1
|
van Drie RWA, van de Wouw J, Zandbergen LM, Dehairs J, Swinnen JV, Mulder MT, Verhaar MC, MaassenVanDenBrink A, Duncker DJ, Sorop O, Merkus D. Vasodilator reactive oxygen species ameliorate perturbed myocardial oxygen delivery in exercising swine with multiple comorbidities. Basic Res Cardiol 2024; 119:869-887. [PMID: 38796544 PMCID: PMC11461570 DOI: 10.1007/s00395-024-01055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
Multiple common cardiovascular comorbidities produce coronary microvascular dysfunction. We previously observed in swine that a combination of diabetes mellitus (DM), high fat diet (HFD) and chronic kidney disease (CKD) induced systemic inflammation, increased oxidative stress and produced coronary endothelial dysfunction, altering control of coronary microvascular tone via loss of NO bioavailability, which was associated with an increase in circulating endothelin (ET). In the present study, we tested the hypotheses that (1) ROS scavenging and (2) ETA+B-receptor blockade improve myocardial oxygen delivery in the same female swine model. Healthy female swine on normal pig chow served as controls (Normal). Five months after induction of DM (streptozotocin, 3 × 50 mg kg-1 i.v.), hypercholesterolemia (HFD) and CKD (renal embolization), swine were chronically instrumented and studied at rest and during exercise. Sustained hyperglycemia, hypercholesterolemia and renal dysfunction were accompanied by systemic inflammation and oxidative stress. In vivo ROS scavenging (TEMPOL + MPG) reduced myocardial oxygen delivery in DM + HFD + CKD swine, suggestive of a vasodilator influence of endogenous ROS, while it had no effect in Normal swine. In vitro wire myography revealed a vasodilator role for hydrogen peroxide (H2O2) in isolated small coronary artery segments from DM + HFD + CKD, but not Normal swine. Increased catalase activity and ceramide production in left ventricular myocardial tissue of DM + HFD + CKD swine further suggest that increased H2O2 acts as vasodilator ROS in the coronary microvasculature. Despite elevated ET-1 plasma levels in DM + HFD + CKD swine, ETA+B blockade did not affect myocardial oxygen delivery in Normal or DM + HFD + CKD swine. In conclusion, loss of NO bioavailability due to 5 months exposure to multiple comorbidities is partially compensated by increased H2O2-mediated coronary vasodilation.
Collapse
Affiliation(s)
- R W A van Drie
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - L M Zandbergen
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, 81377 LMU, Munich, Germany
| | - J Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium
| | - J V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium
| | - M T Mulder
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A MaassenVanDenBrink
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - D J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - O Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - D Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, 81377 LMU, Munich, Germany.
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany.
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), University Clinic Munich, LMU, Munich, Germany.
| |
Collapse
|
2
|
Ali N, Taher A, Islam N, Sarna NZ, Islam F. Evaluation of the relationship between xanthine oxidase activity and metabolic syndrome in a population group in Bangladesh. Sci Rep 2024; 14:20380. [PMID: 39223331 PMCID: PMC11369145 DOI: 10.1038/s41598-024-71733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024] Open
Abstract
Xanthine oxidase (XO) is an enzyme that converts hypoxanthine into xanthine and xanthine into uric acid, which is then eliminated by the kidneys. Serum XO has been linked to diabetes, hypertension, liver dysfunction, and cardiovascular diseases. However, limited information exists on the relationship between serum XO activity and MetS. This study aimed to analyze the relationship between XO activity and metabolic syndrome (MetS) and its components in an adult population group in Bangladesh A total of 601 participants aged ≥18 years were included in the study. MetS was defined based on the criteria set by the National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATP III). Serum XO activity was measured using the enzyme-linked immunosorbent assay (ELISA), while other biochemical parameters were measured using colorimetric methods. The relationship between serum XO and MetS levels was determined through multivariate logistic regression analysis. Serum XO activity was found to be significantly higher in females (6.17 ± 3.77 U/L) as compared to males (4.00 ± 2.77 U/L) (p < 0.001). Furthermore, participants with MetS had significantly higher mean levels of serum XO (5.34 ± 3.39 U/L) than those without MetS (3.86 ± 2.90 U/L) (p < 0.001). The prevalence of MetS and its components, such as blood pressure and blood glucose increased across the XO quartiles (p < 0.001). Regression analysis indicated that XO activity was significantly and independently associated with the prevalence of MetS (at least p < 0.05 for all cases) and its components, including elevated blood pressure, high blood glucose, and low HDL-C (at least p < 0.05 for all cases). In conclusion, individuals with MetS had significantly higher XO levels than those without MetS. Serum XO activity showed an independent association with MetS and some of its components. Therefore, XO might serve as a useful marker of MetS. Prospective studies are needed to determine the underlying mechanisms linking XO and MetS.
Collapse
Affiliation(s)
- Nurshad Ali
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Abu Taher
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Nayeemul Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Nusrat Zaman Sarna
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Farjana Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
3
|
Tian Y, Fopiano KA, Buncha V, Lang L, Suggs HA, Wang R, Rudic RD, Filosa JA, Bagi Z. The role of ADAM17 in cerebrovascular and cognitive function in the APP/PS1 mouse model of Alzheimer's disease. Front Mol Neurosci 2023; 16:1125932. [PMID: 36937050 PMCID: PMC10018024 DOI: 10.3389/fnmol.2023.1125932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/27/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction The disintegrin and metalloproteinase 17 (ADAM17) exhibits α-secretase activity, whereby it can prevent the production of neurotoxic amyloid precursor protein-α (APP). ADAM17 is abundantly expressed in vascular endothelial cells and may act to regulate vascular homeostatic responses, including vasomotor function, vascular wall morphology, and formation of new blood vessels. The role of vascular ADAM17 in neurodegenerative diseases remains poorly understood. Here, we hypothesized that cerebrovascular ADAM17 plays a role in the pathogenesis of Alzheimer's disease (AD). Methods and results We found that 9-10 months old APP/PS1 mice with b-amyloid accumulation and short-term memory and cognitive deficits display a markedly reduced expression of ADAM17 in cerebral microvessels. Systemic delivery and adeno-associated virus (AAV)-mediated re-expression of ADAM17 in APP/PS1 mice improved cognitive functioning, without affecting b-amyloid plaque density. In isolated and pressurized cerebral arteries of APP/PS1 mice the endothelium-dependent dilation to acetylcholine was significantly reduced, whereas the vascular smooth muscle-dependent dilation to the nitric oxide donor, sodium nitroprusside was maintained when compared to WT mice. The impaired endothelium-dependent vasodilation of cerebral arteries in APP/PS1 mice was restored to normal level by ADAM17 re-expression. The cerebral artery biomechanical properties (wall stress and elasticity) and microvascular network density was not affected by ADAM17 re-expression in the APP/PS1 mice. Additionally, proteomic analysis identified several differentially expressed molecules involved in AD neurodegeneration and neuronal repair mechanisms that were reversed by ADAM17 re-expression. Discussion Thus, we propose that a reduced ADAM17 expression in cerebral microvessels impairs vasodilator function, which may contribute to the development of cognitive dysfunction in APP/PS1 mice, and that ADAM17 can potentially be targeted for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Yanna Tian
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Katie Anne Fopiano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Vadym Buncha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Liwei Lang
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Hayden A. Suggs
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rongrong Wang
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - R. Daniel Rudic
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jessica A. Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
4
|
Brunt VE, Greenberg NT, Sapinsley ZJ, Casso AG, Richey JJ, VanDongen NS, Gioscia-Ryan RA, Ziemba BP, Neilson AP, Davy KP, Seals DR. Suppression of trimethylamine N-oxide with DMB mitigates vascular dysfunction, exercise intolerance, and frailty associated with a Western-style diet in mice. J Appl Physiol (1985) 2022; 133:798-813. [PMID: 35952350 PMCID: PMC9512113 DOI: 10.1152/japplphysiol.00350.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Consumption of a Western-style diet (WD; high fat, high sugar, low fiber) is associated with impaired vascular function and increased risk of cardiovascular diseases (CVD), which could be mediated partly by increased circulating concentrations of the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO). We investigated if suppression of TMAO with 3,3-dimethyl-1-butanol (DMB; inhibitor of microbial TMA lyase) in mice could prevent: 1) WD-induced vascular endothelial dysfunction and aortic stiffening and 2) WD-induced reductions in endurance exercise tolerance and increases in frailty, as both are linked to WD, vascular dysfunction, and increased CVD risk. C57BL/6N mice were fed standard chow or WD (41% fat, ∼25% sugar, 4% fiber) for 5 mo beginning at ∼2 mo of age. Within each diet, mice randomly received (n = 11-13/group) normal drinking water (control) or 1% DMB in drinking water for the last 8 wk (from 5 to 7 mo of age). Plasma TMAO was increased in WD-fed mice but suppressed by DMB. WD induced endothelial dysfunction, assessed as carotid artery endothelium-dependent dilation to acetylcholine, and progressive increases in aortic stiffness (measured serially in vivo as pulse wave velocity), both of which were fully prevented by supplementation with DMB. Endurance exercise tolerance, assessed as time to fatigue on a rotarod test, was impaired in WD-fed mice but partially recovered by DMB. Lastly, WD-induced increases in frailty (31-point index) were prevented by DMB. Our findings indicate DMB or other TMAO-lowering therapies may be promising for mitigating the adverse effects of WD on physiological function, and thereby reducing risk of chronic diseases.NEW & NOTEWORTHY We provide novel evidence that increased circulating concentrations of the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO) contribute to vascular dysfunction associated with consumption of a Western-style diet and that this dysfunction can be prevented by suppressing TMAO with DMB, thereby supporting translation of this compound to humans. Furthermore, to our knowledge, we present the first evidence of the role of TMAO in mediating impairments in endurance exercise tolerance and increased frailty in any context.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Zachary J Sapinsley
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Abigail G Casso
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - James J Richey
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | | | | | - Brian P Ziemba
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Andrew P Neilson
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia
| | - Kevin P Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| |
Collapse
|
5
|
Saenz-Medina J, Muñoz M, Rodriguez C, Contreras C, Sánchez A, Coronado MJ, Ramil E, Santos M, Carballido J, Prieto D. Hyperoxaluria Induces Endothelial Dysfunction in Preglomerular Arteries: Involvement of Oxidative Stress. Cells 2022; 11:cells11152306. [PMID: 35954150 PMCID: PMC9367519 DOI: 10.3390/cells11152306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
Urolithiasis is a worldwide problem and a risk factor for kidney injury. Oxidative stress-associated renal endothelial dysfunction secondary to urolithiasis could be a key pathogenic factor, similar to obesity and diabetes-related nephropathy. The aim of the present study was to characterize urolithiasis-related endothelial dysfunction in a hyperoxaluria rat model of renal lithiasis. Experimental approach: Endothelial dysfunction was assessed in preglomerular arteries isolated from control rats and in which 0.75% ethylene glycol was administered in drinking water. Renal interlobar arteries were mounted in microvascular myographs for functional studies; superoxide generation was measured by chemiluminescence and mRNA and protein expression by RT-PCR and immunofluorescence, respectively. Selective inhibitors were used to study the influence of the different ROS sources, xanthine oxidase, COX-2, Nox1, Nox2 and Nox4. Inflammatory vascular response was also studied by measuring the RNAm expression of NF-κB, MCP-1 and TNFα by RT-PCR. Results: Endothelium-dependent vasodilator responses were impaired in the preglomerular arteries of the hyperoxaluric group along with higher superoxide generation in the renal cortex and vascular inflammation developed by MCP-1 and promoted by NF-κB. The xanthine oxidase inhibitor allopurinol restored the endothelial relaxations and returned superoxide generation to basal values. Nox1 and Nox2 mRNA were up-regulated in arteries from the hyperoxaluric group, and Nox1 and Nox2 selective inhibitors also restored the impaired vasodilator responses and normalized NADPH oxidase-dependent higher superoxide values of renal cortex from the hyperoxaluric group. Conclusions: The current data support that hyperoxaluria induces oxidative stress-mediated endothelial dysfunction and inflammatory response in renal preglomerular arteries which is promoted by the xanthine oxidase, Nox1 and Nox2 pathways.
