifer Davis
- Department of Lab Medicine & Pathology, University of Washington, 1959 NE Pacific Street Box 357470, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, PO Box 355061, Seattle, WA 98195-5061, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, 850 Republican Street, PO Box 358056, Seattle, WA 98109, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA 22903 , USA
| |
Collapse
|
15
|
Lugrin J, Parapanov R, Milano G, Cavin S, Debonneville A, Krueger T, Liaudet L. The systemic deletion of interleukin-1α reduces myocardial inflammation and attenuates ventricular remodeling in murine myocardial infarction. Sci Rep 2023; 13:4006. [PMID: 36899010 PMCID: PMC10006084 DOI: 10.1038/s41598-023-30662-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Myocardial inflammation following myocardial infarction (MI) is crucial for proper myocardial healing, yet, dysregulated inflammation may promote adverse ventricular remodeling and heart failure. IL-1 signaling contributes to these processes, as shown by dampened inflammation by inhibition of IL-1β or the IL-1 receptor. In contrast, the potential role of IL-1α in these mechanisms has received much less attention. Previously described as a myocardial-derived alarmin, IL-1α may also act as a systemically released inflammatory cytokine. We therefore investigated the effect of IL-1α deficiency on post-MI inflammation and ventricular remodeling in a murine model of permanent coronary occlusion. In the first week post-MI, global IL-1α deficiency (IL-1α KO mice) led to decreased myocardial expression of IL-6, MCP-1, VCAM-1, hypertrophic and pro-fibrotic genes, and reduced infiltration with inflammatory monocytes. These early changes were associated with an attenuation of delayed left ventricle (LV) remodeling and systolic dysfunction after extensive MI. In contrast to systemic Il1a-KO, conditional cardiomyocyte deletion of Il1a (CmIl1a-KO) did not reduce delayed LV remodeling and systolic dysfunction. In conclusion, systemic Il1a-KO, but not Cml1a-KO, protects against adverse cardiac remodeling after MI due to permanent coronary occlusion. Hence, anti-IL-1α therapies could be useful to attenuate the detrimental consequences of post-MI myocardial inflammation.
Collapse
Affiliation(s)
- J Lugrin
- Service of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Service of Thoracic Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Laboratoire de Chirurgie Thoracique, Centre des Laboratoires d'Epalinges, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| | - R Parapanov
- Service of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Thoracic Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - G Milano
- Department Coeur-Vaisseaux, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - S Cavin
- Service of Thoracic Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Debonneville
- Service of Thoracic Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - T Krueger
- Service of Thoracic Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - L Liaudet
- Service of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Dobrev D, Heijman J, Hiram R, Li N, Nattel S. Inflammatory signalling in atrial cardiomyocytes: a novel unifying principle in atrial fibrillation pathophysiology. Nat Rev Cardiol 2023; 20:145-167. [PMID: 36109633 PMCID: PMC9477170 DOI: 10.1038/s41569-022-00759-w] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 02/08/2023]
Abstract
Inflammation has been implicated in atrial fibrillation (AF), a very common and clinically significant cardiac rhythm disturbance, but its precise role remains poorly understood. Work performed over the past 5 years suggests that atrial cardiomyocytes have inflammatory signalling machinery - in particular, components of the NLRP3 (NACHT-, LRR- and pyrin domain-containing 3) inflammasome - that is activated in animal models and patients with AF. Furthermore, work in animal models suggests that NLRP3 inflammasome activation in atrial cardiomyocytes might be a sufficient and necessary condition for AF occurrence. In this Review, we evaluate the evidence for the role and pathophysiological significance of cardiomyocyte NLRP3 signalling in AF. We first summarize the evidence for a role of inflammation in AF and review the biochemical properties of the NLRP3 inflammasome, as defined primarily in studies of classic inflammation. We then briefly consider the broader evidence for a role of inflammatory signalling in heart disease, particularly conditions that predispose individuals to develop AF. We provide a detailed discussion of the available information about atrial cardiomyocyte NLRP3 inflammasome signalling in AF and related conditions and evaluate the possibility that similar signalling might be important in non-myocyte cardiac cells. We then review the evidence on the role of active resolution of inflammation and its potential importance in suppressing AF-related inflammatory signalling. Finally, we consider the therapeutic potential and broader implications of this new knowledge and highlight crucial questions to be addressed in future research.
Collapse
Affiliation(s)
- Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Roddy Hiram
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
| | - Na Li
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany.
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada.
- IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
17
|
Song J, Zeng Y, Zhu M, Zhu G, Chen C, Jin M, Wang J, Song Y. Comprehensive analysis of transcriptome-wide m 6A methylome in the lung tissues of mice with acute particulate matter exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113810. [PMID: 35777340 DOI: 10.1016/j.ecoenv.2022.113810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) exposure is identified as a critical risk factor for chronic airway diseases, but the biological mechanism of PM-induced lung damage was not fully elucidated. The m6A methylation, as the main member of epigenetic modifications, has been found to play an important role in different pulmonary diseases, but its regulatory effect on PM-induced lung damage remains unknown. This study firstly used the methylated RNA immunoprecipitation sequencing (MeRIP-seq) to reveal the m6A methylome profiles in the lung tissues of mice with acute PM exposure. Compared with the normal control, a total of 2210 differentially hypermethylated m6A peaks within 1879 genes and 1278 differentially hypomethylated m6A peaks within 1153 genes were identified in the PM-exposed group. Conjoint analysis of MeRIP-seq and high-throughput sequencing for RNA (RNA-seq) data predicated several potential pathways including MAPK signaling pathway, cell senescence, and cell cycle. Four m6A-modified differentially expressed genes (IL-1a, IL-1b, ADAM-8, and HMOX-1) were selected for validation using MeRIP-qPCR. Furthermore, the m6A-modified IL-1a promoted PM-induced inflammation via regulating MAPK signaling pathway. These results provide a new insight into the biological mechanism of PM-induced lung damage, and help us to develop new methods to prevent and treat PM-induced adverse health effects.
Collapse
Affiliation(s)
- Juan Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yingying Zeng
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Mengchan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Guiping Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Meiling Jin
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China.
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| |
Collapse
|
18
|
Mia MM, Cibi DM, Ghani SABA, Singh A, Tee N, Sivakumar V, Bogireddi H, Cook SA, Mao J, Singh MK. Loss of Yap/Taz in cardiac fibroblasts attenuates adverse remodelling and improves cardiac function. Cardiovasc Res 2022; 118:1785-1804. [PMID: 34132780 DOI: 10.1093/cvr/cvab205] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023] Open
Abstract
AIMS Fibrosis is associated with all forms of adult cardiac diseases including myocardial infarction (MI). In response to MI, the heart undergoes ventricular remodelling that leads to fibrotic scar due to excessive deposition of extracellular matrix mostly produced by myofibroblasts. The structural and mechanical properties of the fibrotic scar are critical determinants of heart function. Yes-associated protein (Yap) and transcriptional coactivator with PDZ-binding motif (Taz) are the key effectors of the Hippo signalling pathway and are crucial for cardiomyocyte proliferation during cardiac development and regeneration. However, their role in cardiac fibroblasts, regulating post-MI fibrotic and fibroinflammatory response, is not well established. METHODS AND RESULTS Using mouse model, we demonstrate that Yap/Taz are activated in cardiac fibroblasts after MI and fibroblasts-specific deletion of Yap/Taz using Col1a2Cre(ER)T mice reduces post-MI fibrotic and fibroinflammatory response and improves cardiac function. Consistently, Yap overexpression elevated post-MI fibrotic response. Gene expression profiling shows significant downregulation of several cytokines involved in post-MI cardiac remodelling. Furthermore, Yap/Taz directly regulate the promoter activity of pro-fibrotic cytokine interleukin-33 (IL33) in cardiac fibroblasts. Blocking of IL33 receptor ST2 using the neutralizing antibody abrogates the Yap-induced pro-fibrotic response in cardiac fibroblasts. We demonstrate that the altered fibroinflammatory programme not only affects the nature of cardiac fibroblasts but also the polarization as well as infiltration of macrophages in the infarcted hearts. Furthermore, we demonstrate that Yap/Taz act downstream of both Wnt and TGFβ signalling pathways in regulating cardiac fibroblasts activation and fibroinflammatory response. CONCLUSION We demonstrate that Yap/Taz play an important role in controlling MI-induced cardiac fibrosis by modulating fibroblasts proliferation, transdifferentiation into myofibroblasts, and fibroinflammatory programme.
