1
|
Razavi MS, Munn LL, Padera TP. Mechanics of Lymphatic Pumping and Lymphatic Function. Cold Spring Harb Perspect Med 2025; 15:a041171. [PMID: 38692743 PMCID: PMC11875091 DOI: 10.1101/cshperspect.a041171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The lymphatic system plays a crucial role in maintaining tissue fluid balance, immune surveillance, and the transport of lipids and macromolecules. Lymph is absorbed by initial lymphatics and then driven through lymph nodes and to the blood circulation by the contraction of collecting lymphatic vessels. Intraluminal valves in collecting lymphatic vessels ensure the unidirectional flow of lymph centrally. The lymphatic muscle cells that invest in collecting lymphatic vessels impart energy to propel lymph against hydrostatic pressure gradients and gravity. A variety of mechanical and biochemical stimuli modulate the contractile activity of lymphatic vessels. This review focuses on the recent advances in our understanding of the mechanisms involved in regulating and collecting lymphatic vessel pumping in normal tissues and the association between lymphatic pumping, infection, inflammatory disease states, and lymphedema.
Collapse
Affiliation(s)
- Mohammad S Razavi
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Lance L Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Timothy P Padera
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
2
|
Hong SL, Dumargne H, Hahn RG, Hammed A, Lac R, Guilpin A, Slek C, Gerome M, Allaouchiche B, Louzier V, Dargent A. Volume kinetics in a translational porcine model of stabilized sepsis with fluid accumulation. Crit Care 2025; 29:92. [PMID: 40022194 PMCID: PMC11869627 DOI: 10.1186/s13054-025-05308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Fluid dynamics during and after a septic event is complex, but better knowledge could guide both fluid resuscitation and fluid removal. We aimed to compare fluid dynamics before and after sepsis in a clinically relevant mono-bacterial porcine model. METHODS Twelve sows with a mean body weight of 56 kg were anesthetized, mechanically ventilated, and invasively monitored. Sepsis was induced with an intravenous infusion of P. aeruginosa. Animals were resuscitated during the acute septic phase according to a protocolized algorithm. Volume kinetics was studied before the bacterial infusion (baseline) and 24 h later (late sepsis), and both consisted of an infusion of 1,500 mL of 0.9% saline over 20 min with repeated hemoglobin and albumin measurements and urine quantification. RESULTS The kinetic analysis at baseline showed transient volume expansion of the central fluid compartment (the plasma) and a fast-exchange interstitial space, while gradually more fluid accumulated in the remote "third fluid space" with very slow turnover. In the late sepsis phase, hypoalbuminemia and slight hypovolemia was observed. As compared with baseline, fluid kinetics showed improved plasma expansion, and more expansion of the fast-exchange interstitial space rather than the slow-exchange space. The rate constant k21 describing return flow to the circulation was increased during the late sepsis phase, and hemoglobin-albumin dilution difference suggested that interstitial albumin recruitment occurred with the fluid infusion. The model predicted that high cardiac index and sepsis-induced weight gain were associated with greater fast-exchange compartment expansion. CONCLUSION After sepsis, fluid was accumulated in the slow-exchange compartment, and further fluid administration distributed preferentially to the fast-exchange compartment with acceleration of lymph flow, improved plasma expansion, and recruitment of interstitial albumin.
Collapse
Affiliation(s)
- Son Ly Hong
- Pulmonary and Cardiovascular Aggression in Sepsis APCSe, Université de Lyon, UPSP 2021.A101, VetAgro Sup, Campus Vétérinaire de Lyon, Marcy L'Etoile, France
- Nong Lam University, Ho Chi Minh City, Vietnam
| | - Hugo Dumargne
- Pulmonary and Cardiovascular Aggression in Sepsis APCSe, Université de Lyon, UPSP 2021.A101, VetAgro Sup, Campus Vétérinaire de Lyon, Marcy L'Etoile, France
- Department of Anesthesia and Intensive Care, Lyon Sud Teaching Hospital, Hospices Civils de Lyon, Lyon, France
| | - Robert G Hahn
- Karolinska Institute, Danderyds Hospital (KIDS), Stockholm, Sweden
| | - Abdessalem Hammed
- Pulmonary and Cardiovascular Aggression in Sepsis APCSe, Université de Lyon, UPSP 2021.A101, VetAgro Sup, Campus Vétérinaire de Lyon, Marcy L'Etoile, France
| | - Romain Lac
- Pulmonary and Cardiovascular Aggression in Sepsis APCSe, Université de Lyon, UPSP 2021.A101, VetAgro Sup, Campus Vétérinaire de Lyon, Marcy L'Etoile, France
| | - Axel Guilpin
- Pulmonary and Cardiovascular Aggression in Sepsis APCSe, Université de Lyon, UPSP 2021.A101, VetAgro Sup, Campus Vétérinaire de Lyon, Marcy L'Etoile, France
- Mexbrain, 13 Avenue Albert Einstein, 69100, Villeurbanne, France
| | - Charlotte Slek
- Pulmonary and Cardiovascular Aggression in Sepsis APCSe, Université de Lyon, UPSP 2021.A101, VetAgro Sup, Campus Vétérinaire de Lyon, Marcy L'Etoile, France
| | - Maxime Gerome
- Pulmonary and Cardiovascular Aggression in Sepsis APCSe, Université de Lyon, UPSP 2021.A101, VetAgro Sup, Campus Vétérinaire de Lyon, Marcy L'Etoile, France
| | - Bernard Allaouchiche
- Pulmonary and Cardiovascular Aggression in Sepsis APCSe, Université de Lyon, UPSP 2021.A101, VetAgro Sup, Campus Vétérinaire de Lyon, Marcy L'Etoile, France
- Department of Anesthesia and Intensive Care, Lyon Sud Teaching Hospital, Hospices Civils de Lyon, Lyon, France
| | - Vanessa Louzier
- Pulmonary and Cardiovascular Aggression in Sepsis APCSe, Université de Lyon, UPSP 2021.A101, VetAgro Sup, Campus Vétérinaire de Lyon, Marcy L'Etoile, France
- Pharmacodynamie Et Thérapeutique, VetAgro Sup, Marcy L'Etoile, France
| | - Auguste Dargent
- Pulmonary and Cardiovascular Aggression in Sepsis APCSe, Université de Lyon, UPSP 2021.A101, VetAgro Sup, Campus Vétérinaire de Lyon, Marcy L'Etoile, France.
- Department of Anesthesia and Intensive Care, Lyon Sud Teaching Hospital, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
3
|
Liu W, Zhang Y, Zheng M, Ye Y, Shi M, Wang X, Cao L, Wang L. Polysaccharides in Medicinal and Food Homologous Plants regulate intestinal flora to improve type 2 diabetes: Systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156027. [PMID: 39270592 DOI: 10.1016/j.phymed.2024.156027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Medicinal and food homologous plants (MFHPs) which can improve Type 2 Diabetes Mellitus (T2DM) draw significant attention among the public due to their low toxicity and more safety. Polysaccharides, one of the various active components of MFHPs, are recognized as effective modulators of the intestinal flora. By altering the composition of intestinal flora and affecting their metabolic products, polysaccharides can improve T2DM, making them a central focus of anti-diabetic research. PURPOSE The purpose of this study is to systematically review the mechanism by which polysaccharides from MFHPs (MFHPPs) regulate the composition of intestinal flora and its metabolic products to improve T2DM. METHODS This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and conducts a comprehensive search on the PubMed, Web of Science and Embase databases. All experimental articles published up to March 4, 2024, are included in the search. RESULTS Among the 5733 articles reviewed, 29 were selected, covering 22 different MFHPs. MFHPPs can improve T2DM, particularly in lowering blood glucose levels, with consistent results. MFHPPs can regulate the diversity of intestinal flora in T2DM animal models, primarily affecting four phyla: decreasing Firmicutes and Proteobacteria while increasing Bacteroidetes and Actinobacteriota. At the genus level, the improvement of T2DM by MFHPPs is associated with the modulation of 12 key genera: Allobaculum, Akkermansia, Bifidobacterium, Lactobacillus, Helicobacter, Halomonas, Olsenella, Oscillospira, Shigella, Escherichia-Shigella, Romboutsia and Bacteroides. At the molecular level, MFHPPs primarily act by modulating the intestinal flora to increase short-chain fatty acid levels, promote the secretion of glucagon-like peptide-1, influence the IGF1/PI3K/AKT signaling pathway, or the PI3K/AKT/GSK-3β pathway, to lower blood glucose levels. They may also improve T2DM by working in glucose metabolism through the "microbiota-gut-organ" axis. MFHPPs can also alleviate T2DM by mitigating inflammation and oxidative stress: MFHPPs regulate intestinal flora to reduce lipopolysaccharide "leakage" and enhance intestinal mucosal permeability to tackle the inflammation associated with T2DM; MFHPPs enhance the expression of oxidative stress-related enzymes to alleviate oxidative stress and improve T2DM. Lastly, from a metabolic pathway perspective, MFHPPs are primarily involved in the metabolism of amino acids and their derivatives, carbohydrate metabolism and glutathione metabolism. CONCLUSION MFHPPs can improve T2DM by enhancing the composition of intestinal flora, regulating its metabolic products to promote insulin secretion, inhibiting glucagon-like peptide secretion, facilitating glycogen synthesis, reducing inflammation levels and alleviating oxidative stress. Furthermore, MFHPPs demonstrate potential protective effects on critical organs such as the pancreas, liver, kidneys and heart. Therefore, MFHPPs demonstrate significant clinical potential. However, most studies can only indicate the potential of MFHPPs intervention in improving T2DM through the intestinal flora. The causality between MFHPPs regulating the intestinal flora and T2DM requires further investigation.
Collapse
Affiliation(s)
- Wanting Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yikai Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Mingze Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yixiao Ye
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mujia Shi
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiao Wang
- Xianghu Laboratory, Hangzhou, Zhejiang, 311231, China.