Collapse
Affiliation(s)
- Javier Saenz-Medina
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, 28222 Majadahonda, Spain;
- Department of Medical Specialties and Public Health, King Juan Carlos University, 28933 Madrid, Spain
- Correspondence: (J.S.-M.); (D.P.)
| | - Mercedes Muñoz
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (C.C.); (A.S.)
| | - Claudia Rodriguez
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (C.C.); (A.S.)
| | - Cristina Contreras
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (C.C.); (A.S.)
| | - Ana Sánchez
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (C.C.); (A.S.)
| | - María José Coronado
- Confocal Microscopy Facility, Puerta de Hierro-Majadahonda Research Institute, 28222 Majadahonda, Spain;
| | - Elvira Ramil
- Molecular Biology and DNA Sequencing Facility, Puerta de Hierro-Majadahonda Research Institute, 28222 Majadahonda, Spain;
| | - Martin Santos
- Medical and Surgical Research Facility, Puerta de Hierro-Majadahonda Research Institute, 28222 Majadahonda, Spain;
| | - Joaquín Carballido
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, 28222 Majadahonda, Spain;
| | - Dolores Prieto
- Department of Medical Specialties and Public Health, King Juan Carlos University, 28933 Madrid, Spain
- Correspondence: (J.S.-M.); (D.P.)
| |
Collapse
|
6
|
Tian Y, Fopiano KA, Buncha V, Lang L, Rudic RD, Filosa JA, Dou H, Bagi Z. Aging-induced impaired endothelial wall shear stress mechanosensing causes arterial remodeling via JAM-A/F11R shedding by ADAM17. GeroScience 2022; 44:349-369. [PMID: 34718985 PMCID: PMC8810930 DOI: 10.1007/s11357-021-00476-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022] Open
Abstract
Physiological and pathological vascular remodeling is uniquely driven by mechanical forces from blood flow in which wall shear stress (WSS) mechanosensing by the vascular endothelium plays a pivotal role. This study aimed to determine the novel role for a disintegrin and metalloproteinase 17 (ADAM17) in impaired WSS mechanosensing, which was hypothesized to contribute to aging-associated abnormal vascular remodeling. Without changes in arterial blood pressure and blood flow rate, skeletal muscle resistance arteries of aged mice (30-month-old vs. 12-week-old) exhibited impaired WSS mechanosensing and displayed inward hypertrophic arterial remodeling. These vascular changes were recapitulated by in vivo confined, AAV9-mediated overexpression of ADAM17 in the resistance arteries of young mice. An aging-related increase in ADAM17 expression reduced the endothelial junction level of its cleavage substrate, junctional adhesion molecule-A/F11 receptor (JAM-A/F11R). In cultured endothelial cells subjected to steady WSS ADAM17 activation or JAM-A/F11R knockdown inhibited WSS mechanosensing. The ADAM17-activation induced, impaired WSS mechanosensing was normalized by overexpression of ADAM17 cleavage resistant, mutated JAM-AV232Y both in cultured endothelial cells and in resistance arteries of aged mice, in vivo. These data demonstrate a novel role for ADAM17 in JAM-A/F11R cleavage-mediated impaired endothelial WSS mechanosensing and subsequently developed abnormal arterial remodeling in aging. ADAM17 could prove to be a key regulator of WSS mechanosensing, whereby it can also play a role in pathological vascular remodeling in diseases.
Collapse
Affiliation(s)
- Yanna Tian
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Katie Anne Fopiano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Vadym Buncha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Liwei Lang
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - R Daniel Rudic
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jessica A Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Huijuan Dou
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
7
|
Jones-Muhammad M, Warrington JP. When high-fat diet plus hypertension does not equal vascular dysfunction. Am J Physiol Heart Circ Physiol 2021; 321:H128-H130. [PMID: 34085845 DOI: 10.1152/ajpheart.00284.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Maria Jones-Muhammad
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi
| | - Junie P Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
8
|
Bunsawat K, Lefferts EC, Grigoriadis G, Wee SO, Kilianek MM, Fadel PJ, Clifford PS, Fernhall BO, Baynard T. Central and Peripheral Postexercise Blood Pressure and Vascular Responses in Young Adults with Obesity. Med Sci Sports Exerc 2021; 53:994-1002. [PMID: 33060547 DOI: 10.1249/mss.0000000000002540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Adults with obesity are at an increased risk of incident hypertension. Regular aerobic exercise is recommended for the prevention and treatment of hypertension, but whether young adults with obesity exhibit impaired postexercise blood pressure (BP) and vascular responses remains unclear. PURPOSE We tested the hypothesis that young adults with obesity exhibit attenuated postexercise hypotension (PEH) and postexercise peripheral vasodilation compared with young adults without obesity. METHODS Thirty-six normotensive adults without and with obesity (11 men and 7 women per group) underwent measurements of brachial and central BP, and leg blood flow (Doppler ultrasound) at baseline and at 30, 60, and 90 min after acute 1-h moderate-intensity cycling. Leg vascular conductance (LVC) was calculated as flow/mean arterial pressure. RESULTS Both groups exhibited similar brachial and central PEH (peak change from baseline, -2 and -4 mm Hg for brachial and central systolic BPs, respectively, for both groups; time effect, P < 0.05). Both groups also exhibited postexercise peripheral vasodilation, assessed via LVC (time effect, P < 0.05), but its overall magnitude was smaller in young adults with obesity (LVC change from baseline, +47% ± 37%, +29% ± 36%, and +20% ± 29%) compared with young adults without obesity (LVC change from baseline, +88% ± 58%, +59% ± 54%, and +42% ± 51%; group effect, P < 0.05). CONCLUSIONS Although obesity did not impair PEH after acute moderate-intensity exercise, young adults with obesity exhibited smaller postexercise peripheral vasodilation compared with young adults without obesity. Collectively, these findings have identified evidence for obesity-induced alterations in the peripheral vasculature after exercise.
Collapse
Affiliation(s)
| | - Elizabeth C Lefferts
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL
| | - Georgios Grigoriadis
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL
| | | | - Melissa M Kilianek
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL
| | - Paul J Fadel
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX
| | - Philip S Clifford
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL
| | - B O Fernhall
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL
| | - Tracy Baynard
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
9
|
Liang Y, Wang M, Wang C, Liu Y, Naruse K, Takahashi K. The Mechanisms of the Development of Atherosclerosis in Prediabetes. Int J Mol Sci 2021; 22:ijms22084108. [PMID: 33921168 PMCID: PMC8071517 DOI: 10.3390/ijms22084108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Lifestyle changes, such as overeating and underexercising, can increase the risk of prediabetes. Diabetes is one of the leading causes of atherosclerosis, and recently it became clear that the pathophysiology of atherosclerosis progresses even before the onset of diabetic symptoms. In addition to changes in platelets and leukocytes in the hyperglycemic state and damage to vascular endothelial cells, extracellular vesicles and microRNAs were found to be involved in the progression of prediabetes atherosclerosis. This review discusses the cellular and molecular mechanisms of these processes, with an intention to enable a comprehensive understanding of the pathophysiology of prediabetes and atherosclerosis.
Collapse
|
10
|
Deng J. Research progress on the molecular mechanism of coronary microvascular endothelial cell dysfunction. IJC HEART & VASCULATURE 2021; 34:100777. [PMID: 33912653 PMCID: PMC8065195 DOI: 10.1016/j.ijcha.2021.100777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
Coronary microvascular disease is a high-risk factor for many cardiovascular events. However, due to its high concealment and many etiologies, the current understanding of its pathophysiological mechanism is very limited, which greatly limits its clinical diagnosis and treatment. In the process of the occurrence and development of coronary microvascular disease, the damage of coronary microvascular endothelial cell (CMEC) is the core link. CMEC's stress, metabolism, inflammation and other dysfunctions have a causal relationship with coronary microvascular disease, and are also the main features of coronary microvascular disease in the early stage. This article mainly reviews the molecular mechanisms of CMEC damage.
Collapse
Affiliation(s)
- Jianying Deng
- Department of Cardiovascular Surgery, Chongqing Kanghua Zhonglian Cardiovascular Hospital, Chong Qing, China
| |
Collapse
|
11
|
Oxidative Stress and Vascular Damage in the Context of Obesity: The Hidden Guest. Antioxidants (Basel) 2021; 10:antiox10030406. [PMID: 33800427 PMCID: PMC7999611 DOI: 10.3390/antiox10030406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
The vascular system plays a central role in the transport of cells, oxygen and nutrients between different regions of the body, depending on the needs, as well as of metabolic waste products for their elimination. While the structure of different components of the vascular system varies, these structures, especially those of main arteries and arterioles, can be affected by the presence of different cardiovascular risk factors, including obesity. This vascular remodeling is mainly characterized by a thickening of the media layer as a consequence of changes in smooth muscle cells or excessive fibrosis accumulation. These vascular changes associated with obesity can trigger functional alterations, with endothelial dysfunction and vascular stiffness being especially common features of obese vessels. These changes can also lead to impaired tissue perfusion that may affect multiple tissues and organs. In this review, we focus on the role played by perivascular adipose tissue, the activation of the renin-angiotensin-aldosterone system and endoplasmic reticulum stress in the vascular dysfunction associated with obesity. In addition, the participation of oxidative stress in this vascular damage, which can be produced in the perivascular adipose tissue as well as in other components of the vascular wall, is updated.