Collapse
Affiliation(s)
- Masum M Mia
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857Singapore
| | - Dasan Mary Cibi
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857Singapore
| | | | - Anamika Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857Singapore
| | - Nicole Tee
- National Heart Research Institute Singapore, National Heart Centre Singapore, 169609Singapore
| | - Viswanathan Sivakumar
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857Singapore
| | - Hanumakumar Bogireddi
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857Singapore
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, 169609Singapore
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Manvendra K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, 169609Singapore
| |
Collapse
|
19
|
Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells 2022; 11:cells11091386. [PMID: 35563692 PMCID: PMC9102016 DOI: 10.3390/cells11091386] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 12/14/2022] Open
Abstract
The adult mammalian heart contains abundant interstitial and perivascular fibroblasts that expand following injury and play a reparative role but also contribute to maladaptive fibrotic remodeling. Following myocardial infarction, cardiac fibroblasts undergo dynamic phenotypic transitions, contributing to the regulation of inflammatory, reparative, and angiogenic responses. This review manuscript discusses the mechanisms of regulation, roles and fate of fibroblasts in the infarcted heart. During the inflammatory phase of infarct healing, the release of alarmins by necrotic cells promotes a pro-inflammatory and matrix-degrading fibroblast phenotype that may contribute to leukocyte recruitment. The clearance of dead cells and matrix debris from the infarct stimulates anti-inflammatory pathways and activates transforming growth factor (TGF)-β cascades, resulting in the conversion of fibroblasts to α-smooth muscle actin (α-SMA)-expressing myofibroblasts. Activated myofibroblasts secrete large amounts of matrix proteins and form a collagen-based scar that protects the infarcted ventricle from catastrophic complications, such as cardiac rupture. Moreover, infarct fibroblasts may also contribute to cardiac repair by stimulating angiogenesis. During scar maturation, fibroblasts disassemble α-SMA+ stress fibers and convert to specialized cells that may serve in scar maintenance. The prolonged activation of fibroblasts and myofibroblasts in the infarct border zone and in the remote remodeling myocardium may contribute to adverse remodeling and to the pathogenesis of heart failure. In addition to their phenotypic plasticity, fibroblasts exhibit remarkable heterogeneity. Subsets with distinct phenotypic profiles may be responsible for the wide range of functions of fibroblast populations in infarcted and remodeling hearts.
Collapse
|
20
|
Fouladseresht H, Ghamar Talepoor A, Eskandari N, Norouzian M, Ghezelbash B, Beyranvand MR, Nejadghaderi SA, Carson-Chahhoud K, Kolahi AA, Safiri S. Potential Immune Indicators for Predicting the Prognosis of COVID-19 and Trauma: Similarities and Disparities. Front Immunol 2022; 12:785946. [PMID: 35126355 PMCID: PMC8815083 DOI: 10.3389/fimmu.2021.785946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Although cellular and molecular mediators of the immune system have the potential to be prognostic indicators of disease outcomes, temporal interference between diseases might affect the immune mediators, and make them difficult to predict disease complications. Today one of the most important challenges is predicting the prognosis of COVID-19 in the context of other inflammatory diseases such as traumatic injuries. Many diseases with inflammatory properties are usually polyphasic and the kinetics of inflammatory mediators in various inflammatory diseases might be different. To find the most appropriate evaluation time of immune mediators to accurately predict COVID-19 prognosis in the trauma environment, researchers must investigate and compare cellular and molecular alterations based on their kinetics after the start of COVID-19 symptoms and traumatic injuries. The current review aimed to investigate the similarities and differences of common inflammatory mediators (C-reactive protein, procalcitonin, ferritin, and serum amyloid A), cytokine/chemokine levels (IFNs, IL-1, IL-6, TNF-α, IL-10, and IL-4), and immune cell subtypes (neutrophil, monocyte, Th1, Th2, Th17, Treg and CTL) based on the kinetics between patients with COVID-19 and trauma. The mediators may help us to accurately predict the severity of COVID-19 complications and follow up subsequent clinical interventions. These findings could potentially help in a better understanding of COVID-19 and trauma pathogenesis.
Collapse
Affiliation(s)
- Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Norouzian
- Department of Laboratory Sciences, School of Allied Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Beyranvand
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Aria Nejadghaderi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kristin Carson-Chahhoud
- Australian Centre for Precision Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safiri
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
MicroRNA-214 in Health and Disease. Cells 2021; 10:cells10123274. [PMID: 34943783 PMCID: PMC8699121 DOI: 10.3390/cells10123274] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenously expressed, non-coding RNA molecules that mediate the post-transcriptional repression and degradation of mRNAs by targeting their 3′ untranslated region (3′-UTR). Thousands of miRNAs have been identified since their first discovery in 1993, and miR-214 was first reported to promote apoptosis in HeLa cells. Presently, miR-214 is implicated in an extensive range of conditions such as cardiovascular diseases, cancers, bone formation and cell differentiation. MiR-214 has shown pleiotropic roles in contributing to the progression of diseases such as gastric and lung cancers but may also confer cardioprotection against excessive fibrosis and oxidative damage. These contrasting functions are achieved through the diverse cast of miR-214 targets. Through silencing or overexpressing miR-214, the detrimental effects can be attenuated, and the beneficial effects promoted in order to improve health outcomes. Therefore, discovering novel miR-214 targets and understanding how miR-214 is dysregulated in human diseases may eventually lead to miRNA-based therapies. MiR-214 has also shown promise as a diagnostic biomarker in identifying breast cancer and coronary artery disease. This review provides an up-to-date discussion of miR-214 literature by describing relevant roles in health and disease, areas of disagreement, and the future direction of the field.
Collapse
|
22
|
Cytokine-Mediated Alterations of Human Cardiac Fibroblast's Secretome. Int J Mol Sci 2021; 22:ijms222212262. [PMID: 34830141 PMCID: PMC8617966 DOI: 10.3390/ijms222212262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
Fibroblasts contribute to approximately 20% of the non-cardiomyocytic cells in the heart. They play important roles in the myocardial adaption to stretch, inflammation, and other pathophysiological conditions. Fibroblasts are a major source of extracellular matrix (ECM) proteins whose production is regulated by cytokines, such as TNF-α or TGF-β. The resulting myocardial fibrosis is a hallmark of pathological remodeling in dilated cardiomyopathy (DCM). Therefore, in the present study, the secretome and corresponding transcriptome of human cardiac fibroblasts from patients with DCM was investigated under normal conditions and after TNF-α or TGF-β stimulation. Secreted proteins were quantified via mass spectrometry and expression of genes coding for secreted proteins was analyzed via Affymetrix Transcriptome Profiling. Thus, we provide comprehensive proteome and transcriptome data on the human cardiac fibroblast’s secretome. In the secretome of quiescent fibroblasts, 58% of the protein amount belonged to the ECM fraction. Interestingly, cytokines were responsible for 5% of the total protein amount in the secretome and up to 10% in the corresponding transcriptome. Furthermore, cytokine gene expression and secretion were upregulated upon TNF-α stimulation, while collagen secretion levels were elevated after TGF-β treatment. These results suggest that myocardial fibroblasts contribute to pro-fibrotic and to inflammatory processes in response to extracellular stimuli.
Collapse
|
23
|
Almuwaqqat Z, Kim JH, Garcia M, Ko YA, Moazzami K, Lima B, Sullivan S, Alkhalaf J, Mehta A, Shah AJ, Hussain MS, Pearce BD, Bremner JD, Waller EK, Vaccarino V, Quyyumi AA. Associations Between Inflammation, Cardiovascular Regenerative Capacity, and Cardiovascular Events: A Cohort Study. Arterioscler Thromb Vasc Biol 2021; 41:2814-2822. [PMID: 34551591 PMCID: PMC8675629 DOI: 10.1161/atvbaha.121.316574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022]
Abstract
Objective Circulating progenitor cells possess immune modulatory properties and might mitigate inflammation that is characteristic of patients with coronary artery disease. We hypothesized that patients with fewer circulating progenitor cells (CPCs) will have higher inflammatory markers and worse outcomes. Approach and Results Patients with stable coronary artery disease were enrolled in a prospective study enumerating CPCs as CD (cluster of differentiation)-34-expressing mononuclear cells (CD34+) and inflammation as levels of IL (interleukin)-6 and high-sensitivity CRP (C-reactive protein) levels. Patients were followed for 5 years for the end points of death and myocardial infarction with repeat inflammatory biomarkers measured after a median of 2 years. In the entire cohort of 392 patients, IL-6 and high-sensitivity CRP levels remained unchanged (0.3+/-2.4 pg/mL and 0.1+/-1.0 mg/L; P=0.45) after 2 years. CPC counts (log-transformed) were inversely correlated with the change in IL-6 levels (r, -0.17; P<0.001). Using linear regression, IL-6 and high-sensitivity CRP levels declined by -0.59 (95% CI, -0.90 to -0.20) pg/mL and -0.13 (-0.28 to 0.01) mg/L per 1 log higher CPC counts after adjustment for the demographic and clinical variables, as well as medications. Using Cox models adjusted for these risk factors, a rise in 1 pg/mL of IL-6 was associated with a 11% (95% CI, 9-13) greater risk of death/myocardial infarction. We found that the change in IL6 level partly (by 40%) mediated the higher risk of adverse events among those with low CPC counts. Conclusions Reduced cardiovascular regenerative capacity is independently associated with progressive inflammation in patients with coronary artery disease that in turn is associated with poor outcomes.