| | - Lingyong Cao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Lei Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
4
|
Hoang TA, Jin L, Nicolazzo JA, Trevaskis NL. Acute Neuroinflammation Alters the Transport of a Model Therapeutic Protein from the Brain into Lymph and Blood. Mol Pharm 2024; 21:5138-5149. [PMID: 39185947 DOI: 10.1021/acs.molpharmaceut.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The drainage of fluid and solutes along lymphatic pathways from the brain has been found to be impaired in mouse models of multiple sclerosis, Alzheimer's disease, and Parkinson's disease where neuroinflammation is present. We recently demonstrated that 3H-albumin, a model therapeutic protein (∼65 kDa), undergoes preferential lymphatic transport from the brain using a cervical lymph cannulation model in healthy rats. We thus hypothesized that neuroinflammation would impede the lymphatic transport of 3H-albumin from the brain. Our aim was to quantify the impact of acute neuroinflammation on drainage of the model therapeutic protein (3H-albumin) from the rat brain into blood and deep cervical lymph. To establish the required neuroinflammation model, male Sprague-Dawley rats were administered an intraperitoneal (IP) dose of 0.5-2 mg/kg lipopolysaccharide (LPS, Escherichia coli) or a saline control. After 12 or 24 h, brain samples were collected and analyzed for concentrations of interferon gamma (IFN-γ) using a commercial enzyme-linked immunosorbent assay (ELISA) kit. The impact of neuroinflammation on the drainage of 3H-albumin from the brain was determined via IP administration of 2 mg/kg LPS or saline followed by cannulation of the carotid artery for blood collection 24 h later with/without cannulation or ligation at the efferent deep cervical lymph trunk. Rats were then administered 3H-albumin via direct injection into the brain striatum or via intravenous (IV) injection (lymph-intact group only). Blood ± lymph samples were collected for up to 8 h following dosing. At the end of the study, brain and lymph node samples were harvested for biodistribution analysis, with samples analyzed for radioactivity levels via scintillation counting. Brain concentrations of the pro-inflammatory cytokine IFN-γ were only significantly elevated 24 h after IP administration of 2 mg/kg LPS compared to saline control. Therefore, this induction regimen was utilized for subsequent studies. The plasma concentrations of 3H-albumin over time were elevated in LPS-induced rats compared to saline-injected rats in the lymph-intact and lymph-ligated groups but not in the lymph-cannulated group. In the deep cervical lymph-cannulated animals, the lymph transport of 3H-albumin was not increased and appeared to be slower in the LPS-administered rats. Acute LPS-induced neuroinflammation therefore led to an enhanced overall transport of 3H-albumin from the brain into the systemic circulation. This appeared to be primarily due to increased transport of 3H-albumin from the brain directly into the blood circulation as 3H-albumin transport from the brain via the lymphatics was not increased in the LPS-induced neuroinflammation model. Such changes in the clearance of therapeutic proteins from the brain in the setting of neuroinflammation may impact the therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Thu A Hoang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Liang Jin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3000, Australia
| |
Collapse
|
5
|
He Y, Shen Y, Zhao J, Chen X. The peritoneum of fish expresses a specific gene pattern. AQUACULTURE AND FISHERIES 2024; 9:573-580. [DOI: 10.1016/j.aaf.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
|
6
|
Sauvé B, Chorfi Y, Létourneau-Montminy MP, Guay F. Vitamin 25(OH)D 3, E, and C Supplementation Impact the Inflammatory and Antioxidant Responses in Piglets Fed a Deoxynivalenol-Contaminated Diet and Challenged with Lipopolysaccharides. Toxins (Basel) 2024; 16:297. [PMID: 39057937 PMCID: PMC11281576 DOI: 10.3390/toxins16070297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Using alternative ingredients or low-quality grain grades to reduce feeding costs for pig diets can introduce mycotoxins such as deoxynivalenol (DON) into feed, which is known to induce anorexia, inflammation, and oxidative stress. Adding vitamin 25(OH)D3 or vitamins E and C to the feed could increase piglets' immune system to alleviate the effects of DON. This study used 54 pigs (7.8 ± 0.14 kg) in 27 pens (2 pigs/pen) with a vitamin 25(OH)D3 or vitamin E-C supplementation, or their combination, in DON-contaminated (5.1 mg/kg) feed ingredients over 21 days followed by a lipopolysaccharide (LPS) challenge (20 µg/kg BW) 3 h prior to euthanasia for 1 piglet per pen. DON contamination induced anorexia, which reduced piglet growth. DON also induced immunomodulation, oxidative stress, and downregulated vitamin D status. The vitamin E and C supplementation and the combination of vitamins E, C, and 25(OH)D3 provided protection against DON contamination by not only decreasing blood and liver oxidative stress markers, but also by increasing antioxidant enzymes and tocopherol levels in blood, indicating improved antioxidant defense mechanisms. The combination of vitamins also restored the vitamin D status. After LPS challenge, DON contamination decreased intestinal and liver antioxidant statuses and increased inflammation markers. The addition of vitamins E and C to DON-contaminated feed reduced markers of inflammation and improved the antioxidant status after the LPS immune stimulation. The combination of all these vitamins also reduced the oxidative stress markers and the inflammation in the intestine and mesenteric lymph nodes, suggesting an anti-inflammatory effect.
Collapse
Affiliation(s)
- Béatrice Sauvé
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| | - Younes Chorfi
- Department of Veterinary Biomedicine, University of Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | | | - Frédéric Guay
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Davis MJ, Zawieja SD. Pacemaking in the lymphatic system. J Physiol 2024. [PMID: 38520402 DOI: 10.1113/jp284752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024] Open
Abstract
Lymphatic collecting vessels exhibit spontaneous phasic contractions that are critical for lymph propulsion and tissue fluid homeostasis. This rhythmic activity is driven by action potentials conducted across the lymphatic muscle cell (LMC) layer to produce entrained contractions. The contraction frequency of a lymphatic collecting vessel displays exquisite mechanosensitivity, with a dynamic range from <1 to >20 contractions per minute. A myogenic pacemaker mechanism intrinsic to the LMCs was initially postulated to account for pressure-dependent chronotropy. Further interrogation into the cellular constituents of the lymphatic vessel wall identified non-muscle cell populations that shared some characteristics with interstitial cells of Cajal, which have pacemaker functions in the gastrointestinal and lower urinary tracts, thus raising the possibility of a non-muscle cell pacemaker. However, recent genetic knockout studies in mice support LMCs and a myogenic origin of the pacemaker activity. LMCs exhibit stochastic, but pressure-sensitive, sarcoplasmic reticulum calcium release (puffs and waves) from IP3R1 receptors, which couple to the calcium-activated chloride channel Anoctamin 1, causing depolarisation. The resulting electrical activity integrates across the highly coupled lymphatic muscle electrical syncytia through connexin 45 to modulate diastolic depolarisation. However, multiple other cation channels may also contribute to the ionic pacemaking cycle. Upon reaching threshold, a voltage-gated calcium channel-dependent action potential fires, resulting in a nearly synchronous calcium global calcium flash within the LMC layer to drive an entrained contraction. This review summarizes the key ion channels potentially responsible for the pressure-dependent chronotropy of lymphatic collecting vessels and various mechanisms of IP3R1 regulation that could contribute to frequency tuning.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
8
|
Zhang PH, Zhang WW, Wang SS, Wu CH, Ding YD, Wu XY, Smith FG, Hao Y, Jin SW. Efficient pulmonary lymphatic drainage is necessary for inflammation resolution in ARDS. JCI Insight 2024; 9:e173440. [PMID: 37971881 PMCID: PMC10906459 DOI: 10.1172/jci.insight.173440] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
The lymphatic vasculature is the natural pathway for the resolution of inflammation, yet the role of pulmonary lymphatic drainage function in sepsis-induced acute respiratory distress syndrome (ARDS) remains poorly characterized. In this study, indocyanine green-near infrared lymphatic living imaging was performed to examine pulmonary lymphatic drainage function in septic mouse models. We found that the pulmonary lymphatic drainage was impaired owing to the damaged lymphatic structure in sepsis-induced ARDS. Moreover, prior lymphatic defects by blocking vascular endothelial growth factor receptor-3 (VEGFR-3) worsened sepsis-induced lymphatic dysfunction and inflammation. Posttreatment with vascular endothelial growth factor-C (Cys156Ser) (VEGF-C156S), a ligand of VEGFR-3, ameliorated lymphatic drainage by rejuvenating lymphatics to reduce the pulmonary edema and promote draining of pulmonary macrophages and neutrophils to pretracheal lymph nodes. Meanwhile, VEGF-C156S posttreatment reversed sepsis-inhibited CC chemokine ligand 21 (CCL21), which colocalizes with pulmonary lymphatic vessels. Furthermore, the advantages of VEGF-C156S on the drainage of inflammatory cells and edema fluid were abolished by blocking VEGFR-3 or CCL21. These results suggest that efficient pulmonary lymphatic drainage is necessary for inflammation resolution in ARDS. Our findings offer a therapeutic approach to sepsis-induced ARDS by promoting lymphatic drainage function.
Collapse
Affiliation(s)
- Pu-hong Zhang
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Wen-wu Zhang
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Shun-shun Wang
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Cheng-hua Wu
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yang-dong Ding
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xin-yi Wu
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fang Gao Smith
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Academic Department of Anesthesia, Critical Care, Resuscitation and Pain, Heart of England NHS Foundation Trust, Birmingham, United Kingdom
| | - Yu Hao
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Sheng-wei Jin
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
9
|
Ruan Q, Guan P, Qi W, Li J, Xi M, Xiao L, Zhong S, Ma D, Ni J. Porphyromonas gingivalis regulates atherosclerosis through an immune pathway. Front Immunol 2023; 14:1103592. [PMID: 36999040 PMCID: PMC10043234 DOI: 10.3389/fimmu.2023.1103592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, involving a pathological process of endothelial dysfunction, lipid deposition, plaque rupture, and arterial occlusion, and is one of the leading causes of death in the world population. The progression of AS is closely associated with several inflammatory diseases, among which periodontitis has been shown to increase the risk of AS. Porphyromonas gingivalis (P. gingivalis), presenting in large numbers in subgingival plaque biofilms, is the “dominant flora” in periodontitis, and its multiple virulence factors are important in stimulating host immunity. Therefore, it is significant to elucidate the potential mechanism and association between P. gingivalis and AS to prevent and treat AS. By summarizing the existing studies, we found that P. gingivalis promotes the progression of AS through multiple immune pathways. P. gingivalis can escape host immune clearance and, in various forms, circulate with blood and lymph and colonize arterial vessel walls, directly inducing local inflammation in blood vessels. It also induces the production of systemic inflammatory mediators and autoimmune antibodies, disrupts the serum lipid profile, and thus promotes the progression of AS. In this paper, we summarize the recent evidence (including clinical studies and animal studies) on the correlation between P. gingivalis and AS, and describe the specific immune mechanisms by which P. gingivalis promotes AS progression from three aspects (immune escape, blood circulation, and lymphatic circulation), providing new insights into the prevention and treatment of AS by suppressing periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Qijun Ruan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Peng Guan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Limin Xiao
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| |
Collapse
|
10
|
Singh R, Heaps CL, Muthuchamy M, Deveau MA, Stewart RH, Laine GA, Dongaonkar RM. Dichotomous effects of in vivo and in vitro ionizing radiation exposure on lymphatic function. Am J Physiol Heart Circ Physiol 2023; 324:H155-H171. [PMID: 36459446 DOI: 10.1152/ajpheart.00387.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
On the one hand, lymphatic dysfunction induces interstitial edema and inflammation. On the other hand, the formation of edema and inflammation induce lymphatic dysfunction. However, informed by the earlier reports of undetected apoptosis of irradiated lymphatic endothelial cells (LECs) in vivo, lymphatic vessels are commonly considered inconsequential to ionizing radiation (IR)-induced inflammatory injury to normal tissues. Primarily because of the lack of understanding of the acute effects of IR exposure on lymphatic function, acute edema and inflammation, common sequelae of IR exposure, have been ascribed solely to blood vessel damage. Therefore, in the present study, the lymphatic acute responses to IR exposure were quantified to evaluate the hypothesis that IR exposure impairs lymphatic pumping. Rat mesenteric lymphatic vessels were irradiated in vivo or in vitro, and changes in pumping were quantified in isolated vessels in vitro. Compared with sham-treated vessels, pumping was lowered in lymphatic vessels irradiated in vivo but increased in vessels irradiated in vitro. Furthermore, unlike in blood vessels, the acute effects of IR exposure in lymphatic vessels were not mediated by nitric oxide-dependent pathways in either in vivo or in vitro irradiated vessels. After cyclooxygenase blockade, pumping was partially restored in lymphatic vessels irradiated in vitro but not in vessels irradiated in vivo. Taken together, these findings demonstrated that lymphatic vessels are radiosensitive and LEC apoptosis alone may not account for all the effects of IR exposure on the lymphatic system.NEW & NOTEWORTHY Earlier studies leading to the common belief that lymphatic vessels are radioresistant either did not characterize lymphatic pumping, deemed necessary for the resolution of edema and inflammation, or did it in vivo. By characterizing pumping in vitro, the present study, for the first time, demonstrated that lymphatic pumping was impaired in vessels irradiated in vivo and enhanced in vessels irradiated in vitro. Furthermore, the pathways implicated in ionizing radiation-induced blood vessel damage did not mediate lymphatic responses.
Collapse
Affiliation(s)
- Reetu Singh
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Cristine L Heaps
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | | | - Michael A Deveau
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Randolph H Stewart
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Glen A Laine
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Ranjeet M Dongaonkar
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
11
|
MacDonald ME, Weathered RK, Stewart EC, Magold AI, Mukherjee A, Gurbuxani S, Smith H, McMullen P, Mueller J, Husain AN, Salles CM, Briquez PS, Rouhani SJ, Yu J, Trujillo J, Pyzer AR, Gajewski TF, Sperling AI, Kilarski WW, Swartz MA. Lymphatic coagulation and neutrophil extracellular traps in lung-draining lymph nodes of COVID-19 decedents. Blood Adv 2022; 6:6249-6262. [PMID: 35977099 PMCID: PMC9394105 DOI: 10.1182/bloodadvances.2022007798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 01/05/2023] Open
Abstract
Clinical manifestations of severe COVID-19 include coagulopathies that are exacerbated by the formation of neutrophil extracellular traps (NETs). Here, we report that pulmonary lymphatic vessels, which traffic neutrophils and other immune cells to the lung-draining lymph node (LDLN), can also be blocked by fibrin clots in severe COVID-19. Immunostained tissue sections from COVID-19 decedents revealed widespread lymphatic clotting not only in the lung but also in the LDLN, where the extent of clotting correlated with the presence of abnormal, regressed, or missing germinal centers (GCs). It strongly correlated with the presence of intralymphatic NETs. In mice, tumor necrosis factor α induced intralymphatic fibrin clots; this could be inhibited by DNase I, which degrades NETs. In vitro, TNF-α induced lymphatic endothelial cell upregulation of ICAM-1 and CXCL8, among other neutrophil-recruiting factors, as well as thrombomodulin downregulation; in decedents, lymphatic clotting in LDLNs. In a separate cohort of hospitalized patients, serum levels of Myeloperoxidase-DNA (MPO-DNA, a NET marker) inversely correlated with antiviral antibody titers, but D-dimer levels, indicative of blood thrombosis, did not correlate with either. Patients with high MPO-DNA but low D-dimer levels generated poor antiviral antibody titers. This study introduces lymphatic coagulation in lungs and LDLNs as a clinical manifestation of severe COVID-19 and suggests the involvement of NETosis of lymphatic-trafficking neutrophils. It further suggests that lymphatic clotting may correlate with impaired formation or maintenance of GCs necessary for robust antiviral antibody responses, although further studies are needed to determine whether and how lymphatic coagulation affects adaptive immune responses.