Collapse
|
12
|
Dunn S, Hilgers RH, Das KC. Thioredoxin deficiency exacerbates vascular dysfunction during diet-induced obesity in small mesenteric artery in mice. Microcirculation 2020; 28:e12674. [PMID: 33316843 DOI: 10.1111/micc.12674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/07/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Thioredoxin (Trx) is a small cellular redox protein with established antioxidant and disulfide reductase properties. We hypothesized that Trx deficiency in mice would cause increased oxidative stress with consequent redox imbalance that would exacerbate obesity-induced vascular dysfunction. METHODS Non-transgenic (NT, C57BL/6) and dominant-negative Trx (dnTrx-Tg, low levels of redox-active protein) mice were either fed a normal diet (NC) or high fat diet plus sucrose (HFS) diet for 4 months (3-month HFD+ 1-month HFS). Weight gain, glucose tolerance test (GTT), insulin tolerance test (ITT), and other metabolic parameters were performed following NC or HFS diet. Arterial structural remodeling and functional parameters were assessed by myography. RESULTS Our study found that dnTrx mice with lower levels of active Trx exacerbated myogenic tone, inward arterial remodeling, arterial stiffening, phenylephrine-induced contraction, and endothelial dysfunction of MA. Additionally, FeTMPyP, a peroxynitrite decomposition catalyst, acutely decreased myogenic tone and contraction and normalized endothelial function in MA from dnTrx-Tg mice on HFS via increasing nitric oxide (NO)-mediated relaxation. CONCLUSIONS Our results indicate that deficiency of active Trx exacerbates MA contractile and relaxing properties during diet-induced obesity demonstrating that loss of redox balance in obesity is a key mechanism of vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Shannon Dunn
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert H Hilgers
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kumuda C Das
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
13
|
Wilson C, Zhang X, Lee MD, MacDonald M, Heathcote HR, Alorfi NMN, Buckley C, Dolan S, McCarron JG. Disrupted endothelial cell heterogeneity and network organization impair vascular function in prediabetic obesity. Metabolism 2020; 111:154340. [PMID: 32791171 PMCID: PMC7538703 DOI: 10.1016/j.metabol.2020.154340] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Obesity is a major risk factor for diabetes and cardiovascular diseases such as hypertension, heart failure, and stroke. Impaired endothelial function occurs in the earliest stages of obesity and underlies vascular alterations that give rise to cardiovascular disease. However, the mechanisms that link weight gain to endothelial dysfunction are ill-defined. Increasing evidence suggests that endothelial cells are not a population of uniform cells but are highly heterogeneous and are organized as a communicating multicellular network that controls vascular function. PURPOSE To investigate the hypothesis that disrupted endothelial heterogeneity and network-level organization contribute to impaired vascular reactivity in obesity. METHODS AND RESULTS To study obesity-related vascular function without complications associated with diabetes, a state of prediabetic obesity was induced in rats. Small artery diameter recordings confirmed nitric-oxide mediated vasodilator responses were dependent on increases in endothelial calcium levels and were impaired in obese animals. Single-photon imaging revealed a linear relationship between blood vessel relaxation and population-wide calcium responses. Obesity did not alter the slope of this relationship, but impaired calcium responses in the endothelial cell network. The network comprised structural and functional components. The structural architecture, a hexagonal lattice network of connected cells, was unchanged in obesity. The functional network contained sub-populations of clustered specialized agonist-sensing cells from which signals were communicated through the network. In obesity there were fewer but larger clusters of sensory cells and communication path lengths between clusters increased. Communication between neighboring cells was unaltered in obesity. Altered network organization resulted in impaired, population-level calcium signaling and deficient endothelial control of vascular tone. CONCLUSIONS The distribution of cells in the endothelial network is critical in determining overall vascular response. Altered cell heterogeneity and arrangement in obesity decreases endothelial function and provides a novel framework for understanding compromised endothelial function in cardiovascular disease.
Collapse
Affiliation(s)
- Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Margaret MacDonald
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Helen R Heathcote
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Nasser M N Alorfi
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Sharron Dolan
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
14
|
Kitagawa A, Kizub I, Jacob C, Michael K, D'Alessandro A, Reisz JA, Grzybowski M, Geurts AM, Rocic P, Gupte R, Miano JM, Gupte SA. CRISPR-Mediated Single Nucleotide Polymorphism Modeling in Rats Reveals Insight Into Reduced Cardiovascular Risk Associated With Mediterranean G6PD Variant. Hypertension 2020; 76:523-532. [PMID: 32507041 DOI: 10.1161/hypertensionaha.120.14772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidemiological studies suggest that individuals in the Mediterranean region with a loss-of-function, nonsynonymous single nucleotide polymorphism (S188F), in glucose-6-phosphate dehydrogenase (G6pd) are less susceptible to vascular diseases. However, this association has not yet been experimentally proven. Here, we set out to determine whether the Mediterranean mutation confers protection from vascular diseases and to discover the underlying protective mechanism. We generated a rat model with the Mediterranean single nucleotide polymorphism (G6PDS188F) using CRISPR-Cas9 genome editing. In rats carrying the mutation, G6PD activity, but not expression, was reduced to 20% of wild-type (WT) littermates. Additionally, unbiased metabolomics analysis revealed that the pentose phosphate pathway and other ancillary metabolic pathways connected to the pentose phosphate pathway were reduced (P<0.05) in the arteries of G6PDS188F versus WT rats. Intriguingly, G6PDS188F mutants, as compared with WT rats, developed less large arterial stiffness and hypertension evoked by high-fat diet and nitric oxide synthase inhibition with L-NG-nitroarginine methyl ester. Intravenous injection of a voltage-gated L-type Ca2+ channel agonist (methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate; Bay K8644) acutely increased blood pressure in WT but not in G6PDS188F rats. Finally, our results suggested that (1) lower resting membrane potential of smooth muscle caused by increased expression of K+ channel proteins and (2) decreased voltage-gated Ca2+ channel activity in smooth muscle contributed to reduced hypertension and arterial stiffness evoked by L-NG-nitroarginine methyl ester and high-fat diet to G6PDS188F mutants as compared with WT rats. In summary, a mutation resulting in the replacement of a single amino acid (S188F) in G6PD, the rate-limiting enzyme in the pentose phosphate pathway, ascribed properties to the vascular smooth muscle that shields the organism from risk factors associated with vascular diseases.
Collapse
Affiliation(s)
- Atsushi Kitagawa
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Igor Kizub
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Christina Jacob
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Kevin Michael
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora (A.D., J.A.R.)
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora (A.D., J.A.R.)
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee (M.G., A.M.G.)
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee (M.G., A.M.G.)
| | - Petra Rocic
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | | | - Joseph M Miano
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University (J.M.M.)
| | - Sachin A Gupte
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| |
Collapse
|
15
|
Moccia F, Negri S, Faris P, Berra-Romani R. Targeting the Endothelial Ca2+ Toolkit to Rescue Endothelial Dysfunction in Obesity Associated-Hypertension. Curr Med Chem 2020; 27:240-257. [PMID: 31486745 DOI: 10.2174/0929867326666190905142135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/03/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obesity is a major cardiovascular risk factor which dramatically impairs endothelium- dependent vasodilation and leads to hypertension and vascular damage. The impairment of the vasomotor response to extracellular autacoids, e.g., acetylcholine, mainly depends on the reduced Nitric Oxide (NO) bioavailability, which hampers vasorelaxation in large conduit arteries. In addition, obesity may affect Endothelium-Dependent Hyperpolarization (EDH), which drives vasorelaxation in small resistance arteries and arterioles. Of note, endothelial Ca2+ signals drive NO release and trigger EDH. METHODS A structured search of bibliographic databases was carried out to retrieve the most influential, recent articles on the impairment of vasorelaxation in animal models of obesity, including obese Zucker rats, and on the remodeling of the endothelial Ca2+ toolkit under conditions that mimic obesity. Furthermore, we searched for articles discussing how dietary manipulation could be exploited to rescue Ca2+-dependent vasodilation. RESULTS We found evidence that the endothelial Ca2+ could be severely affected by obese vessels. This rearrangement could contribute to endothelial damage and is likely to be involved in the disruption of vasorelaxant mechanisms. However, several Ca2+-permeable channels, including Vanilloid Transient Receptor Potential (TRPV) 1, 3 and 4 could be stimulated by several food components to stimulate vasorelaxation in obese individuals. CONCLUSION The endothelial Ca2+ toolkit could be targeted to reduce vascular damage and rescue endothelium- dependent vasodilation in obese vessels. This hypothesis remains, however, to be probed on truly obese endothelial cells.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
16
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
17
|
Phuong TTT, Walker AE, Henson GD, Machin DR, Li DY, Donato AJ, Lesniewski LA. Deletion of Robo4 prevents high-fat diet-induced adipose artery and systemic metabolic dysfunction. Microcirculation 2019; 26:e12540. [PMID: 30825241 DOI: 10.1111/micc.12540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/22/2019] [Accepted: 02/27/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Accumulating evidence suggests the vascular endothelium plays a fundamental role in the pathophysiology of obesity by regulating the functional status of white adipose and systemic metabolism. Robo4 is expressed specifically in endothelial cells and increases vascular stability and inhibits angiogenesis. We sought to determine the role of Robo4 in modulating cardiometabolic function in response to high-fat feeding. METHODS We examined exercise capacity, glucose tolerance, and white adipose tissue artery gene expression, endothelium-dependent dilation (EDD), and angiogenesis in wild type and Robo4 knockout (KO) mice fed normal chow (NC) or a high-fat diet (HFD). RESULTS We found Robo4 deletion enhances exercise capacity in NC-fed mice and HFD markedly increased the expression of the Robo4 ligand, Slit2, in white adipose tissue. Deletion of Robo4 increased angiogenesis in white adipose tissue and protected against HFD-induced impairments in white adipose artery vasodilation and glucose intolerance. CONCLUSIONS We demonstrate a novel functional role for Robo4 in endothelial cell function and metabolic homeostasis in white adipose tissue, with Robo4 deletion protecting against endothelial and metabolic dysfunction associated with a HFD. Our findings suggest that Robo4-dependent signaling pathways may be a novel target in anti-obesity therapy.
Collapse
Affiliation(s)
- Tam T T Phuong
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Ashley E Walker
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Grant D Henson
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Daniel R Machin
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Dean Y Li
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah.,Division of Cardiovascular Medicine Department of Medicine, University of Utah, Salt Lake City, Utah.,Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Anthony J Donato
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Salt Lake City Veteran's Affair Medical Center, Geriatrics Research Education and Clinic Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Lisa A Lesniewski
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Salt Lake City Veteran's Affair Medical Center, Geriatrics Research Education and Clinic Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
Battelli MG, Bortolotti M, Polito L, Bolognesi A. Metabolic syndrome and cancer risk: The role of xanthine oxidoreductase. Redox Biol 2018; 21:101070. [PMID: 30576922 PMCID: PMC6302121 DOI: 10.1016/j.redox.2018.101070] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 12/29/2022] Open
Abstract
Obesity and related pathologies such as diabetes and metabolic syndrome are associated with chronic inflammation and cancer. The serum level of xanthine oxidoreductase (XOR) is correlated to obesity-associated metabolic disorders. XOR can play a role in the pathogenesis of both metabolic syndrome and cancer through the inflammatory response and the oxidative stress elicited by the products of its activity. The reactive oxygen and nitrogen species and the uric acid derived from XOR concur to the development of hypertension, dyslipidemia and insulin resistance and participate in both cell transformation and proliferation, as well as in the progression and metastasis process. Despite the availability of different drugs to inhibit in vivo XOR activity, the complexity of XOR inhibition effects should be carefully considered before clinical application, save in the case of symptomatic hyperuricemia. Metabolic syndrome (MS) increases the risk of cancer development. Xanthine oxidoreductase (XOR) plays a role in both MS and cancer. Uric acid, ROS and RNS produced by XOR cause inflammation and oxidative stress. Inflammation and oxidative stress contribute to the pathogenesis of MS and cancer. XOR activity can be pharmacologically controlled.