Collapse
Affiliation(s)
- Zakaria Almuwaqqat
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Jeong Hwan Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Mariana Garcia
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Kasra Moazzami
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Bruno Lima
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Samaah Sullivan
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Jamil Alkhalaf
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Anurag Mehta
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Amit J. Shah
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
- Atlanta VA Medical Center, Decatur, Georgia
| | - Mohammad S. Hussain
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Brad D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - J. Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
- Atlanta VA Medical Center, Decatur, Georgia
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Edmund K. Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Viola Vaccarino
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Arshed A. Quyyumi
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
24
|
Liu S, Tang L, Zhao X, Nguyen B, Heallen TR, Li M, Wang J, Wang J, Martin JF. Yap Promotes Noncanonical Wnt Signals From Cardiomyocytes for Heart Regeneration. Circ Res 2021; 129:782-797. [PMID: 34424032 DOI: 10.1161/circresaha.121.318966] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (S.L., T.R.H., J.F.M.)
| | - Li Tang
- Department of Molecular Physiology and Biophysics (L.T., B.N., J.F.M.), Baylor College of Medicine, One Baylor Plaza, Houston, TX.,School of Computer Science and Engineering, Central South University, Changsha, Hunan, China (L.T., Jianxin Wang)
| | - Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston (X.Z., J.W.)
| | - Bao Nguyen
- Department of Molecular Physiology and Biophysics (L.T., B.N., J.F.M.), Baylor College of Medicine, One Baylor Plaza, Houston, TX
| | - Todd R Heallen
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (S.L., T.R.H., J.F.M.)
| | | | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China (L.T., Jianxin Wang)
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston (X.Z., J.W.)
| | - James F Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (S.L., T.R.H., J.F.M.).,Department of Molecular Physiology and Biophysics (L.T., B.N., J.F.M.), Baylor College of Medicine, One Baylor Plaza, Houston, TX.,Cardiovascular Research Institute (J.F.M.), Baylor College of Medicine, One Baylor Plaza, Houston, TX
| |
Collapse
|
25
|
Langer LB, Hess A, Korkmaz Z, Tillmanns J, Reffert LM, Bankstahl JP, Bengel FM, Thackeray JT, Ross TL. Molecular imaging of fibroblast activation protein after myocardial infarction using the novel radiotracer [ 68Ga]MHLL1. Am J Cancer Res 2021; 11:7755-7766. [PMID: 34335962 PMCID: PMC8315078 DOI: 10.7150/thno.51419] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Myocardial infarction (MI) evokes an organized remodeling process characterized by the activation and transdifferentiation of quiescent cardiac fibroblasts to generate a stable collagen rich scar. Early fibroblast activation may be amenable to targeted therapy, but is challenging to identify in vivo. We aimed to non-invasively image active fibrosis by targeting the fibroblast activation protein (FAP) expressed by activated (myo)fibroblasts, using a novel positron emission tomography (PET) radioligand [68Ga]MHLL1 after acute MI. Methods: One-step chemical synthesis and manual as well as module-based radiolabeling yielded [68Ga]MHLL1. Binding characteristics were evaluated in murine and human FAP-transfected cells, and stability tested in human serum. Biodistribution in healthy animals was interrogated by dynamic PET imaging, and metabolites were measured in blood and urine. The temporal pattern of FAP expression was determined by serial PET imaging at 7 d and 21 d after coronary artery ligation in mice as percent injected dose per gram (%ID/g). PET measurements were validated by ex vivo autoradiography and immunostaining for FAP and inflammatory macrophages. Results: [68Ga]MHLL1 displayed specific uptake in murine and human FAP-positive cells (p = 0.0208). In healthy mice the tracer exhibited favorable imaging characteristics, with low blood pool retention and dominantly renal clearance. At 7 d after coronary artery ligation, [68Ga]MHLL1 uptake was elevated in the infarct relative to the non-infarcted remote myocardium (1.3 ± 0.3 vs. 1.0 ± 0.2 %ID/g, p < 0.001) which persisted to 21 d after MI (1.3 ± 0.4 vs. 1.1 ± 0.4 %ID/g, p = 0.013). Excess unlabeled compound blocked tracer accumulation in both infarct and non-infarct remote myocardium regions (p < 0.001). Autoradiography and histology confirmed the regional uptake of [68Ga]MHLL1 in the infarct and especially border zone regions, as identified by Masson trichrome collagen staining. Immunostaining further delineated persistent FAP expression at 7 d and 21 d post-MI in the border zone, consistent with tracer distribution in vivo. Conclusion: The simplified synthesis of [68Ga]MHLL1 bears promise for non-invasive characterization of fibroblast activation protein early in remodeling after MI.
Collapse
|
26
|
Liu B, Wang B, Zhang X, Lock R, Nash T, Vunjak-Novakovic G. Cell type-specific microRNA therapies for myocardial infarction. Sci Transl Med 2021; 13:eabd0914. [PMID: 33568517 PMCID: PMC8848299 DOI: 10.1126/scitranslmed.abd0914] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Current interventions fail to recover injured myocardium after infarction and prompt the need for development of cardioprotective strategies. Of increasing interest is the therapeutic use of microRNAs to control gene expression through specific targeting of mRNAs. In this Review, we discuss current microRNA-based therapeutic strategies, describing the outcomes and limitations of key microRNAs with a focus on target cell types and molecular pathways. Last, we offer a perspective on the outlook of microRNA therapies for myocardial infarction, highlighting the outstanding challenges and emerging strategies.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xiaokan Zhang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Trevor Nash
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Columbia University, New York, NY 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
27
|
Cavalli G, Colafrancesco S, Emmi G, Imazio M, Lopalco G, Maggio MC, Sota J, Dinarello CA. Interleukin 1α: a comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev 2021; 20:102763. [PMID: 33482337 DOI: 10.1016/j.autrev.2021.102763] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
The interleukin (IL)-1 family member IL-1α is a ubiquitous and pivotal pro-inflammatory cytokine. The IL-1α precursor is constitutively present in nearly all cell types in health, but is released upon necrotic cell death as a bioactive mediator. IL-1α is also expressed by infiltrating myeloid cells within injured tissues. The cytokine binds the IL-1 receptor 1 (IL-1R1), as does IL-1β, and induces the same pro-inflammatory effects. Being a bioactive precursor released upon tissue damage and necrotic cell death, IL-1α is central to the pathogenesis of numerous conditions characterized by organ or tissue inflammation. These include conditions affecting the lung and respiratory tract, dermatoses and inflammatory skin disorders, systemic sclerosis, myocarditis, pericarditis, myocardial infarction, coronary artery disease, inflammatory thrombosis, as well as complex multifactorial conditions such as COVID-19, vasculitis and Kawasaki disease, Behcet's syndrome, Sjogren Syndrome, and cancer. This review illustrates the clinical relevance of IL-1α to the pathogenesis of inflammatory diseases, as well as the rationale for the targeted inhibition of this cytokine for treatment of these conditions. Three biologics are available to reduce the activities of IL-1α; the monoclonal antibody bermekimab, the IL-1 soluble receptor rilonacept, and the IL-1 receptor antagonist anakinra. These advances in mechanistic understanding and therapeutic management make it incumbent on physicians to be aware of IL-1α and of the opportunity for therapeutic inhibition of this cytokine in a broad spectrum of diseases.