Collapse
Affiliation(s)
- Margo E. MacDonald
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL
- Biophysical Sciences Program, University of Chicago, Chicago, IL
| | - Rachel K. Weathered
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL
| | - Emma C. Stewart
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL
- Committee on Immunology, University of Chicago, Chicago, IL
| | - Alexandra I. Magold
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL
| | - Anish Mukherjee
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL
| | | | - Heather Smith
- Department of Pathology, University of Chicago, Chicago, IL
| | | | | | | | - Calixto M. Salles
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL
| | | | | | - Jovian Yu
- Department of Medicine, University of Chicago, Chicago, IL
| | | | | | - Thomas F. Gajewski
- Committee on Immunology, University of Chicago, Chicago, IL
- Department of Medicine, University of Chicago, Chicago, IL
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL
| | - Anne I. Sperling
- Committee on Immunology, University of Chicago, Chicago, IL
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL
| | - Witold W. Kilarski
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL
| | - Melody A. Swartz
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL
- Committee on Immunology, University of Chicago, Chicago, IL
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL
| |
Collapse
|
12
|
Cagle LA, Linderholm AL, Franzi LM, Last JA, Simon SI, Kenyon NJ, Harper RW. Early mechanisms of neutrophil activation and transmigration in acute lung injury. Front Physiol 2022; 13:1059686. [PMID: 36620212 PMCID: PMC9811384 DOI: 10.3389/fphys.2022.1059686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction:Neutrophil transmigration is multifactorial and primarily driven by selectins and β2-integrins (CD11b/CD18), whose expression are dependent on the underlying stimulus. Ventilator-induced lung injury (VILI) results in a predominantly CD18-independent mechanism of neutrophil recruitment, while direct endotoxin-induced lung injury results from a CD18-dependent mechanism. We previously observed that lack of NADPH oxidases DUOX1 and DUOX2 resulted in reduced neutrophil influx in a VILI model of lung injury but had no influence on neutrophil influx after LPS exposure. Based on these observations, we hypothesized that DUOX1/DUOX2 are an important component of CD18-independent mechanisms of neutrophil recruitment in the lung. Methods:We exposed Duoxa -/- (KO) mice and Duoxa +/+ (WT) mice to either an intratracheal exposure of lipopolysaccharide (LPS/endotoxin)-or high tidal volume ventilation and compared expression of neutrophil markers between groups. WT mice (129S6/SvEvTac) were obtained from Taconic Biosciences (One Discovery Drive Suite 304; Rensselaer, NY 1244) and were allowed to acclimatize for one week prior to study enrollment. KO mice were generated as previously described [Grasberger 2012] and bred in-house on a 129S6 background. We provided positive-pressure ventilation at a tidal volume of 10 ml/kg with 2 cmH20 positive end-expiratory pressure (PEEP). Mice were assigned to groups consisting of KO (n = 5) and WT (n = 5) in each group and divided into non-ventilated, positive-pressure ventilation, or LPS IT exposure groups. Positive-pressure ventilation was instituted for 4-h using a FlexiVent (Flexiware 8.1, Scireq, Montreal, QC, Canada). Lipopolysaccharide (Salmonella enterica serotype tryphimurium L6143, Millipore Sigma) was administered via an intratracheal (IT) route at a dose of 0.1 mg/kg. Mice were humanely euthanized at 4-h post-injection consistent with the UC Davis IAUCAC-approved protocol. Results:As previously observed, neutrophilic influx into the airways was significantly impaired in the Duoxa -/- (KO) mice after VILI, but not after LPS exposure. LPS-induced lung injury resulted in upregulation of CD11b+ neutrophils and shedding of CD62L and CD162 regardless of DUOX expression, whereas VILI resulted in upregulation of CD49+ neutrophils in the Duoxa +/+ (WT) mice but not the Duoxa -/- (KO) mice. Conclusion:Our data suggest DUOX is required for CD18-independent mechanisms of neutrophil recruitment in the lung induced by acute lung injury, but not for canonical CD18depedent mechanisms after LPS exposure.
Collapse
Affiliation(s)
- L. A. Cagle
- University of California Lung Center, University of California, Davis, Davis, CA, United States
| | - A. L. Linderholm
- University of California Lung Center, University of California, Davis, Davis, CA, United States,Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Sacramento, Sacramento, CA, United States,Department of Veterans Affairs, Northern California Healthcare System, Mather, CA, United States
| | - L. M. Franzi
- University of California Lung Center, University of California, Davis, Davis, CA, United States
| | - J. A. Last
- University of California Lung Center, University of California, Davis, Davis, CA, United States
| | - S. I. Simon
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - N. J. Kenyon
- University of California Lung Center, University of California, Davis, Davis, CA, United States,Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Sacramento, Sacramento, CA, United States,Department of Veterans Affairs, Northern California Healthcare System, Mather, CA, United States
| | - R. W. Harper
- University of California Lung Center, University of California, Davis, Davis, CA, United States,Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Sacramento, Sacramento, CA, United States,Department of Veterans Affairs, Northern California Healthcare System, Mather, CA, United States,*Correspondence: R. W. Harper,
| |
Collapse
|
13
|
Athapaththu AMGK, Lee KT, Kavinda MHD, Lee S, Kang S, Lee MH, Kang CH, Choi YH, Kim GY. Pinostrobin ameliorates lipopolysaccharide (LPS)-induced inflammation and endotoxemia by inhibiting LPS binding to the TLR4/MD2 complex. Biomed Pharmacother 2022; 156:113874. [DOI: 10.1016/j.biopha.2022.113874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022] Open
|
14
|
Banerjee P, Roy S, Chakraborty S. Recent advancement of imaging strategies of the lymphatic system: Answer to the decades old questions. Microcirculation 2022; 29:e12780. [PMID: 35972391 DOI: 10.1111/micc.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
The role of the lymphatic system in maintaining tissue homeostasis and a number of different pathophysiological conditions has been well established. The complex and delicate structure of the lymphatics along with the limitations of conventional imaging techniques make lymphatic imaging particularly difficult. Thus, in-depth high-resolution imaging of lymphatic system is key to understanding the progression of lymphatic diseases and cancer metastases and would greatly benefit clinical decisions. In recent years, the advancement of imaging technologies and development of new tracers suitable for clinical applications has enabled imaging of the lymphatic system in both clinical and pre-clinical settings. In this current review, we have highlighted the advantages and disadvantages of different modern techniques such as near infra-red spectroscopy (NIRS), positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI) and fluorescence optical imaging, that has significantly impacted research in this field and has led to in-depth insights into progression of pathological states. This review also highlights the use of current imaging technologies, and tracers specific for immune cell markers to identify and track the immune cells in the lymphatic system that would help understand disease progression and remission in immune therapy regimen.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Sukanya Roy
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| |
Collapse
|
15
|
Alan A, Alan E, Arslan K, Daldaban F, Aksel EG, Çınar MU, Akyüz B. LPS- and LTA-Induced Expression of TLR4, MyD88, and TNF-α in Lymph Nodes of the Akkaraman and Romanov Lambs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-15. [PMID: 36062368 DOI: 10.1017/s1431927622012314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Toll-like receptor (TLR)-mediated inflammatory processes play a critical role in the innate immune response during the initial interaction between the infecting microorganism and immune cells. This study aimed to investigate the possible microanatomical and histological differences in mandibular and bronchial lymph nodes in Akkaraman and Romanov lambs induced by lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and study the gene, protein, and immunoexpression levels of TLR4, myeloid differentiation factor 88 (MyD88), and tumor necrosis factor-α (TNF-α) that are involved in the immune system. Microanatomical examinations demonstrated more intense lymphocyte infiltration in the bronchial lymph nodes of Akkaraman lambs in the LPS and LTA groups compared to Romanov lambs. TLR4, MyD88, and TNF-α immunoreactivities were more intense in the experimental groups of both breeds. Expression levels of MyD88 and TNF-α genes in the bronchial lymph node of Akkaraman lambs were found to increase statistically significantly in the LTA group. TLR4 gene expression level in the mandibular lymph node was found to be statistically significantly higher in the LTA + LPS group. In conclusion, dynamic changes in the immune cell populations involved in response to antigens such as LTA and LPS in the lymph nodes of both breeds can be associated with the difference in the expression level of the TLR4/MyD88/TNF-α genes.
Collapse
Affiliation(s)
- Aydın Alan
- Department of Anatomy, Faculty of Veterinary Medicine, Erciyes University, 38030 Kayseri, Turkey
| | - Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, 38030 Kayseri, Turkey
| | - Korhan Arslan
- Department of Genetics, Faculty of Veterinary Medicine, University of Erciyes, 38030 Kayseri, Turkey
| | - Fadime Daldaban
- Department of Genetics, Faculty of Veterinary Medicine, University of Erciyes, 38030 Kayseri, Turkey
| | - Esma Gamze Aksel
- Department of Genetics, Faculty of Veterinary Medicine, University of Erciyes, 38030 Kayseri, Turkey
| | - Mehmet Ulaş Çınar
- Department of Animal Science, Faculty of Agriculture, University of Erciyes, 38030 Kayseri, Turkey
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA 99164, USA
| | - Bilal Akyüz
- Department of Genetics, Faculty of Veterinary Medicine, University of Erciyes, 38030 Kayseri, Turkey
| |
Collapse
|
16
|
Cadamuro M, Romanzi A, Guido M, Sarcognato S, Cillo U, Gringeri E, Zanus G, Strazzabosco M, Simioni P, Villa E, Fabris L. Translational Value of Tumor-Associated Lymphangiogenesis in Cholangiocarcinoma. J Pers Med 2022; 12:jpm12071086. [PMID: 35887583 PMCID: PMC9324584 DOI: 10.3390/jpm12071086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
The prognosis of cholangiocarcinoma remains poor in spite of the advances in immunotherapy and molecular profiling, which has led to the identification of several targetable genetic alterations. Surgical procedures, including both liver resection and liver transplantation, still represent the treatment with the best curative potential, though the outcomes are significantly compromised by the early development of lymph node metastases. Progression of lymphatic metastasis from the primary tumor to tumor-draining lymph nodes is mediated by tumor-associated lymphangiogenesis, a topic largely overlooked until recently. Recent findings highlight tumor-associated lymphangiogenesis as paradigmatic of the role played by the tumor microenvironment in sustaining cholangiocarcinoma invasiveness and progression. This study reviews the current knowledge about the intercellular signaling and molecular mechanism of tumor-associated lymphangiogenesis in cholangiocarcinoma in the hope of identifying novel therapeutic targets to halt a process that often limits the success of the few available treatments.
Collapse
Affiliation(s)
| | - Adriana Romanzi
- Gastroenterology Unit, Department of Medical Specialties, University of Modena & Reggio Emilia and Modena University-Hospital, 41124 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy; (M.G.); (S.S.)
- Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy;
| | - Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy; (M.G.); (S.S.)
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35122 Padua, Italy; (U.C.); (E.G.); (G.Z.)
| | - Enrico Gringeri
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35122 Padua, Italy; (U.C.); (E.G.); (G.Z.)
| | - Giacomo Zanus
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35122 Padua, Italy; (U.C.); (E.G.); (G.Z.)
| | - Mario Strazzabosco
- Liver Center, Digestive Disease Section, Department of Internal Medicine, Yale University, New Haven, CT 208056, USA;
| | - Paolo Simioni
- Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy;
- General Internal Medicine Unit, Padua University-Hospital, 35122 Padua, Italy
| | - Erica Villa
- Gastroenterology Unit, Department of Medical Specialties, University of Modena & Reggio Emilia and Modena University-Hospital, 41124 Modena, Italy;
- Correspondence: (E.V.); (L.F.); Tel.: +39-059-422-5308 (E.V.); +39-049-821-3131 (L.F.); Fax: +39-059-422-4424 (E.V.); +39-049-827-2355 (L.F.)