Collapse
Affiliation(s)
- Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
19
|
Dunn SM, Hilgers R, Das KC. Decreased EDHF-mediated relaxation is a major mechanism in endothelial dysfunction in resistance arteries in aged mice on prolonged high-fat sucrose diet. Physiol Rep 2018; 5:5/23/e13502. [PMID: 29212858 PMCID: PMC5727270 DOI: 10.14814/phy2.13502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 02/01/2023] Open
Abstract
High‐fat sucrose (HFS) diet in aged individuals causes severe weight gain (obesity) with much higher risk of cardiovascular diseases such as hypertension or atherosclerosis. Endothelial dysfunction is a major contributor for these vascular disorders. We hypothesize that prolonged ingestion of HFS diet by aged mice would accentuate endothelial dysfunction in the small resistance arteries. Male C57BL/6J mice at 12 weeks of age were divided into four groups and fed either normal chow (NC) or high‐fat sucrose diet (HFS). Young group received NC for 4 months, and high‐fat diet (HFD) for 3 months and 1 month HFS + 10% Sucrose (HFS diet). Aged mice received NC for 12 months. Aged HFS group received HFD for 4 months + 1 month HFD + 10% sucrose + 8 months HFD. Total body weight, plasma blood glucose levels, and glucose tolerance were determined in all groups. Isolated mesenteric arteries were assessed for arterial remodeling, myogenic tone, and vasomotor responses using pressure and wire myography. Both young and aged HFS mice showed impaired glucose tolerance (Y‐NC, 137 ± 8.5 vs. Y‐NC HFS, 228 ± 11.71; A‐NC, 148 ± 6.42 vs. A‐HFS, 225 ± 10.99), as well as hypercholesterolemia (Y‐NC 99.50 ± 6.35 vs. Y‐HFS 220.40 ± 16.34 mg/dL; A‐NC 108.6 ± vs. A‐HFS 279 ± 21.64) and significant weight gain (Y‐NC 32.13 ± 0.8 g vs. Y‐HFS 47.87 ± 2.18 g; A‐NC 33.72 vs. A‐HFS 56.28 ± 3.47 g) compared to both groups of mice on NC. The mesenteric artery from mice with prolonged HFS diet resulted in outward hypertrophic remodeling, increased stiffness, reduced myogenic tone, impaired vasodilation, increased contractility and blunted nitric oxide (NO) and EDH‐mediated relaxations. Ebselen, a peroxinitrite scavenger rescued the endothelium derived relaxing factor (EDHF)‐mediated relaxations. Our findings suggest that prolonged diet‐induced obesity of aged mice can worsen small resistance artery endothelial dysfunction due to decrease in NO and EDHF‐mediated relaxation, but, EDHF‐mediated relaxation is a major contributor to overall endothelial dysfunction.
Collapse
Affiliation(s)
- Shannon M Dunn
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | | | - Kumuda C Das
- The Department of Translational & Vascular Biology, University of Texas Health Sciences Center at Tyler, Tyler, Texas
| |
Collapse
|
20
|
Nguyen-Tu MS, Nivoit P, Oréa V, Lemoine S, Acquaviva C, Pagnon-Minot A, Fromy B, Sethi JK, Sigaudo-Roussel D. Inflammation-linked adaptations in dermal microvascular reactivity accompany the development of obesity and type 2 diabetes. Int J Obes (Lond) 2018; 43:556-566. [PMID: 30006585 PMCID: PMC6223541 DOI: 10.1038/s41366-018-0148-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/26/2018] [Accepted: 06/08/2018] [Indexed: 01/04/2023]
Abstract
Background/Objectives The increased prevalence of obesity has prompted great strides in our understanding of specific adipose depots and their involvement in cardio-metabolic health. However, the impact of obesity on dermal white adipose tissue (dWAT) and dermal microvascular functionality remains unclear. This study aimed to investigate the temporal changes that occur in dWAT and dermal microvascular functionality during the development of diet-induced obesity and type 2 diabetes in mice. Methods Metabolic phenotyping of a murine model of hypercaloric diet (HCD)-induced obesity and type 2 diabetes was performed at three time points that reflected three distinct stages of disease development; 2 weeks of HCD-overweight-metabolically healthy, 4 weeks of HCD-obese-prediabetic and 12 weeks of HCD-obese-type 2 diabetic mice. Expansion of dWAT was characterized histologically, and changes in dermal microvascular reactivity were assessed in response to pressure and the vasodilators SNP and Ach. Results HCD resulted in a progressive expansion of dWAT and increased expression of pro-inflammatory markers (IL1β and COX-2). Impairments in pressure-induced (PIV) and Ach-induced (endothelium-dependent) vasodilation occurred early, in overweight-metabolically healthy mice. Residual vasodilatory responses were NOS-independent but sensitive to COX inhibition. These changes were associated with reductions in NO and adiponectin bioavailability, and rescued by exogenous adiponectin or hyperinsulinemia. Obese-prediabetic mice continued to exhibit impaired Ach-dependent vasodilation but PIV appeared normalized. This normalization coincided with elevated endogenous adiponectin and insulin levels, and was sensitive to NOS, COX and PI3K, inhibition. In obese-type 2 diabetic mice, both Ach-stimulated and pressure-induced vasodilatory responses were increased through enhanced COX-2-dependent prostaglandin response. Conclusions We demonstrate that the development of obesity, metabolic dysfunction and type 2 diabetes, in HCD-fed mice, is accompanied by increased dermal adiposity and associated metaflammation in dWAT. Importantly, these temporal changes are also linked to disease stage-specific dermal microvascular reactivity, which may reflect adaptive mechanisms driven by metaflammation.
Collapse
Affiliation(s)
- Marie-Sophie Nguyen-Tu
- LBTI, UMR CNRS 5305, 69367, Lyon Cedex 07, France.,University of Lyon 1, 69367, Lyon Cedex 07, France
| | - Pierre Nivoit
- LBTI, UMR CNRS 5305, 69367, Lyon Cedex 07, France.,University of Lyon 1, 69367, Lyon Cedex 07, France
| | - Valérie Oréa
- LBTI, UMR CNRS 5305, 69367, Lyon Cedex 07, France.,University of Lyon 1, 69367, Lyon Cedex 07, France
| | | | - Cécile Acquaviva
- LBTI, UMR CNRS 5305, 69367, Lyon Cedex 07, France.,Centre de Biologie et Pathologie Est, University Hospital, Hospices Civils de Lyon, 69677, Bron, France
| | | | - Bérengère Fromy
- LBTI, UMR CNRS 5305, 69367, Lyon Cedex 07, France.,University of Lyon 1, 69367, Lyon Cedex 07, France
| | - Jaswinder K Sethi
- Faculty of Medicine, University of Southampton, Institute of Developmental Sciences Building, Southampton General Hospital, Southampton, SO16 6YD, UK. .,National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, SO16 6YD, UK. .,Institute for Life Sciences, Life Sciences Building 85, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Dominique Sigaudo-Roussel
- LBTI, UMR CNRS 5305, 69367, Lyon Cedex 07, France. .,University of Lyon 1, 69367, Lyon Cedex 07, France.
| |
Collapse
|
21
|
Csipo T, Fulop GA, Lipecz A, Tarantini S, Kiss T, Balasubramanian P, Csiszar A, Ungvari Z, Yabluchanskiy A. Short-term weight loss reverses obesity-induced microvascular endothelial dysfunction. GeroScience 2018; 40:10.1007/s11357-018-0028-9. [PMID: 29916025 PMCID: PMC6060194 DOI: 10.1007/s11357-018-0028-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
Obesity is one of the major risk factors for cardiovascular diseases and its prevalence is increasing in all age groups, with the biggest impact observed in middle-aged and older adults. A critical mechanism by which obesity promotes vascular pathologies in these patients involves impairment of endothelial function. While endothelial dysfunction in large vessels promotes atherogenesis, obesity-induced microvascular endothelial dysfunction impairs organ perfusion and thereby is causally related to the pathogenesis of ischemic heart disease, chronic kidney disease, intermittent claudication, exercise intolerance, and exacerbates cognitive decline in aging. Reduction of weight via calorie-based diet and exercise in animal models of obesity results in significant improvement of endothelial function both in large vessels and in the microcirculation, primarily due to attenuation of oxidative stress and inflammation. Clinical data on the protective effects of weight loss on endothelial function is limited to studies of flow-mediated dilation assessed in brachial arteries. Currently, there is no guideline on testing the effects of different weight management strategies on microvascular endothelial function in obese patients. Here, we provide proof-of-concept that weight loss-induced improvement of microvascular endothelial function can be reliably assessed in the setting of a geriatric outpatient clinic using a fast, reproducible, non-invasive method: laser speckle contrast imaging-based measurement of endothelium-dependent microvascular responses during post-occlusive reactive hyperemia tests. Our study also provides initial evidence that short-term weight loss induced by consumption of a low-carbohydrate low-calorie diet can reverse microvascular endothelial dysfunction associated with obesity.
Collapse
Affiliation(s)
- Tamas Csipo
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor A Fulop
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnes Lipecz
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA
- Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA
| | - Tamas Kiss
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA
| | - Priya Balasubramanian
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
22
|
Battelli MG, Bortolotti M, Polito L, Bolognesi A. The role of xanthine oxidoreductase and uric acid in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2557-2565. [PMID: 29733945 DOI: 10.1016/j.bbadis.2018.05.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022]
Abstract
Xanthine oxidoreductase (XOR) could contribute to the pathogenesis of metabolic syndrome through the oxidative stress and the inflammatory response induced by XOR-derived reactive oxygen species and uric acid. Hyperuricemia is strongly linked to hypertension, insulin resistance, obesity and hypertriglyceridemia. The serum level of XOR is correlated to triglyceride/high density lipoprotein cholesterol ratio, fasting glycemia, fasting insulinemia and insulin resistance index. Increased activity of endothelium-linked XOR may promote hypertension. In addition, XOR is implicated in pre-adipocyte differentiation and adipogenesis. XOR and uric acid play a role in cell transformation and proliferation as well as in the progression and metastatic process. Collected evidences confirm the contribution of XOR and uric acid in metabolic syndrome. However, in some circumstances XOR and uric acid may have anti-oxidant protective outcomes. The dual-face role of both XOR and uric acid explains the contradictory results obtained with XOR inhibitors and suggests caution in their therapeutic use.