Collapse
Affiliation(s)
- Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy, and Rare Diseases, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy.
| | - Serena Colafrancesco
- Dipartimento of Clinical Sciences (Internal Medicine, Anesthesia and Resuscitation, and Cardiology), Rheumatology Unit, Sapienza University of Rome, Rome, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Firenze, Italy
| | - Massimo Imazio
- University Division of Cardiology, Cardiovascular and Throracic Department, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Giuseppe Lopalco
- Department of Emergency and Organ Transplantation, Rheumatology Unit, University of Bari, Bari, Italy
| | - Maria Cristina Maggio
- Department of Health Promotion, Maternal and Infantile Care, Department of Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Jurgen Sota
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
28
|
Burke RM, Burgos Villar KN, Small EM. Fibroblast contributions to ischemic cardiac remodeling. Cell Signal 2021; 77:109824. [PMID: 33144186 PMCID: PMC7718345 DOI: 10.1016/j.cellsig.2020.109824] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022]
Abstract
The heart can respond to increased pathophysiological demand through alterations in tissue structure and function 1 . This process, called cardiac remodeling, is particularly evident following myocardial infarction (MI), where the blockage of a coronary artery leads to widespread death of cardiac muscle. Following MI, necrotic tissue is replaced with extracellular matrix (ECM), and the remaining viable cardiomyocytes (CMs) undergo hypertrophic growth. ECM deposition and cardiac hypertrophy are thought to represent an adaptive response to increase structural integrity and prevent cardiac rupture. However, sustained ECM deposition leads to the formation of a fibrotic scar that impedes cardiac compliance and can induce lethal arrhythmias. Resident cardiac fibroblasts (CFs) are considered the primary source of ECM molecules such as collagens and fibronectin, particularly after becoming activated by pathologic signals. CFs contribute to multiple phases of post-MI heart repair and remodeling, including the initial response to CM death, immune cell (IC) recruitment, and fibrotic scar formation. The goal of this review is to describe how resident fibroblasts contribute to the healing and remodeling that occurs after MI, with an emphasis on how fibroblasts communicate with other cell types in the healing infarct scar 1 –6 .
Collapse
Affiliation(s)
- Ryan M Burke
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America
| | - Kimberly N Burgos Villar
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America; Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, United States of America.
| |
Collapse
|
29
|
Thomas TP, Grisanti LA. The Dynamic Interplay Between Cardiac Inflammation and Fibrosis. Front Physiol 2020; 11:529075. [PMID: 33041853 PMCID: PMC7522448 DOI: 10.3389/fphys.2020.529075] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Heart failure is a leading cause of death worldwide. While there are multiple etiologies contributing to the development of heart failure, all cause result in impairments in cardiac function that is characterized by changes in cardiac remodeling and compliance. Fibrosis is associated with nearly all forms of heart failure and is an important contributor to disease pathogenesis. Inflammation also plays a critical role in the heart and there is a large degree of interconnectedness between the inflammatory and fibrotic response. This review discusses the cellular and molecular mechanisms contributing to inflammation and fibrosis and the interplay between the two.
Collapse
Affiliation(s)
- Toby P Thomas
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
30
|
Relja B, Land WG. Damage-associated molecular patterns in trauma. Eur J Trauma Emerg Surg 2020; 46:751-775. [PMID: 31612270 PMCID: PMC7427761 DOI: 10.1007/s00068-019-01235-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
In 1994, the "danger model" argued that adaptive immune responses are driven rather by molecules released upon tissue damage than by the recognition of "strange" molecules. Thus, an alternative to the "self versus non-self recognition model" has been provided. The model, which suggests that the immune system discriminates dangerous from safe molecules, has established the basis for the future designation of damage-associated molecular patterns (DAMPs), a term that was coined by Walter G. Land, Seong, and Matzinger. The pathological importance of DAMPs is barely somewhere else evident as in the posttraumatic or post-surgical inflammation and regeneration. Since DAMPs have been identified to trigger specific immune responses and inflammation, which is not necessarily detrimental but also regenerative, it still remains difficult to describe their "friend or foe" role in the posttraumatic immunogenicity and healing process. DAMPs can be used as biomarkers to indicate and/or to monitor a disease or injury severity, but they also may serve as clinically applicable parameters for optimized indication of the timing for, i.e., secondary surgeries. While experimental studies allow the detection of these biomarkers on different levels including cellular, tissue, and circulatory milieu, this is not always easily transferable to the human situation. Thus, in this review, we focus on the recent literature dealing with the pathophysiological importance of DAMPs after traumatic injury. Since dysregulated inflammation in traumatized patients always implies disturbed resolution of inflammation, so-called model of suppressing/inhibiting inducible DAMPs (SAMPs) will be very briefly introduced. Thus, an update on this topic in the field of trauma will be provided.
Collapse
Affiliation(s)
- Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590, Frankfurt, Germany.
| | - Walter Gottlieb Land
- Molecular ImmunoRheumatology, INSERM UMR_S1109, Laboratory of Excellence Transplantex, University of Strasbourg, Strasbourg, France
| |
Collapse
|
31
|
Cardiac fibroblast activation during myocardial infarction wound healing: Fibroblast polarization after MI. Matrix Biol 2020; 91-92:109-116. [PMID: 32446909 DOI: 10.1016/j.matbio.2020.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022]
Abstract
Cardiac wound healing after myocardial infarction (MI) evolves from pro-inflammatory to anti-inflammatory to reparative responses, and the cardiac fibroblast is a central player during the entire transition. The fibroblast mirrors changes seen in the left ventricle infarct by undergoing a continuum of polarization phenotypes that follow pro-inflammatory, anti-inflammatory, and pro-scar producing profiles. The development of each phenotype transition is contingent upon the MI environment into which the fibroblast enters. In this mini-review, we summarize our current knowledge regarding cardiac fibroblast activation during MI and highlight key areas where gaps remain.
Collapse
|
32
|
Herzberg D, Strobel P, Ramirez-Reveco A, Werner M, Bustamante H. Chronic Inflammatory Lameness Increases Cytokine Concentration in the Spinal Cord of Dairy Cows. Front Vet Sci 2020; 7:125. [PMID: 32185190 PMCID: PMC7058553 DOI: 10.3389/fvets.2020.00125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Lameness in dairy cows is an extremely painful multifactorial condition that affects the welfare of animals and economically impacts the dairy industry worldwide. The aim of this study was to determine the profile of cytokines in the spinal cord dorsal horn of dairy cows with painful chronic inflammatory lameness. Concentrations of 10 cytokines were measured in the spinal cord of seven adult dairy cows with chronic lameness and seven adult dairy cows with no lameness. In all cows lameness was evaluated using a mobility scoring system and registered accordingly. Immediately after euthanasia the spinal cord was removed and 20 cm of lumbar segments (L2–L5) were obtained. After dorsal horn removal and processing, cytokine quantification of tumor necrosis factor-alpha (TNF-α), interleukin-1alpha (IL-1α), interleukin 13 (IL-13), chemokine-10 (CXCL10/IP-10), chemokine-9 (CXCL9/MIG), interferon-alpha (IFN-α), interferon-gamma (IFN-γ), interleukin-21 (IL-21), interleukin-36ra (IL-36ra), and macrophage inflammatory protein-1 beta (MIP-1β) was performed using a multiplex array. Lame cows had higher concentrations of TNF-α, IL-1-α, IL-13, CXCL10, CXCL9, IFN-α, and IFN-γ in their dorsal horn compared to non-lame cows, while IL-21 concentration was decreased. No differences in IL-36ra and MIP-1β concentrations between lame and non-lame cows were observed. Painful chronic inflammation of the hoof in dairy cows leads to a marked increase in cytokine concentration in the dorsal horn of the spinal cord, which could represent a state of neuroinflammation of the Central Nervous System (CNS).
Collapse
Affiliation(s)
- Daniel Herzberg
- Faculty of Veterinary Sciences, Graduate School, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Strobel
- Faculty of Veterinary Sciences, Animal Science Institute, Universidad Austral de Chile, Valdivia, Chile
| | - Alfredo Ramirez-Reveco
- Faculty of Veterinary Sciences, Animal Science Institute, Universidad Austral de Chile, Valdivia, Chile
| | - Marianne Werner
- Faculty of Veterinary Sciences, Animal Science Institute, Universidad Austral de Chile, Valdivia, Chile
| | - Hedie Bustamante
- Faculty of Veterinary Sciences, Veterinary Clinical Sciences Institute, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
33
|
Abstract
Cardiac fibrosis is a pathological condition that occurs after injury and during aging. Currently, there are limited means to effectively reduce or reverse fibrosis. Key to identifying methods for curbing excess deposition of extracellular matrix is a better understanding of the cardiac fibroblast, the cell responsible for collagen production. In recent years, the diversity and functions of these enigmatic cells have been gradually revealed. In this review, I outline current approaches for identifying and classifying cardiac fibroblasts. An emphasis is placed on new insights into the heterogeneity of these cells as determined by lineage tracing and single-cell sequencing in development, adult, and disease states. These recent advances in our understanding of the fibroblast provide a platform for future development of novel therapeutics to combat cardiac fibrosis.