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, 35122 Padua, Italy;
- Liver Center, Digestive Disease Section, Department of Internal Medicine, Yale University, New Haven, CT 208056, USA;
- General Internal Medicine Unit, Padua University-Hospital, 35122 Padua, Italy
- Correspondence: (E.V.); (L.F.); Tel.: +39-059-422-5308 (E.V.); +39-049-821-3131 (L.F.); Fax: +39-059-422-4424 (E.V.); +39-049-827-2355 (L.F.)
| |
Collapse
|
17
|
Jang WY, Lee HP, Kim SA, Huang L, Yoon JH, Shin CY, Mitra A, Kim HG, Cho JY. Angiopteris cochinchinensis de Vriese Ameliorates LPS-Induced Acute Lung Injury via Src Inhibition. PLANTS 2022; 11:plants11101306. [PMID: 35631731 PMCID: PMC9143704 DOI: 10.3390/plants11101306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Growing demand for treatment options against acute lung injury (ALI) emphasizes studies on plant extracts harboring anti-inflammatory effects. According to GC-MS analysis, Angiopteris cochinchinensis de Vriese consists of various flavonoids with anti-inflammatory activities. Thus, in this study, the anti-inflammatory effects of an extract of Angiopteris cochinchinensis de Vriese (Ac-EE) were assessed using RAW264.6 murine macrophages and a lipopolysaccharide (LPS)-induced ALI model. Ac-EE reduced the nitric oxide production in murine macrophages increased by LPS induction. Moreover, protective effects of Ac-EE on lung tissue were demonstrated by shrinkage of edema and lung injury. Reduced neutrophil infiltration and formation of hyaline membranes were also detected in lung tissues after H&E staining. Semiquantitative RT-PCR, quantitative real-time PCR, and ELISA showed that Ac-EE inhibits the production of proinflammatory mediators, including iNOS and COX-2, and cytokines, such as TNF-α, IL-1β, and IL-6. An Ac-EE-mediated anti-inflammatory response was derived from inhibiting the NF-κB signaling pathway, which was evaluated by luciferase reporter assay and Western blotting analysis. A cellular thermal shift assay revealed that the prime target of Ac-EE in alleviating inflammation was Src. With its direct binding with Src, Angiopteris cochinchinensis de Vriese significantly mitigates lung injury, showing possibilities of its potential as an effective botanical drug.
Collapse
Affiliation(s)
- Won Young Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
| | - Hwa Pyoung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
| | - Seung A Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (L.H.); (J.H.Y.); (C.Y.S.)
| | - Ji Hye Yoon
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (L.H.); (J.H.Y.); (C.Y.S.)
| | - Chae Yun Shin
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (L.H.); (J.H.Y.); (C.Y.S.)
| | - Ankita Mitra
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
- Correspondence: (H.G.K.); (J.Y.C.); Tel.: +82-31-290-7878 (H.G.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
- Correspondence: (H.G.K.); (J.Y.C.); Tel.: +82-31-290-7878 (H.G.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
18
|
Lee Y, Zawieja SD, Muthuchamy M. Lymphatic Collecting Vessel: New Perspectives on Mechanisms of Contractile Regulation and Potential Lymphatic Contractile Pathways to Target in Obesity and Metabolic Diseases. Front Pharmacol 2022; 13:848088. [PMID: 35355722 PMCID: PMC8959455 DOI: 10.3389/fphar.2022.848088] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/17/2022] [Indexed: 01/19/2023] Open
Abstract
Obesity and metabolic syndrome pose a significant risk for developing cardiovascular disease and remain a critical healthcare challenge. Given the lymphatic system's role as a nexus for lipid absorption, immune cell trafficking, interstitial fluid and macromolecule homeostasis maintenance, the impact of obesity and metabolic disease on lymphatic function is a burgeoning field in lymphatic research. Work over the past decade has progressed from the association of an obese phenotype with Prox1 haploinsufficiency and the identification of obesity as a risk factor for lymphedema to consistent findings of lymphatic collecting vessel dysfunction across multiple metabolic disease models and organisms and characterization of obesity-induced lymphedema in the morbidly obese. Critically, recent findings have suggested that restoration of lymphatic function can also ameliorate obesity and insulin resistance, positing lymphatic targeted therapies as relevant pharmacological interventions. There remain, however, significant gaps in our understanding of lymphatic collecting vessel function, particularly the mechanisms that regulate the spontaneous contractile activity required for active lymph propulsion and lymph return in humans. In this article, we will review the current findings on lymphatic architecture and collecting vessel function, including recent advances in the ionic basis of lymphatic muscle contractile activity. We will then discuss lymphatic dysfunction observed with metabolic disruption and potential pathways to target with pharmacological approaches to improve lymphatic collecting vessel function.
Collapse
Affiliation(s)
- Yang Lee
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Scott D Zawieja
- Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Mariappan Muthuchamy
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
19
|
Camell CD. Adipose tissue microenvironments during aging: Effects on stimulated lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159118. [PMID: 35131468 PMCID: PMC8986088 DOI: 10.1016/j.bbalip.2022.159118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/17/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
Abstract
Adipose tissue is a critical organ for nutrient sensing, energy storage and maintaining metabolic health. The failure of adipose tissue homeostasis leads to metabolic disease that is seen during obesity or aging. Local metabolic processes are coordinated by interacting microenvironments that make up the complexity and heterogeneity of the adipose tissue. Catecholamine-induced lipolysis, a critical pathway in adipocytes that drives the release of stored triglyceride as free fatty acid after stimulation, is impaired during aging. The impairment of this pathway is associated with a failure to maintain a healthy body weight, core body-temperature during cold stress or mount an immune response. Along with impairments in aged adipocytes, aging is associated with an accumulation of inflammation, immune cell activation, and increased dysfunction in the nervous and lymphatic systems within the adipose tissue. Together these microenvironments support the initiation of stimulated lipolysis and the transport of free fatty acid under conditions of metabolic homeostasis. However, during aging, the defects in these cellular systems result in a reduction in ability to stimulate lipolysis. This review will focus on how the immune, nervous and lymphatic systems interact during tissue homeostasis, review areas that are impaired with aging and discuss areas of research that are currently unclear.
Collapse
Affiliation(s)
- Christina D Camell
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States of America.
| |
Collapse
|
20
|
Roy S, Kumaravel S, Banerjee P, White TK, O’Brien A, Seelig C, Chauhan R, Ekser B, Bayless KJ, Alpini G, Glaser SS, Chakraborty S. Tumor Lymphatic Interactions Induce CXCR2-CXCL5 Axis and Alter Cellular Metabolism and Lymphangiogenic Pathways to Promote Cholangiocarcinoma. Cells 2021; 10:3093. [PMID: 34831316 PMCID: PMC8623887 DOI: 10.3390/cells10113093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cholangiocarcinoma (CCA), or cancer of bile duct epithelial cells, is a very aggressive malignancy characterized by early lymphangiogenesis in the tumor microenvironment (TME) and lymph node (LN) metastasis which correlate with adverse patient outcome. However, the specific roles of lymphatic endothelial cells (LECs) that promote LN metastasis remains unexplored. Here we aimed to identify the dynamic molecular crosstalk between LECs and CCA cells that activate tumor-promoting pathways and enhances lymphangiogenic mechanisms. Our studies show that inflamed LECs produced high levels of chemokine CXCL5 that signals through its receptor CXCR2 on CCA cells. The CXCR2-CXCL5 signaling axis in turn activates EMT (epithelial-mesenchymal transition) inducing MMP (matrix metalloproteinase) genes such as GLI, PTCHD, and MMP2 in CCA cells that promote CCA migration and invasion. Further, rate of mitochondrial respiration and glycolysis of CCA cells was significantly upregulated by inflamed LECs and CXCL5 activation, indicating metabolic reprogramming. CXCL5 also induced lactate production, glucose uptake, and mitoROS. CXCL5 also induced LEC tube formation and increased metabolic gene expression in LECs. In vivo studies using CCA orthotopic models confirmed several of these mechanisms. Our data points to a key finding that LECs upregulate critical tumor-promoting pathways in CCA via CXCR2-CXCL5 axis, which further augments CCA metastasis.
Collapse
Affiliation(s)
- Sukanya Roy
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Subhashree Kumaravel
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Priyanka Banerjee
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Tori K. White
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - April O’Brien
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Catherine Seelig
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Rahul Chauhan
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Burcin Ekser
- Department of Surgery, Division of Transplant Surgery, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA;
| | - Kayla J. Bayless
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
| | - Gianfranco Alpini
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, IN 46202-3082, USA;
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202-3082, USA
| | - Shannon S. Glaser
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| |
Collapse
|
21
|
Russell PS, Hong J, Trevaskis NL, Windsor JA, Martin ND, Phillips ARJ. Lymphatic Contractile Function: A Comprehensive Review of Drug Effects and Potential Clinical Application. Cardiovasc Res 2021; 118:2437-2457. [PMID: 34415332 DOI: 10.1093/cvr/cvab279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The lymphatic system and the cardiovascular system work together to maintain body fluid homeostasis. Despite that, the lymphatic system has been relatively neglected as a potential drug target and a source of adverse effects from cardiovascular drugs. Like the heart, the lymphatic vessels undergo phasic contractions to promote lymph flow against a pressure gradient. Dysfunction or failure of the lymphatic pump results in fluid imbalance and tissue oedema. While this can due to drug effects, it is also a feature of breast cancer-associated lymphoedema, chronic venous insufficiency, congestive heart failure and acute systemic inflammation. There are currently no specific drug treatments for lymphatic pump dysfunction in clinical use despite the wealth of data from pre-clinical studies. AIM To identify (1) drugs with direct effects on lymphatic tonic and phasic contractions with potential for clinical application, and (2) drugs in current clinical use that have a positive or negative side effect on lymphatic function. METHODS We comprehensively reviewed all studies that tested the direct effect of a drug on the contractile function of lymphatic vessels. RESULTS Of the 208 drugs identified from 193 studies, about a quarter had only stimulatory effects on lymphatic tone, contraction frequency and/or contraction amplitude. Of FDA-approved drugs, there were 14 that increased lymphatic phasic contractile function. The most frequently used class of drug with inhibitory effects on lymphatic pump function were the calcium channels blockers. CONCLUSION This review highlights the opportunity for specific drug treatments of lymphatic dysfunction in various disease states and for avoiding adverse drug effects on lymphatic contractile function.
Collapse
Affiliation(s)
- Peter S Russell
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jiwon Hong
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Natalie L Trevaskis
- Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - John A Windsor
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Niels D Martin
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anthony R J Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Hong J, Park E, Lee J, Lee Y, Rooney BV, Park Y. Exercise training mitigates ER stress and UCP2 deficiency-associated coronary vascular dysfunction in atherosclerosis. Sci Rep 2021; 11:15449. [PMID: 34326395 PMCID: PMC8322067 DOI: 10.1038/s41598-021-94944-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and uncoupling protein-2 (UCP2) activation are opposing modulators of endothelial dysfunction in atherosclerosis. Exercise reduces atherosclerosis plaques and enhances endothelial function. Our aim was to understand how exercise affects ER stress and UCP2 activation, and how that relates to endothelial dysfunction in an atherosclerotic murine model. Wild type (C57BL/6, WT) and apolipoprotein-E-knockout (ApoEtm1Unc, ApoE KO) mice underwent treadmill exercise training (EX) or remained sedentary for 12 weeks. Acetylcholine (ACh)-induced endothelium-dependent vasodilation was determined in the presence of an eNOS inhibitor (L-NAME), UCP2 inhibitor (genipin), and ER stress inducer (tunicamycin). UCP2, ER stress markers and NLRP3 inflammasome signaling were quantified by western blotting. p67phox and superoxide were visualized using immunofluorescence and DHE staining. Nitric oxide (NO) was measured by nitrate/nitrite assay. ACh-induced vasodilation was attenuated in coronary arterioles of ApoE KO mice but improved in ApoE KO-EX mice. Treatment of coronary arterioles with L-NAME, tunicamycin, and genipin significantly attenuated ACh-induced vasodilation in all mice except for ApoE KO mice. Exercise reduced expression of ER stress proteins, TXNIP/NLRP3 inflammasome signaling cascades, and Bax expression in the heart of ApoE KO-EX mice. Further, exercise diminished superoxide production and NADPH oxidase p67phox expression in coronary arterioles while simultaneously increasing UCP2 expression and nitric oxide (NO) production in the heart of ApoE KO-EX mice. Routine exercise alleviates endothelial dysfunction in atherosclerotic coronary arterioles in an eNOS, UCP2, and ER stress signaling specific manner, and resulting in reduced TXNIP/NLRP3 inflammasome activity and oxidative stress.