Collapse
Affiliation(s)
- Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum - University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum - University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum - University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum - University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
23
|
Bian JT, Piano MR, Kotlo KU, Mahmoud AM, Phillips SA. MicroRNA-21 Contributes to Reduced Microvascular Function in Binge Drinking Young Adults. Alcohol Clin Exp Res 2018; 42:278-285. [PMID: 29178290 PMCID: PMC7286284 DOI: 10.1111/acer.13565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Binge drinking is associated with increased risk for cardiovascular (CV) disease. MicroRNA-21 (miR21) is up-regulated in the setting of excessive alcohol consumption and CV disease. Therefore, the goal of this study was to examine the vasodilatory responses to flow and acetylcholine (ACh) in the absence and presence of an anti-miR21 inhibitor in the microcirculation of young adult repeated binge drinkers (BDs). METHODS Gluteal subcutaneous adipose tissue biopsies were obtained from young adults (18 to 30 years, n = 35 vessels from BDs and n = 28 vessels from abstainers). Resistance arteries (RAs) were isolated, incubated with anti-miR21 or a negative control (NC) to miR21 (12 hours; 50 nM), and lumen diameters measured with video microscopy. miR21 of adipose tissues was determined by quantitative polymerase chain reaction. RESULTS Flow-induced dilation and ACh-induced dilation (AChID) were reduced in BDs as compared to abstainers. The miR21 inhibitor but not the NC abrogated these effects in BDs, but did not affect vasodilation in abstainers. Nitric oxide synthase inhibition with L-NAME reduced vasodilation in abstainers but not in BDs. In BDs, vasodilation was reduced by L-NAME in the presence of anti-miR21 but not the NC. Scavenging the reactive oxygen species, hydrogen peroxide with polyethylene glycol catalase reduced dilation in BDs but did not affect the restored dilation by the miR21 inhibitor. Maximum dilation to papaverine (endothelium independent) was similar between groups and unaffected by pharmacological inhibition. Finally, vascular endogenous miR21 was increased in BDs compared to abstainers. CONCLUSIONS Endogenous miR21 is increased in RAs of young BDs, leading to reduced flow and AChID in the microcirculation.
Collapse
Affiliation(s)
- Jing-Tan Bian
- Department of Biobehavioral Health Science, University of
Illinois at Chicago, Chicago, Illinois
| | - Mariann R. Piano
- Department of Biobehavioral Health Science, University of
Illinois at Chicago, Chicago, Illinois
- School of Nursing, Vanderbilt University, Nashville,
TN
| | - Kumar U. Kotlo
- Division of Cardiology, Department of Medicine, University
of Illinois at Chicago, Chicago, IL
| | - Abeer M. Mahmoud
- Department of Physical Therapy, University of Illinois at
Chicago, Chicago, IL
- Department of Kinesiology and Nutrition, University of
Illinois at Chicago, Chicago, IL
| | - Shane A. Phillips
- Department of Physical Therapy, University of Illinois at
Chicago, Chicago, IL
- Integrative Physiology Laboratory, University of Illinois
at Chicago, Chicago, IL
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
24
|
Adorni CS, Corrêa CR, Vileigas DF, de Campos DHS, Padovani CR, Minatel IO, Cicogna AC. The influence of obesity by a diet high in saturated fats and carbohydrates balance in the manifestation of systemic complications and comorbidities. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s41110-017-0042-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Vieceli Dalla Sega F, Aquila G, Fortini F, Vaccarezza M, Secchiero P, Rizzo P, Campo G. Context-dependent function of ROS in the vascular endothelium: The role of the Notch pathway and shear stress. Biofactors 2017; 43:475-485. [PMID: 28419584 DOI: 10.1002/biof.1359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/12/2017] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) act as signal molecules in several biological processes whereas excessive, unregulated, ROS production contributes to the development of pathological conditions including endothelial dysfunction and atherosclerosis. The maintenance of a healthy endothelium depends on many factors and on their reciprocal interactions; in this framework, the Notch pathway and shear stress (SS) play two lead roles. Recently, evidence of a crosstalk between ROS, Notch, and SS, is emerging. The aim of this review is to describe the way ROS interact with the Notch pathway and SS protecting from-or promoting-the development of endothelial dysfunction. © 2017 BioFactors, 43(4):475-485, 2017.
Collapse
Affiliation(s)
| | - Giorgio Aquila
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Fortini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Vaccarezza
- Faculty of Health Sciences, School of Biomedical Sciences, Curtin University, Perth, Australia
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA) Center, Ferrara, Italy
| | - Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, (RA), Italy
| | - Gianluca Campo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria S. Anna, Cona, (FE), Italy
| |
Collapse
|
26
|
Sponton AC, Silva FH, Araujo HN, Valgas da Silva CP, de Moraes C, Antunes E, Zanesco A, Delbin MA. Circulating Concentrations of Adipocytokines and Their Receptors in the Isolated Corpus Cavernosum and Femoral Artery from Trained Rats on a High-Fat Diet. J Vasc Res 2017; 54:33-50. [DOI: 10.1159/000457800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/21/2017] [Indexed: 12/14/2022] Open
|
27
|
Rendeiro C, Dong H, Saunders C, Harkness L, Blaze M, Hou Y, Belanger RL, Altieri V, Nunez MA, Jackson KG, Corona G, Lovegrove JA, Spencer JPE. Flavanone-rich citrus beverages counteract the transient decline in postprandial endothelial function in humans: a randomised, controlled, double-masked, cross-over intervention study. Br J Nutr 2016; 116:1999-2010. [PMID: 28065188 DOI: 10.1017/s0007114516004219] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Specific flavonoid-rich foods/beverages are reported to exert positive effects on vascular function; however, data relating to effects in the postprandial state are limited. The present study investigated the postprandial, time-dependent (0-7 h) impact of citrus flavanone intake on vascular function. An acute, randomised, controlled, double-masked, cross-over intervention study was conducted by including middle-aged healthy men (30-65 years, n 28) to assess the impact of flavanone intake (orange juice: 128·9 mg; flavanone-rich orange juice: 272·1 mg; homogenised whole orange: 452·8 mg; isoenergetic control: 0 mg flavanones) on postprandial (double meal delivering a total of 81 g of fat) endothelial function. Endothelial function was assessed by flow-mediated dilatation (FMD) of the brachial artery at 0, 2, 5 and 7 h. Plasma levels of naringenin/hesperetin metabolites (sulphates and glucuronides) and nitric oxide species were also measured. All flavanone interventions were effective at attenuating transient impairments in FMD induced by the double meal (7 h post intake; P<0·05), but no dose-response effects were observed. The effects on FMD coincided with the peak of naringenin/hesperetin metabolites in circulation (7 h) and sustained levels of plasma nitrite. In summary, citrus flavanones are effective at counteracting the negative impact of a sequential double meal on human vascular function, potentially through the actions of flavanone metabolites on nitric oxide.
Collapse
Affiliation(s)
- Catarina Rendeiro
- 1Department of Food and Nutritional Sciences,School of Chemistry, Food and Pharmacy,University of Reading,PO Box 226,Reading RG2 6AP,UK
| | - Honglin Dong
- 1Department of Food and Nutritional Sciences,School of Chemistry, Food and Pharmacy,University of Reading,PO Box 226,Reading RG2 6AP,UK
| | | | - Laura Harkness
- 3Global R+D Nutrition,PepsiCo Inc.,Valhalla, NY 10595,USA
| | - Melvin Blaze
- 4PepsiCo R+D Biological & Discovery Analytics,PepsiCo Inc.,New Haven, CT 06511,USA
| | - Yanpeng Hou
- 4PepsiCo R+D Biological & Discovery Analytics,PepsiCo Inc.,New Haven, CT 06511,USA
| | | | | | | | | | - Giulia Corona
- 1Department of Food and Nutritional Sciences,School of Chemistry, Food and Pharmacy,University of Reading,PO Box 226,Reading RG2 6AP,UK
| | - Julie A Lovegrove
- 1Department of Food and Nutritional Sciences,School of Chemistry, Food and Pharmacy,University of Reading,PO Box 226,Reading RG2 6AP,UK
| | - Jeremy P E Spencer
- 1Department of Food and Nutritional Sciences,School of Chemistry, Food and Pharmacy,University of Reading,PO Box 226,Reading RG2 6AP,UK
| |
Collapse
|
28
|
Abstract
AbstractThe endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis.
Collapse
|
29
|
Chronic peroxisome proliferator-activated receptorβ/δ agonist GW0742 prevents hypertension, vascular inflammatory and oxidative status, and endothelial dysfunction in diet-induced obesity. J Hypertens 2016; 33:1831-44. [PMID: 26147382 DOI: 10.1097/hjh.0000000000000634] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Endothelial dysfunction plays a key role in obesity-induced risk of cardiovascular disease. The aim of the present study was to analyze the effect of chronic peroxisome proliferator-activated receptor (PPAR)β/δ agonist GW0742 treatment on endothelial function in obese mice fed a high-fat diet (HFD). METHODS AND RESULTS Five-week-old male mice were allocated to one of the following groups: control, control-treated (GW0742, 3 mg/kg per day, by oral gavage), HFD, HFD + GW0742, HFD + GSK0660 (1 mg/kg/day, intraperitoneal) or HFD-GW0742-GSK0660 and followed for 11 or 13 weeks. GW0742 administration to mice fed HFD prevented the gain of body weight, heart and kidney hypertrophy, and fat accumulation. The increase in plasma levels of fasting glucose, glucose tolerance test, homeostatic model assessment of insulin resistance, and triglyceride found in the HFD group was suppressed by GW0742. This agonist increased plasma HDL in HFD-fed mice and restored the levels of tumor necrosis factor-α and adiponectin in fat. GW0742 prevented the impaired nitric oxide-dependent vasodilatation induced by acetylcholine in aortic rings from mice fed HFD. Moreover, GW0742 increased both aortic Akt and endothelial nitric oxide synthase phosphorylation, and inhibited the increase in caveolin-1/endothelial nitric oxide synthase interaction, ethidium fluorescence, NOX-1, Toll-like receptor 4, tumor necrosis factor-α, and interleukin-6 expression, and IκBα phosphorylation found in aortae from the HFD group. GSK0660 prevented all changes induced by GW0742. CONCLUSION PPARβ/δ activation prevents obesity and exerts protective effects on hypertension and on the early manifestations of atherosclerosis, that is, endothelial dysfunction and the vascular pro-oxidant and pro-inflammatory status, in HFD-fed mice.