Collapse
Affiliation(s)
- Michelle D Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA;
| |
Collapse
|
34
|
Rikard SM, Athey TL, Nelson AR, Christiansen SLM, Lee JJ, Holmes JW, Peirce SM, Saucerman JJ. Multiscale Coupling of an Agent-Based Model of Tissue Fibrosis and a Logic-Based Model of Intracellular Signaling. Front Physiol 2019; 10:1481. [PMID: 31920691 PMCID: PMC6928129 DOI: 10.3389/fphys.2019.01481] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Wound healing and fibrosis following myocardial infarction (MI) is a dynamic process involving many cell types, extracellular matrix (ECM), and inflammatory cues. As both incidence and survival rates for MI increase, management of post-MI recovery and associated complications are an increasingly important focus. Complexity of the wound healing process and the need for improved therapeutics necessitate a better understanding of the biochemical cues that drive fibrosis. To study the progression of cardiac fibrosis across spatial and temporal scales, we developed a novel hybrid multiscale model that couples a logic-based differential equation (LDE) model of the fibroblast intracellular signaling network with an agent-based model (ABM) of multi-cellular tissue remodeling. The ABM computes information about cytokine and growth factor levels in the environment including TGFβ, TNFα, IL-1β, and IL-6, which are passed as inputs to the LDE model. The LDE model then computes the network signaling state of individual cardiac fibroblasts within the ABM. Based on the current network state, fibroblasts make decisions regarding cytokine secretion and deposition and degradation of collagen. Simulated fibroblasts respond dynamically to rapidly changing extracellular environments and contribute to spatial heterogeneity in model predicted fibrosis, which is governed by many parameters including cell density, cell migration speeds, and cytokine levels. Verification tests confirmed that predictions of the coupled model and network model alone were consistent in response to constant cytokine inputs and furthermore, a subset of coupled model predictions were validated with in vitro experiments with human cardiac fibroblasts. This multiscale framework for cardiac fibrosis will allow for systematic screening of the effects of molecular perturbations in fibroblast signaling on tissue-scale extracellular matrix composition and organization.
Collapse
Affiliation(s)
- S Michaela Rikard
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Thomas L Athey
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Anders R Nelson
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | - Steven L M Christiansen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Jia-Jye Lee
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States.,Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
35
|
Oatmen KE, Cull E, Spinale FG. Heart failure as interstitial cancer: emergence of a malignant fibroblast phenotype. Nat Rev Cardiol 2019; 17:523-531. [DOI: 10.1038/s41569-019-0286-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
|
36
|
Forte E, Furtado MB, Rosenthal N. The interstitium in cardiac repair: role of the immune-stromal cell interplay. Nat Rev Cardiol 2019; 15:601-616. [PMID: 30181596 DOI: 10.1038/s41569-018-0077-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac regeneration, that is, restoration of the original structure and function in a damaged heart, differs from tissue repair, in which collagen deposition and scar formation often lead to functional impairment. In both scenarios, the early-onset inflammatory response is essential to clear damaged cardiac cells and initiate organ repair, but the quality and extent of the immune response vary. Immune cells embedded in the damaged heart tissue sense and modulate inflammation through a dynamic interplay with stromal cells in the cardiac interstitium, which either leads to recapitulation of cardiac morphology by rebuilding functional scaffolds to support muscle regrowth in regenerative organisms or fails to resolve the inflammatory response and produces fibrotic scar tissue in adult mammals. Current investigation into the mechanistic basis of homeostasis and restoration of cardiac function has increasingly shifted focus away from stem cell-mediated cardiac repair towards a dynamic interplay of cells composing the less-studied interstitial compartment of the heart, offering unexpected insights into the immunoregulatory functions of cardiac interstitial components and the complex network of cell interactions that must be considered for clinical intervention in heart diseases.
Collapse
Affiliation(s)
| | | | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA. .,National Heart and Lung Institute, Imperial College London, Faculty of Medicine, Imperial Centre for Translational and Experimental Medicine, London, UK.
| |
Collapse
|
37
|
Cardiac Fibroblast p38 MAPK: A Critical Regulator of Myocardial Remodeling. J Cardiovasc Dev Dis 2019; 6:jcdd6030027. [PMID: 31394846 PMCID: PMC6787752 DOI: 10.3390/jcdd6030027] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
The cardiac fibroblast is a remarkably versatile cell type that coordinates inflammatory, fibrotic and hypertrophic responses in the heart through a complex array of intracellular and intercellular signaling mechanisms. One important signaling node that has been identified involves p38 MAPK; a family of kinases activated in response to stress and inflammatory stimuli that modulates multiple aspects of cardiac fibroblast function, including inflammatory responses, myofibroblast differentiation, extracellular matrix turnover and the paracrine induction of cardiomyocyte hypertrophy. This review explores the emerging importance of the p38 MAPK pathway in cardiac fibroblasts, describes the molecular mechanisms by which it regulates the expression of key genes, and highlights its potential as a therapeutic target for reducing adverse myocardial remodeling.
Collapse
|
38
|
Corsetti G, Yuan Z, Romano C, Chen-Scarabelli C, Fanzani A, Pasini E, Dioguardi FS, Onorati F, Linardi D, Knight R, Patel H, Faggian G, Saravolatz L, Scarabelli TM. Urocortin Induces Phosphorylation of Distinct Residues of Signal Transducer and Activator of Transcription 3 (STAT3) via Different Signaling Pathways. Med Sci Monit Basic Res 2019; 25:139-152. [PMID: 31073117 PMCID: PMC6532558 DOI: 10.12659/msmbr.914611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Urocortin (Ucn) is a member of the hypothalamic corticotrophin-releasing factor family and has been shown to reduce cell death in the heart caused by ischemia/reperfusion (I/R) injury. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor known to function as a pro-survival and anti-apoptotic factor, whose activation depends on a variety of cytokines, including IL-6. A recent study demonstrated that urocortin induced IL-6 release from cardiomyocytes in a CRF-R2-dependent manner, suggesting a possible link between CRF-R2 stimulation and STAT3 activation. MATERIAL AND METHODS Experimental work was carried out in HL-1 cardiac myocytes exposed to serum starvation for 16-24 h. RESULTS Ucn stimulation led to IL-6 expression and release from mouse atrial HL-1 cardiomyocytes. Ucn treatment led to rapid phosphorylation of JAK2, which was blocked by the protein synthesis inhibitor cycloheximide or the JAK inhibitor AG490. Urocortin treatment induced STAT3 phosphorylation at Y705 and S727 through transactivation of JAK2 in an IL-6-dependent manner, but had no effect on STAT1 activity. Kinase inhibition experiments revealed that urocortin induces STAT3 S727 phosphorylation through ERK1/2 and Y705 phosphorylation through Src tyrosine kinase. In line with this finding, urocortin failed to induce phosphorylation of Y705 residue in SYF cells bearing null mutation of Src, while phosphorylation of S727 residue was unchanged. CONCLUSIONS Here, we have shown that Ucn induces activation of STAT3 through diverging signaling pathways. Full understanding of these signaling pathways will help fully exploit the cardioprotective properties of endogenous and exogenous Ucn.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Zhaokan Yuan
- Center for Heart and Vessel Preclinical Studies, Department of Internal Medicine, St. John Hospital and Medical Center, Wayne State University, Detroit, MI, USA
| | - Claudia Romano
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Carol Chen-Scarabelli
- Center for Heart and Vessel Preclinical Studies, Department of Internal Medicine, St. John Hospital and Medical Center, Wayne State University, Detroit, MI, USA
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Evasio Pasini
- Scientific Clinical Institutes Maugeri, Cardiac Rehabilitation Lumezzane Institute, Brescia, Italy
| | | | - Francesco Onorati
- Division of Cardiovascular Surgery, Verona University Hospital, Verona, Italy
| | - Daniele Linardi
- Division of Cardiovascular Surgery, Verona University Hospital, Verona, Italy
| | - Richard Knight
- Medical Research Council (MRC) Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Hemang Patel
- Department of Internal Medicine, General Medical Education, Ascension St. John Hospital, Detroit, MI, USA.,Department of Internal Medicine, Wayne State University - School of Medicine, Detroit, MI, USA
| | - Giuseppe Faggian
- Division of Cardiovascular Surgery, Verona University Hospital, Verona, Italy
| | - Louis Saravolatz
- Department of Medicine, Ascension St John Hospital and Wayne State University School of Medicine, Detroit, MI, USA
| | - Tiziano M Scarabelli
- Center for Heart and Vessel Preclinical Studies, Department of Internal Medicine, St. John Hospital and Medical Center, Wayne State University, Detroit, MI, USA
| |
Collapse
|
39
|
Effects of Curcumin Nanoparticles in Isoproterenol-Induced Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7847142. [PMID: 31205590 PMCID: PMC6530192 DOI: 10.1155/2019/7847142] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 12/30/2022]
Abstract
Curcumin has anti-inflammatory, antioxidative, anticarcinogenic, and cardiovascular protective effects. Our study is aimed at evaluating the effects of pretreatment with curcumin nanoparticles (CCNP) compared to conventional curcumin (CC) on isoproterenol (ISO) induced myocardial infarction (MI) in rats. Fifty-six Wistar-Bratislava white rats were randomly divided into eight groups of seven rats each. Curcumin and curcumin nanoparticles were given by gavage in three different doses (100 mg/kg body weight (bw), 150 mg/kg bw, and 200 mg/kg bw) for 15 days. The MI was induced on day 13 using 100 mg/kg bw ISO administered twice, with the second dose 24 h after the initial dose. The blood samples were taken 24 h after the last dose of ISO. The antioxidant, anti-inflammatory, and cardioprotective effects were evaluated in all groups. All doses of CC and CCNP offered a cardioprotective effect by preventing creatine kinase-MB leakage from cardiomyocytes, with the best result for CCNP. All the oxidative stress parameters were significantly improved after CCNP compared to CC pretreatment. CCNP was more efficient than CC in limiting the increase in inflammatory cytokine levels (such as TNF-α, IL-6, IL-1α, IL-1β, MCP-1, and RANTES) after MI. MMP-2 and MMP-9 levels decreased more after pretreatment with CCNP than with CC. CCNP better prevented myocardial necrosis and reduced interstitial edema and neutrophil infiltration than CC, on histopathological examination. Therefore, improving the bioactivity of curcumin by nanotechnology may help limit cardiac injury after myocardial infarction.