Collapse
Affiliation(s)
- Junyoung Hong
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, 3875 Holman St, Houston, TX, 77204-6015, USA
| | - Eunkyung Park
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, 3875 Holman St, Houston, TX, 77204-6015, USA
| | - Jonghae Lee
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, 3875 Holman St, Houston, TX, 77204-6015, USA
| | - Yang Lee
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX, 77807, USA
| | - Bridgette V Rooney
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, 3875 Holman St, Houston, TX, 77204-6015, USA.,Geocontrol Systems Inc, NASA Johnson Space Center, Houston, TX, 77058, USA
| | - Yoonjung Park
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, 3875 Holman St, Houston, TX, 77204-6015, USA.
| |
Collapse
|
23
|
Liang Q, Zhang L, Xu H, Li J, Chen Y, Schwarz EM, Shi Q, Wang Y, Xing L. Lymphatic muscle cells contribute to dysfunction of the synovial lymphatic system in inflammatory arthritis in mice. Arthritis Res Ther 2021; 23:58. [PMID: 33602317 PMCID: PMC7893868 DOI: 10.1186/s13075-021-02438-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/07/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Our previous studies reveal that impaired draining function of the synovial lymphatic vessel (LV) contributes to the pathogenesis of inflammatory arthritis, but the cellular and molecular mechanisms involved are not fully understood. OBJECTIVE To investigate the involvement of lymphatic muscle cells (LMCs) in mediating impaired LV function in inflammatory arthritis. METHODS TNF transgenic (TNF-Tg) arthritic mice were used. The structure and function of the LVs that drained the hind limbs were examined by whole-mount immunofluorescence staining, electron microscopy, and near-infrared lymphatic imaging. Primary LMCs were treated with TNF, and the changes in proliferation, apoptosis, and functional gene expression were assessed. The roles of the herbal drug, Panax notoginseng saponins (PNS), in arthritis and LVs were studied. RESULTS TNF-Tg mice developed ankle arthritis with age, which was associated with abnormalities of LVs: (1) dilated capillary LVs with few branch points, (2) mature LVs with reduced LMC coverage and draining function, and (3) degenerative and apoptotic appearance of LMCs. TNF caused LMC apoptosis, reduced expression of muscle functional genes, and promoted the production of nitric oxide (NO) by lymphatic endothelial cells (LECs). PNS attenuated arthritis, restored LMC coverage and draining function of mature LVs, inhibited TNF-mediated NO expression, and reduced LMC apoptosis. CONCLUSION The impaired draining function of LVs in TNF-Tg mice involves LMC apoptosis. TNF promotes LMC death directly and indirectly via NO production by LECs. PNS attenuates arthritis, improves LVs, and prevents TNF-induced LMC apoptosis by inhibiting NO production of LECs. LMCs contribute to the dysfunction of synovial LVs in inflammatory arthritis.
Collapse
Affiliation(s)
- Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Li Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Jinlong Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yan Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
24
|
Lukiw WJ, Arceneaux L, Li W, Bond T, Zhao Y. Gastrointestinal (GI)-Tract Microbiome Derived Neurotoxins and their Potential Contribution to Inflammatory Neurodegeneration in Alzheimer's Disease (AD). JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2021; 11:525. [PMID: 34457996 PMCID: PMC8395586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human gastrointestinal (GI)-tract microbiome is a rich, complex and dynamic source of microorganisms that possess a staggering diversity and complexity. Importantly there is a significant variability in microbial complexity even amongst healthy individuals-this has made it difficult to link specific microbial abundance patterns with age-related neurological disease. GI-tract commensal microorganisms are generally beneficial to human metabolism and immunity, however enterotoxigenic forms of microbes possess significant potential to secrete what are amongst the most neurotoxic and pro-inflammatory biopolymers known. These include toxic glycolipids such as lipopolysaccharide (LPS), enterotoxins, microbial-derived amyloids and small non-coding RNA. One major microbial species of the GI-tract microbiome, about ~100-fold more abundant than Escherichia coli in deep GI-tract regions is Bacteroides fragilis, an anaerobic, rod-shaped Gram-negative bacterium. B. fragilis can secrete: (i) a particularly potent, pro-inflammatory and unique LPS subtype (BF-LPS); and (ii) a zinc-metalloproteinase known as B. fragilis-toxin (BFT) or fragilysin. Ongoing studies indicate that BF-LPS and/or BFT disrupt paracellular-and transcellular-barriers by cleavage of intercellular-proteins resulting in 'leaky' barriers. These barriers: (i) become defective and more penetrable with aging and disease; and (ii) permit entry of microbiome-derived neurotoxins into the systemic-circulation from which they next transit the blood-brain barrier and gain access to the CNS. Here LPS accumulates and significantly alters homeostatic patterns of gene expression. The affinity of LPS for neuronal nuclei is significantly enhanced in the presence of amyloid beta 42 (Aβ42) peptides. Recent research on the appearance of the brain thanatomicrobiome at the time of death and the increasing likelihood of a complex brain microbiome are reviewed and discussed. This paper will also highlight some recent advances in this extraordinary research area that links the pro-inflammatory exudates of the GI-tract microbiome with innate-immune disturbances and inflammatory-signaling within the CNS with reference to Alzheimer's disease (AD) wherever possible.
Collapse
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States,Department of Ophthalmology, LSU Health Sciences Center,
New Orleans, LA, United States,Department of Neurology, Louisiana State University Health
Sciences Center, New Orleans, LA, United States,Corresponding author: Dr. Walter J. Lukiw, LSU
Neuroscience Center, Louisiana State University Health Sciences Center, New
Orleans, LA, United States,
| | - Lisa Arceneaux
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States,Department of Pharmacology, School of Pharmacy, Jiangxi
University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Taylor Bond
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States,Department of Anatomy and Cell Biology, Louisiana State
University, New Orleans, LA, United States
| |
Collapse
|
25
|
Kumaravel S, Abbey CA, Bayless KJ, Chakraborty S. The β 1-integrin plays a key role in LEC invasion in an optimized 3-D collagen matrix model. Am J Physiol Cell Physiol 2020; 319:C1045-C1058. [PMID: 33052069 DOI: 10.1152/ajpcell.00299.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lymphangiogenesis, or formation of new lymphatic vessels, is a tightly regulated process that is controlled by growth factor signaling and biomechanical cues. Lymphatic endothelial cells (LECs) undergo remodeling, migration, and proliferation to invade the surrounding extracellular matrix (ECM) during both physiological and pathological lymphangiogenesis. This study optimized conditions for an in vitro three-dimensional (3-D) collagen-based model that induced LEC invasion and recapitulated physiological formation of lymphatic capillaries with lumens. Invasion of LECs was enhanced in the presence of sphingosine 1-phosphate (S1P). Effects of various known lymphangiogenic factors, vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factor (bFGF), interleukin (IL)-8, and hepatocyte growth factor (HGF), were tested on LEC sprout formation synergistically with VEGF-C. Several of these growth factors significantly enhanced LEC invasion, and synergistic effects of some of these further enhanced the sprouting density and lumen volume. To determine the contribution of specific ECM components, we analyzed the expression of different integrin subunits. Basal expressions of the integrin α5- and integrin β1-subunits were high in LECs. The addition of fibronectin, which mediates cellular responses through these integrins, enhanced LEC sprouting density and sprout length dose-dependently. siRNA-mediated knockdown of the integrin β1-subunit suppressed LEC invasion and also inhibited VEGF receptor (VEGFR)3 and ERK activation. Furthermore, exposing LECs to the inflammatory mediator lipopolysaccharide (LPS) inhibited sprouting. This optimized model for LEC invasion includes S1P, VEGF-C, and fibronectin within a 3-D collagen matrix, along with VEGF-C, VEGF-A, bFGF, and HGF in the culture medium, and provides a useful tool to investigate the functional effect of various lymphangiogenic factors and inhibitors.
Collapse
Affiliation(s)
- Subhashree Kumaravel
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| |
Collapse
|
26
|
Wu C, Li H, Zhang P, Tian C, Luo J, Zhang W, Bhandari S, Jin S, Hao Y. Lymphatic Flow: A Potential Target in Sepsis-Associated Acute Lung Injury. J Inflamm Res 2020; 13:961-968. [PMID: 33262632 PMCID: PMC7695606 DOI: 10.2147/jir.s284090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Sepsis is life-threatening organ dysfunction caused by an imbalance in the body’s response to infection and acute lung injury (ALI) related to sepsis is a common complication. The rapid morbidity and high mortality associated with sepsis is a significant clinical problem facing critical care medicine. Inflammation plays a vital role in the occurrence of sepsis. Notably, the body produces different immune cells and pro-inflammatory factors to clear pathogens. However, excessive inflammation can damage multiple tissues and organs when it fails to resolve in time. Additionally, lymphatic vessels could effectively transfer inflammatory cells and factors away from tissues and into blood circulation, thereby reducing damage, and promoting the resolution of inflammation. Therefore, any dysfunction and/or destruction of the lymphatic system may result in lymphedema followed by inflammatory storms and eventual sepsis. Consequently, the present study aimed to review and highlight the role of lymphatic vessels in related body tissues and organs during sepsis and other associated diseases.
Collapse
Affiliation(s)
- Chenghua Wu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Hui Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,Key Laboratory of Anaesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Puhong Zhang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chao Tian
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jun Luo
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wenyan Zhang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Suwas Bhandari
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Shengwei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yu Hao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
27
|
Dong Y, Lee Y, Cui K, He M, Wang B, Bhattacharjee S, Zhu B, Yago T, Zhang K, Deng L, Ouyang K, Wen A, Cowan DB, Song K, Yu L, Brophy ML, Liu X, Wylie-Sears J, Wu H, Wong S, Cui G, Kawashima Y, Matsumoto H, Kodera Y, Wojcikiewicz RJH, Srivastava S, Bischoff J, Wang DZ, Ley K, Chen H. Epsin-mediated degradation of IP3R1 fuels atherosclerosis. Nat Commun 2020; 11:3984. [PMID: 32770009 PMCID: PMC7414107 DOI: 10.1038/s41467-020-17848-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
The epsin family of endocytic adapter proteins are widely expressed, and interact with both proteins and lipids to regulate a variety of cell functions. However, the role of epsins in atherosclerosis is poorly understood. Here, we show that deletion of endothelial epsin proteins reduces inflammation and attenuates atherosclerosis using both cell culture and mouse models of this disease. In atherogenic cholesterol-treated murine aortic endothelial cells, epsins interact with the ubiquitinated endoplasmic reticulum protein inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), which triggers proteasomal degradation of this calcium release channel. Epsins potentiate its degradation via this interaction. Genetic reduction of endothelial IP3R1 accelerates atherosclerosis, whereas deletion of endothelial epsins stabilizes IP3R1 and mitigates inflammation. Reduction of IP3R1 in epsin-deficient mice restores atherosclerotic progression. Taken together, epsin-mediated degradation of IP3R1 represents a previously undiscovered biological role for epsin proteins and may provide new therapeutic targets for the treatment of atherosclerosis and other diseases.