Collapse
|
30
|
Madlala HP, Maarman GJ, Ojuka E. Uric acid and transforming growth factor in fructose-induced production of reactive oxygen species in skeletal muscle. Nutr Rev 2016; 74:259-66. [PMID: 26946251 PMCID: PMC4892313 DOI: 10.1093/nutrit/nuv111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The consumption of fructose, a major constituent of the modern diet, has raised increasing concern about the effects of fructose on health. Research suggests that excessive intake of fructose (>50 g/d) causes hyperuricemia, insulin resistance, mitochondrial dysfunction, de novo lipogenesis by the liver, and increased production of reactive oxygen species (ROS) in muscle. In a number of tissues, uric acid has been shown to stimulate the production of ROS via activation of transforming growth factor β1 and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4. The role of uric acid in fructose-induced production of ROS in skeletal muscle, however, has not been investigated. This review examines the evidence for fructose-induced production of ROS in skeletal muscle, highlights proposed mechanisms, and identifies gaps in current knowledge.
Collapse
Affiliation(s)
- Hlengiwe P Madlala
- H.P. Madlala, G.J. Maarman, and E. Ojuka are with the Exercise Science and Sports Medicine Unit, Department of Human Biology, University of Cape Town, Cape Town, Western Cape, South Africa.
| | - Gerald J Maarman
- H.P. Madlala, G.J. Maarman, and E. Ojuka are with the Exercise Science and Sports Medicine Unit, Department of Human Biology, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Edward Ojuka
- H.P. Madlala, G.J. Maarman, and E. Ojuka are with the Exercise Science and Sports Medicine Unit, Department of Human Biology, University of Cape Town, Cape Town, Western Cape, South Africa
| |
Collapse
|
31
|
Grizelj I, Cavka A, Bian JT, Szczurek M, Robinson A, Shinde S, Nguyen V, Braunschweig C, Wang E, Drenjancevic I, Phillips SA. Reduced flow-and acetylcholine-induced dilations in visceral compared to subcutaneous adipose arterioles in human morbid obesity. Microcirculation 2015; 22:44-53. [PMID: 25155427 DOI: 10.1111/micc.12164] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/19/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The hypothesis of this study was that microvascular FID and AChID is impaired in visceral (VAT) compared to SAT arterioles in morbidly obese women. An Additional aim was to determine the mechanisms contributing to FID and AChID in VAT and SAT arterioles. METHODS AND RESULTS Arterioles were obtained from SAT and VAT biopsies from women (BMI > 35 kg/m(2) ) undergoing bariatric surgery. Microvessels were cannulated for reactivity measurements in response to flow (pressure gradients of 10-100 cmH2 O) and to ACh (10(-9) -10(-4 ) M) with and without l-NAME, INDO, and PEG-catalase. NO and H2 O2 generation were detected in arterioles by fluorescence microscopy. FID and AChID of arterioles from VAT were reduced compared to SAT arterioles. In SAT arterioles, l-NAME, INDO, and PEG-catalase significantly reduced FID and AChID but had no effect individually on VAT arterioles' vasodilator reactivity. INDO +l-NAME reduced FID in VAT arterioles. NO-fluorescence was greater in arterioles from SAT compared to VAT arterioles. Vascular H2 O2 generation during flow was similar in both VAT and SAT. CONCLUSION Our results suggest that VAT arterioles display reduced vasodilator reactivity to flow and ACh compared to SAT arterioles, mediated by different regulatory mechanisms in human obesity.
Collapse
Affiliation(s)
- Ivana Grizelj
- Department of Physical Therapy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Physiology and Immunology, Faculty of Medicine University of Osijek, Osijek, Croatia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Muñoz M, Sánchez A, Pilar Martínez M, Benedito S, López-Oliva ME, García-Sacristán A, Hernández M, Prieto D. COX-2 is involved in vascular oxidative stress and endothelial dysfunction of renal interlobar arteries from obese Zucker rats. Free Radic Biol Med 2015; 84:77-90. [PMID: 25841778 DOI: 10.1016/j.freeradbiomed.2015.03.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 03/23/2015] [Indexed: 02/07/2023]
Abstract
Obesity is related to vascular dysfunction through inflammation and oxidative stress and it has been identified as a risk factor for chronic renal disease. In the present study, we assessed the specific relationships among reactive oxygen species (ROS), cyclooxygenase 2 (COX-2), and endothelial dysfunction in renal interlobar arteries from a genetic model of obesity/insulin resistance, the obese Zucker rats (OZR). Relaxations to acetylcholine (ACh) were significantly reduced in renal arteries from OZR compared to their counterpart, the lean Zucker rat (LZR), suggesting endothelial dysfunction. Blockade of COX with indomethacin and with the selective blocker of COX-2 restored the relaxations to ACh in obese rats. Selective blockade of the TXA2/PGH2 (TP) receptor enhanced ACh relaxations only in OZR, while inhibition of the prostacyclin (PGI2) receptor (IP) enhanced basal tone and inhibited ACh vasodilator responses only in LZR. Basal production of superoxide was increased in arteries of OZR and involved NADPH and xanthine oxidase activation and NOS uncoupling. Under conditions of NOS blockade, ACh induced vasoconstriction and increased ROS generation that were augmented in arteries from OZR and blunted by COX-2 inhibition and by the ROS scavenger tempol. Hydrogen peroxide (H2O2) evoked both endothelium- and vascular smooth muscle (VSM)-dependent contractions, as well as ROS generation that was reduced by COX-2 inhibition. In addition, COX-2 expression was enhanced in both VSM and endothelium of renal arteries from OZR. These results suggest that increased COX-2-dependent vasoconstriction contributes to renal endothelial dysfunction through enhanced (ROS) generation in obesity. COX-2 activity is in turn upregulated by ROS.
Collapse
Affiliation(s)
- Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid 28040, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid 28040, Spain
| | - María Pilar Martínez
- Departamento de Anatomía and Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad Complutense, Madrid 28040, Spain
| | - Sara Benedito
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid 28040, Spain
| | | | - Albino García-Sacristán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid 28040, Spain
| | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid 28040, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid 28040, Spain.
| |
Collapse
|
33
|
Kshirsagar RP, Kothamasu MV, Patil MA, Reddy GB, Kumar BD, Diwan PV. Geranium oil ameliorates endothelial dysfunction in high fat high sucrose diet induced metabolic complications in rats. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
34
|
Czikora I, Feher A, Lucas R, Fulton DJR, Bagi Z. Caveolin-1 prevents sustained angiotensin II-induced resistance artery constriction and obesity-induced high blood pressure. Am J Physiol Heart Circ Physiol 2014; 308:H376-85. [PMID: 25527780 DOI: 10.1152/ajpheart.00649.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The type 1 angiotensin II (ANG II) receptor (AT1R) undergoes internalization following stimulation by ANG II. Internalization reduces cell surface AT1Rs, and it is required for AT1R resensitization. In this process AT1R may interact with caveolin-1 (Cav1), the main scaffolding protein of caveolae. We hypothesized that the interaction between Cav1 and AT1R delays AT1R resensitization and thereby prevents sustained ANG II-induced resistance artery (RA) constriction under normal conditions and in experimental obesity. In rat and mouse skeletal muscle RA (diameter: ∼90-120 μm) ANG II-induced constrictions were reduced upon repeated (30-min apart) administrations. Upon disruption of caveolae with methyl-β-cyclodextrin or in RA of Cav1 knockout mice, repeated ANG II applications resulted in essentially maintained constrictions. In vascular smooth muscle cells, AT1R interacted with Cav1, and the degree of cell surface interactions was reduced by long-term (15-min), but not short-term (2-min), exposure to ANG II. When Cav1 was silenced, the amount of membrane-associated AT1R was significantly reduced by a short-term ANG II exposure. Moreover, Cav1 knockout mice fed a high-fat diet exhibited augmented and sustained RA constriction to ANG II and had elevated systemic blood pressure, when compared with normal or high-fat fed wild-type mice. Thus, Cav1, through a direct interaction, delays internalization and subsequent resensitization of AT1R. We suggest that this mechanism prevents sustained ANG II-induced RA constriction and elevated systemic blood pressure in diet-induced obesity.
Collapse
Affiliation(s)
- Istvan Czikora
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Attila Feher
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - David J R Fulton
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Zsolt Bagi
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
35
|
Battelli MG, Polito L, Bolognesi A. Xanthine oxidoreductase in atherosclerosis pathogenesis: Not only oxidative stress. Atherosclerosis 2014; 237:562-7. [DOI: 10.1016/j.atherosclerosis.2014.10.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/12/2014] [Indexed: 02/07/2023]
|
36
|
Kleinschmidt TL, Oltman CL. Progression and reversal of coronary and mesenteric vascular dysfunction associated with obesity. Obesity (Silver Spring) 2014; 22:2193-200. [PMID: 25044654 DOI: 10.1002/oby.20837] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/28/2014] [Accepted: 06/22/2014] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The purpose of this study was to examine progression and reversal of microvascular complications when rats were fed a high fat diet. METHODS Sprague-Dawley rats 10 weeks of age were fed a diet containing 45% kcal fat for up to 32 weeks. Blood pressure and heart rate was measured by telemetry. Vascular reactivity of aorta and small coronary and mesenteric vessels was determined after 8, 16, 24, and 32 weeks on diet. RESULTS There was a modest increase in weight and blood pressure in high fat fed rats. Sodium nitroprusside (SNP)-induced relaxation of coronary arteries was potentiated after 8 weeks on high fat diet, however, this enhanced response was not observed after 16, 24, or 32 weeks of diet. Acetylcholine (Ach) mediated relaxation was attenuated after 16, 24, and 32 weeks of high fat diet in coronary arteries; however, in aorta and mesenteric arteries, Ach-mediated response was not altered until 32 weeks on high fat diet. Reversing the high fat diet for 8 weeks resulted in partial recovery of metabolic parameters; however endothelial function in coronary arteries remained impaired. CONCLUSIONS These studies indicate that high fat diet promotes progressive impairment of coronary vascular function that is difficult to reverse.