Collapse
|
40
|
Zhong S, Yan H, Chen Z, Li Y, Shen Y, Wang Y, Li L, Sheng S, Wang Y. Overexpression of TAF1L Promotes Cell Proliferation, Migration and Invasion in Esophageal Squamous Cell Carcinoma. J Cancer 2019; 10:979-989. [PMID: 30854104 PMCID: PMC6400815 DOI: 10.7150/jca.26504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 12/05/2018] [Indexed: 02/05/2023] Open
Abstract
Currently, it reported that TAF1L gene mutation is found in a number of carcinomas, but its pathophysiological function has not been well studied. We focused on investigating expressive levels of TAF1L gene and protein in esophageal squamous cell carcinoma (ESCC) with two tissue microarrays, forty fresh paired ESCC and paracancer samples using immunohistochemistry, real-time PCR or Western blot in this study. Furthermore, we executed TAF1L silence with siRNA in ESCC cell lines to evaluate effects of TAF1L expression on cell proliferation, migration and invasion of ESCC via CCK-8, wound healing and transwell chamber assays. Moreover, key proteins related to ESCC development were also analyzed by Western blot. Results from this study showed that the expression of TAF1L mRNA and protein in ESCC tissues were significantly higher than that in matched paracancer tissues. However, its abnormal expression was not associated with other clinic features, such as the age, gender and pathological grade, except of TNM-N stage. Furthermore, the proliferation, migration and invasion of ESCC cells were inhibited after TAF1L gene silencing. As a consequence, the expression of c-Myc and phosphorylated Akt in esophageal squamous cell line after TAF1L-siRNA treatment were inversely decreased, while p53 was increased significantly, compared those to control group. Taken together, the results from this study suggest that TAF1L gene might be served as an oncogene, and its overexpression could accelerate to the tumorigenesis of ESCC via promoting the malignant cell proliferation and tumor metastasis.
Collapse
Affiliation(s)
- Shan Zhong
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
- Laboratory of Molecular Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Hongfei Yan
- Pathology Laboratory, Shantou University Medical College, Cancer Hospital, Shantou, Guangdong 515041, P. R. China
| | - Zhengshan Chen
- Laboratory of Molecular Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Yanpeng Li
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Yanqin Shen
- Laboratory of Molecular Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Yongyu Wang
- Laboratory of Molecular Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Lan Li
- Laboratory of Molecular Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Sitong Sheng
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Yun Wang
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
- ✉ Corresponding author: Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University (Xili Campus), No. 1066, Xueyuan Ave, Nanshan Distract, Shenzhen, Guangdong 518055, P.R. China. Email address:
| |
Collapse
|
41
|
Bolívar S, Anfossi R, Humeres C, Vivar R, Boza P, Muñoz C, Pardo-Jimenez V, Olivares-Silva F, Díaz-Araya G. IFN-β Plays Both Pro- and Anti-inflammatory Roles in the Rat Cardiac Fibroblast Through Differential STAT Protein Activation. Front Pharmacol 2018; 9:1368. [PMID: 30555324 PMCID: PMC6280699 DOI: 10.3389/fphar.2018.01368] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/07/2018] [Indexed: 01/05/2023] Open
Abstract
Cardiac fibroblasts (CFs) contribute to theinflammatory response to tissue damage, secreting both pro- and anti-inflammatory cytokines and chemokines. Interferon beta (IFN-β) induces the phosphorylation of signal transducer and activator of transcription (STAT) proteins through the activation of its own receptor, modulating the secretion of cytokines and chemokines which regulate inflammation. However, the role of IFN-β and STAT proteins in modulating the inflammatory response of CF remains unknown. CF were isolated from adult male rats and subsequently stimulated with IFN-β to evaluate the participation of STAT proteins in secreting chemokines, cytokines, cell adhesion proteins expression and in their capacity to recruit neutrophils. In addition, in CF in which the TRL4 receptor was pre-activated, the effect of INF-β on the aforementioned responses was also evaluated. Cardiac fibroblasts stimulation with IFN-β showed an increase in STAT1, STAT2, and STAT3 phosphorylation. IFN-β stimulation through STAT1 activation increased proinflammatory chemokines MCP-1 and IP-10 secretion, whereas IFN-β induced activation of STAT3 increased cytokine secretion of anti-inflammatory IL-10. Moreover, in TLR4-activated CF, IFN-β through STAT2 and/or STAT3, produced an anti-inflammatory effect, reducing pro-IL-1β, TNF-α, IL-6, MCP-1, and IP-10 secretion; and decreasing neutrophil recruitment by decreasing ICAM-1 and VCAM-1 expression. Altogether, our results indicate that IFN-β exerts both pro-inflammatory and anti-inflammatory effects in non-stimulated CF, through differential activation of STAT proteins. When CF were previously treated with an inflammatory agent such as TLR-4 activation, IFN-β effects were predominantly anti-inflammatory.
Collapse
Affiliation(s)
- Samir Bolívar
- Faculty of Chemistry and Pharmacy, Atlantic University, Barranquilla, Colombia.,Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Renatto Anfossi
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Claudio Humeres
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Raúl Vivar
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Pía Boza
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Claudia Muñoz
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Viviana Pardo-Jimenez
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Francisco Olivares-Silva
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Guillermo Díaz-Araya
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
42
|
Peña C, Vargas R, Hernandez-Fonseca JP, Mosquera J. Cardiac myofibroblast induces decreased expression of major histocompatibility complex class II (Ia) on rat monocyte/macrophages. Tissue Cell 2018; 54:72-79. [PMID: 30309513 DOI: 10.1016/j.tice.2018.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/08/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
The up-regulation of HLA antigens is important during heart inflammatory events and myofibroblasts may modulate the expression of this molecule in tissues. To test this possibility, the effect of cardiac myofibroblast:macrophage contact and the production of myofibroblast inhibitor factor(s) on the macrophage HLA (Ia) expression were studied. Listeria monocytogenes-elicited Ia + peritoneal macrophages (high Ia expression) were co-cultured with cardiac myofibroblasts for 3 and 7 days (myofibroblast contact). Proteosa peptone-elicited macrophages (low Ia expression) were cultured for 3 days with interferon gamma (INF-γ) and myofibroblast conditioned medium (FCM). Ia expression was analyzed by immunofluorescence and by radioimmune assay. Myofibroblast contact induced decreased expression of Ia molecule on macrophages (p < 0.001). This was confirmed by the radioimmune analysis in macrophage: myofibroblast co-cultures (p < 0.001). Double staining for Ia and CD14 showed that only CD14 positive cells (macrophages) expressed Ia molecule. FCM was capable of diminishing Ia expression induced by INF-γ on macrophages (p < 0.001). Decreased Ia macrophage expression induced by myofibroblasts could be important in the heart inflammation's resolution, probably involving Ia redistribution on cell: cell contact and myofibroblast inhibitor factor production.