Collapse
Affiliation(s)
- Yunzhou Dong
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yang Lee
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kui Cui
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ming He
- Department of Medicine, University of California, San Diego, San Diego, CA, 92093, USA
| | - Beibei Wang
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sudarshan Bhattacharjee
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Tadayuki Yago
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Kun Zhang
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lin Deng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Kunfu Ouyang
- Department of Medicine, University of California, San Diego, San Diego, CA, 92093, USA
| | - Aiyun Wen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Douglas B Cowan
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kai Song
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lili Yu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Megan L Brophy
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaolei Liu
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jill Wylie-Sears
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Guanglin Cui
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Yusuke Kawashima
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Center for Disease Proteomics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Hiroyuki Matsumoto
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yoshio Kodera
- Center for Disease Proteomics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | | | - Sanjay Srivastava
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Klaus Ley
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Johnson SC, Chakraborty S, Drosou A, Cunnea P, Tzovaras D, Nixon K, Zawieja DC, Muthuchamy M, Fotopoulou C, Moore JE. Inflammatory state of lymphatic vessels and miRNA profiles associated with relapse in ovarian cancer patients. PLoS One 2020; 15:e0230092. [PMID: 32716937 PMCID: PMC7384632 DOI: 10.1371/journal.pone.0230092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/05/2020] [Indexed: 01/20/2023] Open
Abstract
Lymphogenic spread is associated with poor prognosis in epithelial ovarian cancer (EOC), yet little is known regarding roles of non-peri-tumoural lymphatic vessels (LVs) outside the tumour microenvironment that may impact relapse. The aim of this feasibility study was to assess whether inflammatory status of the LVs and/or changes in the miRNA profile of the LVs have potential prognostic and predictive value for overall outcome and risk of relapse. Samples of macroscopically normal human lymph LVs (n = 10) were isolated from the external iliac vessels draining the pelvic region of patients undergoing debulking surgery. This was followed by quantification of the inflammatory state (low, medium and high) and presence of cancer-infiltration of each LV using immunohistochemistry. LV miRNA expression profiling was also performed, and analysed in the context of high versus low inflammation, and cancer-infiltrated versus non-cancer-infiltrated. Results were correlated with clinical outcome data including relapse with an average follow-up time of 13.3 months. The presence of a high degree of inflammation correlated significantly with patient relapse (p = 0.033). Cancer-infiltrated LVs showed a moderate but non-significant association with relapse (p = 0.07). Differential miRNA profiles were identified in cancer-infiltrated LVs and those with high versus low inflammation. In particular, several members of the let-7 family were consistently down-regulated in highly inflamed LVs (>1.8-fold, p<0.05) compared to the less inflamed ones. Down-regulation of the let-7 family appears to be associated with inflammation, but whether inflammation contributes to or is an effect of cancer-infiltration requires further investigation.
Collapse
Affiliation(s)
- Sarah C. Johnson
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Anastasios Drosou
- Information Technologies Institute Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Paula Cunnea
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Dimitrios Tzovaras
- Information Technologies Institute Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Katherine Nixon
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - David C. Zawieja
- College of Medicine, Texas A&M University, TX, United States of America
| | | | - Christina Fotopoulou
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - James E. Moore
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Lee Y, Chakraborty S, Muthuchamy M. Roles of sarcoplasmic reticulum Ca 2+ ATPase pump in the impairments of lymphatic contractile activity in a metabolic syndrome rat model. Sci Rep 2020; 10:12320. [PMID: 32704072 PMCID: PMC7378550 DOI: 10.1038/s41598-020-69196-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
The intrinsic lymphatic contractile activity is necessary for proper lymph transport. Mesenteric lymphatic vessels from high-fructose diet-induced metabolic syndrome (MetSyn) rats exhibited impairments in its intrinsic phasic contractile activity; however, the molecular mechanisms responsible for the weaker lymphatic pumping activity in MetSyn conditions are unknown. Several metabolic disease models have shown that dysregulation of sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump is one of the key determinants of the phenotypes seen in various muscle tissues. Hence, we hypothesized that a decrease in SERCA pump expression and/or activity in lymphatic muscle influences the diminished lymphatic vessel contractions in MetSyn animals. Results demonstrated that SERCA inhibitor, thapsigargin, significantly reduced lymphatic phasic contractile frequency and amplitude in control vessels, whereas, the reduced MetSyn lymphatic contractile activity was not further diminished by thapsigargin. While SERCA2a expression was significantly decreased in MetSyn lymphatic vessels, myosin light chain 20, MLC20 phosphorylation was increased in these vessels. Additionally, insulin resistant lymphatic muscle cells exhibited elevated intracellular calcium and decreased SERCA2a expression and activity. The SERCA activator, CDN 1163 partially restored lymphatic contractile activity in MetSyn lymphatic vessel by increasing phasic contractile frequency. Thus, our data provide the first evidence that SERCA2a modulates the lymphatic pumping activity by regulating phasic contractile amplitude and frequency, but not the lymphatic tone. Diminished lymphatic contractile activity in the vessels from the MetSyn animal is associated with the decreased SERCA2a expression and impaired SERCA2 activity in lymphatic muscle.
Collapse
Affiliation(s)
- Yang Lee
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
| | - Mariappan Muthuchamy
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA.
| |
Collapse
|
30
|
Kumaravel S, Singh S, Roy S, Venkatasamy L, White TK, Sinha S, Glaser SS, Safe SH, Chakraborty S. CXCL11-CXCR3 Axis Mediates Tumor Lymphatic Cross Talk and Inflammation-Induced Tumor, Promoting Pathways in Head and Neck Cancers. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:900-915. [PMID: 32035061 PMCID: PMC7180517 DOI: 10.1016/j.ajpath.2019.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/03/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Tumor metastasis to the draining lymph nodes is critical in patient prognosis and is tightly regulated by molecular interactions mediated by lymphatic endothelial cells (LECs). The underlying mechanisms remain undefined in the head and neck squamous cell carcinomas (HNSCCs). Using HNSCC cells and LECs we determined the mechanisms mediating tumor-lymphatic cross talk. The effects of a pentacyclic triterpenoid, methyl 2-trifluoromethyl-3,11-dioxoolean-1,12-dien-30-oate (CF3DODA-Me), a potent anticancer agent, were studied on cancer-lymphatic interactions. In response to inflammation, LECs induced the chemokine (C-X-C motif) ligand 9/10/11 chemokines with a concomitant increase in the chemokine (C-X-C motif) receptor 3 (CXCR3) in tumor cells. CF3DODA-Me showed antiproliferative effects on tumor cells, altered cellular bioenergetics, suppressed matrix metalloproteinases and chemokine receptors, and the induction of CXCL11-CXCR3 axis and phosphatidylinositol 3-kinase/AKT pathways. Tumor cell migration to LECs was inhibited by blocking CXCL11 whereas recombinant CXCL11 significantly induced tumor migration, epithelial-to-mesenchymal transition, and matrix remodeling. Immunohistochemical analysis of HNSCC tumor arrays showed enhanced expression of CXCR3 and increased lymphatic vessel infiltration. Furthermore, The Cancer Genome Atlas RNA-sequencing data from HNSCC patients also showed a positive correlation between CXCR3 expression and lymphovascular invasion. Collectively, our data suggest a novel mechanism for cross talk between the LECs and HNSCC tumors through the CXCR3-CXCL11 axis and elucidate the role of the triterpenoid CF3DODA-Me in abrogating several of these tumor-promoting pathways.
Collapse
Affiliation(s)
- Subhashree Kumaravel
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Sumeet Singh
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Sukanya Roy
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Lavanya Venkatasamy
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Tori K White
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Samiran Sinha
- Department of Statistics, Texas A&M University, College Station, Texas
| | - Shannon S Glaser
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Stephen H Safe
- Department Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, Texas.
| |
Collapse
|
31
|
Pal S, Gasheva OY, Zawieja DC, Meininger CJ, Gashev AA. Histamine-mediated autocrine signaling in mesenteric perilymphatic mast cells. Am J Physiol Regul Integr Comp Physiol 2020; 318:R590-R604. [PMID: 31913658 PMCID: PMC7099465 DOI: 10.1152/ajpregu.00255.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/25/2022]
Abstract
Lymphatic vessels play a critical role in mounting a proper immune response by trafficking peripheral immune cells to draining lymph nodes. Mast cells (MCs) are well known for their roles in type I hypersensitivity reactions, but little is known about their secretory regulation in the lymphatic niche. MCs, as innate sensor and effector cells, reside close to mesenteric lymphatic vessels (MLVs), and their activation and ability to release histamine influences the lymphatic microenvironment in a histamine-NF-κB-dependent manner. Using an established experimental protocol involving surgical isolation of rat mesenteric tissue segments, including MLVs and surrounding perilymphatic tissues, we tested the hypothesis that perilymphatic mesenteric MCs possess histamine receptors (HRs) that bind and respond to the histamine released from these same MCs. Under various experimental conditions, including inflammatory stimulation by LPS, we measured histamine in mesenteric perilymphatic tissues, evaluated expression of histidine decarboxylase in MCs along with the degree of MC degranulation, assessed the functional status of HRs in MCs, and evaluated the ability of histamine itself to induce MC activation. Finally, we evaluated the importance of MCs and HR1 and -2 for MLV-directed trafficking of CD11b/c-positive cells during acute tissue inflammation. Our data indicate the existence of a functionally potent MC-histamine autocrine regulatory loop, the elements of which are crucially important for acute inflammation-induced trafficking of the CD11b/c-positive cells toward MLVs. This MC-histamine loop serves as a first-line cellular servo control system, playing a key role in the innate and adaptive immune response as well as NF-κB-mediated maintenance of body homeostasis.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Olga Y Gasheva
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - David C Zawieja
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Cynthia J Meininger
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Anatoliy A Gashev
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| |
Collapse
|
32
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
33
|
Lee Y, Chakraborty S, Meininger CJ, Muthuchamy M. Insulin resistance disrupts cell integrity, mitochondrial function, and inflammatory signaling in lymphatic endothelium. Microcirculation 2018; 25:e12492. [PMID: 30025187 DOI: 10.1111/micc.12492] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Lymphatic vessel dysfunction and increased lymph leakage have been directly associated with several metabolic diseases. However, the underlying cellular mechanisms causing lymphatic dysfunction have not been determined. Aberrant insulin signaling affects the metabolic function of cells and consequently impairs tissue function. We hypothesized that insulin resistance in LECs decreases eNOS activity, disrupts barrier integrity increases permeability, and activates mitochondrial dysfunction and pro-inflammatory signaling pathways. METHODS LECs were treated with insulin and/or glucose to determine the mechanisms leading to insulin resistance. RESULTS Acute insulin treatment increased eNOS phosphorylation and NO production in LECs via activation of the PI3K/Akt signaling pathway. Prolonged hyperglycemia and hyperinsulinemia induced insulin resistance in LECs. Insulin-resistant LECs produced less NO due to a decrease in eNOS phosphorylation and showed a significant decrease in impedance across an LEC monolayer that was associated with disruption in the adherence junctional proteins. Additionally, insulin resistance in LECs impaired mitochondrial function by decreasing basal-, maximal-, and ATP-linked OCRs and activated NF-κB nuclear translocation coupled with increased pro-inflammatory signaling. CONCLUSION Our data provide the first evidence that insulin resistance disrupts endothelial barrier integrity, decreases eNOS phosphorylation and mitochondrial function, and activates inflammation in LECs.
Collapse
Affiliation(s)
- Yang Lee
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, Texas
| | - Cynthia J Meininger
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, Texas
| | - Mariappan Muthuchamy
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, Texas
| |
Collapse
|
34
|
Zawieja SD, Castorena-Gonzalez JA, Dixon B, Davis MJ. Experimental Models Used to Assess Lymphatic Contractile Function. Lymphat Res Biol 2018; 15:331-342. [PMID: 29252142 DOI: 10.1089/lrb.2017.0052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent years have seen a renewed interest in studies of the lymphatic system. This review addresses the differences between in vivo and ex vivo methods for visualization and functional studies of lymphatic networks, with an emphasis on studies of collecting lymphatic vessels. We begin with a brief summary of the historical uses of both approaches. For the purpose of detailed comparisons, we subdivide in vivo methods into those visualizing lymphatic networks through the intact skin and those using surgically opened skin. We subdivide ex vivo methods into isobaric studies (using a pressure myograph) or isometric studies (using a wire myograph). For all four categories, we compile a comprehensive list of the advantages, disadvantages, and limitations of each preparation, with the goal of informing the research community as to the appropriate kinds of experiments best suited, and ill suited, for each.