Collapse
Affiliation(s)
- Travis L Kleinschmidt
- Department of Internal Medicine, University of Iowa and the Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | | |
Collapse
|
37
|
The probiotic Lactobacillus coryniformis CECT5711 reduces the vascular pro-oxidant and pro-inflammatory status in obese mice. Clin Sci (Lond) 2014; 127:33-45. [PMID: 24410749 DOI: 10.1042/cs20130339] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is associated with intestine dysbiosis and is characterized by a low-grade inflammatory status, which affects vascular function. In the present study, we evaluated the effects of a probiotic with immunomodulatory properties, Lactobacillus coryniformis CECT5711, in obese mice fed on an HFD (high-fat diet). The probiotic treatment was given for 12 weeks, and it did not affect the weight evolution, although it reduced basal glycaemia and insulin resistance. L. coryniformis administration to HFD-induced obese mice induced marked changes in microbiota composition and reduced the metabolic endotoxaemia as it decreased the LPS (lipopolysaccharide) plasma level, which was associated with a significant improvement in gut barrier disruption. Furthermore, it lowered TNFα (tumour necrosis factor α) expression in liver, improving the inflammatory status, and thus the glucose metabolism. Additionally, the probiotic reversed the endothelial dysfunction observed in obese mice when endothelium- and NO (nitric oxide)-dependent vasodilatation induced by acetylcholine in aortic rings was studied. It also restored the increased vessel superoxide levels observed in obese mice, by reducing NADPH oxidase activity and increasing antioxidant enzymes. Moreover, chronic probiotic administration for 2 weeks also improved endothelial dysfunction and vascular oxidative stress induced by in vivo administration of LPS in control mice fed on a standard chow diet. The results of the present study demonstrate an endothelial-protective effect of L. coryniformis CECT5711 in obese mice by increasing NO bioavailability, suggesting the therapeutic potential of this gut microbiota manipulation to prevent vasculopathy in obesity.
Collapse
|
38
|
Lu S, Xiang L, Clemmer JS, Gowdey AR, Mittwede PN, Hester RL. Impaired vascular KATP function attenuates exercise capacity in obese zucker rats. Microcirculation 2014; 20:662-9. [PMID: 23647569 DOI: 10.1111/micc.12065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/02/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Obese subjects exhibit decreased exercise capacity (VO2max ). We have shown that vascular KATP channel mediates arteriolar dilation to muscle contraction. We hypothesize that exercise capacity is decreased in obesity due to impaired vascular KATP function. METHODS The VO2max was measured in LZR and OZR by treadmill running before and following treatment with the KATP blocker glibenclamide i.p. One week later, the spinotrapezius muscle was prepared for in vivo microscopy. Arcade arteriolar diameters were measured following muscle contraction or application of the KATP opener cromakalim before and after glibenclamide application. In additional animals, LZR and OZR were treated with apocynin for five weeks. VO2max and arteriolar dilation experiments were repeated. RESULTS The OZR exhibited decreased VO2max , functional and cromakalim-induced vasodilation as compared with LZR. Glibenclamide had no effect on VO2max and functional vasodilation in OZR, but significantly inhibited responses in LZR. Vascular superoxide levels and NADPH oxidase activity were increased in OZR, but reduced in apocynin-treated OZR. Apocynin increased the VO2max , functional and cromakalim-induced vasodilation in OZR with no effect in LZR. CONCLUSIONS Exercise capacity is dependent on vascular KATP channel function. The reduced exercise capacity in OZR appears to be due in part to superoxide-mediated impairment in vascular KATP function.
Collapse
Affiliation(s)
- Silu Lu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | | | | | | |
Collapse
|
39
|
Bagi Z, Feher A, Dou H, Broskova Z. Selective up-regulation of arginase-1 in coronary arteries of diabetic patients. Front Immunol 2013; 4:293. [PMID: 24133491 PMCID: PMC3783852 DOI: 10.3389/fimmu.2013.00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/06/2013] [Indexed: 01/06/2023] Open
Abstract
Coronary artery disease (CAD) remains the leading cause of death in the Western societies. Diabetes mellitus (DM) is one of the highly prevalent diseases, which remarkably accelerates the development of CAD. Experimental evidence indicates that decreased bioavailability of coronary endothelial nitric oxide (NO) contributes to the development of CAD in DM. There are recent studies showing that a selective impairment of NO synthesis occurs in coronary arteries of DM patients, which is mainly due to the limited availability of endothelial NO synthase (eNOS) precursor, l-arginine. Importantly, these studies demonstrated that DM, independent of the presence of CAD, leads to selective up-regulation of arginase-1. Arginase-1 seems to play an important role in limiting l-arginine availability in the close proximity of eNOS in vessels of DM patients. This brief review examines recent clinical studies demonstrating the pathological role of vascular arginase-1 in human diabetes. Whether arginase-1, which is crucial in the synthesis of various fundamental polyamines in the body, will represent a potent therapeutic target for prevention of DM-associated CAD is still debated.
Collapse
Affiliation(s)
- Zsolt Bagi
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA
| | | | | | | |
Collapse
|
40
|
Lesniewski LA, Zigler ML, Durrant JR, Nowlan MJ, Folian BJ, Donato AJ, Seals DR. Aging compounds western diet-associated large artery endothelial dysfunction in mice: prevention by voluntary aerobic exercise. Exp Gerontol 2013; 48:1218-25. [PMID: 23954368 DOI: 10.1016/j.exger.2013.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/25/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
We tested the hypothesis that aging will exacerbate the negative vascular consequences of exposure to a common physiological stressor, i.e., consumption of a "western" (high fat/high sucrose) diet (WD), by inducing superoxide-associated reductions in nitric oxide (NO) bioavailability, and that this would be prevented by voluntary aerobic exercise. Incremental stiffness and endothelium-dependent dilation (EDD) were measured in the carotid arteries of young (5.4±0.3 mo, N=20) and old (30.4±0.2 mo, N=19) male B6D2F1 mice fed normal chow (NC: 17% fat, 0% sucrose) or a western diet (40% fat, 19% sucrose) and housed in either standard cages or cages equipped with running wheels for 10-14 weeks. Incremental stiffness was higher in old NC (P<0.05) and both young (P<0.01) and old (P<0.01) WD fed mice compared with young NC mice, but WD did not further increase stiffness in the old mice. In cage control mice, maximal EDD was 17% lower in both NC fed old mice and young WD fed mice (P<0.05). Consumption of WD by old mice led to a further 20% reduction in maximal EDD (P<0.05). Incremental stiffness was 28% lower and maximal EDD was 38% greater in old WD fed mice with access to running wheels vs. old WD fed control mice (P<0.05) and not different from young NC fed controls. Wheel running also tended to improve maximal EDD (+9%, P=0.11), but not incremental stiffness in young WD fed mice. Ex vivo treatment with the superoxide scavenger TEMPOL and NO inhibitor l-NAME abolished these respective effects of age, WD and voluntary running on EDD. Ingestion of a WD induces similar degrees of endothelial dysfunction in old and young adult B6D2F1 mice, and these effects are mediated by a superoxide-dependent impairment of NO bioavailability. However, the combination of old age and WD, a common occurrence in our aging society, results in a marked, additive reduction in endothelial function. Importantly, regular voluntary aerobic exercise reduces arterial stiffness and protects against the adverse influence of WD on endothelial function in old animals by preventing superoxide suppression of NO. These findings may have important implications for arterial aging and the prevention of age-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Lisa A Lesniewski
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, United States; School of Medicine, Department of Internal Medicine, Division of Geriatrics, University of Utah, United States; Geriatrics Research Education and Clinical Center, Veterans Administration Medical Center, Salt Lake City Health Care System, 500 Foothill Dr., Salt Lake City, UT 84148, United States.
| | | | | | | | | | | | | |
Collapse
|
41
|
Koller A, Balasko M, Bagi Z. Endothelial regulation of coronary microcirculation in health and cardiometabolic diseases. Intern Emerg Med 2013; 8 Suppl 1:S51-4. [PMID: 23494539 PMCID: PMC3676666 DOI: 10.1007/s11739-013-0910-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiometabolic disorders have been shown to impair coronary microvascular functions leading to diminished cardiac performance and increased mortality. In this review, we focus on the molecular pathomechanisms of impaired endothelium-dependent and flow-induced dysregulation of coronary vasomotor tone in cardiometabolic disorders such as obesity, diabetes mellitus or hyperhomocysteinemia based on animal experiments and human studies. We also briefly summarize the relationship among key signaling mechanisms that contribute to the development of coronary dysfunctions in these disorders, which may help develop new targets for efficient cardiometabolic prevention and treatments.
Collapse
Affiliation(s)
- Akos Koller
- Department of Pathophysiology and Gerontology, Medical School, J. Szentagothai Res. Centre, University of Pecs, 12. Szigeti Str, 7624, Pecs, Hungary.
| | | | | |
Collapse
|
42
|
Paneni F, Osto E, Costantino S, Mateescu B, Briand S, Coppolino G, Perna E, Mocharla P, Akhmedov A, Kubant R, Rohrer L, Malinski T, Camici GG, Matter CM, Mechta-Grigoriou F, Volpe M, Lüscher TF, Cosentino F. Deletion of the Activated Protein-1 Transcription Factor JunD Induces Oxidative Stress and Accelerates Age-Related Endothelial Dysfunction. Circulation 2013; 127:1229-40, e1-21. [DOI: 10.1161/circulationaha.112.000826] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Francesco Paneni
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Elena Osto
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Sarah Costantino
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Bogdan Mateescu
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Sylvie Briand
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Giuseppe Coppolino
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Enrico Perna
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Pavani Mocharla
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Alexander Akhmedov
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Ruslan Kubant
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Lucia Rohrer
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Tadeusz Malinski
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Giovanni G. Camici
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Christian M. Matter
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Fatima Mechta-Grigoriou
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Massimo Volpe
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Thomas F. Lüscher
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Francesco Cosentino
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| |
Collapse
|
43
|
How JMY, Pumpa TJ, Sartor DM. Renal sympathoinhibitory and regional vasodilator responses to cholecystokinin are altered in obesity-related hypertension. Exp Physiol 2013. [DOI: 10.1113/expphysiol.2012.070151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Willcox JM, Summerlee AJS, Murrant CL. Relaxin induces rapid, transient vasodilation in the microcirculation of hamster skeletal muscle. J Endocrinol 2013; 218:179-91. [PMID: 23720398 DOI: 10.1530/joe-13-0115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Relaxin produces a sustained decrease in total peripheral resistance, but the effects of relaxin on skeletal muscle arterioles, an important contributor to systemic resistance, are unknown. Using the intact, blood-perfused hamster cremaster muscle preparation in situ, we tested the effects of relaxin on skeletal muscle arteriolar microvasculature by applying 10(-10) M relaxin to second-, third- and fourth-order arterioles and capillaries. The mechanisms responsible for relaxin-induced dilations were explored by applying 10(-10) M relaxin to second-order arterioles in the presence of 10(-5) M N(G)-nitro-l-arginine methyl ester (l-NAME, nitric oxide (NO) synthase inhibitor), 10(-5) M glibenclamide (GLIB, ATP-dependent potassium (K(+)) channel inhibitor), 10(-3) M tetraethylammonium (TEA) or 10(-7) M iberiotoxin (IBTX, calcium-associated K(+) channel inhibitor). Relaxin caused second- (peak change in diameter: 8.3 ± 1.7 μm) and third (4.5 ± 1.1 μm)-order arterioles to vasodilate transiently while fourth-order arterioles did not (0.01 ± 0.04 μm). Relaxin-induced vasodilations were significantly inhibited by l-NAME, GLIB, TEA and IBTX. Relaxin stimulated capillaries to induce a vasodilation in upstream fourth-order arterioles (2.1 ± 0.3 μm), indicating that relaxin can induce conducted responses vasodilation that travels through blood vessel walls via gap junctions. We confirmed gap junction involvement by showing that gap junction uncouplers (18-β-glycyrrhetinic acid (40 × 10(-6) M) or 0.07% halothane) inhibited upstream vasodilations to localised relaxin stimulation of second-order arterioles. Therefore, relaxin produces transient NO- and K(+) channel-dependent vasodilations in skeletal muscle arterioles and stimulates capillaries to initiate conducted responses. The transient nature of the arteriolar dilation brings into question the role of skeletal muscle vascular beds in generating the sustained systemic haemodynamic effects induced by relaxin.