Collapse
Affiliation(s)
- Caterina Peña
- Cátedra de Genética, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.
| | - Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.
| | - Juan Pablo Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.
| | - Jesús Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.
| |
Collapse
|
43
|
Smykiewicz P, Segiet A, Keag M, Żera T. Proinflammatory cytokines and ageing of the cardiovascular-renal system. Mech Ageing Dev 2018; 175:35-45. [DOI: 10.1016/j.mad.2018.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022]
|
44
|
Ford K, Latic N, Slavic S, Zeitz U, Dolezal M, Andrukhov O, Erben RG, Andrukhova O. Lack of vitamin D signalling per se does not aggravate cardiac functional impairment induced by myocardial infarction in mice. PLoS One 2018; 13:e0204803. [PMID: 30273386 PMCID: PMC6166969 DOI: 10.1371/journal.pone.0204803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/20/2018] [Indexed: 12/18/2022] Open
Abstract
Epidemiological studies have linked vitamin D deficiency to an increased incidence of myocardial infarction and support a role for vitamin D signalling in the pathophysiology of myocardial infarction. Vitamin D deficiency results in the development of secondary hyperparathyroidism, however, the role of secondary hyperparathyroidism in the pathophysiology of myocardial infarction is not known. Here, we aimed to explore further the secondary hyperparathyroidism independent role of vitamin D signalling in the pathophysiology of myocardial infarction by inducing experimental myocardial infarction in 3-month-old, male, wild-type mice and in mice lacking a functioning vitamin D receptor. In order to prevent secondary hyperparathyroidism in vitamin D receptor mutant mice, all mice were maintained on a rescue diet enriched with calcium, phosphorus, and lactose. Surprisingly, survival rate, cardiac function as measured by echocardiography and intra-cardiac catheterisation and cardiomyocyte size were indistinguishable between normocalcaemic vitamin D receptor mutant mice and wild-type controls, 2 and 8 weeks post-myocardial infarction. In addition, the myocardial infarction-induced inflammatory response was similar in vitamin D receptor mutants and wild-type mice, as evidenced by a comparable upregulation in cardiac interleukin-1-β and tumor-necrosis-factor-α mRNA abundance and similar elevations in circulating interleukin-1-β and tumor-necrosis-factor-α. Our data suggest that the lack of vitamin D signalling in normocalcaemic vitamin D receptor mutants has no major detrimental effect on cardiac function and outcome post-myocardial infarction. Our study may have important clinical implications because it suggests that the secondary hyperparathyroidism induced by vitamin D deficiency, rather than the lack of vitamin D signalling per se, may negatively impact cardiac function post-myocardial infarction.
Collapse
Affiliation(s)
- Kristopher Ford
- Dept. of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nejla Latic
- Dept. of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Svetlana Slavic
- Dept. of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ute Zeitz
- Dept. of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Marlies Dolezal
- Dept. of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Reinhold G. Erben
- Dept. of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Olena Andrukhova
- Dept. of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
45
|
Bageghni SA, Hemmings KE, Zava N, Denton CP, Porter KE, Ainscough JFX, Drinkhill MJ, Turner NA. Cardiac fibroblast-specific p38α MAP kinase promotes cardiac hypertrophy via a putative paracrine interleukin-6 signaling mechanism. FASEB J 2018; 32:4941-4954. [PMID: 29601781 PMCID: PMC6629170 DOI: 10.1096/fj.201701455rr] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Recent studies suggest that cardiac fibroblast-specific p38α MAPK contributes to the development of cardiac hypertrophy, but the underlying mechanism is unknown. Our study used a novel fibroblast-specific, tamoxifen-inducible p38α knockout (KO) mouse line to characterize the role of fibroblast p38α in modulating cardiac hypertrophy, and we elucidated the mechanism. Myocardial injury was induced in tamoxifen-treated Cre-positive p38α KO mice or control littermates via chronic infusion of the β-adrenergic receptor agonist isoproterenol. Cardiac function was assessed by pressure-volume conductance catheter analysis and was evaluated for cardiac hypertrophy at tissue, cellular, and molecular levels. Isoproterenol infusion in control mice promoted overt cardiac hypertrophy and dysfunction (reduced ejection fraction, increased end systolic volume, increased cardiac weight index, increased cardiomyocyte area, increased fibrosis, and up-regulation of myocyte fetal genes and hypertrophy-associated microRNAs). Fibroblast-specific p38α KO mice exhibited marked protection against myocardial injury, with isoproterenol-induced alterations in cardiac function, histology, and molecular markers all being attenuated. In vitro mechanistic studies determined that cardiac fibroblasts responded to damaged myocardium by secreting several paracrine factors known to induce cardiomyocyte hypertrophy, including IL-6, whose secretion was dependent upon p38α activity. In conclusion, cardiac fibroblast p38α contributes to cardiomyocyte hypertrophy and cardiac dysfunction, potentially via a mechanism involving paracrine fibroblast-to-myocyte IL-6 signaling.-Bageghni, S. A., Hemmings, K. E., Zava, N., Denton, C. P., Porter, K. E., Ainscough, J. F. X., Drinkhill, M. J., Turner, N. A. Cardiac fibroblast-specific p38α MAP kinase promotes cardiac hypertrophy via a putative paracrine interleukin-6 signaling mechanism.
Collapse
Affiliation(s)
- Sumia A. Bageghni
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; and
| | - Karen E. Hemmings
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; and
| | - Ngonidzashe Zava
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; and
| | - Christopher P. Denton
- Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Karen E. Porter
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; and
| | - Justin F. X. Ainscough
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; and
| | - Mark J. Drinkhill
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; and
| | - Neil A. Turner
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; and
| |
Collapse
|
46
|
Lefort C, Benoist L, Chadet S, Piollet M, Heraud A, Babuty D, Baron C, Ivanes F, Angoulvant D. Stimulation of P2Y11 receptor modulates cardiac fibroblasts secretome toward immunomodulatory and protective roles after Hypoxia/Reoxygenation injury. J Mol Cell Cardiol 2018; 121:212-222. [PMID: 30031814 DOI: 10.1016/j.yjmcc.2018.07.245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022]
Abstract
Cardiac fibroblasts are important regulators of myocardial structure and function. Their implications in pathological processes such as Ischemia/Reperfusion are well characterized. Cardiac fibroblasts respond to stress by excessive proliferation and secretion of pro-inflammatory cytokines and other factors, e.g. ATP, leading to purinergic receptors activation. P2Y11 receptor (P2Y11R) is an ATP-sensitive GPCR playing an immunomodulatory role in human dendritic cells (DC). We hypothesized that P2Y11R stimulation modulated the pro-inflammatory responses of human cardiac fibroblasts (HCF) to Hypoxia/Reoxygenation (H/R) mainly by acting on their secretome. P2Y11R stimulation in HCF at the onset of reoxygenation significantly limited H/R-induced proliferation (-19%) and pro-inflammatory cytokines and ATP secretion (-44% and -83% respectively). Exposure of DC to HCF secretome increased their expression of CD83, CD25 and CD86, suggesting a switch from immature to mature phenotype. Under LPS stimulation, DC had a pro-inflammatory profile (high IL-12/IL-10 ratio) that was decreased by HCF secretome (-3,8-fold), indicating induction of a tolerogenic profile. Moreover, P2Y11R inhibition in HCF led to high IL-12 secretion in DC, suggesting that the immunomodulatory effect of HCF secretome is P2Y11R-dependant. HCF secretome reduced H/R-induced cardiomyocytes death (-23%) through RISK pathway activation. P2Y11R inhibition in HCF induced a complete loss of HCF secretome protective effect, highlighting the cardioprotective role of P2Y11R. Our data demonstrated paracrine interactions between HCF, cardiomyocytes and DC following H/R, suggesting a key role of HCF in the cellular responses to reperfusion. These results also demonstrated a beneficial role of P2Y11R in HCF during H/R and strongly support the hypothesis that P2Y11R is a modulator of I/R injury.