Collapse
Affiliation(s)
- Scott D Zawieja
- 1 Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| | | | - Brandon Dixon
- 2 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Michael J Davis
- 1 Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| |
Collapse
|
35
|
Chen Y, Rehal S, Roizes S, Zhu HL, Cole WC, von der Weid PY. The pro-inflammatory cytokine TNF-α inhibits lymphatic pumping via activation of the NF-κB-iNOS signaling pathway. Microcirculation 2018; 24. [PMID: 28231612 DOI: 10.1111/micc.12364] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/17/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Mesenteric lymphatic vessel pumping, important to propel lymph and immune cells from the intestinal interstitium to the mesenteric lymph nodes, is compromised during intestinal inflammation. The objective of this study was to test the hypothesis that the pro-inflammatory cytokine TNF-α, is a significant contributor to the inflammation-induced lymphatic contractile dysfunction, and to determine its mode of action. METHODS Contractile parameters were obtained from isolated rat mesenteric lymphatic vessels mounted on a pressure myograph after 24-hours incubation with or without TNF-α. Various inhibitors were administered, and quantitative real-time PCR, Western blotting, and immunofluorescence confocal imaging were applied to characterize the mechanisms involved in TNF-α actions. RESULTS Vessel contraction frequency was significantly decreased after TNF-α treatment and could be restored by selective inhibition of NF-кB, iNOS, guanylate cyclase, and ATP-sensitive K+ channels. We further demonstrated that NF-кB inhibition also suppressed the significant increase in iNOS mRNA observed in TNF-α-treated lymphatic vessels and that TNF-α treatment favored the nuclear translocation of the p65 NF-κB subunit. CONCLUSIONS These findings suggest that TNF-α decreases mesenteric lymphatic contractility by activating the NF-κB-iNOS signaling pathway. This mechanism could contribute to the alteration of lymphatic pumping reported in intestinal inflammation.
Collapse
Affiliation(s)
- Yingxuan Chen
- Inflammation Research Network, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sonia Rehal
- Inflammation Research Network, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Simon Roizes
- Inflammation Research Network, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Hai-Lei Zhu
- Smooth Muscle Research Group, Department of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - William C Cole
- Smooth Muscle Research Group, Department of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pierre-Yves von der Weid
- Inflammation Research Network, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
36
|
Rehal S, Stephens M, Roizes S, Liao S, von der Weid PY. Acute small intestinal inflammation results in persistent lymphatic alterations. Am J Physiol Gastrointest Liver Physiol 2018; 314:G408-G417. [PMID: 29351397 DOI: 10.1152/ajpgi.00340.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) has a complex pathophysiology with limited treatments. Structural and functional changes in the intestinal lymphatic system have been associated with the disease, with increased risk of IBD occurrence linked to a history of acute intestinal injury. To examine the potential role of the lymphatic system in inflammation recurrence, we evaluated morphological and functional changes in mouse mucosal and mesenteric lymphatic vessels, and within the mesenteric lymph nodes during acute ileitis caused by a 7-day treatment with dextran sodium sulfate (DSS). We monitored whether the changes persisted during a 14-day recovery period and determined their potential consequences on dendritic cell (DC) trafficking between the mucosa and lymphoid tissues. DSS administration was associated with marked lymphatic abnormalities and dysfunctions exemplified by lymphangiectasia and lymphangiogenesis in the ileal mucosa and mesentery, increased mesenteric lymphatic vessel leakage, and lymphadenopathy. Lymphangiogenesis and lymphadenopathy were still evident after recovery from intestinal inflammation and correlated with higher numbers of DCs in mucosal and lymphatic tissues. Specifically, a deficit in CD103+ DCs observed during acute DSS in the lamina propria was reversed and further enhanced during recovery. We concluded that an acute intestinal insult caused alterations of the mesenteric lymphatic system, including lymphangiogenesis, which persisted after resolution of inflammation. These morphological and functional changes could compromise DC function and movement, increasing susceptibility to further gastrointestinal disease. Elucidation of the changes in mesenteric and intestinal lymphatic function should offer key insights for new therapeutic strategies in gastrointestinal disorders such as IBD. NEW & NOTEWORTHY Lymphatic integrity plays a critical role in small intestinal homeostasis. Acute intestinal insult in a mouse model of acute ileitis causes morphological and functional changes in mesenteric and intestinal lymphatic vessels. While some of the changes significantly regressed during inflammation resolution, others persisted, including lymphangiogenesis and altered dendritic cell function and movement, potentially increasing susceptibility to the recurrence of gastrointestinal inflammation.
Collapse
Affiliation(s)
- Sonia Rehal
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Matthew Stephens
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Simon Roizes
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Shan Liao
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Pierre-Yves von der Weid
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
37
|
Stephens M, Liao S. Neutrophil-lymphatic interactions during acute and chronic disease. Cell Tissue Res 2018; 371:599-606. [PMID: 29423716 DOI: 10.1007/s00441-017-2779-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/14/2017] [Indexed: 12/19/2022]
Abstract
The lymphatic system aids in osmoregulation through tissue fluid transport, but is also designed to support communication between cells of the innate and adaptive immune systems. During inflammation, changes within the lymphatics can result in an altered response to infection. Neutrophils have been described as one key cell type that facilitates antigen capture and presentation within the lymphatic system, enabling an effective adaptive immune response. Disruption of neutrophil recruitment during inflammation, due to alterations in lymphatics, is a growing area of study due to their key role in infection resolution. In this review, we discuss the currently known methods by which neutrophils are recruited to the lymphatic system and what subsequent effects they have on resident and recruited cells within the lymph vessels and nodes. We also discuss the changes in neutrophil activation and recruitment during chronic inflammatory diseases and their relationship to lymphatic dysfunction.
Collapse
Affiliation(s)
- Matthew Stephens
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Room 1647, Health Sciences Centre, 3330 Hospital Drive NW, Calgary, Alberta, AB T2N 4N1, Canada
| | - Shan Liao
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Room 1647, Health Sciences Centre, 3330 Hospital Drive NW, Calgary, Alberta, AB T2N 4N1, Canada.
| |
Collapse
|
38
|
Nizamutdinova IT, Dusio GF, Gasheva OY, Skoog H, Tobin R, Peddaboina C, Meininger CJ, Zawieja DC, Newell-Rogers MK, Gashev AA. Mast cells and histamine are triggering the NF-κB-mediated reactions of adult and aged perilymphatic mesenteric tissues to acute inflammation. Aging (Albany NY) 2017; 8:3065-3090. [PMID: 27875806 PMCID: PMC5191886 DOI: 10.18632/aging.101113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/08/2016] [Indexed: 12/29/2022]
Abstract
This study aimed to establish mechanistic links between the aging-associated changes in the functional status of mast cells and the altered responses of mesenteric tissue and mesenteric lymphatic vessels (MLVs) to acute inflammation. We used an in vivo model of acute peritoneal inflammation induced by lipopolysaccharide treatment of adult (9-month) and aged (24-month) F-344 rats. We analyzed contractility of isolated MLVs, mast cell activation, activation of nuclear factor-κB (NF-κB) without and with stabilization of mast cells by cromolyn or blockade of all types of histamine receptors and production of 27 major pro-inflammatory cytokines in adult and aged perilymphatic mesenteric tissues and blood. We found that the reactivity of aged contracting lymphatic vessels to LPS-induced acute inflammation was abolished and that activated mast cells trigger NF-κB signaling in the mesentery through release of histamine. The aging-associated basal activation of mesenteric mast cells limits acute inflammatory NF-κB activation in aged mesentery. We conclude that proper functioning of the mast cell/histamine/NF-κB axis is necessary for reactions of the lymphatic vessels to acute inflammatory stimuli as well as for interaction and trafficking of immune cells near and within the collecting lymphatics.
Collapse
Affiliation(s)
- Irina Tsoy Nizamutdinova
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - Giuseppina F Dusio
- Department of Surgery, Baylor Scott and White Health, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - Olga Yu Gasheva
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - Hunter Skoog
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - Richard Tobin
- Department of Surgery, Baylor Scott and White Health, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - Chander Peddaboina
- Department of Surgery, Baylor Scott and White Health, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - Cynthia J Meininger
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - David C Zawieja
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - M Karen Newell-Rogers
- Department of Surgery, Baylor Scott and White Health, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - Anatoliy A Gashev
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA
| |
Collapse
|
39
|
Pal S, Meininger CJ, Gashev AA. Aged Lymphatic Vessels and Mast Cells in Perilymphatic Tissues. Int J Mol Sci 2017; 18:E965. [PMID: 28467354 PMCID: PMC5454878 DOI: 10.3390/ijms18050965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/09/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
This review provides a comprehensive summary of research on aging-associated alterations in lymphatic vessels and mast cells in perilymphatic tissues. Aging alters structure (by increasing the size of zones with low muscle cell investiture), ultrastructure (through loss of the glycocalyx), and proteome composition with a concomitant increase in permeability of aged lymphatic vessels. The contractile function of aged lymphatic vessels is depleted with the abolished role of nitric oxide and an increased role of lymphatic-born histamine in flow-dependent regulation of lymphatic phasic contractions and tone. In addition, aging induces oxidative stress in lymphatic vessels and facilitates the spread of pathogens from these vessels into perilymphatic tissues. Aging causes the basal activation of perilymphatic mast cells, which, in turn, restricts recruitment/activation of immune cells in perilymphatic tissues. This aging-associated basal activation of mast cells limits proper functioning of the mast cell/histamine/NF-κB axis that is essential for the regulation of lymphatic vessel transport and barrier functions as well as for both the interaction and trafficking of immune cells near and within lymphatic collecting vessels. Cumulatively, these changes play important roles in the pathogenesis of alterations in inflammation and immunity associated with aging.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA.
| | - Cynthia J Meininger
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA.
| | - Anatoliy A Gashev
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA.
| |
Collapse
|
40
|
Lee Y, Fluckey JD, Chakraborty S, Muthuchamy M. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle. FASEB J 2017; 31:2744-2759. [PMID: 28298335 DOI: 10.1096/fj.201600887r] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/22/2017] [Indexed: 12/27/2022]
Abstract
Insulin resistance is a well-known risk factor for obesity, metabolic syndrome (MetSyn) and associated cardiovascular diseases, but its mechanisms are undefined in the lymphatics. Mesenteric lymphatic vessels from MetSyn or LPS-injected rats exhibited impaired intrinsic contractile activity and associated inflammatory changes. Hence, we hypothesized that insulin resistance in lymphatic muscle cells (LMCs) affects cell bioenergetics and signaling pathways that consequently alter contractility. LMCs were treated with different concentrations of insulin or glucose or both at various time points to determine insulin resistance. Onset of insulin resistance significantly impaired glucose uptake, mitochondrial function, oxygen consumption rates, glycolysis, lactic acid, and ATP production in LMCs. Hyperglycemia and hyperinsulinemia also impaired the PI3K/Akt while enhancing the ERK/p38MAPK/JNK pathways in LMCs. Increased NF-κB nuclear translocation and macrophage chemoattractant protein-1 and VCAM-1 levels in insulin-resistant LMCs indicated activation of inflammatory mechanisms. In addition, increased phosphorylation of myosin light chain-20, a key regulator of lymphatic muscle contraction, was observed in insulin-resistant LMCs. Therefore, our data elucidate the mechanisms of insulin resistance in LMCs and provide the first evidence that hyperglycemia and hyperinsulinemia promote insulin resistance and impair lymphatic contractile status by reducing glucose uptake, altering cellular metabolic pathways, and activating inflammatory signaling cascades.-Lee, Y., Fluckey, J. D., Chakraborty, S., Muthuchamy, M. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle.
Collapse
Affiliation(s)
- Yang Lee
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - James D Fluckey
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA;
| | - Mariappan Muthuchamy
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA;
| |
Collapse
|
41
|
Sonin D, Papayan G, Pochkaeva E, Chefu S, Minasian S, Kurapeev D, Vaage J, Petrishchev N, Galagudza M. In vivo visualization and ex vivo quantification of experimental myocardial infarction by indocyanine green fluorescence imaging. BIOMEDICAL OPTICS EXPRESS 2017; 8:151-161. [PMID: 28101408 PMCID: PMC5231288 DOI: 10.1364/boe.8.000151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
The fluorophore indocyanine green accumulates in areas of ischemia-reperfusion injury due to an increase in vascular permeability and extravasation of the dye. The aim of the study was to validate an indocyanine green-based technique of in vivo visualization of myocardial infarction. A further aim was to quantify infarct size ex vivo and compare this technique with the standard triphenyltetrazolium chloride staining. Wistar rats were subjected to regional myocardial ischemia (30 minutes) followed by reperfusion (n = 7). Indocyanine green (0.25 mg/mL in 1 mL of normal saline) was infused intravenously for 10 minutes starting from the 25th minute of ischemia. Video registration in the near-infrared fluorescence was performed. Epicardial fluorescence of indocyanine green corresponded to the injured area after 30 minutes of reperfusion. Infarct size was similar when determined ex vivo using traditional triphenyltetrazolium chloride assay and indocyanine green fluorescent labeling. Intravital visualization of irreversible injury can be done directly by fluorescence on the surface of the heart. This technique may also be an alternative for ex vivo measurements of infarct size.