Collapse
Affiliation(s)
- Jordan M Willcox
- Department of Biomedical Sciences Human Health, University of Guelph, ANNU Bldg, Room 350, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
45
|
Jung JY, Kim IY, Kim YN, Kim JS, Shin JH, Jang ZH, Lee HS, Hwang GS, Seong JK. 1H NMR-based metabolite profiling of diet-induced obesity in a mouse mode. BMB Rep 2012; 45:419-24. [PMID: 22831978 DOI: 10.5483/bmbrep.2012.45.7.248] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
High-fat diets (HFD) and high-carbohydrate diets (HCD)- induced obesity through different pathways, but the metabolic differences between these diets are not fully understood. Therefore, we applied proton nuclear magnetic resonance ((1)H NMR)-based metabolomics to compare the metabolic patterns between C57BL/6 mice fed HCD and those fed HFD. Principal component analysis derived from (1)H NMR spectra of urine showed a clear separation between the HCD and HFD groups. Based on the changes in urinary metabolites, the slow rate of weight gain in mice fed the HCD related to activation of the tricarboxylic acid cycle (resulting in increased levels of citrate and succinate in HCD mice), while the HFD affected nicotinamide metabolism (increased levels of 1-methylnicotineamide, nicotinamide-N-oxide in HFD mice), which leads to systemic oxidative stress. In addition, perturbation of gut microflora metabolism was also related to different metabolic patterns of those two diets. These findings demonstrate that (1)H NMR-based metabolomics can identify diet-dependent perturbations in biological pathways.
Collapse
|
46
|
Potentiation of vascular oxidative stress and nitric oxide-mediated endothelial dysfunction by high-fat diet in a mouse model of estrogen deficiency and hyperandrogenemia. ACTA ACUST UNITED AC 2012; 3:295-305. [PMID: 20409973 DOI: 10.1016/j.jash.2009.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/23/2009] [Accepted: 07/29/2009] [Indexed: 12/31/2022]
Abstract
Estrogen deficiency is associated with increased cardiovascular risk due, in part, to hypertension, endothelial dysfunction, obesity, and hypercholesterolemia. Underlying mechanisms for this remain unclear. Here, we investigated whether high-fat intake aggravates vascular dysfunction through oxidative stress and inflammation, which could predispose to cardiovascular injury in conditions of estrogen deficiency, such as menopause. We studied female homozygous follitropin receptor knock out (FORKO) mice, which have hormonal features of clinical menopause and hypertension and wild-type (WT) and heterozygote mice (HTZ), fed a standard or high-fat diet for 4 months. Vascular function and structure were evaluated in arterial segments by pressurized myography. Acetylcholine (ACh)-induced vasodilation was reduced in FORKO vs. WT mice (P < .001). N(varpi)-nitro-l-arginine-methyl-ester inhibited Ach-induced relaxation in all groups on normal chow and in WT and HTZ on high-fat diet (FD) but had no effect in fat-fed FORKO mice. Antioxidant cocktail (superoxide dismutase, catalase, Tempol) increased ACh responses only in high-fat diet FORKO mice (P < .05). Vascular media-to-lumen ratio was increased and reactive oxygen species (ROS) generation, nitrotyrosine formation, and plasma nitrite levels were augmented in fat-fed FORKO vs. FORKO on normal chow. High-fat diet did not influence vascular inflammatory responses in any group. Our data demonstrate that FORKO mice have altered nitric oxide-sensitive vasorelaxation and vascular remodeling, which are aggravated by high-fat diet. Underlying mechanisms for this may involve decreased NO formation and increased generation of ROS and nitrotyrosine. These findings suggest that high-fat intake potentiates vascular damage in estrogen-deficient states, an effect involving increased oxidative stress.
Collapse
|
47
|
Abstract
Vascular endothelial dysfunction is determined by both genetic and environmental factors that cause decreased bioavailability of the vasodilator nitric oxide. This is a hallmark of atherosclerosis, hypertension, and coronary heart disease, which are major complications of metabolic disorders, including diabetes and obesity. Several therapeutic interventions, including changes in lifestyle as well as pharmacologic treatments, are useful for improving endothelial dysfunction in the face of lipotoxicity. This review discusses the current understanding of molecular and physiologic mechanisms underlying lipotoxicity-mediated endothelial dysfunction as well as relevant therapeutic approaches to ameliorate dyslipidemia and consequent endothelial dysfunction that have the potential to improve cardiovascular and metabolic outcomes.
Collapse
Affiliation(s)
- Jeong-a Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, 1808 7th Avenue South, BDB 777, Birmingham, AL 35294-0012, USA
- Department of Cell Biology, University of Alabama at Birmingham, 1808 7th Avenue South, BDB 777, Birmingham, AL 35294, USA
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, University “Aldo Moro” at Bari, Policlinico, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Sruti Chandrasekran
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland at Baltimore, 660 West Redwood Street, HH 495, Baltimore, MD 21201, USA
| | - Michael J. Quon
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland at Baltimore, 660 West Redwood Street, HH 495, Baltimore, MD 21201, USA
| |
Collapse
|
48
|
Donato AJ, Henson GD, Morgan RG, Enz RA, Walker AE, Lesniewski LA. TNF-α impairs endothelial function in adipose tissue resistance arteries of mice with diet-induced obesity. Am J Physiol Heart Circ Physiol 2012; 303:H672-9. [PMID: 22821989 DOI: 10.1152/ajpheart.00271.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We tested the hypothesis that high fat (HF) feeding results in endothelial dysfunction in resistance arteries of epididymal white adipose tissue (eWAT) and is mediated by adipose tissue inflammation. When compared with normal chow (NC)-fed mice (n = 17), HF-fed male B6D2F1 mice were glucose intolerant and insulin resistant as assessed by glucose tolerance test (area under the curve; HF, 18,174 ± 1,889 vs. NC, 15,814 ± 666 mg·dl(-1)·min(-1); P < 0.05) and the homeostatic model assessment (HF, 64.1 ± 4.3 vs. NC, 85.7 ± 6.4; P = 0.05). HF diet-induced metabolic dysfunction was concomitant with a proinflammatory eWAT phenotype characterized by greater macrophage infiltration (HF, 3.9 ± 0.8 vs. NC, 0.8 ± 0.4%; P = 0.01) and TNF-α (HF, 22.6 ± 4.3 vs. NC, 11.4 ± 2.5 pg/dl; P < 0.05) and was associated with resistance artery dysfunction, evidenced by impaired endothelium-dependent dilation (EDD) (maximal dilation; HF, 49.2 ± 10.7 vs. NC, 92.4 ± 1.4%; P < 0.01). Inhibition of nitric oxide (NO) synthase by N(ω)-nitro-L-arginine methyl ester (L-NAME) reduced dilation in NC (28.9 ± 6.3%; P < 0.01)- and tended to reduce dilation in HF (29.8 ± 9.9%; P = 0.07)-fed mice, eliminating the differences in eWAT artery EDD between NC- and HF-fed mice, indicative of reduced NO bioavailability in eWAT resistance arteries after HF feeding. In vitro treatment of excised eWAT arteries with recombinant TNF-α (rTNF) impaired EDD (P < 0.01) in NC (59.7 ± 10.9%)- but not HF (59.0 ± 9.3%)-fed mice. L-NAME reduced EDD in rTNF-treated arteries from both NC (21.9 ± 6.4%)- and HF (29.1 ± 9.2%)-fed mice (both P < 0.01). In vitro treatment of arteries with a neutralizing antibody against TNF-α (abTNF) improved EDD in HF (88.2 ± 4.6%; P = 0.05)-fed mice but was without effect on maximal dilation in NC (89.0 ± 5.1%)-fed mice. L-NAME reduced EDD in abTNF-treated arteries from both NC (25.4 ± 7.5%)- and HF (27.1 ± 16.8%)-fed mice (both P < 0.01). These results demonstrate that inflammation in the visceral adipose tissue resulting from diet-induced obesity impairs endothelial function and NO bioavailability in the associated resistance arteries. This dysfunction may have important implications for adipose tissue blood flow and appropriate tissue function.
Collapse
Affiliation(s)
- Anthony J Donato
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, 84148, USA
| | | | | | | | | | | |
Collapse
|
49
|
Howitt L, Grayson TH, Morris MJ, Sandow SL, Murphy TV. Dietary obesity increases NO and inhibits BKCa-mediated, endothelium-dependent dilation in rat cremaster muscle artery: association with caveolins and caveolae. Am J Physiol Heart Circ Physiol 2012; 302:H2464-76. [DOI: 10.1152/ajpheart.00965.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16–20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g ( n = 52–56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the KCa blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 μmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors Nω-nitro-l-arginine methyl ester (l-NAME; 100 μmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. l-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca2+-activated K+ channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component.
Collapse
Affiliation(s)
- Lauren Howitt
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
| | - T. Hilton Grayson
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Margaret J. Morris
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Shaun L. Sandow
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Timothy V. Murphy
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
| |
Collapse
|
50
|
Bagi Z, Feher A, Cassuto J. Microvascular responsiveness in obesity: implications for therapeutic intervention. Br J Pharmacol 2012; 165:544-60. [PMID: 21797844 DOI: 10.1111/j.1476-5381.2011.01606.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Obesity has detrimental effects on the microcirculation. Functional changes in microvascular responsiveness may increase the risk of developing cardiovascular complications in obese patients. Emerging evidence indicates that selective therapeutic targeting of the microvessels may prevent life-threatening obesity-related vascular complications, such as ischaemic heart disease, heart failure and hypertension. It is also plausible that alterations in adipose tissue microcirculation contribute to the development of obesity. Therefore, targeting adipose tissue arterioles could represent a novel approach to reducing obesity. This review aims to examine recent studies that have been focused on vasomotor dysfunction of resistance arteries in obese humans and animal models of obesity. Particularly, findings in coronary resistance arteries are contrasted to those obtained in other vascular beds. We provide examples of therapeutic attempts, such as use of statins, ACE inhibitors and insulin sensitizers to prevent obesity-related microvascular complications. We further identify some of the important challenges and opportunities going forward. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3.
Collapse
Affiliation(s)
- Zsolt Bagi
- Department of Pharmacology, University of Oxford, UK Department of Physiology, New York Medical College, Valhalla, New York, USA.
| | | | | |
Collapse
|