Collapse
Affiliation(s)
- Claudie Lefort
- EA 4245 "Transplantation, Immunologie et Inflammation", Loire Valley Cardiovascular Collaboration & Université de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Lauriane Benoist
- EA 4245 "Transplantation, Immunologie et Inflammation", Loire Valley Cardiovascular Collaboration & Université de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Stéphanie Chadet
- EA 4245 "Transplantation, Immunologie et Inflammation", Loire Valley Cardiovascular Collaboration & Université de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Marie Piollet
- EA 4245 "Transplantation, Immunologie et Inflammation", Loire Valley Cardiovascular Collaboration & Université de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Audrey Heraud
- EA 4245 "Transplantation, Immunologie et Inflammation", Loire Valley Cardiovascular Collaboration & Université de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Dominique Babuty
- EA 4245 "Transplantation, Immunologie et Inflammation", Loire Valley Cardiovascular Collaboration & Université de Tours, 10 Boulevard Tonnellé, 37032 Tours, France; Service de Cardiologie, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Christophe Baron
- EA 4245 "Transplantation, Immunologie et Inflammation", Loire Valley Cardiovascular Collaboration & Université de Tours, 10 Boulevard Tonnellé, 37032 Tours, France; Service de Néphrologie et d'Immunologie Clinique, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Fabrice Ivanes
- EA 4245 "Transplantation, Immunologie et Inflammation", Loire Valley Cardiovascular Collaboration & Université de Tours, 10 Boulevard Tonnellé, 37032 Tours, France; Service de Cardiologie, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France.
| | - Denis Angoulvant
- EA 4245 "Transplantation, Immunologie et Inflammation", Loire Valley Cardiovascular Collaboration & Université de Tours, 10 Boulevard Tonnellé, 37032 Tours, France; Service de Cardiologie, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| |
Collapse
|
47
|
Sun XQ, Abbate A, Bogaard HJ. Role of cardiac inflammation in right ventricular failure. Cardiovasc Res 2018; 113:1441-1452. [PMID: 28957536 DOI: 10.1093/cvr/cvx159] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022] Open
Abstract
Right ventricular failure (RVF) is the main determinant of mortality in patients with pulmonary arterial hypertension (PAH). Although the exact pathophysiology underlying RVF remains unclear, inflammation may play an important role, as it does in left heart failure. Perivascular pulmonary artery and systemic inflammation is relatively well studied and known to contribute to the initiation and maintenance of the pulmonary vascular insult in PAH. However, less attention has been paid to the role of cardiac inflammation in RVF and PAH. Consistent with many other types of heart failure, cardiac inflammation, triggered by systemic and local stressors, has been shown in RVF patients as well as in RVF animal models. RV inflammation likely contributes to impaired RV contractility, maladaptive remodelling and a vicious circle between RV and pulmonary vascular injury. Although the potential to improve RV function through anti-inflammatory therapy has not been tested, this approach has been applied clinically in left ventricular failure patients, with variable success. Because inflammation plays a dual role in the development of both pulmonary vascular pathology and RVF, anti-inflammatory therapies may have a potential double benefit in patients with PAH and associated RVF.
Collapse
Affiliation(s)
- Xiao-Qing Sun
- Department of Pulmonology, VU University Medical Center/Institute for Cardiovascular Research, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Antonio Abbate
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Harm-Jan Bogaard
- Department of Pulmonology, VU University Medical Center/Institute for Cardiovascular Research, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
48
|
Abstract
This review summarizes a short list of currently discussed trauma-induced danger-associated molecular patterns (DAMP). Due to the bivalent character and often pleiotropic effects of a DAMP, it is difficult to describe its "friend or foe" role in post-traumatic inflammation and regeneration, both systemically as well locally in tissues. DAMP can be used as biomarkers to indicate or monitor disease or injury severity, but also may serve as clinically applicable parameters for better indication and timing of surgery. Due to the inflammatory processes at the local tissue level or the systemic level, the precise role of DAMP is not always clear to define. While in vitro and experimental studies allow for the detection of these biomarkers at the different levels of an organism-cellular, tissue, circulation-this is not always easily transferable to the human setting. Increased knowledge exploring the dual role of DAMP after trauma, and concentrating on their nuclear functions, transcriptional targets, release mechanisms, cellular sources, multiple functions, their interactions and potential therapeutic targeting is warranted.
Collapse
Affiliation(s)
- Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany.
| | - Katharina Mörs
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany
| |
Collapse
|
49
|
Ri A, Hagiyama M, Inoue T, Yoneshige A, Kimura R, Murakami Y, Ito A. Progression of Pulmonary Emphysema and Continued Increase in Ectodomain Shedding of Cell Adhesion Molecule 1 After Cessation of Cigarette Smoke Exposure in Mice. Front Cell Dev Biol 2018; 6:52. [PMID: 29892598 PMCID: PMC5985719 DOI: 10.3389/fcell.2018.00052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
Pulmonary emphysema usually arises in cigarette smokers, and often progresses after smoking cessation and even in ex-smokers. Lung-epithelial cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member, is extracellularly shed to produce a proapoptotic C-terminal fragment (CTF) within the cell and contribute to the development of emphysema. Here, we made an ex-smoker model using C57BL/6 mice; mice (6-week-old; 5 mice per group) were exposed to passive smoke of eight cigarettes twice a day 5 days a week until 18 weeks of age, and were then left untreated until 30 weeks of age. We calculated the mean linear intercept (Lm) and the alveolar septal thickness in the lung histologic sections to estimate the alveolar space dilatation. At 18 weeks of age, Lm was marginally enlarged (P = 0.023) with a marked increase in the septal thickness (P < 0.001) in comparison with age-matched control mice (5 mice per group), while at 30 weeks, the increase in Lm was much more prominent (P = 0.006) and the septal thickness was normalized, suggesting that emphysema progressed with septal remodeling during smoking cessation. Western blot analyses of the lungs were performed for CADM1, a possible CADM1 sheddase ADAM10, an epithelial marker pan-cytokeratin, and a myofibroblastic marker α-smooth muscle actin to estimate the expression levels of CTF and ADAM10 per epithelial cell and the levels of pan-cytokeratin and αSMA per tissue. CADM1 shedding was increased in the treated mice than in control mice at both ages, in association with an increase in the CTF level at 30 weeks (P = 0.021). In total of the treated and control mice of 30 weeks of age, Lm was positively correlated with the CTF and ADAM10 levels, and pan-cytokeratin was negatively correlated with CTF, suggesting an involvement of CADM1 shedding in emphysema progression. Positive correlations were also found between CTF and ADAM10, and between ADAM10 and αSMA, suggesting that increased septal myofibroblasts might be involved in increased CADM1 shedding. Taken together, persisting increase in ectodomain shedding of CADM1 appeared to contribute to the progression of emphysema in ex-smokers, and might be accounted for by alveolar septal remodeling.
Collapse
Affiliation(s)
- Aritoshi Ri
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Man Hagiyama
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Takao Inoue
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Azusa Yoneshige
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Ryuichiro Kimura
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| |
Collapse
|
50
|
Muñoz-Rodríguez C, Fernández S, Osorio JM, Olivares F, Anfossi R, Bolivar S, Humeres C, Boza P, Vivar R, Pardo-Jimenez V, Hemmings KE, Turner NA, Díaz-Araya G. Expression and function of TLR4- induced B1R bradykinin receptor on cardiac fibroblasts. Toxicol Appl Pharmacol 2018; 351:46-56. [PMID: 29775649 DOI: 10.1016/j.taap.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/05/2018] [Accepted: 05/10/2018] [Indexed: 12/22/2022]
Abstract
Cardiac fibroblasts (CF) are key cells for maintaining extracellular matrix (ECM) protein homeostasis in the heart, and for cardiac repair through CF-to-cardiac myofibroblast (CMF) differentiation. Additionally, CF play an important role in the inflammatory process after cardiac injury, and they express Toll like receptor 4 (TLR4), B1 and B2 bradykinin receptors (B1R and B2R) which are important in the inflammatory response. B1R and B2R are induced by proinflammatory cytokines and their activation by bradykinin (BK: B2R agonist) or des-arg-kallidin (DAKD: B1R agonist), induces NO and PGI2 production which is key for reducing collagen I levels. However, whether TLR4 activation regulates bradykinin receptor expression remains unknown. CF were isolated from human, neonatal rat and adult mouse heart. B1R mRNA expression was evaluated by qRT-PCR, whereas B1R, collagen, COX-2 and iNOS protein levels were evaluated by Western Blot. NO and PGI2 were evaluated by commercial kits. We report here that in CF, TLR4 activation increased B1R mRNA and protein levels, as well as COX-2 and iNOS levels. B1R mRNA levels were also induced by interleukin-1α via its cognate receptor IL-1R1. In LPS-pretreated CF the DAKD treatment induced higher responses with respect to those observed in non LPS-pretreated CF, increasing PGI2 secretion and NO production; and reducing collagen I protein levels in CF. In conclusion, no significant response to DAKD was observed (due to very low expression of B1R in CF) - but pre-activation of TLR4 in CF, conditions that significantly enhanced B1R expression, led to an additional response of DAKD.
Collapse
Affiliation(s)
- Claudia Muñoz-Rodríguez
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Samuel Fernández
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - José Miguel Osorio
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Francisco Olivares
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Renatto Anfossi
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Samir Bolivar
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Claudio Humeres
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Pía Boza
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Raúl Vivar
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Viviana Pardo-Jimenez
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Karen E Hemmings
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Neil A Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Guillermo Díaz-Araya
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile; Advanced Center of Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile.
| |
Collapse
|