Collapse
Affiliation(s)
- Dmitry Sonin
- Center for Laser Medicine, Department of Pathophysiology, First I.P. Pavlov Federal Medical University of St. Petersburg, Lev Tolstoy Str. 6/8, 197022, St. Petersburg, Russia
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, Akkuratova Str. 2, 197341, St. Petersburg, Russia
- ITMO University, Kronverksky Avenue 49, 197101 St. Petersburg, Russia
| | - Garry Papayan
- Center for Laser Medicine, Department of Pathophysiology, First I.P. Pavlov Federal Medical University of St. Petersburg, Lev Tolstoy Str. 6/8, 197022, St. Petersburg, Russia
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, Akkuratova Str. 2, 197341, St. Petersburg, Russia
- ITMO University, Kronverksky Avenue 49, 197101 St. Petersburg, Russia
| | - Evgeniia Pochkaeva
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, Akkuratova Str. 2, 197341, St. Petersburg, Russia
| | - Svetlana Chefu
- Center for Laser Medicine, Department of Pathophysiology, First I.P. Pavlov Federal Medical University of St. Petersburg, Lev Tolstoy Str. 6/8, 197022, St. Petersburg, Russia
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, Akkuratova Str. 2, 197341, St. Petersburg, Russia
| | - Sarkis Minasian
- Center for Laser Medicine, Department of Pathophysiology, First I.P. Pavlov Federal Medical University of St. Petersburg, Lev Tolstoy Str. 6/8, 197022, St. Petersburg, Russia
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, Akkuratova Str. 2, 197341, St. Petersburg, Russia
- ITMO University, Kronverksky Avenue 49, 197101 St. Petersburg, Russia
| | - Dmitry Kurapeev
- Center for Laser Medicine, Department of Pathophysiology, First I.P. Pavlov Federal Medical University of St. Petersburg, Lev Tolstoy Str. 6/8, 197022, St. Petersburg, Russia
| | - Jarle Vaage
- ITMO University, Kronverksky Avenue 49, 197101 St. Petersburg, Russia
- Institute of Clinical Medicine, University of Oslo and Department of Emergency and Intensive Care Medicine, Oslo University Hospital, Postboks 1171, Blindern, 0318 Oslo, Norway
| | - Nickolay Petrishchev
- Center for Laser Medicine, Department of Pathophysiology, First I.P. Pavlov Federal Medical University of St. Petersburg, Lev Tolstoy Str. 6/8, 197022, St. Petersburg, Russia
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, Akkuratova Str. 2, 197341, St. Petersburg, Russia
- ITMO University, Kronverksky Avenue 49, 197101 St. Petersburg, Russia
| | - Michael Galagudza
- Center for Laser Medicine, Department of Pathophysiology, First I.P. Pavlov Federal Medical University of St. Petersburg, Lev Tolstoy Str. 6/8, 197022, St. Petersburg, Russia
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, Akkuratova Str. 2, 197341, St. Petersburg, Russia
- ITMO University, Kronverksky Avenue 49, 197101 St. Petersburg, Russia
| |
Collapse
|
42
|
Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol 2016; 594:5749-5768. [PMID: 27219461 PMCID: PMC5063934 DOI: 10.1113/jp272088] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Joshua P Scallan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | | | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
43
|
Nitti MD, Hespe GE, Kataru RP, García Nores GD, Savetsky IL, Torrisi JS, Gardenier JC, Dannenberg AJ, Mehrara BJ. Obesity-induced lymphatic dysfunction is reversible with weight loss. J Physiol 2016; 594:7073-7087. [PMID: 27619475 DOI: 10.1113/jp273061] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Obesity induces lymphatic leakiness, decreases initial lymphatic vessel density, impairs collecting vessel pumping and decreases transport of macromolecules. Obesity results in perilymphatic inducible nitric oxide synthase (iNOS) expression and accumulation of T cells and macrophages. Deleterious effects of obesity on the lymphatic system correlate with weight gain. Weight loss restores lymphatic function in obese animals and decreases perilymphatic iNOS and inflammatory cell accumulation. ABSTRACT Although clinical and experimental studies have shown that obesity results in lymphatic dysfunction, it remains unknown whether these changes are permanent or reversible with weight loss. In the current study, we used a mouse model of diet-induced obesity to identify putative cellular mechanisms of obesity-induced lymphatic dysfunction, determine whether there is a correlation between these deleterious effects and increasing weight gain, and finally examine whether lymphatic dysfunction is reversible with diet-induced weight loss. We report that obesity is negatively correlated with cutaneous lymphatic collecting vessel pumping rate (r = -0.9812, P < 0.0005) and initial lymphatic vessel density (r = -0.9449, P < 0.005). In addition, we show a significant positive correlation between weight gain and accumulation of perilymphatic inflammatory cells (r = 0.9872, P < 0.0005) and expression of inducible nitric oxide synthase (iNOS; r = 0.9986, P < 0.0001). Weight loss resulting from conversion to a normal chow diet for 8 weeks resulted in more than a 25% decrease in body weight and normalized cutaneous lymphatic collecting vessel pumping rate, lymphatic vessel density, lymphatic leakiness, and lymphatic macromolecule clearance (all P < 0.05). In addition, weight loss markedly decreased perilymphatic inflammation and iNOS expression. Taken together, our findings show that obesity is linearly correlated with lymphatic dysfunction, perilymphatic inflammation and iNOS expression, and that weight loss via dietary modification effectively reverses these deleterious effects.
Collapse
Affiliation(s)
- Matthew D Nitti
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Geoffrey E Hespe
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Raghu P Kataru
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Gabriela D García Nores
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Ira L Savetsky
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Jeremy S Torrisi
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Jason C Gardenier
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Andrew J Dannenberg
- The Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Babak J Mehrara
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| |
Collapse
|
44
|
Zawieja SD, Wang W, Chakraborty S, Zawieja DC, Muthuchamy M. Macrophage alterations within the mesenteric lymphatic tissue are associated with impairment of lymphatic pump in metabolic syndrome. Microcirculation 2016; 23:558-570. [PMID: 27588380 PMCID: PMC5083172 DOI: 10.1111/micc.12307] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/26/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The intrinsic lymphatic pump is critical to proper lymph transport and is impaired in models of the MetSyn. Lymphatic contractile inhibition under inflammatory conditions has been linked with elevated NO production by activated myeloid-derived cells. Hence we hypothesized that inhibition of the MLV pump function in MetSyn animals was dependent on NO and was associated with altered macrophage recruitment and polarization within the MLV. METHODS We used a high fructose-fed rat model of MetSyn. Macrophage polarization was determined by whole mount immunofluorescence in mesenteric neurovascular bundles based on expression of CD163, CD206, and MHCII. We also utilized isolated vessel isobaric preparations to determine the role for elevated NO production in the inhibition of MLV contractility. Both LECs and LMCs were used to assess the cytokines and chemokines to test how the lymphatic cells response to inflammatory conditions. RESULTS Data demonstrated a greater accumulation of M1-skewed (CD163+ MHCII+ ) macrophages that were observed both within the perivascular adipose tissue and invested along the lymphatic vessels in MetSyn rats when compared to control rats. LECs and LMCs basally express the macrophage maturation polarization cytokines monocyte colony-stimulating factor and dramatically up regulate the M1 promoting cytokine granulocyte/monocyte colony-stimulating factor in response to lipopolysaccharide stimulation. MetSyn MLVs exhibited altered phasic contraction frequency. Incubation of MetSyn MLVs with LNAME or Glib had a partial restoration of lymphatic contraction frequency. CONCLUSION The data presented here provide the first evidence for a correlation between alterations in macrophage status and lymphatic dysfunction that is partially mediated by NO and KATP channel in MetSyn rats.
Collapse
Affiliation(s)
- Scott D Zawieja
- Department of Medical Physiology, College of Medicine, Cardiovascular Research Institute Division of Lymphatic Biology, Texas A&M Health Science Center, College Station, TX, USA
| | - Wei Wang
- Department of Medical Physiology, College of Medicine, Cardiovascular Research Institute Division of Lymphatic Biology, Texas A&M Health Science Center, College Station, TX, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Cardiovascular Research Institute Division of Lymphatic Biology, Texas A&M Health Science Center, College Station, TX, USA
| | - David C Zawieja
- Department of Medical Physiology, College of Medicine, Cardiovascular Research Institute Division of Lymphatic Biology, Texas A&M Health Science Center, College Station, TX, USA
| | - Mariappan Muthuchamy
- Department of Medical Physiology, College of Medicine, Cardiovascular Research Institute Division of Lymphatic Biology, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
45
|
Hamar P, Kerjaschki D. Blood capillary rarefaction and lymphatic capillary neoangiogenesis are key contributors to renal allograft fibrosis in an ACE inhibition rat model. Am J Physiol Heart Circ Physiol 2016; 311:H981-H990. [PMID: 27496878 DOI: 10.1152/ajpheart.00320.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022]
Abstract
Chronic allograft fibrosis is the major cause of graft loss in kidney transplantation. Progression can only be reduced by inhibition of the renin-angiotensin system (RAS). We tested the hypothesis that the protection provided by angiotensin-converting enzyme (ACE) inhibition also decreases capillary rarefaction, lymphangiogenesis, and podocyte injury in allograft fibrosis. Fisher kidneys were transplanted into bilaterally nephrectomized Lewis rats treated with enalapril (60 mg/kg per day) (ACE inhibitor, ACEi) or vehicle. Proteinuria, blood urea nitrogen, and plasma creatinine were regularly assessed, and grafts were harvested for morphological and immunohistological analysis at various times up to 32 wk. In the vehicle group, many new lymphatic capillaries and severe and diffuse mononuclear infiltration of allografts were observed already 1 wk after transplantation. Lymphangiogenesis increased until week 4, by which time inflammatory infiltration became focal. Lymphatic capillaries were often located at sites of inflammation. Progressive interstitial fibrosis, glomerulosclerosis, capillary rarefaction, and proteinuria appeared later, at weeks 4-12 The number of lymphatic capillary cross sections strongly correlated with the interstitial fibrosis score. Podoplanin immunostaining, a marker of healthy podocytes, disappeared from inflamed or sclerotic glomerular areas. ACEi protected from lymphangiogenesis and associated inflammation, preserved glomerular podoplanin protein expression, and reduced glomerulosclerosis, proteinuria, tubulointerstitial fibrosis, and blood capillary rarefaction at 32 wk. In conclusion, ACEi considerably decreased and/or delayed both glomerulosclerosis and tubulointerstitial injury. Prevention of glomerular podoplanin loss and proteinuria could be attributed to the known intraglomerular pressure-lowering effects of ACEi. Reduction of lymphangiogenesis could contribute to amelioration of tubulointerstitial fibrosis and inflammatory infiltration after ACEi.
Collapse
Affiliation(s)
- Péter Hamar
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary; and
| | | |
Collapse
|
46
|
Prominent Lymphatic Vessel Hyperplasia with Progressive Dysfunction and Distinct Immune Cell Infiltration in Lymphedema. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2193-2203. [PMID: 27315777 DOI: 10.1016/j.ajpath.2016.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/16/2016] [Accepted: 04/12/2016] [Indexed: 01/22/2023]
Abstract
Lymphedema is a common complication that occurs after breast cancer treatment in up to 30% of the patients undergoing surgical lymph node excision. It is associated with tissue swelling, fibrosis, increased risk of infection, and impaired wound healing. Despite the pronounced clinical manifestations of the disease, little is known about the morphological and functional characteristics of the lymphatic vasculature during the course of lymphedema progression. We used an experimental murine tail lymphedema model where sustained fluid stasis was generated on disruption of lymphatic flow, resulting in chronic edema formation with fibrosis and adipose tissue deposition. Morphological analysis of the lymphatic vessels revealed a dramatic expansion during the course of the disease, with active proliferation of lymphatic endothelial cells at the early stages of lymphedema. The lymphatic capillaries exhibited progressively impaired tracer filling and retrograde flow near the surgery site, whereas the collecting lymphatic vessels showed a gradually decreasing contraction amplitude with unchanged contraction frequency, leading to lymphatic contraction arrest at the later stages of the disease. Lymphedema onset was associated with pronounced infiltration by immune cells, predominantly Ly6G(+) and CD4(+) cells, which have been linked to impaired lymphatic vessel function.
Collapse
|